HOBBS OCD

Remedial Action Plan

General Site Information: Magnum Pronto State #4H Tank Battery Crude Oil Release

Site Contact:

Pat Ellis, COG Operating LLC 600 West Illinois Avenue, Midland, Texas 79701 (432) 230-0077

> Depth to Ground Water Greater than 100 feet below grade surface

Distance to Nearest Surface Water Laguna Plata (west-central Lea County), approximately 1.5 miles to the southeast

Driving Directions

From NM529, south on Lea Co. Rd. 126A 12.5 mi, east on unimproved road 0.65 mi., south 0.35 mi., then southeast 0.25 mi. to tank battery.

Legal Description SE ¼ SE ¼ Section 32, T19S, R32E, N.M.P.M., Lea County, New Mexico

> July 8, 2013 Terracon Project No. 68137010

Prepared for: High Sierra Transportation Fort Lupton, Colorado

Prepared by: Terracon Consultants, Inc. Las Cruces, New Mexico

approved

Environmental Specialist NMOCD-DIST 1 819113

Offices Nationwide Employee-Owned Established in 1965 terracon.com **Construction Materials** Facilities ואף- יוסניד July 8, 2013

Terracon

High Sierra Transportation 6075 CR 19 Fort Lupton, Colorado 80621

Attn: Larry Cash, Safety P: 303-396-9964 E: lcash@highsierraenergy.com

RE: **Remedial Action Plan** Magnum Pronto State #4H Tank Battery Crude Oil Release SE ¼ SE ¼ Section 32, Township 19 South, Range 32 East, N.M.P.M. Lea County, New Mexico Terracon Project No. 68137010

Dear Mr. Cash:

Terracon Consultants, Inc. (Terracon) is pleased to submit our Remedial Action Plan (RAP) for the site referenced above. The RAP was developed in accordance with the New Mexico Oil Conservation Division (OCD) regulations concerning clean-up actions required for releases of crude oil. The RAP presents a description of the release incident and OCD notification, site characteristics, potential receptors, and remedial actions required for the site. Terracon developed the RAP in general accordance with our proposal (P6813-113E) dated May 6, 2013 and your notice to proceed dated May 13, 2013.

Terracon appreciates this opportunity to provide environmental services to High Sierra Transportation. Should you have any questions or require additional information, please do not hesitate to contact our office.

Sincerely, Terracon Consultants, Inc.

J. Kyle Williams **Project Manager**

John B. Sallman, P.G. Senior Principal / Environmental Services (Olathe, Kansas)

Terracon Consultants, Inc. 1640 Hickory Loop Suite 105 Las Cruces, New Mexico 88005 P (575) 527 1700 F (575) 527 1092 terracon.com

Terracon

TABLE OF CONTENTS

1.0	SITE	DESCR	IPTION	1
2.0	SCO	PE OF S	ERVICES	1
	2.1	Stand	ard of Care	1
	2.2	Additi	onal Scope Limitations	1
	2.3	Relian	ice	2
3.0	INTR	ODUCT	ION AND NOTIFICATION	2
4.0	INITI	AL RES	PONSE ACTIONS	3
	4.1	Sourc	e Elimination and Site Security	3
	4.2	Conta	inment and Site Stabilization	3
5.0	SITE	ASSES	SMENT	3
	5.1	Gener	al Site Characteristics	3
		5.1.1	Depth To Ground Water	3
		5.1.2	Distance To Nearest Potable Water Well	4
		5.1.3	Distance To Nearest Surface Water	4
	5.2	Soil /	Waste Characteristics	4
		5.2.1	Highly Contaminated/Saturated Soils	4
		5.2.2	Unsaturated Contaminated Soils	4
	5.3	Groun	d Water Quality	5
6.0	SOIL	REMED	DIAL ACTION LEVELS	5
7.0	SOIL	SAMPL	ING PROCEDURES	7
8.0	SOIL	REMED	DIATION	8
9.0	TERM	MINATIC	IN OF REMEDIAL ACTIONS, FINAL CLOSURE AND REPORTING	9

APPENDIX A – FIGURES

Figure 1 – Topographic Map Figure 2 – Site Plan

APPENDIX B - ANALYTICAL REPORT AND CHAIN OF CUSTODY

Terracon

Remedial Action Plan Magnum Pronto State #4H Tank Battery Crude Oil Release SE ¼ SE ¼ Section 32, Township 19 South, Range 32 East, N.M.P.M. Lea County, New Mexico Terracon Project No. 68137010 July 8, 2013

1.0 SITE DESCRIPTION

The site is an approximate 2-acre tract of cleared land within the SE ¼ SE ¼ Section 32, Township 19 South, Range 32 East, N.M.P.M., Lea County, New Mexico (hereinafter, the site). The site is developed with a tank battery (five crude oil ASTs), a separator, and a pump jack. A Topographic Map showing the site location is included as Figure 1 and a Site Plan is included as Figure 2 in Appendix A.

2.0 SCOPE OF SERVICES

At your request, the scope of services is to develop a Remedial Action Plan (RAP) in accordance with the New Mexico Oil Conservation Division (OCD) requirements that detail site closure activities that the client will complete. This RAP addresses the February 19, 2013 release of approximately 50 barrels (BBL) of crude oil originating from overfilling of a High Sierra Transportation transport. Terracon understands that oversight and/or performance of these activities is not required by the client, and is not a part of this scope of services.

2.1 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time. Terracon makes no warranties, either express or implied, regarding the findings, conclusions, or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report. These services were performed in accordance with the scope of work agreed with you, High Sierra Transportation, as reflected in our proposal.

2.2 Additional Scope Limitations

Development of this RAP is based upon information provided by the Client and their remediation subcontractor, Allied International Emergency, LLC. Such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable, or not present during these services. We cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those by information provided by the Client and their subcontractor. The data, interpretations, findings, and our

Remedial Action Plan Magnum Pronto State #4H Release
Lea County, New Mexico July 8, 2013 Terracon Project No. 68137010

recommendations are based solely upon data provided by the Client within the scope of these services.

2.3 Reliance

This report has been prepared for the exclusive use of High Sierra Transportation (HST), Allied International Emergencies, LLC (Allied), COG Operating LLC (COG), and Haz-Mat One, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of High Sierra Transportation and Terracon. Any unauthorized distribution or reuse is at High Sierra Transportation sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the proposal, LSI report, and Terracon's Agreement for Services. The limitation of liability defined in the terms and conditions is the aggregate limit of Terracon's liability to High Sierra Transportation and all relying parties unless otherwise agreed in writing.

3.0 INTRODUCTION AND NOTIFICATION

A release of approximately 50 barrels (BBL) of crude oil occurred on February 19, 2013 at the Magnum Pronto State #4H tank battery facility in Lea County, New Mexico. The site is operated by COG Operating LLC (COG), 600 West Illinois Avenue, Midland, Texas. The site is an approximate 2-acre cleared area with five crude oil ASTs, a separator, and a pump jack approximately 20 miles south of Maljamar, New Mexico. Incident information is provided in the following table:

Required Information	Site and Release information
Responsible party and local contact	The facility is operated by COG Operating LLC, and the contact is Pat Ellis at (432) 230-0077. The transport company is High Sierra Transportation, and the contact is Larry Cash at (303) 396-9964.
OCD Notification	Immediate notice of the release was provided to the OCD. Michelle Mullins (COG) notified Geoffrey R. Leking, Environmental, OCD District 1 at 8:16 a.m. on February 20, 2013.
Facility description	The facility is Magnum Pronto #4H in Lea County, New Mexico. It is an approximate 2-acre tank battery located within the SE ¼ SE ¼ Section 32, Township 19 South, Range 32 East, N.M.P.M., approximately 20 miles south of Maljamar, New Mexico. The site is developed with a tank battery (five crude oil ASTs), a separator, and a pump jack.
Time of incident	February 19, 2013, discovered at 3:00 a.m.

Magnum Pronto State #4H Release ■ Lea County, New Mexico July 8, 2013 ■ Terracon Project No. 68137010

Required Information	Site and Release information
Discharge event	The release occurred during transport loading. The HST transport driver fell asleep while loading crude oil, and overfilled the transport releasing approximately 50 BBL in the area west of the tank battery. The driver shut in the load line when discovered preventing further release. The spill area was completely within the location, covering approximately 6,000 square feet of the cleared area west of the battery. The spill area is shown on Figure 2 of Appendix A
Type of discharge	Crude oil
Quantity of spilled material	Approximately 50 BBL
Site characteristics	Relatively flat with hummocky dunes, with the native ground surface very gently sloping to the southwest.
Immediate corrective actions	A temporary berm was placed around the release. Approximately 20 BBL of crude oil was recovered using a vacuum truck.

4.0 INITIAL RESPONSE ACTIONS

4.1 Source Elimination and Site Security

Initial source elimination was accomplished by the HST truck driver by closing the load line valve. HST deployed their on-call spill response contractor, Allied International Emergency, LLC to secure the site and perform containment and site stabilization activities.

4.2 Containment and Site Stabilization

Allied began containment and recovery operations by constructing a perimeter berm around the release area. Allied then recovered approximately 20 BBL of crude oil using a vacuum truck.

5.0 SITE ASSESSMENT

5.1 General Site Characteristics

5.1.1 Depth to Ground Water

The depth to groundwater at the site is anticipated to be over 100 feet below grade surface (bgs). A search of the New Mexico Office of the State Engineer (NMSEO) website identified no registered wells within one mile of the site. NMSEO registered wells within 5 miles of the site

Terracon

Magnum Pronto State #4H Release ■ Lea County, New Mexico July 8, 2013 ■ Terracon Project No. 68137010 Terracon

have an average depth to ground water of 175 feet bgs, with a minimum reported depth of 102 feet bgs.

5.1.2 Distance to Nearest Potable Water Well

The nearest water well registered in the NMSEO database is approximately 1.9 miles to the northeast.

5.1.3 Distance to Nearest Surface Water

The Laguna Plata (playa) is approximately 1.5 miles southeast of the site.

5.2 Soil / Waste Characteristics

Soils at the site are mapped as Kermit soils and dune lands, 0 to 12 percent slopes. This soil has a surface layer of fine to coarse sand. Dunes in the area are 8 to 12 feet high. Interdune areas have a fine to coarse sand layer from 4 to 20 inches thick overlying a sandy clay loam. Kermit soil is very rapidly permeable and runoff is slow. Soil blowing is severe.

5.2.1 Highly Contaminated/Saturated Soils

Highly contaminated/saturated soils are defined as those soils which contain a free liquid phase or exhibit gross staining. The operator proposes to determine the final soil contaminant concentrations after a soil removal action at the site.

5.2.2 Unsaturated Contaminated Soils

Unsaturated contaminated soils are defined as soils which are not highly contaminated/saturated, as described above, but contain benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH) or other potential fresh water contaminants unique to the release. Initial assessment of soil contaminant levels was performed at four locations across the release area to estimate the volume of soil requiring removal. The sample locations are shown on Figure 2 provided in Appendix A. Each location was sampled at the surface, at 1 foot bgs, and at 2 feet bgs.

Soil samples were analyzed for total petroleum hydrocarbons (TPH) by method Texas 1005, and percent moisture. Samples were analyzed by Xenco Laboratories of Odessa, Texas. Results of these analyses are summarized below:

Magnum Pronto State #4H Release ■ Lea County, New Mexico July 8, 2013 ■ Terracon Project No. 68137010

Sample ID	Percent	Total Petro	leum Hydrocarb	ons (mg/kg)	
	Moisture	C6-C12	C12-C28	C28-C35	Total TPH
SP1-1 (0')	2.53	5,350	38,100	4,910	48,400
SP1-2 (1')	3.11	437	791	82.2	1,310
SP1-3 (2')	2.77	187	442	46.8	676
SP2-1 (0')	5.85	8,170	17,600	1,620	27,400
SP2-2 (1')	4.33	3,160	6,320	673	10,200
SP2-3 (2')	3.95	680	1,940	206	2,830
SP3-1 (0')	2.28	3,070	35,600	3,550	42,200
SP3-2 (1')	2.67	165	313	31.5	510
SP3-3 (2')	3.13	163	350	31.0	544
SP4-1 (0')	2.16	1,390	23,600	2,660	27,700
SP4-2 (1')	7.36	3,020	6,670	619	10,300
SP4-3 (2')	8.36	598	1,300	126	2,020

Soil Sample Analytical Summary

The complete laboratory analytical report is provided in Appendix B.

5.3 Ground Water Quality

Ground water quality is unknown at the site. As stated previously, there are no wells registered with the NMSEO website within one mile of the site.

6.0 SOIL REMEDIAL ACTION LEVELS

Soil remedial action levels are described for highly contaminated/saturated soils and unsaturated contaminated soils. The OCD ranking criteria was used to determine remediation levels.

6.1 Highly Contaminated/Saturated Soils

The operator proposes to determine the final soil contaminant concentrations after a soil removal action at the site, therefore remediation levels of these soils are not determined herein.

Remedial Action Plan Magnum Pronto State #4H Release
Lea County, New Mexico July 8, 2013 Terracon Project No. 68137010

Terracon

6.2 Unsaturated Contaminated Soils

Remediation levels for unsaturated contaminated soils are based on the OCD ranking criteria, as detailed in the following section.

6.3 Ranking Criteria

The site characteristics are used to determine the ranking score for the site. The ranking total for the release site is determined based on the following criteria:

Depth To Ground Water	Ranking Score
<50 feet	20
50-99 feet	10
>100 feet	0
Wellhead Protection Area <1,000 feet from a water source	æ,or;
<200 feet from private domesti	ic water source
Yes	20
No	0
Distance To Surface Water Bo	dy
<200 horizontal feet	20
200 -1000 horizontal feet	10
>1,000 horizontal feet	0

Depth to groundwater is greater than 100 feet bgs (ranking score of 0). The site is over 1,000 feet from water sources and private domestic wells (ranking score of 0). The site is also over 1,000 horizontal feet from the nearest surface water body (ranking score of 0) Therefore the total ranking score for the site is 0.

6.4 Remediation Levels

Remediation levels for benzene, total BTEX (includes benzene, toluene, ethylbenzene and xylenes), chloride, and TPH are selected based on the total ranking score of 0 for the release site. These remediation levels are as follows:

Constituent	Remediation Level (ppm, mg/kg)
Benzene	10
BTEX	50

Magnum Pronto State #4H Release ■ Lea County, New Mexico July 8, 2013 ■ Terracon Project No. 68137010

Constituent	Remediation Level (ppm, mg/kg)
TPH	5,000
Chloride	1,000

7.0 SOIL SAMPLING PROCEDURES

Soil sampling procedures are detailed as follows:

7.1 Highly Contaminated or Saturated Soils

The operator proposes to determine the final soil contaminant concentrations after a soil removal action at the site. Highly contaminated or saturated soils will be removed from the site, disposed at an OCD-approved facility, and will not be sampled.

7.2 Unsaturated Contaminated Soils

7.2.1 Soil Sampling Procedures for Headspace Analysis

A headspace analysis may be used to determine the total volatile organic vapor concentrations in soils (ie. in lieu of a laboratory analysis for benzene and BTEX but not in lieu of chloride and TPH analysis). Headspace analysis procedures should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD procedures are as follows:

- Fill a 0.5 liter or larger jar half full of sample and seal the top tightly with aluminum foil or fill a one quart zip-lock bag one-half full of sample and seal the top of the bag leaving the remainder of the bag filled with air.
- Ensure that the sample temperature is between 15 to 25 degrees Celsius (59-77 degrees Fahrenheit).
- Allow aromatic hydrocarbon vapors to develop within the headspace of the sample jar or bag for 5 to 10 minutes. During this period, the sample jar should be shaken vigorously for 1 minute or the contents of the bag should be gently massaged to break up soil clods.
- If using a jar, pierce the aluminum foil seal with the probe of either a PID or FID organic vapor meter (OVM), and then record the highest (peak) measurement. If using a bag, carefully open one end of the bag and insert the probe of the OVM into the bag and re-seal the bag around the probe as much as possible to prevent vapors from escaping.

Remedial Action Plan Magnum Pronto State #4H Release
Lea County, New Mexico July 8, 2013
Terracon Project No. 68137010

Record the peak measurement. The OVM must be calibrated to assume a benzene response factor.

7.2.2 Soil Sampling Procedures for Laboratory Analysis

Soil Sampling Procedures

Soil sampling for laboratory analysis will be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect samples in clean, air-tight glass jars supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier.
- Label the samples with a unique code for each sample.
- Cool and store samples with cold packs or on ice.
- Promptly ship sample to the lab for analysis following chain of custody procedures.
- All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.

Analytical Methods

All soil samples must be analyzed using EPA methods, or by other OCD approved methods and must be analyzed within the holding time specified by the method. Below are laboratory analytical methods the selected laboratory will use for analysis of soil samples analyzed for petroleum related constituents.

- Benzene, toluene, ethylbenzene and xylene EPA Method 602/8020
- Chloride EPA Method 300.0
- Total Petroleum Hydrocarbons -EPA Method 418.1, or; -EPA Method Modified 8015

8.0 SOIL REMEDIATION

Contaminated soil will be remediated and managed according to the criteria described below which will remove contaminants in order to protect fresh waters, public health and the environment. Remedial Action Plan Magnum Pronto State #4H Release ■ Lea County, New Mexico July 8, 2013 ■ Terracon Project No. 68137010 lerracon

8.1 Contaminated Soils

Highly contaminated/saturated soils and unsaturated contaminated soils exceeding the remediation levels described in Section 6 will be remediated as follows:

- Soils within the spill area shown on Figure 2 of Appendix A will be excavated to a maximum depth of 2 feet below ground;
- Following excavation, samples will be collected from the base of the excavation to determine the remaining levels of soil contaminants are below the remediation levels detailed in Section 6.

8.2 Soil Management

The selected method of soil management is removal and disposal at an OCD-approved facility. Excavated soils will be transported by truck (20 cubic yard capacity) and disposed of at the Parabo Disposal Facility operated by Sundance Services, Inc., located east of Eunice, New Mexico.

9.0 TERMINATION OF REMEDIAL ACTIONS, FINAL CLOSURE AND REPORTING

9.1 Termination of Remedial Action

Remedial action of soils at the site will be terminated when the following criteria have been met. Contaminated soils will be removed from the site as described in Section 8.2. Sufficient contaminated soil will be removed so that residual contaminant concentrations are below the soil remediation action levels detailed in Section 6.4.

If soil action levels cannot practicably be attained, an evaluation of risk will be performed and provided to OCD for approval showing that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh water, public health and the environment.

9.2 Final Closure

Upon termination of remedial actions (Sections 6 and 8) the area of the release will be closed by backfilling the excavated area and contouring to provide drainage away from the site.

Magnum Pronto State #4H Release ■ Lea County, New Mexico July 8, 2013 ■ Terracon Project No. 68137010

Terracon

9.3 Final Report

Upon completion of remedial activities a final report summarizing all actions taken to mitigate environmental damage related to the release will be provided to OCD for approval.

APPENDIX A – FIGURES

Figure 1 – Topographic Map Figure 2 – Soil Sample Location Map

APPENDIX B – ANALYTICAL REPORT AND CHAIN OF CUSTODY

Analytical Report 460679

for Allied International Emergency

Project Manager: Chris Waters

Hazmat One/Conchd

30-04-13-1042

09-APR-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ00989): Arizona (AZ0758)

09-APR-13

Project Manager: Chris Waters Allied International Emergency 2333 Delante Ave Fort Worth, TX 76117

Reference: XENCO Report No(s): 460679 Hazmat One/Conchd Project Address: NM

Chris Waters:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 460679. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 460679 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Nul Ct

Nicholas Straccione Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 460679

Allied International Emergency, Fort Worth, TX

Hazmat One/Conchd

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SP1-1	S	04-04-13 14:15		460679-001
SP1-2	S	04-04-13 14:23		460679-002
SP1-3	S	04-04-13 14:27		460679-003
SP2-1	S	04-04-13 14:31		460679-004
SP2-2	S	04-04-13 14:34		460679-005
SP2-3	S	04-04-13 14:36		460679-006
SP3-1	S	04-04-13 14:40		460679-007
SP3-2	S	04-04-13 14:44		460679-008
SP3-3	S	04-04-13 14:46		460679-009
SP4-1	S	04-04-13 14:52		460679-010
SP4-2	S	04-04-13 15:09		460679-011
SP4-3	S	04-04-13 15:15		460679-012

CASE NARRATIVE

Client Name: Allied International Emergency Project Name: Hazmat One/Conchd

Project ID: Work Order Number(s):

30-04-13-1042 460679 Report Date: 09-APR-13 Date Received: 04/05/2013

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-910759 TPH by Texas1005 TX1005

Batch 910759, C12-C28 Diesel Range Hydrocarbons recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 460679-009, -003, -012, -002, -010, -008, -006.

The Laboratory Control Sample for C12-C28 Diesel Range Hydrocarbons is within laboratory Control Limits

TX1005

Batch 910759, C28-C35 Oil Range Hydrocarbons RPD was outside QC limits. Samples affected are: 460679-009, -003, -012, -002, -010, -008, -006

Certificate of Analysis Summary 460679

Allied International Emergency, Fort Worth, TX

Project Name: Hazmat One/Conchd

Project Id: 30-04-13-1042 Contact: Chris Waters Project Location: NM

Date Received in Lab: Fri Apr-05-13 12:10 pm Report Date: 09-APR-13

				13 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Project Man	nager:	Nicholas Strad	ccione		
	Lab Id:	460679-0	001	460679-0	002	460679-0	003	460679-0	004	460679-0	05	460679-0	006
Anglusia Descented	Field Id:	SP1-1	EV C	SP1-2		SP1-3		SP2-1		SP2-2	1	SP2-3	
Analysis Kequestea	Depth:				4					4 M 1 1 1			
	Matrix:	SOIL		SOIL	100	SOIL		SOIL		SOIL	100	SOIL	
	Sampled:	Apr-04-13	14:15	Apr-04-13	14:23	Apr-04-13	14:27	Apr-04-13 1	14:31	Apr-04-13	14:34	Apr-04-13	14:36
Percent Moisture	Extracted:		25 2.4					1	2-18		1.00	10.0810.00	10.0
	Analyzed:	Apr-08-13	09:30	Apr-08-13	09:30	Apr-08-13 (09:30	Apr-08-13 (09:30	Apr-08-13 (09:30	Apr-08-13	09:30
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		2.53	1.00	3.11	1.00	2.77	1.00	5.85	1.00	4.33	1.00	3.95	1.00
TPH by Texas1005	Extracted:	Apr-08-13	13:40	Apr-05-13	14:40	Apr-05-13	14:40	Apr-08-13 1	13:40	Apr-08-13	13:40	Apr-05-13	14:40
	Analyzed:	Apr-08-13	18:36	Apr-05-13	19:29	Apr-05-13	19:53	Apr-08-13 1	19:01	Apr-08-13	19:27	Apr-05-13	21:35
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons	State State State	5350	256	437	25.8	187	25.7	8170	133	3160	131	680	26.0
C12-C28 Diesel Range Hydrocarbons		38100	256	791	25.8	442	25.7	17600	133	6320	131	1940	26.0
C28-C35 Oil Range Hydrocarbons	1	4910	256	82.2	25.8	46.8	25.7	1620	133	673	131	206	26.0
Total TPH 1005	in a substate of	48400	256	1310	25.8	676	25.7	27400	133	10200	131	2830	26.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nicholas Straccione Project Manager

Final 1.000

Certificate of Analysis Summary 460679

Allied International Emergency, Fort Worth, TX

Project Name: Hazmat One/Conchd

Project Id: 30-04-13-1042 Contact: Chris Waters **Project Location: NM**

Date Received in Lab: Fri Apr-05-13 12:10 pm Report Date: 09-APR-13 Project Manager: Nicholas Straccione Lab Id: 460679-007 460679-008 460679-009 460679-010 460679-011 460679-012 Field Id: SP4-1 SP4-3 SP3-1 SP3-2 SP3-3 SP4-2 Analysis Requested Depth: SOIL SOIL SOIL SOIL SOIL SOIL Matrix: Sampled: Apr-04-13 14:40 Apr-04-13 14:44 Apr-04-13 14:46 Apr-04-13 14:52 Apr-04-13 15:09 Apr-04-13 15:15 **Percent Moisture** Extracted: Analyzed: Apr-08-13 09:30 Apr-08-13 09:30 Apr-08-13 09:30 Apr-08-13 09:30 Apr-08-13 09:30 Apr-08-13 09:30 % Units/RL: RL % RL % RL % % RL RL % RL Percent Moisture 2.28 1.00 2.67 1.00 3.13 1.00 2.16 7.36 1.00 1.00 1.00 8.36 **TPH by Texas1005** Apr-08-13 13:40 Apr-05-13 14:40 Apr-05-13 14:40 Apr-05-13 14:40 Apr-08-13 13:40 Apr-05-13 14:40 Extracted: Apr-06-13 00:16 Apr-08-13 19:52 Apr-05-13 22:28 Apr-05-13 22:54 Apr-05-13 23:21 Analyzed: Apr-08-13 20:17 Units/RL: mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL C6-C12 Gasoline Range Hydrocarbons 3070 255 165 25.7 163 25.8 1390 135 27.3 128 3020 598 C12-C28 Diesel Range Hydrocarbons 35600 255 313 25.7 350 25.8 23600 128 6670 135 1300 27.3 C28-C35 Oil Range Hydrocarbons 3550 255 31.5 25.7 31.0 25.8 2660 128 619 135 126 27.3 Total TPH 1005 42200 255 510 25.7 544 25.8 27700 128 10300 135 2020 27.3

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nul Ctr

Nicholas Straccione Project Manager

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

LOQ Limit of Quantitation

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

- MDL Method Detection Limit SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas -	San Antonio	- Atlanta	- Iviidiand/Odessa -	Tampa/Lakeland	- Phoenix	- Latin America
				Phone		Fax
 The color 1 million 4				(001) 010	1000	

4143 Greenbriar Dr, Stafford, TX 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 12600 West 1-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040
 Phone
 Fax

 (281) 240-4200
 (281) 240-4280

 (214) 902 0300
 (214) 351-9139

 (210) 509-3334
 (210) 509-3335

 (813) 620-2000
 (813) 620-2033

 (432) 563-1800
 (432) 563-1713

 (770) 449-8800
 (770) 449-5477

 (602) 437-0330
 (210) 509-3330

Final 1.000

Project Name: Hazmat One/Conchd

Vork Orders : 460679 Lab Batch #: 910759	, Sample: 460679-002 / SMP	Bate	Project I h: 1 Matrix	D: 30-04-13- x: Soil	1042			
Units: mg/kg	Date Analyzed: 04/05/13 19:29	SU	RROGATE R	ECOVERY	13-1042 X STUDY y Control Limits %R 70-135 70-130 X STUDY y Control Limits %R 70-135 70-135 70-135 70-135 70-135 70-130 X STUDY y Control Limits %R 70-135 70-130 X STUDY y Control Limits %R 70-130	3.246		
TPF	Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag		
1-Chlorooctane	Timuly COS	102	100	102	70-135			
o-Terphenyl		55.8	50.0	112	70-130			
Lab Batch #: 910759	Sample: 460679-003 / SMP	Bate	h. 1 Matrix	x: Soil		1.5.1		
Units: mg/kg	Date Analyzed: 04/05/13 19:53	SU	RROGATE R	ECOVERY	STUDY			
TPH	I by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage		
1-Chlorooctane		102	100	102	70-135			
o-Terphenyl		55.0	50.0	110	70-130	18.0		
Lab Batch #: 910759	Sample: 460679-006 / SMP	Batc	h: 1 Matrix	: Soil	19 14			
Units: mg/kg	Date Analyzed: 04/05/13 21:35	SU	RROGATE R	ECOVERY	02 70-135 10 70-130 TERY STUDY Control Limits %R D] 02 70-135			
TPH	Applytos	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage		
1-Chlorooctane	Analytes	102	100	102	70-135			
o-Terphenyl		49.0	50.0	98	70-130			
Lab Batch #: 910759	Sample: 460679-008 / SMP	Poto	h. 1 Matrix	r: Soil	P	1		
Lab Batten #. 910/59	Date Analyzed: 04/05/13 22:28	SURROGATE RECOVERY STUDY						
TPE	I by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	AGREE AND	100	100	100	70-135	1		
o-Terphenyl		53.7	50.0	107	70-130			
Lab Batch #: 910759	Sample: 460679-009 / SMP	Batc	h: 1 Matrix	c: Soil	Seal St.	S. S.		
Units: mg/kg	Date Analyzed: 04/05/13 22:54	SU	RROGATE R	ECOVERY	STUDY	3.2		
TPE	I by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag		
1-Chlorooctane		99.8	100	100	70-135	100		
o-Terphenyl		53.0	50.0	106	70-130	1.5.5		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Hazmat One/Conchd

Vork Orders : 460679, Lab Batch #: 910759 Sample: 460679-010 / SMP	Bate	Project I h: 1 Matrix	D: 30-04-13- c: Soil	1042				
Units: mg/kg Date Analyzed: 04/05/13 23:21	SURROGATE RECOVERY STUDY							
TPH by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	06.7	100	07	70.125				
o-Ternhenvi	45.0	50.0	97	70-130	5.15			
	45.0		0.1	70-150	12.20			
Units: mg/kg Date Analyzed: 04/06/13 00:16	Bate	RROGATE R	ECOVERY	STUDY				
TPH by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	101	100	101	70-135	See 21			
o-Terphenyl	54.6	50.0	109	70-130	Sec.			
Lab Batch #: 910882 Sample: 460679-001 / SMP Units: mg/kg Date Analyzed: 04/08/13 18:36	Bate SU	h: 1 Matrix RROGATE R	: Soil ECOVERY	STUDY				
TPH by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	120	99.7	120	70-135				
o-Terphenyl	50.5	49.9	101	70-130	0 14 2			
Lab Batch #: 910882 Sample: 460679-004 / SMP	Batc	h: 1 Matrix	:Soil	12.8 . 1.6	diesta			
Units: mg/kg Date Analyzed: 04/08/13 19:01	SU	RROGATE R	ECOVERY	STUDY	131713			
TPH by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	100	100	100	70-135	1.2			
o-Terphenyl	48.8	50.1	97	70-130	Series.			
Lab Batch #: 910882 Sample: 460679-005 / SMP	Batc	h: 1 Matrix	: Soil	124				
Units: mg/kg Date Analyzed: 04/08/13 19:27	SU	RROGATE R	ECOVERY	STUDY	1.15			
TPH by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	113	100	113	70-135	1 But			
o-Ternhenvl	50.5	50.1	101	70-130	175.4			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hazmat One/Conchd

Vork Orders : 460679 Lab Batch #: 910882), Sample: 460679-007 / SMP	Bate	Project l	D: 30-04-13-	1042	
Units: mg/kg	Date Analyzed: 04/08/13 19:52	SU	RROGATE R	ECOVERY	STUDY	1.00
TPI	H by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1.011	Analytes		1111			1
1-Chlorooctane		107	99.6	107	70-135	Land.
o-1 erpnenyi		57.4	49.8	115	70-130	
Lab Batch #: 910882	Sample: 460679-011 / SMP	Batc	h: 1 Matrix	k:Soil	and the	
Units: mg/kg	Date Analyzed: 04/08/13 20:17	SU	RROGATE R	ECOVERY	STUDY	38
TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		117	100	117	70-135	1
o-Terphenyl		53.5	50.1	107	70-130	1
Lab Batch #: 910759	Sample: 636226-1-BLK / BL	.K Batc	h: 1 Matri	x:Solid		- Bas
Units: mg/kg	Date Analyzed: 04/05/13 16:11	SU	RROGATE R	ECOVERY	STUDY	1
TPI	H by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1 Chloroostane	Analytes	00.1	100	00	70.125	
o-Terphenyl		52.2	50.0	104	70-130	
		52.2	50.0	104	70-150	-
Lab Batch #: 910882	Sample: 636320-1-BLK / BL	K Bate	h: 1 Matrix	c: Solid	CTUDY	
Units: mg/kg	Date Analyzed: 04/08/13 16:55	SU	RROGATE R	ECOVERY	STUDY	
TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		99.6	99.9	100	70-135	2.10
o-Terphenyl		53.3	50.0	107	70-130	
Lab Batch #: 910759	Sample: 636226-1-BKS / BK	CS Bate	h: 1 Matrix	: Solid		
Units: mg/kg	Date Analyzed: 04/05/13 15:22	SU	RROGATE R	ECOVERY	STUDY	
TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		96.8	100	97	70-135	and a
o-Terphenyl		59.7	50.0	119	70-130	Section.

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Hazmat One/Conchd

Unite malka	Date Analyzed: 04/08/12 16:04	SURROGATE RECOVERY STUDY													
TPI	H by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags									
	Analytes			[D]	and the										
1-Chlorooctane		95.8	100	96	70-135	1.1.1.1									
o-Terphenyl		59.7	50.0	119	70-130	See Pro									
Lab Batch #: 910759	Sample: 636226-1-BSD / BS	SD Bate	ch: 1 Matrix	x:Solid	1152										
Units: mg/kg	Date Analyzed: 04/05/13 15:46	SU	RROGATE R	ECOVERY	STUDY	Sever.									
TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags									
1-Chlorooctane	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	93.7	100	94	70-135	344									
o-Terphenyl		59.4	50.0	119	70-130										
Lab Batch #: 910882	Sample: 636320-1-BSD / BS	SD Bate	h: 1 Matri	x:Solid	See Sur	13.78									
Units: mg/kg	Date Analyzed: 04/08/13 16:30	SU	RROGATE R	ECOVERY	STUDY										
TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags									
1-Chlorooctane		96.9	100	97	70-135										
o-Terphenyl		60.1	50.1	120	70-130										
Lab Batch #: 910759	Sample: 460679-009 S / MS	Batc	ch: 1 Matrix	x: Soil											
Units: mg/kg	Date Analyzed: 04/06/13 00:43	SU	RROGATE R	ECOVERY	STUDY	april -									
TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags									
		00.0	100	01	70-135										
1-Chlorooctane		90.9	100	91											
1-Chlorooctane o-Terphenyl		53.7	50.0	107	70-130										
1-Chlorooctane o-Terphenyl Lab Batch #: 910882	Sample: 460785-001 S / MS	53.7 Batc	50.0	107 x: Soil	70-130										
1-Chlorooctane o-Terphenyl Lab Batch #: 910882 Units: mg/kg	Sample: 460785-001 S / MS Date Analyzed: 04/09/13 02:08	90.9 53.7 Bate SU	50.0 sh: 1 Matrix	107 x:Soil	70-130 STUDY										
1-Chlorooctane o-Terphenyl Lab Batch #: 910882 Units: mg/kg TPH	Sample: 460785-001 S / MS Date Analyzed: 04/09/13 02:08 H by Texas1005	53.7 Batc SU Amount Found [A]	True Billing B	Recovery %R JD1	70-130 STUDY Control Limits %R	Flags									
1-Chlorooctane o-Terphenyl Lab Batch #: 910882 Units: mg/kg TPH	Sample: 460785-001 S / MS Date Analyzed: 04/09/13 02:08 H by Texas1005 Analytes	90.9 53.7 Bate SU Amount Found [A]	100 50.0 RROGATE R True Amount [B]	Recovery %R [D]	70-130 STUDY Control Limits %R	Flags									

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Hazmat One/Conchd

Vork Orders : 460679, Lab Batch #: 910759 Sample: 460679-009 SD / N	Project ID: 30-04-13-1042 / MSD Batch: 1 Matrix: Soil													
Units: mg/kg Date Analyzed: 04/06/13 01:11	1 SURROGATE RECOVERY STUDY													
TPH by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags									
1-Chlorooctane	96.3	100	96	70-135	2.00									
o-Terphenyl	56.2	50.0	112	70-130										
Lab Batch #: 910882 Sample: 460785-001 SD / N Units: mg/kg Date Analyzed: 04/09/13 02:33	ASD Bate SU	h: 1 Matrix	k: Soil ECOVERY S	STUDY	3									
TPH by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags									
1-Chlorooctane	101	100	101	70-135	1. 19									
o-Terphenyl	58.3	50.1	116	70-130										

* Surrogate outside of Laboratory QC limits ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Hazmat One/Conchd

Work Order #: 460679 Analyst: KEB Lab Batch ID: 910759 Sample: 6362	Da 26-1-BKS	ite Prepare Batch	ed: 04/05/20 #: 1	13		Project ID: 30-04-13-1042 Date Analyzed: 04/05/2013 Matrix: Solid											
Units: mg/kg	Contraction of the	BLANK	K/BLANK	SPIKE / E	BLANK S	PIKE DUP	LICATE F	RECOVE	ERY STUD	Y							
TPH by Texas1005 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag						
C6-C12 Gasoline Range Hydrocarbons	<25.0	1000	954	95	1000	928	93	3	70-135	35							
C12-C28 Diesel Range Hydrocarbons	<25.0	1000	1060	106	1000	1040	104	2	70-135	35							
Analyst: KEB Lab Batch ID: 910882 Sample: 6363	Da 20-1-BKS	ite Prepare Batch	ed: 04/08/20 #: 1	13			Date Ar	nalyzed: (Matrix: S	04/08/2013 Solid								
Units: mg/kg		BLANK	K/BLANK	SPIKE / H	BLANK S	PIKE DUP	LICATE F	RECOVE	ERY STUD	PΥ	2.1						
TPH by Texas1005 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag						
C6-C12 Gasoline Range Hydrocarbons	<25.0	1000	942	94	1000	944	94	0	70-135	35							
C12-C28 Diesel Range Hydrocarbons	<25.0	1000	994	99	1000	981	98	1	70-135	35	1.16						

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Hazmat One/Conchd

Work Order #: 460679						Project II	D: 30-04-1	13-1042			
Lab Batch ID: 910759 Date Analyzed: 04/06/2013	QC- Sample ID Date Prepared	e: 460679	9-009 S 2013	Ba An	tch #: alyst:	1 Matrix KEB	x: Soil				
Reporting Units: mg/kg	States a state of the	N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by Texas1005 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	163	1030	1080	89	1030	1240	105	14	70-135	35	
C12-C28 Diesel Range Hydrocarbons	350	1030	1490	111	1030	1880	149	23	70-135	35	X
Lab Batch ID: 910882 Date Analyzed: 04/09/2013	QC- Sample ID Date Prepared): 460785 1: 04/08/2	5-001 S 2013	Ba An	tch #: alyst:	1 Matrix KEB	k: Soil				
Reporting Units: mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		1
TPH by Texas1005 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	<28.1	1130	1110	98	1120	1070	96	4	70-135	35	
C12-C28 Diesel Range Hydrocarbons	57.4	1130	1160	98	1120	1130	96	3	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: Hazmat One/Conchd

Work Order #: 460679

Lab Batch #: 910788 Date Analyzed: 04/08/2013 09:30 QC- Sample ID: 460597-001 D Reporting Units: %	Date Prepar Batel	red: 04/08/2013	Ana Mat	Project I lyst: WRU trix: Soil DUPLIC	D: ³⁰⁻⁰⁴⁻¹³	-1042
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture		6.30	6.43	2	20	
Lab Batch #: 910789 Date Analyzed: 04/08/2013 09:30 QC- Sample ID: 460679-007 D	Date Prepar Batcl	red: 04/08/2013	Ana Mat	lyst: WRU rix: Soil		
Reporting Units: %	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture		2.28	2.24	2	20	15.53

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Company-City				Phor	ne L	37.	812-	47	11	Lal	o Onl	lv:		. /	11	~	n	7			1		1			1	14.18		1.12
ALLIER TIM	FRNATIONA	Emp	PAL	ENA	1	se o	13	12					1		14	OU	10	1			-		~					1.000	1
Project Name-Locati	on Previous	ly done at X	ENCO	1. A	7	Pro	oject l	D	*	TA	T: A	SAP	5h 1	2h 2	4h	48h	3d	5d)	7d 1	0d 2	1d 6	tanda	ard A	Tisp	rojec	t spe	cific.		
HAZMAT DNI	EKSNCHO	1	3	0-	24	- 1:	3-10	04	2-	It is	typic	ally 5	-7 W	orkin	g Da	ays fo	or leve	FII a	nd 10	+ VVOI	King	days	tor lev	verma	and r	val	a.	Dem	
NI PA SC TN UTO	ther ALA, MS, NC,	Proj. Manager (PM)											TA		3	Bs)	-	-				-			19	-	6	Rem	narks
E-mail Results to	PM and	ICARIS	- III	1010	<u>c</u> re	Fax	K No:			No.	her:		0		App	P				-					D	tHit	ovec		
LUND QAI	EMERGEXICA	1.Com				1		der.		0	ð		-xpo	es	×1	erb.					1.5				10	ghes	appr		
nvoice to Account	ing Inc/ Invoice	vith Final Re	port [] Invo	ice n	nust	have a	a P.O		E E	ALL		Apr	ticid	pda	T								1.0	PL	Ĩ	Dre-	D	in 1
SIII to: 2333 DEC	ANTE AVE.	FT. won	RTH	72	2	Tle	17			6	O	H	d	Pes	L	Pest			1						3	S	are	sede	
Quote/Pricing:		P.O. No:	04	0.	ð	-xp			P	3TA	S								*	Y	g/Kg	and	as n						
teg Program: UST	DRY-CLEAN Land	-Fill Waste-	-Disp	NPDI	ES I	DW	TRRE	2		H	App	W	TCI	s	d	NON									e,	ε	ply	/ed	
APP Per-Contract	CLP AGCEE NAV	Y DOE D	OD U	SACE	EOT	HER				Ĭ	-	Ha	AE	cide	13F	S			1						481	N.	ill ap	oprov	
special DLs (GW D)	W QAPP MDLs RL	s See Lab F	M Ind	lude	d C	all F	PM)	1		BE	cpdo	270	NSN	lerbi	E.	00								1	4h	J/Gu	N Se	e-ap	1
				0	1.14	1	Sec.	11.1		W-	A	8 0		L S	ZA-4	s									C	E.	larg	le pr	1
Sampler Name Cu	eis WATER	WATERS Signature										310 GR		CB	RC	Aeta									121	ø	urch	DS al	
							Se	be	0	E H	G	⁸⁰ C	List	S	1-8	E			1		-	16			Sh	vode	se (S	In-ue	
	Sampling	A Start	1.5	ito		ners	er Si	er TJ	ative	II-Lis	E I	NIS		icide	CR	CLF	BCP								d	AHS	mple	Clea	
Sample ID	Date	Time	E E	xi		ntai	taine	aine	erve	E Fu	P	S	Cs	Pest	als: F	1	D/D						1		TAS/	h: P	d Sa	aple	
		1	Dept	Matr	Grat	° S	Cont	Cont	Pres	VOA	VOA	FAL	SVC	00	Meta	SPL	EDB					-			TAI	Add	Hot	San	
SPI-1	4-4-13	1415		5	X	1	4	C	C			X	1	1											X			100	
5P1-2	4-4-13	1423		5	X	1	4	C	C			X													X				an an
581-3	4-4-13	1427		5	X	1	4	C	1			X	1	-	. 10					1					X				1.
502-1	4-4-13	1221		5	X	1	4	C	0		1	1	-				14								X				
SD 2-7,	4-12-13	11224	124	<	V	1	H	C	C			Y	1												X				
<p7-2< td=""><td>4-4-12</td><td>1121</td><td></td><td><</td><td>Î</td><td>1</td><td>4</td><td>1</td><td>0</td><td></td><td>-</td><td>Y</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td>X</td><td></td><td></td><td></td><td></td></p7-2<>	4-4-12	1121		<	Î	1	4	1	0		-	Y	-	-					-	1					X				
502-1	4-4-13	14/1/2		5	K	P	H	1	0			5	1		1	1		1				2			X	-			the second
502-2	4-4-12	12141		5	X	1	4	C	C		-	X		· · · · ·		1.1	22.4						1		X			a and a second	and the second
5P2-3	4-20-13	JUL		5	x	1	N	C.	1			1	1	1	1	1.								1	X				-
SPAL 1	4-4-12	1452		5	X	1	A	C	0			Íx	1	1											X	100			1.2
Relinguished by (In	nitials and Sign)	Date & 1	Time		Relin	quis	hed to) (Initi	ials a	nd Si	gn)	ť	Da	te &	Tim	e	Tota	Cont	ainers	per C	OC:	10	-	C	poler	Temp	1. 10	0 °C	
Con Co		expostiz	113	5 2)	6	21	Te	D		~		4	1-5.	13	11:	35	Othe	wise	agree	d on v	vriting	. Rep	orts a	re the l	Intelle	ctual	Prop	erty of X	ENCO
)		11	1	4)	d	7			0	-			1				until	paid.	Sampl	es wil	beh	eld 30) days	after f	inal re	port	is e-r	nailed un	niess
D BUllelance	1	4-5-13	12:10	2 6)	XIT	10	IA IA	1 0	the		10		17	10	41.	612	here	y req	uestec	I. Rus	n Cha	rges a	ana	nection	I Fee	sale	hie-9	thbioned	IT need

Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40mi VOA (40), 1L (1), 500mi (5), Tediar Bag (B), Various (V), Other ______ Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

www.xenco.com

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

Final 1.000

Page 16 of 18

10

company-City				hon	043	32-8	713-	421		Lab C	nly:			2	110	n	61	9								· · · · ·	153		
Project Name-Location	RNATIDNA	Lone at X	FACO	ic.	1	Pro	lect II)		TAT:	ASA	AP 5	h 12	1 24	th 4	18h	3d/	5d 7	d 10	0d 2	1des	and	ard D	Tis	projec	ct spe	ecific		
Nazmar M	15/Course	0 32	24-1	2-	10	42				It is ty	oical	ly 5-	7 Wor	king	Day	s for	r level	II an	d 10-	+ Wor	king (lays	for le	vel III	and I	V da	ta.		
roj. State: TX, AL, FL,	GA, LA, MS, NC,	Proj. Mana	ager (P	M)					1				E		N	(s)									-			Remai	rks
IJ, PA, SC, TN, UT Oth	NM	CHRIS	W	TE	R	5			1	As OAs			S		pd	S								1	210	I	(pe		
-mail Results to	PM and					Fax	NO:			Office of the			4-7		A						1				B	st F	LOV		
Avoice to DAccounting		vitta Final Re	port	Invo	ice n	nusth	nave a	P.O.		Hs			pdd	ides	X	Her								1		ighe	-apr		
Bill to: 7333 DE/	AVE AVE	FFI)	2012	17	-	M	117	1		CAL	13	T.	A	stic	Api	st								1.	170	H	pre	ped	
Quote/Pricing:	None Title.	P.O. No:	104	X-2	1	VPI	H	Pe	TAL	Pe						•			B	9	d are	need							
Reg Program: UST D	RY-CLEAN Land	-Fill Waste	-Disp	NPDE	S	DW	TRRP		11	D H	1	MA	5	Ö	23	ö									3d	/bm	y an	das	
APP Per-Contract C	LP AGCEE NAV	Y DOE D	OD U	SACE	OT	HER				Etol		F	Ш	ides	13PF	SV									48h	κ.	appl	Love	1
inacial DI & (GW/ DW/		s See Lab F	M Inc	luded	1 0	all P	M)			BE pdx-	20	AE	N&A	erbic	P	OCs				1		1			4	J/L V	will s	app	
precia DES (GVV DVV	WAFF WIDLS RL	S GEE LAD F	IVI IIIC	auet		an r	IVI)			AD AD	82	M	B	Ť	A4	>							5		24	ŝ	rges	pre	
ampler Name / -	- 1.7	Signatu	re A			-	-			NOW	10	SRO	DV	CBs	SCR	etals				1					124	1	cha	are	
(HR)	SWATERS		T C	T			6	0	1. 1. 1. 1. 1. 1.	LB J	83	0	ist	P	8	N)			-	1.						ove	(Sui	sdn	
all states and						SIS	Siz	Typ	ves	List TC	M	DR	긐	ides	RA-	5	8			- 2		1			21	l ab	oles	ean	
Sample ID	Sampling	Time		osit	1	aine	ner	ner	vati	P P	S	10	S: F	stic	RC	-10	B			10	1	1			SAP	PAH	amp	e	
	Date	Sec. 1	pth ""	trix	ab	ont	ntai	ntal	eser	A: H	Hs	P-	1 S	Pe	etals	5	B								ITA	Idn:	old S	du	
			# D	No Na	D D	#	ပိ	ပိ	Pr	> >	PA	Å	S	ŏ	W	5							1		T	Ad	F	Sa	
SP4-2	4-4-13	1509		5	X	1	4	C	C			X		-				-		1	18	1			X				
5P4-3	4-4-13	1515		5	X	1	4	C	C		1 .	X		14			:	a 14	1						X				
			1			-					1	1 .				1	-												
and the second							e card	3					1							1.0	1					1			
		1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -							1		1			-		1								-				Fritz	
											1							-	1										1
			1	1						1. 1	-							-											
and a star and a star a	a second a second				-	1. 1. 1.						-			-	-			-	-		-						ing in ger b	=
				-	1			-	1			-		-	-	-	-	-	-	-		-	-	-				2. 1. 1	
		1.20		-			-				-	-			-	-		-	-			-	-		-			And and the	-
Delinguished by Unit	iolo and Simal	Deta 8	Time	-	Polis	aquic	had to	(Initi	ale er	d Sign		-	Data	2	Time	-	Total	Contra			00	2	_			Tom	1	0 .0	
Reinquisnee by (Init		ALLE	112	5 21	Q	ott	34	(init	ais di	ia oigh	1	11	Sale	3	112	5	Othen	vise a	aree	lon w	riting	Rep	orts ar	re the	Intelle	ctual	Pron	erty of XEN	co
3)		- yesp3		4)	0	0	15				1.1	17	54.	-		-	until p	aid. S	ample	es will	be he	ld 30	days	after f	inal re	sport	is e-r	nailed unless	S
AA AVAAA		11512	12:1	0 6)	XIA	Ou	ut	05	the	AT	0	11	-6-	12	12:	0	hereby	requi	ested	Rush	Chan	ges a	ind Co	lection	n Fee	s are	pre-a	pproved if ne	edec

subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

Page 17 of 18

Final 1.000

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Allied International Emergency	Acceptable Temperature Range: 0 - 6 degC										
Date/ Time Received: 04/05/2013 12:10:00 PM	Air and Metal samples Acceptable Range: Ambie										
Work Order #: 460679	Temperature Measuring device used :										
Sample Re	eceipt Checklist	Comm	nents								
#1 *Temperature of cooler(s)?		1									
#2 *Shipping container in good condition?		Yes									
#3 *Samples received on ice?		Yes									
#4 *Custody Seals intact on shipping container/ cooler?		Yes									
#5 Custody Seals intact on sample bottles?		Yes									
#6 *Custody Seals Signed and dated?		Yes									
#7 *Chain of Custody present?		Yes									
#8 Sample instructions complete on Chain of Custody?		Yes									
#9 Any missing/extra samples?		No									
#10 Chain of Custody signed when relinquished/ received	ed?	Yes									
#11 Chain of Custody agrees with sample label(s)?		Yes									
#12 Container label(s) legible and intact?		Yes									
#13 Sample matrix/ properties agree with Chain of Cust	ody?	Yes									
#14 Samples in proper container/ bottle?		Yes									
#15 Samples properly preserved?		Yes									
#16 Sample container(s) intact?		Yes									
#17 Sufficient sample amount for indicated test(s)?		Yes									
#18 All samples received within hold time?		Yes									
#19 Subcontract of sample(s)?		Yes									
#20 VOC samples have zero headspace (less than 1/4	inch bubble)?	Yes									
#21 <2 for all samples preserved with HNO3,HCL, H2S	04?	Yes									
#22 >10 for all samples preserved with NaAsO2+NaOH	, ZnAc+NaOH?	Yes									

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date:

Checklist reviewed by:

Date: