

Resaca Exploitation Cooper Jal Unit Corrective Action Plan HÖBBS OCD DEC 1 8 2012

RECEIVED

Subject Lease: Cooper Jal Unit Sec. 18 –T24S-R37E Lea County, New Mexico

Prepared For: New Mexico Oil Conservation Division Hobbs District Office And Resaca Exploitation, Inc. Mr. Marc Neatherlin

November 28, 2012

Reviewed w/ comments verball tromomitto Waen Environmental Specialist NMOCD - DISTI 1/23/13

Prepared by: Environmental Compliance Associates, Inc 10590 Westoffice Drive, Suite 150 Houston, Texas 77042

1331 LAMAR, SUITE #1450 HOUSTON, TEXAS 77010-3039 MAIN: 713-650-1246 FAX: 713-655-1711 www.resacaexploitation.com

30 025 1/140

TABLE OF CONTENTS

- 1.0 PURPOSE
- 2.0 DESCRIPTION OF INCIDENT
- 3.0 GENERAL SITE CHARACTERISTICS
- 4.0 CORRECTIVE ACTIONS
- 5.0 CONCLUSION OF REMEDIATION

APPENDICES:

APPENDIX A	NMOCD Form C-141 (Initial)
APPENDIX B	General Site Diagram
	Site Ranking Information
APPENDIX D	Photographic Documentation
APPENDIX E	Material Safety Data Sheets
APPENDIX F	Sample Results

1.0 PURPOSE

The purpose of this document is to summarize and define corrective action measures that will take place to mitigate any possible impairment as a result of an accidental release that occurred on June 24th, 2012 from a ruptured flow line at the Cooper Jal Unit well located in Section 18, T24S, R37E, Lea County, New Mexico.

This corrective action plan is being submitted to supplement the initial C-141 submitted to the New Mexico Oil Conservation Division (NMOCD) on July 2nd, 2012.

2.0 DESCRIPTION OF INCIDENT

On June 24th, 2012 at approximately 0900 hours, a four (4) inch fiberglass line ruptured, resulting in the release of approximately one hundred twenty-five (125) to one hundred thirty-five (135) barrels of oil and produced water. The line runs south from the Satellite #1 well to the Cooper Jal main battery. When the release was discovered, Resaca Operating Company cut a five (5) foot piece of back line out and replaced it with a new line. The release was then verbally reported to Mr. E. L. Gonzales of the NMOCD on June 24th, 2012. The initial Form C-141 was submitted to the NMOCD on July 2nd, 2011 by Mr. Marc Netherland, Operations Manager for Resaca Exploitation. The area of this release of oil and produced water is located just west of the Cooper Jal Unit #117 between the well head and its associated tank battery.

A copy of the initial NMOCD Form C-141 is reproduced as Appendix A. A general site diagram is attached as Appendix B. Site Ranking Information is included as Appendix C. Photographic documentation is presented as Appendix D. Material Safety Data Sheets are provided as Appendix E. The analytical laboratory results of the samples taken are attached as Appendix F.

3.0 GENERAL SITE CHARACTERISTICS

The location of the Cooper Jal Unit # 117 well is described as a producing oil and gas well. This location sits on Tonuco series soils. The Tonuco series is shallow to very shallow, excessively drained and is formed from coarse textured alluvium derived from mixed sources. It is on broad plains and alluvial fans with slopes of zero to five percent (0-5%). Average annual precipitation is approximately twelve inches (12") and the average annual air temperature is approximately sixty-three degrees Fahrenheit (63°F). The affected area consists of native plants and grasses.

4.0 CORRECTIVE ACTIONS

The process we propose to chemically remediate the affected area is as follows:

- Collect minimum five point composite sample of the soil profile to a minimum depth of twelve inches (12") below ground surface and analyze for presence and concentrations of total petroleum hydrocarbons (TPH) and total chlorides.
- Disk the affected area to a minimum depth of six to twelve inches (6"-12") below ground surface
- Apply SoilSaver and I A Petro to affected areas (MSDS for each product is located in Appendix E)
- Disk the affected area to a minimum depth of six to twelve inches (6"-12") below ground surface
- 5) Water the affected area provided the absence of rain
- 6) Collect minimum five point composite sample of the soil profile to a minimum depth of twelve inches (12") below ground surface and analyze for presence and concentrations of total petroleum hydrocarbons (TPH) and total chlorides.
- 7) Contour to minimize erosion
- 8) Seed with varietal mixture acceptable to landowner

5.0 CONCLUSION OF REMEDIATION

The remediation process will be complete once the affected areas have been tilled, remediated and confirmation samples, gathered from zero to twenty-four (0"-24") inches below the surface, show that chloride levels are below two hundred fifty (250) ppm and TPH levels are below five thousand (5000) ppm.

Upon completion of this project, the third party environmental consulting firm will draft notes of sample results during the remediation process, photographic documentation of activities with a final version of NMOCD form C-141 and submit to the NMOCD for successful closure of this Corrective Action Plan.

It is our opinion that the implementation of this corrective action plan will assist to ensure protection of fresh waters and public health to the environment.

Sincerely,

au

Marc Neatherlin - District Manager Resaca Exploitation

APPENDIX A NMOCD FORM C-141 (INITIAL)

N

.

.

.

tisniert .	State of New Mexico	,
1625 N. French Dr., Höhbs, NM 88240 District III	Energy Minerals and Natural Resources	Form C-14t Revised October 10, 2003
District III 1000 Rid Brazos Road Azros NNL 87410	Oil Conservation Division	Submit 2 Copies to appropriate
<u>Ukstice IV</u> 1220 S. St. Francis Dr. Santa Fe, NM 87505	1220 South St. Francis Dr.	with Rule 116 on brick
	Santa Fe, NM 87505	side of form
Keicas	e Noulication and Corrective A	
Name of Company RESACA OPENA fra	Contact Mar L New	L Initial Report L Final Repor
Address 2505 Mauric Ronal 03	115A, TX 94765 Telephone No. 437 - 55	7-9430
Facility Name Cooper Ja 1 Dust	Facility Type	
Surface Owner Relly Myres	Mineral Owner	[Lease No. 30 025 11140
This Latter Southing Parimetrics Barrier De	LOCATION OF RELEASE	- I MaidAMaid Line I Chainte
N 18 24 37		
Latitu	leLongitude	
1	NATURE OF RELEASE	
Type of Release Oil & Water	Volume of Release /25 -	15-80 Volume Recovered 15-88/s
Was Immediate Notice Given?	If YES, To Whom?	424 mainter tour or triservery 6/24/-2
	o Not Required E.C. Gonz	A fos
Was a Watercourse Reached?	If YES, Volume Impacting t	the Watercourse.
	None	
If a Watercourse was Impacted, Describe Fully,*		
alla		alley !!
Describe Cause of Problem and Remedial Action Th	ken* i mil	
to the city along that there the shipe	A 4" Fiberghass line the	Truns South From JATEI,
realized in the west the share	· RESACL Opening Co. Cat 3 pr	the of the cone out me
Describe Area Affected and Cleanup Action Taken.	the had us, and 11 2 all	Lalana We will
Ronecliate Soil with Parts	lizer are New Soil.	in il had all
all APP LOSIA		
Thereby certify that the information given above is t	rue and complete to the best of my knowledge and u	understand that pursuant to NMOCD rules and
regulations all operators are required to report and/o public health or the environment. The acceptance of	r file certain release notifications and perform correct a C-141 report by the NMOCD marked as "Final R	tenort" does not relieve the operator of liability
should their operations have failed to adequately inv or the environment. In addition, NMOCD acceptance	estigate and remediate contamination that pose a the re of a C-141 report does not relieve the operator of	reat to ground water, surface water, human health responsibility for compliance with any other
federal, state, or local laws and/or regulations.		SEDVATION DIVISION
1 in the		<u>SERVATION DIVISION</u>
Signature Afer 7 Junto	Approved by District Supervis	ian h
Printed Name: Mare L Neathe	w/m	· · · · · · · · · · · · · · · · · · ·
Title Operation 5 Manager	Approval Date:	Espiration Date:
H-mail Address: Mare . Neather Melosa	Explorations of Approval:	Attached
Date: 7/2/12 Phone: 4	2-57-5432	
* Attach Additional Slicets If Necessary		
ì		

ł

.

APPENDIX B GENERAL SITE DIAGRAM

APPENDIX C SITE RANKING INFORMATION

.

.

.

GUIDELINES

.

FOR

REMEDIATION

١.

.

.

Ň

OF

LEAKS, SPILLS AND RELEASES

(AUGUST 13, 1993)

New Mexico Oil Conservation Division 1220 S. ST. FRANCIS DR. Santa Fe, New Mexico 87505

TABLE OF CONTENTS

NOTICE OF LEAK, SPILL OR RELEASE

INTRODUCTION

I.

Α. RESPONSIBLE PARTY AND LOCAL CONTACT в. FACILITY C. 1 TIME OF INCIDENT DISCHARGE EVENT D. Ε. TYPE OF DISCHARGE F. QUANTITY SITE CHARACTERISTICS G. IMMEDIATE CORRECTIVE ACTIONS H. II. INITIAL RESPONSE ACTIONS Α. SOURCE ELIMINATION AND SITE SECURITY в. CONTAINMENT C. SITE STABILIZATION III. SITE ASSESSMENT GENERAL SITE CHARACTERISTICS Α. 1. Depth To Ground Water 2. Wellhead Protection Area 3. Distance To Nearest Surface Water Body SOIL/WASTE CHARACTERISTICS в. 1. Highly Contaminated/Saturated Soils Unsaturated Contaminated Soils 2. C. GROUND WATER QUALITY IV. SOIL AND WATER REMEDIATION ACTION LEVELS Α. SOILS 1. Highly Contaminated/Saturated Soils

- 2. Unsaturated Contaminated Soils
 - a. <u>Ranking Criteria</u>
 - b. <u>Recommended Remediation Level</u>
- B. GROUND WATER

v.

VI.

SOIL AND WATER SAMPLING PROCEDURES

- A. HIGHLY CONTAMINATED OR SATURATED SOILS
 - 1. Physical Observations
- B. UNSATURATED CONTAMINATED SOILS
 - 1. Soil Sampling Procedures for Headspace Analysis
 - 2. Soil Sampling Procedures For Laboratory Analysis
 - a. <u>Sampling Procedures</u>
 - b. <u>Analytical methods</u>
- C. GROUND WATER SAMPLING
 - 1. Monitor Well Installation/Location
 - 2. Monitor Well Construction
 - 3. Monitor Well Development
 - 4. Sampling Procedures
 - 5. Ground Water laboratory Analysis
 - a. Analytical Methods

REMEDIATION

- A. SOIL REMEDIATION
 - 1. Contaminated Soils
 - 2. Soil Management Options
 - a. <u>Disposal</u>
 - b. Soil Treatment and Remediation Techniques
 - i. Landfarming
 - ii. Insitu Soil Treatment
 - iii. Alternate Methods

- B. GROUND WATER REMEDIATION
 - 1. Remediation Requirements
 - a. Free Phase Contamination
 - b. Dissolved Phase Contamination
 - c. <u>Alternate Methods</u>

VII. <u>TERMINATION OF REMEDIAL ACTION</u>

- A. SOIL
- B. GROUND WATER
- VIII. FINAL CLOSURE
- IX. <u>FINAL REPORT</u>

.

INTRODUCTION

The following document is to be used as a <u>guide</u> on all federal, state and fee lands when remediating contaminants resulting from leaks, spills and releases of oilfield wastes or products. The New Mexico Oil Conservation Division (OCD) requires that corrective actions be taken for leaks, spills or releases of any material which has a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property. These guidelines are intended to provide direction for remediation of soils and fresh waters contaminated as a result of leaks, spills or releases of oilfield wastes and products in a manner that assures protection of fresh waters, public health and the environment.

Fresh waters (to be protected) includes the water in lakes, playas, surface waters of all streams regardless of the quality of the water within any given reach, and all underground waters containing 10,000 milligrams per liter (mg/l) or less of total dissolved solids (TDS) except for which, after notice and hearing, it is found that there is no present or reasonably foreseeable beneficial use which would be impaired by contamination of such waters. The water in lakes and playas shall be protected from contamination even though it may contain more than 10,000 mg/l of TDS unless it can be shown that hydrologically connected fresh ground water will not be adversely affected.

Procedures may deviate from the following guidelines if it can be shown that the proposed procedure will either remediate, remove, isolate or control contaminants in such a manner that fresh waters, public health and the environment will not be impacted. Specific constituents and/or requirements for soil and ground water analysis and/or remediation may vary depending on site specific conditions. Deviations from approved plans will require OCD notification and approval.

**** Note:

Notification to OCD of leaks, spills and releases does not relieve an operator of responsibility for compliance with any other federal, state or local law and/or regulation regarding the incident. Other agencies (ie. BLM, Indian Tribes, etc) may also have guidelines or requirements for remediation of leaks spills and releases.

1

I. NOTIFICATION OF LEAK, SPILL OR RELEASE

Leaks, spills and releases of any wastes or products from oilfield operations are required to be reported to the OCD pursuant to OCD Rule 116 (Appendix A) or New Mexico Water Quality Control Commission (WQCC) Regulation 1-203 (Appendix B). Appendix C contains the phone numbers and addresses for reporting incidents to the OCD district and Santa Fe offices. Notification will include all information required under the respective rule or regulation. Below is a description of some of the information required:

A. RESPONSIBLE PARTY AND LOCAL CONTACT

The name, address and telephone number of the person/persons in charge of the facility/operation as well as the owner and/or operator of the facility/operation and a local contact.

B. FACILITY

The name and address of the facility or operation where the incident took place and the legal location listed by quarterquarter, section, township and range, and by distance and direction from the nearest town or prominent landmark so that the exact site location can be readily located on the ground.

C. TIME OF INCIDENT

The date, time and duration of the incident.

D. DISCHARGE EVENT

A description of the source and cause of the incident.

E. TYPE OF DISCHARGE

A description of the nature or type of discharge. If the material leaked, spilled or released is anything other than crude oil, condensate or produced water include its chemical composition and physical characteristics.

F. QUANTITY

The known or estimated volume of the discharge.

G. SITE CHARACTERISTICS

The relevant general conditions prevailing at the site including precipitation, wind conditions, temperature, soil type, distance to nearest residence and population centers and proximity of fresh water wells or watercourse (ie. any river, lake, stream, playa, arroyo, draw, wash, gully or natural or man-made channel through which water flows or has flowed).

H. IMMEDIATE CORRECTIVE ACTIONS

Any initial response actions taken to mitigate immediate threats to fresh waters, public health and the environment.

II. INITIAL RESPONSE ACTIONS

Upon learning of a leak, spill or release of any material which has a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property, the responsible party (RP) should take the following immediate actions unless the actions could create a safety hazard which would result in a threat to personal or public injury:

A. SOURCE ELIMINATION AND SITE SECURITY

The RP should take the appropriate measures to stop the source of the leak, spill or release and limit access to the site as necessary to reduce the possibility of public exposure.

B. CONTAINMENT

Once the site is secure, the RP should take steps to contain the materials leaked, spilled or released by construction of berms or dikes, the use of absorbent pads or other containment actions to limit the area impacted by the event and prevent potential fresh water contaminants from migrating to watercourses or areas which could pose a threat to public health and safety.

C. SITE STABILIZATION

After containment, the RP should recover any products or wastes which can be physically removed from the surface within the containment area. The disposition of all wastes or products removed from the site must be approved by the OCD.

III. SITE ASSESSMENT

Prior to final closure (Section VIII), soils into which nonrecoverable products or wastes have infiltrated and which have a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property should be assessed for their potential environmental impacts and remediated according to the procedures contained in the following sections. Assessment results form the basis of any required remediation. Sites will be assessed for severity of contamination and potential environmental and public health threats using a risk based ranking system.

The following characteristics should be determined in order to evaluate a sites potential risks, the need for remedial action and, if necessary, the level of cleanup required at the site:

A. GENERAL SITE CHARACTERISTICS

1. Depth To Ground Water

The operator should determine the depth to ground water at each site. The depth to ground water is defined as the vertical distance from the lowermost contaminants to the seasonal high water elevation of the ground water. If the exact depth to ground water is unknown, the ground water depth can be estimated using either local water well information, published regional ground water information, data on file with the New Mexico State Engineer Office or the vertical distance from adjacent ground water or surface water.

2. Wellhead Protection Area

The operator should determine the horizontal distance from all water sources including private and domestic water sources. Water sources are defined as wells, springs or other sources of fresh water extraction. Private and domestic water sources are those water sources used by less than five households for domestic or stock purposes.

3. Distance To Nearest Surface Water Body

The operator should determine the horizontal distance to all downgradient surface water bodies. Surface water bodies are defined as perennial rivers, streams, creeks, irrigation canals and ditches, lakes, ponds and playas.

B. SOIL/WASTE CHARACTERISTICS

Soils/wastes within and beneath the area of the leak, spill or release should be evaluated to determine the type and extent of contamination at the site. In order to assess the level of contamination, observations should be made of the soils at the surface and samples of the impacted soils should be taken in the leak, spill or release area. Observations should note whether previous leaks, spills or releases have occurred at the site. Additional samples may be required to completely define the lateral and vertical extent of contamination. Soil samples should be obtained according to the sampling procedures in Sections V.A. and V.B. This may be accomplished using a backhoe, drill rig, hand auger, shovel or other means.

Initial assessment of soil contaminant levels is not required if an operator proposes to determine the final soil contaminant concentrations after a soil removal or remediation pursuant to section VI.A.

Varying degrees of contamination described below may co-exist at an individual site. The following sections describe the degrees of contamination that should be documented during the assessment of the level of soil contamination:

1. Highly Contaminated/Saturated Soils

Highly contaminated/saturated soils are defined as those soils which contain a free liquid phase or exhibit gross staining.

2. Unsaturated Contaminated Soils

Unsaturated contaminated soils are defined as soils which are not highly contaminated/saturated, as described above, but contain benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH) or other potential fresh water contaminants unique to the leak, spill or release. Action levels and sampling and analytical methods for determining contaminant concentrations are described in detail in Sections IV. and V.

* * * * (NOTE: Soils contaminated as a result of spills, leaks or releases of non-exempt wastes must be evaluated for all RCRA Subtitle C hazardous waste characteristics. The above definitions apply only to oilfield contaminated soils which are exempt from federal RCRA Subtitle C hazardous waste provisions and nonexempt oilfield contaminated soils which are characteristically nonhazardous according to RCRA Subtitle C Any nonexempt contaminated soils which are regulations. determined to be characteristically hazardous cannot be remediated using this guidance document and will be referred to the New Mexico Environment Department Hazardous Waste Program.)

C. GROUND WATER QUALITY

If ground water is encountered during the soil/waste characterization of the impacted soils, a sample should be obtained to assess the incidents potential impact on ground water quality. Ground water samples should be obtained using the sampling procedures in Section V.C. Monitor wells may be required to assess potential impacts on ground water and the extent of ground water contamination, if there is a reasonable probability of ground water contamination based upon the extent and magnitude of soil contamination defined during remedial activities.

IV. SOIL AND WATER REMEDIATION ACTION LEVELS

A. SOILS

The sections below describe the OCD's recommended remediation action levels for soils contaminated with petroleum hydrocarbons. Soils contaminated with substances other than petroleum hydrocarbons may be required to be remediated based upon the nature of the contaminant and it's potential to impact fresh waters, public health and the environment.

1. Highly Contaminated/Saturated Soils

All highly contaminated/saturated soils should be remediated insitu or excavated to the maximum extent practicable. These soils should be remediated using techniques described in Section VI.A to the contaminant specific level listed in Section IV.A.2.b.

2. Unsaturated Contaminated Soils

The general site characteristics obtained during the site assessment (Section III.A.) will be used to determine the appropriate soil remediation action levels using a risk based approach. Soils which are contaminated by petroleum constituents will be scored according to the ranking criteria below to determine their relative threat to public health, fresh waters and the environment.

a. Ranking Criteria

<u>Depth To Ground Water</u>	<u>Ranking Score</u>
<50 feet	20
50 - 99	10
>100	0

Wellhead Protection Area

<1000 feet from a water source,or; <200 feet from private domestic water source Yes 20 No 0

Distance To Surface Water Body

<200 h	orizontal feet	20
200 -	1000 horizontal feet	10
>1000	horizontal feet	0

b. <u>Recommended Remediation Action Level</u>

The total ranking score determines the degree of remediation that may be required at any given site. The total ranking score is the sum of all four individual ranking criteria listed in Section IV.A.2.a. The table below lists the remediation action level that may be required for the appropriate total ranking score.

(NOTE: The OCD retains the right to require remediation to more stringent levels than those proposed below if warranted by site specific conditions (ie. native soil type, location relative to population centers and future use of the site or other appropriate site specific conditions.)

	<u>Tota</u>	<u>l Ranking Score</u>	
	<u>>19</u>	<u>10 - 19</u>	<u>0 - 9</u>
<u>Benzene(ppm)*</u>	10	10	10
BTEX (ppm) *	50	50	50

TPH(ppm)**10010005000*A field soil vapor headspace measurement (Section
V.B.1) of 100 ppm may be substituted for a
laboratory analysis of the Benzene and BTEX
concentration limits.

** The contaminant concentration for TPH is the concentration above background levels.

B. GROUND WATER

Contaminated ground water is defined as ground water of a present or foreseeable beneficial use which contains free phase products, dissolved phase volatile organic constituents or other dissolved constituents in excess of the natural background water quality. Ground water contaminated in excess of the WQCC ground water standards or natural background water quality will require remediation.

V. SOIL AND WATER SAMPLING PROCEDURES

Below are the sampling procedures for soil and ground water contaminant investigations of leaks, spills or releases of RCRA Subtitle C exempt oil field petroleum hydrocarbon wastes. Leaks, spills or releases of non-exempt RCRA wastes must be tested to demonstrate that the wastes are not characteristically hazardous according to RCRA regulations. Sampling for additional constituents may be required based upon the nature of the contaminant which was leaked, spilled or released.

A. HIGHLY CONTAMINATED OR SATURATED SOILS

The following method is used to determine if soils are highly contaminated or saturated:

1. Physical Observations

Study a representative sample of the soil for observable free petroleum hydrocarbons or immiscible phases and gross staining. The immiscible phase may range from a free hydrocarbon to a sheen on any associated aqueous phase. A soil exhibiting any of these characteristics is considered highly contaminated or saturated.

B. UNSATURATED CONTAMINATED SOILS

The following methods may be used for determining the magnitude of contamination in unsaturated soils:

1. Soil Sampling Procedures for Headspace Analysis

A headspace analysis may be used to determine the total volatile organic vapor concentrations in soils (ie. in lieu of a laboratory analysis for benzene and BTEX but not in lieu of a TPH analysis). Headspace analysis procedures should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD procedures are as follows:

a) Fill a 0.5 liter or larger jar half full of sample and seal the top tightly with aluminum foil or fill a one quart zip-lock bag one-half full of sample and seal the top of the bag leaving the remainder of the bag filled with air.

- b) Ensure that the sample temperature is between 15 to 25 degrees Celsius (59-77 degrees Fahrenheit).
- c) Allow aromatic hydrocarbon vapors to develop within the headspace of the sample jar or bag for 5 to 10 minutes. During this period, the sample jar should be shaken vigorously for 1 minute or the contents of the bag should be gently massaged to break up soil clods.
- d) If using a jar, pierce the aluminum foil seal with the probe of either a PID or FID organic vapor meter (OVM), and then record the highest (peak) measurement. If using a bag, carefully open one end of the bag and insert the probe of the OVM into the bag and re-seal the bag around the probe as much as possible to prevent vapors from escaping. Record the peak measurement. The OVM must be calibrated to assume a benzene response factor.

2. Soil Sampling Procedures For Laboratory Analysis

a. <u>Sampling Procedures</u>

Soil sampling for laboratory analysis should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD soil sampling procedures and laboratory analytical methods are as follows:

- i) Collect samples in clean, air-tight glass jars supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier.
- ii) Label the samples with a unique code for each sample.
- iii) Cool and store samples with cold packs or on ice.
- iv) Promptly ship sample to the lab for analysis following chain of custody procedures.
- v) All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.

b. <u>Analytical Methods</u>

All soil samples must be analyzed using EPA methods, or by other OCD approved methods and must

be analyzed within the holding time specified by the method. Below are laboratory analytical methods commonly accepted by OCD for analysis of soil samples analyzed for petroleum related constituents. Additional analyses may be required if the substance leaked, spilled or released has been anything other than petroleum based fluids or wastes.

i) Benzene, toluene, ethylbenzene and xylene

EPA Method 602/8020

- ii) Total Petroleum Hydrocarbons
 - EPA Method 418.1, or; - EPA Method Modified 8015

C. GROUND WATER SAMPLING

If an investigation of ground water quality is deemed necessary, it should be conducted according to OCD approved industry standards or other OCD-approved procedures. The following methods are standard OCD accepted methods which should be used to sample and analyze ground water at RCRA Subtitle C exempt sites (Note: The installation of monitor wells may not be required if the OCD approves of an alternate ground water investigation or sampling technique):

1. Monitor Well Installation/Location

One monitor well should be installed adjacent to and hydrologically down-gradient from the area of the leak, spill or release to determine if protectable fresh water has been impacted by the disposal activities. Additional monitor wells, located up-gradient and down-gradient of the leak, spill or release, may be required to delineate the full extent of ground water contamination if ground water underlying the leak, spill or release has been found to be contaminated.

2. Monitor Well Construction

- a) Monitor well construction materials should be:
 - i) selected according to industry standards;
 - ii) chemically resistant to the contaminants to be monitored; and
 - iii) installed without the use of glues/adhesives.
- b) Monitor wells should be constructed according to OCD approved industry standards to prevent migration of contaminants along the well casing. Monitor wells should be constructed with a minimum of fifteen

(15) feet of well screen. At least five (5) feet of the well screen should be above the water table to accommodate seasonal fluctuations in the static water table.

3. Monitor Well Development

When ground water is collected for analysis from monitoring wells, the wells should be developed prior to sampling. The objective of monitor well development is to repair damage done to the formation by the drilling operation so that the natural hydraulic properties of the formation are restored and to remove any fluids introduced into the formation that could compromise the integrity of the sample. Monitoring well development is accomplished by purging fluid from the well until the pH and specific conductivity have stabilized and turbidity has been reduced to the greatest extent possible.

4. Sampling Procedures

Ground water should be sampled according to OCD accepted standards or other OCD approved methods. Samples should be collected in clean containers supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier. Samples for different analyses require specific types of containers. The laboratory can provide information on the types of containers and preservatives required for sample collection. The following procedures are accepted by OCD as standard sampling procedures:

- a) Monitor wells should be purged of a minimum of three well volumes of ground water using a clean bailer prior to sampling to ensure that the sample represents the quality of the ground water in the formation and not stagnant water in the well bore.
- b) Collect samples in appropriate sample containers containing the appropriate preservative for the analysis required. No bubbles or headspace should remain in the sample container.
- c) Label the sample containers with a unique code for each sample.
- d) Cool and store samples with cold packs or on ice.
- e) Promptly ship sample to the lab for analysis following chain of custody procedures.
- f) All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.
- 5. Ground Water Laboratory Analysis

Samples should be analyzed for potential ground water contaminants contained in the waste stream, as defined by the WQCC Regulations. All ground water samples must be analyzed using EPA methods, or by other OCD approved methods and must be analyzed within the holding time specified by the method. Below are OCD accepted laboratory analytical methods for analysis of ground water samples analyzed for petroleum related constituents. Additional analyses may be required if the substance leaked, spilled or release has been anything other than a petroleum based fluid or waste.

a. Analytical Methods

i.) Benzene, Toluene, Ethylbenzene and Xylene

- EPA Method 602/8020

ii.) Major Cations and Anions

Various EPA or standard methods

iii.) Heavy Metals

_

- EPA Method 6010, or;
- Various EPA 7000 series methods

iv.) Polynuclear Aromatic Hydrocarbons

- EPA Method 8100

VI. <u>REMEDIATION</u>

The following discussion summarizes recommended techniques for remediation of contaminated soil and ground water as defined in Section IV.A. and IV.B. OCD approval for remediation of an individual leak, spill or release site is not required if the company is operating under an OCD approved spill containment plan. All procedures which deviate from the companies spill containment plan must be approved by OCD.

A. SOIL REMEDIATION

When RCRA Subtitle C exempt or RCRA nonhazardous petroleum contaminated soil requires remediation, it should be remediated and managed according to the criteria described below or by other OCD approved procedures which will remove, treat, or isolate contaminants in order to protect fresh waters, public health and the environment.

In lieu of remediation, OCD may accept an assessment of risk which demonstrates that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh waters, public health and the environment.

1. Contaminated Soils

Highly contaminated/saturated soils and unsaturated contaminated soils exceeding the standards described in Section IV.A. should be either:

- a) Excavated from the ground until a representative sample from the walls and bottom of the excavation is below the contaminant specific remediation level listed in Section IV.A.2.b or an alternate approved remediation level, or;
- b) Excavated to the maximum depth and horizontal extent practicable. Upon reaching this limit a sample should be taken from the walls and bottom of the excavation to determine the remaining levels of soil contaminants, or;
- c) Treated in place, as described in Section VI.A.2.b.ii. - Treatment of Soil in Place, until a representative sample is below the contaminant specific remediation level listed in Section IV.A.2.b, or an alternate approved remediation level, or;
- d) Managed according to an approved alternate method.

2. Soil Management Options

All soil management options must be approved by OCD. The following is a list of options for either on-site

treatment or off-site treatment and/or disposal of contaminated soils:

a. <u>Disposal</u>

Excavated soils may be disposed of at an off-site OCD approved or permitted facility.

- b. Soil Treatment and Remediation Techniques
 - i. Landfarming

Onetime applications of contaminated soils may be landfarmed on location by spreading the soil in an approximately six inch lift within a bermed area. Only soils which do not contain free liquids can be landfarmed. The soils should be disced regularly to enhance biodegradation of the contaminants. If necessary, upon approval by OCD, moisture and nutrients may be added to the soil to enhance aerobic biodegradation.

In some high risk areas an impermeable liner may be required to prevent leaching of contaminants into the underlying soil.

Landfarming sites that will receive soils from more than one location are considered centralized sites and must be approved separately by the OCD prior to operation.

ii. Insitu Soil Treatment

Insitu treatment may be accomplished using vapor venting, bioremediation or other approved treatment systems.

iii. Alternate Methods

The OCD encourages alternate methods of soil remediation including, but not limited to, active soil aeration, composting, bioremediation, solidification, and thermal treatment.

B. GROUND WATER REMEDIATION

1. Remediation Requirements

Ground water remediation activities will be reviewed and approved by OCD on a case by case basis prior to commencement of remedial activities. When contaminated ground water exceeds WQCC ground water standards, it should be remediated according to the criteria described below.

a. Free Phase Contamination

Free phase floating product should be removed from ground water through the use of skimming devices, total-fluid type pumps, or other OCD-approved methods.

b. Dissolved Phase Contamination

Ground water contaminated with dissolved phase constituents in excess of WQCC ground water standards can be remediated by either removing and treating the ground water, or treating the ground water in place. If treated waters are to be disposed of onto or below the ground surface, a discharge plan must be submitted and approved by OCD.

c. <u>Alternate Methods</u>

The OCD encourages other methods of ground water remediation including, but not limited to, air sparging and bioremediation. Use of alternate methods must be approved by OCD prior to implementation.

VII. TERMINATION OF REMEDIAL ACTION

Remedial action may be terminated when the criteria described below have been met:

A. SOIL

Contaminated soils requiring remediation should be remediated so that residual contaminant concentrations are below the recommended soil remediation action level for a particular site as specified in Section IV.A.2.b.

If soil action levels cannot practicably be attained, an evaluation of risk may be performed and provided to OCD for approval showing that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh water, public health and the environment.

B. GROUND WATER

A ground water remedial action may be terminated if all recoverable free phase product has been removed, and the concentration of the remaining dissolved phase contaminants in the ground water does not exceed New Mexico WQCC water quality standards or background levels. Termination of remedial action will be approved by OCD upon a demonstration of completion of remediation as described in above.

VIII.FINAL CLOSURE

Upon termination of any required remedial actions (Section VII.) the area of a leak, spill or release may be closed by backfilling any excavated areas, contouring to provide drainage away from the site, revegetating the area or other OCD approved methods.

IX. FINAL REPORT

Upon completion of remedial activities a final report summarizing all actions taken to mitigate environmental damage related to the leak, spill or release will be provided to OCD for approval. APPENDIX D PHOTOGRAPHIC DOCUMENTATION

1

APPENDIX E MATERIAL SAFETY DATA SHEETS

.

.

.

ì

.

NUGREEN SPECIALTY, INC. MATERIAL SAFETY DATA SHEET

NUGREEN SPECIALTY - SB-1

Effective Date: 1/03/04 Name and Address: Revised: 01/03/04 Phone: (248)-330-9029 Emergency Phone: CHEMTREC (800)-424-9300

.

NUGREEN SPECIALTY, INC. 990 HIGHWAY 287 N, STE. 106 MANSFIELD, TX. 76063

Chemical Name:NOT APPLICABLESynonyms:NONED.O.T. Hazard Class:PRODUCT IS NOT DOT REGULATEDD.O.T. Shipping Name:PRODUCT IS NOT DOT REGULATEDFormula:SEE SECTION IIChemical Family:N.A.ID No.:NONENFPA Profile:Health 1; Flammability 0; Reactivity 0

A. Hazardous Ingredients		
-	%	TLV
NONE KNOWN	N.A.	N.A.
B. Other Ingredients		
-	%*	TLV
INGREDIENTS NOT PRECISELY IDENTIFIED ARE		
NON-HAZARDOUS & PROPRIETARY.		
INGREDIENTS OF <1% HAVE BEEN ADDED TO A		
NON-HAZARDOUS LIQUID ORGANIC SUBSTRATE		
ACTIVE COMPONENTS: PROPRIETARY	>15%	NONE ESTAB.
ENZYME MIXTURE	<5%	NONE ESTAB.
WATER. CAS#7732-18-5	<85%	NONE ESTAB.

Boiling Point:	~212°F	Specific Gravity:	~1.0
Percent Volatile (volume):	N.A.	pH (undiluted):	7.5-9.5
Vapor Pressure (mm Hg):	N.A.	Solubility in Water:	99%
Vapor Density (air=1):	N.A.	Evaporation Rate (water=1):	<1.0
Freezing Point	~0°F	Viscosity:	Similar to Water

Appearance and Odor: DARK BROWN/BLACK LIQUID, MILD EARTHY ODOR.

. .

NUGREEN SPECIALTY, INC. MATERIAL SAFETY DATA SHEET

NUGREEN SPECIATLY - SB-1

Flash Point (method used): NOT APPLICABLE Flammable Limits in Air (lower): N.A.

(upper): N.A.

Extinguishing Media: SOLUTION IS NOT FLAMMABLE. IF INVOLVED IN A FIRE, USE WATER.

Special Fire Fighting Procedures: NONE. PRODUCT WILL NOT BURN.

Unusual Fire or Explosion Hazards:

NONE. PRODUCT WILL NOT BURN.

A. TLV and source: N.A.
B. Effects of a Single Overexposure by

Ingestion: MAY CAUSE SICKNESS IF INGESTED IN LARGE QUANTITIES.
Inhalation: LOW ORDER OF TOXICITY. MAY CAUSE MILD DISCOMFORT.
Skin Contact: SLIGHT REDNESS ON HANDS AND FORARMS IF INDIVIDUAL HAS HISTORY OF DERMAL ALLERGIC REACTIONS.
Eye Contact: MAY CAUSE MILD TRANSIENT IRRITATION.

C. Cancer Statement: THIS PRODUCT (OR ANY COMPONENT AT A CONCENTRATION OF 0.1% OR GREATER) IS NOT LISTED BY THE NTP, LARC, OSHA OR EPA AS A CARCINOGEN. IT ALSO CONTAINS NO KNOWN TERATOGENS, REPRODUCTIVE TOXINS OR SENSITIZERS.

D. Emergency and First Aid Procedure for

1. Ingestion:	GIVE TWO GLASSES OF WATER. DO NOT INDUCE
	VOMITING GET PROMPT MEDICAL ATTENTION.
2. Inhalation:	IMMEDIATELY REMOVE VICTIM FROM EXPOSURE.
	ADMINISTER ARTIFICIAL RESPIRATION IF BREATHING HAS
	STOPPED. KEEP AT REST. CALL FOR PROMPT MEDICAL
	ATTENTION.

- 3. Skin Contact: WASH WITH LARGE AMOUNTS OF WATER; USE SOAP IF AVAILABLE. IF IRRITATION PERSISTS, SEEK MEDICAL ATTENTION.
- 4. Eye Contact: IMMEDIATELY FLUSH WITH LARGE AMOUNTS OF WATER UNTIL IRRITATION SUBSIDES. IF IRRITATION PERSISTS, GET MEDICAL ATTENTION.

NUGREEN SPECIALTY, INC. MATERIAL SAFETY DATA SHEET

NUGREEN SPECIALTY - SB-1

Respiratory Protection:	NOT NORMALLY REQUIRED. IF MISTED BY HEAT
	AGITATION OR SPRAY, USE A MIST RESPIRATOR
	APPROVED BY NIOSH. DO NOT USE SINGLE-USE TYPE.
Ventilation:	VENTILATION SHOULD BE PROVIDED TO CONTROL
	WORKER EXPOSURES AND PREVENT HEALTH RISK;
Protective Gloves:	CHEMICAL RESISTANT GLOVES.
Eye Protection:	GOGGLES OR SAFETY GLASSES WITH SIDE SHIELDS.
Other Protective Equipment:	EYEWASH STATION IN AREA OF USE.

Product Stability:	STABLE
Conditions to Avoid:	STRONG ACIDS OR ALKALI COMPOUNDS MAY INACTIVATE
	BIO CULTURES.
Incompatibility:	STRONG ACIDS OR ALKALI COMPOUNDS
Hazard Combustion or	
Decomposition Products:	N.A.
Hazardous Polymerization:	WILL NOT OCCUR.

A. Water Spill: PREVENT ADDITIONAL DISCHARGE OF MATERIAL, IF POSSIBLE TO DO SO WITHOUT HAZARD. SINCE N-P-K IS A FERTILIZER, IT MAY PROMOTE ENTROPHICATION IN WATERWAYS. CONSULT AN EXPERT ON DISPOSAL OF RECOVERED MATERIAL, AND ENSURE CONFORMITY TO ALL FEDERAL, STATE, AND LOCAL DISPOSAL REGULATIONS.

B. Land Spill: PREVENT ADDITIONAL DISCHARGE OF MATERIAL, IF POSSIBLE TO DO SO WITHOUT HAZARD. FOR SMALL SPILLS, IMPLEMENT CLEANUP PROCEDURES; FOR LARGE SPILLS, IMPLEMENT CLEANUP PROCEDURES AND, IF IN PUBLIC AREA, ADVISE AUTHORITIES. PREVENT LIQUID FROM ENTERING SEWERS, WATERCOURSES, OR LOW AREAS. CONTAIN SPILLED LIQUID WITH SAND OR EARTH. RECOVER BY PUMPING OR WITH A SUITABLE ABSORBENT. CONSULT AN EXPERT ON DISPOSAL OF RECOVERED MATERIAL AND ENSURE CONFORMITY TO ALL FEDERAL, STATE, AND LOCAL DISPOSAL REGULATIONS.
NUGREEN SPECIALTY, INC. MATERIAL SAFETY DATA SHEET

NUGREEN SPECIALTY - SB-1

A. Handling and

Storage: KEEP CONTAINER CLOSED. BOTH OPEN AND HANDLE CONTAINERS WITH CARE. STORE IN A COOL, WELL VENTILATED PLACE AWAY FROM INCOMPATIBLE MATERIALS.

> STORAGE TEMPERATURE: 0°F MIN TO 180°F MAX. LOADING TEMPERATURE: 0°F MIN TO 180°F MAX. STORAGE PRESSURE: ATMOSPHERIC

B. Other Precautions: NONE

PLEASE CALL THE NON-EMERGENCY TELEPHONE NUMBER ON PAGE ONE IF THIS INFORMATION IS REQUIRED.

PLEASE CALL THE NON-EMERGENCY TELEPHONE NUMBER ON PAGE ONE IF THIS INFORMATION IS REQUIRED.

The data contained in this Material Safety Data Sheet has been prepared based upon an evaluation of the ingredients contained in the product, their concentration in the product and potential interactions. The information is offered in good faith and is believed to be accurate. It is furnished to the customer who is urged to study it carefully to become aware of hazards, if any, in the storage, handling, use and disposal of the product; and to insure their employees are properly informed and advised of all safety precautions required. The information is furnished for compliance with the "Occupational Safety and Health Act" of 1970, the "Hazards Communication Act" of 1983 as well as various other Federal, State and Local regulations. Use or dissemination of all or part of this information for any other purpose is illegal.

APPENDIX F ANALYTICAL LABORATORY RESULTS

Analytical Report 452891

for

Environmental Compliance Associates

Project Manager: Lloyd Stafford 1112-02 and 03

28-NOV-12

3

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ00989): Arizona (AZ0758)

28-NOV-12

Project Manager: Lloyd Stafford **Environmental Compliance Associates** P.O.Box 770005 Houston, TX 77215

Reference: XENCO Report No: 452891 1112-02 and 03 Project Address: Jal, NM

Lloyd Stafford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 452891. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 452891 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Nul Ctr

Nicholas Straccione Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 452891

Environmental Compliance Associates, Houston, TX

1112-02 and 03 .

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
LJ #1	S	11-21-12 08:55	6 In	452891-001
LJ #2	S	11-21-12 09:00	6 In	452891-002
LJ # BG	S	11-21-12 09:06	6 In	452891-003
CJ #1	S	11-21-12 07:47	2.5 In	452891-004
CJ #2	S	11-21-12 07:53	6 In	452891-005
CJ #6	S	11-21-12 08:00	6 In	452891-006
CJ #4	S	11-21-12 08:02	6 In	452891-007
CJ # BG	S	11-21-12 08:10	6 In	452891-008

Client Name: Environmental Compliance Associates Project Name: 1112-02 and 03

Project ID: Work Order Number: 452891 Report Date: 28-NOV-12 Date Received: 11/21/2012

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

_	0.5	
l		
	V	
_	تعلما	

Contact: Lloyd Stafford

Project Id:

Certificate of Analysis Summary 452891 Environmental Compliance Associates, Houston, TX

Project Name: 1112-02 and 03

Date Received in Lab: Wed Nov-21-12 11:45 am Report Date: 28-NOV-12

Project Location: Jaj NM					Keport Date: 2	71-A0N-0	
					Project Manager: N	Vicholas Straccione	
	Lab Id:	452891-001	452891-002	452891-003	452891-004	452891-005	452891-006
2 - -	Field Id:	LJ #1	LJ #2	LJ # BG	CJ #1	CJ #2	CJ #6
Anatysis Kequesiea	Depth:	6- In	6- In	6- In	2.5- In	6- In	6- In
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Nov-21-12 08:55	Nov-21-12 09:00	Nov-21-12 09:06	Nov-21-12 07:47	Nov-21-12 07:53	Nov-21-12 08:00
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-23-12 15:30	Nov-23-12 16:04	Nov-23-12 16:38	Nov-23-12 16:55	Nov-23-12 17:13	Nov-23-12 18:04
SUB: E871002	Analyzed:	Nov-23-12 15:30	Nov-23-12 16:04	Nov-23-12 16:38	Nov-23-12 16:55	Nov-23-12 17:13	Nov-23-12 18:04
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		8940 124	10800 113	444 108	353 1.07	117 0.984	119 1.09
Percent Moisture	Extracted:						
	Analyzed:	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		19.2 1.00	17.8 1.00	1.72 1.00	2.98 1.00	6.11 1.00	5.09 1.00
TPH By SW8015B Mod	Extracted:	Nov-26-12 09:00	Nov-26-12 09:00	Nov-26-12 09:00	Nov-26-12 09:00	Nov-26-12 09:00	Nov-26-12 09:00
	Analyzed:	Nov-26-12 18:38	Nov-26-12 16:10	Nov-26-12 16:39	Nov-26-12 19:07	Nov-26-12 14:05	Nov-26-12 23:40
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C10 Gasoline Range IIydrocarbons		368 18.5	18.8 18.2	ND 15.2	ND 15.4	ND 15.9	ND 15.8
C10-C28 Diesel Range Hydrocarbons		3030 18.5	604 18.2	ND 15.2	3950 15.4	1750 15.9	190 15.8

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use in interpretations and results expressed throughout this analytical report represent the best judgment of XENO Laboratories XENO Laboratories assumes no responsibility and makes no warrary to the end use of the data bretsy presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

And Ch

Nicholas Straccione

Project Manager

Page 5 of 16

Certificate of Analysis Summary 452891 Environmental Compliance Associates, Houston, TX

Project Name: 1112-02 and 03

R

Praiect Id:		Project N	vame: 1112-02 and 03		
Contract: I loved Stafford				Date Received in Lab: Wed Nov-21-12 11:45 am	
Colligati, Lioyu Statiotu Duojaat Laastigan, Jaj NM				Report Date: 28-NOV-12	
r oject notation. Jat, Mitt				Project Manager: Nicholas Straccione	
	Lab Id:	452891-007	452891-008		
A sector D second	Field Id:	CJ #4	CJ # BG		
naisanhay sistinuy	Depth:	6- In	6- In		
	Matrix:	SOIL	SOIL		
	Sampled.	Nov-21-12 08:02	Nov-21-12 08:10		
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-23-12 18:21	Nov-23-12 18:38		
SUB: E871002	Analyzed:	Nov-23-12 18:21	Nov-23-12 18:38		
	Units/RL:	mg/kg RL	mg/kg RL		
Chloride		144 1.08	16.0 0.951		
Percent Moisture	Extracted:				`
	Analyzed:	Nov-21-12 12:30	Nov-21-12 12:30		
	Units/RL:	% RL	% RL		
Percent Moisture		2.82 1.00	1.38 1.00		
TPH By SW8015B Mod	Extracted:	Nov-26-12 09:00	Nov-26-12 09:00		
	Analyzed:	Nov-26-12 15:04	Nov-26-12 15:37		
	Units/RL:	mg/kg RL	mg/kg RL		
C6-C10 Gasoline Range Hydrocarbons	-	ND 15.4	ND 15.1		
C10-C28 Dicscl Range Hydrocarbons		2900 15.4	ND 15.1		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and tensus expressed throughout this analytical export represent the best updament of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our thability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mul CH

Final 1.000

Nicholas Straccione Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

LOQ Limit of Quantitation

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Final 1.000

Project Name: 1112-02 and 03

ork Orders : 452891	, Sample: 452891-005 / SMP	Batch	Project II	D: Soil		
Units: mg/kg	Date Analyzed: 11/26/12 14:05	SUR	ROGATE RE	ECOVERY	STUDY	
ТРН В	y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		87.3	99.5	88	70-135	
o-Terphenyl		45.4	49.8	91	70-135	
Lab Batch #: 901575	Sample: 452891-007 / SMP	Batch	: 1 Matrix:	; Soil	· · · ·	
Units: mg/kg	Date Analyzed: 11/26/12 15:04	SUR	RROGATE RE	ECOVERY S	STUDY	
трн в	y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1 Chlorocatono	Analytes	80.4	00.6		70.125	
o-Terphenyl		49.4	99.0 49.8	90	70-135	
- 1 D . 1 001575	5 453801.009 / SMD	49.0	47.0	<u> </u>	70-135	
Lab Batch #: 901575	Sample: 452891-0087 SMP	Batch	POCATE DI	Soll	STUDY	
Units: mg/kg	Date Analyzed: 11/26/12 15:37					
ТРН В	y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		90.6	99.6	91	70-135	
o-Terphenyl	·	44.7	49.8	90	70-135	
Lab Batch #: 901575	Sample: 452891-002 / SMP	Batch	: 1 Matrix	: Soil)	
Units: mg/kg	Date Analyzed: 11/26/12 16:10	SUF	ROGATE RI	ECOVERY	STUDY	
ТРН В	y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		88.1	99.5	89	70-135	
o-Ternhenvl						
• - •- ,		49.2	49.8	99	70-135	
Lab Batch #: 901575	Sample: 452891-003 / SMP	49.2 Batch	49.8 : 1 Matrix	99 : Soil	70-135	
Lab Batch #: 901575 Units: mg/kg	Sample: 452891-003 / SMP Date Analyzed: 11/26/12 16:39	49.2 Batch SUF	49.8 : 1 Matrix RROGATE RI	99 : Soil ECOVERY S	70-135 STUDY	
Lab Batch #: 901575 Units: mg/kg TPH B	Sample: 452891-003 / SMP Date Analyzed: 11/26/12 16:39 By SW8015B Mod	49.2 Batch SUF Amount Found [A]	49.8 : 1 Matrix RROGATE RI True Amount [B]	99 : Soil ECOVERY (Recovery %R [D]	70-135 STUDY Control Limits %R	Flags
Lab Batch #: 901575 Units: mg/kg TPH B	Sample: 452891-003 / SMP Date Analyzed: 11/26/12 16:39 Sy SW8015B Mod Analytes	49.2 Batch SUF Amount Found [A]	49.8 : 1 Matrix: ROGATE RI True Amount [B]	99 : Soil ECOVERY : Recovery %R [D]	70-135 STUDY Control Limits %R	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: 1112-02 and 03

/ork Orders : 452891	, Sample: 452891-001 / SMP	Batel	Project II	D: Soil		
Units: mg/kg	Date Analyzed: 11/26/12 18:38	SU	RROGATE RI	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod Analytes	Amount Found [A]	True _. Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		91.6	99.5	92	70-135	
o-Terphenyl		45.9	49.8	92	70-135	
Lab Batch #: 901575	Sample: 452891-004 / SMP	Batcl	h: 1 Matrix:	; Soil		
Units: mg/kg	Date Analyzed: 11/26/12 19:07	SU	RROGATE RI	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1 Chloropatana	Analytes	00.2		1~1	70.125	
o-Tembenvl		90.2	499.8	90	70-135	
5 Telphely.	C 1 453901.006 / SMD			(²	70-195	
Lab Batch #: 901575	Sample: 452691-0007 SMP		RROGATE RE	COVERV	STHDV	
Units: mg/kg	Date Analyzed: 11/26/12 23:40					
TPH F	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		88.1	100	88	70-135	
o-Terphenyl		44.2	50.0	88	70-135	<u></u>
Lah Batch #: 901575	Sample: 630401-1-BLK / B	LK Batcl	h: []] Matrix	: Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 11/26/12 12:28	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		92.4	100	92	70-135	
o-Terphenyl		46.3	50.0	93	70-135	
Lab Batch #: 901575	Sample: 630401-1-BKS / B	KS Bate	h: I Matrix	: Solid		
Units: mg/kg	Date Analyzed: 11/26/12 11:25	SU	RROGATE RI	ECOVERY	STUDY	
TPH I	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		00.0		70.125	
I-Chlorooctane		88.3	99.9	88	70-135	
o-rerpnenyi		>3./	50.0	107	/0-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: 1112-02 and 03

Work Orders : 452891	· · ·		Project I	D:		
Lab Batch #: 901575	Sample: 630401-1-BSD / B	SD Bate	h: ¹ Matrix	a:Solid		
Units: mg/kg	Date Analyzed: 11/26/12 11:59	SU	RROGATE R	ECOVERY S	STUDY	
ТРН Е	3y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		85.6	99.6	86	70-135	<u> </u>
o-Terphenyl		51.3	49.8	103	70-135	
Lab Batch #: 901575	Sample: 452960-002 S / M	S Bate	h: 1 Matrix	r:Soil	<u> </u>	
Units: mg/kg	Date Analyzed: 11/26/12 22:41	SU	RROGATE R	ECOVERY S	STUDY	
ТРН Е	3y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		103	100	103	70-135	
o-Terphenyl		56.5	50.1	113	70-135	
Lab Batch #: 901575	Sample: 452960-002 SD / N	MSD Bate	h: 1 Matrix	r: Soil	·	
Units: mg/kg	Date Analyzed: 11/26/12 23:11	SU	RROGATE R	ECOVERY	STUDY	
ТРН Е	3y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		101	99.9	101	70-135	
o-Terphenyl		56.3	50.0	113	70-135	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

	H
	a de la
	W S
_	23

BS / BSD Recoveries

. ال

Work Order #: 452891 Analyst: JOL

Lab Batch ID: 901508

Date Prepared: 11/23/2012 Batch #: 1

Sample: 630351-1-BKS

Project ID: Date Analyzed: 11/23/2012 Matrix: Solid BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Units: mg/kg		BLAN						VECUVE		-	
Inorganic Anions by EPA 300/300.1	Blank Sample Resul IAI	Spike t Added	Blank Spíke Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	<u> </u>	[B]		ē	E	Result [F]	[0]				
Chloride	<1.00	100	105	105	100	105	105	0	80-120	20	
Analyst: KEB	I	Date Prepar	ed: 11/26/20	12			Date A	nalyzed: 1	1/26/2012		
Lab Batch ID: 901575 Sample: 63040	01-1-BKS	Batc	h#: 1					Matrix: S	olid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / B	S NNK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	٨	
TDIT D. CWIGOTED MAA	Blank	Snike	Blank	Blank	Snike	Blank	Blk. Snk		Control	Control	

TPH By SW8015B Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	lci	Ial	E	Result [F]	[G]				
C6-C10 Gasoline Range Hydrocarbons	<50.0	666	910	16	966	905	91	-	70-135	35	
C10-C28 Diesel Range Hydrocarbons	<50.0	999	905	16	996	873	88	4	70-135	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Page 11 of 16

ł

Chloride

Form 3 - MS Recoveries

Flag

Work Order #: 452891 Lab Batch #: 901508 **Project ID:** Date Prepared: 11/23/2012 Analyst: JOL Date Analyzed: 11/23/2012 QC- Sample ID: 452891-001 S Batch #: 1 Matrix: Soil MATRIX / MATRIX SPIKE RECOVERY STUDY Reporting Units: mg/kg Parent Spiked Sample Inorganic Anions by EPA 300 Control Sample Spike Result %R Limits Result Added (C) [D] %R [A] [B] Analytes 8940 12400 21900 105 80-120 Lab Batch #: 901508 Date Analyzed: 11/23/2012 Date Prepared: 11/23/2012 Analyst: JOL QC- Sample ID: 452891-002 S Batch #: 1 Matrix: Soil MATRIX / MATRIX SPIKE RECOVERY STUDY Γ Reporting Units: mg/kg

• • •						
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	10800	11300	22500	104	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries Ì I

Project Name: 1112-02 and 03

Work Order #: 452891

Date Analyzed: 11/26/2012 Lab Batch ID: 901575

QC-Sample ID: 452960-002 S Date Prepared: 11/26/2012

Matrix: Soil KEB -Batch #: Analyst:

Project ID:

Reporting Units: mg/kg		M	ATRIX SPIKI	E / MAT	RIX SPI	KE DUPLICA'	FE RECO	VERY 5	TUDY		
TPH By SW8015B Mod	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Kesult [A]	Added [B]		%K [D]	Added [E]	Kcsult F	%R [G]	~~	%К	%RPD	
C6-C10 Gasoline Range Hydrocarbons	<51.2	1020	1070	105	1020	1070	105	0	70-135	35	
C10-C28 Diesel Range Hydrocarbons	<51.2	1020	1080	106	1020	1090	107	1	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 13 of 16

Sample Duplicate Recovery

Project Name: 1112-02 and 03

Work Order #: 452891

Lab Batch #: 901385 Date Analyzed: 11/21/2012 12:30	Date Prepar	ed: 11/21/2012	2 Anal Mot	Project I lyst: WRU	D:	
QC- Sample ID: 452891-001 D Reporting Units: %	Datti	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture		19.2	19.3	1	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

	<u>.</u>		-+	· · ·	•	:uou_	: 1 (•	γ pλ	NoN		<u>.</u>	əte	1	:uppy	-	N	0	4	2	ø		<u></u>	<u>б</u> -	<u></u>		•		15	
5			rks	· -		· .	·													•	:	•				18	ر م د	eedec	S R	con.
			E	ŀ		:	•		-						2.1		('			•			· • •		2			<u></u>	/arto	202
ng - e	•		Å	·		P	əpə	e ue	se pa		lde-e	ud e	ns è	n-nealD e	Jqms2			÷								Ŭ	lied I	evel Solo	6	eX.
ν L	. jj		·	(pe	brov	de-an	d əı	ie pu	ie Aja	dde	IM S	බොස	ະບຸວມກ	S) selqme	SPIOH			• •	· · · ·						-	Сİ.	ian Bu-G	de e	stic	MM.
ייי ק	spec	data	\neg		1150	ибій	Ś.	6y/	6ú	. M		ມ	· · · · · · · · · · · · · · · · · · · ·	YOOB HA4											-	ê e		Le pu	B	
ol -	ects	≥	<u>⊢⊢</u> h		, 100	רוי~יר ו מ	ſ			in	1.1						•				•	···· ·	2				repo	es a	0	
	Did	lanc	ľ	FC .	PUL	PZ	-L		45	487	. 47	ζ.	461	45 07:	SATAT	<u></u>				• .				. '	÷	影	final	Ë.	lear	·
2	NT is	vel i	•	•					·	<u></u>	÷	•			· .							•				٦ f	e ure after	lecti	0 g	
1	E P	<u>6</u>		•			•					<u> </u>				<u> </u>			•					- • • •	-		la di Jays	မ္မီ	Gle	•
	nda	ays f				· .			·	•			:		•••			- -		'	. <u>.</u>				÷			es an	°.€	.•
	Ste	D	·					•			•	-			•	<u> </u>						-					- heid	hang	And C	
	210	Vorki				•	;		<u></u>				·			<u> </u>		- <u>-</u> -				·			3	ŏ]	vill be	S I .	e Lab Ilass	
	10d	≯ 5			••	•	•	•		۔ ب	÷.	;	·		•		-			$\left \cdot \right $	\square		• •	<u>-</u>	_	Sper	las v	й У	Sec.	
	P2	Ē	+			· .				•	. · ·									\vdash	$\left \right $	· ·		$\frac{1}{2}$	-	ainer	agre	ueste	₹ Ž	, Ajje
	(B)) E	- <u> </u>	·					5	वर्र	1 -	ণ	Y	5194	-01,	~		×	\mathbf{x}	×	$\overline{}$	$\overline{\mathbf{A}}$	X			Sont	ald.	v req	ione ont.	no
18	ا لا	evel	-+									•	•			<u> </u>		-			-	-				otal (ereb	៹៰ ៰៲	pu
$[\tilde{c}]$	18	ē	(st	- L	С	อน "	159.	4. S	201	5 5	:20/	۱	IS19N	้อมอน ม่าสาวา	- 4749								·					Ē.	õ	9 9
1) <u>-</u>	- a D	z	pdd	V I.	xpdd,	,		ż d	-12L (q.d. 1		- ION	8-ARDA	Metals	·	, ·	•	•				•	· ·		e l	<u>.</u>		∛. 	evi
\Box	24	Buy			- · s	apioi	səc	1 d	0 9	cides	eipi	- s	BOc	sebioite	94 D0	[· ·	•			· · ·		F Ø	, ×		<u>Š</u>	َ ع
	121	<u>ک</u>		, C∖	<u>7-7</u>	wid y	de	b b		∴ ∃\		۸E	DA	isiJ-ilū7 :a	20VS	•					- ;			-		휧╞	₹		<u>9</u>	Ce l
	<u>ੂ</u>	(え	5	Ó	30	nS) Ja	IA D	ÅΜ	Hd	A Y E	1.0	ิชอ	OBC			X	\mathbf{x}	X	×	×		~			Ë	1		년 1	ller
<u>خ</u>	ASA	Call		Ĵ	_)	-		. ·		0 <u>7</u> 2	8.	310	8 WIS	গনগর							-				1.			89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	. Soci
Ō	L.	Ĩ		:Jə	чю	ערר	C	S-xb	odqA	с I-3	kpdd	¥ ا	MO	PP TCL	AOV	· .		. •		· · ·			. :	~		ŝ	\$		ξŚ	to E
בן נ	¥.	H is	·	sAC	<u>^</u>	SHON	6	Oxy	н	Si∃:	381	LW-)	(ETE)	a tsi-lin-	I :AOV			-	•••			1				<u>8</u>	ウ		H (A)	ted
		-							•	· ·				VƏLİVƏS	Preser	S.	Ŀ)	-	÷	Ľ,	-	-	=	·		i ai	8.		<u>Sa</u>	umi,
						0		<u>Ч</u>				ŀ.	j. J	ner Type	istro O	0	1	_	1	1).	=	Ξ	Ξ			ΞC	S I		9 8 9 8 9 8	00.
	ē		•			9.9		all fo	RP		.,			her Sizè	letroO	Ě				.:			_		÷	<u>e</u> [ן ל		A bi Bag	
Ĩ		•		Ż		hav		О П	Ë.		Ĩ	L	R	/		1	11	T,	t:L	-	7	-	Ξ		·	she	3), As edla	
	15	2		ľ		must			<u>8</u> .,	Ē	al l			ainers	tno⊃ #		(1) 	Ξ	11	Ξ	=	Ξ	Ξ	•					2 S	
	2	ଧ୍ୟ	_	7		<u>- 8</u>			S S S	ю ш	j j	Ŀ	4	- əliso	Grab	\times	۸		X	×	~	7	*		-		¥ ₹		Ť	
\$ ĒO	-	7	Ê,	5	20	Ē				SAC	clude		\mathbb{R}		XinteM	5	. 11	-	l I	5	Ξ	=	=		•				N03	.
<u>×</u> .	8	6	<u>لا جا</u>	IJ	- e				р В) C	Ē	`.	17		u _u _u _u	=	Ξ,	,tl	35		61.	=	1,	;		e l			<u>~</u> .≕	~
9 0](É	1	nag 1		ŝ	epo Sepo	·	•	te-D	Ō	ΡN		ture			E	Ę	K,	Ŷ.	8	1 E	T.	£			≓ ∞	38		₹ 76	Ū.
ξ Γ	e at	M	Ĕ	1	: 2	ual .	÷	ΰ Ζ	Was	В	e Lal	ľ	igna	e <u>E</u>		- V	s S	د م	1.01	53	8	N,	<u>ک</u>			ate	12		A A	Ē
2	ģ	0	S. L		ŝ	Е.	·	P.O	Ē.	ם 	s		S			୪	Š	٩1,	11	Ē	õ	ŝ	ĝ,	1		<u> </u>			220	S
ב ביו	ous!	2	ປ		Q	8		• ,'	and	AV	L R			En	-	N	4	[J	•	•			•	2					<u> </u>	/ater
	revi	ુર	Z. ທີ		Ś	Į į				Щ Ш)Ls	[7	12	l ild	ate	1		11		:	і . ·					(Lig			33 (I	, K
		<mark>م</mark> ا	¥,			ħ.			EA	GCE	ĭ	ŀ	ų.	San S	ä.	2	1	7	Ξ	-	F	II.	Π.			g		ŀ	20Z	i) fild
		N	A.						Р У	<u>ج</u>	APF		X			=		1	<u> </u>	ļ		•	, 	÷.,	'	Is al	·		Ϋ́ Ϋ́	, Sc
٦Ì	35	٥.	ט ב	la La	3	Buj	Ĺ		R .	CL	.× ¤		5					, : ,				:							S (8) (8) (8)	<u>е</u>
\mathcal{U}	Ţį	2	Ц Ц	ရှိ	C.	grut	÷	•	JST	act								10		·	.) 2	∛		ariou 4), 8	odu
	ļ	2	×.	- zi	g vs ·	NS)				Contr	0		a.				5	6	ŀ		m		બ્ર						3; S S S	, Pr
ĮĮ	lame	-	1	с, С	esuit	K		ricin	gran	'er-C	JLs		Nan			#	#	±1		12	4	2 2	1			tsint:	3		itive.	Lir (A
pan	Sct N		Sta	Ă.	х х	icet		te/P	Pro	_ت ل_م	ial [pler			5	K		 ~	1# ~/	12	5	Ń	·	·	elinc	S.		t Sia	ix:
- 15	_ I -≚		١÷৯	÷.	Ĕ	18 :	Ľ١ 🗄	õ	D.	. 🗗	Ιĕ	l.	ΙE	1 .		1	(I)	f L C	۱Ŋ	y Y)	1 · · · ·	LY	LA			<u>۲</u>	. .		in es	at

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Environmental Compliance Associates	Acceptable Tempera	ature Range: 0 - 6 degC
Date/ Time Received: 11/21/2012 11:45:00 AM	Air and Metal sampl	es Acceptable Range: Ambient
Work Order #: 452891	Temperature Measu	ring device used :
Sample R	eceipt Checklist	Comments
#1 *Temperature of cooler(s)?		5
#2 *Shipping container in good condition?	Ň	/es
#3 *Samples received on ice?	v	/es
#4 *Custody Seals intact on shipping container/ cooler	?	/es
#5 Custody Seals intact on sample bottles?	Ň	/es
#6 *Custody Seals Signed and dated?	Ň	fes
#7 *Chain of Custody present?	•	/es

#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	Yes
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

#8 Sample instructions complete on Chain of Custody?

#11 Chain of Custody agrees with sample label(s)?

#12 Container label(s) legible and intact?

#14 Samples in proper container/ bottle?

#10 Chain of Custody signed when relinquished/ received?

#13 Sample matrix/ properties agree with Chain of Custody?

#9 Any missing/extra samples?

Date:

Yes

No

Yes

Yes

Yes

Yes

Yes

Checklist reviewed by:

Date:

Analytical Report 452891

for

Environmental Compliance Associates

Project Manager: Lloyd Stafford 1112-02 and 03

30-NOV-12

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ00989): Arizona (AZ0758)

30-NOV-12

8

Project Manager: Lloyd Stafford Environmental Compliance Associates P.O.Box 770005 Houston, TX 77215

Reference: XENCO Report No: 452891 1112-02 and 03 Project Address: Jal, NM

Lloyd Stafford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 452891. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 452891 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully. Nul Ctr

Nicholas Straccione Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 452891

Environmental Compliance Associates, Houston, TX

1112-02 and 03

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	11-21-12 08:55	6 In	452891-001
S	11-21-12 09:00	6 In	452891-002
S	11-21-12 09:06	6 In	452891-003
S	11-21-12 07:47	2.5 In	452891-004
S	11-21-12 07:53	6 In	452891-005
S	11-21-12 08:00	6 In	452891-006
S	11-21-12 08:02	6 In	452891-007
S	11-21-12 08:10	6 In	452891-008
	Matrix S S S S S S S S S	MatrixDate CollectedS11-21-12 08:55S11-21-12 09:00S11-21-12 09:06S11-21-12 07:47S11-21-12 07:53S11-21-12 08:00S11-21-12 08:02S11-21-12 08:02S11-21-12 08:10	MatrixDate CollectedSample DepthS11-21-12 08:556 InS11-21-12 09:006 InS11-21-12 09:066 InS11-21-12 07:472.5 InS11-21-12 07:536 InS11-21-12 08:006 InS11-21-12 08:006 InS11-21-12 08:006 InS11-21-12 08:026 InS11-21-12 08:026 InS11-21-12 08:106 In

,

Client Name: Environmental Compliance Associates Project Name: 1112-02 and 03

Project ID: Work Order Number: 452891 Report Date: 30-NOV-12 Date Received: 11/21/2012

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-901828 BTEX-MTBE by EPA 8021B SW8021BM

Batch 901828, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 452891-002.

	0.5
	N S
-	

Contact: Lloyd Stafford

Project Id:

Certificate of Analysis Summary 452891 Environmental Compliance Associates, Houston, TX

Project Name: 1112-02 and 03

Date Received in Lab: Wed Nov-21-12 11:45 am Denore Date: 30-NOV-12

roject Location: Jal, NM					keport Date: 5	71-404-0	
				-	Project Manager: N	Vicholas Straccione	
	Lab Id:	452891-001	452891-002	452891-003	452891-004	452891-005	452891-006
	Field Id:	LJ #1	LJ #2	DB # LI	CJ #1	CJ #2	CJ #6
Analysis Requested	Depth:	6- Іп	6- In	6- In	2.5- In	6- In	6- In
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Nov-21-12 08:55	Nov-21-12 09:00	Nov-21-12 09:06	Nov-21-12 07:47	Nov-21-12 07:53	Nov-21-12 08:00
BTEX-MTBE by EPA 8021B	Extracted:	Nov-29-12 09:10	Nov-29-12 09:10	Nov-29-12 09:10	Nov-29-12 09:10	Nov-29-12 09:10	Nov-29-12 09:10
	Analyzed:	Nov-29-12 13:04	Nov-29-12 14:26	Nov-29-12 10:35	Nov-29-12 14:43	Nov-29-12 11:08	Nov-29-12 11:24
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		0.0257 0.0247	ND 0.00121	ND 0,00101	ND 0.00103	ND 0.00107	ND 0.00106
Tolucne		0.756 0.0494	0.0129 0.00242	ND 0.00202	ND 0.00206	ND 0.00213	ND 0.00211
Ethylbenzene		1.40 0.0247	0.0339 0.00121	ND 0.00101	E0100'0 CIN	ND 0.00107	ND 0.00106
m_p-Xylenes		3.93 0.0494	0.123 0.00242	ND 0.00202	ND 0.00206	ND 0.00213	ND 0.00211
o-Xylene		1.67 0.0247	0.0393 0.00121	ND 0.00101	ND 0.00103	ND 0.00107	ND 0.00106
MTBE		ND 0.494	ND 0.0242	ND 0.0202	ND 0.0206	ND 0.0213	ND 0.0211
Total Xylenes		5.60 0.0247	0.162 0.00121	ND 0.00101	KD 0.00103	ND 0.00107	ND 0.00106
Total B/TEX		7.78 0.0247	0.209 0.00121	10100 0.00101	KD 0.00103	ND 0.00107	ND 0.00106
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-23-12 15:30	Nov-23-12 16:04	Nov-23-12 16:38	Nov-23-12 16:55	Nov-23-12 17:13	Nov-23-12 18:04
SUB: E871002	Analyzed:	Nov-23-12 15:30	Nav-23-12 16:04	Nov-23-12 16:38	Nov-23-12 16:55	Nov-23-12 17:13	Nov-23-12 18:04
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		8940 124	10800 113	444 108	353 1.07	117 0.984	119 1.09
Percent Moisture	Extracted:						
	Analyzed:	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30	Nov-21-12 12:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		19.2 1.00	17.8 1.00	1.72 1.00	2.98 1.00	6.11 1.00	5.09 1.00
TPH By SW8015B Mod	Extracted:	Nov-26-12 09:00	Nov-26-12 09:00	Nov-26-12 09:00	Nav-26-12 09:00	Nov-26-12 09:00	Nov-26-12 09:00
	Analyzed:	Nov-26-12 18:38	Nov-26-12 16:10	Nov-26-12 16:39	Nov-26-12 19:07	Nov-26-12 14:05	Nov-26-12 23:40
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C10 Gasoline Range Hydrocarbons		368 18.5	18.8 18.2	ND 15.2	ND 15.4	ND 15.9	ND 15.8
C10-C28 Dieset Range Hydrocarbons		3030 18.5	604 18.2	ND 15.2	3950 15.4	1750 15.9	190 15.8

This analytical report, and the entite data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nicholas Straccione Project Manager

Nul C,

Contact: Lloyd Stafford

Project Id:

Certificate of Analysis Summary 452891 Environmental Compliance Associates, Houston, TX

Project Name: 1112-02'and 03

Wed Nov.21.10 11:45 am		30-NOV-12
Data Dacaiwad in Lab:	Date Neterveu III Lan.	Report Date:

roject Location: Jal, NM				Report Date: JU-INU V-12
	I ab Id	452891-007	452891-008	
	T-40 10.	100-120704	000-1607C+	
Andreis Derivedad	Field Id:	CJ #4	CJ # BG	
Anutyas Metaescu	Depth:	6- In	6- In	
	Matrix:	SOIL	SOIL	
	Sampled:	Nov-21-12 08:02	Nov-21-12 08:10	
BTEX-MTBE by EPA 8021B	Extracted:	Nov-29-12 09.10	Nov-29-12 09:10	
	Analyzed:	Nov-29-12 12:48	Nov-29-12 11:58	
	Units/RL:	mg/kg RL	mg/kg RL	
Benzene		ND 0.00103	ND 0.00101	
Toluene		ND 0.00206	ND 0.00203	
Ethylbenzene		ND 0.00103	ND 0 00101	
m_p-Xylenes		ND 0.00206	ND 0 00203	
o-Xylene		ND 0.00103	10100 ON	
MTBE		ND 0.0206	ND 0.0203	
Total Xylenes		ND 0.00103	ND 0 00101	
Total BTEX		ND 0.00103	ND 0 00101	
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-23-12 18:21	Nov-23-12 18:38	
SUB: E871002	Analyzed:	Nov-23-12 18:21	Nov-23-12 18:38	
	Units/RL:	mg/kg RL	mg/kg RL	
Chloride		144 1.08	16.0 0.951	
Percent Moisture	Extracted:			
	Analyzed:	Nov-21-12 12:30	Nov-21-12 12:30	
	Units/RL:	% RL	% RL	
Percent Moisture	-	2.82 1.00	1.38 1.00	
TPH By SW8015B Mod	Extracted:	Nov-26-12 09:00	Nov-26-12 09:00	
·	Analyzed:	Nov-26-12 15:04	Nov-26-12 15:37	
	Units/RL:	mg/kg RL	mg/kg RL	
C6-C10 Gasoline Range Hydrocarbons		ND 15.4	ND 15.1	
C10-C28 Diesel Range Hydrocarbons		2900 15.4	ND 15.1	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and returble expressed throughout this analytical teport represent the best jugnent of XENCO Laboratories XENCO Laboratories assumes no responsibility and markes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nicholas Straccione Project Manager

Aul Ch

Page 6 of 20

Final 1.001

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

LOQ Limit of Quantitation

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

- MDL Method Detection Limit SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477	
9701 Harry Hines Blvd , Dallas, TX 75220	
5332 Blackberry Drive, San Antonio TX 78238	
2505 North Falkenburg Rd, Tampa, FL 33619	
12600 West I-20 East, Odessa, TX 79765	
6017 Financial Drive, Norcross, GA 30071	
3725 E. Atlanta Ave, Phoenix, AZ 85040	

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Project Name: 1112-02 and 03

Vork Orders : 452891 Lab Batch #: 901575	, Sample: 452891-005 / SMP	Batel	Project II 1: 1 Matrix:): Soil		
Units: mg/kg	Date Analyzed: 11/26/12 14:05	SU	RROGATE RI	ECOVERY S	STUDY	
TPH E	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[u]		
1-Chlorooctane		87.3	99.5	88	70-135	
o-I erphenyl		45.4	49.8	91	/0-135	
Lab Batch #: 901575	Sample: 452891-007 / SMP	Batel	1: ¹ Matrix:	Soil		
Units: mg/kg	Date Analyzed: 11/26/12 15:04	SUI	RROGATE RI	ECOVERYS	STUDY	
ТРН Е	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	89.4	99.6	90	70-135	
o-Terphenyl		49.8	49.8	100	70-135	
Leb Betch #: 901575		Batal	h 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 11/26/12 15:37	SU	RROGATE RI	ECOVERY S	STUDY	= =
ТРН І	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		90.6	99.6	91	70-135	
o-Terphenyl		44.7	49.8	90	70-135	
Lab Batch #: 901575	Sample: 452891-002 / SMP	Batel	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 11/26/12 16:10	SU	RROGATE RI	ECOVERY	STUDY	
ТРН Н	3y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		88.1	99.5	89	70-135	
o-Terphenyl		49.2	49.8	99	70-135	
Lab Batch #: 901575	Sample: 452891-003 / SMP	Batel	h: 1 Matrix	: Soil		
Units: mg/kg	Date Analyzed: 11/26/12 16:39	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	3y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[ם]		
1-Chlorooctane		85.2	99.5	86	70-135	
o-Terphenyl		41.7	49.8	84	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: 1112-02 and 03

Sample: 452891-001 / SMI Date Analyzed: 11/26/12 18:38 W8015B Mod alytes Sample: 452891-004 / SMP Date Analyzed: 11/26/12 19:07	Amount Found [A] 91.6 45.9	True Amount [B] 99.5	Recovery %R [D]	STUDY Control Limits %R	Flags
Date Analyzed: 11/26/12 18:38 W8015B Mod alytes Sample: 452891-004 / SMP Date Analyzed: 11/26/12 19:07	Amount Found [A] 91.6 45.9	True Amount [B] 99.5	Recovery %R [D]	Control Limits %R	Flags
Sample: 452891-004 / SMP Date Analyzed: 11/26/12 19:07	91.6 45.9 Batch	99.5	07		
Sample: 452891-004 / SMP Date Analyzed: 11/26/12 19:07	45.9 Ratch	40.9	1 74	70-135	
Sample: 452891-004 / SMP Date Analyzed: 11/26/12 19:07	Ratah	47.0	92	70-135	
Date Analyzed: 11/26/12 19:07	Daten	: 1 Matrix	: Soil		·
	SUF	RROGATE RI	ECOVERY S	STUDY	
W8015B Mod alvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	90.2	99.8	90	70-135	
	46.6	49.9	93	70-135	
Sample: 452891-006 / SMP	Batch	: 1 Matrix	:Soil	1 1	
Date Analyzed: 11/26/12 23:40	SUE	ROGATE RI	ECOVERY	STUDY	
W8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
	88.1	100	88	70-135	
	44.2	50.0	88	70-135	
Sample: 452891-003 / SMP	Batch	· 1 Matrix	: Soil	l I	
Date Analyzed: 11/29/12 10:35	SUI	ROGATE R	ECOVERY	STUDY	
E by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
alytes					
	0.0247	0.0300	82	80-120	
	0.0249	0.0300	£8	80-120	
Sample: 452891-005 / SMP	Batch	: 1 Matrix	:Soil		
Date Analyzed: 11/29/12 11:08	SUI	KRUGATE K	LCOVERY	STUDY	
E by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
alytes					
	0.0293	0.0300	98	80-120	
	alytes Sample: 452891-006 / SMP Date Analyzed: 11/26/12 23:40 W8015B Mod alytes Sample: 452891-003 / SMP Date Analyzed: 11/29/12 10:35 E by EPA 8021B sample: 452891-005 / SMP Date Analyzed: 11/29/12 11:08 E by EPA 8021B sample: 452891-005 / SMP Date Analyzed: 11/29/12 11:08 E by EPA 8021B sample: 452891-005 / SMP	alytes [A] alytes 90.2 46.6 46.6 Sample: 452891-006 / SMP Batch Date Analyzed: 11/26/12 23:40 SUF W8015B Mod Amount Found [A] alytes 88.1 44.2 88.1 Sample: 452891-003 / SMP Batch Date Analyzed: 11/29/12 10:35 SUF E by EPA 8021B Amount Found [A] nalytes 0.0247 0.0249 Sample: 452891-005 / SMP Batch Analyzed: 11/29/12 11:08 SUF Date Analyzed: 11/29/12 11:08 SUF Date Analyzed: 11/29/12 11:08 SUF Date Analyzed: 11/29/12 11:08 SUF Batch Pound [A] Amount [A] Date Analyzed: 11/29/12 11:08 SUF E by EPA 8021B Amount Found [A] alytes 0.0293 0.0293 0.0256	alytes [A] [B] 90.2 99.8 46.6 49.9 Sample: 452891-006 / SMP Batch: 1 Matrix Date Analyzed: 11/26/12 23:40 SURROGATE RI W8015B Mod Amount Found True Amount alytes 88.1 100 44.2 50.0 Sample: 452891-003 / SMP Batch: 1 Date Analyzed: 11/29/12 10:35 SURROGATE RI E by EPA 8021B Amount Found [A] True Amount [A] ialytes 0.0247 0.0300 Sample: 452891-005 / SMP Batch: 1 Date Analyzed: 11/29/12 11:08 SURROGATE RI Sample: 452891-005 / SMP Batch: 1 Matrix 70.0300 Sample: 452891-005 / SMP Batch: 1 Date Analyzed: 11/29/12 11:08 SURROGATE R E by EPA 8021B Amount Found [A] True Amount [A] ialytes 0.0293 0.0300 0.0293 0.0300 0.0300	IAI IBI %R [D] 90.2 99.8 90 46.6 49.9 93 Sample: 452891-006 / SMP Batch: 1 Matrix: Soil Date Analyzed: 11/26/12 23:40 SURROGATE RECOVERY 3 Recovery %R W8015B Mod Amount Found [A] True Amount [B] Recovery %R alytes 100 88 44.2 50.0 88 Sample: 452891-003 / SMP Batch: 1 Matrix: Soil Date Analyzed: 11/29/12 10:35 SURROGATE RECOVERY 3 Soil E by EPA 8021B Amount [A] True Amount [A] Recovery %R alytes 0.0247 0.0300 83 Sample: 452891-005 / SMP Batch: 1 Matrix: Soil Date Analyzed: 11/29/12 11:08 SURROGATE RECOVERY 3 Soil Sample: 452891-005 / SMP Batch: 1 Matrix: Soil Date Analyzed: 11/29/12 11:08 SURROGATE RECOVERY 3 Soil E by EPA 8021B	alytes [A] [B] % R [D] % R [D] % R [D] 90.2 99.8 90 70-135 90.2 99.8 90 70-135 Sample: 452891-006 / SMP Batch: 1 Matrix:Soil Date Analyzed: 11/26/12 23:40 SURROGATE RECOVERY STUDY W8015B Mod Amount [A] True [A] Recovery [D] Control Limits % R alytes 88.1 100 88 70-135 Sample: 452891-003 / SMP Batch: 1 Matrix:Soil Date Analyzed: 11/29/12 10:35 SURROGATE RECOVERY STUDY E by EPA 8021B Amount Found [A] True Amount [B] Recovery % R [D] Control Limits % R sample: 452891-005 / SMP Amount [A] True (D) Recovery % R [D] Control Limits % R sample: 452891-005 / SMP Batch: 1 Matrix: Soil Limits % R Sample: 452891-005 / SMP Batch: 1 Matrix: Soil Limits % R Sample: 452891-005 / SMP Batch: 1 Matrix: Soil Limits % R Date Analyz

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: 1112-02 and 03

ork Orders : 452891 Lab Batch #: 901828	, Sample: 452891-006 / SMP	Batch	Project II	D: :Soil		
Units: mg/kg	Date Analyzed: 11/29/12 11:24	SUR	ROGATE R	ECOVERY	STUDY	
BTEX-M	TBE by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0255	0.0300	85	80-120	
4-Bromofluorobenzene		0.0265	0.0300	88	80-120	
Lab Batch #: 901828	Sample: 452891-008 / SMP	Batch	l Matrix	: Soil		
Units: mg/kg	Date Analyzed: 11/29/12 11:58	SUR	ROGATE R	ECOVERY S	STUDY	
BTEX-M	TBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R (D)	Control Limits %R	Flag
14 Differenterment	Analytes	0.0121	0.0300	121	80.120	
4-Bromofluorobenzene		0.0283	0.0300	01	80-120	
		0.0285	0.0300	<u> </u>	80-120	ļ
Lab Batch #: 901828	Sample: 452891-0077 SMP	Batch	DOCATE D	: Soll	STUDY	
Units: mg/kg	Date Analyzed: 11/29/12 12:48					. <u> </u>
BTEX-M	TBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Fla
1.4-Difluorobenzene		0.0286	0.0300	95	80-120	
4-Bromofluorobenzene	- · · · ·	0.0263	0.0300	88	80-120	
Lab Batch #: 901828	Sample: 452891-001 / SMP	Batch	1 Matrix	:Soil		<u>,</u>
Units: mg/kg	Date Analyzed: 11/29/12 13:04	SUR	ROGATE R	ECOVERY S	STUDY	
BTEX-M	TBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Fla
1.4.0.9	Analytes	0.0242	0.0200		80.120	12
4-Bromofluorobenzene		0.0243	0.0300	61 111	80-120	
	6 I 462801.002./53/D	0.0555	1 35.4		00-120	
Lab Batch #: 901828	Sample: 452891-0027 SMP	Batch: SUP	ROGATE P	ECOVERV	STUDY	
Units: mg/kg	Date Analyzeu: 11/29/12 14:20					<u> </u>
BTEX-M	TBE by EPA 8021B	Amount	True Amount	Recovery	Control Limits	Fla
		[A]	[B]	R (ח)	%R	
	Analytes	[A]	[B]	%R [D]	%R	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: 1112-02 and 03

ork Orders: 452891	\$		Project II):		
Lab Batch #: 901828	Sample: 452891-004 / SMP	Batch:	l Matrix:	Soil		
Units: mg/kg	Date Analyzed: 11/29/12 14:43	SUR	ROGATE RE	COVERY	STUDY	
BTEX-M	TBE by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0300	0.0300	100	80-120	
4-Bromofluorobenzene		0.0306	0.0300	102	80-120	
Lab Batch #: 901575	Sample: 630401-1-BLK / B	LK Batch:	l Matrix:	Solid		
Units: mg/kg	Date Analyzed: 11/26/12 12:28	SUR	ROGATE RE	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane	2 x ii u i y t C 3	92.4	100	92	70-135	
o-Terphenyl		46.3	50.0	93	70-135	
ah Batch #- 901828	Sample: 630534-1-BLK / B	LK Batch:	l Matrix	Solid	<u>}</u>	
Lan Daten #. 901020	Date Analyzed: 11/29/12 10:19	SUR	ROGATE RE	ECOVERY	STUDY	
BTEX-M	TBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1 4-Difluorobenzene		0.0285	0.0300	95	80-120	
4-Bromofluorobenzene		0.0260	0.0300	87	80-120	
Lab Batab #: 901575	Sample: 630401-1-BKS / B	KS Batch-	1 Matrix	Solid	!	
Units: mg/kg	Date Analyzed: 11/26/12 11:25	SUR	ROGATE RI	COVERY	STUDY	
ТРН Н	By SW8015B Mod	Amount Found	True Amount	Recovery %R	Control Limits %R	Flag
		[A]	B			
1.011	Analytes	[A]	B	[D]		
1-Chlorooctane	Analytes	[A] 	99.9 50.0	[D] 88	70-135	
1-Chlorooctane o-Terphenyl	Analytes	[A] 88.3 53.7	99.9 50.0	[D] 88 107	70-135 70-135	
1-Chlorooctane o-Terphenyl Lab Batch #: 901828	Analytes Sample: 630534-1-BKS/B	[A] 88.3 53.7 KS Batch:	99.9 50.0 1 Matrix:	[D] 88 107 Solid	70-135 70-135	
1-Chlorooctane o-Terphenyl Lab Batch #: 901828 Units: mg/kg	Analytes Sample: 630534-1-BKS / B Date Analyzed: 11/29/12 09:46	[A] 88.3 53.7 KS Batch: SUR	99.9 50.0 ROGATE RI	[D] 88 107 Solid ECOVERY	70-135 70-135 STUDY	
1-Chlorooctane o-Terphenyl Lab Batch #: 901828 Units: mg/kg BTEX-M	Analytes Sample: 630534-1-BKS / B Date Analyzed: 11/29/12 09:46 [TBE by EPA 8021B	[A] 88.3 53.7 KS Batch: SUR Amount Found [A]	199.9 50.0 Natrix: ROGATE RI True Amount [B]	[D] 88 107 Solid ECOVERY %R [D]	70-135 70-135 STUDY Control Limits %R	Flag
1-Chlorooctane o-Terphenyl Lab Batch #: 901828 Units: mg/kg BTEX-M	Analytes Sample: 630534-1-BKS / B Date Analyzed: 11/29/12 09:46 [TBE by EPA 8021B Analytes	[A] 88.3 53.7 KS Batch: SUR Amount Found [A]	99.9 50.0 I Matrix ROGATE RI True Amount [B]	[D] 88 107 Solid ECOVERY : Recovery %R [D]	70-135 70-135 STUDY Control Limits %R	Flag

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 + A / B

All results are based on MDL and validated for QC purposes.

.

Project Name: 1112-02 and 03

/ork Orders : 452891	, Sample, 630401-1-BSD / BSD	Dataha	Project II): Solid		
Lao Bateli #: 901975	Date Analyzed: 11/26/12 11:59	SURF	ROGATE RE	ECOVERY S	STUDY	
TPH E	Bate Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		85.6	99.6	86	70-135	
o-Terphenyl		51.3	49.8	103	70-135	
Lab Batch #: 901828	Sample: 630534-1-BSD / BSD	Batch:	1 Matrix:	Solid	·	
Units: mg/kg	Date Analyzed: 11/29/12 10:02	SURF	ROGATE RE	COVERY	STUDY	
BTEX-M	TBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
	Analytes			լո		
1,4-Difluorobenzene		0.0344	0.0300	115	80-120	
4-Bromofluorobenzene		0.0336	0.0300	112	80-120	
Lab Batch #: 901575	Sample: 452960-002 S / MS	Batch:	1 Matrix:	Soil		
Units: mg/kg	Date Analyzed: 11/26/12 22:41	SURF	ROGATE RE	COVERY S	STUDY	
ТРН В	3y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		103	100	103	70-135	
o-Terphenyl		56.5	50.1	113	70-135	
Lab Batch #: 901828	Sample: 453136-002 S / MS	Batch:	l Matrix:	: Soil	. <u></u>	
Units: mg/kg	Date Analyzed: 11/29/12 16:05	SURF	ROGATE RE	ECOVERY	STUDY	
BTEX-M	TBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
	Analytes			ן ען		
1,4-Difluorobenzene		0.0294	0.0300	98	80-120	
4-Bromofluorobenzene		0.0293	0.0300	98	80-120	
Lab Batch #: 901575	Sample: 452960-002 SD / MSI	D Batch:	1 Matrix:	:Soil		
Units: mg/kg	Date Analyzed: 11/26/12 23:11	SURI	ROGATE RE	ECOVERY :	STUDY	
TPH F	3y SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Fla
1-Chlorooctane	Analytes	101	999	101	70-135	
o-Ternhenvl		56.3	50.0	113	70-135	
Prioriti		20.2	50.0	1	,0100	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: 1112-02 and 03

Work Orders: 452891,			Project II):		
Lab Batch #: 901828	Sample: 453136-002 SD / I	MSD Bate	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 11/29/12 15:16	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX-M	TBE by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0352	0.0300	117	80-120	
4-Bromofluorobenzene		0.0303	0.0300	101	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 + A / B

	- W
	(•) <u>9</u>
	\sim
_	
	W 8
	G

BS / BSD Recoveries

0

Project Name: 1112-02 and 03

Work Order #: 452891 Lab Batch ID: 901828 Analyst: KEB

Date Prepared: 11/29/2012 Batch #:]

Sample: 630534-1-BKS

Project ID: Date Analyzed: 11/29/2012

BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Matrix: Solid

Units: mg/kg			BLAN	K /BLANK S	SPIKE / H	SLANK S	PIKE DUPI	JCATE I	RECOVE	RY STUD	Y	-
BTEX-MTBE by	EPA 8021B	Blank Sample Result 1A1	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Dunlicate	BIk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %ppn	Flag
Analytes		<u>-</u>	B	[C]	ē	E	Result [F]	[6]	2			
Benzene		<0.000992	0.0992	0.0825	83	0.100	0.102	102	21	70-130	35	
Toluene		<0.00198	0.0992	0.0920	93	0.100	0.106	106	14	70-130	35	
Ethylbenzene		<0.000992	0.0992	0.0880	68	0.100	0.0994	66	12	71-129	35	
m_p-Xylenes		<0.00198	0,198	0.180	91	0.201	0.207	103	14	70-135	35	
o-Xylene		<0.000992	0.0992	0.0900	16	0.100	0.103	103	13	71-133	35	
MTBE		<0.0198	0 496	0.436	88	0.502	0.494	98	12	71-133	35	
Analyst: JOL		Da	te Prepare	d: 11/23/201	2			Date Ar	ıalyzed: 1	1/23/2012		
Lab Batch ID: 901508	Sample: 630351-1-B	KS	Batch	#: 1					Matrix: S	olid		

Units: mg/kg		BLAN	K /BLANK S	SPIKE / B	LANK S	PIKE DUPI	ICATE I	RECOVE	ERY STUD	Y	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	-	[B]		[0]	E	Result [F]	હ				
Chleride	<1.00	100	105	105	100	105	105	0	80-120	20	

Sample: 630351-1-BKS

Lab Batch ID: 901508

Relative Percent Difference RPD = 200*((C-F)/(C+F)) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: 1112-02 and 03

Work Order #: 452891 Analyst: KEB Lab Batch ID: 901575 Sample: 630401-1-BKS

Date Prepared: 11/26/2012

Batch #: 1

Project ID: Date Analyzed: 11/26/2012 Matrix: Solid

Units: mg/kg		BLAN	K /BLANK S	SPIKE / B	SLANK S	SPIKE DUPI	ICATE	RECOVE	CRY STUD	Y	
TPH By SW8015B Mod	Blank Sample Result	Spike Added	Blank Spike Decente	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup. •/ b	RPD v	Control Limits V D	Control Limits •/ DDD	Flag
Analytes		[B]			E	Result [F]	[5]	0	¥ ₽/	VaNTU	
C6-C10 Gasoline Range Hydrocarbons	<50.0	666	910	16	966	905	16	1	70-135	35	
C10-C28 Diesel Range Hydrocarbons	<0.05>	666	905	16	966	873	88	4	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Work Order #: 452891							
Lab Batch #: 901508				Pro	oject ID:	:	
Date Analyzed: 11/23/2012	Date P	repared: 11/2	3/2012	А	nalyst: J	OL	
QC- Sample ID: 452891-001 S		Batch #: 1		Ν	Matrix: S	oil	
Reporting Units: mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				
Chloride	-	8940	12400	21900	105	80-120	
Lab Batch #: 901508							
Date Analyzed: 11/23/2012	Date P	repared: 11/2	3/2012	А	nalyst: J	OL	
QC- Sample ID: 452891-002 S		Batch #: 1		I	Matrix: S	oil	
Reporting Units: mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				
Chloride		10800	11300	22500	104	80-120	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

1

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: 1112-02 and 03

Work Order #: 452891

Date Analyzed: 11/29/2012 Lab Batch ID: 901828 Reporting Units: mg/kg

QC- Sample ID: 453136-002 S Date Prepared: 11/29/2012

-

Project ID:

Matrix: Soil

KEB Analyst: Batch #:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX-MTBE by EPA 8021B	Parent Sample	Snike	Spiked Sample Result	Spiked Samnle	Snike	Duplicate Sniked Samnle	Spiked Dun.	RPD	Control Limits	Control Limits	Flar
Analytes	Result [A]	Added [B]	0	%R [D]	Added [E]	Result [F]	% [G]	%	%К	%RPD	0
Benzene	866000.0>	0.0998	0.101	101	0,100	0.104	104	3	70-130	35	
Toluene	<0.00200	0.0998	0.107	107	0.100	0.109	601	2	70-130	35	
Ethylbenzene	<0.000998	8660.0	0.100	100	0.100	0.0978	98	2	71-129	35	
m_p-Xylenes	<0.00200	0.200	0.209	105	0.200	0.207	104	-	70-135	35	
o-Xylene	<0.000998	0.0998	0.103	103	0.100	0.101	101	2	71-133	35	
MTBE	<0.0200	0.499	0.501	100	0.501	0.537	107	7	71-133	35	
Lab Batch ID: 901575 Date Analyzed: 11/26/2012	QC- Sample ID: Date Prepared:	452960- 11/26/20	002 S 012	Ba Ani	tch #: alyst:]	1 Matri (EB	c: Soil				

Reporting Units: mg/kg		M	ATRIX SPIKI	(/MAT	KIX SPI	KE DUPLICA	TE RECO	VERY	STUDY		
TPH RV SW8015B Mod	Parent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
	Sample	Spike	Result	Sample	Spike	Spiked Sample	Dup.	RPD	Limits	Limits	Mag
	Result	Added	0	%R	Added	Result [F]	%R	%	%R	%RPD	
Analytes	[V]	[B]		<u>a</u>	E		[6]				
C6-C10 Gasoline Range Hydrocarbons	<51.2	1020	1070	105	1020	1070	105	0	70-135	35	

35

70-135

107

1090

1020

106

1080

1020

<51.2

C10-C28 Diesel Range Hydrocarbons

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, J = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 17 of 20

Sample Duplicate Recovery

Ň

Project Name: 1112-02 and 03

Work Order #: 452891

Lab Batch #: 901385		Project ID:					
Date Analyzed: 11/21/2012 12:30	Date Prepar	ed: 11/21/2012	Ana	lyst: WRU			
QC- Sample ID: 452891-001 D	Batch	n#: 1	Mat	rix: Soil			
Reporting Units: %		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY	
Percent Moisture		Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag	
Analyte			[B]				
Percent Moisture		19.2	19.3	1	20		

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit
	.`. `			· · · ·	1000	• •			ĺ				~		4	<u>ں</u>	<u>6 1</u>			<u>, ę</u> ,				, .	
		•	S	·	Erom:		scv. bv:	· ·	<u>.</u>	ete(] :upp\	1							· /	ŀ	:	0		E E	
ō			ark						:	•		1	e				:		·		•			snou Co.C	
			Хөл	· .		• •	·	•	·· . '	.•			· ·	• .		Ċ					ပ	d uni		, va	÷ .
age					pə	pəəu :	зе рәлс	adde	-bue-	ė are	qu-nsəlƏ əlqmə5		•							· .[ierty naile			· ·
		scific ta	Ì	(bevor	pre-apt	ens br	ie Vidde	: Iliw	səbi	eyour	R) selqme2 bloH		•								Y	Prop s e-r		WW	
့ တု		t spe v da		jiH ise	əydih s	<u>қ</u> а з	nôw '	M·")∕	6w	;	wods HA9 :nbb/			1 .		:					emp	tual port		L. ∹``	•
З Э́с		ojeci nd N	þ	04 . 510	L PZ	PS)	pe ya	۲. L	54	421	HE HASATAT				1				1.		ler T	tellec al rep		<u>,</u>	:
N N	•	is pr II a								•		<u> </u>	•.		•						8	e Ini er Ini er Ini		٩ ۲	103
ς Υ		r AT evel		•				-													•	are the s afte			
	• •	for					•.	•	•		· · · .	<u> </u>			-				1		4	day:	g g	9 ∹	d its .
rial #	• •	tand:	H		· •	·. ·	• •	.•	:			1.	· . ·	·. ·					1			Rep.	as a	⊈	រើឆ [ុ] ខ្លួំ ប
Se		ls p	H			• .			. /	•		+	· ·			╈			1		ö	ting. e.hel			atorie ontra
9.9	<u>.</u>	Vork	H		. •											-+		·	· ·	1	9	n wri will b			ent c
180		P0+ +	┝─┼		·			•. : .		<u>.</u>						-					s pe	ed of).Se	Б.	
902	· ·	p1 Dd_1						•									-			i	aine	agre	NA S	ų įš	to Xe cecut
214	$\boldsymbol{\Sigma}$	छ≣	\vdash	•	· ·		डव	19	Jot	Y	10101 C	ト	ⁱ	×	$\overline{}$	$\overline{\mathbf{x}}$	よ		· .	$\left - \right $	tion in the second seco	wise aid.	lone i	Se la	i e li
65.20	2	evel Bve	⊢	,				L	•			<u> -`</u>							; ;	$\left - \right $	la.	ntil p			composite in the second
 	$\widetilde{\mathcal{S}}$	8h î or	ís:	പ്ര	แลน าร	а. с	0046	SOC		SPIAN	SPER (DBCP	\vdash	· ·		-+	÷				$\left \cdot \right $	<u></u>	<u>°∍</u>	H ^e	9	tinde
as, T sa, T	5	Days		addwii		יזאיני	20/18	100		NUN Notok		· ·	. •	· .	· ·	<u>·</u>		- <u> :</u>			ê	<u> </u>	. 5	1×	rom o lated
Dall	\mathbf{i}	24h ting l			sapions	94 A		ישם	<u>ен</u>	รตา _เ					<u>.</u>	-	· · ·		. 		Ē		i S	No.	der fi regot
East.		12h	╞╡	VO 7-X	pedy ,	a a		19.81	เต.่			<u> </u> .					-	 .	<u> </u> .	┢┥	ge	9 	Ŕ	i e	ise of Usiy i
Hines I-20 I		fa (*)	5	OR C	nsi	IdA .	AM H	HE A	W C	้ามอ	она		$\overline{}$	~		ナ			-	\square		<u>명</u>	HO	<u> </u>	urcha
larry West	х. Х	S SP	Ħ	<u>- (a - </u>	/			0/	Z8	010	8 WIS SHUT		<u>`</u>	<u> </u>	<u>-</u>		<u>~</u>			\square	-	╤┼┼	- No		ess p
701 H 2600 J	ō	N A	H	Ofber:		Z-X	ddA.	-xpc	ld v	Ma	VOA: PP TCL								 		핟	d l	- A	Ξ Û	s a ve
9 F	Lab	TAT It is 1	•	SAOV	SHOV	блхо	HOE	י ו: שנ	attm-	XET	VOA: Full-List E	<u>·</u>				-+	-		<u> </u>	┝╌┥	BS	H	E S		titute
		• <u>.</u>			1	- 	r		-	Ť.	Leservatives	j g	_	·		_	_		•••		and	· 4	F	nitte	s of s
			1.1			0						19	5	-	5		=			Ŀ	tals	-{}I	S'Na	, in the second se	ples lition:
	\bigcirc	n .			L L L	- jo					sovT tanietnoC	<u> </u> 0	=	-	<u>=</u> '	=	= =	=[=		Ŀ	Ē	ရွိ	Acid	5 G	conc
33	Õ	Ct II		ġ	- <u>6</u>	Call	RRF			L	Sontainer Size		_	-	÷.		-1=				율	3	, Sol	0 10	these s and
200	5			ax }	stha		۲ ۲		4	ł	ราอกเธากอบ เ	-		_		-				$\left \cdot \right $	ļŝ	3			nt of term
4 5	~	<u> </u>		.	Ē			Ī	B	N {	asie	E	1	Ξ	Ξ	3		zi z zi z	•		Ē	5		ē (shme dard
3 5		×.	-	<u>र</u>			С Ц С Ц С Ц С			₩	Somposite					-					۳	ନ ଜାକ	에 문 문		stan
7 2 78238	ŧσ	đ	Ê,				NPC NPC			13	xintsN	Ś	a		<u> </u>	=	= =						۲. ¥	б ->	id reli nco's
141 TXT	1	ŝ		도)			а с			7	ן, וַש, ש nebcu	2	Ξ.	12.0	5	و	= اق	1			ĝ	k		2. 1. 1	er Xe
TX Tonio	2	Ξ,	Beu						≥ L	tre		F	۶.	٤.	<u>È</u>	Ī	Ę	ĒĒ			≓ ∞	<u>7</u> 8	10		cume:
afford an An		e Me	Ň.	1. .1		Ŷ	мas П	; <u>-</u>	2	gna	a me	$\tilde{\mathbf{y}}$	200	2	Ç	23	3	¥. ∉ X. ≙		ľ.	ate	नम	E		is do signs
e e St		P O	Pro	9	SII . Us	O O	Ē		Ď	ŝ	÷	ð	ž	۲ږ م	F	F.	a d	S 5				扫	Į õs	ŝ	of th rd as
r Dri		is d	5		มั≊ มั®	ľ. ,			ר <u>ר</u> ב		_	1	2	2						· .			Π H	4 UIT ater	ature ors ai
skben		ž Z	Z.		d ₿				2	12	te oll	15		1		: ľ	· .				È		E -	<u>, š</u>	Sign
Gree	:	a ₹	WS	and	ਸ਼ੂ⊆ ਕ7				Ē	J.		1	2	21	=	-	े च	= ≓			꾋		Ϋ́Ξ	2) p	bcon
4143 5332	1	- N	<u>ک</u>	· N		· ·	ų s	2 2	1	Ę	Ű,	1	1	11		·	- I.	-	1	14	and		모	Soli S	N R
	4	- 0	Ğ		<u>.</u>		Rγ I	ı ð	5	Æ		\square		:						Н	tials		ι Ξ	ê <u>ê</u>	
	li Li	l∄ i	Ŀ	ŧ 🤇	3 E				3	N/	: ·								1		뤽	n I	sno	fuct 802	
0.1	لعرا	5	Ā	5.	CCOL	ľ.	SU		Å.	. 	Ω			ด		. [.]			~		٦	11	Varic	Prod	•
	Ą		¥	II N Its t	ľ¥)	:Gu			s	ame	nple	1	2	0		N	m :	Чg	. ·	ŀ	١ ٣	J-	es:	40Z (A),	
H ë	ž	Nar 🦷	ate:	SC, Zesu	9	Prici	ogra		3	ž,	San	- 1 *	17	#	#	Ŧ	4	€ ⊅	1	· .	삙	2	lativ	Air (
ΨÈ	npa	ject :	j. St	PA, ™ail F	to to to to to to to to to to to to to t	ote/I	La P	- -	9012	- Ide	· · · ·	10	2	h	เพ	Ň	12	d٢	s ÷	·	lei.	5	Serv	nt. s trix:	
ХĞ	Sol	2	Pro	ZШ	N II	ğ	Rec	5	ă n	Sar		~	1	1	じ し	Ú	<u></u>	민의	1			କି ଛି	ی <mark>ہ</mark> و	Mat Mat	• • •
												· · •	, N	e	4	ທີ	ю –	N 80	0	10		<u> </u>	3		

Page 19 of 20

1

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Environmental Compliance AssociatesAcceptable TempDate/ Time Received: 11/21/2012 11:45:00 AMAir and Metal sarWork Order #: 452891Temperature Mea

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Sample Re	eceipt Checklist	Comments
#1 *Temperature of cooler(s)?	5	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	? Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6 *Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ receiv	/ed? Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Cus	tody? Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less than 1/4	inch bubble)? Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2S	04? Yes	
#22 >10 for all samples preserved with NaAsO2+NaOF	I, ZnAc+NaOH? Yes	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: _____

Checklist reviewed by:

Date: