Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pCS1536332373

3RP - 1034

XTO ENERGY, INC

1/23/2018

Federal 18 #1T Remediation System 2017 4th Quarter Report

<u>Submitted By:</u> Charlie McCollum EHS Environmental Compliance Coordinator XTO Energy, Inc. 505-333-3711

Submitted to: Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 505-334-6178 Ext 116

January 2018

OIL CONS. DIV DIST. 3 JAN 16 2018

19

Table of Contents

Introduction	1
History	1
4 th Quarter Activities	2
Recommendations	3

Tables

Federal 18 #1T Water Results Federal 18 #1T Gas Vented Well SJ 1737 Casing Pressure

Attachments

Water Analysis Lab Report

Introduction

The purpose of this report is to summarize the current on-site activities involving venting gas and producing water from a former coal bed methane gas well at the Federal 18 #1T. The casing of this well has been modified to vent gas and purge water from the Ojo Alamo Formation. The setup and initial installation of this system is detailed in a report submitted to Brandon Powell, New Mexico Oil Conservation Division (OCD), in November 2010. This quarterly report details operations for the quarter.

History

The vacuum system at the Federal 18 #1T is being operated as part of an on going effort between the OCD and XTO Energy, Inc. (XTO) to vent gas from the Nacimiento formation just above the Ojo Alamo Formation. Gas was found in the Nacimiento formation, which could have come from several contributing sources. The Federal 1 #18 (30-045-09466), located in Section 10 of Township 30N, Range 13W and approximately 2,600' to the south-west of water well SJ-01737, was plugged in 1988 by Southern Union Oil Company. This well only had an initial surface casing of 200' when it was drilled in 1959. Section 18 also has one (1) additional well plugged by XTO Energy, Inc. in 2010. Section 19 of Township 30N, Range 12W has two (2) historically plugged wells. Approximately 4,400' to the south of water well SJ-01737, the Dansby #2 (30-045-09402) was plugged by Don Trader, Inc. in 1954 with a total depth of 1980' and a surface casing of only 100', and the second was a well plugged by Amoco Production in 1988. There are also three (3) additional wells plugged by Texacoma in 1997 in Section 19. There are additionally numerous oil and gas wells being operated by local exploration and production companies in the area. In Section 18, there are three (3) wells being operated by XTO Energy, Inc., and two (2) wells being operated by ConocoPhillips as Burlington Resources. In Section 19, there are nine (9) wells being operated by XTO Energy, Inc. In Section 7, there are seven (7) wells being operated by XTO Energy, Inc, and four (4) wells being operated by Robert L Bayless Producers, LLC. Furthermore, there is naturally occurring gas in the formation according to statements from local water well drillers, and a casing leak was discovered at the New Mexico Federal N #3E well site, (located in Unit D, Section 18, Township 30N, Range 12W, San Juan County, New Mexico). This leak was identified as a result of discovery of gas in a local water well (SJ 1737) in April 2010. Bradenhead pressures were observed at several XTO wells in the area. The New Mexico Federal N #3E, the New Mexico Federal N #3F and the New Mexico Federal N #3 all had bradenhead pressure tests performed. The bradenhead pressure from the New Mexico Federal N #3E was 17 psi, indicating a leak in the casing. The casing leak was repaired, and the New Mexico Federal N #3E was put back into operation. In agreement with the OCD, a nearby gas well scheduled to be plugged, Federal 18 #1T, was modified to act as a venting well by setting a plug at approximately 513 feet. Perforations were made in the casing at 437 feet and 457 feet in order to assess the groundwater and vent gas from the Nacimiento.

On September 24, 2010, a swab rig was used to determine if the well would produce water using the perforations. The swab rig recovered approximately 2 barrels of water, indicating that the perforations would produce water. A sample collected during the swab returned results above Water Quality Control Commission (WQCC) standards for benzene, total xylenes, and total

chlorides; see attached *Federal 18 #1T Water Results Table*. Due to the low pH and high chlorides, it was inferred that the acid used to dissolve cement during perforation activities may have infiltrated the aquifer, causing the increased levels shown in the sampling results. XTO recommended pumping the aquifer until sampling results were below the WQCC standards for BTEX and chlorides.

A pump was installed in the Federal 18 #1T on November 9, 2010 at approximately 485 feet. During the pump installation, the water level was checked using a Keck ET Long water level indicator. The static water level was found to be approximately 402.20 feet. The pump was initially set to operate four (4) times a day for 15 minutes, purging approximately 260 gallons per day. During swab and pump installation activities, no gas was found flowing from the well.

On November 11, 2010, a small vacuum pump was installed at the Federal 18 #1T to determine if gas could be vented. The discharge from the vacuum was checked using a MSA 4-Gas Monitor, which confirmed that methane, was being vented from the vacuum pump discharge. The vacuum pump operates at a discharge rate of three (3) standard cubic feet per minute (scfm), which is equivalent to approximately six (6) actual cubic feet per minute (acfm) based on elevation. This volume was calculated using the conversion factors provided by the vacuum pump manufacturer, Becker. The vacuum pump initially held a vacuum of approximately -12 inches of mercury on the casing of the Federal 18 #1T during operation. A portable generator placed on-site powered both the vacuum pump and the water pump.

The water pump was plumbed into the existing water lines on site, so that all water would pump into the 210-barrel water tank left on-site from production activities. Water piping above ground was wrapped with heat trace and insulation to prevent freezing.

The system was electrified on February 3, 2011 to prevent down time due to generator maintenance issues.

Currently the Federal 18-1T system visually checked on a weekly basis. The site check includes verifying pump operation, vacuum operation, recording volume changes based on week prior, and verifying that no other site conditions need adjustment. The 1737 well is evaluated on a weekly basis to open the valve for a week and then closing the valve the following week, before the valve is opened the next week a record of the pressure is taken before opening the valve.

4th Quarter Activities

During the 4th quarter of 2017, the system ran continuously with no down time. As of December 5, 2017, approximately 21,905.2 cubic feet (MCF) of gas has been vented from the Federal 18 #1T casing, with the system venting approximately 60.4 MCF per week during operation, while maintaining an average casing pressure of -10 inches of mercury on the Federal 18 #1T casing.

A total of 1,080,550 gallons of water have been removed from the Federal 18 #1T as of December 5, 2017. The attached *Federal 18 #1T Water Results Table* shows that that benzene concentrations have increased in the quarter with one (1) sampling event (December 5, 2017) returning results below the WQCC standard at 138 ppb. Chloride levels have remained constant through the quarter, remaining steady at 14.4 ppm. pH values remained constant in the quarter,

returning results of 7.20 TDS continues to be above WQCC standards at 2230 ppm, but background levels (1,400 ppm) in water well SJ 1737 are historically above WQCC standards as well.

The pressure at well SJ 1737 was checked over the course of the quarter. The pressure was checked by shutting in the casing for a minimum of one (1) week prior to reading the pressure gauge. The pressure readings are outlined in the attached *Well SJ 1731 Casing Pressures Table*. The pressure remained fairly constant over the course of the quarter. The casing pressure in the water well SJ 1737 has shown an overall decrease from 9 oz. in January of 2011 to 0.0 oz. December 5, 2017. An overall decreasing trend has existed in the water well casing since 2011.

Recommendations

Groundwater samples will continue to be collected quarterly to monitor the benzene concentration in this well. Chlorides, pH, TDS and EC remained constant over the 3rd quarter, and are very close to the background levels obtained in water well 1737. XTO proposes the continued operation of the vacuum pump and water pump at the Federal 18 #1T. Groundwater samples will continue to be collected on a quarterly basis until benzene levels remain below the WQCC standards for four (4) consecutive quarters. An alternative sampling schedule may be recommended at that time.

Charlie McCollum EHS Environmental Compliance Coordinator XTO Energy, Inc. Western Division

Date	Lab	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Xylene (ppb)	Chlorides (ppm)	TDS (ppm)	EC (umhos/cm)	pH	Purge Water Volume
NA	NA	10	750	750	620	250	1000	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	6 thru 9	NA
9/24/2010	ESC	150	BDL	76	670	NS	NS	NS	NS	N
9/24/2010	ESC	190	170	24	210	6800	13000	18000	6.1	N
9/24/2010	Etech	143	221	63.6	950	NS	NS	NS	NS	N
9/24/2010	Etech	320	377	31.8	568	7150	11100	16000	5.84	N
12/10/2011	Hall	NS	NS	NS	NS	2800	7610	8900	6.36	3032.
1/5/2011	Hall	67	93	7.9	25	NS	NS	NS	NS	7,79
1/5/2011	ESC	73	99	10	39	1600	4800	6000	6.6	7,798
1/29/2011	ESC	60	93	10	33	930	NS	4900	6.4	10791.0
2/28/2011	ESC	42	60	6.1	20	550	3400	4000	6.7	14795.0
4/1/2011	ESC	23	27	1.8	6.8	260	2700	3100	6.8	31237.5
4/29/2011	ESC	29	28	2.4	7.3	140	2600	2900	6.9	50217.0
5/31/2011	ESC	14	19	1.4	4.9	89	2500	2800	6.7	76513.0
6/14/2011	ESC	55	81	2.8	15	73	2500	2700	6.7	88120.0
6/30/2011	ESC	52	67	2.6	12	61	2500	2700	6.9	101208.
8/15/2011	ESC	21	25	1.2	5.8	44	2500	2600	6.8	140267.0
9/2/2011	ESC	10	12	0.64	3.2	41	2500	2600	7.2	155801.0
9/16/2011	ESC	9.6	11	0.64	3	38	2400	2500	7.2	168040.0
9/30/2011	ESC	7.2	8.7	0.64	2.5	35	2500	2600	7	180392.5
10/28/2011	ESC	5.1	BDL	1.8	2.7	31	2300	2600	6.9	205,220
11/30/2011	ESC	4	BDL	3.9	2	27	2500	2600	7.1	233,487.5
12/30/2011	ESC	3.4	BDL	BDL	2.9	27	2500	2500	7.5	261,390.5
4/3/2012	ESC	6	BDL	BDL	1.6	NS	NS	NS	NS	351,300
4/9/2012	ESC	NS	NS	NS	NS	19	2400	2400	7.4	NA
7/3/2012	ESC	5.3	BDL	BDL	BDL	16	2300	2400	7.4	NA
7/6/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	441,053
9/19/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	521,271
9/27/2012	ESC	6.2	BDL	BDL	BDL	15	2300	2500	7.1	NA
12/14/2012	NA	NS	NS	NS	NS	NS	NS	NS	NS	598,540
12/31/2012	Etech	13.9	1.1	ND	3.3	15.5	2690	2440	7.05	604,689
1/23/2013	ESC	160	190	BDL	26	15	2400	2500	8	PUMP SHUT OFF
2/22/2013	ESC	7.1	77	BDL	1.8	15	2100	2500	7.1	605,860
5/2/2013	ESC	9	6.9	BDL	BDL	15	2400	2600	7.5	612,601
8/19/2013	ESC	20	11	BDL	2.3	16	2200	2600	7.2	NA
9/23/2013	ESC	13	11	BDL	2.2	16	2300	2500	7.1	621,744
11/25/2013	ESC	4.6	5.2	BDL	BDL	15	2200	2700	7.7	631,430
2/4/2014	ESC	15	17	0.72	3.1	16	2200	2500	7.3	636,120
10/1/2015	ESC	54.2	57	1.37	9.77	21.3	2260	2640	6.98	639,410
10/20/2015	ESC	42.3	39.9	0.964	7.06	18.1	2330	1460	7.09	642,650
3/28/2016	ESC	38	34.1	0.835	4.82	21.6	2230	2570	6.86	650,850
6/14/2016	ESC	78.3	58.4	1.16	7.22	13.7	2890	2600	6.89	704,371
8/29/2016	ESC	19	BDL	BDL	2.18	14.8	2410	2590	7.02	763,261
11/18/2016	ESC	13.2	5.61	BDL	2.33	13.9	2470	2580	7.03	842,610
3/31/2017	ESC	9.61	7.87	BDL	BDL	14.4	2300	2570	7.28	858,190
6/16/2017	ESC	64.6	29.2	0.781	5.4	14.2	2360	2570	7.05	927,854
9/7/2017	ESC	4.61	1.73	BDL	BDL	13.7	2030	2450	7.14	997,330
12/5/2017	ESC	138	51.5	1.65	9.378	14.4	2230	2590	7.2	1,080,550
11/5/2010	ESC	ND	5.2	ND	ND	15	1400	2600	7.2	N/
BDL = Belov NS = Not Sa										

Date	SCFM	ACFM	Gas Vented To	otal
1/6/2017	3	6	19006	
1/13/2017	3	6	19066.4	
1/20/2017	3	6	19126.8	
1/27/2017	3	6	19187.2	
2/3/2017	3	6	19247.6	
2/10/2017	3	6	19308	
2/17/2017	3	6	19368.4	
2/24/2017	3	6	19428.8	
3/3/2017	3	6	19489.2	
3/10/2017	3	6	19549.6	
3/17/2017	3	6	19610	
3/24/2017	3	6	19670.4	
3/31/2017	3	6	19730.8	
4/7/2017	3	6	19791.2	
4/14/2017	3	6	19851.6	
4/21/2017	3	6	19912	
4/28/2017	3	6	19972.4	
5/5/2017	3	6	20032.8	
5/12/2017	3	6	20093.2	
5/19/2017	3	6	20153.6	
5/26/2017	3	6	20214	
6/2/2017	3	6	20274.4	
6/9/2017	3	6	20334.8	
6/16/2017	3	6	20395.2	
6/23/2017	3	6	20455.6	
6/30/2017	3	6	20516	
7/7/2017	3	6	20576.4	
7/14/2017	3	6	20636.8	
7/21/2017	3	6	20697.2	
7/28/2017	3	6	20757.6	
8/4/2017	3	6	20818	
8/11/2017	3	6	20878.4	
8/18/2017	3	6	20938.8	
8/25/2017	3	6	20999.2	
9/1/2017	3	6	21059.6	
9/1/2017 9/8/2017	3	6	21059.6	
	3	6	21120	
9/15/2017				
9/22/2017	3	6	21240.8	
9/29/2017	3	6	21301.2	
10/6/2017	3	6	21361.6	
10/13/2017		6	21422	
10/20/2017		6	21482.4	
10/27/2017		6	21542.8	
11/3/2017	3	6	21603.2	
11/10/2017		6	21663.6	
11/17/2017		6	21724	
11/24/2017	3	6	21784.4	
12/1/2017	3	6	21844.8	
12/5/2017	3	6	21905.2	

Well SJ 1737 Casing Pressures							
Date	Casing Pressure (oz)	Average					
3/24/2017	1	0.012					
4/7/2017	0.5	0.036					
7/14/2017	0	0.000					
7/26/2017	0	0.000					
9/7/2017	00	0.000					
10/13/2017	0	0.000					
10/20/2017	1.5	0.214					
10/30/2017	0	0.000					
11/10/2017	0	0.000					
11/17/2017	1.25	0.179					
11/22/2017	0	0.000					
12/1/2017	0	0.000					
12/5/2017	0	0.000					

ANALYTICAL REPORT

December 12, 2017

XTO Energy - Sidney, MT

Sample Delivery Group: Samples Received: Project Number: Description:

L955941 12/07/2017

Federal 18-1T

Report To:

Tim Hazen 2320 South Central Avenue Sidney, MT 59270

Entire Report Reviewed By: Namay F. McLain

Nancy McLain Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

AI

[°]Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
18-1T TUBING L955941-01	5
Qc: Quality Control Summary	6
Gravimetric Analysis by Method 2540 C-2011	6
Wet Chemistry by Method 9040C	7
Wet Chemistry by Method 9050A	8
Wet Chemistry by Method 9056A	9
Volatile Organic Compounds (GC) by Method 8021B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

18-1T TUBING L955941-01 GW			Collected by Charlie McCollum	Collected date/time 12/05/17 15:00	Received date/time 12/07/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1051233	1	12/08/17 15:32	12/08/17 16:15	MMF
Wet Chemistry by Method 9040C	WG1051428	1	12/10/17 05:01	12/10/17 05:01	GB
Wet Chemistry by Method 9050A	WG1051660	1	12/09/17 11:58	12/09/17 11:58	MA
Wet Chemistry by Method 9056A	WG1050951	1	12/08/17 04:47	12/08/17 04:47	KCF
Volatile Organic Compounds (GC) by Method 8021B	WG1051013	1	12/08/17 06:23	12/08/17 06:23	DWR

² Tc
Ss
⁴Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ AI
-
⁹ Sc

ACCOUNT: XTO Energy - Sidney, MT

SDG:

L955941

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Nanay F. McLain

Nancy McLain Technical Service Representative

ACCOUNT:							
XTO	Energy - Sidney,	MT					

SDG: 1955941

DATE/TIME: 12/12/17 21:59

PAGE: 4 of 14

18-1T TUBING

Collected date/time: 12/05/17 15:00

SAMPLE RESULTS - 01 L955941

Qc

Gravimetric Analysis by Method 2540 C-2011

Gravinietiic Analysis by Method 2540 C-2011							Cp
	Result	Qualifier	RDL	Dilution	Analysis	Batch	^{op}
Analyte	mg/l		mg/l		date / time		2
Dissolved Solids	2230		10.0	1	12/08/2017 16:15	WG1051233	Tc
Wet Chemistry by Method 9040C							
	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	SU			date / time			⁴ Cn
рН	7.20	Т8	1	12/10/2017 05:01	WG1051428		CI

Sample Narrative:

Analyte

Chloride

L955941-01 WG1051428: 7.2 at 17.6C

Wet Chemistry by Method 9050A

wet chemistry by Method 5000A								i -	
	Result	Qualifier	RDL	Dilution	Analysis	Batch		⁷ GI	
Analyte	umhos/cm		umhos/cm		date / time			G	
Specific Conductance	2590		10.0	1	12/09/2017 11:58	WG1051660		⁸ Al	
Wet Chemistry by N	Wet Chemistry by Method 9056A						0		
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Sc	
4 1 1	0		11		1			1	i -

date / time

12/08/2017 04:47

WG1050951

Volatile Organic Compounds (GC) by Method 8021B

mg/l

14.4

mg/l

1.00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.138	<u>J6</u>	0.000500	1	12/08/2017 06:23	WG1051013
Toluene	0.0515	JG	0.00100	1	12/08/2017 06:23	WG1051013
Ethylbenzene	0.00165		0.000500	1	12/08/2017 06:23	WG1051013
Total Xylene	0.00978	<u>J6</u>	0.00150	1	12/08/2017 06:23	WG1051013
(S) a,a,a-Trifluorotoluene(PID)	98.0		80.0-121		12/08/2017 06:23	WG1051013

1

SDG: L955941

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Tc

Ss

⁴Cn

Sr

GI

A

Sc

Method Blank (MB)

(MB) R3271777-1 12/0	8/17 16:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Dissolved Solids	U		2.82	10.0	

L955941-01 Original Sample (OS) • Duplicate (DUP)

(OS) L955941-01 12/0	8/17 16:15 • (DUP) R3	3271777-4 12/	08/17 16:15	5			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	2230	2210	1	0.901		5	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3271777-2 12/	/08/17 16:15 • (LCSD)	R3271777-3	12/08/17 16:15							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Dissolved Solids	8800	8390	8560	95.3	97.3	85.0-115			2.01	5

ACCOUNT:	
XTO Energy - Sidney, MT	

PROJECT:

Wet Chemistry by Method 9040C

QUALITY CONTROL SUMMARY L955941-01

Sr

⁹Sc

L954534-01 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result DUP RPD DUP Qualifier DUP RPD Limits Analyte su su % % pH 7.28 7.29 1 0.137 1	Analyte su su % % pH 7.28 7.29 1 0.137 1	(OS) L954534-01 12/10)/17 05:01 • (DUP) R	3271685-3 12	2/10/17 05:	01		
	DH 7.28 7.29 1 0.137 1		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	
pH 7.28 7.29 1 0.137 1		Analyte	SU	su		%		%
	Sample Narrative:	рН	7.28	7.29	1	0.137		1
OS: 7.28 at 12.5C								

DUP: 7.29 at 12.5C

L956434-01 Original Sample (OS) • Duplicate (DUP)

(OS) L956434-01 12/10/17	05:01 • (DUP) R	3271685-4 12	/10/17 05:0	01		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
pН	7.46	7.47	1	0.134		1
Sample Narrative:						

Sample Narrative:

OS: 7.46 at 19.8C DUP: 7.47 at 19.9C

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3271685-1 12/10/1	7 05:01 • (LCSD)	R3271685-2	12/10/17 05:01							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	su	su	su	%	%	%			%	%
рН	5.96	5.99	5.98	101	100	98.3-102			0.167	1

Sample Narrative:

LCS: 5.99 at 19.5C LCSD: 5.98 at 19.5C

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
XTO Energy - Sidney, MT		L955941	12/12/17 21:59	7 of 14

Wet Chemistry by Method 9050A

QUALITY CONTROL SUMMARY

Cn

Sr

Method Blank (MB)

Method Didilk (M	0)				
MB) WG1051660-1 12/0	9/17 11:58				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	umhos/cm		umhos/cm	umhos/cm	
Specific Conductance	U		10.0	10.0	

L955941-01 Original Sample (OS) • Duplicate (DUP)

(OS) L955941-01 12/09/1	7 11:58 • (DUP) W	G1051660-4	12/09/17 11:	58		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	umhos/cm	umhos/cm		%		%
Specific Conductance	2590	2590	1	0.000		20

L956126-05 Original Sample (OS) • Duplicate (DUP)

L956126-05 Orig	inal Sample	(OS) • Dup	olicate (DUP)			
OS) L956126-05 12/09	/17 11:58 • (DUP) V	VG1051660-5	12/09/17	11:58			
	Original Result	DUP Result	Dilution	DUPRPD	DUP Qualifier	DUP RPD Limits	
Analyte	umhos/cm	umhos/cm		%		%	
Specific Conductance	398	398	1	0.000		20	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) WG1051660-2 12/09	/17 11:58 • (LCS	D) WG1051660)-3 12/09/17 11:	58						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	umhos/cm	umhos/cm	umhos/cm	%	%	%			%	%
Specific Conductance	559	560	559	100	100	85.0-115			0.179	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
XTO Energy - Sidney, MT		L955941	12/12/17 21:59	8 of 14

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L955941-01

Ss

Cn

Sr

Method Blank (MB)

(MB) R3271329-1 12	2/07/17 21:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.0519	1.00

L955679-03 Original Sample (OS) • Duplicate (DUP)

(OS) L955679-03 12/07/17	23:01 • (DUP) I	R3271329-4 12	2/07/17 23	:16		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	27.1	27.1	1	0		15

L955837-04 Original Sample (OS) • Duplicate (DUP)

837-04 12/08/17 02:09 • (DUP) R3271329-7 12/08/17 02:23 Original Result DUP Result Dilution DUP RPD DUP Qualifier UP Qualifier UP RPD Limits	riginal Sample (L955837-04 Origi	al Sample (OS) • Dup	olicate (DUP)		
	/08/17 02:09 • (DUP) F	OS) L955837-04 12/08/	7 02:09 • (DUP) R3271329-7 1	12/08/17 02:23		
	Original Result		Original Result DUP Result	Dilution DUP RPD		
mg/l mg/l % %	mg/l	alyte	mg/l mg/l	%	%	
80.2 80.5 1 0 15	80.2	Chloride	80.2 80.5	1 0	15	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3271329-2 12/07/1	7 21:21 • (LCSD)	R3271329-3	12/07/17 21:35							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Chloride	40.0	40.0	39.9	100	100	80-120			0	15

L955679-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L955679-03 12/07/17	7 23:01 • (MS) R	3271329-5 12/	07/17 23:30 • (MSD) R3271329	9-6 12/07/17 2	3:45						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	271	80.2	76.0	106	98	1	80-120			5	15

L955837-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L955837-04 12/08	8/17 02:09 • (MS) F	83271329-8 12	/08/17 02:38				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	80.2	127	94	1	80-120	E
							-

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
XTO Energy - Sidney, MT		L955941	12/12/17 21:59	9 of 14

Volatile Organic Compounds (GC) by Method 8021B

QUALITY CONTROL SUMMARY

⁵Sr

Method Blank (MB)

Method Blank (MB)				Col			
(MB) R3271771-3 12/07/17 22:25								
	MB Result MB	Qualifier	MB MDL	MB RDL	2			
Analyte	mg/l		mg/l	mg/l	Tc			
Benzene	U		0.000190	0.000500				
Toluene	U		0.000412	0.00100	³ Ss			
Ethylbenzene	U		0.000160	0.000500	00			
Total Xylene	U		0.000510	0.00150	4			
(S) a,a,a-Trifluorotoluene(PID)	100			80.0-121	Cn			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3271771-1 12/07/17	21:18 • (LCSD) F	3271771-2 12	/07/17 21:40								Q
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	⁷ G
Benzene	0.0500	0.0525	0.0523	105	105	71.0-121			0.400	20	
Toluene	0.0500	0.0537	0.0532	107	106	72.0-120			0.900	20	8
Ethylbenzene	0.0500	0.0536	0.0532	107	106	75.0-122			0.690	20	Ă
Total Xylene	0.150	0.160	0.160	107	107	74.0-124			0.130	20	950
(S) a,a,a-Trifluorotoluene(PID)				98.7	98.1	80.0-121					°So

L955941-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0500	0.138	0.124	0.120	0.000	0.000	1	29.0-146	JG	<u>J6</u>	2.86	20
Toluene	0.0500	0.0515	0.0617	0.0585	20.4	13.9	1	35.0-140	JG	<u>J6</u>	5.40	20
Ethylbenzene	0.0500	0.00165	0.0311	0.0290	59.0	54.7	1	39.0-143			7.14	20
Total Xylene	0.150	0.00978	0.0984	0.0918	59.1	54.7	1	42.0-142	<u>J6</u>	<u>J6</u>	6.94	20
(S) a,a,a-Trifluorotoluene(PID)					97.0	97.3		80.0-121				

SDG: L955941

GLOSSARY OF TERMS

Tc

Ss

Cn

Sr

Qc

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
J	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
Т8	Sample(s) received past/too close to holding time expiration.

PROJECT:

SDG: L955941

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is a accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
XTO Energy - Sidney, MT		L955941	12/12/17 21:59	12 of 14

-11	Qui	Quote Number XTO Contact JAMES		Page of XTO Contact Phone #			Analysis/Co				ntair	her	Lab Information		
ХТО	JAME							i.d		-			2	1955941	
ENERGY Western Division	1997.	imes	Email	Results t	01	1								Office Abbreviations mington = FAR	
FEDERAL 18-17	A	API Number		Saturday Delivery (Y / N)										Durango = DUR Jakken = BAK	
Connected By	Collected By		ples on Ice		K Standard								Pice	aton = RAT iceance = PC	
XID	Te	Test Reason		Next Day Two Day							1053		Roosevelt = RSV La Barge = LB Orangeville = OV		
Signature	1			Three Day Same Day Date Needed			2	-	-61		loci	5	- Ora	ngevnie - Ov	
Sample ID	Sample Name	Media		Time	Preservative	No. of Conts.		EC		285	CH			Sample Number	
18-17 TURSING		AW	0.5	Nie	Capl	2-VOA	X	X	X	X	X			10	
					- Aleman	-			-						
and the second		A House	1.5.0.3	1113	and states	1.7.4.6.5.1									
		91.2					11-7					-	2. N.		
The Prove	-11				Section Section			-	de.	-	24	ar .			
			- 57	12 13	E B B	Part -		-		2	-	1			
Mar Anna Providence			1			a second				-			1		
			E.	100				1.1							
Media : Filter = F Soil = S Wastew	ater = WW Groundwa	ter = GW Dr	rinking W	aster = DV	V Sludge = SG Si	urface Water	= SW	Air =	A D	rill M	ud = 1	DM OH	her = OT		
Relinquiched By: (Signature)	1 - Lange Color	AND A REAL PROPERTY OF						a a starte			a subscription of	All and a second	Contraction of Contract	lottles Sample Condition	
Relinquished By: (Signature)		Date									Temperate		rei	Other Information	
Relinquished By: (Signature)		Date:		Time: Received for Lab by: (Si		b by: (Signa	nature)				Date: Time 12/7/17 84		Ime		

ESC LAB SCI	ENCES		
Cooler Recei	pt Form		
Client: XTD ·	SDG#	L	955941
Cooler Received/Opened On: 12/ 7 /17	Temperature:	0.9	
Received by : Kelsey Stephenson	and the grant		a start
Signature: 16GC 59	States and the second		
			Des Contra
Receipt Check List	NP	Yes	No
Receipt Check List COC Seal Present / Intact?	NP	Yes	No
	NP	Yes	No
COC Seal Present / Intact?	NP	Yes	No
COC Seal Present / Intact? COC Signed / Accurate?	NP	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact?	NP	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used?	NP	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?	NP	Yes	No

LAN P

(day)