3R-446

Q3 2012 Ground Water Monitoring Report

Date 7/17/12

RCVD AUG 23'12 OIL CONS. DIV. DIST. 3

QUARTERLY GROUNDWATER MONITORING REPORT (June 2012 Event)

Property:

K-51 Pipeline Release Sections 34 and 35, T26N, R6W Rio Arriba County, New Mexico SWG Project No. 0410003 July 17, 2012

Prepared for: Enterprise Field Services, LLC P.O. Box 4324 Houston, Texas 77210-4324 Attention: Mr. David R. Smith, P.G.

PREPARED BY:

District Copy For Scanning Only Has NOT been processed. Kyle Summers, C.P.G. Senior Geologist/ Manager, Four Corners Office

B. Chris Mitchell, P.G. Principal Geoscientist

Southwest

606 S. Rio Grande Avenue Unit A, Downstairs West Aztec, NM 87410 Ph: (505) 334-5200

Fax: (505) 334-5200

TABLE OF CONTENTS

1.0 INTRODUCTION		1
1.1 Site Descrip	Juon & Backgro	und1
1.2 Scope Of W	Ork	2
1.3 Standard of	Care & Limitati	ons2
2.0 SAMPLING PRO	GRAM	3
3.0 LABORATORY	ANALYTICAL P	ROGRAM 3
4.0 GROUNDWATE	R FLOW DIREC	TION4
5.0 DATA EVALUAT	ΓΙΟΝ	4
5.1 Groundwat	er Samples	4
6.0 FINDINGS		5
7.0 RECOMMENDAT	rions	6
APPENDIX A	FIGURES	
APPENDIX A	Figure 1:	Topographic Man
	Figure 2:	Topographic Map Site Vicinity Map
	Figure 3:	Site Map
	Figure 4:	Groundwater Gradient Map
	riguic 4.	(June 2012)
	Figure 5:	GQS Exceedance Zone in Groundwater Map
	rigure 3.	(June 2012)
APPENDIX B	TABLES	
	Table 1: G	roundwater Analytical Summary
	Table 2: G	roundwater Elevations
APPENDIX C	LABORATORY	Y ANALYTICAL DATA &
	CHAIN-OF-CUS	STODY DOCUMENTATION

QUARTERLY GROUNDWATER MONITORING REPORT (June 2012 Event)

K-51 Pipeline Release Sections 34 and 35, T26N, R6W Rio Arriba County, New Mexico

SWG Project No. 0410003

1.0 INTRODUCTION

1.1 Site Description & Background

The K-51 pipeline release site is located at the boundary of Sections 34 and 35, Township 26 North, Range 6 West, in Rio Arriba County, New Mexico, referred to hereinafter as the "Site" or "subject Site". The Site consists of silty/sandy canyon bottomland with native grasses, and is crossed by a natural gas pipeline operated by Enterprise Field Services, LLC (Enterprise).

On April 13, 2010, approximately 10 barrels of natural gas condensate were released from the Enterprise natural gas gathering pipeline at the Site, due to internal corrosion. Subsequent to the completion of excavation and off-site disposal of petroleum hydrocarbon affected soils, confirmation soil samples were collected from the excavation by Souder, Miller and Associates (SMA). In addition, one (1) groundwater sample was collected from the groundwater which recharged into the excavation. The excavation was then backfilled with unaffected soils.

In June 2010, eight (8) soil borings (BH-1 through BH-8) were advanced on-site by LT Environmental (LTE). Subsequent to advancement, four (4) of the soil borings were converted to groundwater monitoring wells (MW-1 through MW-4) (Subsurface Investigation Report, dated August 9, 2010 – LTE). Based on the results of soil and groundwater sampling activities, constituent of concern (COC) concentrations were identified in soil above the New Mexico Energy, Minerals and Natural Resources Department (EMNRD), Oil Conservation Division (OCD) Remediation Action Levels (RALs) and in groundwater above the New Mexico Water Quality Control Commission (WQCC) Groundwater Quality Standards (GQSs).

During April 2011, nine (9) soil borings (SB-9, SB-10, MW-11 through MW-14, SB-15, MW-16, and MW-17) were advanced by Southwest Geoscience (SWG) in and around the former K-51 release area to further evaluate the extent of dissolved phase COCs in groundwater. Additionally, fifteen (15) injection points were installed to allow In-Situ Chemical Oxidation (ISCO) of the COCs. ISCO activities were performed during May 2011 (Supplemental Site Investigation and Corrective Action Report, dated October 5, 2011 - SWG).

Based on the distribution of COCs in groundwater, a former drip valve may have been a historic source of petroleum hydrocarbon impact to groundwater in the vicinity of monitoring well MW-14. During March 2012, three (3) additional soil borings (MW-18,

MW-19 and MW-20) were advanced in and around the former drip valve area to further evaluate the extent COCs in groundwater as a result of the release (*Supplemental Site Investigation & Corrective Action Work Plan, dated April 23, 2012 – SWG*). Soil boring MW-18 was advanced to the west of the former drip valve, hydrogeologically crossgradient, and soil borings MW-19 and MW-20 were advanced to the north and northwest of the drip valve, hydrogeologically down-gradient. Based on the results of quarterly groundwater monitoring from March 2012, the groundwater samples collected from monitoring wells MW-19 and MW-20 exhibited benzene concentrations at levels above the New Mexico WQCC GQSs.

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to condensate releases, the New Mexico OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically NMAC 19.15.30 Remediation. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

The Site location is depicted on Figure 1 of Appendix A which was reproduced from a portion of the United States Geological Survey (USGS) 7.5-minute series topographic map.

1.2 Scope of Work

The objective of the groundwater monitoring event was to further evaluate the concentrations of COCs in groundwater at the Site.

A Site Vicinity Map is included as Figure 2, and a Site Map, which indicates the approximate locations of the monitoring wells in relation to pertinent structures and general Site boundaries, is included as Figure 3 of Appendix A.

1.3 Standard of Care & Limitations

The findings and recommendations contained in this report represent SWG's professional opinions based upon information derived from on-Site activities and other services performed under this scope of work and were arrived at in accordance with currently acceptable professional standards. The findings were based upon analytical by independent laboratory. results provided an Evaluations geologic/hydrogeologic conditions at the Site for the purpose of this investigation are made from a limited number of available data points (i.e. soil borings and ground water samples) and site wide subsurface conditions may vary from these data points. SWG makes no warranties, express or implied, as to the services performed hereunder. Additionally, SWG does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties).

This report is based upon a specific scope of work requested by Enterprise. The agreement between SWG and Enterprise outlines the scope of work, and only those tasks specifically authorized by that agreement or outlined in this report were performed. This report has been prepared for the intended use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and SWG.

2.0 SAMPLING PROGRAM

A quarterly groundwater sampling event was conducted on June 19th, 2012 by Jordon Dubuisson and Aaron Bentley, both SWG environmental professionals.

SWG's groundwater sampling program consisted of the following:

 Collection of one groundwater sample from each monitoring well utilizing low-flow sampling techniques.

Prior to sample collection, SWG gauged the depth to fluids in each monitoring well using an interface probe capable of detecting light non-aqueous phase liquids (LNAPL). LNAPL was identified in monitoring well MW-19 during the gauging activities, and as a result, this well was not sampled during this event.

Prior to sample collection, each monitoring well was micro-purged utilizing low-flow sampling techniques. Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system, to the extent practical, taking into account established Site sampling objectives. Flow rates on the order of 0.1 to 0.5 L/min will be maintained during sampling activities, using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater recovered is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The groundwater samples were collected from each monitoring well once produced groundwater was consistent in color, clarity, pH, DO, ORP, temperature and conductivity.

Groundwater samples were collected in laboratory prepared containers, sealed with custody tape and placed on ice in a cooler secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico.

3.0 LABORATORY ANALYTICAL PROGRAM

The groundwater samples collected from the monitoring wells during the groundwater sampling event were analyzed for total petroleum hydrocarbons (TPH) gasoline range organics (GRO) and diesel range organics (DRO) utilizing EPA method SW-846#8015M, and benzene, toluene, ethylbenzene and xylenes (BTEX) utilizing EPA method SW-846#8021B.

A summary of the analysis, sample type, number of samples and EPA-approved

methods are presented on the following table:

Analysis	Sample Type	No. of Samples	Method
TPH GRO/DRO	Groundwater	12	SW-846# 8015M
BTEX	Groundwater	12	SW-846# 8021B

Laboratory results are summarized in Table 1 included in Appendix B. The executed chain-of-custody form and laboratory data sheets are provided in Appendix C.

4.0 GROUNDWATER FLOW DIRECTION

The monitoring wells have been surveyed to determine top-of-casing (TOC) elevations. Prior to sample collection, SWG gauged the depth to fluids in each monitoring well. The groundwater flow direction at the Site is generally towards the west-northwest. The observed gradient during this monitoring event was approximately 0.010 ft/ft across the Site.

Groundwater measurements collected during the most recent gauging event in June 2012 are presented with TOC elevations in Table 2, Appendix B. A groundwater gradient map depicting the most recent gauging data is included as Figure 4 (Appendix A).

5.0 DATA EVALUATION

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to crude oil/condensate related releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the EMNRD/OCD rules, specifically NMAC 19.15.30 Remediation. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

5.1 Groundwater Samples

SWG compared BTEX concentrations or laboratory reporting limits (RLs) associated with the groundwater samples collected from monitoring wells during the June 2012 sampling event to the New Mexico WQCC *Groundwater Quality Standards*. The results of the groundwater sample analyses are summarized in Table 1 of Appendix B. A Groundwater Quality Exceedance Zone map is provided as Figure 5 of Appendix A.

Benzene, Toluene, Ethylbenzene, and Xylenes

The groundwater samples collected from monitoring wells MW-2, MW-3, MW-11, MW-12, MW-13, MW-16, MW-17, MW-18, and MW-20 during the June 2012 sampling event did not exhibit benzene, toluene, ethylbenzene or xylenes concentrations above the respective WQCC *Groundwater Quality Standards*.

The groundwater samples collected from monitoring wells MW-1, MW-4, and MW-14 during the June 2012 sampling event exhibited benzene concentrations ranging from 37 μ g/L, which exceed the WQCC *Groundwater Quality Standard* of 10 μ g/L.

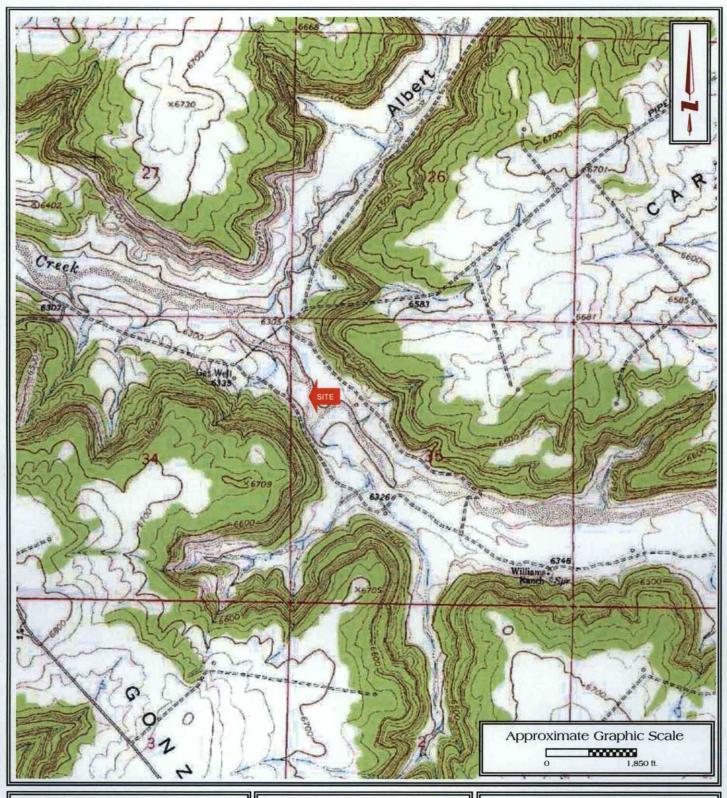
TPH GRO/DRO

The groundwater samples collected from monitoring wells MW-2, MW-3, MW-11, MW-12, MW-13, MW-16, MW-17, MW-18, and MW-20 did not exhibit TPH GRO concentrations above the laboratory RLs during the June 2012 sampling event. TPH DRO concentrations were not identified above the laboratory RLs in any of the sampled wells.

The groundwater samples collected from monitoring wells MW-1, MW-4, and MW-14 exhibited TPH GRO concentrations ranging from 1.7 mg/L to 3.4 mg/L. The highest GRO concentration during the June 2012 sampling event was observed in the groundwater sample from monitoring well MW-14.

6.0 FINDINGS

During June 2012, SWG conducted a quarterly groundwater monitoring event at the K-51 Pipeline release site. The Site is located at the boundary of Sections 34 and 35, Township 26 North, Range 6 West, in Rio Arriba County, New Mexico. The Site consists of silty/sandy canyon bottomland with native grasses, and is crossed by a natural gas pipeline operated by Enterprise. The objective of the groundwater monitoring event was to further evaluate the concentrations of COCs in groundwater at the Site.


- During the completion of the sampling event, one (1) groundwater sample was collected from each monitoring well that did not exhibit LNAPL utilizing low-flow sampling techniques.
- The groundwater samples collected from monitoring wells MW-2, MW-3, MW-11, MW-12, MW-13, MW-16, MW-17, MW-18, and MW-20 during the June 2012 sampling event did not exhibit benzene, toluene, ethylbenzene or xylenes concentrations above the respective WQCC Groundwater Quality Standards.
- During the June 2012 event, monitoring well MW-20 did not exhibit benzene in excess of the WQCC GQS as it did during the initial sampling event in March 2012.
- The groundwater samples collected from monitoring wells MW-1, MW-4, and MW-14 during the June 2012 sampling event exhibited benzene concentrations ranging from 37 µg/L to 660 µg/L, which exceed the WQCC Groundwater Quality Standard of 10 µg/L.
- LNAPL was measured at a thickness of 0.07 feet in monitoring well MW-19.

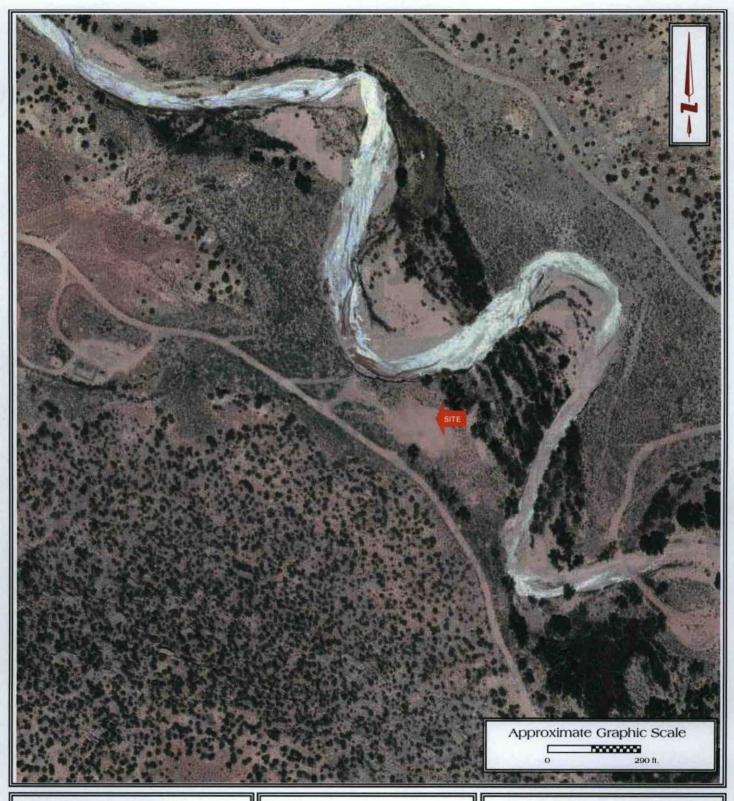
7.0 RECOMMENDATIONS

Based on the results of groundwater monitoring activities, SWG has the following recommendations:

- Report the groundwater monitoring results to the OCD;
- Continue the evaluation and execution of corrective actions to reduce the concentrations of COCs in soil to below the OCD Remediation Action Levels and groundwater to below the New Mexico WQCC Groundwater Quality Standards.

N36° 26' 47.77"; W107° 26' 46.04"

Off County Road 537


Rio Arriba, New Mexico

SWG Project No. 0410003

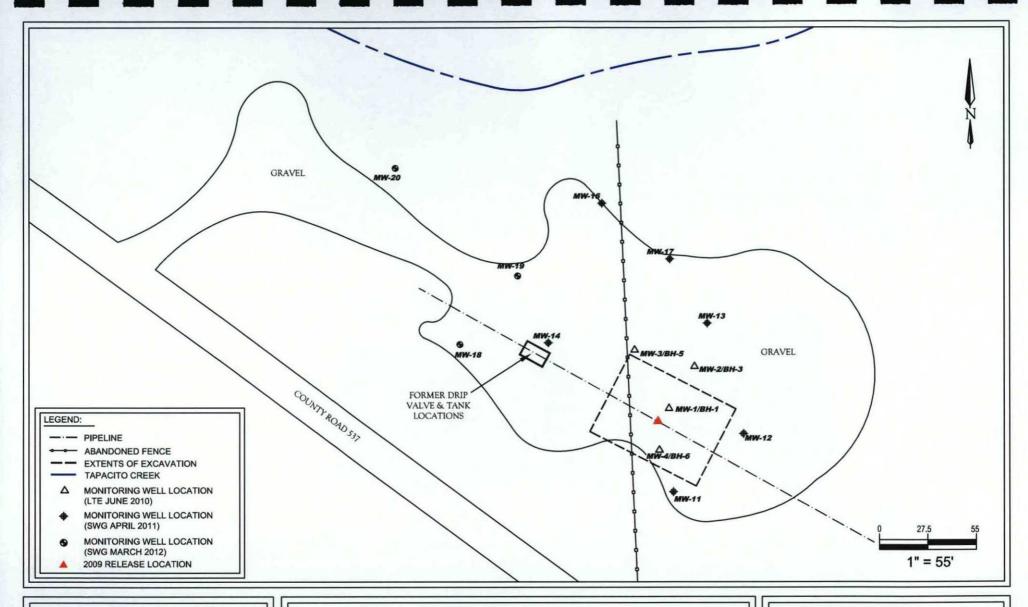
Southwest

FIGURE 1

Topographic Map Gonzales Mesa, NM Quadrangle Contour Interval - 10 Feet

N36° 26' 47.77"; W107° 26' 46.04"

Off County Road 537

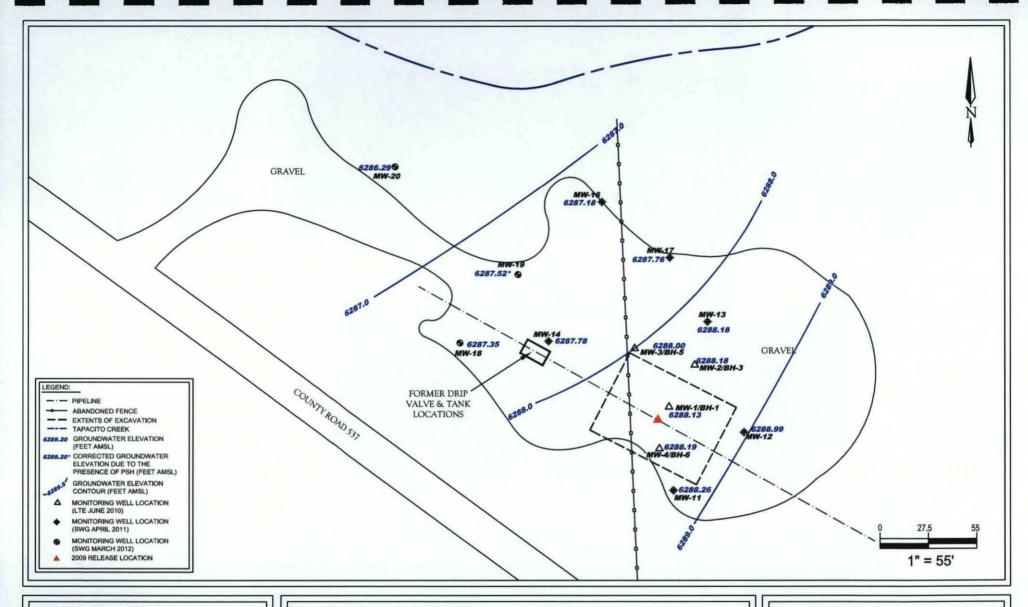

Rio Arriba, New Mexico

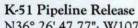
Southwest

FIGURE 2

Site Vicinity Map 2012 Aerial Photograph

SWG Project No. 0410003


N36° 26′ 47.77″; W107° 26′ 46.04″ Off County Road 537 Rio Ariba County, New Mexico


SWG Project No. 0410003

Southwest

FIGURE 3

SITE MAP

N36° 26' 47.77"; W107° 26' 46.04" Off County Road 537 Rio Ariba County, New Mexico

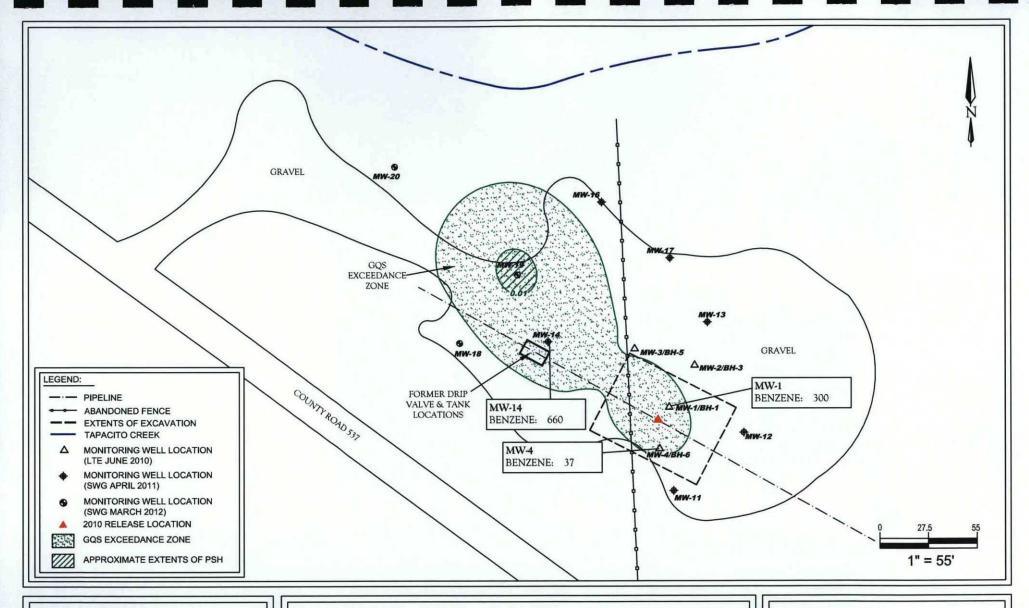

SWG Project No. 0410003

FIGURE 4

GROUNDWATER GRADIENT MAP

JUNE 19, 2012

N36° 26' 47.77"; W107° 26' 46.04" Off County Road 537 Rio Ariba County, New Mexico

SWG Project No. 0410003

FIGURE 5

GROUNDWATER QUALITY STANDARD EXCEEDANCE ZONE JUNE 2012

TABLE 1 K-51 PIPELINE RELEASE GROUNDWATER ANALYTICAL SUMMARY

Sample I.D.	Date	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO (mg/L)	DRO (mg/L)
	er Quality Control oundwater Quality	10	750	750	620	NE	NE
	A ROSE TO THE REAL PROPERTY.	SMA	Sample - Oper	Excavation	TO SHE		
Excavation	4.21.10	7,000	13,000	540	5,200	NA	NA
A STORY THE			Monitoring '	Wells			
4	6.21.10	8,400	1,300	560	4,200	NA	NA
9 4	9.24.10	2,300	28	200	520	8.4	<1.0
	4.21.11	430	<20	120	60	2.1	<1.0
MW-1	6.21.11 820 370 33 9.22.11 690 1,200 120 12.13.11 260 250 54 3.20.12 280 230 94 6.19.12 300 <5.0	140	5.1	130			
	9.22.11		1,200	120	1,200	8.9	30
					650	3.4	<1.0
			230		550	3.5	<1.0
				81	96	1.7	<1.0
					96	NA	NA
					<2.0	<0.050	<1.0
which are not		120,000,00	SAFAGA		<2.0	0.065	<1.0
MW-2 6.21.1 9.22.1 12.13.1	MANUAL CONTRACTOR OF THE PARTY		The second second		<2.0	<0.050	<1.0
	- A. C. San C. T. T.				<2.0	<0.050	<1.0
	The Control of the Co				<2.0	<0.050	<1.0
	3.20.12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
	6.19.12	<1.0		<1.0	<2.0	<0.050	<1.0
	6.21.10	640	57		1,000	NA	NA
4	9.24.10	150	<1.0		28	0.48	<1.0
	4.21.11		<1.0	17	10	0.25	<1.0
MW-3	6.21.11	62	14	13	160	0.67	<1.0
	9.22.11	3	<1.0	8.7	<2.0	0.066	<1.0
	12.13.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	3.20.12	1.3	<1.0	1.9	<2.0	< 0.050	<1.0
	6.19.12	3.1	<1.0	1.4	<2.0	< 0.050	<1.0
	6.21,10	3,600	10,000	600	6,600	NA	NA
	9.24.10	870	870	260	1,600	12	1
	4.21.11	670	<20	520	790	6.3	<1.0
MW-4	6.21.11	17	22	36	77	0.64	1.1
	9.22.11	62	140	220	820	3.8	1.2
	12.13.11	84	<20	430	490	2.6	<1.0
	3.20.12	36	<20	1,100	1,400	6.5	<1.0
	6.19.12	37	<5.0	250	350	2.2	<1.0
	4.21.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
	6.21.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-11	9.22.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
reserving (S	12.13.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
	3.20.12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
	6.19.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0

TABLE 1 K-51 PIPELINE RELEASE GROUNDWATER ANALYTICAL SUMMARY

Sample I.D.	Date	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
SECTION NEWS		ESPECIAL STATE	TO RESIDE	CIVE OF ECON	1-43 3 185 113	(mg/L)	(mg/L
Commmission Gr	er Quality Control oundwater Quality dards	10	750	750	620	NE	NE
MIST THE THE	4.21.11	1.9	<1.0	<1.0	<2.0	< 0.050	<1.0
	6.21.11	4.6	<1.0	<1.0	<2.0	0.063	<1.0
MW 10	9.22.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
MW-12	12.13.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	3.20.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	6.19.12	1.7	<1.0	<1.0	<2.0	< 0.050	<1.0
May TE THIN	4.21.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	6.21.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
MW 12	9.22.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
MW-13	12.13.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	3.20.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	6.19.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
74350	4.21.11	2,800	<100	280	720	8.7	<1.0
31 7 7 7 7	6.21.11	470	<10	37	210	1.9	<1.0
9	9.22.11	540	<10	100	36	1.7	<1.0
MW-14	12.13.11	220	<10	110	<20	1.0	<1.0
25 -278	3.20.12	660	<5.0	240	15	2.9	<1.0
	6.19.12	660	<5.0	300	100	3.4	<1.0
	4.21.11	4.4	<2.0	<2.0	<4.0	< 0.10	<1.0
	6.21.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
MW-16	9.22.11	<1.0	<1.0	<1.0	<2.0	0.065	<1.0
MW-16	12.13.11	<1.0	<1.0	<1.0	<2.0	0.12	<1.0
market and the	3.20.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
	6.19.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
NO IN COLUMN	4.21.11	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0
White the same	6.21.11	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0
MW-17	9.22.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
IVIVV-17	12.13.11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
mily was	3.20.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
San Landing	6.19.12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-18	3.20.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
14144-10	6.19.12	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
MW-19	3.20.12	250	56	310	3,900	16	5.3
WW 19	6.19.12	NAPL	NAPL	NAPL	NAPL	NA	NA
MW-20	3.20.12	35	<1.0	1,1	3.3	0.14	<1.0
1414-20	6.19.12	3.4	<1.0	<1.0	<2.0	< 0.050	<1.0

Note: Concentrations in bold and yellow exceed the applicable OCD Remediation Action Level

NA = Not Analyzed NE = Not Established

NAPL = Non-aqueous phase liquid

TABLE 2 K-51 Pipeline Release GROUNDWATER ELEVATIONS

Well I.D.	Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Product Thickness	TOC Elevations (feet AMSL)	Groundwater Elevation ^e (feet AMSL)
	4.21.11	ND	11.80	ND	6300.89	6289.09
	6.21.11	ND	12.16	ND		6288.73
MW-1	9.22.11	ND	12.92	ND		6287.97
	12.13.11 3.20.12	ND ND	12.45	ND ND		6288.44 6288.76
	6.19.12	ND ND	12.13	ND		6288.13
	4.21.11	ND	10.55	ND	6299.82	6289.27
	6.21.11	ND	11.87	ND		6287.95
1000	9.22.11	ND	11.86	ND		6287.96
MW-2	12.13.11	ND	11.38	ND		6288.44
	3.20.12	ND	10.95	ND		6288.87
	6.19.12	ND	11.64	ND	0000000	6288.18
	4.21.11	ND ND	11.30	ND	6300.22	6288.92
	9.22.11	ND ND	11.64	ND ND		6288.58 6287.77
MW-3	12.13.11	ND	11.89	ND		6288.33
	3.20.12	ND	11.60	ND		6288.62
	6.19.12	ND	12.22	ND		6288.00
	4.21.11	ND	11.90	ND	6300.91	6289.01
	6.21.11	ND	12.18	ND		6288.73
MW-4	9.22.11	ND	12.90	ND		6288.01
MW-4	12.13.11	ND	12.41	ND		6288.50
	3.20.12	ND	12.45	ND		6288.46
	6.19.12	ND	12.72	ND		6288.19
	4.21.11	ND	11.98	ND	6301.19	6289.21
	6.21.11	ND	12.40	ND		6288.79
MW-11	9.22.11	ND ND	13.07 12.55	ND ND		6288.12
	3.20.12	ND	12.35	ND		6288.64 6288.93
	6.19.12	ND	12.93	ND		6288.26
	4.21.11	ND	8.96	ND	6299.08	6290.12
	6.21.11	ND	9.42	ND		6289.66
10010	9.22.11	ND	10.82	ND		6288.26
MW-12	12.13.11	ND	10.13	ND		6288.95
	3.20.12	ND	9.41	ND		6289.67
	6.19.12	ND	10.09	ND		6288.99
	4.21.11	ND	9.07	ND	6298.27	6289.20
	6.21.11	ND	9.51	ND		6288.76
MW-13	9.22.11	ND ND	10.15	ND ND		6288.12
	3.20.12	ND ND	9.59 9.35	ND		6288.68 6288.92
	6.19.12	ND	10.09	ND		6288.18
	4.21.11	ND	12.54	ND	6301.20	6288.66
	6.21.11	ND	12.88	ND		6288.32
	9.22.11	ND	13.53	ND		6287.67
MW-14	12,13.11	ND	13.11	ND		6288.09
	3.20.12	ND	12.80	ND		6288.40
	6.19.12	ND	13.42	ND		6287.78
	4.21.11	ND	12.06	ND	6299.89	6287.83
	9.22.11	ND ND	12.26 12.57	ND ND		6287.63 6287.32
MW-16	12.13.11	ND	12.28	ND		6287.61
	3.20.12	ND	12.24	ND		6287.65
	6.19.12	ND	12.71	ND		6287,18
	4,21,11	ND	9.90	ND	6298.57	6288.67
	6.21.11	ND	9.56	ND		6289.01
MW-17	9.22.11	ND	10.83	ND	11	6287.74
1.00	12.13.11	ND	10.31	ND		6288.26
	3.20.12	ND	10.12	ND		6288.45
	6.19.12	ND	10.81	ND	one : ==	6287.76
MW-18	3.20.12	ND	16.60	ND	6304.77	6288.17
	6.19.12	ND ND	17.42	ND ND	6303.90	6287.35
MW-19	3.20.12 6.19.12	16.25	15.69 16.32	0.07	6303.80	6288.11 6287.52
	3.20.12	ND	25.82	ND	6312.59	6286.77
MW-20	6.19.12	ND	26.30	ND	00.2.00	6286.29

BTOC - below top of casing AMSL - aboce mean sea level

TOC - top of casing

*- corrected for presence of phase-sepated hydrocarbon using a site-specific density correction factor of 0.63

ND - Not Detected

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

June 28, 2012

Kyle Summers

Southwest Geoscience

606 S. Rio Grande Unit A

Aztec, NM 87410

TEL: (214) 350-5469

FAX: (214) 350-2914

RE: K-51 Release OrderNo.: 1206961

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 12 sample(s) on 6/21/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-20

Project: K-51 Release

Collection Date: 6/19/2012 8:55:00 AM

Lab ID: 1206961-001

Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 2:36:27 PM
Surr: DNOP	102	61.3-164	%REC	1	6/23/2012 2:36:27 PM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 1:45:01 PM
Surr: BFB	95.5	69.3-120	%REC	1	6/22/2012 1:45:01 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	3.4	1.0	µg/L	1	6/22/2012 1:45:01 PM
Toluene	ND	1.0	μg/L	1	6/22/2012 1:45:01 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 1:45:01 PM
Xylenes, Total	ND	2.0	μg/L	1	6/22/2012 1:45:01 PM
Surr: 4-Bromofluorobenzene	95.1	55-140	%REC	1	6/22/2012 1:45:01 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 1 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-18

Project: K-51 Release

Collection Date: 6/19/2012 9:40:00 AM

Lab ID: 1206961-002

Matrix: AQUEOUS R

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RAN	GE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 2:59:05 PM
Surr: DNOP	104	61.3-164	%REC	1	6/23/2012 2:59:05 PM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 2:15:30 PM
Surr: BFB	94.6	69.3-120	%REC	1	6/22/2012 2:15:30 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	6/22/2012 2:15:30 PM
Toluene	ND	1.0	μg/L	1	6/22/2012 2:15:30 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 2:15:30 PM
Xylenes, Total	ND	2.0	μg/L	1	6/22/2012 2:15:30 PM
Surr: 4-Bromofluorobenzene	94.6	55-140	%REC	1	6/22/2012 2:15:30 PM

Qualifiers:

/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 2 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-16

Project: K-51 Release

Collection Date: 6/19/2012 10:20:00 AM

Lab ID: 1206961-003

Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	SE .				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 3:21:34 PM
Surr: DNOP	104	61.3-164	%REC	1	6/23/2012 3:21:34 PM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 2:45:53 PM
Surr: BFB	88.7	69.3-120	%REC	1	6/22/2012 2:45:53 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	6/22/2012 2:45:53 PM
Toluene	ND	1.0	μg/L	1	6/22/2012 2:45:53 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 2:45:53 PM
Xylenes, Total	ND	2.0	μg/L	1	6/22/2012 2:45:53 PM
Surr: 4-Bromofluorobenzene	86.8	55-140	%REC	1	6/22/2012 2:45:53 PM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 3 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-17

Project: K-51 Release

Collection Date: 6/19/2012 11:00:00 AM

Lab ID:

1206961-004

Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	SE.				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 3:44:15 PM
Surr: DNOP	103	61.3-164	%REC	1	6/23/2012 3:44:15 PM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 3:16:13 PM
Surr: BFB	99.3	69.3-120	%REC	1	6/22/2012 3:16:13 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	6/22/2012 3:16:13 PM
Toluene	ND	1.0	µg/L	1	6/22/2012 3:16:13 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 3:16:13 PM
Xylenes, Total	ND	2.0	µg/L	1	6/22/2012 3:16:13 PM
Surr: 4-Bromofluorobenzene	99.5	55-140	%REC	1	6/22/2012 3:16:13 PM

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits J

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Reporting Detection Limit

Samples with CalcVal < MDL

Page 4 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-13

Project: K-51 Release **Lab ID:** 1206961-005

Collection Date: 6/19/2012 11:35:00 AM

1206961-005 Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RAN	GE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 4:06:50 PM
Surr: DNOP	109	61.3-164	%REC	1	6/23/2012 4:06:50 PM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 3:46:40 PM
Surr: BFB	86.1	69.3-120	%REC	1	6/22/2012 3:46:40 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	6/22/2012 3:46:40 PM
Toluene	ND	1.0	μg/L	1	6/22/2012 3:46:40 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 3:46:40 PM
Xylenes, Total	ND	2.0	μg/L	1	6/22/2012 3:46:40 PM
Surr: 4-Bromofluorobenzene	87.4	55-140	%REC	1	6/22/2012 3:46:40 PM

Qualifiers:

/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 5 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-2

Project: K-51 Release

Collection Date: 6/19/2012 12:10:00 PM

Lab ID: 1206961-006

Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 4:29:34 PM
Surr: DNOP	109	61.3-164	%REC	1	6/23/2012 4:29:34 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 4:16:53 PM
Surr: BFB	90.1	69.3-120	%REC	1	6/22/2012 4:16:53 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	6/22/2012 4:16:53 PM
Toluene	ND	1.0	µg/L	1	6/22/2012 4:16:53 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 4:16:53 PM
Xylenes, Total	ND	2.0	µg/L	1	6/22/2012 4:16:53 PM
Surr: 4-Bromofluorobenzene	90.6	55-140	%REC	1	6/22/2012 4:16:53 PM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL</p>

Page 6 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-1

Project: K-51 Release

Collection Date: 6/19/2012 12:45:00 PM

Lab ID: 1206961-007

Matrix: AQUEOUS Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE .				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 4:52:09 PM
Surr: DNOP	113	61.3-164	%REC	1	6/23/2012 4:52:09 PM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	1.7	0.25	mg/L	5	6/25/2012 2:41:51 PM
Surr: BFB	85.9	69.3-120	%REC	5	6/25/2012 2:41:51 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	300	5.0	μg/L	5	6/25/2012 2:41:51 PM
Toluene	ND	5.0	µg/L	5	6/25/2012 2:41:51 PM
Ethylbenzene	81	5.0	μg/L	5	6/25/2012 2:41:51 PM
Xylenes, Total	96	10	μg/L	5	6/25/2012 2:41:51 PM
Surr: 4-Bromofluorobenzene	95.8	55-140	%REC	5	6/25/2012 2:41:51 PM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Samples with CalcVal < MDL

Page 7 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience Client Sample ID: MW-12

 Project:
 K-51 Release
 Collection Date: 6/19/2012 1:15:00 PM

 Lab ID:
 1206961-008
 Matrix: AQUEOUS
 Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 5:37:31 PM
Surr: DNOP	111	61.3-164	%REC	1	6/23/2012 5:37:31 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 5:17:28 PM
Surr: BFB	75.7	69.3-120	%REC	1	6/22/2012 5:17:28 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	1.7	1.0	μg/L	1	6/22/2012 5:17:28 PM
Toluene	ND	1.0	μg/L	1	6/22/2012 5:17:28 PM
Ethylbenzene	ND	1.0	μg/L	1	6/22/2012 5:17:28 PM
Xylenes, Total	ND	2.0	μg/L	1	6/22/2012 5:17:28 PM
Surr: 4-Bromofluorobenzene	76.5	55-140	%REC	1	6/22/2012 5:17:28 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- U Samples with CalcVal < MDL

Page 8 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-11

Project: K-51 Release

Collection Date: 6/19/2012 1:45:00 PM

Lab ID: 1206961-009

Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 6:00:10 PM
Surr: DNOP	112	61.3-164	%REC	1	6/23/2012 6:00:10 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 5:47:48 PM
Surr: BFB	95.7	69.3-120	%REC	1	6/22/2012 5:47:48 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	6/22/2012 5:47:48 PM
Toluene	ND	1.0	µg/L	1	6/22/2012 5:47:48 PM
Ethylbenzene	ND	1.0	µg/L	1	6/22/2012 5:47:48 PM
Xylenes, Total	ND	2.0	µg/L	1	6/22/2012 5:47:48 PM
Surr: 4-Bromofluorobenzene	96.7	55-140	%REC	1	6/22/2012 5:47:48 PM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 9 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-4

Project: K-51 Release

Collection Date: 6/19/2012 2:20:00 PM

Lab ID: 1206961-010

Matrix: AQUEOUS Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 6:22:44 PM
Surr: DNOP	113	61.3-164	%REC	1	6/23/2012 6:22:44 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	2.2	0.25	mg/L	5	6/25/2012 3:12:09 PM
Surr: BFB	89.5	69.3-120	%REC	5	6/25/2012 3:12:09 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	37	5.0	μg/L	5	6/25/2012 3:12:09 PM
Toluene	ND	5.0	µg/L	5	6/25/2012 3:12:09 PM
Ethylbenzene	250	5.0	μg/L	5	6/25/2012 3:12:09 PM
Xylenes, Total	350	10	μg/L	5	6/25/2012 3:12:09 PM
Surr: 4-Bromofluorobenzene	92.8	55-140	%REC	5	6/25/2012 3:12:09 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 10 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-3

Project: K-51 Release

Collection Date: 6/19/2012 2:50:00 PM

Lab ID: 1206961-011

Matrix: AQUEOUS

Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 6:45:22 PM
Surr: DNOP	113	61.3-164	%REC	1	6/23/2012 6:45:22 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/22/2012 11:21:36 PM
Surr: BFB	97.7	69.3-120	%REC	1	6/22/2012 11:21:36 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	3.1	1.0	μg/L	1	6/22/2012 11:21:36 PM
Toluene	ND	1.0	μg/L	1	6/22/2012 11:21:36 PM
Ethylbenzene	1.4	1.0	μg/L	1	6/22/2012 11:21:36 PM
Xylenes, Total	ND	2.0	μg/L	1	6/22/2012 11:21:36 PM
Surr: 4-Bromofluorobenzene	96.3	55-140	%REC	1	6/22/2012 11:21:36 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 11 of 16

Lab Order 1206961

Date Reported: 6/28/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Client Sample ID: MW-14

Project: K-51 Release

Collection Date: 6/19/2012 3:30:00 PM

Lab ID: 1206961-012

Matrix: AQUEOUS Received Date: 6/21/2012 10:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	SE				Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	6/23/2012 7:07:55 PM
Surr: DNOP	112	61.3-164	%REC	1	6/23/2012 7:07:55 PM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	3.4	0.25	mg/L	5	6/23/2012 12:22:11 AM
Surr: BFB	89.2	69.3-120	%REC	5	6/23/2012 12:22:11 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	660	20	μg/L	20	6/22/2012 11:51:59 PM
Toluene	ND	5.0	μg/L	5	6/23/2012 12:22:11 AM
Ethylbenzene	300	5.0	µg/L	5	6/23/2012 12:22:11 AM
Xylenes, Total	100	10	μg/L	5	6/23/2012 12:22:11 AM
Surr: 4-Bromofluorobenzene	96.1	55-140	%REC	5	6/23/2012 12:22:11 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

J Samples with CalcVal < MDL

Page 12 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#:

1206961

28-Jun-12

Qual

Client:

Southwest Geoscience

Project:

K-51 Release

Sample ID: MB-2526	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8015B: Diese	Range		
Client ID: PBW	Batch	ID: 25	26	F	RunNo: 3	631				
Prep Date: 6/22/2012	Analysis D	ate: 6/	23/2012	5	SeqNo: 1	02204	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	
Diesel Range Organics (DRO)	ND	1.0								_

Surr: DNOP 1.2 1.000 117 61.3 164	Diesel Range Organics (DRO)	ND	1.0			
	Surr: DNOP	1.2	1.000	117	61.3	164

Sample ID: LCS-2526	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015B: Diese	el Range		
Client ID: LCSW	Batch	n ID: 25	26	F	RunNo: 3	631				
Prep Date: 6/22/2012	Analysis D	ate: 6/	23/2012	8	SeqNo: 1	02205	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	4.5	1.0	5.000	0	89.9	74	157			
Surr: DNOP	0.45		0.5000		89.3	61.3	164			

Sample ID: LCSD-2526	Samp	Type: LC	SD	Tes	tCode: E	PA Method	8015B: Diese	el Range		
Client ID: LCSS02	Batc	h ID: 25	26	F	RunNo: 3	634				
Prep Date: 6/22/2012	Analysis [Date: 6/	24/2012	8	SeqNo: 1	02257	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.0	1.0	5.000	0	99.5	74	157	10.1	23	
Surr: DNOP	0.52		0.5000		105	61.3	164	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Reporting Detection Limit

Page 13 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#:

1206961

28-Jun-12

Client:

Southwest Geoscience

Sample ID: 5ML RB	SampType: MBLK	TestCode: EPA Method	d 8015B: Gasoline Range	
Client ID: PBW	Batch ID: R3644	RunNo: 3644		
Prep Date:	Analysis Date: 6/22/2012	SeqNo: 102662	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLim	t Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 0.050 20 20.0	0 97.9 69.3	120	
Sample ID: 2.5UG GRO LCS	SampType: LCS	TestCode: EPA Method	d 8015B: Gasoline Range	
Client ID: LCSW	Batch ID: R3644	RunNo: 3644		
Prep Date:	Analysis Date: 6/22/2012	SeqNo: 102663	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimi	t Qual
Gasoline Range Organics (GRO)	0.47 0.050 0.500	0 0 94.6 101	123	S
Surr: BFB	20 20.0	0 98.7 69.3	120	
Sample ID: 1206961-001AMS	S SampType: MS	TestCode: EPA Method	d 8015B: Gasoline Range	
Client ID: MW-20	Batch ID: R3644	RunNo: 3644		
Prep Date:	Analysis Date: 6/22/2012	SeqNo: 102705	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimi	t Qual
Gasoline Range Organics (GRO)	0.50 0.050 0.500			
Surr: BFB	21 20.0	0 106 69.3	120	
Sample ID: 1206961-001AMS	SD SampType: MSD	TestCode: EPA Method	d 8015B: Gasoline Range	, la Riv
Client ID: MW-20	Batch ID: R3644	RunNo: 3644		
Prep Date:	Analysis Date: 6/22/2012	SeqNo: 102706	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimi	t Qual
Gasoline Range Organics (GRO)	0.48 0.050 0.500			
Surr: BFB	18 20.0	0 92.3 69.3	120 0 0	
Sample ID: 5ML RB	SampType: MBLK	TestCode: EPA Method	d 8015B: Gasoline Range	
Client ID: PBW	Batch ID: R3670	RunNo: 3670		
Prep Date:	Analysis Date: 6/25/2012	SeqNo: 103484	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimi	t Qual
	ND 0.050			
Gasoline Range Organics (GRO) Surr: BFB	17 20.0	0 85.2 69.3	120	
Gasoline Range Organics (GRO)	17 20.0	AND ADDRESS OF THE PARTY OF THE	120 d 8015B: Gasoline Range	
Gasoline Range Organics (GRO) Surr: BFB	17 20.0	AND ADDRESS OF THE PARTY OF THE		
Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2.5UG GRO LCS	17 20.0 SampType: LCS	TestCode: EPA Method		

Qualifiers:

Surr: BFB

*/X Value exceeds Maximum Contaminant Level.

0.46

20

0.050

E Value above quantitation range

Gasoline Range Organics (GRO)

Analyte detected below quantitation limits

RPD outside accepted recovery limits

Analyte detected in the associated Method Blank

101

69.3

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

92.4

98.0

0.5000

20.00

Page 14 of 16 Reporting Detection Limit

123

120

Hall Environmental Analysis Laboratory, Inc.

WO#:

1206961

28-Jun-12

Client:

Southwest Geoscience

Project:

K-51 Release

Sample ID: 5ML RB	Samp1	SampType: MBLK			tCode: El					
Client ID: PBW	Batcl	Batch ID: R3644		F	RunNo: 3644					
Prep Date:	Analysis E	Date: 6/	22/2012	\$	SeqNo: 1	02785	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	20		20.00		99.2	55	140		7	44.0
Sample ID: 100NG BTEX LCS	Samn	Type: I C	S	Tes	tCode: F	PA Method	8021B: Volat	ilos		

Sample ID: 100NG BTEX LCS	SampT	ype: LC	S	Tes	TestCode: EPA Method 8021B: Volatiles					
Client ID: LCSW	Batch ID: R3644			RunNo: 3644						
Prep Date:	Analysis D	ate: 6/	22/2012	5	SeqNo: 1	02786	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	105	80	120			
Toluene	21	1.0	20.00	0	107	80	120			
Ethylbenzene	21	1.0	20.00	0	107	80	120			
Xylenes, Total	64	2.0	60.00	0	107	80	120			
Surr: 4-Bromofluorobenzene	22		20.00		109	55	140			

Sample ID: 1206961-002AMS	SampT	ype: MS	3	TestCode: EPA Method 8021B: Volatiles								
Client ID: MW-18	Batch	ID: R3	644	F								
Prep Date:	Analysis D	ate: 6/	22/2012	5	SeqNo: 1	02789	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	21	1.0	20.00	0.1960	106	70.1	118					
Toluene	22	1.0	20.00	0	109	72.3	117					
Ethylbenzene	21	1.0	20.00	0.1740	106	73.5	117					
Xylenes, Total	64	2.0	60.00	0.4340	106	73.1	119					
Surr: 4-Bromofluorobenzene	20		20.00		100	55	140					

Sample ID: 1206961-002AM	SD SampT	ype: MS	SD	Tes	tCode: E						
Client ID: MW-18	Batch	ID: R3	644	F	RunNo: 3						
Prep Date:	Analysis D	ate: 6/	22/2012		SeqNo: 1	02790	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0.1960	104	70.1	118	1.83	16.4		
Toluene	21	1.0	20.00	0	107	72.3	117	1.73	13.9		
Ethylbenzene	21	1.0	20.00	0.1740	104	73.5	117	1.25	13.5		
Xylenes, Total	63	2.0	60.00	0.4340	104	73.1	119	1.38	12.9		
Surr: 4-Bromofluorobenzene	21		20.00		104	55	140	0	0		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 15 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#:

1206961

28-Jun-12

Client:

Southwest Geoscience

Project:

K-51 Release

Sample ID: 5ML RB	Samp1	ype: ME	BLK	Tes	TestCode: EPA Method 8021B: Volatiles							
Client ID: PBW	Batc	n ID: R3	670	F	RunNo: 3	670						
Prep Date:	Analysis [Date: 6/	25/2012	5	SeqNo: 1	03501	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0								-		
Toluene	ND	1.0										
Ethylbenzene	ND	1.0										
Xylenes, Total	ND	2.0										
Surr: 4-Bromofluorobenzene	18		20.00		88.5	55	140					

Sample ID: 100NG BTEX LCS	Samp1	ype: LC	s	TestCode: EPA Method 8021B: Volatiles								
Client ID: LCSW	Batcl	n ID: R3	670	F	RunNo: 3	670						
Prep Date:	Analysis D	Date: 6/	25/2012	8	SeqNo: 1	03502	Units: µg/L		RPDLimit			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD		Qual		
Benzene	22	1.0	20.00	0	108	80	120					
Toluene	22	1.0	20.00	0	111	80	120					
Ethylbenzene	22	1.0	20.00	0	110	80	120					
Xylenes, Total	66	2.0	60.00	0	110	80	120					
Surr: 4-Bromofluorobenzene	22		20.00		112	55	140					

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 16 of 16

riau Environmeniai Anaiysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1206961 Client Name: Southwest Geoscience Received by/date: Logged By: 6/21/2012 10:30:00 AM **Lindsay Mangin** Completed By: **Lindsay Mangin** 6/21/2012 3:35:02 PM Reviewed By: Chain of Custody Yes No D Not Present 1. Were seals intact? Yes V No Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In Yes V No NA 🗌 4 Coolers are present? (see 19. for cooler specific information) NA 🗌 Yes V No 5. Was an attempt made to cool the samples? NA 🗌 Yes V No 6. Were all samples received at a temperature of >0° C to 6.0°C Yes V No 7. Sample(s) in proper container(s)? Yes V No 8. Sufficient sample volume for indicated test(s)? Yes V No 9. Are samples (except VOA and ONG) properly preserved? NA 🗆 Yes No V 10 Was preservative added to bottles? Yes V No No VOA Vials 11. VOA viais have zero headspace? Yes No V 12. Were any sample containers received broken? # of preserved Yes V No 13. Does paperwork match bottle labels? bottles checked (Note discrepancies on chain of custody) for pH: Yes 🗹 No 🗌 (<2 or >12 unless noted) 14. Are matrices correctly identified on Chain of Custody? Yes V No Adjusted? 15. Is it clear what analyses were requested? Yes V No 16. Were all holding times able to be met? (If no, notify customer for authorization.) Checked by: Special Handling (if applicable) Yes No D NA V 17. Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: eMail Phone Fax In Person Regarding: Client Instructions: 18. Additional remarks: 19. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Good

																(CHAIN C	OF CL	JSTODY RECORL
Office Local (403) Project Man Sampler's Nan	tion Azh 821 — I nager Ky	ec, 56	N. 03	M MMers Bentl	Laboratory:_Address:A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	rq.	ie,	N em	man	5	del		TARIS BOLS SIGNATURE SIGNA						ab use only Due Date: Femp. of coolers when received (C°): 2 3 4 5 Page 1 of 2
04100	202				elease	-		I NO 15	ype or C	OI HAM IC	10		JW/	//	/ /	/ /	/		
Matrix Date	Time	COED	Gras		arks of Sample(s)	Start	End	VOA	A/G 1 Lt.	250 ml	P/O	The	12 /	//	///	//	۱ ،	ab Sam	ple ID (Lab Use Only)
W 6/19/1	2 0855	-	×	MW-	20	_	_	4				×	x				120	12	(1-00)
1 0/1/11	0940	1	1	MW-		1	1	1			\dashv	1					100	0	-002
+++			+			+	\vdash	H		\vdash	\dashv	H				-			
-+-+	1020		\perp	MW-		H	H	-			-	+				-			-003
$+\hspace{-0.1cm}+\hspace{-0.1cm}+\hspace{-0.1cm}+$	1100		Ш	nw-		1	\Box			-	4	H							-004
	1135			MW-	13														-005
	1210			MW-	2						-	11	1						-000
	1245			MW-	-1							T	1						-007
	1315			MW-								1							-000
						+	+			\vdash	\dashv	+				1		3	-000
	1345		1	MW-	112	1/	1	1			+	V	1)			_			010
Turn around tin	1420	mai	7	MW -	☐ 50% Rush ☐	100%	Ruch	V				<u> </u>	V						-010
Relinquished b	by (Signature) by (Signature) by (Signature)	ععد	4	Date; //9// 2 / Date;	Time: Received Time:	and by	(Signa (Signa (Signa	iture)	Di	0/21	Date: Date: Date:	2	Time: //625 Time: //030 Time: Time:	NOTES:					
	WW - Wastewa VOA - 40 ml vis			W - Water A/G - Amber /	S - Soil SD - So Or Glass 1 Liter	lid	L - Liqui 250 ml -						oal tube S	L - sludge	O - Oil				(9)

						9	CHAIN OF	CUSTODY RECORD
		H.E.		1 - 1 - 1	A	NALYSIS / /	1.11111	Lab use only
Couthwest	Laboratory: H	. II F.		mala	IR	EQUESTED / /		Due Date:
GEOSCIENCE					-	. //		
Environmental & Hydrogeologic Consultants	Address:				-	14	/ / / / / / / / /	Temp. of coolers
	HIbuque	eaque,	NN	1	_	Baus		when received (C°)
Office Location Aztec, NM	Contact:				_			1 2 3 4 5
	Phone:					20/		Page 2 of 2
Project Manager Kyle Summer 5	PO/SO #:		2			FR		~
Sampler's Name	Sampler's Signate	ure		`	=	A N		
J. Dubulsson / A. Bentle	?4	91	M	L .		SHEALINED X BOZLIZ		
Proj. No. Project Name 0410003 K-51 P	elease"		No/Type	of Containe	ers	PPH SEQUED BIEX BOZIB		
Matrix Date Time C G r Identifying M	Marks of Sample(s)	Start Depth Depth	VOA	A/G 250 1 Lt. mi	P/O 3	79//	/ / / Lab	Sample ID (Lab Use Only)
W 6/19/12 1450 X MW.	-3 -		4		X	X	1206	961-011
1 1/ 1530 1/MW-		11	1		1	1.		-012
1330	-1	u u	V	\dashv	- 1			-012
				+	+			9
					_			
	es Ente	25						
, ,	O STATE							
1,020				\rightarrow	+			
Ale File					-	++++		
100						30		
	(8)							
Turn around time	The state of the s	00% Rush						
Relinquished by (Signature) Date:		d by: (Signa	ure)	Į,	ate:	Time: NOTES		
Religional Date:	Time: Beclive	d by: (Signa	ture)	10)9/74 Date:	1825 ·		
Thrustanhalen letzoliz 1	137 CA	1		Di	921	1030		
Relinquished by (Signature) Date:	Time: Received	d by (Signa	ture)		Date: /	Time:	W.	
Relinquished by (Signature) Date:	Time: Received	d by: (Signa	tura)		lote:	Times		
neiliquisited by (Signature) Date:	Tirrie: Neceived	u by. (olgna	uure)		Date:	Time:		
Matrix WW - Wastewater W - Water	S - Soll SD - Solid	L - Liqui	d A-/	Air Bag	C - Ch	arcoal tube SL - slud	e O - Oil	