Analytical Report 429429

for

Southwest Royalties

HOBBS OCD

Project Manager: Luis Gonzalez

NOV 0 1 2011

Shole A and B Battery

RECEIVED

20-OCT-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

U/10/11
UKNENDED

20-OCT-11

Project Manager: Luis Gonzalez

Southwest Royalties 6 Desta Dr Suite 1100 Midland, TX 79705

Reference: XENCO Report No: 429429

Shole A and B Battery

Project Address: Shole A and B Battery

Luis Gonzalez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 429429. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 429429 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 429429

Southwest Royalties, Midland, TX

Shole A and B Battery

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Stockpile 1-2A	S	10-12-11 13:33		429429-001
S-4	S	10-12-11 14:55		429429-002
S-3	S	10-12-11 14:40		429429-003
S-1	S	10-12-11 14:20		429429-004
Stockpile 1-1A	S	10-12-11 13:20		429429-005
S-2	S	10-12-11 14:30		429429-006
Spill-5-A	S	10-12-11 13:55		429429-007
Stockpile 2-2B	S	10-12-11 13:45		429429-008
Stockpile 2-1A	S	10-12-11 13:40		429429-009
Stockpile 2-3C	S	10-12-11 13:50		429429-010

CASE NARRATIVE

Client Name: Southwest Royalties Project Name: Shole A and B Battery

Project ID: Report Date: 20-OCT-11
Work Order Number: 429429 Date Received: 10/13/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-872539 TPH By SW8015 Mod

SW8015MOD_NM

Batch 872539, 1-Chlorooctane recovered below QC limits Data not confirmed by re-analysis.

Samples affected are: 612809-1-BLK.

Project Location: Shole A and B Battery

Contact: Luis Gonzalez

Project Id:

Certificate of Analysis Summary 429429 Southwest Royalties, Midland, TX

Project Name: Shole A and B Battery

Date Received in Lab: Thu Oct-13-11 08:06 am 20-OCT-11 Report Date:

75.1 75.1 75.1 75.1 8.41 R RL Oct-13-11 14:10 Oct-16-11 01:50 Oct-13-11 12:45 Oct-12-11 14:30 Oct-13-11 18:03 429429-006 SOIL S-2 2 2 1640 mg/kg 364 278 1920 mg/kg % RL 4.20 15.0 15.0 15.0 15.0 1.00 RL RL Oct-13-11 14:10 Oct-13-11 18:03 Oct-13-11 12:45 Oct-16-11 01:24 Oct-12-11 13:20 Stockpile 1-1A 429429-005 Project Manager: Brent Barron II SOIL S 2 8.66 104 47.3 mg/kg 151 mg/kg % 75.0 75.0 RL 4.21 1.00 75.0 75.0 R RL Oct-13-11 12:45 Oct-13-11 14:10 Oct-16-11 00:58 Oct-12-11 14:20 Oct-13-11 18:03 429429-004 SOIL S-1 mg/kg ND 2410 009 633 3040 mg/kg 74.9 74.9 74.9 74.9 RL RL RL Oct-13-11 14:10 Oct-12-11 14:40 Oct-13-11 12:45 Oct-16-11 00:32 Oct-13-11 18:03 429429-003 SOIL S-3 2 2 1940 37.6 445 2390 mg/kg mg/kg % 75.0 75.0 75.0 75.0 RL 4.20 1.00 RL RL Oct-13-11 12:45 Oct-13-11 14:10 Oct-16-11 00:06 Oct-12-11 14:55 Oct-13-11 18:03 429429-002 SOIL S-4 2 2 1170 1470 150 302 mg/kg mg/kg % 15.7 15.7 15.7 RL 17.7 15.7 1.00 RL RL Oct-13-11 12:45 Oct-13-11 14:10 Oct-15-11 23:40 Oct-12-11 13:33 Oct-13-11 18:03 Stockpile 1-2A 429429-001 SOIL ND 1410 4.97 mg/kg 224 116 340 mg/kg Depth: Field Id: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: TPH By SW8015 Mod C6-C12 Gasoline Range Hydrocarbons Percent Moisture C12-C28 Diesel Range Hydrocarbons Anions by E300 Analysis Requested C28-C35 Oil Range Hydrocarbons Percent Moisture

Chloride

Odessa Laboratory Manager Brent Barron II

Page 5 of 16

Final 1.000

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Total TPH

Contact: Luis Gonzalez
Project Location: Shole A and B Battery

Project Id:

Certificate of Analysis Summary 429429

Southwest Royalties, Midland, TX

Project Name: Shole A and B Battery

Date Received in Lab: Thu Oct-13-11 08:06 am

Report Date: 20-OCT-11
Project Manager: Brent Barron II

					and the state of t	Common as
	Lab Id:	429429-007	429429-008	429429-009	429429-010	
Laboration December 1	Field Id:	Spill-5-A	Stockpile 2-2B	Stockpile 2-1A	Stockpile 2-3C	
naisanhay sishiniy	Depth:					
	Matrix:	SOIL	SOIL	SOIL	NOS	
	Sampled:	Oct-12-11 13:55	Oct-12-11 13:45	Oct-12-11 13:40	Oct-12-11 13:50	
Anions by E300	Extracted:					
	Analyzed:	Oct-14-11 10:47	Oct-13-11 18:03	Oct-13-11 18:03	Oct-13-11 18:03	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride		14000 182	5950 100	3310 42.2	95.1 4.59	4
Percent Moisture	Extracted:					
	Analyzed:	Oct-13-11 12:45	Oct-13-11 12:45	Oct-13-11 12:45	Oct-13-11 13:00	
	Units/RL:	% RL	% RL	% RL	% RL	
Percent Moisture		7.62 1.00	16.1 1.00	ND 1.00	8.47 1.00	
TPH By SW8015 Mod	Extracted:	Oct-13-11 14:10	Oct-13-11 14:10	Oct-13-11 14:10	Oct-13-11 14:10	
	Analyzed:	Oct-16-11 02:15	Oct-16-11 02:40	Oct-16-11 03:07	Oct-16-11 03:33	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons		ND 16.2	ND 17.9	ND 75.3	92.1 16.4	
C12-C28 Diesel Range Hydrocarbons		17.5 16.2	ND 17.9	1240 75.3	798 16.4	
C28-C35 Oil Range Hydrocarbons		ND 16.2	ND 17.9	196 75.3	79.0 16.4	
Total TPH		17.5 16.2	ND 17.9	1440 75.3	969 16.4	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this inalytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data breeby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Short

Brent Barron II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit

SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit

MQL Method Quantitation Limit

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: Shole A and B Battery

Work Orders: 429429,

Project ID:

SUDDOCATE DECOVEDY STUDY

Lab Batch #: 872539

Sample: 429429-001 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 10/15/11 23:40	30	KKOGATE K	ECOVERI	STUDI	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	91.5	99.7	92	70-135	E .75
o-Terphenyl	57.2	49.9	115	70-135	

Lab Batch #: 872539

Sample: 429429-002 / SMP

Matrix: Soil Batch: 1

Units: mg/kg Date Analyzed: 10/16/11 00:06	SU	RROGATE R	ECOVERY	COVERY STUDY Control Limits %R %R	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]		Limits	Flags
1-Chlorooctane	77.3	100	77	70-135	
o-Terphenyl	47.7	50.0	95	70-135	

Lab Batch #: 872539

Sample: 429429-003 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 00:32	SUI	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	71.4	99.8	72	70-135	
o-Terphenyl	42.0	49.9	84	70-135	- 12

Lab Batch #: 872539

Sample: 429429-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 00:58	SU	SURROGATE RECOVERY STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	86.2	99.8	86	70-135	The said
o-Terphenyl	51.4	49.9	103	70-135	

Lab Batch #: 872539

Sample: 429429-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 01:24	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	73.4	99.9	73	70-135	
o-Terphenyl	41.1	50.0	82	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Shole A and B Battery

Work Orders: 429429,

Lab Batch #: 872539

Project ID:

Sample: 429429-006 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 01:50	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	74.5	100	75	70-135	
o-Terphenyl	44.5	50.0	89	70-135	

Lab Batch #: 872539

Sample: 429429-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 02:15	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	87.2	99.9	87	70-135	
o-Terphenyl	57.7	50.0	115	70-135	

Lab Batch #: 872539

Sample: 429429-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 02:40	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	88.8	100	89	70-135	71
o-Terphenyl	58.1	50.0	116	70-135	

Lab Batch #: 872539

Sample: 429429-009 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 03:07	SU	True Cont	SURROGATE RECOVERY STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]		Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	82.6	100	83	70-135	- 1	
o-Terphenyl	47.1	50.0	94	70-135	1	

Lab Batch #: 872539

Sample: 429429-010 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 03:33	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	88.1	100	88	70-135	
o-Terphenyl	55.8	50.0	112	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Shole A and B Battery

Work Orders: 429429,

Project ID:

Lab Batch #: 872539

Sample: 612809-1-BLK / BLK

Matrix: Solid Batch:

SU	RROGATE R	ECOVERY	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		[D]	10	
67.2	99.5	68	70-135	*
42.9	49.8	86	70-135	
	Amount Found [A]	Amount Found Amount [A] [B]	Amount Found [A] True Amount [B] Recovery %R [D] 67.2 99.5 68	Found Amount Recovery Limits %R [D] 67.2 99.5 68 70-135

Lab Batch #: 872539

Sample: 612809-1-BKS / BKS

Matrix: Solid Batch:

Units: mg/kg Date Analyzed: 10/15/11 17:28	SU	RROGATE R	RECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1-Chlorooctane	73.8	99.8	74	70-135	
o-Terphenyl	38.1	49.9	76	70-135	_

Lab Batch #: 872539

Sample: 612809-1-BSD / BSD

Batch:

Matrix: Solid

SU	RROGATE R	ECOVERY	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
75.6	100	76	70-135	
39.7	50.2	79	70-135	1-11
	Amount Found [A]	Amount Found Amount [A] [B]	Amount True Recovery %R [D] 75.6 100 76	Found Amount Recovery Limits %R [D] 75.6 100 76 70-135

Lab Batch #: 872539

Sample: 429429-008 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 03:57	SUI	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	91.7	101	91	70-135	
o-Terphenyl	44.5	50.3	88	70-135	La la

Lab Batch #: 872539

Sample: 429429-008 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 10/16/11 04:24	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	96.4	100	96	70-135	100			
o-Terphenyl	48.6	50.1	97	70-135				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Shole A and B Battery

Work Order #: 429429

Lab Batch ID: 872301 Analyst: BRB

Date Prepared: 10/13/2011

Project ID:

Batch #: 1 Sample: 872301-1-BKS

Date Analyzed: 10/13/2011 Matrix: Solid BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Flag Limits %RPD 20 Control Limits 75-125 RPD % Blk. Spk Dup. %R [G] 1111 Blank Spike Duplicate Result [F] 22.1 Spike Added 20.0 $[\Xi]$ Blank Spike %R [D] 111 Blank Spike Result 22.1 Spike Added 20.0 [B] Blank Sample Result <0.840 [A] Anions by E300 Units: mg/kg Analytes Chloride

Date Prepared: 10/14/2011

Analyst: BRB

Date Analyzed: 10/14/2011

Batch #: 1 Sample: 872317-1-BKS Lab Batch ID: 872317

Matrix: Solid

Units: mg/kg		BLAN	SLANK /BLANK SPIKE /	PIKE/B	LANKS	BLANK SPIKE DUPLICATE	E	RECOVER	RY STUDY	Y	
Anions by E300	Blank Sample Result [A]	Spike	Blank Spike Result	Blank Spike %R	Spike	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits	Control Limits %RPD	Flag
Analytes		[B]	[0]	[0]	[E]	Result [F]	[6]				
Chloride	<0.840	20.0	21.6	108	20.0	21.5	108	0	75-125	20	

Analyst: BBH

Lab Batch ID: 872539

Date Prepared: 10/13/2011 Sample: 612809-1-BKS

Batch #: 1

Matrix: Solid

Date Analyzed: 10/15/2011

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE	PIKE / B	LANKS	PIKE DUPL		RECOVE	RECOVERY STUDY	Y	
TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control	Flag
Analytes	[A]	[B]	Kesult [C]	7% [D]	[E]	Duplicate Result [F]	[6]	%	%•K	%KPD	
C6-C12 Gasoline Range Hydrocarbons	<15.0	866	707	71	1000	704	70	0	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<15.0	866	800	80	1000	758	. 92	5	70-135	35	

Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Form 3 - MS Recoveries

Project Name: Shole A and B Battery

Work Order #: 429429

Lab Batch #: 872301

Date Analyzed: 10/13/2011

Date Prepared: 10/13/2011

Project ID:

Analyst: BRB

QC- Sample ID: 429429-005 S

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	8.66	100	107	98	75-125	1 7

Lab Batch #: 872301

Date Analyzed: 10/13/2011

Date Prepared: 10/13/2011

Analyst: BRB

QC- Sample ID: 429439-001 S

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg	MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	1, 1	[D]				
Chloride	36.7	110	149	102	75-125	

Lab Batch #: 872317

Date Analyzed: 10/14/2011

Date Prepared: 10/14/2011

Analyst: BRB

QC-Sample ID: 429429-007 S

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg	MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	14000	4330	18600	106	75-125	1 - 1

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Shole A and B Battery

QC-Sample ID: 429429-008 S Date Prepared: 10/13/2011

Date Analyzed: 10/16/2011

Work Order #: 429429 Lab Batch ID: 872539

Batch #:

Project ID:

Matrix: Soil BBH Analyst:

Flag Limits %RPD Control 35 35 Control Limits 70-135 70-135 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD % 2 10 Spiked Dup. 102 85 Duplicate Spiked Sample Result [F] 1210 1010 Spike Added 1190 1190 Ξ Spiked Sample %R [0] 80 91 Spiked Sample Result 1090 <u>[</u> 961 Spike Added 1200 1200 [B] Parent Sample Result [A] <18.0 <18.0 TPH By SW8015 Mod C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Analytes Reporting Units: mg/kg

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Chloride

Sample Duplicate Recovery

Project Name: Shole A and B Battery

Work Order #: 429429

Lab Batch #: 872301

Project ID:

Date Prepared: 10/13/2011

Dodok #.

Analyst: BRB

QC- Sample ID: 429439-001 D

Date Analyzed: 10/13/2011 18:03

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg

mg/kg	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
*	36.7	35.2	4	20	

Lab Batch #: 872317

Date Analyzed: 10/14/2011 10:47

Date Prepared: 10/14/2011

Analyst: BRB

QC- Sample ID: 429429-007 D

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg

_				
Γ	SAMPLE /	SAMPLE	DUPLICATE	RECOVERY

Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte	11	[B]			
Chloride	14000	14100	1	20	

Lab Batch #: 872302

Date Analyzed: 10/13/2011 12:45

Date Prepared: 10/13/2011

Analyst: BRB

QC- Sample ID: 429439-001 D

Batch #: 1

Matrix: Soil

Reporting Units: %	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Tanada to					
Percent Moisture	9.06	9.03	0	20	

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ANALYSIS REQUEST 42429 tid 3.30 3:30 TIME 1.55 × 8:6 ンかり 1.55 2 DATE 10:12 0:12 Zip: **SETHER** Company: ICE / COOF Address: Phone #: P.O. #: State: Fax #: ACID/BASE: Attn: City: : ЯЗНТО STUDGE Some-ele TIO State: 1 Zip: 79/05 ROIL **WASTEWATER ВЕВОПИРМАТЕЯ** # CONTAINERS 1080 1 1/10 S. (G)RAB OR (C)OMP. 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Project Owner: 0010 Fax#: Sample I.D. SUN NOS tock p. le tock Pil UEASE NOTE: Dablity and Damag Project Manager: project Location: Company Name: Sampler Name: Project Name: 729429 FOR LAB USE ONLY 1000 Lab I.D. 500 -008 1000--003 300--00 100-Project #: 1001 Address: Phone #:

analyses. All claims including those

	Add1 Fax #:					
□ Yes □ No	□ Yes □ No					
Phone Result:	Fax Result	REMARKS:				
Relinguished By: Date: Received By: Phone Res			Received By:	my pun	Sample Condition CHECKED BY:	Cool intage of (injuries)
Date:		Time:	Date! 3 !!	Time: o.6	30.	
Relinguished Bv:			Relinquished By:	A Change	Delivered By: (Circle One)	Sampler - UPS - Bus - Other:

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

City:

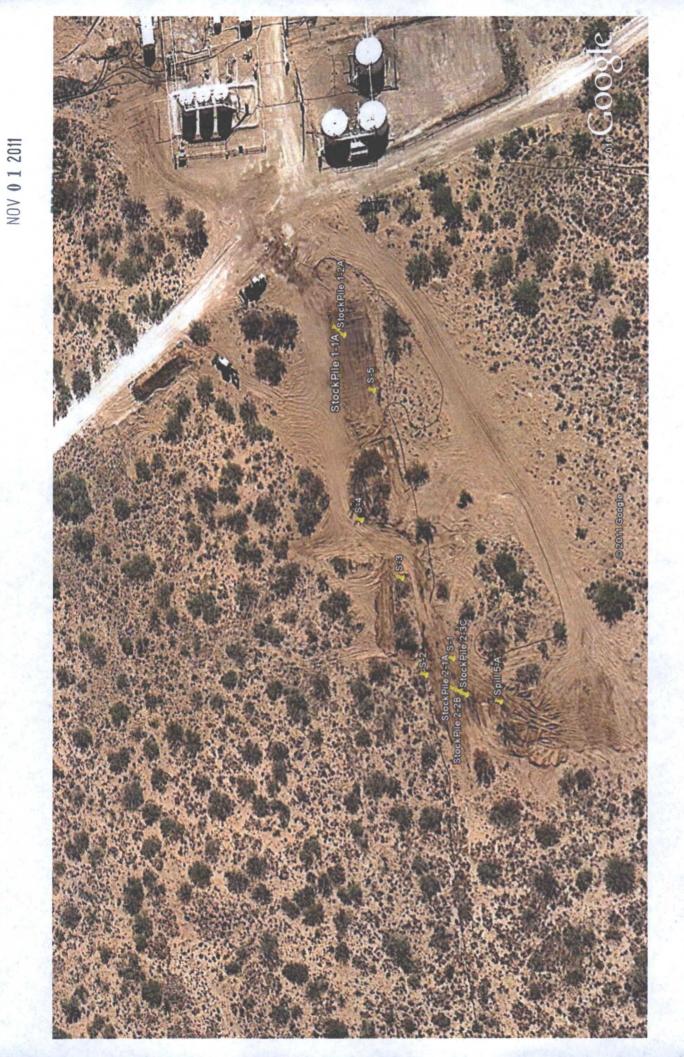
XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1


Prelogin / Nonconformance Report - Sample Log-In

Date/Time: 10/13/11 806 02					
Lab ID#: 429429					
Initials: 6/3					
Sample Recei	pt Check	list			
1. Samples on ice?		Blue	Water	No	
2. Shipping container in good condition?		des .	No	None	
3. Custody seals intact on shipping container (cooler) and bottle	s?	Yes	No	N/A	
4. Chain of Custody present?		Ves	No		
5. Sample instructions complete on chain of custody?		Yes	No		
6. Any missing / extra samples?		Yes	No		
7. Chain of custody signed when relinquished / received?		Yes	No		
8. Chain of custody agrees with sample label(s)?		YES	No		,
9. Container labels legible and intact?		Yes	No		
10. Sample matrix / properties agree with chain of custody?		Yes	No .		
11. Samples in proper container / bottle?		Yes	No		
12. Samples properly preserved?		YS	No	N/A	
13. Sample container intact?		YES	No		
14. Sufficient sample amount for indicated test(s)?	,	YES	No		
15. All samples received within sufficient hold time?		YES	No		
16. Subcontract of sample(s)?		fes	No	N/A	-
17. VOC sample have zero head space?		(es	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.		Cooler 4 No).	Cooler 5 No.	
lbs 3 °C lbs °C lbs	s °C	lbs	°c	lbs	°c
Nonconformance	Docume	entation			
Contact: Contacted by:	-		Date/Time:		1 1
Regarding:					
Corrective Action Taken:					
•					1.5

☐ Client understands and would like to proceed with analysis

Check all that apply:
Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

□ Initial and Backup Temperature confirm out of temperature conditions

C. Progradus

DOOM LAND FARM, L.L.C. BOX 1271 JAL, N.M. 88252 575-395-3537 903-715-8491

903-715-0471

INVOICE #1352

E.I.N.# 80 050 1930 PERMIT #NM-01-0033 DATE: 9-23-11

SOLD TO: SOUTHWEST ROYALTIES 6 DESTA DR. STE. 1100 MIDLAND, TX 79705

Generator name: 516 cyd \$14.00/cyd \$ SOUTHWEST ROYALTIES Company Rep. L. GONZALEZ Originating Site: SHOAL BATTERIES ARB SEC. 25 TWN. 25S R36E Ina co. n.m. Trucking:REPUBLIC Cell #8 N.M. SALES TAX Exempt Materials \$ (5.5%) \$	516 cvd		SAMOONI
A N.M. SALES TAX (5.5%) \$			\$ 7224.00
(5.5%)		TAX	
		40	397.32

\$1/Cyd discount in effect. Future cyd at \$14.00/cyd for 9 months from billing dete. Thank you for your business.

HOBBS OCD

RECEIVED

94333

C- L. Ganzallo

DOOM LAND FARM, L.L.C.

BOX 1271

JAL, N.M. 88252 575-395-3537 903-715-8491

903-715-0471

INVOICE #1287

DATE: 5-27-11

PERMIT #NM-01-0033

SOLD TO: SOUTHWEST ROYALTIES
6 DESTA DR. STE. 1100
MIDLAND, TX 79705

\$ AMOUNT \$ 22944.00 \$/cvD \$16.00/ cyd 1434 cyds CYDS IN DESCRIPTION

Generator name:

SOUTHWEST ROYALTIES

Originating site: SHOALS BATTERY A&B sec. 25 twn.25s range 36 lea co. n.m. Trucking: PANTHER

Company rep: E. LUJAN Cell* 6

Disposal-cyds-RCRA

Exempt materials

(2.5%)

payment due 35 days from billing date

N.M. SALES TAX

\$ 1261.92

\$ 24205.92 TOTAL AMOUNT DUE:

Thank you for your business. All additional cyd at \$14/cyd through 12-31-11

HOBBS OCD

RECEIVED