ppac\$611636878

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

,			Rele	ease Notific	atio	n and Co	orrective A	ction	<u> </u>		
		· · · · · ·	·,			OPERA	FOR		🛛 Initia	al Report	Final Report
Name of Co	ompany			n Gas Services,		Contact		. •			Tony Savoie
Address Facility Nat		<u> </u>		26 Jal, N.M. 8		Telephone 1				Note	505-395-2116
				County Field D		Facility Typ		···			ral Gas Gathering
Surface Ow	/ner	Cha	rlie Betti	s Mineral C)wner			State	Lease N	No.	
	· •				TIO	N OF RE	LEASE				
Unit Letter O	Section 15	Township 21S	Range 37E	Feet from the	North	/South Line	Feet from the	East/	West Line	County	Lea
		431		Latitude N32		-		23			
Turne of Dala					URE	OF REL		6	L Maluma I		
Type of Rele	ease	[Natural Ga	s and crude oil		Volume of 15 bbls oil		er gas,	volume i	Recovered	0 bbls
Source of Re	elease			Pipeline			lour of Occurren	ce .	Date and 10:45 a.n		covery 4/9/06
Was Immedi	iate Notice (Yes 🗵	No 🛛 Not R	equired	If YES, To	Whom?				
By Whom?	· · · · · ·					Date and H	lour		<u> </u>		
Was a Water	rcourse Rea	<u> </u>	L 17 57	,		If YES, V	olume Impacting	the Wat	ercourse.		
		pacted, Descr				141 197		بر د ر ا	15161718		
The 16" stee line is 20 psi	el gathering i to 30 psi, v	with a potentia	ating at 22 I H2S con	Psi developed a tent of 4000 ppm	•	\. \	20279595	¥2561	22		ng pressure for this
approximate	ly 1800 sg.	Ft. of pasture	land was a	ken.* An area me affected by the re if gas and 15 bbls	lease. Th	he site will be	remediated as p	was atte	cted around CD guidelin	the immedines. The am	iate leak area, or ount of the release is
I hereby cert regulations a public health should their or the enviro	tify that the all operators h or the env operations onment. In	information g are required to ironment. The have failed to	iven above to report a e acceptan adequatel DCD acce	e is true and comp nd/or file certain ce of a C-141 rep	olete to t release r ort by th remedia	the best of my notifications a ne NMOCD n te contaminat	knowledge and and perform corre- narked as "Final l ion that pose a th	ctive ac Report" areat to g	tions for rel does not rel ground wate	leases which lieve the ope er, surface w	n may endanger rator of liability ater, human health
							OIL CON	ISER	VATION	DIVISIO	<u> </u>
Signature:	• •			Tony Savoie			, .				
Printed Nam	ne:			John A. Savoie		Approved by	/ District Supervi	isor:	,,,,,		
Title:	· ,		EH&	S Comp. Coord.		Approval Da	ite:		Expiration	Date:	
E-mail Add	ress:		jasavoie@	sidrichgas.com		Conditions of	of Approval:			Attached	± 🗖
Date: 4/13/0				none: 505-395-2	116						
* Attach Add	tern U	Micn+	sary -2(3	132		(G	ncident	;-n	PACOC PPAC	606/14	,36878

Basin Environmental Service Technologies, LLC

3100 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260
jwlowry@basinenv.com
Office: (575) 396-2378
Fax: (575) 396-1429

Effective Solutions

REMEDIATION SUMMARY &

SITE CLOSURE REQUEST

SOUTHERN UNION GAS SERVICES MF-16" BETTIS (1RP-837) HISTORICAL RELEASE SITE Lea County, New Mexico Unit Letter "O" (SW/SE), Section 15, Township 21 South, Range 37 East Latitude 32° 28.339' North, Longitude 103° 08.923' West NMOCD Reference # 1RP-837

Prepared For:

Southern Union Gas Services 801 S. Loop 464 Monahans, TX 79756

Prepared By: Basin Environmental Service Technologies, LLC 3100 Plains Highway Lovington, New Mexico 88260

January 2013

Joel W Project Manager

HOBBS OCD

JAN 14 VUI3

RECEIVED

TABLE OF CONTENTS

	INTRODUCTION & BACKGROUND INFORMATION 1
2.0	NMOCD SITE CLASSIFICATION 1
3.0	SUMMARY OF SOIL REMEDIATION ACTIVITIES
4.0	QA/QC PROCEDURES
	4.1 Soil Sampling
	4.2 Decontamination of Equipment
	4.3 Laboratory Protocol
5.0	SITE CLOSURE REQUEST
6.0	LIMITATIONS
7.0	DISTRIBUTION

FIGURES

Figure 1 – Site Location Map Figure 2 – Site & Sample Location Map

TABLES

Table 1 - Concentrations of Benzene, BTEX, TPH & Chloride in Soil

APPENDICES

Appendix A – Photographs

Appendix B – Transporter's Manifests

Appendix C – Laboratory Analytical Reports

Appendix D – Release Notification and Corrective Action (Form C-141)

1.0 INTRODUCTION & BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Southern Union Gas Services (Southern Union), has prepared this *Remediation Summary & Site Closure Request* for the MF-16" Bettis Historical Release Site (1RP-837). The legal description of the release site is Unit Letter "O" (SW/SE), Section 15, Township 21 South, Range 37 East, in Lea County, New Mexico. The geographic coordinates of the release site are 32° 28.339' North latitude and 103° 08.923' West longitude. The property affected by the release is owned by Mr. Charlie Bettis. Please reference Figure 1 for a "Site Location Map".

On April 9, 2006, Southern Union discovered a release had occurred on the MF-16" Pipeline. The "Release Notification and Corrective Action Form" (Form C-141) indicated failure of a section of sixteen-inch (16") low-pressure pipeline resulted in the release of approximately fifteen barrels (15 bbls) of crude oil and seventy-one (71) mcf of natural gas. The release was reported to the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office on April 20, 2006. The Form C-141 indicated the release affected approximately one thousand, eight hundred square feet (1,800 ft²) of pasture land. General photographs of the release site are provided as Appendix A. The Form C-141 is provided as Appendix D.

On June 22, 2012, at the request of Southern Union, Basin assumed remediation responsibilities at the MF-16" Bettis Historical Release Site.

2.0 NMOCD SITE CLASSIFICATION

A search of the New Mexico Water Rights Reporting System (NMWRRS) database maintained by the New Mexico Office of the State Engineer (NMOSE) indicated information was unavailable for Section 15, Township 21 South, Range 37 East. An NMOCD representative indicated groundwater should be encountered at approximately forty-three feet (43') below ground surface (bgs). Based on the NMOCD ranking system, twenty (20) points will be assigned to the site as a result of this criterion.

A search of the NMWRRS database indicated there is one (1) water well approximately seven hundred and seventy-nine feet (779') southeast of the release. Based on the NMOCD ranking system, twenty (20) points will be assigned to the site as a result of this criterion.

There are no surface water bodies within one thousand feet (1,000') of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

NMOCD guidelines indicate the MF-16" Historical Release Site has an initial ranking score of forty (40) points. The soil remediation levels for a site with a ranking score of greater than nineteen (>19) points are as follows:

1

- Benzene -10 mg/Kg (ppm)
- Benzene, toluene, ethylbenzene and xylene (BTEX) 50 mg/Kg (ppm)
- Total petroleum hydrocarbons (TPH) 100 mg/Kg (ppm)

The New Mexico Administrative Code (NMAC) does not currently specify a remediation level for chloride concentrations in soil. Chloride remediation levels are set by the NMOCD on a site-specific basis.

3.0 SUMMARY OF SOIL REMEDIATION ACTIVITIES

On April 12, 2006, six (6) initial soil samples (MF-16 Surface @ Release Point, MF-16 @ 1'-10ft North of RP, MF-16 @ 30"-10ft North of RP, MF-16 Surface 80' North of RP, MF-16 @ 1'-80' North of RP and MF-16 @ 2'-80' North of RP) were collected from the release site and submitted to the laboratory for analysis of TPH concentrations. Laboratory analytical results indicate TPH concentrations ranged from 820 mg/Kg for soil sample MF-16 @ 30"-10ft North of RP to 79,100 mg/Kg for soil sample MF-16 Surface @ Release Point. Table 1 summarizes the "Concentrations of Benzene, BTEX, TPH & Chloride in Soil". Soil sample locations are depicted in Figure 2, "Site & Sample Location Map". Laboratory analytical reports are provided as Appendix C.

Between April 12, 2006, and May 5, 2006, remediation activities were conducted at the MF-16" Bettis Historical Release Site. Environmental records indicate at least five hundred and sixtyfour cubic yards (564 yd³) of impacted material was excavated from the location and transported to Southern Union Gas Services' Landfarm (Discharge Permit # NM-02-0019) for treatment.

On April 21, 2006, one (1) soil sample (P.R. @ 10') was collected and submitted to the laboratory for analysis of BTEX and TPH concentrations. Laboratory analytical results indicated the benzene concentration was less than the laboratory method detection limit (MDL). The total BTEX concentration was 4.44 mg/Kg, and the TPH concentration was less than the laboratory MDL.

On April 26, 2006, eight (8) soil samples (P.R. @ 10', WW-Comp., S-Comp., A-Comp., B-Comp., NW-Comp., SW-Comp. and EW-Comp.) were collected from the excavation floor and sidewalls and submitted to the laboratory for analysis of TPH concentrations. Soil samples WW-Comp., S-Comp., A-Comp., B-Comp., NW-Comp., SW-Comp. and EW-Comp. were composite samples. Analytical results indicated TPH concentrations were less than the laboratory MDL in each of the soil samples submitted, with the exception of soil sample S-Comp., which had a concentration of 85.8 mg/Kg. Soil sample P.R. @ 10' was also analyzed for BTEX constituent concentrations, which were less than the appropriate laboratory MDL. Soil samples were not analyzed for chloride concentrations.

Environmental records indicated the excavation was backfilled with locally purchased material on or around May 3, 2006. Prior to backfilling the final dimensions of the excavation were approximately one hundred and five feet (105') in length, twenty feet (20') to thirty feet (30') in width, and ranged in depth from approximately four feet (4') to ten feet (10').

On December 5, 2012, Basin responded to the MF-16" Bettis Historical Release Site in an effort to determine if soil containing BTEX, TPH and chloride concentrations above NMOCD regulatory standards remained in-situ and to collect confirmation soil samples. A hand auger was utilized to locate native soil representing the former excavation floor and sidewalls. Eight (8) soil samples (North Sidewall, South Sidewall, East Sidewall #1, East Sidewall #2, West Sidewall #1, West Sidewall #2, Floor #1 and Floor #2) were collected from the location and submitted to the

laboratory for analysis of TPH and chloride analysis. Laboratory analytical results indicated TPH concentrations were less than the appropriate laboratory MDL for each of the submitted soil samples. Chloride concentrations ranged from less than the laboratory MDL for soil sample North Sidewall to 6.3 mg/Kg for soil sample Floor #1. Soil samples Floor #1 and Floor #2 were also analyzed for BTEX constituent concentrations. BTEX concentrations were less than the appropriate laboratory MDL for both soil samples.

4.0 QA/QC PROCEDURES

4.1 Soil Sampling

Soil samples were delivered to Xenco Laboratories, of Odessa, Texas, for BTEX, TPH, and/or chloride analyses using the methods described below:

- BTEX concentrations in accordance with EPA Method SW-846 8021b
- TPH concentrations in accordance with modified EPA Method SW-846 8015M
- Chloride concentrations in accordance with EPA Method 300/300.1

4.2 **Decontamination of Equipment**

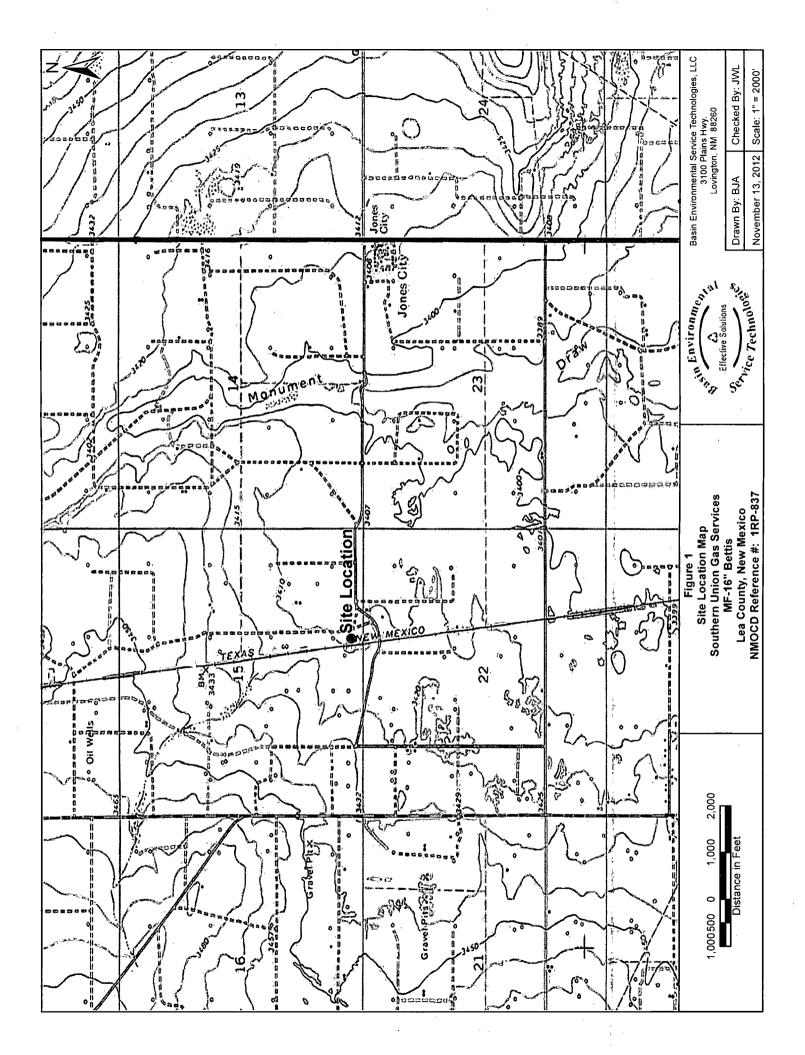
Cleaning of the sampling equipment was the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

4.3 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form(s). These procedures were either transmitted with the laboratory reports or are on file at the laboratory.

5.0 SITE CLOSURE REQUEST

Confirmation soil samples collected from the MF-16" Bettis Historical Release Site suggested previous remediation activities met the requirements of the NMOCD's "Guidelines for Remediation of Leaks, Spills and Releases". Laboratory analytical results indicated benzene, BTEX, TPH and chloride concentrations were less than NMOCD regulatory standards in each of the submitted soil samples. Based on these laboratory analytical results, Basin recommends Southern Union provide the NMOCD Hobbs District Office a copy of this *Remediation Summary & Site Closure Request* and request the NMOCD grant site closure to the MF-16" Historical Release Site.


6.0 LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Remediation Summary & Site Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Southern Union Gas Services. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Southern Union Gas Services.

7.0 **DISTRIBUTION**

- Copy 1: Geoffrey Leking New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, NM 88240 GeoffreyR.Leking@state.nm.us
- Copy 2: Rose Slade Southern Union Gas Services 801 S. Loop 464 Monahans, Texas 79756 rose.slade@sug.com
- Copy 3: Basin Environmental Service Technologies, LLC P.O. Box 301 Lovington, New Mexico 88260

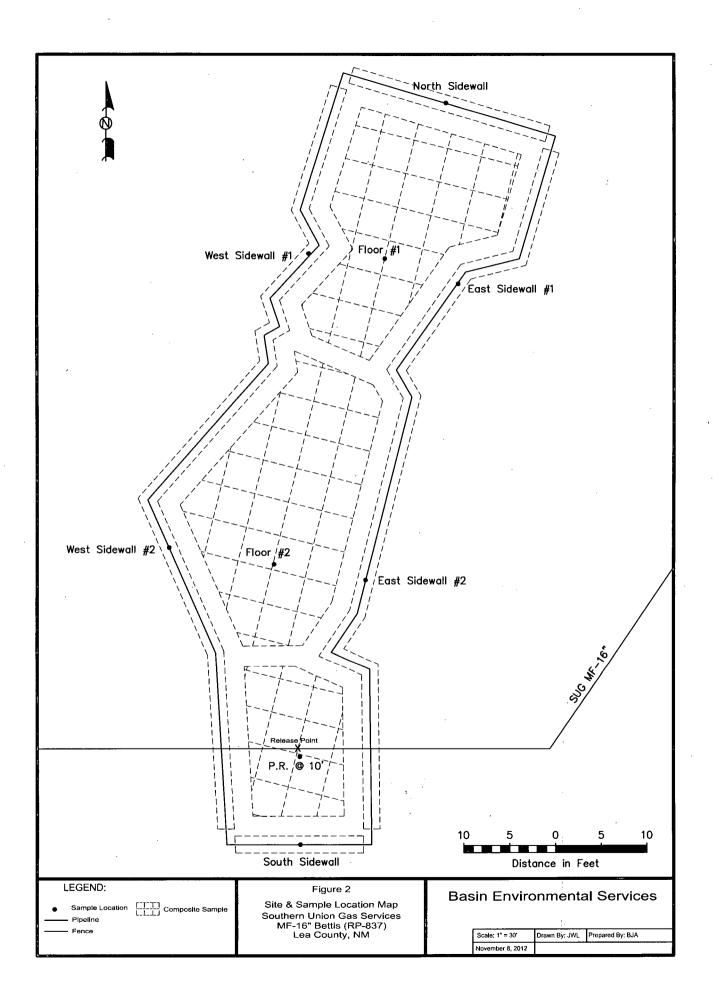
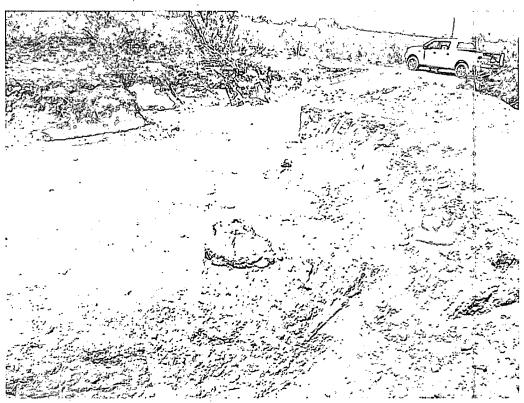
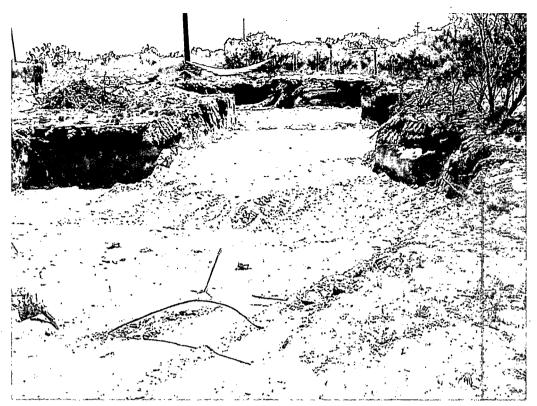


TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL


SOUTHERN UNION GAS SERVICES MF-16" BETTIS HISTORICAL RELEASE SITE LEA COUNTY, NEW MEXICO NMOCD REF# 1RP-837

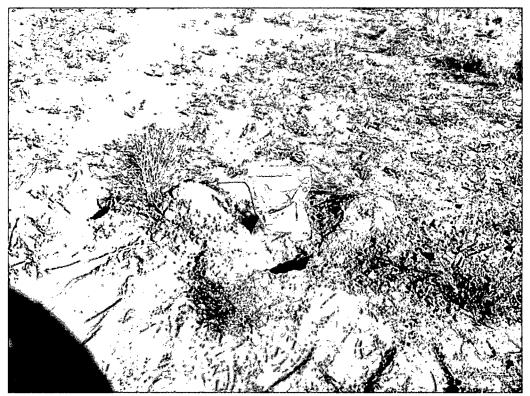
SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₂₈ (mg/Kg)	CHLORIDE (mg/Kg)
MF-16 Surface @ Release Point	Surface	4/12/2006	Excavated			-	-		4,320	68,500	6,260	79,100	٦
MF-16 @ 1'-10 North of RP	1,	4/12/2006	Excavated	-	-	-	•	1	1,930	4,250	300	6,480	•
MF-16 @ 30"-10ft North of RP	30"	4/12/2006	Excavated	. •	-	-		1	152	625	43.0	820	
MF-16 Surface 80' North of RF	Surface	4/12/2006	Excavated	•	-		-	•	4,360	49,100	9,640	63,100	
MF-16 @ 1'-80' North of RF	1.	4/12/2006	Excavated	•	-	•	-	•	1,820	3,460	257	5,540	
MF-16 @ 2'-80' North of RF	2'	4/12/2006	Excavated	1	I	1	1	1	662	1,650	121	2,430	
P.R. @ 10'	10'	4/21/2006	In-Situ	<1.00	1.01	1.80	1.63	4.44	<10.0	<10.0	<10.0	<10.0	•
P.R. @ 10'	10'	4/26/2006	In-Situ	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0	.•
WW-Comp.	N/A	4/26/2006	In-Situ	-	-	,	-		<10.0	<10.0	<10.0	<10.0	
S-Comp.	N/A	4/26/2006	In-Situ		-		-	-	<10.0	85.8	<10.0	85.8	
A-Comp.	N/A	4/26/2006	In-Situ	1	-	1	-	ı	<10.0	<10.0	<10.0	<10.0	•
B-Comp.	N/A	4/26/2006	In-Situ						<10.0	<10.0	<10.0	<10.0	-
NW-Comp.	N/A	4/26/2006	In-Situ						<10.0	<10.0	<10.0	<10.0	-
SW-Comp.	N/A	4/26/2006	In-Situ						<10.0	<10.0	<10.0	<10.0	•
EW-Comp.	N/A	4/26/2006	In-Situ	1	•	1	•		<10.0	<10.0	<10.0	<10.0	
	,												
North Sidewall	2'	12/05/12	In-Situ						<15.9	<15.9	<15.9	<15.9	<1.06
South Sidewall	2'	12/05/12	In-Situ						<15.6	<15.6	<15.6	<15.6	1.94
East Sidewall #1	2'	12/05/12	In-Situ						<15.9	<15.9	<15.9	<15.9	- 1.11
East Sidewall #2	2'	12/05/12	In-Situ						<16.0	<16.0	<16.0	<16.0	1.82
West Sidewall #1	2'	12/05/12	In-Situ						<16.0	<16.0	<16.0	<16.0	2.18
West Sidewall #2	2'	12/05/12	In-Situ						<15.8	<15.8	<15.8	<15.8	2.33
Floor #1	4'	12/05/12	In-Situ	<0.00105	<0.00210	<0.00105	<0.00210	<0.00210	<15.8	<15.8	<15.8	<15.8	6.3
Floor #2	5'	12/05/12	In-Situ	<0.00105	<0.00209	<0.00105	<0.00209	<0.00209	<15.6	<15.6	<15.6	<15.6	2.03
NMOCD Standard				10				50				100	250
		•						,	, ,				

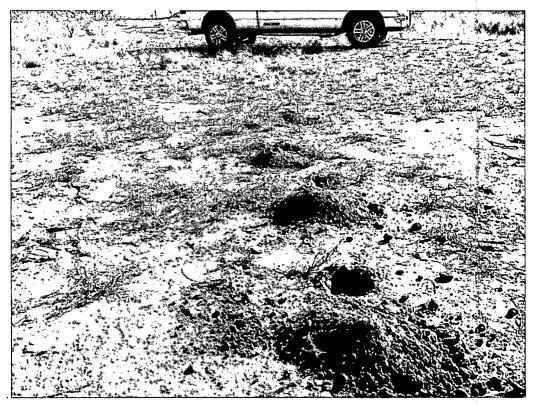

ţ

Photograph of the 2006 excavation at the MF-16" Bettis Historical Release Site.

Photograph of the 2006 excavation at the MF-16" Bettis Historical Release Site.

Photograph of the 2006 excavation at the MF-16" Bettis Historical Release Site.


Photograph of the remediated area at the MF-16" Bettis Historical Release Site.


Photograph of the remediated area at the MF-16" Bettis Historical Release Site.

Photograph of the remediated area at the MF-16" Bettis Historical Release Site.

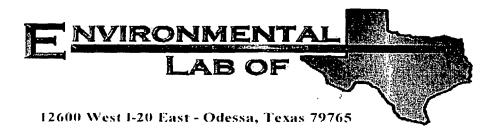
Photograph of collection of confirmation soil samples at the MF-16" Bettis Historical Release Site.

Photograph of collection of confirmation soil samples at the MF-16" Bettis Historical Release Site.

2116-2. MF-16" BETTIS 20006-014 4-20-0E 3-Londs To CELL#13 DOOTS TO ENVIRONMENTAL LLS ~ IXER 6. Combs -0 DUMP - RUCK #102 DATE 4-20-06 MPANY SOUTBERN UNION GAS SERVICES SWNER TO SUGS LAND FAAM TOTAL OF 36 RATE TOTAL CATE PAULOR NO 3 3 54.65. MF-16", BETTIS 2006-014 4-21-06 7-Loads To CELL #13 DCOTILLO ENVIRONMENTAL LLL as woars <u>9</u> 55 oer adua s DATE 4-21-06 MPANY SOUTHERN UNION GAS SERVICES TOWNER TO SUCS LAND FARMS TOTAL OF 84 RATE TOTAL C. RESS______CATE PALL OF NO XXXXXX

MF-16", BETTS 2006-014 4-25-06 G-LOADS TE CELL #13

DEOTILLO ENVIRONMENTAL LLO


- 345 LA COMPS - 3 JUNE FRUCT 1102 - 34TE 4 -25-06 MPAN SouthERN UNION CAS SERVICES SWINER TO SUGS LAND FRAM TOTAL 96 PATE TOTAL AUGRESS______CATE PAL 5 3 15 11 2 3 4 15 15 11 18 19 20 21 21 22 23 24 25 26 27 28 29 30 RATE LOADS TOTA YXXXXXX 38 51165. MF-16", BETTIS 2006-014 4-24-06 S-LOAds TO CELL #13 DCOTILLO ENVIRONMENTAL LLO PS WORKED 9 63 PER HOURS XEF L- Comps -0 DIME TRUCT 1102 DATE 4-24-06 19ESS MAPAN SouthEAN 21NION CAS SERVICES OWNED TO SUCS. LAND FARM TOTAL OS 96 PATE TOTAL ALLIGESS DATE PALL OF NO 1 3 4 5 5 7 5 9 10 - 11 2 13 - 1 5 15 15 11 18 99 50 21 22 23 24 25 26 27 28 30 RATE LOADS TOTA XXXXXXX

MF-16", BETTIS 2006-014 4-27-06 7 -LOADS TO CELL #13 DEOTILLO ENVIRONMENTAL LLO NO RS WORKED 9 S PER HOUR S TH DREP L. Comple -0 DUMP TRUCK 1102 DATE 4-27-06 · · · · MPANY SOUTHERN UNION GAS SERVICES - DWNER TO SUGS LAND FARMY TOTAL OS 84 RATE TOTAL ALURESS______OF NO 2 3 4 5 5 5 5 10 112 13 4 15 15 17 18 9 20 21 22 23 24 25 26 27 28 29 30 RATELOADS TOTA XXXXXXX 72 5465 MF-16", BETTIS 2006-014 4-26-06 5-LOADS TO CELL #13 DOOTILLO ENVIRONMENTAL LLC ORSWORKES 9 BL PERHOURS 14 DNER 6- Comps - D DUMP TRUCT 1102 JATE 4-26-06 _____ MPANY SCHTHERN UNION GHS SERVICES STOWNER TO SUCS LAND FRANKETAL OS 96 CRATE TOTAL ALURESS______OH NO_____ XXXXXXX -

14,0 2 . MF-16", BETTIS 2006-014 4-28-06 6-Lesd's TOCELL F13

OCOTILLO ENVIRONMENTAL LLS

:) 95 woa fej	9	<u>c</u> 1	jeo HO	_in ;				
W DRER 4.	Combs	10 Do M	PTRUCK 1102	- 	_್ರಿಕ್ ಇಲ್ಲ	4, ~	28	<i></i>
	10000 (m.)		an 1 m a m a ga a ga a ga a ga a ga a ga a					
JAPANI SCI	There 2	NION CHS S	CAVICES	لىمكرا كا كالإختمارة الله فراحم كالربيع	* + ****E86*****		1910 - 1910 - 1910 - 1910 - 1	
DWNER To SU	SLAND F	HAM TOTAL DE	72 .RATE	1.00 - 10 Mar 1. 100 - 10 - 10 - 10 - 10 - 10 - 10 -	_101A	ler Mengha'i yasan dibel		
*	affinder film förstanda som ander att som att s T	1475 Pa.1	د. ۱۹۰۰ که به معلقها میک میکور و میکور و میکور	······································	OM NO.			
<u> </u>		1-2[-3]-4-5-15]-**-5	*91 201 2+ 221 23 24 2	5 26 27	28 29 30	RATE	i.OADS	TOTA
							6	E
		2012 2 10000000000000000000000000000000				••••••••••••••••••••••••••••••		•
					าร เกรียว เรา			**************************************
	an a	an a	1997 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 -	• • • • • • • • • • • • • • • • • • •	,	••••••••••••••••••••••••••••••••••••••		

21

Analytical Report

Prepared for:

Tony Savoie Southern Union Gas Services- Jal P.O. Box 1226 Jal, NM 88252[.]

> Project: MF-16" Betti S Project Number: 2006-014 Location: North of Eunice

Lab Order Number:-6D1301-2-7

Report Date: 04/20/06

Southern Union Gas Services- Jal	Project: MF-16" Betti S	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	04/20/06 11:20

ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Matrix	Date Sampled	Date Received
6D13012-01	Soil	04/12/06 10:30	04/13/06 13:51
6D13012-02	Soil	04/12/06 10:30	04/13/06 13:51
6D13012-03	Soil	04/12/06 10:30	04/13/06 13:51
6D13012-04	Soil	04/12/06 10:30	04/13/06 13:51
6D13012-05	Soil	04/12/06 10:30	04/13/06 13:51
6D13012-06	Soil	04/12/06 10:30	04/13/06 13:51
	6D13012-01 6D13012-02 6D13012-03 6D13012-04 6D13012-05	6D13012-01 Soil 6D13012-02 Soil 6D13012-03 Soil 6D13012-04 Soil 6D13012-05 Soil	6D13012-01 Soil 04/12/06 10:30 6D13012-02 Soil 04/12/06 10:30 6D13012-03 Soil 04/12/06 10:30 6D13012-04 Soil 04/12/06 10:30 6D13012-05 Soil 04/12/06 10:30

Page 1 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

.

Southern Union Gas Services- Jal		F	roject: Ml	F-16" Bett	i S			Fax: 505-3	95-2326
P.O. Box 1226 Jal NM, 88252		Project N	umber: 20 anager: To	06-014				Repor 04/20/06	
		Or	ganics b	oy GC					
·		Environr	nental L	ab of I	ſexas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MF-16 Surface @ Release Point (6D)	3012-01) Soil								
Carbon Ranges C6-C12	4320	200	mg/kg dry	20	ED61312	04/13/06	04/14/06	EPA 8015M	
Carbon Ranges C12-C28	68500	200		•		"	"		
Carbon Ranges C28-C35	6260	200		"				"	
Total Hydrocarbon C6-C35	79100	200	"	n	"	11	11	п	
Surrogate: 1-Chlorooctane		7.02 %	70-,	130	"	"	"	"	S-00
Surrogate: 1-Chlorooctadecane		52.2 %	70-,	130	"	"	"	"	S-00
MF-16 @ 1'- 10ft North of RP (6D13	012-02) Soil								
Carbon Ranges C6-C12	1930	10.0	mg/kg dry	1	ED61312	04/13/06	04/14/06	EPA 8015M	
Carbon Ranges C12-C28	4250	10.0	*	"	"	"	н	"	
Carbon Ranges C28-C35	300	10.0	*	п	*	ŧ	н.	"	
Total Hydrocarbon C6-C35	6480	10.0	••	••	11	11	11	Ħ	
Surrogate: 1-Chlorooctane		113 %	70	130	"	"	n	"	
Surrogate: 1-Chlorooctadecane		128 %	70-1	130	"	"	"	"	
MF-16 @ 30''- 10ft North of RP (6D	13012-03) Soil								
Benzene	ND	0.0250	mg/kg dry	25	ED61907	04/19/06	04/19/06	EPA 8021B	
Toluene	0.0734	0.0250	"	u	"	*	"	н .	
Ethylbenzene	0.138	0.0250		"	*	"	u	11	
Xylene (p/m)	0.330	0.0250	"	"	"	"		"	
Xylene (0)	0.239	0.0250	н	"		11		n	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-	120	"	"		"	
Surrogate: 4-Bromofluorobenzene		93.0%	80	120	"	"	"	"	
Carbon Ranges C6-C12	152	10.0	mg/kg dry	1	ED61418	04/14/06	04/14/06	EPA 8015M	
Carbon Ranges C12-C28	625	10.0	u	14	n	"	"	u	
Carbon Ranges C28-C35	43.0	10.0	"	11		n	n		
Total Hydrocarbon C6-C35	820	10.0	11	11	14	"	11		
Surrogate: 1-Chlorooctane		100 %	70-	130	"	"	"	. "	
Surrogate: 1-Chlorooctadecane		98.4 %	70	130	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 10

Page 2 of 10

Southern Union Gas Services- Jal P.O. Box 1226 Jal NM, 88252		Project Ni	Project: MF umber: 200 mager: To)6-014					395-2326 rted: 6 11:20
		Or	ganics b	y GC					
		Environn	nental L	ab of]	ſexas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MF-16 Surface 80' North of RP (6D1	3012-04) Soil								
Carbon Ranges C6-C12	4360	100	mg/kg dry	10	ED61418	04/14/06	04/18/06	EPA 8015M	
Carbon Ranges C12-C28	49100	100	"	"	"	. "	"	. 11	
Carbon Ranges C28-C35	9640	100	н		n	. •			,
Total Hydrocarbon C6-C35	63100	100	"	۳.	u	"	"	"	
Surrogate: 1-Chlorooctane		18.0 %	70-1	30	"	"	"	"	S-00
Surrogate: 1-Chlorooctadecane		79.0 %	70-1	30	"	" ·	"	"	S-0-
MF-16 @ 1'- 80' North of RP (6D130	12-05) Soil								
Carbon Ranges C6-C12	1820	10.0	mg/kg dry	1	ED61418	04/14/06	04/14/06	EPA 8015M	
Carbon Ranges C12-C28	3460	10.0	*1	*	14	"	11	n ,	.1
Carbon Ranges C28-C35	257	10.0	"	"		*	n	"	
Total Hydrocarbon C6-C35	5540	10.0	H	۳.		n		n	
Surrogate: 1-Chlorooctane		83.2 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		86.6 %	70-1	30	"	"	"	"	
MF-16 @ 2'- 80' North of RP (6D130	12-06) Soil								
Benzene	0.134	0.0250	mg/kg dry	25	ED61907	04/19/06	04/19/06	EPA 8021B	
Toluene	1.99	0.0250	"	"	"	"	n	"	
Ethylbenzene	· 3.09	0.0250	n	N	u	91	u .	4	
Xylene (p/m)	6.33	0.0250	u		••	"		"	
Xylene (0)	3.41	0.0250	"	11	H	11	#1	17	
Surrogate: a,a,a-Trifluorotoluene		135 %	80-1	20	"	"	"	"	S-0-
Surrogate: 4-Bromofluorobenzene		145 %	80-1	20	"	"	"	"	S-0-
Carbon Ranges C6-C12	662	10.0	mg/kg dry	I	ED61418	04/14/06	04/14/06	EPA 8015M	
Carbon Ranges C12-C28	1650	10.0	.11	14	н	u		n	
Carbon Ranges C28-C35	121	10.0	"	u	n	u	. 11	u .	
Total Hydrocarbon C6-C35	2430	10.0	ti	11	n	11	11		
Surrogate: 1-Chlorooctane		120 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	130	n	"	17	57	
		•							

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Southern Union Gas Services- Jal	Project: 1	MF-16" Betti S	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2	2006-014	Reported:
Jal NM, 88252	Project Manager: 1	Tony Savoie	04/20/06 11:20

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MF-16 Surface @ Release Point	t (6D13012-01) Soil								
% Moisture	10.1	0.1	%	1	ED61410	04/13/06	04/14/06	% calculation	
MF-16 @ 1'- 10ft North of RP (6D13012-02) Soil	e			њ				
% Moisture	9.1	0.1	%	1	ED61410	04/13/06	04/14/06	% calculation	
MF-16 @ 30''- 10ft North of RI	⁹ (6D13012-03) Soil				-				
% Moisture	10.5	0.1	%	1	ED61410	04/13/06	04/14/06	% calculation	
MF-16 Surface 80' North of RP	(6D13012-04) Soil		• •						
% Moisture	5.6	0.1	%	1 .	ED61410	04/13/06	04/14/06	% calculation	
MF-16 @ 1'- 80' North of RP (6	5D13012-05) Soil								
% Moisture	9.3	0.1	%	1	ED61410	04/13/06	04/14/06	% calculation	
MF-16 @ 2'- 80' North of RP (6	iD13012-06) Soil								
% Moisture	9.0	0.1	. %	1	ED61410	04/13/06	04/14/06	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 10

Page 4 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Southern Union Gas Services- Jal P.O. Box 1226 Jal NM, 88252		Project Nu Project Ma		6-014	S				Fax: 505- Repo 04/20/0	rted:
	-	ganics by Environm	-	-						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61312 - Solvent Extraction	(GC)									
Blank (ED61312-BLK1)				Prepared	& Analyz	ed: 04/13/	06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0		. `						
fotal Hydrocarbon C6-C35	ND	10.0					•			
Surrogate: 1-Chlorooctane	40.1		mg/kg	50.0		80.2	70-130			
Surrogate: 1-Chlorooctadecane	40.6		"	50.0		81.2	70-130			
LCS (ED61312-BS1)				Prepared	& Analyz	ed: 04/13/	06			
Carbon Ranges C6-C12	464	10.0	mg/kg wet	500		92.8	75-125		······	
Carbon Ranges C12-C28	465	10.0	"	500		93.0	75-125			
Fotal Hydrocarbon C6-C35	929	10.0	H	1000		92.9	75-125			
Surrogate: 1-Chlorooctane	48.8		mg/kg	50.0		97.6	70-130			
Surrogate: 1-Chlorooctadecane	41.9		"	50.0		83.8	70-130			
Calibration Check (ED61312-CCV1)				Prepared:	04/13/06	Analyzed	1: 04/14/06	I		
Carbon Ranges C6-C12	286		mg/kg	250		114	80-120			
Carbon Ranges C12-C28	297		"	250		119	80-120			
Total Hydrocarbon C6-C35	583			500		117	80-120			
Surrogate: 1-Chlorooctane	49.2		"	50.0		98.4	70-130			
Surrogate: 1-Chlorooctadecane	44.2		"	50.0		88.4	70-130			
Matrix Spike (ED61312-MS1)	So	urce: 6D130	08-11	Prepared	& Analyz	ed: 04/13/	06			
Carbon Ranges C6-C12	523	10.0	mg/kg dry	560	ND	93.4	75-125			
Carbon Ranges C12-C28	. 529	10.0		560	ND	94.5	75-125			
Total Hydrocarbon C6-C35	1050	10.0		1120	ND	93.8	75-125			
Surrogate: 1-Chlorooctane	50.3		mg/kg	50.0		101	70-130			
Surrogate: 1-Chlorooctadecane	41.5		"	50.0		83.0	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas. Page 5 of 10

Southern Union Gas Services- Jal		Р	roject: MF	-16" Betti	S				Fax: 505-3	395-2326
P.O. Box 1226		Project Nu	mber: 200	6-014					Repo	rted:
Jal NM, 88252		Project Ma	nager: Ton	y Savoie					04/20/0	5 11:20
	Org	ganics by	GC - Q	uality (Control					
	1	Environn	nental L	ab of T	exas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
						///////				
Batch ED61312 - Solvent Extraction										
Matrix Spike Dup (ED61312-MSD1)		urce: 6D130	*****		& Analyze			0.051		
Carbon Ranges C6-C12	528 521	10.0	mg/kg dry "	560	ND	94.3	75-125	0.951	20	
Carbon Ranges C12-C28	521 1050	10.0		560	ND.	93.0 07.8	75-125	1.52	20 20	
Total Hydrocarbon C6-C35		10.0		1120	ND	93.8	75-125	0.00	20	
Surrogate: 1-Chloraoctane	50.8	•	mg/kg "	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	42.4			50.0		84.8	70-130			
Batch ED61418 - Solvent Extraction	(GC)									
Blank (ED61418-BLK1)				Prepared	& Analyze	ed: 04/14/	06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**				•			
Carbon Ranges C28-C35	ND	10.0	*							
Total Hydrocarbon C6-C35	ND	10.0						1		
Surrogate: 1-Chlorooctane	45.7		mg/kg	50,0		91.4	70-130			
Surrogate: 1-Chlorooctadecane	46.3		"	50.0		92.6	70-130			
LCS (ED61418-BS1)				Prepared	& Analyze	ed: 04/14/	06			
Carbon Ranges C6-C12	477	10.0	mg/kg wet	500		95.4	75-125			
Carbon Ranges C12-C28	491	10.0	W	500		98.2	75-125			
Total Hydrocarbon C6-C35	968	10.0	"	1000		96.8	75-125			
Surrogate: 1-Chlorooctane	51.8	gagiiddidid, isseedda e safe a sa	mg/kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	45.2		"	50.0		90.4	70-130			
Calibration Check (ED61418-CCV1)				Prepared:	04/14/06	Analyzec	1: 04/15/06	,		
Carbon Ranges C6-C12	266		mg/kg	250		106	80-120			
Carbon Ranges C12-C28	294		"	250		118	80-120			
Total Hydrocarbon C6-C35	560		"	500		112	80-120			
Surrogate: 1-Chlorooctane	45.6		"	50.0		91.2	70-130			
Surrogate: 1-Chlorooctadecane	38.7		"	50.0		77.4	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 6 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

Southern Union Gas Services- Jal	Project:	MF-16" Betti	S		Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014				Reported:
Jal NM, 88252	Project Manager:	Tony Savoie			04/20/06 11:20
	Organics by GC	- Quality (Control		
	Environmenta	l Lab of T	exas		
	Reporting	Spike	Source	%REC	RPD

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED61418 - Solvent Extraction (GC)									
Matrix Spike (ED61418-MS1)	Sou	rce: 6D140	12-01	Prepared	& Analyz	ed: 04/14/	06			
Carbon Ranges C6-C12	509	10.0	mg/kg dry	536	ND	95.0	75-125			
Carbon Ranges C12-C28	510	10.0	11	536	ND	95.1	75-125			
Total Hydrocarbon C6-C35	1020	10.0	11	1070	ND	95.3	75-125			
Surrogate: 1-Chlorooctane	56.1		mg/kg	50.0	*****	112	70-130			
Surrogate: 1-Chlorooctadecane	47.4		"	50.0		94.8	70-130			
Matrix Spike Dup (ED61418-MSD1)	Sou	irce: 6D140	12-01	Prepared	& Analyz	ed: 04/14/	06			
Carbon Ranges C6-C12	518	10.0	mg/kg dry	536	ND	96.6	75-125	1.75	20	
Carbon Ranges C12-C28	531	10.0	**	536	ND	99. t	75-125	4.03	20	
Total Hydrocarbon C6-C35	1050	10.0		1070	ND	98.1	75-125	2.90	20	
Surrogate: 1-Chlorooctane	57.0		mg/kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	47.9		"	50.0		95.8	70-130			
Batch ED61907 - EPA 5030C (GC)										
Blank (ED61907-BLK1)				Prepared	& Analyz	ed: 04/19/	06	,		
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	n							
Ethylbenzene	ND	. 0.0250	u							
Xylene (p/m)	ND	0.0250	**							
Xylene (0)	ND	0.0250	n							
Surrogate: a,a,a-Trifluorotoluene	39.2		ug/kg	40.0		98.0	80-120			
Surrogate: 4-Bromofluorobenzene	39.3		"	40.0		98.2	80-120			
LCS (ED61907-BS1)				Prepared	& Analyz	ed: 04/19/	06			
Benzene	1.31	0.0250	mg/kg wet	1.25		105	80-120			
Toluene	1.39	0.0250	"	1.25		111	80-120			
Ethylbenzene	1.44	0.0250	u	1.25		115	80-120			
Xylene (p/m)	3.00	0.0250	"	2.50		120	80-120			
Xylene (0)	1.50	0.0250		1.25		120	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.6		ug/kg	40.0		102	80-120			
	17.0			10.0		015	00 100			

"

40.0

37.8

.

Environmental Lab of Texas

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

94.5

80-120

Page 7 of 10

Southern Union Gas Services- Jal P.O. Box 1226			roject: MF		S				Fax: 505- Rep o	
Jal NM, 88252		Project Ma							04/20/0	
	0*	ganics by		uality (Control				· · ·	
		Environn		•						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61907 - EPA 5030C (GC)										
Calibration Check (ED61907-CCV1)				Prepared:	04/19/06	Analyzed	l: 04/20/06	i		
Benzene	58.6		ug/kg	50.0		117	80-120			
Toluene	56.6		"	50.0		113	80-120			·
Ethylbenzene	59,7		"	50.0		119	80-120			
Xylene (p/m)	119			100		119	80-120	1		
Xylene (0)	59.1		"	50.0		118	80-120	÷.		
Surrogate: a.a.a-Trifluorotoluene	39.1			40,0		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	37.2		"	40.0		93.0	80-120			
Matrix Spike (ED61907-MS1)	So	urce: 6D130	13-01	Prepared	& Analyze	d: 04/19/	06			
Benzene	1.25	0.0250	mg/kg dry	1.43	ND	87.4	80-120			
Toluene	1.24	0.0250	н	1.43	ND	86.7	80-120			
Ethylbenzene	1.33	0.0250	н	1.43	ND	93.0	80-120			
Xylene (p/m)	2.88	0.0250	u	2.86	ND	101	80-120			
Xylene (0)	1.41	0.0250		1.43	ND	98.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.3		ug/kg	40.0		80.8	80-120		*******	
Surrogate: 4-Bromofluorobenzene	36.6		"	40.0		91.5	80-120			
Matrix Spike Dup (ED61907-MSD1)	So	urce: 6D130	13-01	Prepared:	04/19/06	Analyzed	I: 04/20/06	5		
Benzene	1.45	0.0250	mg/kg dry	1.43	ND	101	80-120	<u>⊦</u> 14.4	20	
Toluene	1.52	0.0250		1.43	ND	106	80-120	20.0	20	
Ethylbenzene	1.53	0.0250	м.	1.43	ND	107	80-120	14.0	20	
Xylene (p/m)	3.37	0.0250		2.86	ND	118	80-120	15.5	20	
Xylene (o)	1.57	0.0250	"	1.43	ND	110	80-120	10.9	20	
Surrogate: a,a,a-Trifluorotoluene	38.6		ug/kg	40.0		96.5	80-120			43 - 169 - 179 Miller (5, 17 - 9 - 12 - 16 - 16 - 16 - 16 - 16 - 16 - 16
Surrogate: 4-Bromofluorobenzene	35.1		"6""8	40,0		87.8	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 8 of 10

Southern Union Gas Services- Jal	Project: MF-16" Betti S	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	04/20/06 11:20

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit	Linin	Units	Level	Result	70REC	Linnis	KPD		Notes
Batch ED61410 - General Prepara	ation (Prep)									
Blank (ED61410-BLK1)				Prepared:	04/13/06	Analyzed	: 04/14/06			
% Solids	. 100		%						•	
Duplicate (ED61410-DUP1)	Sou	rce: 6D1300	1-01	Prepared:	04/13/06	Analyzed	: 04/14/06			
% Solids	98.2		%		98.1			0.102	20	
Duplicate (ED61410-DUP2)	Sou	rce: 6D1300	8-10	Prepared:	04/13/06	Analyzed	: 04/14/06			
% Solids	88.0		%		88.3			0.340	20	
Duplicate (ED61410-DUP3)	Sou	rce: 6D1301	2-04	Prepared:	04/13/06	Analyzed	: 04/14/06			
% Solids	92.1		%	4	94.4			2.47	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By: Date: 4-2D-06

Raland K. Tuttle, Lab Manager Celey D. Kcene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

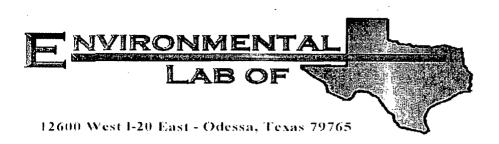
Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

7:2 TAT DISDREIZ 77 aubana2-argi TAT H2UR z CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project 1.00: North OF EUNICE S しょ .M.A.O.N Salp-Femperature Upon Roceipt: Laboratory Comments: Project Name: MF-16 เวะ Sample Containers Intact? Project #: 200 6 - 1 Vnalyze For 0000 of 81EX 8260 7 атехеозте SOUDCIONLINGS 404 29|1)610\ #3 6H 09 10 50 48 04 24 StateM ICLP. TOTAL DED / ASE / NES PO #: (CCCH 'COO' #OS 'ID) suous N'EN ΈM 2020 Date Time Time (13/040 | 3/51 Time 9001 500 (IVSLOS 1.814 HOT 7 Olyer (specify): **Hos** 7 7 7 Matrix 7 7 4-13-2 afonis Date selev. Offer (Gpecify) augn eservative 'os'H HORN IDH *ONH dgg 60) 7 7 7 7 いすつ No. of Containers 88257 Fax No: 0 10:30 1 balqma2 amiT 2 Southern Union 643 Seru. Ξ 1 2 4/1-106 Received by: 7 baiqme2 alsQ 7 7 2 ଡ଼ MULLING SUNFACE RANDORD ielo Commerce 90' NONTOF RP 13:51 - 10F4 North OF RP Environmental Lab of Texas Telephone No: 505 + 631-6797 = Savoie Time Ξ ļ Phone: 432-563-1800 Fax: 432-563-1713 #1/3/00 4-13-06 -1 1 Date FIELD CODE 3 τ , , , **KNO** 5 SUNFACE C 30 ē ٢ ē MF-16 9 Company Name Company Address: City/State/Zip:_ Project Manager: Sampler Signature: Ξ ~ τ 12600 West I-20 East Odessa, Texas 79765 Special Instructions: 1/02/C21 AB # (lab use only) telinquisbed by 90 8 D

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	SUGS	
Date/Time:	4/B/NO 13:5/	
Order #:	673012	
nitials:	Cle	


Sample Receipt Checklist

emperature of container/cooler?	Yes	No	14,5 CI
Shipping container/cooler in good condition?	Xes	No	
Sustody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Motoresent
Chain of custody present?	YES	No	1
Sample Instructions complete on Chain of Custody?	2 BS	No	
Chain of Custody signed when relinquished and received?	(Ces	No	T
Chain of custody agrees with sample label(s)	Yes	No	IDON Cap 1
Container lacels legible and intact?	Yes	l No	na
Sample Matrix and properties same as on chain of custody?	YES	No	
Samples in proper container/bottle?	1 805	l No	
Samples properly preserved?	Yes	I No	
Sample bottles intact?	Yes	No No	
Preservations documented on Chain of Custody?	1 des	I No	
Containers documented on Chain of Custody?	YES	No	
Sufficient sample amount for indicated test?	Yes	No	
All samples received within sufficient hold time?	Yes	No	1
/OC samples have zero headspace?	Yes	No	Nct Apolicable

Other observations:

	· · · · · · · · · · · · · · · · · · ·		
entact Person: egarding:	Variance Documentation: Date/Time:	Contacted by	
prrective Action Taken:			
·			
· · ·			
		Al port	ى يەرىپىدىكى يېرىكى يېرىكى يېرىكى يېرىكى

. .

Analytical Report

Prepared for:

Tony Savoie Southern Union Gas Services- Jal P.O. Box 1226 Jal, NM 88252

> Project: MF-16" Project Number: 2006-014 Location: Bettis Ranch

Lab Order Number: 16D21012

Report Date: 04/26/06

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoic	05/01/06 08:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P.R.@ 10'	6D21012-01	Soil	04/21/06 13:10	04/21/06 16:50
	s :			

Page 1 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

. .

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	05/01/06 08:09

Organics by GC **Environmental Lab of Texas**

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes P.R.@ 10' (6D21012-01) Soil 1 Carbon Ranges C6-C12 10.0 mg/kg dry ND ED62407 04/24/06 04/25/06 EPA 8015M 1 ... Carbon Ranges C12-C28 10.0 4 . ,, ND н Carbon Ranges C28-C35 ND 10.0 11 • 10.0 Total Hydrocarbon C6-C35 ND Surrogate: 1-Chlorooctane 88.8 % 70-130 " " " ., " ,, Surrogate: 1-Chlorooctadecane 93.6% 70-130 " ..

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

Page 2 of 10

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	05/01/06 08:09

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	· .	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
P.R.@ 10' (6D)	21012-01) Soil									
% Moisture		6.5	0.1	%	1	ED62502	04/24/06	04/25/06	% calculation	
					•					
			,							
					;					
			· .							
					*					
									·	
					,					
	, ·									

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Southern Union Gas Services- J	al
P.O. Box 1226	
Jal NM, 88252	•

Project: MF-16" Project Number: 2006-014 Project Manager: Tony Savoie

Fax: 505-395-2326 **Reported:**

05/01/06 08:09

TCLP Volatile Organic Compounds by EPA Method 1311/8260B

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Extracted	Prepared	Anatyzed	Method	Notes
P.R.@ 10' (6D21012-01) Soil				-						
Benzene	ND	1.00	ug/l	1	ED62605	04/24/06 TCLP	04/25/06	04/25/06	EPA 8260B	
Toluene	1.01	1.00	"		*1	11	"	"	"	
Ethylbenzene	1.80	1.00	н	u	"	**		11	"	
Xylenc (p/m)	1.63	1.00	*		"	"		· 9	"	
Xylene (0)	J [0.910]	1.00	"	.,	"	u	n	и	"	,
Surrogate: Dibromofluoromethane	A.,	83.6 %	70	-139	"	"	11	11	,,	
Surrogate: 1,2-Dichloroethane-d4		86.8 %	52	-149	"	**	"	"	**	
Surrogate: Toluene-d8		94.4 %	76	-125	"	"	"	"	<i>"</i> '	
Surrogate: 4-Bromofluorobenzene		102 %	66	-145	"	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

Southern Union Gas Services- Jal P.O. Box 1226 Jal NM, 88252		Pi Project Nu Project Ma		6-014					Fax: 505- Repo 04/26/0	rted:
	-	anics by Invironn	-	. *						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62407 - Solvent Extraction	(GC)									
Blank (ED62407-BLK1)	•			Prepared:	04/24/06	Analyzed	: 04/25/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet						annorth 100 1000 . 100	
Carbon Ranges C12-C28	ND	10.0	u `							
Carbon Ranges C28-C35	ND	10.0	"							·
Fotal Hydrocarbon C6-C35	ND	10.0	ч							
Surrogate: 1-Chlorooctane	41.0		mg/kg	50.0		82.0	70-130			
Surrogate: 1-Chlorooctadecane	43.5		"	50.0		87.0	70-130			
LCS (ED62407-BS1)				Prepared	& Analyza	rd: 04/24/	06			
Carbon Ranges C6-C12.	464	10.0	mg/kg wet	500	<u>cc / mary 2</u>	92.8	75-125			
Carbon Ranges C12-C28	479	10.0	"	500		95.8	75-125	. :		•
Total Hydrocarbon C6-C35	943	10.0	ч	1000		94.3	75-125			
Surrogate: 1-Chlorooctane	48.0	·····	mg/kg	50.0		96.0	70-130			
Surrogate: 1-Chlorooctadecane	43.2		"	50.0		86.4	70-130			
Calibration Check (ED62407-CCV1)				Prepared:	04/24/06	Analyzed	1: 04/25/06			
Carbon Ranges C6-C12	220		mg/kg	250		88.0	80-120	·····		
Carbon Ranges C12-C28	288			250		115	80-120			
Total Hydrocarbon C6-C35	508		х п	500		102	80-120			
Surrogate: 1-Chlorooctane	45.4			50,0	÷ • • • • • • • • • • • • • • • • • • •	90,8	70-130	is west, 1997, 999, 1997, 1997		
Surrogate: 1-Chlorooctadecane	44.7		"	50,0		89.4	70-130			
Matrix Spike (ED62407-MS1)	Soi	irce: 6D210	11-01	Prepared:	04/24/06	Analyzed	1: 04/25/06			
Carbon Ranges C6-C12	515	10.0	mg/kg dry	541	5.00	94.3	75-125			
Carbon Ranges C12-C28	535	10.0	*	541	18.3	95.5	75-125			
Total Hydrocarbon C6-C35	1050	10.0		1080	18.3	95.5	75-125			
Surrogate: 1-Chlorooctane	52.2		mg/kg	50.0		104	70-130			••••• ••• •• •••••••••••••••••••••••••
Surrogate: 1-Chlorooctadecane	. 47.1		"	50.0		94.2	70-130	•		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas. Page 5 of 10

Page 5 of 10

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	04/26/06 16:34

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62407 - Solvent Extraction	(GC)							÷.		
Matrix Spike Dup (ED62407-MSD1)	Sou	rce: 6D210	11-01	Prepared:	04/24/06	Analyzed	: 04/25/06			
Carbon Ranges C6-C12	521	10.0	mg/kg dry	541	5.00	95.4	75-125	1.16	20	
Carbon Ranges C12-C28	535	10.0		541	18.3	95.5	75-125	0.00	20	
Total Hydrocarbon C6-C35	1060	10.0		1080	18.3	96.5	75-125	0.948	20	
Surrogate: 1-Chlorooctane	52.1		mg/kg	50.0		104	70-130		•	
Surrogate: 1-Chlorooctadecane	46.6		**	50.0		93.2	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

Page 6 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM. 88252	Project Manager: Tony Savoie	04/26/06 16:34

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62502 - General Prepar	ati <u>on (Prep)</u>				•					
Blank (ED62502-BLK1)				Prepared:	04/24/06	Analyzed	1: 04/25/06			
% Moisture	ND	0.1	%							
Duplicate (ED62502-DUP1)	Sou	rce: 6D2101	0-01	Prepared:	04/24/06	Analyzed	1: 04/25/06			
% Solids	94.3		%		94.3			0.00	20	A

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

Page 7 of 10

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	04/26/06 16:34

TCLP Volatile Organic Compounds by EPA Method 1311/8260B - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62605 - EPA 1314/ZHE								,		
Blank (ED62605-BLK1)				Prepared	& Analyze	ed: 04/25/	06			
Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	**							
Ethylbenzene	ND	1.00	н							
Xylene (p/m)	ND	1.00	"							
Xylene (0)	ND	1.00	**							
Surrogate: Dibromofluoromethane	39.2		ug/kg	50.0		78.4	70-139			
Surrogate: 1,2-Dichloroethane-d4	37.8		"	50.0		75.6	52-149			
Surrogate: Toluene-d8	44.7		"	50,0		89.4	76-125			
Surrogate: 4-Bromofluorobenzene	46.9		"	50.0		93.8	66-145			
LCS (ED62605-BS1)				Prepared	& Analyza	ed: 04/25/	06			
Benzene	47.5		ug/kg	50.0		95.0	70-130		2012/01/01	
Surrogate: Dibromofluoromethane	37.8		"	50.0	********	75.6.	70-139			
Surrogate: 1.2-Dichloroethane-d4	42.2		"	50.0		84.4	52-149			
Surrogate: Toluene-d8	47.4		"	50.0		94.8	76-125			
Surrogate: 4-Bromofluorobenzene	48.0		"	50.0		96.0	66-145			
Calibration Check (ED62605-CCV1)				Prepared	& Analyz	ed: 04/25/	06			
Toluene	38.4	deren de araben aftafakten af de somer entempe skort der	ug/kg	50.0		76.8	70-130			
Ethylbenzene	36.5		14	50.0		73.0	70-130			
Surrogate: Dibromofluoromethane	37.1		"	50.0		74.2	70-139			
Surrogate: 1.2-Dichloroethane-d4	38.9		"	50.0		77.8	52-149			
Surrogate: Toluene-d8	46.1		"	50.0		92.2	76-125			
Surrogate: 4-Bromofluorobenzene	47.1		"	50.0		94.2	66-145			
Matrix Spike (ED62605-MS1)	So	urce: 6D210	12-01	Prepared	& Analyz	ed: 04/25/	06			
Benzene	45,6		ug/kg	50.0	ND	91.2	70-130			
Toluene	0.860	1.00	ug/l	20 C	1.01		70-130			
Ethylbenzene	1.47	1.00	0		1.80		70-130			
Xylene (p/m)	1.68	. 1.00			1.63		70-130			
Xylene (0)	0.980	1.00	"	1	0.910		70-130			
Surrogate: Dibromofluoromethane	37.8		ug/kg	50.0		75.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	43.1		"	50.0		86.2	52-149			
Surrogate: Toluene-d8	47.6		"	50.0		<i>95.2</i>	76-125			
Surrogate: 4-Bromofluorobenzene	47.5	•	"	50.0		95.0	66-145			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 8 of 10

Southern Union Gas Services- Jal	Project: MF-16"	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM. 88252	Project Manager: Tony Savoie	04/26/06 16:34

TCLP Volatile Organic Compounds by EPA Method 1311/8260B - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62605 - EPA 1311/ZHE				, , 						
Matrix Spike Dup (ED62605-MSD1)	Sou	rce: 6D2101	2-01	Prepared	& Analyze	:d: 04/25/0	06			
Benzene	48.4		ug/kg	50.0	ND	96.8	70-130	5.96	20	
Surrogate: Dibromofluoromethane	40.8		"	50.0		81.6	70-139			**************************************
Surrogate: 1.2-Dichloroethane-d4	48.2		"	50.0		96.4	52-149			
Surrogate: Toluene-d8	48.2		"	50.0		96.4	76-125			
Surrogate: 4-Bromofluorobenzene	48.8		"	50.0		97.6	66-145			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 9 of 10

Southern Union Gas Services- Jal P.O. Box 1226 Jal NM, 88252		Project: Project Number: Project ⁴ Manager:	2006-014	Fax: 505-395-2326 Reported: 04/26/06 16:34
		Notes and De	finitions	
ļ	Detected but below the Reporting	Limit; therefore, result is an e	stimated concentration (CLP J-Flag	.).
DET	Analyte DETECTED		. •	
ND	Analyte NOT DETECTED at or abov	e the reporting limit		
NR	Not Reported			
dry	Sample results reported on a dry weig	ht basis		
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike			

Dup Duplicate

Al an Report Approved By: Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

8-06

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 10 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Project Name: 14 F - 16 "	Project #: 2006~01 4	Project Loc: BETT is RANCO	PO #:			Analyze For: TCLP: Analyze For:		ə	втех в260 сг Ръ на Sc втех в260 с г) с т на Sc с с с л	Ca. Mg. Va. F Ca. Mg. Va. F SP Ea Cd C SP / CEC SP Ea Cd C SP Ea Cd C Ca. Mg. Va. F SP C Ca. Mg. Va. Mg. Va. F SP C Ca. Mg. Va.	Cations (Anions ((Aenions () Volaties Semivola Semivola Gemivola Gemivola						Sample Containers Intact? N Labels on container? Y N Custody Seals: <u>Containers</u>) Cooler Temperature Upon Receipt: J C	Time Laboratory Comments:	Time	1650	
CHAIN							•	Mateir	Matrix		Specify)	Solidge Sludge Slodge	7						Date	Date	00-12-DO	
Environmental Lab of Texas 12600 West 1-20 East Phone: 432-563-1800 Ddessa, Texas 79765 Fax: 432-563-1713	Project Manager: TONY SAVOTE	Company Name Services SERVICES	Address: P.O. Box 1226	City/State/Zip: J.J.L. N. M. & 8252	Telephone No: 505 - 395 - 2116	ignature: Dr. Leer			אן Preservative	20h	Soecity) Sampled	Time 5 H ₃ 50, HCI HCI HCI HCI HCI	P.R. (a) 10 1 1						Date Time Received by:	Dale Time Received by ELOT:	. Vere memun	D
Environm 12600 West I-20 East Odessa, Texas 79765	Project	Compi	Company Address:	City	Telep	Sampler Signature:					210174	6 LAB # (lab use only)	10					Special Instructions	Relinquished by:	Relinquished by:		

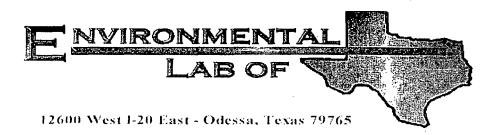
• • • •

.

.

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

lient:	SUGS	
ate/Time:	04-21-06 C	1650
)rder #:	6D21012	
nitials:	JMM	_


Sample Receipt Checklist

emperature of container/cooler?	(Yes) No	IS C
hipping container/cooler in good condition?	(Yes) No	
ustody Seals intact on shipping container/cooler?	Yes No	Not present
ustody Seals intact on sample bottles?	(YES) NO	Not present
hain of custody present?	(Yes) No	
ample Instructions complete on Chain of Custody?	(es) No	
hain of Custody signed when relinquished and received?	Ves No	
hain of custody agrees with sample label(s)	(Yes) No	
ontainer labels legible and intact?	(Yes) No	
ample Matrix and properties same as on chain of custody?	(res) No	
amoles in proper container/bottle?	(Yes) No	·
amples properly preserved?	(Fes) No	
ample bottles intact?	(Yes) NO	
Preservations documented on Chain of Custody?	(Yes) No I	
Containers documented on Chain of Custody?	(Tas) No I	
Sufficient sample amount for indicated test?	(Yes) No I	
All samples received within sufficient hold time?	Ves No	
/OC samples have zero headspace?	Yes) No	Nct Applicable

Other observations:

Contact Person:	Variance Docur Date/Time:	nentation:	Contacted by:
Regarding:			
Corrective Action Taken:			
<u></u>			
			······
	· · · · · · · · · · · · · · · · · · ·		

.

Analytical Report

Prepared for:

Tony Savoie Southern Union Gas Services- Jal P.O. Box 1226 Jal, NM 88252

Project: MF- 16" Bettis Project Number: 2006-014 Location: C.Bettis Ranch- N

Lab Order Number: 6D27007

Report Date: 05/01/06

Southern Union Gas Services- Jal P.O. Box 1226 Jal NM, 88252	Project: MF- 16" Bet Project Number: 2006-014 Project Manager: Tony Savoie			nx: 505-395-2326 Reported: 05/01/06 12:07
nna <mark>– 1996 na přestří koncepti kladno přestředno se kladno prestředno prestředno prestředno prestředno přestře Na s</mark>	ANALYTICAL REPORT FOR SAM	APLES	nanalar nandiki na nahisina nahisir n	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P.R.@ 10'	6D27007-01	Soil	04/26/06 15:45	04/27/06 09:54
WW- Comp.	6D27007-02	Soil	04/26/06 15:45	04/27/06 09:54
S- Comp.	6D27007-03	Soil	04/26/06 15:45	04/27/06 09:54
A- Comp.	6D27007-04	Soil	04/26/06 15:45	04/27/06 09:54
B- Comp.	6D27007-05	Soil	04/26/06 15:45	04/27/06 09:54
NW- Comp.	6D27007-06	Soil	04/26/06 15:45	04/27/06 09:54
SW- Comp.	6D27007-07	Soil	04/26/06 15:45	04/27/06 09:54
EW- Comp.	6D27007-08	Soil	04/26/06 15:45	04/27/06 09:54

i

4

Southern Union Gas Services- Jal		P	roject: Ml	² - 16" Bet	tis			Fax: 505-39	95-2326
P.O. Box 1226			umber: 20					Report	
Jal NM, 88252		Project wa	mager: To	ny Savoie				05/01/06	12:07
			ganics b	•					
		Environr	nental L	ab of	l'exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
P.R.@ 10' (6D27007-01) Soil									1
Benzene	ND	0.0250	mg/kg dry	25	ED62806	04/28/06	04/28/06	EPA 8021B	
Toluene	ND	0.0250		ļ				"	
Ethylbenzene	ND	0.0250	п	ľ	н	Ð	н	"	
Xylene (p/m)	ND	0.0250	"		0	н	11	и	
Xylene (0)	ND	0.0250	\$1	"	H	υ, .	11	*	
Surrogate: a,a,a-Trifluorotoluene		91.2 %	80-1	20	"	"		#	
Surrogate: 4-Bromofluorobenzene		80.2 %	80-1	20 ;	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	ļ	ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10:0	в		"	2 Гн	· 11		1
Carbon Ranges C28-C35	ND	10.0			14	"	11	tr	1
Total Hydrocarbon C6-C35	ND	10.0		u	n	u	u		4
Surrogate: 1-Chlorooctane		102 %	70-1	130	"	"	. "	,	
Surrogate: 1-Chlorooctadecane		117%	70-	130	"	"	"	"	1
WW- Comp. (6D27007-02) Soil									;
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	J [8.34]	10.0	+1	"	"		11	"	
Carbon Ranges C28-C35	ND	10.0		11	**	"	п	**	ſ
Total Hydrocarbon C6-C35	ND	10.0	"		"	п		0	1
Surrogate: 1-Chlorooctane		99.6 %	70-1	30	"	11	· · · · · · · · · · · · · · · · · · ·	13	
Surrogate: 1-Chlorooctadecane		109 %	70-1	130	"	"	"	"	
S- Comp. (6D27007-03) Soil									ł
Carbon Ranges C6-C12	J [6.74]	10.0	mg/kg dry	1	ED62802	04/28/06	05/01/06	EPA 8015M	:
Carbon Ranges C12-C28	85.8	10.0	n	• .		tr	"	"	•
Carbon Ranges C28-C35	• ND	10.0	"	•	•		13	u u	•
Total Hydrocarbon C6-C35	85.8	10.0		"	"			"	!
Surrogate: 1-Chlorooctane		96.6.%	70-	130	11	. 11	, a ay yaan - A	10 FE	
Surrogate: 1-Chlorooctadecane		108 %	70-		"	п	,,	"	r

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 2 of 10

Southern Union Gas Services- Jal P.O. Box 1226 Jal NM, 88252		Project Nu	rojeet: MF- imber: 200 mager: Ton	6-014				Fax: 505- Rep o 05/01/0	rted:
		Or	ganics by	y GC					
		Environn	nental La	ab of T	ſexas				ſ
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
A- Comp. (6D27007-04) Soil			•						
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	J [6.05]	10.0	н	"	"	**	11	· •	
Carbon Ranges C28-C35	ND	10.0		"	0	11	"	н	
Total Hydrocarbon C6-C35	· ND	10.0	n	*	**	n			
Surrogate: 1-Chlorooctane		101 %	70-1	30	**	".	"	"	~ •
Surrogate: 1-Chlorooctadecane		109 %	70-1.	30 ·		"	"	"	
B- Comp. (6D27007-05) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	J [8.47]	10.0	"	"	"	"	"	*	
Carbon Ranges C28-C35	ND	10.0	**	"	**	"	"	"	
Total Hydrocarbon C6-C35	ND	10.0	ų	. "	**	۳.	"	u	
Surrogate: 1-Chlorooctane		96,2 %	70-1.	30	"	"	"	н ,	
Surrogate: 1-Chlorooctadecane		106 %	70-1.	30	"	"	"	"	
NW- Comp. (6D27007-06) Soil		·							·
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	l	ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0				"	"	н	
Carbon Ranges C28-C35	ND	10.0	н	"	"	"		*	
Total Hydrocarbon C6-C35	ND	10.0	н	4		**	"	n	
Surrogate: 1-Chlorooctane		98.4 %	70-1.	30		"	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-1.	30	"	"	"	"	
SW- Comp. (6D27007-07) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	J [8.18]	10.0	"	u	U.	н		H .	
Carbon Ranges C28-C35	ND	10.0		н		"	u	ч	
Total Hydrocarbon C6-C35	ND	10.0	" ·	"		n		0	
Surrogate: 1-Chlorooctane		105 %	70-1.	30	"	"		*1	
Surrogate: 1-Chlorooctadecane		113 %	70-1.	30	"	"	"	**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 10

Southern Union Gas Services- Jal	Project: MF-16" Bettis	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	05/01/06 12:07

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
EW- Comp. (6D27007-08) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry		ED62802	04/28/06	05/01/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	u .	0	IJ		**	
Carbon Ranges C28-C35	ND	10.0	"	*		"	"		
Total Hydrocarbon C6-C35	ND	10.0		"			"	e	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	<i>11</i> .	"	17	
Surrogate: 1-Chlorooctadecane		110%	70-1	30	"	"	"	••	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 4 of 10

.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
P.R.@ 10' (6D27007-01) Soil	<u></u>	<u></u>							
% Moisture	12.3	0.1	%	1	ED62801	04/27/06	04/28/06	% calculation	
WW- Comp. (6D27007-02) Soil									
% Moisture	1.7	0.1	%	1	ED62801	04/27/06	04/28/06	% calculation	
S- Comp. (6D27007-03) Soil						΄.			
% Moisture	3.4	0.1	%	1	EP62801	04/27/06	04/28/06	% calculation	
A- Comp. (6D27007-04) Soil									
% Moisture	3.4	0.1	%	ł	ED62801	04/27/06	04/28/06	% calculation	
B- Comp. (6D27007-05) Soil									
% Moisture	3.7	0.1	%	1	ED62801	04/27/06	04/28/06	% calculation	
NW- Comp. (6D27007-06) Soil									
% Moisture	2.5	0.1	%	1	EID62801	04/27/06	04/28/06	% calculation	
SW- Comp. (6D27007-07) Soil									
% Moisture	. 1.6	0.1	%	1	ED62801	04/27/06	04/28/06	% calculation	
EW- Comp. (6D27007-08) Soil			•						
% Moisture	3.2	0.1	%	1	ED62801	04/27/06	04/28/06	% catculation	
						·			
					ł				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 5 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Southern Union Gas Services- Jal	Project: MF- 16" Bettis	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	05/01/06 12:07
	Organics by GC - Quality Control	
	Environmental Lab of Texas	· · · · · · · · · · · · · · · · · · ·

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62802 - Solvent Extraction	(GC)									
Blank (ED62802-BLK1)				Prepared:	04/28/06	Analyzec	1: 05/01/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet	agere and a car in a car a Madda a gar						
Carbon Ranges C12-C28	ND	10.0								
Carbon Ranges C28-C35	ND	10.0	P							
Total Hydrocarbon C6-C35	ND	10.0	H							
Surrogate: 1-Chlorooctane	57.6		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	64.4		"	50.0		129	70-130			
LCS (ED62802-BS1)				Prepared:	04/28/06	Analyzed	1: 05/01/06			
Carbon Ranges C6-C12	449	10.0	mg/kg wet	500		89.8	75-125	en fonosonoo of itiliyu		
Carbon Ranges C12-C28	493	10.0	н	500		98.6	75-125			
Total Hydrocarbon C6-C35	942	10.0	"	1000		94.2	75-125			
Surrogate: 1-Chlorooctane	50.0		mg/kg	50,0		100	70-130			
Surrogate: 1-Chlorooctadecane	50.2		"	50,0		100	70-130			
Calibration Check (ED62802-CCV1)				Prepared:	04/28/06	Analyzed	1: 05/01/06			
Carbon Ranges C6-C12	241		mg/kg	250		96.4	80-120			
Carbon Ranges C12-C28	258		"	250		103	80-120			
Total Hydrocarbon C6-C35	499	•	"	500		99.8	80-120			
Surrogate: 1-Chlorooctane	47.2	***************************************	"	50.0		94.4	70-130		•••••••••••••••••••••••••••••	
Surrogate: 1-Chlorooctadecane	46.3		"	50,0		92.6	70-130			
Matrix Spike (ED62802-MS1)	So	urce: 6D270	02-09	Prepared:	04/28/06	Analyzed	1: 05/01/06			•
Carbon Ranges C6-C12	466	10.0	mg/kg dry	518	ND	90.0	75-125			
Carbon Ranges C12-C28	500	10.0	u	518	ND	96.5	75-125			
Total Hydrocarbon C6-C35	966	10.0	"	1040	ND	92.9	75-125			
Surrogate: 1-Chlorooctane	49.8		mg/kg	50.0		99.6	70-130			
Surrogate: 1-Chlorooctadecane	50.1			50.0		100	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 6 of 10

Page 6 of 10

Southern Union Gas Services- Jat	•	Project:	MF-16" Bettis		Fax: 505-395-2326
P.O. Box 1226		Project Number:	2006-014	•	Reported:
Jal NM, 88252		Project Manager:	Tony Savoie		05/01/06 12:07

Organics by GC - Quality Control

Environmental Lab of Texas

	· Ľ	Invironn		ab of 1	exas				·····	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62802 - Solvent Extraction (GC)			·····						
Matrix Spike Dup (ED62802-MSD1)	Sou	rce: 6D270	002-09	Prepared:	04/28/06	Analyzec	1: 05/01/06)		
Carbon Ranges C6-C12	477	10.0	mg/kg dry	,518	ND	. 92.1	75-125	2.33	20	
Carbon Ranges C12-C28	522	10.0	. н	518	ND	101,	75-125	4.31	20	
Total Hydrocarbon C6-C35	999	10.0	"	1040	ND	96.1	75-125	3,36	20	
Surrogate: 1-Chlorooctane	51.2		mg/kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	49.4			50,0		98.8	70-130			
Batch ED62806 - EPA 5030C (GC)										
Blank (ED62806-BLK1)				Prepared	& Analyze	ed: 04/28/	06			
Benzene	ND		mg/kg wet							
Toluene	ND	0.0250	**				•			
Ethylbenzene	ND	0.0250	u							
Xylene (p/m)	ND	0.0250	**							
Xylene (0)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	34.8	····	ug/kg	40.0		87.0	80-120			· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-Bromofluorobenzene	32.4		"	40.0		81.0	80-120			
LCS (ED62806-BS1)				Prepared	& Analyze	ed: 04/28/	06			
Benzenc	· 1.14	0.0250	mg/kg wet	1.25	**************************************	91.2	80-120			
Toluene	. 1.23	0.0250	n	1.25		98.4	80-120			•
Ethylbenzene	1.14	0.0250	ч	1.25		91.2	80-120			
Xylene (p/m)	2.83	0.0250	14	2.50		113	80-120			
Xylene (0)	1.39	0.0250	**	1.25		111	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.2		ng/kg	40.0		95.5	80-120			
Surrogate: 4-Bromofluorobenzene	39,0		v	40.0		97.5	80-120			
Calibration Check (ED62806-CCV1)				Prepared:	04/28/06	Analyzec	1: 04/30/06	i		
Benzene	59.9		ug/kg	50.0		120	80-120			
Foluene	56.1		"	. 50.0	<i>.</i>	112	80-120			
Ethylbenzene	58.1	•	"	50.0		116	80-120			
Xylene (p/m)	115		, ¹¹	100		115	80-120	<u>م</u>	· ,	
Xylene (o)	58.1		. ¹¹	50.0		116	80-120			
Surrogate: a.a.a-Trifluorotoluene	40.7		'n	40.0	······	102	80-120			
Surrogate: 4-Bromofluorobenzene	41.7		"	40.0		104	80-120		,	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

۰

Southern Union Gas Services- Jal -P.O. Box 1226 Jal NM, 88252

Project: MF-16" Bettis Project Number: 2006-014 Project Manager: Tony Savoie

Fax: 505-395-2326

Reported: 05/01/06 12:07

Organics by GC - Quality Control Environmental Lab of Texas

A	Dlt	Reporting	f 1	Spike	Source	WDFC	%REC		RPD	Matas
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED62806 - EPA 5030C (GC)										
Matrix Spike (ED62806-MS1)	Sou	rce: 6D250	02-17	Prepared	& Analyze	ed: 04/28/0	06		•	
Benzene	1.36	0.0250	mg/kg dry	1.33	ND	102	80-120			
Foluene	1.33	0.0250		1.33	ND	100	80-120			
Ethylbenzene	1.30	0.0250	"	1.33	ND	97.7	80-120			
Xylene (p/m)	2.88	0.0250	**	2.66	ND	108	80-120			
Xylene (o)	1,41	0.0250	**	1.33	ND	106	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.9		ug/kg	40.0	······································	97.2	80-120			
Surrogate: 4-Bromofluorobenzene	39.6	*	"	40,0		99.0	80-120			
Matrix Spike Dup (ED62806-MSD1)	Sou	rce: 6D250	02-17	Prepared	& Analyzo	ed: 04/28/	06	•		
Benzene	1.45	0.0250	mg/kg dry	1.33	ND	109	80-120	6.64	20	
Toluene	1.43	0.0250	"	1.33	ND	108	80-120	7.69	20	
Ethylbenzene	1.47	0.0250	u	1.33	ND	111	80-120	12.7	20	
Xylene (p/m)	3.12	0.0250	"	2.66	ND	117	80-120	8.00	20	
Xylene (o)	1.54	0.0250	н	-1.33	ND	116	80-120	9.01	20	
Surrogate: a.a.a-Trifluorotoluenc	41.4		ug/kg	40.0		104	80-120		•	
Surrogate: 4-Bromofluorobenzene	40.8		"	40.0		102	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 8 of 10

Southern Union Gas Services- Jal	Project: MF-16" Bettis	Fax: 505-395-2326
P.O. Box 1226	Project Number: 2006-014	Reported:
Jal NM, 88252	Project Manager: Tony Savoie	05/01/06 12:07

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62801 - General Prepar	ation (Prep)									
Blank (ED62801-BLK1)				Prepared:	04/27/06	Analyzed	: 04/28/06		-	
% Solids	100	·····	%							
Duplicate (ED62801-DUP1)	Sou	rce: 6D2700	2-01	Prepared:	04/27/06	Analyzed	: 04/28/06			
% Solids	86.3		%		88.0			1.95	20	
Duplicate (ED62801-DUP2)	Sou	rce: 6D2701	6-01	Prepared:	04/27/06	Analyzed	: 04/28/06			
% Solids	87.9		%		88.2			0.341	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Notes and Definitions

J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrìx Spike
Dup	Duplicate

alandtju Ŀ Report Approved By: Date: 01-06

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST	Project Name: MF - 16	Project #: 2006-014	Project Loc: C. BEM, S	FO #:			Analyze For Ke	Şè	Ice Ice Metals: As B0218/503001 BTEX B32 Metals: As Ag Ba Cd Cr Pb Hg Volatiles Other (Specify) Calions (Ca, Mg, Na, K) Mone Maier Soli Calions (Ca, Mg, Na, K) Maier Volatiles Soli Maier Soli Valaer Maier Maier Soli Valaer Maier Valaer Maier Maier Soli Valaer Maier Valaer Maier Maier Soli Maier Maier Maier Maier Maier Soli Maier Maier Maier Maier									Sample Containers Infact? Labels on container? Custody Seals: Confainers / Cooler Temperature Upon Receipt: /, D	Date Time Laboratory Comments:		Date Time 40 - 6
		GAS SERVICES		2	Fax No:	•			Date Sampled Time Sampled No. of Containers	4-26-06 15:45 1		1 11	11 11 11	1 11 21	1	1 .11 11	/ .// //		Received by:		Received by ELOT:
12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713	Project Manager: Towy 5A WRIE	Company Namo . Se 4 T KENN UN 10H C	Company Address: P.O. Box 1226	city/State/Zip: JAL, W. M. S 825	Telephona No: <i>505 - 395 - 2116</i>	Sampler Signature: Dev Keen	Email:		International Field Code	P.R. 67 10'	WW - COMP,	S- COMD.	A- Comp.	B-Com.	NW- Cerop.	SW-Comp.	EW-COMP.	Special Instructions:	_	45:6 22	

Environmental Lab of Texas

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	SUGS	· · .
Date/Time:	Alenlore	9:54
Order #:		
Initials:	CK	

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	- 1.0 CT
Shipping container/cooler in good condition?	1 XED	Na	
Custody Seals intact on shipping container/cooler?	Yes	No	Cici present
Custody Seals intact on sample bottles?	XES	No	Not present 1
Chain of custody present?	E	No	
Sample Instructions complete on Chain of Custody?	163	No	
Chain of Custody signed when relinquished and received?	G	No	1
Chain ci custody agrees with sample label(s)	Co I	No	
Container labels legible and intact?		No	.
Sample Matrix and properties same as on chain of custody?	YES	No	•
Samples in procer container/bottle?	123	l No	
Samples properly preserved?	10	l No	
Sample bottles intact?	183	l No	
Preservations documented on Chain of Custody?	183	l No	
Containers documented on Chain of Custody?	123	I No	
Sufficient sample amount for indicated test?	G	l No	
All samples received within sufficient hold time?	XIII	No No	
VOC samples have zero headspace?	149	No	Nct Applicable

Other observations:

Contact Person: Regarding:	Variance Documentation: Date/Time:	Contacted by:
		·
· · · · · · · · · · · · · · · · · · ·		
Corrective Action Taken:		
·	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
-	······································	
	······································	······································
ار در از بار بار در مرکز بار در از بار میزد. بار ارت از مرکز میکند میک روم و از میکند. از میکند م رکز مرکز مار م		- Frankrike State
ener andere andere Andere andere andere Andere andere	an a	a a gina general da la cara da la cara da Caractera multar antica multar da caractera da caractera da caracter Na caractera da cara

Analytical Report 453592

for

Southern Union Gas Services- Monahans

Project Manager: Ben Arguijo

(**RP-837**)

MF-16' Bettis

11-DEC-12

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ00989): Arizona (AZ0758)

Project Manager: **Ben Arguijo Southern Union Gas Services- Monahans** 801 South Loop 464 Monahans, TX 79756

Reference: XENCO Report No(s): **453592** (**RP-837**) Project Address: Lea County, NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 453592. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 453592 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully. Val Ct

Nicholas Straccione Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 453592

Southern Union Gas Services- Monahans, Monahans, TX

(RP-837)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
North SideWall	S ·	12-05-12 08:00		453592-001
South SideWall	S	12-05-12 08:30		453592-002
East SideWall #1	S.	12-05-12 09:00		453592-003
East SideWall #2	S	12-05-12 09:30		453592-004
West SideWall #1	S	12-05-12 10:00		453592-005
West SideWall #2	S	12-05-12 10:30		453592-006
Floor #1	S	12-05-12 11:00		453592-007
Floor #2	S	12-05-12 11:30		453592-008

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: (RP-837)

Project ID:MF-16' BettisWork Order Number(s):453592

Report Date: 11-DEC-12 Date Received: 12/06/2012

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-902505 Inorganic Anions by EPA 300/300.1 E300

Batch 902505, Chloride recovered below QC limits Samples affected are: 453592-003, -006, -002, -004, -001, -007, -008, -005. The Laboratory Control Sample for Chloride is within laboratory Control Limits

Project Id: MF-16' Bettis Contact: Ben Arguijo

Certificate of Analysis Summary 453592 Southern Union Gas Services- Monahans, Monahans, TX

Date Received in Lab: Thu Dec-06-12 11:30 am Report Date: 11-DEC-12

Project Location: Lea County NM							Report Date: 11-DEC-12	II-DEC-IZ	
							Project Manager: Nicholas Straccione	Nicholas Straccione	
	Lab Id:	453592-001		453592-002		453592-003	453592-004	453592-005	453592-006
	Field Id:	North SideWall	=	South SideWall	all	East SideWall #1	East SideWall #2	West SideWall #1	West SideWall #2
Anaiysis Kequesiea	Depth:								
	Matrix:	SOIL		TIOS		SOIL	SOIL	SOIL	SOIL
	Sampled:	Dec-05-12 08:00	00	Dcc-05-12 08:30	30	Dcc-05-12 09:00	Dec-05-12 09:30	Dcc-05-12 10:00	Dec-05-12 10:30
Inorganic Anions by EPA 300/300.1	Extracted:	Dcc-08-12 14:48	18	Dcc-08-12 15:05	:05	Dcc-08-12 15:23	Dcc-08-12 15:40	Dcc-08-12 15:58	Dcc-08-12 16:15
SUB: TX104704215	Analyzed:	Dec-08-12 14:48	18	Dec-08-12 15:05	:05	Dcc-08-12 15:23	Dec-08-12 15:40	Dcc-08-12 15:58	Dcc-08-12 16:15
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		ND	1.06	1.94	1.04	1.11 1.06	1.82 1.06	2.18 1.07	2.33 1.06
Percent Moisture	Extracted:								
	Analyzed:	Dcc-10-12 09:25		Dcc-10-12 09:25	:25	Dcc-10-12 09:25	Dcc-10-12 09:25	Dcc-10-12 09:25	Dec-10-12 09:25
	Units/RL:	%	RL	%	RL	% RL	% RL	% RL	8 % RL
Percent Moisture		5.96	1.00	4.20	1.00	5.78 1.00	6.10 1.00	6.62 1.00	5.46 1.00
TPH By SW8015 Mod	Extracted:	Dcc-07-12 08:30		Dcc-07-12 08:30	30	Dcc-07-12 08:30	Dec-07-12 08:30	Dcc-07-12 08:30	Dcc-07-12 08:30
	Analyzed:	Dec-07-12 14:41	Ħ	Dec-07-12 15:09	. 60:	Dcc-07-12 15:42	Dec-07-12 16:12	Dcc-07-12 16:40	Dcc-07-12 17:13
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		QN	15.9	QN	15.6	ND 15.9	ND 16.0	ND 16.0	ND 15.8
C12-C28 Dicscl Range Hydrocarbons		QN	15.9	Q	15.6	ND 15.9	ND 16.0	ND 16.0	ND 15.8
C28-C35 Oil Range Hydrocarbons		QN	15.9	Q	15.6	ND 15.9	ND 16.0	ND 16.0	ND 15.8
Total TPH		ΟN	15.9	ΠN	15.6	ND 15.9	ND 16.0	0.91 UD 16.0	ND 15.8
			÷		-				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nul (

Final 1.000

Nicholas Straccione Project Manager

ļ i

Southern Union Gas Services- Monahans, Monahans, TX **Certificate of Analysis Summary 453592**

Project Id: MF-16' Bettis Contact: Ben Arguijo

Date Received in Lab: Thu Dec-06-12 11:30 am 11_DEC_13 -t Date Å

	and the second					
	I .L I.J.	167607 007	157502 000		INICIOIAS SUACCIOUS	
	Lab Id:	45592-007	42392-008			
Analycic Dogugad	Field Id:	Floor #1	Floor #2			
naisanhay sisting	Depth:		-			
	Matrix:	SOIL	SOIL			
	Sampled:	Dec-05-12 11:00	Dec-05-12 11:30			
BTEX by EPA 8021B	Extracted:	Dcc-10-12 15:50	Dcc-10-12 15:50			
	Analyzed:	Dec-10-12 18:01	Dcc-10-12 17:12			
	Units/RL:	mg/kg RL	mg/kg RL			
Benzene		ND 0.00105				
Toluene		ND 0.00210	ND 0.00209	-		
Ethylbenzene		· ND 0.00105	ND 0.00105			
m_p-Xylencs		ND 0.00210	ND 0.00209			
o-Xylcne		ND 0.00105	ND 0.00105	•		
Total Xylencs		ND 0.00105	ND 0.00105			
Total BTEX		ND 0.00105	ND 0.00105			
Inorganic Anions by EPA 300/300.1	Extracted:	· Dec-08-12 16:32	Dcc-08-12 17:25			
SUB: TX104704215	Analyzed:	Dec-08-12 16:32	Dcc-08-12 17:25			
	Units/RL:	mg/kg RL	mg/kg RL			
Chloride	 - -	6.30 1.06	2.03 1.04	-		
Percent Moisture	Extracted:					
-	Analyzed:	Dec-10-12 09:25	Dcc-10-12 09:25			
	Units/RL:	% RL	% KL			
Percent Moisture	-	5.27 1.00	4.17 1.00			
TPH By SW8015 Mod	Extracted:	Dec-07-12 08:30	Dcc-07-12 08:30			
	Analyzed:	Dec-07-12 17:45	Dcc-07-12 18:57			
	Units/RL:	mg/kg RL	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons		ND 15.8	ND 15.6			
C12-C28 Dicscl Range Hydrocarbons		ND 15.8	ND 15.6			
C28-C35 Oil Range Hydrocarbons		ND 15.8	ND 15.6			
Total TPH		ND 15.8	ND 15.6			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best juggment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nicholas Straccione Project Manager

Nul C

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOO Limit of Quantitation

LOD Limit of Detection

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd, Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Final 1.000

Project Name: (RP-837)

Vork Orders : 453592, Lab Batch #: 902402	, Sample: 453592-001 / SMP	Batc	•	D: MF-16' Be	ettis	
Units: mg/kg	Date Analyzed: 12/07/12 14:41		RROGATE R		STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		95.5	99.6	96	70-135	
o-Terphenyl		46.4	49.8	93	70-135	
Lab Batch #: 902402	Sample: 453592-002 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/07/12 15:09	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		91.1	99.7	91	70-135	
o-Terphenyl		44.7	49.9	90	70-135	
Lab Batch #: 902402	Sample: 453592-003 / SMP	Batc	h: 1 Matrix	:Soil	·	
Units: mg/kg	Date Analyzed: 12/07/12 15:42	SU	RROGATE R	ECOVERYS	STUDY	
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		88.4	100	88	70-135	
o-Terphenyl		43.3	50.1	86	70-135	
Lab Batch #: 902402	Sample: 453592-004 / SMP	+ Batc	h: 1 Matrix	:Soil	,	
Units: mg/kg	Date Analyzed: 12/07/12 16:12	SU	RROGATE R	ECOVERY S	STUDY	
ТРН Ј	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		89.0	99.9	89	70-135	
o-Terphenyl	·····	44.0	50.0	88	70-135	•
Lab Batch #: 902402	Sample: 453592-005 / SMP	Batc	h: ¹ Matrix	:Soil	<u>.</u>	
Units: mg/kg	Date Analyzed: 12/07/12 16:40		RROGATE R	ECOVERYS	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			99.8	93	70-135	
o-Terphenyl	· · · · · · · · · · · · · · · · · · ·	45.6	49.9	91	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: (RP-837)

Vork Orders : 453592 Lab Batch #: 902402	s, Sample: 453592-006 / SMP	Bate		D: MF-16' Be	ettis	
Units: mg/kg	Date Analyzed: 12/07/12 17:13		RROGATE R	-	STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		97.9	99.7	98	70-135	
o-Terphenyl		48.7	49.9	98	70-135	
Lab Batch #: 902402	Sample: 453592-007 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/07/12 17:45	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	`Control Limits %R	Flags
1-Chlorooctane		88.6	99.8	89	70-135	
o-Terphenyl		43.4	49.9	87	70-135	
Lab Batch #: 902402	Sample: 453592-008 / SMP	Batc	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 12/07/12 18:57		RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		94.1	99.9	94	70-135	
o-Terphenyl		45.8	50.0	92	70-135	
Lab Batch #: 902523	Sample: 453592-008 / SMP	Batc	h: 1 Matrix	::Soil		
Units: mg/kg	Date Analyzed: 12/10/12 17:12	SU	RROGATE R	ECOVERYS	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0257	0.0300	86	80-120	
4-Bromofluorobenzene		0.0263	0.0300	88	80-120	
Lab Batch #: 902523	Sample: 453592-007 / SMP	Bate	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 12/10/12 18:01	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	Analytes	0.0271	0.0300		80-120	
4-Bromofluorobenzene		0.0271	0.0300	90	80-120 80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: (RP-837)

e: 630894-1-BLK / BL d: 12/07/12 12:35 d	=	h: ¹ Matrix RROGATE RI True Amount		STUDY Control	
d	Found			Control	
		[B]	Recovery %R [D]	Limits %R	Flags
	92.8		93	70-135	
	44.9	50.0	90	70-135	
e: 630987-1-BLK / BL					·.
d: 12/10/12 16:55		RROGATE RI		STUDY	
B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	·····.				
				80-120	
e: 630894-1-BKS / BK			-		
d: 12/07/12 10:51	SU	RROGATE RI	ECOVERY S	STUDY	
d	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	91.1	100	91	[.] 70-135	
	52.7	50.1	105	70-135	
 e: 630987-1-BKS / BK	KS Bate	h: 1 Matrix	: Solid	<u> </u>	
г				STUDY	
B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	0.0228	0.0300		80.120	
Г				STUDY	
	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	88.8	99.8	·	70-135	
	54.9	49.9	110	70-135	
	B e: 630894-1-BKS / BK d: 12/07/12 10:51 od e: 630987-1-BKS / BK d: 12/10/12 16:22 B	B Amount Found [A] 0.0251 0.0247 e: 630894-1-BKS / BKS Batcl d: 12/07/12 10:51 SU pd Amount Found [A] 91.1 52.7 e: 630987-1-BKS / BKS Batcl d: 12/10/12 16:22 SU B Amount Found [A] 0.0328 0.0287 e: 630894-1-BSD / BSD Batcl d: 12/07/12 12:04 SU pd Amount Found [A]	B Amount Found [A] True Amount [B] 0.0251 0.0300 0.0247 0.0300 e: 630894-1-BKS / BKS Batch: 1 d: 12/07/12 10:51 SURROGATE RI Amount [A] Matrix: (B] od Amount Found [A] True Amount [B] 91.1 100 52.7 50.1 e: 630987-1-BKS / BKS Batch: 1 Matrix: d: 12/10/12 16:22 SURROGATE RI Amount [A] B Amount Found [A] True Amount [B] 0.0328 0.0300 0.0328 0.0300 e: 630894-1-BSD / BSD Batch: 1 Matrix: d: 12/07/12 12:04 SURROGATE RI Amount [A]	B Amount Found [A] True Amount [B] Recovery %R [D] 0.0251 0.0300 84 0.0247 0.0300 82 e: 630894-1-BKS / BKS Batch: 1 Matrix: Solid d: 12/07/12 10:51 SURROGATE RECOVERY S od Amount Found [A] True Amount [B] Recovery %%R [D] 91.1 100 91 52.7 50.1 105 e: 630987-1-BKS / BKS Batch: 1 Matrix: Solid d: 12/10/12 16:22 SURROGATE RECOVERY S B Amount Found [A] True Amount [B] Recovery %%R [D] 0.0328 0.0300 109 0.0287 0.0300 96 e: 630894-1-BSD / BSD Batch: 1 Matrix: Solid d: 12/07/12 12:04 SURROGATE RECOVERY S od Amount [A] True Amount [B] Recovery %R [D]	B Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R 0.0251 0.0300 84 80-120 0.0247 0.0300 82 80-120 e: 630894-1-BKS/BKS Batch: 1 Matrix:Solid d: 12/07/12 10:51 SURROGATE RECOVERY STUDY od Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R 91.1 100 91 70-135 52.7 50.1 105 70-135 e: 630987-1-BKS/BKS Batch: 1 Matrix:Solid d: 12/10/12 16:22 SURROGATE RECOVERY STUDY B Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R 0.0328 0.0300 109 80-120 0.0328 0.0300 96 80-120 0.0287 0.0300 96 80-120 e: 630894-1-BSD / BSD Batch: 1 Matrix: Solid d: 12/07/12 12:04 SURROGATE RECOVERY STUDY Limits %R [D]

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: (RP-837)

Vork Orders : 453592 Lab Batch #: 902523	2, Sample: 630987-1-BSD / B			D: MF-16' Be	ettis	
Units: mg/kg	Date Analyzed: 12/11/12 08:24		RROGATE RI		STUDY	
	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0311	0.0300	104	80-120	
'4-Bromofluorobenzene	- 100	0.0289	0.0300	96	80-120	
Lab Batch #: 902402	Sample: 453592-001 S / M	S Bate	h: l Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/08/12 00:59	SU	RROGATE RI	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	101	100	101	70-135	
o-Terphenyl		54.1	50.1	108	70-135	
Lab Batch #: 902523	Sample: 453592-008 S / M	S Batc	h: 1 Matrix	: Soil		
Units: mg/kg	Date Analyzed: 12/10/12 17:28		RROGATE RI	-	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes	0.0214	0.0200			
1,4-Difluorobenzene 4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0314	0.0300	105 96	80-120 80-120	
		I	•		80-120	
Lab Batch #: 902402	Sample: 453592-001 SD / N			-		
Units: mg/kg	Date Analyzed: 12/08/12 01:33	SU	RROGATE RI	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	·.	96.1	100	96	70-135	
o-Terphenyl		54.8	50.1	109	70-135	
Lab Batch #: 902523	Sample: 453592-008 SD / I	MSD Bate	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/10/12 17:45	SU	RROGATE RI	ECOVERY	STUDY	
BTEZ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0292	0.0300	97	80-120	
4-Bromofluorobenzene		0.0301	0.0300	100	80-120	<u></u>

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

XENCO Laboratories

BS / BSD Recoveries

Project Name: (RP-837)

Work Order #: 453592 Analyst: KEB Lab Batch ID: 902523

Date Prepared: 12/10/2012 Batch #: 1

Sample: 630987-1-BKS

Project ID: MF-16' Bettis Date Analyzed: 12/10/2012 Matrix: Solid

Units: mg/kg			BLANI	K /BLANK S	PIKE / I	SLANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	LICATE	RECOVE	RY STUD	Y	
BTEX by EPA 8021B		Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	BIK. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		-	[B]	[C]	a	[E]	Result [F]	<u>[</u>	2			
Benzene		<0.00100	0.100	0.103	103	0.0996	0.0988	66	4	70-130	35	
Tolucne		<0.00200	0.100	0.103	103	9660.0	0.0983	66	5	70-130	35	
Ethylbenzene		<0.00100	0.100	0.0997	100	0.0996	0.0968	26	3	71-129	35	
m_p-Xylcncs		<0.00200	0.200	0.213	107	0.199	0.208	105	2	70-135	35	
o-Xylcnc		<0.00100	0.100	0.100	100	0.0996	0.102	102	2 -	71-133	35	
Analyst: JOL		Da	te Prepare	Date Prepared: 12/08/2012	2			Date A	Date Analyzed: 12/08/2012	2/08/2012		
Lab Batch ID: 902505 Sai	Sample: 630973-1-BKS	KS	Batch #:	#: 1					Matrix: Solid	olid		
11-34 ma/ka			BLANI	K /BLANK S	PIKE / I	S JNK S	RLANK / RLANK SPIKE / RLANK SPIKE DI PLICATE RECOVERY STUDY	ICATE	RECOVE	RV STUD	Λ	

Units: mg/kg		BLAN	LANK /BLANK SPIKE / BLANK SPIKE DUPLICATE	PIKE / B	LANK S	PIKE DUPL		RECOVE	RECOVERY STUDY	۲	
Inorganic Anions by EPA 300/300.1	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[Y]	[8]	Result [C]	8% [0]	[E]	Duplicate Result [F]	%R [G]		%R	%RPD	
Chloride	<1.00	100	97.7	98	100	97.0	26	I	80-120	20	

Relative Percent Difference RPD = 200*((C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Final 1.000

BS / BSD Recoveries

Project Name: (RP-837)

Work Order #: 453592 Analyst: KEB Lab Batch ID: 902402

Date Prepared: 12/07/2012 Batch #: 1

Sample: 630894-1-BKS

Project ID: MF-16' Bettis Date Analyzed: 12/07/2012 Matrix: Solid

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE	PIKE / B	LANK S	PIKE DUPI	ICATE	RECOVE	RECOVERY STUDY	Y	
TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
	[y]		Result	%R		Duplicate	%R	%	%R	%RPD	
Analytes		[B]	[C]	[D]	[E]	Result [F]	[6]				
C6-C12 Gasoline Range Hydrocarbons	<15.0	1000	1030	103	866	983	86	5	70-135	35	
C12-C28 Dicscl Range Hydrocarbons	<15.0	1000	1000	001	866	962	96	4	70-135	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Page 13 of 18

Work Order #: 453592

Form 3 - MS Recoveries

Project Name: (RP-837)

Froject Name:

Project ID: MF-16' Bettis Lab Batch #: 902505 Date Prepared: 12/08/2012 Analyst: JOL Date Analyzed: 12/08/2012 QC- Sample ID: 453595-001 S Batch #: 1 Matrix: Soil MATRIX / MATRIX SPIKE RECOVERY STUDY Reporting Units: mg/kg Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [C] [D] %R [A] **[B]** Analytes Chloride 672 101 596 0 80-120 Х Lab Batch #: 902505 Date Prepared: 12/08/2012 Analyst: JOL Date Analyzed: 12/08/2012 QC- Sample ID: 453597-002 S Batch #: 1 Matrix: Soil **Reporting Units:** mg/kg MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike %R Flag Result Limits Result Added [**D**] %R [C] [A] [B] Analytes Chloride 172 103 242 68 80-120 х

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: (RP-837)

Project ID: MF-16' Bettis

QC- Sample ID: 453592-008 S Date Prepared: 12/10/2012

Date Analyzed: 12/10/2012 Lab Batch ID: 902523 Work Order #: 453592

Matrix: Soil -Analyst: KEB Batch #:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Reporting Units: mg/kg		M.	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TAM / 3	RIX SPIF	KE DUPLICA'	TE RECO	DVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Spiked Result Sample IC] %R	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00104	0.104	0.0963	93	0.104	0.0917	88	5	70-130	35	
Toluene	<0.00209	0.104	0.101	67	0.104	0.0961	92	5	70-130	35	
Ethylbenzene	<0.00104	0.104	0.0941	90	0.104	0.0915	88	3	71-129	35	
m_p-Xylenes	<0.00209	0.209	0.198	95	0.208	0.195	94	2	70-135	35	
o-Xylcnc	<0.00104	0.104	0.0942	91	0.104	0.0942	16	0	71-133	35	
Lab Batch ID: 902402	QC- Sample ID: 453592-001 S	453592-	-001 S	Bat	Batch #:	1 Matrix: Soil	:: Soil				

Date Analyzed: 12/08/2012	Date Prepared: 12/07/2012	12/07/20	12	Ans	Analyst: KEB	EB					
Reporting Units: mg/kg		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E/MATI	RIX SPIK	E DUPLICA	FE RECO	VERY S	TUDY		
TPH By SW8015 Mod	Parent [.] Sample	Spike	Spiked Sample Spiked Result Sample		Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Control Limits Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Added Result [F] [E]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	<16.0	1060	1060 · 1110	105 1060	1060	0011	104	-	70-135	35	

35

70-135.

3

105

1110

1060

107

1130

1060

<16.0

C12-C28 Dicsel Range Hydrocarbons

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, <math>B = Present in Blank, NR = Not Requested. I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Page 15 of 18

Sample Duplicate Recovery

Project Name: (RP-837)

Work Order #: 453592

Lab Batch #: 902481 Date Analyzed: 12/10/2012 09:25 QC- Sample ID: 453595-001 D	Date Prepared: 12/10/20 Batch #: 1)12 Ana	Project I lyst: WRU trix: Soil	D: MF-16' E	3ettis
Reporting Units: %	SAMPL	E / SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Samp Result [A]	ole Sample Du'plicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	1.52	1.47	3	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Statution Counto P Custon Records AND ANALYSIS RECORDS AND ANAL	
CMAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12000 Welt JOB Earl Table Support CMAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Table Support 12000 Welt JOB Earl Table Support Phone of 20 Sec 10 Table Support Phone of 20 Sec 10 Table Support 12000 Welt JOB Earl Table Support Phone of 20 Sec 10 Table Support Phone of 20 Sec 10 Table Support 2000 Welt JOB Earl Table Support Phone of 20 Sec 10 Table Support Phone of 20 Sec 10 Table Support 2010 Job Early On the CUSTODY RECORD AND ANALYSIS REQUEST Table Support Phone of 20 Sec 10 Table Support Phone of 20 Sec 10 Table Support 2010 Job Early On the CUSTODY RECORD AND ANALYSIS REQUEST Table Support Phone of 20 Sec 10 Table Support Phone of 20 Sec 10 Table Support Phone of 20 Sec 10 Table Support 2010 Job Early On the Phone of 20 Sec 10 Table Support 2010 Job Early On the Phone of 20 Sec 10 Table Support Phone of 20	
CAMIN OF CUSTODY RECORD AND ANALYSIS RECUEST Table Weat L20 East Table Weat L20 East Provide IA DAVALYSIS RECUEST Table More L20 East Provide IA DAVALYSIS RECUEST Dates an Texa 7016 Provide IA DAVALYSIS RECUEST Provide IA DAVALYSIS RECUEST Date Sance CAMIN OF CUSTODY RECORD AND ANALYSIS RECUEST Date Sance Provide IA DAVALYSIS RECUEST Provide IA DAVALYSIA	·····································
CAMIN OF CUSTODY RECORD AND ANALYSIS RECUEST Table Weat L20 East Table Weat L20 East Provide IA DAVALYSIS RECUEST Table More L20 East Provide IA DAVALYSIS RECUEST Dates an Texa 7016 Provide IA DAVALYSIS RECUEST Provide IA DAVALYSIS RECUEST Date Sance CAMIN OF CUSTODY RECORD AND ANALYSIS RECUEST Date Sance Provide IA DAVALYSIS RECUEST Provide IA DAVALYSIA	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
СНАИ ОГ СИSTODY RECOI СНАИ ОГ СИSTODY RECOI 12600 West I.20 East 12600 West I.20 East 12600 West I.20 East 0 deesa, Taxas 79765 Project 12/5/2012 Project 11/2/5/2012 Project	
Interfection	
Interfection	
Interfection	
Interfection	
Interfection	
Interfection	
Interfection	
Interfection	
Time Reserved by ELOT 1.1.1.0 1.1.1.1.0 1.1.1.1.0 1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.1.1.0 1.1.1.1.1.1.0 1.1.1.1.1.1.0 1.1.1.1.1.1.1.1.1.1.1.1.1.0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Time Reserved by ELOT 1.1.1.0 1.1.1.1.0 1.1.1.1.0 1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.1.1.0 1.1.1.1.1.1.0 1.1.1.1.1.1.0 1.1.1.1.1.1.1.1.1.1.1.1.1.0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Time Reserved by ELOT 1.1.1.0 1.1.1.1.0 1.1.1.1.0 1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.0 1.1.1.1.1.1.1.0 1.1.1.1.1.1.0 1.1.1.1.1.1.0 1.1.1.1.1.1.1.1.1.1.1.1.1.0 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Time Received by Elor Field Fillered 11/5/2012 8:30 8:30 8:30 11/100 12/5/2012 8:30 7 11/100 12/5/2012 8:30 7 11/100 12/5/2012 8:30 7 11/100 12/5/2012 8:30 7 11/100 12/5/2012 10:00 7 11/100 12/5/2012 10:100 11/100 11/100 12/5/2012 10:100 11/100 11/100 11/100 11/100 11/100	
Ce Technologies, LLC Eedinning Depth 2500 Ending Depth 7 Ending Depth 12/5/2012 Bise Sampled 12/5/2012 8:30 12/5/2012 3:30 12/5/2012 10:00 12/5/2012 11:00 12/5/2012 10:00 11/1 11:00 12/5/2012 11:00 11/1 11:00 11/1 11:00	
Time Regendent Bale Sampled Time Regendent 12/5/2012 8:9 Time Received by ELOT 1:2/5/2012 8:9	1 1 X 1 1 X
Time Afge Beginning Depth 2 2 Time 2 2 2 2 Time 2 2 2 2	00:00 00:000 00:00 00
8 % <td>15/2012 15/2012 15/2012 15/2012 15/2012 15/2012</td>	15/2012 15/2012 15/2012 15/2012 15/2012 15/2012
atories Ben.J. Arguilo; Joei Lown Basin Environmental Servi P.O. Box 301 Lovington, NM 88260 Lovington, NM 88260 (575)396-2378 (575)20 (57	Date Date Date
ieS	
Xenco Laboratories Ben J. Arguilo: Joel Project Manager: Ben J. Arguilo: Joel Company Name Basin Environmental Company Address: P.O. Box 301 Company Address: Lowington, NM 88260 ChylState/Zip: Lowington, MM All use onlyl Chellowall #1 North Sidewall #1 Loor #2 Spectal Instructions: Date Relinquished by: Date	Sidewall loor #1 loor #2
ICO Labora Project Manager: Project Manager: Company Name Company Name Company Values: City/State/Zip: Telephone No: Sampler Signature: Outh 4 South 5 South 5 Instructions:	
Co Labo Project Manager: Company Name Company Name City/State/Zip: Telephone No: Sampler Signatur Nor East Nor Nor Nor East Nor Nor Nor Nor Sou Do Labo	
CO Lab	
Xenco Lá Project Ma Company	

Work Order #: 453592

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Southern Union Gas Services- Monahan

Date/ Time Received: 12/06/2012 11:30:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	.5	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6 *Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	Yes	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date:		

Checklist reviewed by:

Date: