

- Plan

OIL CONS. DIV DIST. 3

APR 1 4 2016

Federal 18 #1T Remediation System2016 1st Quarter ReportX OCD Encil toSubmitted By:Operator ON P3 2.

Submitted By: Logan Hixon EHS Coordinator XTO Energy, Inc. 505-333-3683

Submitted to: Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 505-334-6178 Ext 116

April 2016

Smith, Cory, EMNRD

From:	Smith, Cory, EMNRD
Sent:	Monday, May 02, 2016 2:05 PM
To:	Hixon, Logan (Logan_Hixon@xtoenergy.com)
Cc:	McDaniel, James (James_McDaniel@xtoenergy.com); Powell, Brandon, EMNRD; Fields,
	Vanessa, EMNRD
Subject:	2016 1st Quarter Report Federal 18 #1T API# 30-045-33864 3RP-1034

Mr. Hixon,

The OCD has received XTO submitted 2016 1st Quarter Report for the Federal 18 #1. In response to XTO's request to discontinue gas analysis in water well 1737 due to minimal pressure. Please provide the OCD with a current low pressure Gas analysis of water well 1737 so we may evaluate the constituents prior to approving XTO's request.

If you have any questions please give me a call.

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

Table of Contents

Introduction	1
History	1
1st Quarter Activities	2
Recommendations	3

Tables

e. .

Federal 18 #1T Water Results Federal 18 #1T Gas Vented Well SJ 1737 Casing Pressure

Attachments

Water Analysis Lab Report

Introduction

. 4 . 4

× .

The purpose of this report is to summarize the current on-site activities involving venting gas and producing water from a former coal bed methane gas well at the Federal 18 #1T. The casing of this well has been modified to vent gas and purge water from the Ojo Alamo Formation. The setup and initial installation of this system is detailed in a report submitted to Brandon Powell, New Mexico Oil Conservation Division (OCD), in November, 2010. This quarterly report details operations from January 1, 2016 through March 31, 2016.

History

The vacuum system at the Federal 18 #1T is being operated as part of an on going effort between the OCD and XTO Energy, Inc. (XTO) to vent gas from the Nacimiento formation just above the Ojo Alamo Formation. Gas was recently found in the Nacimiento formation which could have come from several contributing sources. The Federal 1 #18 (30-045-09466), located in Section 10 of Township 30N, Range 13W and approximately 2,600' to the south-west of water well SJ-01737, was plugged in 1988 by Southern Union Oil Company. This well only had an initial surface casing of 200' when it was drilled in 1959. Section 18 also has one (1) additional well plugged by XTO Energy, Inc. in 2010. Section 19 of Township 30N, Range 12W has two (2) historically plugged wells. Approximately 4,400' to the south of water well SJ-01737, the Dansby #2 (30-045-09402) was plugged by Don Trader, Inc. in 1954 with a total depth of 1980' and a surface casing of only 100', and the second was a well plugged by Amoco Production in 1988. There are also three (3) additional wells plugged by Texacoma in 1997 in Section 19. There are additionally numerous oil and gas wells being operated by local exploration and production companies in the area. In Section 18, there are three (3) wells being operated by XTO Energy, Inc., and two (2) wells being operated by ConocoPhillips as Burlington Resources. In Section 19, there are nine (9) wells being operated by XTO Energy, Inc. In Section 7, there are seven (7) wells being operated by XTO Energy, Inc, and four (4) wells being operated by Robert L Bayless Producers, LLC. Furthermore, there is naturally occurring gas in the formation according to statements from local water well drillers, and a casing leak was discovered at the New Mexico Federal N #3E well site, (located in Unit D, Section 18, Township 30N, Range 12W, San Juan County, New Mexico). This leak was identified as a result of discovery of gas in a local water well (SJ 1737) in April, 2010. Bradenhead pressures were observed at several XTO wells in the area. The New Mexico Federal N #3E, the New Mexico Federal N #3F and the New Mexico Federal N #3 all had bradenhead pressure tests performed. The bradenhead pressure from the New Mexico Federal N #3E was 17 psi, indicating a leak in the casing. The casing leak was repaired, and the New Mexico Federal N #3E was put back into operation. In agreement with the OCD, a nearby gas well scheduled to be plugged, Federal 18 #1T, was modified to act as a venting well by setting a plug at approximately 513 feet. Perforations were made in the casing at 437 feet and 457 feet in order to assess the groundwater and vent gas from the Nacimiento.

On September 24, 2010, a swab rig was used to determine if the well would produce water using the perforations. The swab rig recovered approximately 2 barrels of water, indicating that the perforations would produce water. A sample collected during the swab returned results above

Water Quality Control Commission (WQCC) standards for benzene, total xylenes, and total chlorides; see attached *Federal 18 #1T Water Results Table*. Due to the low pH and high chlorides, it was inferred that the acid used to dissolve cement during perforation activities may have infiltrated the aquifer, causing the increased levels shown in the sampling results. XTO recommended pumping the aquifer until sampling results were below the WQCC standards for BTEX and chlorides.

A pump was installed in the Federal 18 #1T on November 9, 2010 at approximately 485 feet. During the pump installation, the water level was checked using a Keck ET Long water level indicator. The static water level was found to be approximately 402.20 feet. The pump was initially set to operate four (4) times a day for 15 minutes, purging approximately 260 gallons per day. During swab and pump installation activities, no gas was found flowing from the well.

On November 11, 2010, a small vacuum pump was installed at the Federal 18 #1T to determine if gas could be vented. The discharge from the vacuum was checked using a MSA 4-Gas Monitor, which confirmed that methane was being vented from the vacuum pump discharge. The vacuum pump operates at a discharge rate of three (3) standard cubic feet per minute (scfm), which is equivalent to approximately six (6) actual cubic feet per minute (acfm) based on elevation. This volume was calculated using the conversion factors provided by the vacuum pump manufacturer, Becker. The vacuum pump initially held a vacuum of approximately -12 inches of mercury on the casing of the Federal 18 #1T during operation. Both the vacuum pump and the water pump were powered by a portable generator placed on-site.

The water pump was plumbed into the existing water lines on site, so that all water would pump into the 210 barrel water tank left on-site from production activities. Water piping above ground was wrapped with heat trace and insulation to prevent freezing.

The system was electrified on February 3, 2011 to prevent down time due to generator maintenance issues.

1st Quarter Activities

. . .

During the 1st quarter of 2016, the system ran continuously with no down time. As of March 25, 2016, approximately 16,529.6 cubic feet (MCF) of gas has been vented from the Federal 18 #1T casing, with the system venting approximately 60.4 MCF per week during operation, while maintaining an average casing pressure of -10 inches of mercury on the Federal 18 #1T casing.

A total of 650,850 gallons of water have been removed from the Federal 18 #1T as of March 28, 2016. The attached *Federal 18 #1T Water Results Table* shows that that benzene concentrations have rebounded in the first quarter with one (1) sampling event (March 28, 2016) returning results above the WQCC standard at 38 ppb. Chloride levels have remained constant through the quarter, remaining steady at 21.6 ppm. pH values remained constant in the quarter, returning results of 6.86. TDS continues to be above WQCC standards at 2230 ppm, but background levels (1,400 ppm) in water well SJ 1737 are historically above WQCC standards as well.

The pressure at well SJ 1737 was checked over the course of the quarter. The pressure was checked by shutting in the casing for a minimum of one week prior to reading the pressure gauge. The pressure readings and average barometric pressures are outlined in the attached *Well SJ 1731 Casing Pressures Table*. The pressure did not seem to show a correlation to the barometric pressure or temperature, and remained fairly constant over the course of the quarter. The casing pressure in the water well SJ 1737 has shown an overall decrease from 9 oz in January of 2011 to 2.5 oz. in March 2016. An overall decreasing trend has existed in the water well casing since 2011.

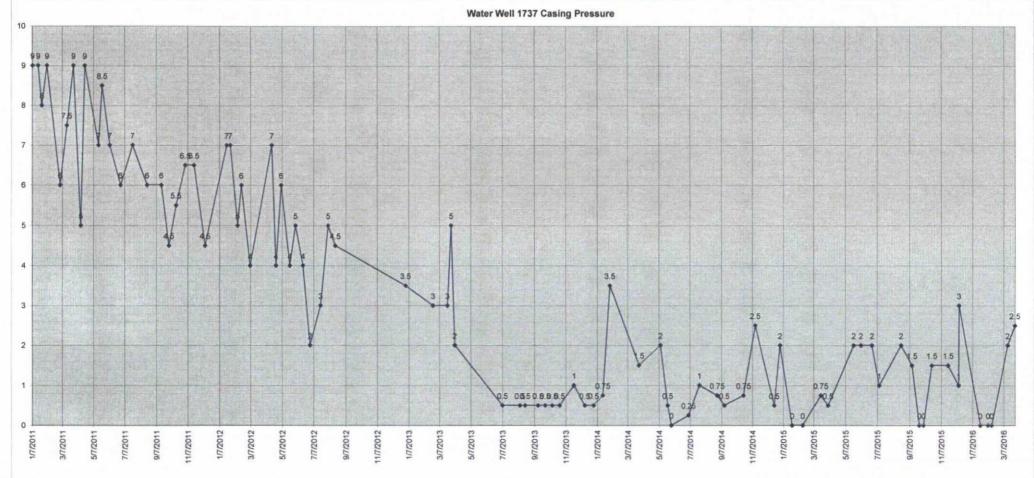
Recommendations

Groundwater samples will continue to be collected quarterly to monitor the benzene concentration in this well. Chlorides, pH, TDS and EC remained constant over the fourth quarter, and are very close to the background levels obtained in water well 1737. XTO proposes the continued operation of the vacuum pump and water pump at the Federal 18 #1T, Groundwater samples will continue to be collected on a quarterly basis until benzene levels remain below the WQCC standards for four (4) consecutive quarters. An alternative sampling schedule may be recommended at that time.

XTO proposes to discontinue gas analysis in water well 1737 due to the minimal pressure that appears on the casing. XTO will continue to monitor the pressure on the casing at water well 1737.

Logan Hixon EHS Coordinator XTO Energy, Inc. Western Division

Date	Casing Processing	
1/7/2011	Casing Pressure (oz) 9	Average 0.818
1/18/2011	9	0.818
1/25/2011	8	1.143
2/4/2011	9	0.900
	9	0.231
3/2/2011		
3/15/2011	7.5	0.577
3/28/2011	9	0.692
4/11/2011	5	0.357
4/19/2011	9	1.125
5/16/2011	7	0.259
5/23/2011	8.5	1.214
6/7/2011	7	0.467
6/28/2011	6	0.286
7/22/2011	7	0.292
8/19/2011	6	0.214
9/16/2011	6	0.214
9/30/2011	4.5	0.321
10/14/2011	5.5	0.393
11/1/2011	6.5	0.361
11/18/2011	6.5	0.382
12/9/2011	4.5	0.214
1/20/2012	7	0.167
1/27/2012	7	1.000
2/10/2012	5	0.357
2/17/2012	6	0.857
3/5/2012	4	0.235
4/16/2012	7	0.167
4/24/2012	4	0.500
5/4/2012	6	0.600
5/21/2012	4	0.235
6/1/2012	5	0.455
6/15/2012	4	0.286
6/29/2012	2	0.143
7/19/2012	3	0.150
8/3/2012	5	
8/17/2012	4.5	0.321
12/31/2012	3.5	0.026
2/22/2013	3	0.020
3/22/2013	3	0.107
3/29/2013	5	0.714
4/5/2013	2	0.286
7/6/2013	0.5	0.200
8/9/2013	0.5	0.015
8/19/2013	0.5	0.010
9/13/2013	0.5	0.030
9/27/2013	0.5	0.020
10/11/2013	0.5	0.036
10/25/2013	0.5	0.036
11/22/2013	1	0.036
12/13/2013	0.5	0.024


Well SJ 1737 Casing Pressures

. .

	en 55 1757 Casing i	
12/30/2013	0.5	0.029
1/17/2014	0.75	0.042
1/31/2014	3.5	0.250
3/28/2014	1.5	0.027
5/9/2014	2	0.048
5/23/2014	0.5	0.036
5/30/2014	0	0.000
7/3/2014	0.25	0.007
7/25/2014	1	0.045
8/29/2014	0.75	0.021
9/12/2014	0.5	0.036
10/3/2015	0	0.000
10/20/2014	0.75	-0.002
11/12/2014	2.5	0.109
12/19/2014	0.5	0.014
12/31/2014	2	0.167
1/23/2015	0	0.000
2/13/2015	0	0.000
3/20/2015	0.75	0.021
4/3/2015	0.5	0.036
5/22/2015	2	0.041
6/5/2015	2	0.143
6/26/2015	2	0.095
7/10/2015	1	0.071
8/21/2015	2	0.048
9/11/2015	1.5	0.071
9/25/2015	0	0.000
10/19/2015	1.5	0.063
11/20/2015	1.5	0.047
12/10/2015	1	0.050
12/11/2015	3	3.000
1/21/2016	0	0.000
2/5/2016	0	0.000
2/12/2016	0	0.000
3/14/2016	2	0.065
3/28/2016	2.5	0.179

Well SJ 1737 Casing Pressures

* C

Date

Date	SCFM	ACFM	Gas Vented Total (MCF)
11/24/2010	5	10	14.4
12/2/2010	3	6	89.13
12/3/2010	3	6	97.73
12/7/2010	3	6	123.53
12/9/2010	5	10	152.33
12/10/2010	3	6	160.93
12/13/2010	3	6	178.13
12/16/2011	4	8	212.69
12/17/2011	3.5	7	222.77
12/20/2011	3	6	248.57
		_	

Irratic readings due to freezing temperature and down time due to generator failures

2/9/2011	NA	NA	540.6
2/17/2011	3	6	601
2/24/2011	3	6	661.4
3/3/2011	3	6	721.8
3/10/2011	3	6	782.2
3/17/2011	3	6	842.6
3/24/2011	3	6	903
3/31/2011	3	6	963.4
4/7/2011	3	6	1023.8
4/14/2011	3	6	1084.2
4/21/2011	3	6	1144.6
4/28/2011	3	6	1205
5/5/2011	3	6	1265.4
5/12/2011	3	6	1325.8
5/19/2011	3	6	1386.2
5/26/2011	3	6	1446.6
6/2/2011	3	6	1507
6/9/2011	3	6	1567.4
6/16/2011	3	6	1627.8
6/23/2011	3	6	1688.2
6/30/2011	3	6	1748.6
7/7/2011	3	6	1792
7/14/2011	3	6	1852.4
7/21/2011	3	6	1912.8
7/28/2011	3	6	1973.2
8/5/2011	3	6	2033.6
8/12/2011	3	6	2094
8/19/2011	3	6	2154.4
8/26/2011	3	6	2214.8
9/2/2011	3	6	2275.2
9/9/2011	3	6	2335.6
9/16/2011	3	6	2396
9/23/2011	3	6	2456.4
9/30/2011	3	6	2516.8
10/7/2011	3	6	2577.2
10/14/2011	3	6	2637.6
10/21/2011	3	6	2698

Date	SCFM	ACFM	Gas Vented Total (MCF)
10/28/2011	3	6	2758.4
11/4/2011	3	6	2818.8
11/11/2011	3	6	2879.2
11/18/2011	3	6	2939.6
11/25/2011	3	6	3000
12/2/2011	3	6	3060.4
12/9/2011	3	6	3120.8
12/16/2011	3	6	3181.2
12/23/2011	3	6	3241.6
12/30/2011	3	6	3302
1/6/2012	3	6	3362.4
1/13/2012	3	6	3422.8
1/20/2012	3	6	3483.2
1/27/2012	3	6	3543.6
2/3/2012	3	6	3604
2/10/2012	3	6	3664.4
2/17/2012		6	3724.8
	3		
2/24/2012	3	6	3785.2
3/2/2012	3	6	3845.6
3/9/2012	3	6	3906
3/16/2012	3	6	3966.4
3/23/2012	3	6	4026.8
3/30/2012	3	6	4087.2
4/6/2012	3	6	4147.6
4/13/2012	3	6	4208
4/20/2012	3	6	4268.4
4/27/2012	3	6	4328.8
5/4/2012	3	6	4389.2
5/11/2012	3	6	4449.6
5/18/2012	3	6	4510
5/25/2012	3	6	4570.4
6/1/2012	3	6	4630.8
6/8/2012	3	6	4691.2
6/15/2012	3	6	4751.6
6/22/2012	3	6	4812
6/29/2012	3	6	4872.4
7/6/2012	3	6	4932.8
7/13/2012	3	6	4993.2
7/20/2012	3	6	5053.6
7/27/2012	3	6	5114
8/3/2012	3	6	5174.4
8/10/2012	3	6	5234.8
interferences interest in the second	3	6	
8/17/2012			5295.2
8/24/2012	3	6	5355.6
8/31/2012	3	6	5416
9/7/2012	3	6	5476.4
9/14/2012	3	6	5536.8
9/21/2012	3	6	5597.2
9/28/2012	3	6	5657.6
10/5/2012	3	6	5718
10/12/2012	3	6	5778.4
10/19/2012	3	6	5838.8

Date	SCFM	ACFM	Gas Vented Total (MCF)
10/26/2012	3	6	5899.2
11/2/2012	3	6	5959.6
11/9/2012	3	6	6020
11/16/2012	3	6	6080.4
11/23/2012	3	6	6140.8
11/30/2012	3	6	6201.2
12/7/2012	3	6	6261.6
12/14/2012	3	6	6322
12/21/2012	3	6	6382.4
12/28/2012	3	6	6442.8
1/4/2013	3	6	6503.2
1/11/2013	3	6	6563.6
1/18/2013	3	6	6624
1/25/2013	3	6	6684.4
2/1/2013	3	6	6744.8
2/8/2013	3	6	6805.2
2/15/2013	3	6	6865.6
2/22/2013	3	6	6926
3/1/2013	3	6	6986.4
3/8/2013	3	6	7046.8
3/15/2013	3	6	7107.2
3/22/2013	3	6	7167.6
			7107.0
3/29/2013	3	6	
4/5/2013	3	6	7288.4
4/12/2013	3	6	7348.8
4/19/2013	3	6	7409.2
4/26/2013	3	6	7469.6
5/3/2013	3	6	7530
5/10/2013	3	6	7590.4
5/17/2013	3	6	7650.8
5/24/2013	3	6	7711.2
5/31/2013	3	6	7771.6
6/7/2013	3	6	7832
6/14/2013	3	6	7892.4
6/21/2013	3	6	7952.8
6/28/2013	3	6	8013.2
7/5/2013	3	6	8073.6
7/12/2013	3	6	8134
7/19/2013	3	6	8194.4
7/26/2013	3	6	8254.8
8/2/2013	3	6	8315.2
8/9/2013	3	6	8375.6
8/16/2013	3	6	8436
8/23/2013	3	6	8496.4
8/30/2013	3	6	8556.8
9/6/2013	0	0	8556.8
9/13/2013	3	6	8617.2
9/20/2013	3	6	8677.6
9/27/2013	3	6	8738
10/4/2013	3	6	8798.4
10/11/2013	3	6	8858.8
10/11/2013	3	6	8919.2

ate	SCFM	ACFM	Gas Vented Total (MCF)
10/25/2013	3	6	8979.6
11/1/2013	3	6	9040
11/8/2013	3	6	9100.4
11/15/2013	3	6	9160.8
11/22/2013	3	6	9221.2
11/29/2013	3	6	9281.6
12/6/2013	3	6	9342
12/13/2013	3	6	9402.4
12/20/2013	3	6	9462.8
12/27/2013	3	6	9523.2
1/3/2014	3	6	9583.6
1/10/2014	3	6	9644
1/17/2014	3	6	9704.4
1/24/2014	3	6	9764.8
1/31/2014	3	6	9825.2
2/7/2014	3	6	9885.6
2/14/2014	3	6	9946
2/21/2014	3	6	10006.4
2/28/2014	3	6	10066.8
3/7/2014	3	6	10000.0
3/14/2014	3	6	10127.2
3/21/2014	3	6	10187.0
3/28/2014		6	10240
	3		10308.4
4/4/2014	3	6	
4/11/2014	3	6	10429.2
4/18/2014	3	6	10489.6
4/25/2014	3	6	10550
5/2/2014	3	6	10610.4
5/9/2014	3	6	10670.8
5/16/2014	3	6	10731.2
5/23/2014	3	6	10791.6
5/30/2014	3	6	10852
6/6/2014	3	6	10912.4
6/13/2014	3	6	10972.8
6/20/2014	-	6	11033.2
6/27/2014	3	6	11093.6
7/4/2014	3	6	11154
7/11/2014	3	6	11214.4
7/18/2014	3	6	11274.8
7/25/2014	3	6	11335.2
8/1/2014	3	6	11395.6
8/8/2014	3	6	11456
8/15/2014	3	6	11516.4
8/22/2014	3	6	11576.8
8/29/2014	3	6	11637.2
9/5/2014	3	6	11697.6
9/12/2014	3	6	11758
9/19/2014	3	6	11818.4
9/26/2014	3	6	11878.8
10/3/2014	3	6	11939.2
10/10/2014	3	6	11999.6
10/17/2014	3	6	12060

Date	SCFM	ACFM	Gas Vented Total (MCF)
10/24/2014	3	6	12120.4
10/31/2014	3	6	12180.8
11/7/2014	3	6	12241.2
11/14/2014	3	6	12301.6
11/21/2014	3	6	12362
11/28/2014	3	6	12422.4
12/5/2014	3	6	12482.8
12/12/2014	3	6	12543.2
12/19/2014	3	6	12603.6
12/26/2014	3	6	12603.6
1/2/2015	3		12664
1/9/2015	3		12724.4
1/16/2015	3		12784.8
1/23/2015	3	6	12845.2
1/30/2015	3		12905.6
	3		12966
2/6/2015			
2/13/2015	3	6	13026.4
2/20/2015	3	6	13086.8
2/27/2015	3	6	13147.2
3/6/2015	3	6	13207.6
3/13/2015	3	6	13268
3/20/2015	3	6	13328.4
3/27/2015	3	6	13388.8
4/3/2015	3	6	13449.2
4/10/2015	3	6	13509.6
4/17/2015	3		13570
4/24/2015	3	6	13630.4
5/1/2015	3	6	13690.8
5/8/2015	3	6	13751.2
5/15/2015	3	6	13811.6
5/22/2015	3	6	13872
5/29/2015	3	6	13932.4
6/5/2015	3	6	13992.8
6/12/2015	3	6	14053.2
6/19/2015	3	6	14113.6
6/26/2015	3	6	14174
7/3/2015	3	6	14234.4
7/10/2015	3	6	14294.8
7/17/2015	3	6	14355.2
7/24/2015	3	6	14415.6
7/31/2015	3	6	14476
8/7/2015	3	6	14536.4
8/14/2015	3	6	14596.8
8/21/2015	3	6	14657.2
8/28/2015	3	6	14717.6
9/4/2015	3	6	14778
9/11/2015	3	6	14838.4
	3	6	14898.8
9/18/2015			
9/25/2015	3	6	14959.2
10/2/2015	3	6	15019.6
10/9/2015	3	6	15080
10/16/2015	3	6	15140.4

Date	SCFM	ACFM	Gas Vented Total (MCF)
10/23/2015	3	6	15200.8
10/30/2015	3	6	15261.2
11/6/2015	3	6	15321.6
11/13/2015	3	6	15382
11/20/2015	3	6	15442.4
11/27/2015	3	6	15502.8
12/4/2015	3	6	15563.2
12/11/2015	3	6	15623.6
12/18/2015	3	6	15684
12/25/2015	3	6	15744.4
1/1/2016	3	6	15804.8
1/8/2016	3	6	15865.2
1/15/2016	3	6	15925.6
1/22/2016	3	6	15986
1/29/2016	3	6	16046.4
2/5/2016	3	6	16106.8
2/12/2016	3	6	16167.2
2/19/2016	3	6	16227.6
2/26/2016	3	6	16288
3/4/2016	3	6	16348.4
3/11/2016	3	6	16408.8
3/18/2016	3	6	16469.2
3/25/2016	3	6	16529.6

Federal 18 #1T Water Results

Date	Lab	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Xylene (ppb)	Chlorides (ppm)	TDS (ppm)	EC (umhos/cm)	рН	Purge Water Volume
NA	NA	10	750	750	620	250	1000	NA	6 thru 9	NA
9/24/2010	ESC	150	BDL	76	670	NS	NS	NS	NS	N/
9/24/2010	ESC	190	170	24	210	6800	13000	18000	6.1	NA
9/24/2010	Etech	143	221	63.6	950	NS	NS	NS	NS	NA
9/24/2010	Etech	320	377	31.8	568	7150	11100	16000	5.84	NA
12/10/2011	Hall	NS	NS	NS	NS	2800	7610	8900	6.36	3032.5
1/5/2011	Hall	67	93	7.9	25	NS	NS	NS	NS	7,798
1/5/2011	ESC	73	99	10	39	1600	4800	6000	6.6	7,79
1/29/2011	ESC	60	93	10	33	930	NS	4900	6.4	10791.0
2/28/2011	ESC	42	60	6.1	20	550	3400	4000	6.7	14795.0
4/1/2011	ESC	23	27	1.8	6.8	260	2700	3100	6.8	31237.5
4/29/2011	ESC	29	28	2.4	7.3	140	2600	2900	6.9	50217.0
5/31/2011	ESC	14	19	1.4	4.9	89	2500	2800	6.7	76513.0
6/14/2011	ESC	55	81	2.8	15	73	2500	2700	6.7	88120.0
6/30/2011	ESC	52	67	2.6	12	61	2500	2700	6.9	101208.5
8/15/2011	ESC	21	25	1.2	5.8	44	2500	2600	6.8	140267.0
9/2/2011	ESC	10	12	0.64	3.2	41	2500	2600	7.2	155801.0
9/16/2011	ESC	9.6	11	0.64	3	38		2500		
9/30/2011	ESC	7.2	8.7	0.64	2.5	35		2600		
10/28/2011	ESC	5.1	BDL	1.8		31	2300	2600		
11/30/2011	ESC	4	BDL	3.9		27		2600		
12/30/2011	ESC	3,4	BDL	BDL	2.9	27	2500	2500		
4/3/2012	ESC	6	BDL	BDL	1.6	NS		NS		
4/9/2012	ESC	NS	NS	NS		19		2400		
7/3/2012	ESC	5.3	BDL	BDL	BDL	16		2400		
7/6/2012	NA	NA	NA	NA	NA	NA	NA	NA		
9/19/2012	NA	NA	NA	NA	NA	NA		NA		
9/27/2012	ESC	6.2	BDL	BDL	BDL	15				
12/14/2012	NA	NS	NS	NS		NS		NS		
12/31/2012		13.9	1.1	ND		15.5		2440		
1/23/2013	ESC	160	190		26	15		2500		
2/22/2013	ESC	7.1	77	BDL	1.8	15			-	
5/2/2013	ESC	9	6.9		BDL	15			-	
8/19/2013	ESC	20	11	BDL	2.3	16				
9/23/2013	ESC	13	11	BDL	2.2	16				
11/25/2013	ESC	4.6	5.2		BDL	15		2700	1	
2/4/2014	ESC	4.0		500	UUL	15		2700	1	636,120
10/1/2015		54.2	57	1.37	9.77	21.3	2260	2640	6.98	
10/20/2015	ESC	42.3	39.9	0.964	7.06	18.1	2330			
3/28/2016	ESC	38	34.1	0.835		21.6				
11/5/2010	ESC	ND	5.2			15		2600		

BDL = Below Detection Limits NS = Not Sampled Values in BOLD exceed WQCC Standards

Baseline Sample (Well SJ 1737) WQCC Standards

ANALYTICAL REPORT April 05, 2016

XTO Energy - San Juan Division

Sample Delivery Group: Samples Received: Project Number: Description:

L826193 03/29/2016

Federal 18-1T

Report To:

Logan Hixon 382 County Road 3100 Aztec, NM 87410

Entire Report Reviewed By: Napline & Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

IABLE OF CONTENTS

ļ.
;
Ŕ
Ņ
¥
F
ŝ
2

PAGE:

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

FARLH-32816-11:50 L826193-01 GW			Collected by Logan Hixon	Collected date/time 03/28/16 11:50	Received date/time 03/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG860316	1	03/30/16 13:43	03/30/16 14:47	MF
Volatile Organic Compounds (GC) by Method 8021B	WG861023	1	04/01/16 20:16	04/01/16 20:16	LRL
Wet Chemistry by Method 9040C	WG860329	1	03/30/16 07:59	03/30/16 07:59	AMC
Wet Chemistry by Method 9050A	WG860747	1	03/31/16 15:19	03/31/16 15:19	MLZ
Wet Chemistry by Method 9056A	WG860551	1	03/31/16 17:32	03/31/16 17:32	DLD

CASE NARRAIIVE

All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Dapline R Richards

Daphne Richards Technical Service Representative

Sample Handling and Receiving

The following samples were prepared and/or analyzed past recommended holding time. Concentrations should be considered minimum values.

ESC Sample ID L826193-01 Project Sample ID FARLH-32816-11:50 Method 9040C AI

Sc

PAGE:

SAMPLE RESULIS - 01

CF

²Tc ³Ss ⁴Cr ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	2230		10.0	1	03/30/2016 14:47	WG860316

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	su			date / time		
pН	6.86		1	03/30/2016 07:59	W6860329	

Sample Narrative:

9040C L826193-01 WG860329: 6.86 at 22.1c

Wet Chemistry by Method 9050A

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	umhos/cm			date / time		
Specific Conductance	2570		1	03/31/2016 15:19	WG860747	

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	21.6		1.00	1	03/31/2016 17:32	WG860551

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	mg/l		mg/l		date / time	
enzene	0.0380		0.000500	1	04/01/2016 20:16	WG861023
oluene	0.0341		0.00500	1	04/01/2016 20:16	WG861023
ylbenzene	0.000835		0.000500	1	04/01/2016 20:16	WG861023
al Xylene	0.00482		0.00150	1	04/01/2016 20:16	WG861023
(S) a,a,a-Trifluorotoluene(PID)	102		55.0-122		04/01/2016 20:16	WG861023

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

Contraction of the			1.12
(MB)	R3125660-1	03/30/16	14:47

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l	-	mg/l	mg/l	
Dissolved Solids	U		2.82	10.0	

Original Sample (OS) • Duplicate (DUP)

(OS) L825795-01 03/30/16 1	4:47 • (DUP) R31256	60-4 03/30/1	6 14:47	1		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	27.0	27.0	1	0.000		5

Laboratory Control Sample (LCS) · Laboratory Control Sample Duplicate (LCSD)

(LCS) R3125660-2 03/30/16	6 14:47 • (LCSD) R312	5660-3 03/30	/16 14:47							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Dissolved Solids	8800	8700	8410	98.9	95.6	85.0-115			3.39	5

Wet Chemistry by Method 9040C

QUALITY CONTROL SUMMARY

Original Sample (OS) • Duplicate (DUP)

(OS) L826184-01 03/30/16 07:	59 • (DUP) WG860	329-1 03/30	/16 07:59		1.000	
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
pH	7.39	7.40	1	0.135		1

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) WG860329-2 03/30/16 07:	59 • (LCSD) W(5860329-3 03	/30/16 07:59								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	su	su	su	%	%	%			%	%	
pH	6.43	6.40	6.41	99.5	99.7	98.5-102			0.156	1	

Wet Chemistry by Method 9050A

QUALITY CONTROL SUMMARY

Method Blank (MB)

	and the second se		
(MB)	WG860747-1	03/31/16	15:19

	MB Result MB C	B Qualifier MB MDL	MB RDL
Analyte	umhos/cm	umhos/cm	umhos/cm
Specific Conductance	1.97		

Original Sample (OS) • Duplicate (DUP)

(OS) L824230-01 03/31/16 15:19 ·	(DUP) WG8607	47-4 03/31/16	5 15:19		1.1.1.1.1.1.1	1.51.51.51
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	umhos/cm	umhos/cm		%		%
Specific Conductance	10100	10100	1	0.698		20

Laboratory Control Sample (LCS) · Laboratory Control Sample Duplicate (LCSD)

(LCS) WG860747-2 03/31/16	15:19 • (LCSD) WG8	60747-3 03/3	1/16 15:19							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	umhos/cm	umhos/cm	umhos/cm	%	%	%			%	%
Specific Conductance	653	663	664	102	102	90.0-110			0.151	20

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3125473-1 03/31/16 11:31	1			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.0519	1.00

Original Sample (OS) • Duplicate (DUP)

(OS) L825467-14 03/31/16 12:53	• (DUP) R312547	3-4 03/31/16	13:09				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	OUP RPD Limits	
Analyte	mg/l	mg/l		%		6	
Chloride	0.160	0.153	1	0		5	

Original Sample (OS) • Duplicate (DUP)

OS) L826191-03 03/31/16 20:49 ·	(DUP) R312547	3-6 03/31/16	21:05			and the second	
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
nalyte	mg/l	mg/l		%		%	
Chloride	13.4	13.0	1	3		15	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3125473-2 03/31/1	6 11:47 • (LCSD) R31254	173-3 03/31/16	12:04								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Chloride	40.0	39.0	38.9	97	97	80-120			0	15	

Original Sample (OS) • Matrix Spike (MS)

(OS) L825621-18 03/31/16 13:26 .	(MS) R312547	3-5 03/31/16 13:4	42				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	ND	49.0	98	1	80-120	

Volatile Organic Compounds (GC) by Method 8021B

QUALITY CONTROL SUMMARY L826193-01

(MB) R3125629-2 04/01/16 05:28

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.000190	0.000500	
Toluene	U		0.000180	0.00500	
Ethylbenzene	U		0.000160	0.000500	
Total Xylene	U		0.000510	0.00150	
(S) a,a,a-Trifluorotoluene(PID)	102			55.0-122	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3125629-1 04/01/16 04:05 ·	(LCSD) R3125	629-3 04/01/1	6 06:54							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0500	0.0481	0.0435	96.1	87.1	70.0-130			9.89	20
Toluene	0.0500	0.0519	0.0472	104	94.4	70.0-130			9.57	20
Ethylbenzene	0.0500	0.0529	0.0482	106	96.3	70.0-130			9.37	20
Total Xylene	0.150	0.164	0.149	109	99.6	70.0-130			9.08	20
(S) a,a,a-Trifluorotoluene(PID)				102	103	55.0-122				

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amou	int Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0500	0.0134	0.0566	0.0568	86.4	86.8	1	57.2-131			0.290	20
Toluene	0.0500	0.00000926	0.0444	0.0439	88.8	87.7	1	63.7-134			1.23	20
Ethylbenzene	0.0500	0.000168	0.0495	0.0493	98.7	98.2	1	67.5-135			0.560	20
Total Xylene	0.150	0.00103	0.154	0.153	102	101	1	65.9-138			0.690	20
(S) a,a,a-Trifluorotoluene(PID)					108	108		55.0-122				

GLOSSARY OF TERMS

1	C
2	Т
3	S
4	C
5	S
6	G
7	G
8	A
9	S

R

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Qualifier	Description

.

. .

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

. .

Hansenhar Companya, and Anala	and the states of				
Alabama	40660		Nevada		TN-03-2002-34
Alaska	UST-08	0	New Hampshire		2975
Arizona	AZ0612		New Jersey-NELAP		TN002
Arkansas	88-046	9	New Mexico		TN00003
California	01157C/	A	New York		11742
Colorado	TNOOO	03	North Carolina		Env375
Conneticut	PH-019	7	North Carolina ¹		DW21704
Florida	E87487		North Carolina ²		41
Georgia	NELAP		North Dakota		R-140
Georgia ¹	923		Ohio-VAP		CL0069
Idaho	TNOOO	03	Oklahoma		9915
Illinois	200008	8	Oregon		TN200002
Indiana	C-TN-0	1	Pennsylvania		68-02979
lowa	364		Rhode Island		221
Kansas	E-10277	7	South Carolina		84004
Kentucky ¹	90010		South Dakota		n/a
Kentucky ²	16		Tennessee 14		2006
Louisiana	AI30793	2	Texas		T 104704245-07-TX
Maine	TNOOO2	2	Texas ⁵		LAB0152
Maryland	324		Utah		6157585858
Massachusetts	M-TNOC)3	Vermont		VT2006
Michigan	9958		Virginia		109
Minnesota	047-99	9-395	Washington		C1915
Mississippi	TNOOOD	03	West Virginia		233
Missouri	340		Wisconsin		9980939910
Montana	CERTOO	086	Wyoming		A2LA
Nebraska	NE-OS-	15-05			
Third Party & F	ederal Accreditations	S			
A2LA – ISO 17025	1461.01		AIHA	100789	
A2LA - ISO 170255	1461.02		DOD	1461.01	
Canada	1461.01		USDA	S-67674	

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{ma} Accreditation not applicable

Our Locations

TN00003

EPA-Crypto

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

1372

Western Division Well Site/Location Federal 18-17 Collected By Cogan 14 Company VTO Signature		Quo	te Number			Press of			Analysis/Container					Lab Information *		
		Janes, Kurt API Number Samples on Ice (Y) N)			Page of											
								(12087					Farm	fice Abbreviations nington = FAR		
													Bakk	ingo = DUR Ren = BAK n = RAT ance = PC		
											6		Pices			
		Test Reason		de								La B	evelt = RSV arge = LB ageville = OV			
Jug 14		Gray Areas	for Lab Us	e Only!		me Day		BTEX		V	1	-		1228		
Sample ID	Sam	ple Name	Media	Date	Time	Preservative	No. of Conts.	37	L	SK				iample Number		
FARLH - 32816-11:50	60		60	3-24	11:50	Cool	2-UOC 3-Saemt	\ge	X	\rightarrow	×		6	826193-01		
atit T. ganada basilining		an a	i den de setti	States and	a la compañía	A internet and				1-10-1-10				NULL LADOR		
	- Partie	Self Really	richan P ^{ile}	-	Hart y fi									a filt of Law		
				and a					-	-	-					
						東京					-					
	2	Sist.	-							-	1					
						1	1	Ange "		1						
Media : Filter = F Soil = S Wastew	ater = WW	/ Groundwate	r = GW Dr	inking W	aster = DV	V Sludge = SG Si	urface Water	= SW	Air =	A Drill	Mud =	DM Ot	her = OT			
Relinquished By: (Signature)		Date: 3-28-16		Time: /215	Received By: (Signature)			Number of Bottles		Bottles	Sample Condition					
Relinquished By: (Signature)		Date:		Time:						Ten	Temperature:		Other Information			
Relinquished By: (Signature)		Date:	Date: Tim		Received for Lab by: (Signature)				Date: Time: 3-79-16 900			603				
Comments		1		7		N	-	10 m		739			-	· · ·		

四川

* Sample ID will be the office and sampler-date-military time FARJM-MMDDYY-1200