District IState of New MexicoForm C-1471625 N. French Dr., Hobbs, NM 88240Energy Minerals and Natural ResourcesRevised April 3, 2017District IIDepartmentDepartment811 S. First St., Artesia, NM 88210DepartmentOil Conservation Division1000 Rio Brazos Road, Aztec, NM 874101220 South St. Francis Dr.1220 South St. Francis Dr.1220 S. St. Francis Dr., Santa Fe, NM 87505Santa Fe, NM 87505Santa Fe, NM 87505
Recycling Facility and/or Recycling Containment Type of Facility: Recycling Facility Recycling Containment* OCT 04 2018 Type of action: Permit Registration Modification Modification Extension Other (explain) Other (explain) * At the time C-147 is submitted to the division for a Recycling Containment, a copy shall be provided to the surface owner. Be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.
Operator: Enduring Resources IV, LLC (For multiple operators attach page with information) OGRID #: 372286 Address: 200 Energy Court, Farmington, NM 87401
Facility or well name (include API# if associated with a well): SEU 2206 - 20M
OCD Permit Number:
2. ☑ Recycling Facility: Location of recycling facility (if applicable): Latitude
✓ Recycling Containment: ✓ Annual Extension after initial 5 years (attach summary of monthly leak detection inspections for previous year) Center of Recycling Containment (if applicable): Latitude

BY: Vanessa Fields DATE: 055 334-6178 Ext. 119

Bonding:

4.

Covered under bonding pursuant to 19.15.8 NMAC per 19.15.34.15(A)(2) NMAC (These containments are limited to only the wells owned or

operated by the owners of the containment.)

Bonding in accordance with 19.15.34.15(A)(1). Amount of bond \$_____ (work on these facilities cannot commence until bonding

amounts are approved)

Attach closure cost estimate and documentation on how the closure cost was calculated.

Fencing:

5

Four foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify See attached variance request

6. Signs:

7.

12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.16.8 NMAC

Variances:

Justifications and/or demonstrations that the proposed variance will afford reasonable protection against contamination of fresh water, human health, and the environment.

Check the below box only if a variance is requested:

 \checkmark Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. If a Variance is requested, include the variance information on a separate page and attach it to the C-147 as part of the application.

If a Variance is requested, it must be approved prior to implementation.

Siting Criteria for Recycling Containment

Instructions: The applicant must provide attachments that demonstrate compliance for each siting criteria below as part of the application. Potential examples of the siting attachment source material are provided below under each criteria.

General siting

Ground water is less than 50 feet below the bottom of the Recycling Containment. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	□ Yes 🖉 No □ NA
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; written approval obtained from the municipality 	□ Yes 🖉 No □ NA
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Minerals Division 	🗌 Yes 🗹 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; topographic map 	🗌 Yes 🖌 No
Within a 100-year floodplain. FEMA map	🗌 Yes 🔽 No
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; aerial photo; satellite image 	🗌 Yes 🔽 No
 Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database search; visual inspection (certification) of the proposed site 	🗌 Yes 🔽 No
 Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🔽 No

Recycling Facility and/or Containment Checklist:

Instructions: Each of the following items must be attached to the application. Indicate, by a check mark in the box, that the documents are attached.

- Design Plan based upon the appropriate requirements.
 Operating and Maintenance Plan based upon the appropriate requirements.
 Closure Plan based upon the appropriate requirements.
- Site Specific Groundwater Data -
- Siting Criteria Compliance Demonstrations –
- Certify that notice of the C-147 (only) has been sent to the surface owner(s)

Operator Application Certification:

10.

I hereby certify that the information and attachments submitted with this application are true, accurate and complete to the best of my knowledge and belief.

Name (Print): Andrea Felix	Title: Regulatory Manager
Signature:	Date: 10-3-2018
e-mail address:	Telephone: (505) 386-8205
II. OCD Representative Signature:	Approval Date: 10152019
Title: Environmental Specialist	OCD Permit Number:
OCD Conditions	
Additional OCD Conditions on Attachment	

Fields, Vanessa, EMNRD

From:	Fields, Vanessa, EMNRD
Sent:	Monday, October 15, 2018 1:22 PM
То:	Andrea Felix
Cc:	Smith, Cory, EMNRD
Subject:	Enduring's State 2207 36D #193H 3RF -30 Denied

Good afternoon Andrea,

OCD has received the C-147 for the Recycling containment at the Enduring's State 2207 36D #193H API# 30-043-21308 on October 4, 2018. Upon further review, the application is incomplete and has been denied for the following:

- Please reference Enduring's BGT registration for the State 2207 36D #193H API# 30-043-21308 for water data.
- The design plan needs to state how the pond is designed to prevent surface water run on.
- The design plan needs to state how the pond inside Levey grade is no steeper than 2H:1V grade
- The design plan needs to state how the ponds outside Levey grade is no steeper than 3H:1V grade.
- The design plan needs to state/describe how the liner is protected from fluid force or mechanical damage
- The primary Liner must be resistant to UV light, petroleum hydrocarbons, salt and acidic/alkaline solutions.
- In the closure plan, the operator shall notify the OCD when reclamation and revegetation are completed.

Please correct the above issues and resubmit a complete and correct registration. Since this application has no API# for record keeping I have assigned it to 3RF-30 the denied application will be scanned into the online file as soon as possible.

Please let me know if you have any questions.

Thank you, Vanessa Fields Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 119 Cell: (505) 419-0463 vanessa.fields@state.nm.us

C-147 Registration Package

Prepared for

Enduring Resources, LLC 200 Energy Court Farmington, NM 87401 (505) 386-8205

Energy Inspection Services

479 Wolverine Drive Bayfield, Colorado 81122 Phone: (970) 881-4080

TABLE OF CONTENTS

1. Introduction1
2. Variance Explanation1
3. Siting Criteria1
3.1. Distance to Groundwater1
3.2. Distance to Surface Water2
3.3. Distance to Structures
3.4. Distance to Non-Public Water Supply2
3.5. Distance to Municipal Boundaries and Defined Fresh Water Fields2
3.6. Distance to Subsurface Mines2
3.7 Distance to 100-Year Floodplain2
4. Design and Construction Plan
4.1. Foundation Construction
4.2. Liner Construction
4.3. Leak Detection System4
4.4. Signage 4
4.5. Entrance Protection
4.6. Wildlife Protection
5. Maintenance and Operating Plan5
5.1. Inspection Timing5
5.2. Maintenance
5.3. Cessation of Operations
6. Closure Plan
6.1 Fluid Removal6
6.2 Soil Sampling6
6.3 Reclamation7
7. iWaters Report
8. Aerial Map10
9. Торо Мар11
10. Mines Mills Map12
11. FEMA Map13
12. Hydrology Report14
13. Surface Owner Notification16
Attachment A - Migratory Bird Plan17
Attachment B - Containment Construction Plans

Attachment C -	- GeoMat Report	22
----------------	-----------------	----

1. INTRODUCTION

Applicant	Enduring Resources, LLC	
Project Name	SEU 2206 - 20M	
Project Type	Recycling Containment Registration	
Legal Location	SE/4, Section 20, T22N, R6W	
Lease Number(s)	NMNM-119281	

In accordance with NMAC 19.15.34, Enduring Resources, LLC (Enduring) requests the registration of the proposed Recycling Containment through the approval of this C-147 registration package. The facility and containments will be used to treat and recycle produced water for re-use in Enduring Resources, LLC completion activities.

This package contains the C-147 form and associated documents for registration of the SEU 2206-20M Recycling Containment.

A copy of the C-147 has been submitted to the land owner, the Bureau of Land Management.

2. VARIANCE EXPLANATION

All requested variance provide equal or better protection of fresh water, public health, and the environment.

C-147 #5 Fencing

19.15.34.12.D(1) NMAC states "Recycling containments shall be fenced with a four foot fence that has at least four strands of barbed wire evenly spaced in the interval between one foot and four feet above ground level."

Enduring will install an eight (8) foot chain link fence around the facility as requested by the surface owners to allow for greater protection to the facility than the requirements of 19.15.34.12.D(1)

3. SITING CRITERIA

3.1. Distance to Groundwater

The NM State Engineers Office iWaters Database shows no water well information for the Township 22N, Range 6W. A water well within section 7 of township 21N and range 7W was found on the NM State Engineers Office iWaters Database. The elevation of the iWaters Data Point SJ03562 is approximately 6663' with a groundwater depth of 240'. The SEU 2206-20M has an elevation of 7051' which is an increase of 388' establishing the estimated groundwater depth for the SEU 2206-20M to be greater than 200'. Therefore, the groundwater depth is greater than 50 feet below the bottom of the recycling containment.

3.2. Distance to Surface Water

There are not any continuously flowing watercourses within 300' nor any other significant watercourse and lakebed or playa lake within 200' of the recycling containment as shown on the Aerial or Topo maps provided. As discussed during the onsite of the proposed location on July 16, 2018, Enduring Resources does not believe that the "blue line" is indicative of a watercourse, due to not having defined banks or bottom, having no evidence of water flow, and not being a tributary of a significant watercourse. NMOCD approved the request on July 19, 2018 via email.

3.3. Distance to Structures

There are no permanent residence, school, hospital, institution or church at the time of initial registration within 1000' of the recycling containment as shown on the Aerial and Topo maps provided.

3.4. Distance to Non-Public Water Supply

There are no springs or fresh water wells used for domestic or stock water purposes within 500' in existence at the time of initial registration as shown on the Aerial and Topo maps provided.

3.5. Distance to Municipal Boundaries and Defined Fresh Water Fields

The recycling facility is not within any incorporated municipal boundaries within a defined municipal fresh water well field covered by a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978, as amended.

3.6. Distance to Subsurface Mines

The recycling containment is not located in an "unstable" area. The location is not over a mine and is not on the side of a hill. The location of the excavated surface material will not be located within 100 feet of a continuously flowing or significant watercourse. According to the NM EMNRD Mining and Mineral Divisions database there are no subsurface mines in Section 24, Township 23N, Range 9W of San Juan County.

3.7 Distance to 100-Year Floodplain

The SEU 2206-20M proposed recycling containment is not located within a 100-year floodplain as demonstrated on the FEMA Map.

4. DESIGN AND CONSTRUCTION PLAN

In accordance with Rule 19.15.34 the following information describes the design and construction of the recycling containment on Enduring's locations.

The Enduring Design and Construction Plan assists Enduring personnel in ensuring compliance with the minimum design and construction requirements for recycling containments as defined by the NMOCD outlined in 19.15.34.12 NMAC. The plan applies to any Enduring Employee(s) and subcontractor(s) whose job requires them to assist with the design and construction of the recycling facility. The plan is designed to ensure

compliance with the minimum design and construction requirements for recycling facilities as defined by the NMOCD outlined in 19.15.34.12 NMAC.

Enduring shall design and construct a recycling containment in accordance with the following specifications.

4.1. Foundation Construction

Approximately 6" of topsoil will be stripped and stockpiled for final cover at the time of closure. The topsoil will be stored at an adjacent staging area.

The recycling containment will have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. The containment will ensure confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall. A geotextile under the liner will be used, if needed, to reduce the localized stress-strain or protuberances that otherwise may compromise the liner's integrity. The final sub grade shall be scarified to a minimum depth of 12 inches, moisture conditioned to near Optimum Moisture and compacted to 95% of maximum dry density as determined by a Standard Proctor (ASTM 698).

4.2. Liner Construction

Enduring's recycling containment shall incorporate, a primary (upper) liner and a secondary (lower) liner with a leak detection system. The primary (upper) liner will be a 45-mil LLDPE string reinforced with a single sided texture to increase traction for emergency escape from the pit and shall cover the bottom and sides of the pit including the minimum three (3) feet of freeboard per NMOCD 19.15.17.11.G.9. Integrity of the primary liner shall be tested using the Dipole Method - Water Covered Geomembrane (ASTM D7007). The secondary liner will be a 45-mil LLDPE string reinforced liner with a single sided conductive coating for initial leak detection and shall cover the bottom and sides of the pit including the minimum three (3) feet of freeboard per NMOCD 19.15.17.11.G.9. Integrity of the secondary liner shall be tested using the Conductive-Backed Geomembrane Spark Testing Method (ASTM D7240).

A secondary leak detection system will be installed at the designated corner of each pit. The pit bottom will be sloped to the detection system that will be comprised of SDR-17 HDPE solid and perforated pipe with 1-1/2" Type F coarse drain rock bedding. Enduring will install manufacturer recommended Geoconduct 250 geocomposite with a conductive grid between non-woven needle-punched geotextiles produced by Afitex Texel. The product consists of two geotextile layers comprised of short synthetic fibers of 100% polypropylene or polyester which are needle punched together with a structural conductive grid. The conductive grid comprises two conductive inox cables forming a 50 mm x 50 mm network. Geoconduct is compatible with geoelectrical leak location surveys.

Enduring shall ensure the subcontractor installing the recycling containment minimized liner seams and orient them up and down, not across, a slope of the levee. Enduring shall ensure that factory welded seams shall be used where possible. Enduring shall ensure the subcontractor installing the recycling containment ensures field seams in the geosynthetic material are thermally seamed and that prior to any field seaming, the installer overlaps the liners four to six inches. The subcontractor installing the liner shall minimize the number of field seams and corners and irregularly shaped areas. Enduring will only hire qualified personnel to perform field welding and testing.

Enduring shall install manufacturer recommended DrainTube gas ventilation geocomposite grid produced by Afitex Texel. This layer is intended to vent in situ gases that have potential to create "whale" in the produced water pit that would decrease storage capacity. The product consists of a drainage layer and a filter layer comprised of short synthetic staple fibers of 100% polypropylene needle-punched together with perforated corrugated polypropylene pipes regularly spaced, up to 4 pipes per meter, inside. The pipes have two perforations per corrugation at 180 degrees and alternating at 90 degrees. https://www.draintube.net/docs/en/download/technical_data_sheet/draintube_300p_st_series_fos.pdf

The liner system shall be anchored as designed in a 2 FT x 2.5 FT anchor trench and topped with 6 inches of road base.

4.3. Leak Detection System

Enduring shall place a leak detection system between the upper and lower geomembrane liners that shall consist of a 200-mil genet to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection. A 3 foot wide by 3 foot long by 2 foot deep depression will be contracted to allow for collection of any leaking liquid. A 4 inch PVC liner will be installed in between the primary and secondary liners from the top of the tank to the depression to allow for detection and removal of liquid.

Please refer to Attachment B- Containment Construction Plans for Leak Detection detail drawings.

4.4. Signage

Enduring will sign the containment with an upright sign no less than 12" by 24" with lettering not less than 2" in height in a conspicuous place near the containment. Enduring will provide the operator's name, location of the containment by quarter-quarter or unit letter, Section, Township, Range and emergency telephone numbers.

4.5. Entrance Protection

Enduring will surround the containment with an eight foot chain link fence. All gates leading in and out of the containment will be closed and locked when personnel are not on-site. The fencing will be kept in good repair, and shall be inspected as part of the weekly inspection performed at the containment facility.

4.6. Wildlife Protection

Enduring will install a bird deterrent system pursuant to the attached *Migratory Bird Mitigation Plan*. The containment will be inspected weekly for dead migratory birds and will be reported accordingly.

5. MAINTENANCE AND OPERATING PLAN

In accordance with Rule 19.15.34 the following information describes the operation and maintenance of recycling containments on Enduring's locations.

5.1. Inspection Timing

Enduring shall inspect the recycling containment and associated leak detection systems weekly while it contains fluids. A current log of inspections will be maintained and the log will be made available for review upon division request. If fluids are found in the sump, a primary liner test utilizing the Dipole Method - Water Covered Geomembrane (ASTM D7007) will be conducted.

5.2. Maintenance

- 1. Enduring shall maintain and operate the recycling containment as follows:
 - A. Removing any visible lay of oil from the surface of the containment.
 - B. Maintaining at least 3' of freeboard at each containment
 - C. The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets, or impact from installation and removal of hoses and pipes
 - D. If the containment's primary liner is compromised above the fluid's surface, Enduring will repair the damage or initiate replacement of the primary liner within 48 hours of discovery or seek an extension from the division district office.
 - E. If the primary liner is compromised below the fluid's surface, Enduring will remove all fluid above the damage or leak within 48 hours of discovery, notify the divisions distraction office and repair the damage or replace the primary liner.
 - F. The containment will be operated to prevent the collection of surface water run-on with containment walls of 9.5' height.
 - G. Enduring will install, or maintain on site, an oil absorbent boom or other device to contain an unanticipated release.
 - H. Enduring will not store or discharge any hazardous waste at the facility or within the containment.

5.3. Cessation of Operations

Enduring will report the cessation of operations or if less than 20% of the total fluid capacity is used every six months following the first withdrawal of produced water for use to the appropriate

division district office. If additional time is needed for closure, Enduring will request an extension from the appropriate division district office prior to the expiration of the initial six month time period.

6. Closure Plan

In accordance with Rule 19.15.34 the following information describes the closure requirements of recycling containments on Enduring's locations.

All closure activities will include proper documentation and be available for review upon request and will be submitted to the OCD within 60 days of closure. Closure report will be filed on C-147 and incorporate the following:

- Details on capping and covering, where applicable
- Inspection Reports
- Sampling Results

Once Enduring has ceased operations, all fluids will be removed within 60 days and the containment shall be closed within six months.

6.1 Fluid Removal

The containment will be closed by first removing all fluids, contents and synthetic liners and disposed of in a division-approved facility or recycle, reuse or reclaim the liquids in a manner that the appropriate division district office approves.

6.2 Soil Sampling

Enduring will test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below:

Components	Test Method	51' - 100' GW Depth Limit (mg/kg)	>100' GW Depth Limit (mg/kg)
Chloride	EPA 300.0	10,000	20,000
TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500	2,500
GRO + DRO	EPA SW-846 Method 8015M	1,000	1,000
BTEX	EPA SW-846 Method 8021B or 8260B	50	50
Benzene	EPA SW-846 Method 8021B or 8260B	10	10

- a. If any containment concentration is higher than the parameters listed in Table I, Enduring will receive approval before proceeding with closures as the division may required additional delineation upon review of the results.
- b. If all contaminant concentrations are less than or equal to the parameters listed in Table I then Enduring will proceed to backfill with non-waste containing, uncontaminated, earthen material.

6.3 Reclamation

The topsoil and subsoil will be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.


Enduring will reclaim and reseed the recycling containment area pursuant to the requirements listed in 19.15.34.14. Once Enduring has closed the recycling containment, we will reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area and matches the existing grade. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to prevent ponding and erosion. The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment. Enduring will restore the impacted surface area to the condition that existed prior to the construction of the recycling containment.

Reclamation of all disturbed areas no longer in use shall be considered completed when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plug or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of predisturbance levels, excluding noxious weeds.

The re-vegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of any operator subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment.

7. IWATERS REPORT

9/26/18, 8:42 PM

9/26/18 8:39 PM

DEPTH TO WATER

http://nmwrrs.ose.state.nm.us/nmwrrs/ReportProxy?queryData=...%22Township%22%3A%22222N%22%2C%0A%22Range%22%3A%2206W%22%7D Page 1 of 1

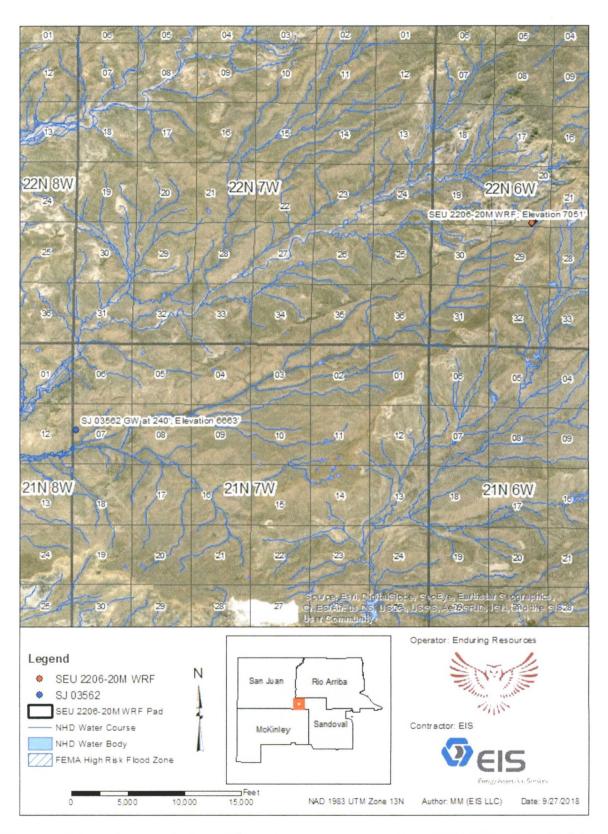
	Wate
(A CLW##### in the	(R=POD has b
POD suffix indicates the	replaced,

New Mexico Office of the State Engineer Water Column/Average Depth to Water

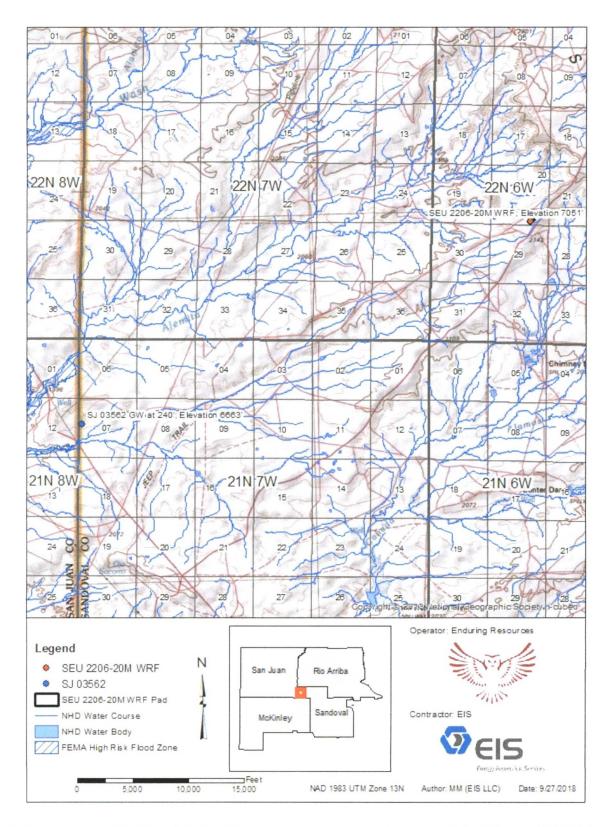
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orpha C=the fil closed)	, ned,	(qu						E 3=SW argest)	100 100 100	3 UTM in meters	s) (Iı	n feet)	
POD Number	Code	POD Sub- basin	County	1000	Q 16	100	Sec	Tws	Rng	x	Y	DepthWellDepth	Water	Water Column
<u>SJ 01824</u>		SJ	SA	3	3	1	07	21N	07W	263575	3994603* 🌍	100		
<u>SJ 03562</u>		SJ	SA	3	3	1	07	21N	07W	263575	3994603* 🌍	680	240	440
											Average Depth to	o Water:	240	feet
											Minimu	im Depth:	240	feet
											Maximu	m Depth:	240	feet

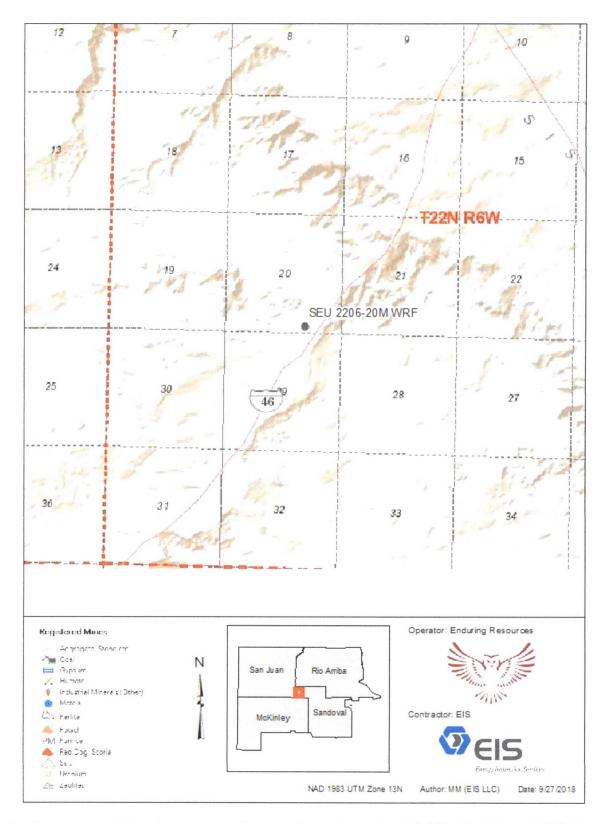
PLSS Search:

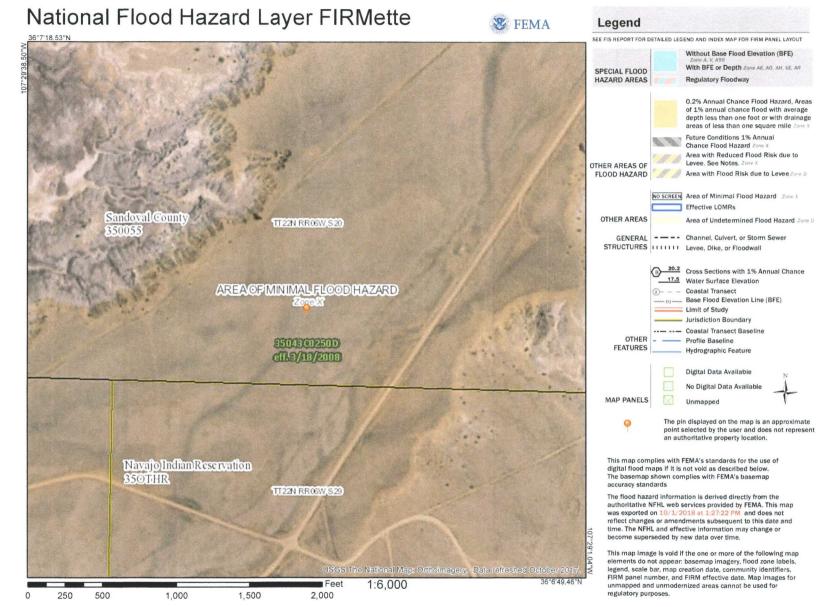
Township: 21N Range: 07W


*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


9/26/18 9:07 PM


WATER COLUMN/ AVERAGE DEPTH TO WATER


8. AERIAL MAP

9. TOPO MAP

-

П

EMA MAP

SEU 2206-20M C-147 Registration Package

13 | Page

12. HYDROLOGY REPORT

Hydrogeological Report for SEU 2206-20M Water Recycle Facility

Regional Geological context:

The Nacimiento Formation is of Paleocene age (Baltz, 1967, p. 35). It crops out in a broad band inside the southern and western margins of the central basin and in a narrow band along the west face of the Nacimiento Uplift. The Nacimiento is a nonresistant unit and typically erodes to low, rounded hills or forms badland topography.

The Nacimiento Formation occurs in approximately only the southern two-thirds of the San Juan Basin where it conformably overlies and intertongues with the Ojo Alamo Sandstone (Fassett, 1974, p. 229). The Nacimiento Formation grades laterally into the main part of the Animas Formation (Fassett and Hinds, 1971, p. 34); thus, in this area, the two formations occupy the same stratigraphic interval.

Strata of the Nacimiento Formation were deposited in lakebeds in the central basin area with lesser deposition in stream channels (Brimhall, 1973, p. 201). In general, the Nacimiento consists of drab, interbedded black and gray shale with discontinuous, white, medium- to very coarse grained arkosic sandstone (Stone e al., 1983, p.30). Stone et al. indicated that the formation may contain more sandstone than commonly reported because some investigators assume the slope-forming strata in the unit area shales, whereas in many places the strata actually are poorly consolidated sandstones. Total thickness of the Nacimiento Formation ranges from about 500 to 1,300 feet. The unit generally thickens from the basin margins toward the basin center (Steven et al., 1974). The sandstone deposits within the Nacimiento Formation are much thinner than the total thickness of the formation because their environment of deposition was localized stream channels (Brimhall, 1973, p. 201). The thickness of the combined San Jose, Animas, and Nacimiento Formations ranges from 500 to more than 3.500 feet.

Hydraulic Properties:

Reported well yields for 53 wells completed in either the Animas or Nacimiento Formations range from 2 to 90 gallons per minute and the median yield is 7.5 gallons per minute. The primary use of water from Nacimiento and Animas Formations is domestic and livestock supplies. There are no known aquifer tests for the Animas or Nacimiento Formations, but specific capacities reported for six wells range from 0.24 to 2.30 gallons per minute per foot of drawdown (Levings et al., 1990).

The Animas and Nacimiento Formations are in many ways hydrologically similar to the San Jose Formation because sands in both units produce approximately the same quantities of water. However, the greater percentage of fine materials in the Animas and Nacimiento Formations may restrict downward vertical leakage to the Ojo Alamo Sandstone or Kirtland Shale. The poorly cemented fine material is highly erodible, forms a badland terrain, and supports only spotty vegetation. These conditions are more conductive to runoff than retention of precipitation.

References:

Baltz, E.H., 1967, Stratigraphy and regional tectonic implications of part of Upper Cretaceous rocks, east-central San Juan Basin, New Mexico: USGS Professional Paper 552, 101 p.

Brimhall, R.M., 1973, Ground-water hydrology of Tertiary rocks of the San Juan Basin, New Mexico, in Fassett, J.E., ed., Cretaceous and Tertiary rocks of the Southern Colorado Plateau: Four Corners Geological Society Memoir, p. 197-207. Fassett, J.E., 1974, Cretaceous and Tertiary rocks of the eastern San Juan Basin, New Mexico and Colorado, in Guidebook of Ghost Ranch, central-northern New Mexico: New Mexico Geological Society, ₂₅th Field Conference, p. 225-230.

Fassett, J.E., and Hinds, J.S., 1971, Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado: USGS Professional Paper 676, 76 p.

Levings, G.W., Craigg, S.d., Dam, W.L., Kernodle, J.M., and Thorn, C.R., 1990, Hydrogeology of the San Jose, Nacimiento, and Animas Formations in the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah: USGS Hydrologic Investigations Atlas HA-720-A, 2 sheets.

Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizell, N.H., and Padgett, E.T., 1983, Hydrogeology and water resources of San Juan Basin, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Hydrologic Report 6.

13. SURFACE OWNER NOTIFICATION

Image: Sec: T.R.M. or Survey Description) 3b. Phone No. (include area code) 11. Country or Parish, State Sthil: 290 FSL & 1613 FEL SEC 20 22N 6W Survey Description) 11. Country or Parish, State
SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals. NMNM-119281 SUBMIT IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N SUBMIT IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N SUBMIT IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N SUBMIT IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N SUBMIT IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N Submit IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N Submit IN TRIPLICATE - Other instructions on page 2 7. If Unit of CA/Agreement, Name and/or N Submit Resources, LLC 8. Well Name and No. SECAVADA UNIT #361H 3a. Address 3b. Phone No. (include area code) 332 Cr 3100 Aztec, NM 87410 4. Location of Well (Footage, Sec., T.R.M., or Survey Description) 11. Country or Parish, State SHL: 290 FSL & 1613' FEL SEC 20 22N 6W 11. Country or Parish, State SHL: 290 FSL & 1613' FEL SEC 13 22N 7W 11. Country or Parish, State 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA TYPE OF SUBMISS
Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals. Image: Construction of the image: Constructin of the image: Construction of the image: Constructin
SOBMIT IN TRIPLICATE - Other Instructions on page 2 1. Type of Well Ø Oil Well Gas Well Other S. Well Name and No. SESCAVADA UNIT #361H 2. Name of Operator Enduring Resources, LLC 9. API Well No. 30-043-21310 3a. Address 332 Cr 3100 Aztec, NM 87410 4. Location of Well (<i>Footage, Sec. T.R.M. or Survey Description</i>) SHL: 290° FSL & 1613° FEL SEC 20 22N 6W BHL: 2311° FSL & 922° FEL SEC 13 22N 7W 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA TYPE OF SUBMISSION TYPE OF ACTION Image: Sold State Shutcord TYPE OF ACTION
Image: Second
Image: Sec: Figure of Operator S ESCAVADA UNIT #361H 2. Name of Operator 9. API Well No. Enduring Resources, LLC 9. API Well No. 3a. Address 3b. Phone No. (include area code) 332 Cr 3100 Aztec, NM 87410 4. Location of Well (<i>Footage, Sec. T.R.M., or Survey Description</i>) SHL: 290' FSL & 1613' FEL SEC 20 22N 6W BHL: 2311' FSL & 922' FEL SEC 13 22N 7W 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA TYPE OF SUBMISSION TYPE OF SUBMISSION Image: Character of Intent
Enduring Resources, LLC 30-043-21310 3a. Address 3b. Phone No. (include area code) 10. Field and Pool or Exploratory Area 332 Cr 3100 Aztec, NM 87410 505-636-9741 10. Field and Pool or Exploratory Area 4 Location of Well (Footage, Sec., T.R.M., or Survey Description) 51. Country or Parish, State 11. Country or Parish, State SHL: 290' FSL & 1613' FEL SEC 20 22N 6W 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA TYPE OF SUBMISSION TYPE OF ACTION Motice of Intent Checktize Deepen
3a. Address 3b. Phone No. (mchude area code) 10. Field and Pool or Exploratory Area 332 Cr 3100 Aztec, NM 87410 S5-636-9741 SECAVADA UNIT 4. Location of Well (Footage, Sec. T.R.M. or Survey Description) 11. Country or Parish, State Sandoval, NM SHL: 290' FSL & 1613' FEL SEC 20 22N 6W 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA TYPE OF SUBMISSION TYPE OF ACTION ØNotice of Intent Acidize Deepen Production(Start/Resume) Water ShutOff
SHL: 290' FSL & 1613' FEL SEC 20 22N 6W Sandoval, NM BHL: 2311' FSL & 922' FEL SEC 13 22N 7W I2 CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA TYPE OF SUBMISSION TYPE OF ACTION Notice of Intent IAcudize
TYPE OF SUBMISSION TYPE OF ACTION Notice of Intent Acidize
Notice of Intent
Notice of Intent
Alter Casing Hydraulic Fracturing Reclamation Well Integrity
Subsequent Report Casing Repair New Construction Recomplete
Final Abandonment Notice Change Plans Plug and Abandon Temporarily Abandon SESCAVADA UNIT 361H UNIT 361H
Convert to Injection Plug Back Water Disposal UNIT 361H PAD STAGING
Describe Proposed or Completed Operation Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof If the proposal is to deepen directionally or recomp e subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be performed or provide the Bond No on file with BLM/BLA. Reputerd subseq filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed and the operator has determined that the site is ready for final inspection.)

COA's. A C102 of the approved S Escavada Unit 361H pad area is attached.

	e Regulatory Manager	
Signature Data	e 7/10/18	
THE SPACE FOR FEDERA	AL OR STATE OFICE USE	
Approved by	Title	Date
onditions of approval, if any, are attached. Approval of this notice does not warrant or crtify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.	Office	
title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person ny false, fictitious or fraudulent statements or representations as to any matter within its	on knowingly and willfully to make to any de jurisdiction.	epartment or agency of the United States

ATTACHMENT A - MIGRATORY BIRD PLAN

Enduring Resources, LLC's Recycling Containment Migratory Bird Mitigation Plan

Enduring Resources, LLC (Enduring) is proposing this Migratory Bird Mitigation Plan (Mitigation Plan) in compliance with the New Mexico Oil Conservation Division (NMOCD) Rule 19.15.34.12.E Enduring shall ensure that the recycling containment is protective of wildlife by implementing the following proposed Mitigation Plan. Enduring employees will inspect the containment weekly for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring. This Mitigation Plan will utilize a combination of visual and audio deterrents to discourage wildlife, particularly birds and bats, from the recycling containment in order to mitigate potential impacts. This Mitigation Plan would be implemented while the Recycling Containment is active and in use, as to not desensitize birds to the deterrents.

The following mitigations will be implemented to reduce any wildlife impacts that may occur from the Recycling Containment:

- The following visual bird deterrents will be installed (Appendix A):
 - Bird-X Prowler Owl decoys will be installed at all four corners of the Containment.
 - Scare-Eye Balloons will be installed along the perimeter of the Containment.
- A Bird-X BroadBand PRO System will be installed at the Containment facility. It utilizes sonic (naturally-recorded bird destress calls & predator cries) to deter birds; as well as, ultrasonic high-frequency sound waves to deter bats. Bird propane cannons were avoided, so as not to disturb other wildlife species.
- The containment will be inspected on a monthly basis when water is present in the containment. All inspectors will insure the containment is receiving only filtered produced water with no hydrocarbons, as well as being trained to inspect the premises for, and respond to any wildlife incident, should it occur.
- Inspection will include:
 - An inspection of the filtration system and all visual and audio deterrents to insure they are in working order and functioning properly.
 - A thorough search of the entire containment facility, and just beyond, for the presence of any wildlife (entrapped, injured, dead, etc.).
- In the event a wildlife incident should occur, James McDaniel with Enduring will be contacted immediately and he will notify the appropriate wildlife agency and division district office. Enduring, appropriate wildlife agency, and division district office will then work collaboratively to address the incident appropriately to insure the incident does not reoccur.

Search

3

Call Us 888.683.1834

Insect Products

Home About News Bloo International GSA Retail Products Contact Knowledge Center FREE Evaluation Interactive Problem Solver

Combines SONIC and ULTRASONIC Bird Control Technology

Creates Uninviting Environment For Birds

IN STOCK - AVAILABLE IMMEDIATELY! Deter Birds With Multi-Faceted Sonic and Ultrasonic Attack! The

BroadBand PRO

Covers Up To SIX ACRES

pest birds, keeping them away

All Bird-X Products

Electronic Bird Control >

Sonic Bird Control Ultrasonic Bird Control Other Electronic Bird Deterrents Solar Panel Products

Bird Spikes Bird Spikes Kits Stainless Steel Soikes Plastic Spikes

Bird Netting

Drones

Laser Bird Control

Shock Track Systems

Bird Balls

Bird Wire

Visual Scares and Predator Decovs

Bird Gels, Taste Aversions, & OvoControl[®] P

For Songbird Lovers

Remote Control Drone

Retail Products

Accessories

Reviews Details Applications

Benefits

Specs Case Studies

Guarantee + Warranty

Backed by our 30 Day Electronics Performance Satisfaction Guarantee AND our 6-Month Manufacturer's Warranty Against Material Defects

· Option to add 3 Visual Scares to package for added efficacy

- · Emits a combination of audible noises & high-frequency sound waves that are silent-to-most-humans
 - SONIC: Uses naturally-recorded bird distress calls & predator ones; covers up to 6 acres
 - · ULTRASONIC: Uses high-frequency sound waves: covers up to 3,600 sq. ft.

4 speakers included – 4 independent speakers with 100 ft. of wire each

- · Fully programmable control volume, sound delays, & daylight / night operation
- · Weather resistant NEMA type box is designed to withstand outdoor use
- · Option to add an assortment of three (3) high-quality visual scare products

Add & Combine

Voltage Options BroadBand PRO 110v (\$725 Quantity 1

Starting at \$850.00 NOW \$725.00 (15% SAVINGS!)

BroadBand PRO's 4-speaker system simultaneously emits sounds that are

both audible and inaudible to humans that confuse, disorient, and intimidate

Price \$725.00

RIRD-X		Search	2							
nat control for today's enviro	orpitaevit. 7 7 7 7 7	Call Us 888.683.1834	Mome About News Slog International GSA Retail Products Cor							
Bird Products	Animal/Rodent Products	Insect Products	Interactive Problem Solver Knowledge Center FREE Evaluation							
All Bird-X Products			Prowler Owl							
Electronic Bird Control Sonic Bird Control Ultrasonic Bird Control Other Electronic Bird		RQ	 Proven Visual Scare Saves Money on Cleanup & Repair Eliminates Bird & Small Pest Problems Money-Back Guarantee 							
Deterrents Solar Panel Products	A GALL		Decades-proven visual deterrent, improved with dynamic realism & movement' Scare away birds & small pests with this predator replica of th							
Bird Spikes			most-feared aerial predator, the Great Horned Owl, which catches & eats nearly everything it can catch							
Bird Spikes Kits		1								
Stainless Steel Spikes			 Litelike, wind-catching design increases effectiveness 							
Plastic Spikes		1	 Accurate plumage & hunting flight pose Intimidating, glassy eyes "follow" pests Flexible wings move & flap in the wind realistically 							
Bird Netting Drones			Without movement, an owl scare is useless – don't be looled by imitations are immobile! Install Prowler Owl decoy in any open outdoor area whe pest birds or small critters are a problem.							
Laser Bird Control			Quantity 1							
Shock Track Systems	A Real	377	Proce \$ 39.25 Product Total \$ 39.25							
Bird Balls			ADD TO CART >							
Bird Wire	Quality Gua	rantee								
Visual Scares and Preda Decoys >	COY	manufactured to specific t the time of purchase.	ations &							
Bird Gels, Taste Aversion & OvoControl [®] P	ns, Reviews	Oetais Applicate	ons Benefits Add & Combine Specs							
		replica: life-size owl								
For Songbird Lovers		 Owi scare repels pest birds & other small animals 								
		ing "hunting" posture keep								
Remote Control Drone		 4-foot wingspen & accurate markings Safe, humane, non-toxic, silent 								
	 Safe huma 	ne non-toxic silent								

Accessories

	III COMPETE S	ea/ch	>						
control for today's environ	call Us	888.683.1834	Home About	News Stop	International	(25A	Retai Producta	Contect	
Bird Products A	nimal/Rodent Products II	nsect Products I	nteractive Prob	lem Solver	Knowledge	Center	FREE Evaluation		
If Bird-X Products			Scare-	Eye Ballo	ons				
lectronic Bird Control Sonic Bird Control Ultrasonic Bird Control Other Electronic Bird Deterrenta	0	0	🖌 Red	uce Time & En	lective Bird Rep ergy Spent on (yes and Tails in	Cleanup			
Solar Panel Products			(3-Pack)						
ind Spilles	NO				e simple vinyl bal birds within visibl		deterrents that mov	re with	
Bird Spikas Kits					ons - one white,	-			
Stainless Steel Spikes Plastic Spikes			· Easy t	o use, cost-eff		- hang ti	he balloons anywh	676	
ird Netting			12		iseful in many ap mas, doorways, l		is – homes, garden riore	s.	
kones	6° 🔊			Quantity					
aser Bird Control	the second designed and			Price \$	32.55				
hock Track Systems	Quality Guarantee		P	noduct Total S	Chief State of Concerns				
ind Balls	Guaranteed to be manufa and free from defect at th			AD	D TO CART	2			
ird Wire	Reviews Details	Applications	Benefits	Add & Co	mbine	Specs			
isual Scares and Predato Bodys >	 Predator decoy: 3D 	balloons ided: one (1) white, one	(1) black, and on	a (1) yellow					
ird Giels, Taste Aversions OvoControl [®] P	 Weatherproof, wnyl 	 Includes mylar eyes, mylar tais, and strings for each balloon Weatherproof, wnyt, inflatable balloon Design exaggerates the glaring stars and gaping mouth of natural predators 							
or Songbird Loviers		are-Eye Balloons to mov							

Remote Control Drone

ontrol Drone

Wind causes the Scare-Eye Balloons t
 Easy installation

GEOTECHNICAL ENGINEERING REPORT SOUTH ESCAVADA 361H WATER RECYCLE FACILITY SANDOVAL COUNTY, NEW MEXICO

Submitted To:

James McDaniel Enduring Resources 332 CR 3100 Aztec, New Mexico 87410

Submitted By:

GEOMAT Inc. 915 Malta Avenue

Farmington, New Mexico 87401

September 05, 2018

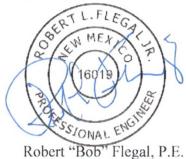
GEOMAT Project 182-3039

September 05, 2018

James McDaniel

Enduring Resources 332 CR 3100 Aztec, New Mexico 87410

RE: Geotechnical Engineering Study South Escavada 361H Water Recycle Facility Sandoval County, New Mexico GEOMAT Project No. 182-3039


GEOMAT Inc. (GEOMAT) has completed the geotechnical engineering exploration for the proposed South Escavada 361H Water Recycle Facility (SE361) to be located in Sandoval County, New Mexico. This revised report includes supplemental borings and analyses that resulted from design changes to the SE361, revising the proposed pond design from one fully incised to a partially incised pond with engineered embankments. This study was performed in general accordance with the scope of services in our Proposal No. 182-04-22 dated April 20, 2018 and in alignment with the request for supplemental work made via email dated July 18, 2018.

The results of our engineering study, including the geotechnical recommendations, site plan, boring records, and laboratory test results are attached. Based on the geotechnical engineering analyses, subsurface exploration and laboratory test results, the pond could be constructed as an incised with embankments and double synthetic-lined pond as proposed. Other design and construction details, based upon geotechnical conditions, are presented in the report.

We have appreciated being of service to you in the geotechnical engineering phase of this project. If you have any questions concerning this report, please contact us.

Sincerely yours,

GEOMAT Inc.

Robert "Bob" Flegal, P.E. Senior Engineer

Copies to: Addressee (1), E. Stevens P.E., Enduring Resources, and H. McDaniel, P.E., C.F.M. @ SMA via E-mail

Matthew J. Cramer, P.E. Vice President

TABLE OF CONTENTS

Page No.
INTRODUCTION
PROPOSED CONSTRUCTION
SITE EXPLORATION
Field Exploration2Laboratory Testing2
SITE CONDITIONS
SUBSURFACE CONDITIONS
Soil Conditions
Laboratory Test Results
OPINIONS AND RECOMMENDATIONS
Geotechnical Considerations4Pond Design and Construction4Slope Stability Analysis5Seismic Considerations and Slope Stability5Lateral Earth Pressures6Earthwork7General Considerations7Site Clearing7Excavation8Fill Materials8Placement and Compaction9Compliance9
Drainage
Surface Drainage
GENERAL COMMENTS

TABLE OF CONTENTS (continued)

APPENDIX A

Vicinity Map Site Plan Logs of Borings Unified Soil Classification Drilling and Exploration Procedures

APPENDIX B

Laboratory Test Results Laboratory Test Procedures Direct Shear Results SMA 30% Review Grading and Drainage Plan with GEOMAT Section Line Slope Stability Figures

APPENDIX C

Important Information About This Geotechnical Engineering Report (Taken From GBA)

GEOTECHNICAL ENGINEERING REPORT SOUTH ESCAVADA 361H WATER RECYCLE FACILITY SANDOVAL COUNTY, NEW MEXICO GEOMAT PROJECT NO. 182-3037

INTRODUCTION

This report contains the results of our geotechnical engineering exploration for the proposed South Escavada 361H Water Recycle Facility (SE361) to be located in San Juan County, New Mexico, as depicted on the Vicinity Map and Site Plan in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations about:

- subsurface soil conditions
- groundwater conditions
- lateral soil pressures
- earthwork

- slopes for pond walls and embankments, and
- drainage.

The opinions and recommendations contained in this report are based upon the results of field and laboratory testing, engineering analyses, and experience with similar soil conditions, structures, and our understanding of the proposed project as stated below.

PROPOSED CONSTRUCTION

The SE361 pond will have dimensions of approximately 320 feet by 350 feet and will be located at 36.117776° north latitude / 107.488825° west longitude. As shown in the attached 30% review drawing provided by Souder Miller and Associates (SMA) on September 29, 2018, we understand the pond will be partially incised into the existing grade with constructed embankments to an approximate elevation of 7060'. The maximum height of constructed embankment is approximately 10 feet above existing grade. The pond will be incised to an elevation of 7035', resulting in a total depth of 25 feet. The maximum water level is designed at 7057', maintaining 3 feet of freeboard. The pond will be lined with a double HDPE liner system. The pond is to be located on a graded flat terrain with an adjacent well pad design. It is assumed that, although cleared and graded, the surficial soils have not been compacted and that the existing surface is equivalent and representative of the native soils.

SITE EXPLORATION

Our scope of services performed for this project included three site reconnaissance visits by a staff geologist, a subsurface exploration program, laboratory testing and engineering analyses.

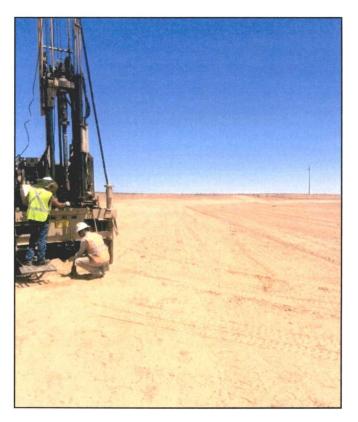
Field Exploration:

Subsurface conditions at the site were explored on June 26, July 2 and again on July 19, 2018 by drilling seven exploratory borings, designated B-1 through B-7, at the approximate locations shown on the Site Plan in Appendix A. Borings B-1 through B-7, were drilled to the planned depths of approximately 35 feet below existing ground surface. Borings B-6 and B-7 were drilled to obtain additional representative samples for laboratory testing to support the addition of embankments to the pond design.

The borings were advanced using a CME-55 truck-mounted drill rig with continuous-flight, 7.25-inch O.D. hollow-stem auger. The borings were continuously monitored by a geologist from our office who examined and classified the subsurface materials encountered, obtained representative samples, observed groundwater conditions, and maintained a continuous log of each boring.

Soil samples were obtained from the borings using a combination of standard 2-inch O.D. split spoon and 3-inch O.D. modified California ring barrel samplers. The samplers were driven using a 140-pound hammer falling 30 inches. The standard penetration resistance was determined by recording the number of hammer blows required to advance the sampler in sixinch increments. Representative bulk samples of subsurface materials were also obtained.

Groundwater evaluations were made in each boring at the time of site exploration. Soils were classified in accordance with the Unified Soil Classification System described in Appendix A. Boring logs were prepared for B-1 through B-5 and are presented in Appendix A.


Laboratory Testing:

Samples retrieved during the field exploration were transported to our laboratory for further evaluation. At that time, the field descriptions were confirmed or modified as necessary, and laboratory tests were performed to evaluate the engineering properties of the subsurface materials.

Bulk samples from B-6 and B-7 were also prepared and shipped Knight Piesold and Co. Soils Laboratory in Denver, Colorado for direct shear testing.

SITE CONDITIONS

The SE361 site is located approximately 6 miles south of Counselor, New Mexico off the west side of Indian Service Route 46. The ground surface across the site of the proposed pond was graded flat with berms surrounding the outer edge of the site ranging from 3 to 15 feet in height. The area had no vegetation at the time of our exploration. No evidence of prior structural development other than the aforementioned grading and berms was noted at the site. The photo below depicts the site conditions at the time of our exploration.

Drill Rig at Boring B-2 View Toward the East

SUBSURFACE CONDITIONS

Soil Conditions:

As presented on the Boring Logs in Appendix A, in all five borings, B-1 through B-5, we encountered predominantly sandy soils to the total depths explored in the borings. The sandy soils were interlayered with clayey soils in borings B-4 and B-5, alternating to the total depths

explored. The sandy soils were medium dense and were generally dry to damp. In boring B-1, we encountered shale bedrock at the 33 feet below ground surface.

Groundwater Conditions:

Groundwater was not encountered in any of the borings. Groundwater elevations can fluctuate over time depending upon precipitation, irrigation, runoff and infiltration of surface water. We do not have any information regarding the historical fluctuation of the groundwater level in this vicinity.

Laboratory Test Results:

Laboratory analyses of samples tested indicate the sandy and clayey soils have fines contents (silt- and/or clay-sized particles passing the U.S. No. 200 sieve) ranging from approximately 17 to 64 percent. Plasticity indices ranged from non-plastic to an index of 32. In-place dry densities of the soil and rock samples tested ranged from approximately 103 to 122 pounds per cubic foot (pcf), with natural moisture contents between approximately 3 and 9 percent.

Direct shear testing results from Knight Piesold indicate an effective friction angle, θ' , ranging from 23° to 30°, and an effective cohesion, c', of approximately 70 psf for construction of embankments of compacted fill. These values were utilized in the slope stability analysis of the revised embankment design. Results of all laboratory tests are presented in Appendix B.

OPINIONS AND RECOMMENDATIONS

Geotechnical Considerations:

The site is considered suitable for the proposed fracking water pond based on the geotechnical conditions encountered and tested for this report and our understanding of the project. If there are any significant deviations from the assumed finished elevations and/or pond locations noted at the beginning of this report, the opinions and recommendations of this report should be reviewed and confirmed/modified as necessary to reflect the final planned design conditions.

Pond Design and Construction:

The SE361 pond could be constructed as an incised basin with engineered constructed embankments as proposed. The double HDPE liner system should be installed in accordance with the manufacturer's recommendations. Compaction of the subgrade within the incised portions of the pond below the line should be in accordance with the liner manufacturer's recommendations. Subgrade and fill for the embankments should be constructed in accordance with the recommendation found within the **Placement and Compaction** section of this report.

Our recommendations for construction are based on the information obtained from the borings performed during our subsurface exploration. It should be realized that subsurface conditions could vary across the extent of the pond area, and these variations may not become apparent until construction is underway. If, during construction, soil types other than those encountered during our exploration are encountered, we should be contacted to observe the actual conditions and confirm/modify our recommendations, as appropriate.

Slope Stability Analysis:

A slope stability analysis was performed for SE361 to evaluate the proposed design of the incised portions of the pond and the surrounding constructed pond embankments. A representative cross section was selected, modeled and evaluated utilizing Galena Slope Stability software (version 6.1) as an aid in developing our recommendations. Slopes were modeled utilizing an internal grade of 2.5:1 (horizontal:vertical) and a 3:1 external. These parameters are consistent with the supplied designs.

An access roadway is proposed in the design to be located on the top surface of the constructed embankments. As a result, light vehicle loads were added to the model as two 1500-pound point loads to represent possible additional loading. Analyses were performed for both the internal and external profiles at the selected cross section. Printouts of the software graphical analyses are attached in Appendix B. Table 1 summarizes the results of the analyses.

Seismic Considerations and Slope Stability:

Based on the subsurface conditions encountered in the borings, we estimate that Site Class C is appropriate for the site according to Table 1613.5.2 of the 2009 International Building Code. This parameter was estimated based on extrapolation of data beyond the deepest depth explored, using methods allowed by the code. Actual shear wave velocity testing/analysis and/or exploration to a depth of 100 feet were not performed as part of our scope of services for this project. Slope stability analyses were performed to include seismic forces at the representative cross section and incorporating the designed internal and external grades. Graphical printouts are attached and the results included in Table 1.

Table 1 - Slope Stability Analysis.

		Factor of Safety					
	Slope	Base	Seismic Applied				
Internal Slope	2.5:1	1.81	1.46				
External Slope	3.0:1	2.22	1.88				

Based on the results of our subsurface exploration, laboratory testing, and engineering analyses, the designed grades of the incised pond walls and the constructed embankments are acceptable at the proposed 2.5:1 internal and 3:1 external in the site soils if constructed as recommended herein.

Lateral Earth Pressures:

For soils above any free water surface, recommended equivalent fluid pressures for unrestrained foundation elements are presented in the following table:

•	Active:
	C 1 '11

Granular soil backfill	(on-site sand)	35 psf/ft
Undisturbed subsoil		30 psf/ft

• Passive:

Shallow foundation walls	250 psf/ft
Shallow column footings	.350 psf/ft
Sump walls	400 psf/ft

conjunction with passive pressure.

Where the design includes restrained elements, the following equivalent fluid pressures are recommended:

• At rest:

Granular soil backfill (on-site sand)	50 psf/ft
Undisturbed subsoil	60 psf/ft

Earthwork:

General Considerations:

The opinions contained in this report for the proposed construction are contingent upon compliance with recommendations presented in this section. Although underground facilities

such as foundations, septic tanks, cesspools, basements and irrigation systems were not encountered during site reconnaissance, such features could exist and might be encountered during construction.

Site Clearing:

- 1. Strip and remove all existing fill, debris and other deleterious materials from the proposed construction areas.
- 2. If unexpected fills or underground facilities are encountered during site clearing, we should be contacted for further recommendations. All excavations should be observed by GEOMAT prior to backfill placement.
- 3. Stripped materials consisting of vegetation and organic materials should be removed from the site, or used to re-vegetate exposed slopes after completion of grading operations. If it is necessary to dispose of organic materials on-site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height.
- 4. Sloping areas steeper than 5:1 (horizontal:vertical) should be benched to reduce the potential for slippage between existing slopes and fills. Benches should be level and wide enough to accommodate compaction and earth moving equipment.
- 5. All exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of eight inches, conditioned to near optimum moisture content, and compacted to at least 95% of standard proctor (ASTM D698).

Excavation:

We present the following general comments regarding our opinion of the excavation conditions for the designers' information with the understanding that they are opinions based on our boring data. More accurate information regarding the excavation conditions should be evaluated by contractors or other interested parties from test excavations using the equipment that will be used during construction.

Based on our subsurface evaluation it appears that shallow excavations in soils at the site will be possible using standard excavation equipment. Although not anticipated, excavations that encounter formational rock are expected to be difficult and may necessitate the use of heavy-duty equipment and/or specialized techniques.

On-site soils may pump or become unstable or unworkable at high water contents. Dewatering may be necessary to achieve a stable excavation. Workability may be improved by scarifying and drying. Over-excavation of wet zones and replacement with granular materials may be necessary. Lightweight excavation equipment may be required to reduce subgrade pumping.

Fill Materials:

- 1. Native soils could be used in any areas cut for facilitation of the pond excavation.
- 2. Select granular materials should be used as backfill behind walls that retain earth.
- 3. On site or imported soils to be used in structural fills should conform to the following:

	Percent finer by weight
Gradation	(ASTM C136)
3"	
No. 4 Sieve	
No. 200 Sieve	50 Max
Maximum expansive potential (%)* * Measured on a sample compacted to approximate D698 maximum dry density at about 3 percent be The sample is confined under a 144-psf surcharge	ely 95 percent of the ASTM low optimum water content.

4. If required, aggregate base should conform to Type I Base Course as specified in Section 303 of the 2014 New Mexico Department of Transportation (NMDOT) "Standard Specifications for Road and Bridge Construction."

Placement and Compaction:

- 1. Place and compact fill in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift.
- 2. Un-compacted fill lifts should not exceed 10 inches loose thickness.
- 3. Materials should be compacted to the following:

Minimum Percent

Material	(ASTM D698)
Liner Subgrade Per Liner Manufacturer's Recom Subgrade soils beneath fill areas	
On site or imported soil fills:	
Beneath footings and slabs on grade Aggregate base beneath slabs and pavements	
Miscellaneous backfill	

4. On-site and imported soils should be compacted at moisture contents near optimum.

Compliance:

To assess compliance, observation and testing should be performed by GEOMAT.

Drainage:

Surface Drainage:

Positive drainage should be provided during construction and maintained throughout the life of the proposed project to prevent surface runoff from entering the pond.

Protective slopes should be provided with a minimum grade of approximately 5 percent for at least 10 feet from the structures. Backfill against footings, exterior walls, and in utility trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration.

Subsurface Drainage:

Free-draining, granular soils containing less than five percent fines (by weight) passing a No. 200 sieve should be placed adjacent to walls which retain earth. A drainage system consisting of either weep holes or perforated drain lines (placed near the base of the wall) should be used to intercept and discharge water which would tend to saturate the backfill. Where used, drain lines should be embedded in a uniformly graded filter material and provided with adequate clean-outs for periodic maintenance. An impervious soil should be used in the upper layer of backfill to reduce the potential for water infiltration.

GENERAL COMMENTS

It is recommended that GEOMAT be retained to provide a general review of final design plans and specifications in order to confirm that grading recommendations in this report have been interpreted and implemented. In the event that any changes of the proposed project are planned, the opinions and recommendations contained in this report should be reviewed and the report modified or supplemented as necessary.

GEOMAT should also be retained to provide services during excavation, grading, and construction phases of the work. Construction testing, including field and laboratory evaluation of fill, backfill, and compacted slopes should be performed to determine whether applicable project requirements have been met.

The analyses and recommendations in this report are based in part upon data obtained from the field exploration. The nature and extent of variations beyond the location of test borings may not become evident until construction. If variations then appear evident, it may be necessary to re-evaluate the recommendations of this report.

Our professional services were performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical engineers practicing in this or similar localities at the same time. No warranty, express or implied, is intended or made. We prepared the report as an aid in design of the proposed project. This report is not a bidding document. Any contractor reviewing this report must draw his own conclusions regarding site conditions and specific construction equipment and techniques to be used on this project.

This report is for the exclusive purpose of providing geotechnical engineering and/or testing information and recommendations. The scope of services for this project does not include, either specifically or by implication, any environmental assessment of the site or identification of

contaminated or hazardous materials or conditions. If the owner is concerned about the potential for such contamination, other studies should be undertaken. This report has also not addressed any geologic hazards that may exist on or near the site.

This report may be used only by the Client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both on and off site), or other factors may change over time and additional work may be required with the passage of time. Any party, other than the Client, who wishes to use this report, shall notify GEOMAT in writing of such intended use. Based on the intended use of the report, GEOMAT may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements, by the Client or anyone else, will release GEOMAT from any liability resulting from the use of this report by an unauthorized party.

Appendix A

US HWY 550

S. Escavada Pond Site

States and the for the state water of the	and a second		
	VICINITY MAP	PROJECT	
	Locations (approximate)	S. Escavada 361 Facility Pond	
Approximate	GEOMAT Project No. 182-3039	Enduring Resources	
Not to Scale	Date of Exploration: June 26 & July 2, 2018	Sandoval County, New Mexico	

Counselor

SITE PLAN PROJECT Boring Locations (approximate) S. Escavada 361 Facility Pond GEOMAT Project No. 182-3039 Enduring Resources		B.1	B-2 B-7 B-5 B-5 B-6 B-4	
Boring Locations (approximate) S. Escavada 361 Facility Pond Enduring Resources GEOMAT Project No. 182-3039		SITE PLAN	PROJECT	
Approximate GEOMAT Project No. 182-3039 Enduring Resources GEOMAT INC.				† <u> </u>
Approximate GEOMAT Project No. 182-3039 Enduring Resources				
	Approximate			
Not to Scale Date of Exploration: June 26 and July 2 & 19, 2018 Sandoval County, New Mexico	Not to Scale	Date of Exploration: June 26 and July 2 &19, 2018	Sandoval County, New Mexico	'

-(GE	0/	MA		8	Farm Tel (Malta Aver ington, NM 505) 327- (505) 326-	M 87401 7928	Borehole B-1 Page 1 of 1
Pi Ci Si R D Si H	rojec lient: ite Lo ig Ty rilling ampl amm	t Nur pcatio pe: Met ing M	nber: on: _ hod: /ethc	=1 E S 7	82-3(induri ando ME- .25" (iulk, f 40 lb	039 ing F oval (55 0.D. Ring s	Resou Coun Hollo and	a 361 Fa urces ty, New ow Stem Split spo	Mexico Auger	Latitude: Not Determined Longitude: Not Determined Elevation: Not Determined Boring Location: See Site Plan Groundwater Depth: None Encountered hples Logged By: SY
Labo	orator	y Res	sults		e _		be	0	0	
Ury Density (pcf)	% Passing #200 Sieve	Plasticity Index	Moisture Content (%)	Blows per (Sample Type & Length (in)	Symbol	Material Type	Soil Symbol	Depth (ft)	Soil Description
									_	Clayey SAND, tan/brown, fine- to medium grained, medium dense, slightly damp to damp (potential FILL up to ~5ft)
111.8	48	16	4.3	10-17-26	A R 18		SC		5	Tan/orange, fine grained
	17	NP		10-10-14	SS 18	\times			10	Grades to silty sand Silty SAND, tan/orange, fine grained, medium dense to dense slightly damp to damp, contains caliche
107.4			5.3	25-42- 50/6"	R 18	×			15	
				8-11-17	SS 18	\times	SM		20	Gray/tan, fine- to coarse grained
				16-21-28	R 18	×			25	Contains trace gravel
				12-13-25	SS 18	\times			30	
				50/5"	SS 5	×	RK		35	SHALE, gray/tan, slightly damp, fissile/friable Total Depth 35½ feet
									40	

915 Malta Avenue Farmington, NM 87401 Tel (505) 327-7928 Fax (505) 326-5721

Borehole B-2

Page 1 of 1

	roject						avada	a 361 Fa	acility Po	
	rojec				82-30					Latitude: Not Determined
	lient									
							Coun	ty, New	Mexico	
	ig Ty	-			ME-					Boring Location: See Site Plan
	rilling							ow Stem	-	
		-						Split spo		
	amm amm		-		40 lb 0 inc					Remarks: None
Labo	orator	y Res	sults				Ð	_		
(pcf)	% Passing #200 Sieve	Plasticity Index	Moisture Content (%)	L .	Sample Type & Length (in)	Symbol	Material Type	Soil Symbol	Depth (ft)	Soil Description
_			0		A		SC		-	Clayey SAND, tan/brown, fine- to medium grained, slightly damp
	64	10		6-7-10	SS 18	\boxtimes	CL		5	Sandy Lean CLAY, tan/orange, very stiff, slightly damp
								411414	-	Silty SAND, tan/gray, fine- to coarse grained, medium dense
				17 00 45					10	to very dense, slightly damp, contains fine grained lenses
10.8			4.1	17-30-45	R 18	X			-	Contains lenses of coarser grains
									-	
	30	NP		10-11-15	SS 18	\bigtriangledown			15 _	
						\square			_	
									-	
109.6			3.4	28-50/6"	R				20 _	Ten lange for a main of
			F1		12		SM		-	Tan/orange, fine grained
							0111		-	
				14 15 10	00				25 _	
				14-15-16	SS 18	\boxtimes				Tan/gray, contains gray/brown, clay rich lenses
									-	
									-	
									30 _	
									-	
									35 _	
									_	
									-	Total Depth 36½ feet
I									. 7	

-(GE	0	MA			Farm Tel (Malta Aver ington, NM 505) 327- (505) 326-	M 87401 7928	Borehole B-3			
Pr Cl Si Ri Di Si Hi	rojec lient: ite Lo ig Ty rilling ampl amm	t Nur ocatio pe: g Met ling M	nber on: thod: /etho	:1 S 7 7 6d:B t:1	82-30 andur ando ME-5 .25" Bulk, I 40 lb	039 ing F oval (55 O.D. Ring s	Resou Coun Hollo and	a 361 Fa urces ty, New ow Stem Split spo	Latitude: Not Determined Longitude: Not Determined Elevation: Not Determined Boring Location: See Site Plan Groundwater Depth: None Encountered Logged By: SY				
Labo	orator	ry Re	sults		0		be						
Ury Uensity (pcf)	% Passing #200 Sieve	Plasticity Index	Moisture Content (%)	Blows per	Sample Type & Length (in)	Symbol	Material Type	Soil Symbol	Depth (ft)	Soil Description			
114.8			3.2	10-18-24	A R 18		SC		5_	Clayey SAND, tan/brown, fine- to medium grained, dense, slightly damp to damp			
	39	6		11-13-15	5 SS 18	X			- - 10 _ - -	Silty, Clayey SAND, tan, fine- to medium grained, medium dense to very dense, slightly damp Tan/orange, fine grained			
111.6			4.5	25-34- 50/4"	R 10	×	SC- SM		15	Tan/gray, fine- to medium grained			
				14-24-21	SS 18	\times			20	Coarse grained layere with gravel approximately 6 inches this			
				50/6"	R 6	×			25	Silty SAND with trace gravel, tan/brown/gray, fine- to coarse grained, dense to very dense, slightly damp			
				14-24-25	5 SS 18	\times	SM		30	No gravel, lenses of fine grained material			
				15-24-24	SS 18	\times			35	Total Depth 36½ feet			
									40				

915 Malta Avenue Farmington, NM 87401 Tel (505) 327-7928 Fax (505) 326-5721

Borehole B-4

Page 1 of 1

	rojec rojec				outh 82-30		avada	a 361 Fa	acility Po	ond Date Drilled: 7/2/2018 Latitude: Not Determined
	lient:						leso	irces		
	Site Location: Sandoval County, New Mexico									
Rig Type:CME-55								.j		Boring Location: See Site Plan
Drilling Method:								w Stem	Auger	
	Sampling Method:Bulk, Ring and Split spoon samp								-	
Hammer Weight: <u>140 lbs</u> Hammer Fall: <u>30 inches</u>										
	orator	y Res	sults	r 6"	e ارد		ype	loc	t)	
(pcf)	% Passing #200 Sieve	Plasticity Index	Moisture Content (%)	Blows per	Sample Type & Length (in)	Symbol	Material Type	Soil Symbol	Depth (ft)	Soil Description
					A		SC		-	Clayey SAND, tan/brown, fine- to medium grained, slightly damp (potential FILL up to ~3½ft)
				4-2-2	SS 3	~	CL		5 _	Sandy Lean CLAY, gray/brown, slightly damp, poor sample recovery (clay pushed into sand)
16.3			4.9	14-21-30	R 18	×	SC		- 10	Clayey SAND, tan/orange, fine- to medium grained, medium dense to dense, slightly damp, contains caliche
	60	16		12-11-11	SS 18	\times			- 15 -	Grades to sandy lean clay Sandy Lean CLAY, brownt to gray/tan with orange mottling, very stiff, slightly damp, contains sandy lenses
12.3			3.1	28-37- 50/4"	R 16	\mathbf{X}			20 _	
	61	21		12-11-22	SS 18	\times	CL		25	
				12-13-18	SS 18	\times			30 _	Contains tan/brown, sandy lenses
				15-19-26	SS 18	X	SC		35	Clayey SAND, tan/gray, fine- to coarse grained, dense, slight damp
									-	Total Depth 361/2 feet
									40	
		- Cutti		- Ding I	ined P		ample	- <u></u>		GRAB = Manual Grab Sample D = Disturbed Bulk Sample

-(3E	0/	MA	Tinc.		Farm Tel (Malta Aver ington, NM 505) 327- (505) 326-	M 87401 7928	Borehole B-5 Page 1 of 1
Pr Cl	oject lient:	t Nun	nber	:1 E	82-30 nduri	039 ing F	Resou	irces		Latitude: Not Determined Longitude: Not Determined
Site Location: <u>Sandoval Cour</u> Rig Type: <u>CME-55</u> Drilling Method: <u>7.25" O.D. Holl</u> Sampling Method: <u>Bulk, Ring and</u> Hammer Weight: <u>140 lbs</u> Hammer Fall: <u>30 inches</u>						55 D.D. Ring s	Hollc and \$	ow Stem	Auger	Boring Location: See Site Plan Groundwater Depth: None Encountered nples Logged By: SY
		y Res		er 6"	(in)	Ы	Type	lodr	(ff)	
Ury Density (pcf)	% Passing #200 Sieve	Plasticity Index	Moisture Content (%)	Blows per	Sample Type & Length (in)	Symbol	Material Type	Soil Symbol	Depth (ft)	Soil Description
103.1	44	27	8.3	15-16-19 12-11-12	18	\mathbf{X}	SC		5	Clayey SAND, tan/brown, fine grained, medium dense to dense, slightly damp (potential FILL up to ~5ft) Tan/orange, contains caliche
22.8	63	32	9.3	13-17-43	18	×	CL			Grades to sandy lean clay Sandy Lean CLAY, brown, very stiff, damp Clayey SAND, tan/brown, fine grained, medium dense to very dense, slightly damp
				25-37- 50/3"	18 R 15	\mathbf{X}	SC		- - 25 -	Contains layer of coarse grained sands
				14-18-21	SS 18	\times			30 35	Contains intermittent lenses of coarse grained sands Total Depth 31½ feet
	A	0		- Direct	inod D		amala		40	GRAB = Manual Grab Sample D = Disturbed Bulk Sample

	UNIFIE	D SOIL CLASSIF	ICATION SYS	TEM	CONSIS	STENCY OR	RELATIVE	
	Major Divisions		Group Symbols	Typical Names	DI	ENSITY CRIT	ERIA	
		Clean Gravels -	GW	Well-graded gravels and gravel-sand mixtures, little or no fines		Standard Penetration Test Density of Granular Soils		
	Gravels	Clean Gravels -	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines	Penetration Resistance, N (blows/ft.)	Relative Density	(
	coarse fraction retained on No. 4 sieve	Gravels with	GM	Silty gravels, gravel-sand-silt mixtures	0-4	Very Loose		
Coarse- Grained Soils		Fines	GC	Clayey gravels, gravel-sand-clay mixtures	5-10	Loose		
More than 50% retained on No. 200 sieve		Clean Sands -	SW	Well-graded sands and gravelly sands, little or no fines	11-30	Medium De	nse	
	Sands More than 50% of	Clean Sands	SP	Poorly graded sands and gravelly sands, little or no fines	31-50	Dense		
	coarse fraction passes No. 4 sieve	Sands with	SM	Silty sands, sand-silt mixtures	>50	Very Dense	Very Dense	
		Fines	SC	Clayey sands, sand-clay mixtures		andard Penetrationsity of Fine-Grain		
			ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands	Penetration Resistance, N (blows/ft.)	Consistency	Unconfined Compressive Strength (Tons/ft2	
		d Clays t 50 or less	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	<2	Very Soft	<0.25	
Fine-Grained Soils			OL	Organic silts and organic silty clays of low plasticity	2-4	2-4 Soft		
50% or more passes No. 200 sieve			MH	Inorganic silts, micaceous or diatomaceous free sands or silts, elastic silts	4-8	Firm	0.50-1.00	
		d Clays reater than 50	СН	Inorganic clays of high plasticity, fat clays	8-15	Stiff	1.00-2.00	
			ОН	Organic clays of medium to high plasticity	15-30	Very Stiff	2.00-4.00	
н	ighly Organic So	ils	PT	Peat, mucic & other highly organic soils	>30	Hard	>4.0	
U.S. Standar	d Sieve Sizes							
>12"	12" 3"	3/4" #4	#10	#40	#200			
Boulders	Cobbles	Gravel coarse fine	coarse	Sand medium	fine	Silt	or Clay	
	MOISTURE CO	NDITIONS		MATERIAL QU				
Dry Slightly Damp	Absence of moist, dus Below optimum moistu	ty, dry to the touch ure content for compactio	n	few		R Ring Sample S SPT Sample		
Moist	New Contrast, and Contrast of Contrast of Contrast	e content, will moisten th		little	10-25%	B Bulk Sample		
Very Moist	Above optimum moist	ure content		some	25-45%	▼ Ground Wate	er	

Slightly Damp Below optimum moisture content for compaction few 5-10% Moist little 10-25% Near optimum moisture content, will moisten the hand Very Moist Above optimum moisture content some 25-45% Wet mostly 50-100% Visible free water, below water table

Ground Water

BASIC LOG FORMAT:

Group name, Group symbol, (grain size), color, moisture, consistency or relative density. Additional comments: odor, presence of roots, mica, gypsum, coarse particles, etc.

EXAMPLE:

SILTY SAND w/trace silt (SM-SP), Brown, loose to med. Dense, fine to medium grained, damp

UNIFIED SOIL CLASSIFICATION SYSTEM

TEST DRILLING EQUIPMENT & PROCEDURES

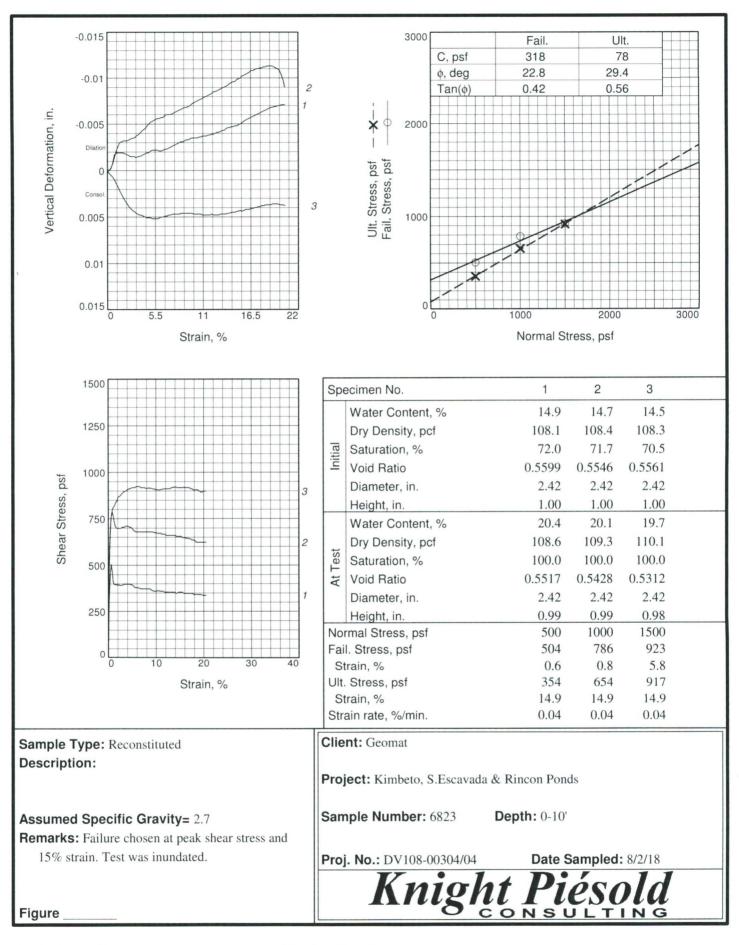
Description of Subsurface Exploration Methods

Drilling Equipment – Truck-mounted drill rigs powered with gasoline or diesel engines are used in advancing test borings. Drilling through soil or softer rock is performed with hollow-stem auger or continuous flight auger. Carbide insert teeth are normally used on bits to penetrate soft rock or very strongly cemented soils which require blasting or very heavy equipment for excavation. Where refusal is experienced in auger drilling, the holes are sometimes advanced with tricone gear bits and NX rods using water or air as a drilling fluid.

Sampling Procedures - Dynamically driven tube samples are usually obtained at selected intervals in the borings by the ASTM D1586 test procedure. In most cases, 2" outside diameter, 1 3/8" inside diameter, samplers are used to obtain the standard penetration resistance. "Undisturbed" samples of firmer soils are often obtained with 3" outside diameter samplers lined with 2.42" inside diameter brass rings. The driving energy is generally recorded as the number of blows of a 140-pound, 30-inch free fall drop hammer required to advance the samplers in 6-inch increments. These values are expressed in blows per foot on the boring logs. However, in stratified soils, driving resistance is sometimes recorded in 2- or 3-inch increments so that soil changes and the presence of scattered gravel or cemented layers can be readily detected and the realistic penetration values obtained for consideration in design. "Undisturbed" sampling of softer soils is sometimes performed with thin-walled Shelby tubes (ASTM D1587). Tube samples are labeled and placed in watertight containers to maintain field moisture contents for testing. When necessary for testing, larger bulk samples are taken from auger cuttings. Where samples of rock are required, they are obtained by NX diamond core drilling (ASTM D2113).

Boring Records - Drilling operations are directed by our field engineer or geologist who examines soil recovery and prepares boring logs. Soils are visually classified in accordance with the Unified Soil Classification System (ASTM D2487), with appropriate group symbols being shown on the logs.

Appendix B


	1	SAMPLE	ACTN	1 D698		DEN	SITY	ATTE	RBERG	LIMITS				
LAB NO.	BORING NO.	DEPTH	Density	Moisture	MOISTURE CONT. (%)	WET (pcf)			PL	PI	SWELL (%)	CONSOL TEST	% PASS #200 SIEVE	CLASSIFICATION
		(ft)	Density	WOISture			Divi (pci)	LL						
6753	B-1	2.5		-	-	-	-	29	13	16	-	-	48	Clayey SAND (SC)
6754	B-1	5.0	-	-	4.3	116.7	111.8	-	-	-	-	-	-	Clayey SAND (SC)
6781	B-1	10.0	-	-	-	-	-	NLL	NPL	NP	-	-	17	Silty SAND (SM)
6755	B-1	15.0	-	-	5.3	113.1	107.4	-	-	-	-	-	-	Silty SAND (SM)
6782	B-2	5.0	-	-	-	-	-	25	15	10	-	-	64	Sandy Lean CLAY (CL)
6756	B-2	10.0	-	-	4.1	115.4	110.8	-	-	-	-	-	-	Clayey SAND (SC)
6783	B-2	15.0	-	-	-	-	-	NLL	NPL	NP	-	-	30	Silty SAND (SM)
6757	B-2	20.0	-	-	3.4	113.3	109.6	-	-	-	-	-	-	Silty SAND (SM)
6758	B-3	5.0	-	-	3.2	118.6	114.8	-	-	-	-	-	-	Clayey SAND (SC)
6759	B-3	10.0	-	-	-	-	-	23	17	6	-	-	39	Silty, Clayey SAND (SC-SM)
6760	B-3	15.0	-	-	4.5	116.5	111.6	-	-	-	-	-	-	Silty, Clayey SAND (SC-SM)
6761	B-4	10.0	-	-	4.9	122.0	116.3	-	-	-	-	-	-	Clayey SAND (SC)
6784	B-4	15.0	-	-	-	-	-	27	11	16	-	-	60	Sandy Lean CLAY (CL)
6762	B-4	20.0	-	-	3.1	115.7	112.3	-	-	-	-	-	-	Clayey SAND (SC)
6785	B-4	25.0	-	-	-	-	-	33	12	21	-	-	61	Sandy Lean CLAY (CL)
6786	B-5	5.0	-	-	8.3	111.7	103.1	42	15	27	-	-	44	Clayey SAND (SC)
6787	B-5	15.0	-	-	9.3	134.2	122.8	44	12	32	-	-	63	Sandy Lean CLAY (CL)
												Project		South Escavada 361 Facility Pond
	G	EO	M	AT		SUM			TEST	2		Job No.		182-3039
						30		301		3		Location	ı	Sandoval County, New Mexico
,												Date of Explo	oration	6/26 & 7/2/2018

LABORATORY TESTING PROCEDURES

Consolidation Tests: One-dimensional consolidation tests are performed using "Floating-ring" type consolidometers. The test samples are approximately 2.5 inches in diameter and 1.0 inch high and are usually obtained from test borings using the dynamically-driven ring samplers. Test procedures are generally as outlined in ASTM D2435. Loads are applied in several increments to the upper surface of the test specimen and the resulting deformations are recorded at selected time intervals for each increment. Samples are normally loaded in the in-situ moisture conditions to loads which approximate the stresses which will be experienced by the soils after the project is completed. Samples are usually then submerged to determine the effect of increased moisture contents on the soils. Each load increment is applied until compression/expansion of the sample is essentially complete (normally movements of less than 0.0003 inches/hour). Porous stones are placed on the top and bottom surfaces of the samples to facilitate introduction of the moisture.

Expansion Tests: Tests are performed on either undisturbed or recompacted samples to evaluate the expansive potential of the soils. The test samples are approximately 2.5 inches in diameter and 1.0 inch high. Recompacted samples are typically remolded to densities and moisture contents that will simulate field compaction conditions. Surcharge loads normally simulate those which will be experienced by the soils in the field. Surcharge loads are maintained until the expansion is essentially complete.

<u>Atterberg Limits/Maximum Density/Optimum Moisture Tests:</u> These tests are performed in accordance with the prescribed ASTM test procedures.

Checked By: JDB

DIRECT SHEAR TEST

Date:	8/2/18			
Client:	Geomat			
Project:	Kimbeto, S.Escava	ida & Rincon	Ponds	
Project No.:	DV108-00304/04			
Depth:	0-10'		Sample Number:	6823
Description:				
Remarks:	Failure chosen at p	eak shear str	ess and 15% strain. Test w	as inundated.
Type of Sample:	Reconstituted			
Assumed Specific G	ravity=2.7	LL=	PL=	PI=

	Parameter	s for Specimen No. 1		
Specimen Parameter	Initial	Consolidated	Final	
Moisture content: Moist soil+tare, gms.	149.930		549.870	
Moisture content: Dry soil+tare, gms.	130.460		523.220	
Moisture content: Tare, gms.	0.000		392.760	
Moisture, %	14.9	20.4	20.4	
Moist specimen weight, gms.	149.9			
Diameter, in.	2.42	2.42		
Area, in. ²	4.60	4.60		
Height, in.	1.00	0.99		
Net decrease in height, in.		0.01		
Wet density, pcf	124.2	130.8		
Dry density, pcf	108.1	108.6		
Void ratio	0.5599	0.5517		
Saturation, %	72.0	100.0		
	Barallin	and for One almost Mar 4		

Test Readings for Specimen No. 1

Load ring constant = 31.408 lbs. per input unit **Normal stress =** 500 psf

Strain rate, %/min. = 0.04

Fail. Stress = 504 psf at reading no. 3

Ult. Stress = 354 psf at reading no. 72

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
0	0.0000	0.0000	0.0	0.0	0	0.0000
1	0.0050	0.3056	9.6	0.2	301	0.0001
2	0.0100	0.4489	14.1	0.4	441	0.0002
3	0.0150	0.5126	16.1	0.6	504	0.0008
4	0.0200	0.4744	14.9	0.8	466	0.0017
5	0.0250	0.4171	13.1	1.0	410	0.0019
6	0.0300	0.4043	12.7	1.2	398	0.0019
7	0.0350	0.4011	12.6	1.4	394	0.0019
8	0.0400	0.4011	12.6	1.7	394	0.0019
9	0.0450	0.4011	12.6	1.9	394	0.0019
10	0.0500	0.3980	12.5	2.1	391	0.0018
11	0.0550	0.4011	12.6	2.3	394	0.0017
12	0.0600	0.3980	12.5	2.5	391	0.0016
13	0.0650	0.3980	12.5	2.7	391	0.0015
					Knight D	Discold C

Knight Piesold Geotechnical Lab.

8/9/2018

				Т	est Rea	dings for	Specimen No. 1
	Horizontal			o	Shear	Vertical	
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Stress psf	Def. Dial in.	
14	0.0700	0.3980	12.5	2.9	391	0.0015	
15	0.0750	0.4011	12.6	3.1	394	0.0015	
16	0.0800	0.4043	12.7	3.3	398	0.0014	
17	0.0850	0.4043	12.7	3.5	398	0.0015	
18	0.0900	0.4043	12.7	3.7	398	0.0015	
19	0.0950	0.4043	12.7	3.9	398	0.0016	
20	0.1000	0.4043	12.7	4.1	398	0.0017	
21	0.1050	0.4043	12.7	4.3	398	0.0018	
22	0.1100	0.4043	12.7	4.5	398	0.0019	
23	0.1150	0.4011	12.6	4.8	394	0.0019	
24	0.1200	0.4011	12.6	5.0	394	0.0021	
25	0.1250	0.3980	12.5	5.2	391	0.0022	
26	0.1300	0.3916	12.3	5.4	385	0.0022	
27	0.1350	0.3852	12.1	5.6	' 379	0.0022	
28	0.1400	0.3852	12.1	5.8	379	0.0022	
29	0.1450	0.3852	12.1	6.0	379	0.0021	
30	0.1500	0.3852	12.1	6.2	379	0.0021	
31	0.1550	0.3820	12.0	6.4	376	0.0022	
32	0.1600	0.3820	12.0	6.6	376	0.0023	
33	0.1650	0.3789	11.9	6.8	373	0.0023	
34	0.1700	0.3789	11.9	7.0	373	0.0024	
35	0.1750	0.3789	11.9	7.2	373	0.0025	
36	0.1800	0.3789	11.9	7.4	373	0.0026	
37	0.1850	0.3789	11.9	7.6	373	0.0027	
38	0.1900	0.3789	11.9	7.9	373	0.0028	
39	0.1950	0.3789	11.9	8.1	373	0.0029	
40	0.2000	0.3789	11.9	8.3	373	0.0030	
41	0.2050	0.3789	11.9	8.5	373	0.0031	
42	0.2100	0.3789	11.9	8.7	373	0.0031	
43	0.2150	0.3725	11.7	8.9	366	0.0032	
44	0.2200	0.3725	11.7	9.1	366	0.0033	
45	0.2250	0.3693	11.6	9.3	363	0.0033	
46	0.2300	0.3661	11.5	9.5	360	0.0034	
47	0.2350	0.3661	11.5	9.7	360	0.0035	
48	0.2400	0.3661	11.5	9.9	360	0.0035	
49	0.2450	0.3661	11.5	10.1	360	0.0035	
50	0.2500	0.3693	11.6	10.3	363	0.0035	
51	0.2550	0.3693	11.6	10.5	363	0.0036	
52 53	0.2600	0.3661	11.5	10.7	360 360	0.0036 0.0037	
53 54	0.2650 0.2700	0.3661 0.3661	11.5 11.5	11.0 11.2	360 360	0.0037	
54 55	0.2700		11.5			0.0037	
55 56	0.2750	0.3661 0.3629	11.5	11.4 11.6	360 357	0.0037	
50 57	0.2800	0.3629	11.4	11.6	357	0.0038	
57 58	0.2850	0.3597		11.8	354 354	0.0038	
58 59	0.2900	0.3597	11.3 11.3	12.0	354 354	0.0039	
59 60	0.2950	0.3597	11.3	12.2	354 354	0.0039	
00	0.5000	0.3371	11.3				atashnisal Lah
					Inight F	lesold Ge	otechnical Lab.

				est Rea	dings fo
Horizontal				Shear	Vertical
Def. Dial in.	Load Dial	Load lbs.	Strain %	Stress	Def. Dial in.
					0.0041
					0.0041
					0.0041
					0.0042
					0.0043
					0.0045
					0.0046
					0.0046
					0.0047
					0.0047
					0.0048
					0.0048
	0.3597			354	0.0049
0.3700	0.3597	11.3	15.3	354	0.0050
0.3750	0.3597	11.3	15.5	354	0.0051
0.3800	0.3566	11.2	15.7	351	0.0053
0.3850	0.3534	11.1	15.9	347	0.0054
0.3900	0.3534	11.1	16.1	347	0.0055
0.3950	0.3534	11.1	16.3	347	0.0056
0.4000	0.3534	11.1	16.5	347	0.0057
0.4050	0.3534	11.1	16.7	347	0.0058
0.4100	0.3534	11.1	16.9	347	0.0059
			17.1		0.0060
					0.0061
					0.0062
					0.0063
					0.0064
					0.0065
					0.0065
					0.0067
					0.0068
					0.0068
					0.0069
					0.0069
					0.0070
					0.0070
					0.0071
					0.0071
0.4950	0.3438	10.8	20.5	338	0.0071
	Def. Dial in. 0.3050 0.3100 0.3150 0.3200 0.3250 0.3300 0.3350 0.3400 0.3450 0.3400 0.3450 0.3550 0.3600 0.3650 0.3650 0.3700 0.3750 0.3800 0.3850 0.3850 0.3900 0.3950 0.4000 0.4050	Def. DialLoad Dial0.30500.35970.31000.35970.31500.35970.32000.35970.32500.35970.32500.35970.33000.35970.33000.35970.34000.35660.34500.35970.36000.35970.36000.35970.36000.35970.37000.35970.37500.35970.37500.35970.37500.35970.37500.35970.37500.35970.37500.35970.37500.35340.40000.35340.40000.35340.40000.35340.40000.35340.41500.35340.42000.35340.42000.35340.44000.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34700.44500.34780.48000.34380.48000.34380.49000.3406	Def. DialLoad DialLoad lbs.0.30500.359711.30.31000.359711.30.31500.359711.30.32000.359711.30.32500.359711.30.32500.359711.30.32500.359711.30.33000.359711.30.33000.359711.30.33000.359711.30.34000.356611.20.34500.359711.30.36000.359711.30.36000.359711.30.36000.359711.30.37000.359711.30.37000.359711.30.38000.356611.20.38500.353411.10.39000.353411.10.40000.353411.10.40000.353411.10.40000.353411.10.41000.353411.10.42000.353411.10.44000.347010.90.44500.347010.90.44500.347010.90.45500.347010.90.45500.347010.90.46000.347010.90.47500.343810.80.48000.343810.80.48000.343810.80.49000.340610.7	Horizontal in.Load DialLoad lbs.Strain %0.30500.359711.312.60.31000.359711.313.00.31500.359711.313.20.32000.359711.313.40.32000.359711.313.40.32000.359711.313.40.33000.359711.313.80.33000.359711.313.80.34000.356611.214.00.34500.359711.314.70.36000.359711.314.70.36000.359711.315.10.37000.359711.315.10.37000.359711.315.50.38000.356611.215.70.38000.353411.116.10.39000.353411.116.10.39000.353411.116.70.40000.353411.116.70.41000.353411.116.70.41000.353411.117.40.42000.353411.117.40.42000.353411.117.40.42000.353411.117.80.43000.350211.017.80.445000.347010.918.20.445000.347010.918.20.445000.347010.918.80.460000.347010.918.80.460000.347010.9	Horizontal Def. DialLoad Load DialStrainShear strain0.30500.359711.312.63540.31000.359711.313.03540.31000.359711.313.03540.32000.359711.313.43540.32000.359711.313.43540.32000.359711.313.43540.33000.359711.313.43540.33000.359711.313.43540.34000.356611.214.03510.34500.359711.314.73540.35000.359711.314.73540.36000.359711.315.13540.36000.359711.315.13540.36000.359711.315.53540.36000.359711.315.53540.37000.359711.315.53540.37000.353411.116.13470.38000.353411.116.13470.39000.353411.116.53470.40000.353411.116.73470.40000.353411.116.73470.41000.353411.116.73470.41000.353411.116.73470.42000.353411.116.73470.42000.353411.117.4341

Specimen Parameter	Initial	Consolidated	Final	
Moisture content: Moist soil+tare, gms.	150.200		550.160	
Moisture content: Dry soil+tare, gms.	130.910		523.850	
Moisture content: Tare, gms.	0.000		392.940	
Moisture, %	14.7	20.1	20.1	
Moist specimen weight, gms.	150.2			
Diameter, in.	2.42	2.42		
Area, in. ²	4.60	4.60		
Height, in.	1.00	0.99		
Net decrease in height, in.		0.01		
Wet density, pcf	124.4	131.2		
Dry density, pcf	108.4	109.3		
Void ratio	0.5546	0.5428		
Saturation, %	71.7	100.0		
T	est Reading	s for Specimen No.	2	

Normal stress = 1000 psf

Strain rate, %/min. = 0.04

Fail. Stress = 786 psf at reading no. 4

Ult. Stress = 654 psf at reading no. 72

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain	Shear Stress psf	Vertical Def. Dial in.
0	0.0000	0.0000	0.0	0.0	0	0.0000
1	0.0050	0.4616	14.5	0.2	454	0.0000
2	0.0100	0.6717	21.1	0.4	661	0.0003
3	0.0150	0.7736	24.3	0.6	761	0.0007
4	0.0200	0.7991	25.1	0.8	786	0.0014
5	0.0250	0.7800	24.5	1.0	767	0.0021
6	0.0300	0.7482	23.5	1.2	736	0.0026
7	0.0350	0.7227	22.7	1.4	711	0.0030
8	0.0400	0.7131	22.4	1.7	701	0.0031
9	0.0450	0.7099	22.3	1.9	698	0.0032
10	0.0500	0.7099	22.3	2.1	698	0.0032
11	0.0550	0.7099	22.3	2.3	698	0.0032
12	0.0600	0.7099	22.3	2.5	698	0.0033
13	0.0650	0.7099	22.3	2.7	698	0.0034
14	0.0700	0.7163	22.5	2.9	704	0.0035
15	0.0750	0.7163	22.5	3.1	704	0.0035
16	0.0800	0.7163	22.5	3.3	704	0.0037
17	0.0850	0.7195	22.6	3.5	707	0.0038
18	0.0900	0.7227	22.7	3.7	711	0.0040
19	0.0950	0.7227	22.7	3.9	711	0.0042
20	0.1000	0.7227	22.7	4.1	711	0.0044
21	0.1050	0.7195	22.6	4.3	707	0.0045
22	0.1100	0.7163	22.5	4.5	704	0.0048
23	0.1150	0.7163	22.5	4.8	704	0.0050
24	0.1200	0.7099	22.3	5.0	698	0.0052
25	0.1250	0.7036	22.1	5.2	692	0.0053
26	0.1300	0.6972	21.9	5.4	686	0.0054
					(night E	liocold Cor

				Т	est Rea	adings for Specimen No. 2
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	
27	0.1350	0.6940	21.8	5.6	682	
28	0.1400	0.6908	21.8	5.8	679	
20	0.1400	0.6908	21.7	6.0	679	
30	0.1430	0.6908	21.7	6.2	679	
31	0.1550	0.6908	21.7	6.4	679	
32	0.1600	0.6908	21.7	6.6	679	
33	0.1650	0.6908	21.7	6.8	679	
34	0.1700	0.6908	21.7	7.0	679	
35	0.1750	0.6908	21.7	7.0	679	
36	0.1800	0.6908	21.7	7.4	679	
37	0.1850	0.6908	21.7	7.6	679	
38	0.1900	0.6908	21.7	7.9	679	
39	0.1900	0.6908	21.7	8.1	679	
40	0.2000	0.6908	21.7	8.3	679	
40	0.2050	0.6908	21.7	8.5	679	
42	0.2100	0.6908	21.7	8.7	679	
43	0.2150	0.6908	21.7	8.9	679	
44	0.2200	0.6908	21.7	9.1	679	
45	0.2250	0.6908	21.7	9.3	679	
46	0.2300	0.6877	21.6	9.5	676	
47	0.2350	0.6877	21.6	9.7	676	
48	0.2400	0.6845	21.5	9.9	673	
49	0.2450	0.6845	21.5	10.1	673	
50	0.2500	0.6845	21.5	10.3	673	
51	0.2550	0.6813	21.3	10.5	670	
52	0.2600	0.6845	21.5	10.7	673	
53	0.2650	0.6845	21.5	11.0	673	
54	0.2700	0.6781	21.3	11.2	667	
55	0.2750	0.6781	21.3	11.4	667	
56	0.2800	0.6781	21.3	11.6	667	
57	0.2850	0.6781	21.3	11.8	667	
58	0.2900	0.6749	21.2	12.0	664	
59	0.2950	0.6717	21.1	12.2	661	
60	0.3000	0.6717	21.1	12.4	661	0.0085
61	0.3050	0.6717	21.1	12.6	661	0.0086
62	0.3100	0.6717	21.1	12.8	661	0.0087
63	0.3150	0.6717	21.1	13.0	661	0.0088
64	0.3200	0.6717	21.1	13.2	661	0.0089
65	0.3250	0.6717	21.1	13.4	661	0.0090
66	0.3300	0.6717	21.1	13.6	661	0.0091
67	0.3350	0.6717	21.1	13.8	661	0.0092
68	0.3400	0.6717	21.1	14.0	661	0.0094
69	0.3450	0.6654	20.9	14.3	654	4 0.0095
70	0.3500	0.6654	20.9	14.5	654	4 0.0096
71	0.3550	0.6654	20.9	14.7	654	4 0.0096
72	0.3600	0.6654	20.9	14.9	654	4 0.0098
73	0.3650	0.6654	20.9	15.1	654	4 0.0099
			and the second second		Knight F	Piesold Geotechnical Lab.

				T	est Rea	dings for
	Horizontal				Shear	Vertical
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Stress psf	Def. Dial in.
74	0.3700	0.6654	20.9	15.3	654	0.0100
75	0.3750	0.6590	20.7	15.5	648	0.0102
76	0.3800	0.6590	20.7	15.7	648	0.0103
77	0.3850	0.6590	20.7	15.9	648	0.0104
78	0.3900	0.6590	20.7	16.1	648	0.0105
79	0.3950	0.6558	20.6	16.3	645	0.0106
80	0.4000	0.6558	20.6	16.5	645	0.0108
81	0.4050	0.6558	20.6	16.7	645	0.0108
82	0.4100	0.6526	20.5	16.9	642	0.0109
83	0.4150	0.6526	20.5	17.1	642	0.0110
84	0.4200	0.6495	20.4	17.4	639	0.0110
85	0.4250	0.6463	20.3	17.6	635	0.0111
86	0.4300	0.6463	20.3	17.8	635	0.0111
87	0.4350	0.6463	20.3	18.0	635	0.0112
88	0.4400	0.6399	20.1	18.2	629	0.0112
89	0.4450	0.6335	19.9	18.4	623	0.0113
90	0.4500	0.6335	19.9	18.6	623	0.0113
91	0.4550	0.6335	19.9	18.8	623	0.0113
92	0.4600	0.6335	19.9	19.0	623	0.0113
93	0.4650	0.6335	19.9	19.2	623	0.0112
94	0.4700	0.6335	19.9	19.4	623	0.0111
95	0.4750	0.6335	19.9	19.6	623	0.0110
96	0.4800	0.6335	19.9	19.8	623	0.0108
97	0.4850	0.6335	19.9	20.0	623	0.0104
98	0.4900	0.6335	19.9	20.2	623	0.0098
99	0.4950	0.6335	19.9	20.5	623	0.0090

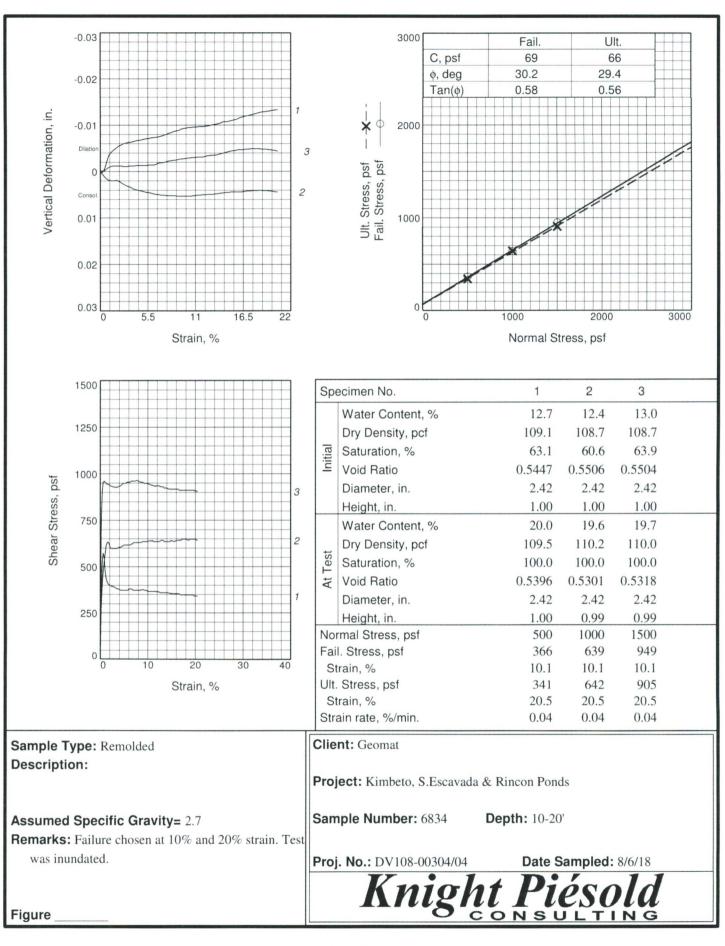
	Parameters	s for Specimen No. 3	
Specimen Parameter	Initial	Consolidated	Final
Moisture content: Moist soil+tare, gms.	149.770		559.450
Moisture content: Dry soil+tare, gms.	130.780		533.710
Moisture content: Tare, gms.	0.000		402.930
Moisture, %	14.5	19.7	19.7
Moist specimen weight, gms.	149.8		
Diameter, in.	2.42	2.42	
Area, in. ²	4.60	4.60	
Height, in.	1.00	0.98	
Net decrease in height, in.		0.02	
Wet density, pcf	124.0	131.7	
Dry density, pcf	108.3	110.1	
Void ratio	0.5561	0.5312	
Saturation, %	70.5	100.0	
	ant Bendler	no for Specimon No. 2	

Test Readings for Specimen No. 3

Load ring constant = 31.408 lbs. per input unit

Normal stress = 1500 psf

Strain rate, %/min. = 0.04


Fail. Stress = 923 psf at reading no. 28

Ult. Stress = 917 psf at reading no. 72

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
0	0.0000	0.0000	0.0	0.0	0	0.0001
1	0.0050	0.5094	16.0	0.2	501	-0.0002
2	0.0100	0.6972	21.9	0.4	686	-0.0004
3	0.0150	0.7768	24.4	0.6	764	-0.0006
4	0.0200	0.8086	25.4	0.8	795	-0.0009
5	0.0250	0.8246	25.9	1.0	811	-0.0013
6	0.0300	0.8309	26.1	1.2	817	-0.0017
7	0.0350	0.8437	26.5	1.4	830	-0.0021
8	0.0400	0.8564	26.9	1.7	842	-0.0025
9	0.0450	0.8596	27.0	1.9	845	-0.0029
10	0.0500	0.8819	27.7	2.1	867	-0.0032
11	0.0550	0.8850	27.8	2.3	870	-0.0035
12	0.0600	0.8882	27.9	2.5	873	-0.0038
13	0.0650	0.8946	28.1	2.7	880	-0.0040
14	0.0700	0.9010	28.3	2.9	886	-0.0042
15	0.0750	0.9073	28.5	3.1	892	-0.0043
16	0.0800	0.9105	28.6	3.3	895	-0.0045
17	0.0850	0.9137	28.7	3.5	898	-0.0046
18	0.0900	0.9137	28.7	3.7	898	-0.0047
19	0.0950	0.9201	28.9	3.9	905	-0.0047
20	0.1000	0.9232	29.0	4.1	908	-0.0048
21	0.1050	0.9264	29.1	4.3	911	-0.0049
22	0.1100	0.9264	29.1	4.5	911	-0.0050
23	0.1150	0.9296	29.2	4.8	914	-0.0050
24	0.1200	0.9328	29.3	5.0	917	-0.0050
25	0.1250	0.9328	29.3	5.2	917	-0.0051
26	0.1300	0.9328	29.3	5.4	917	-0.0051
					Knight [Dissold Cov

				Т	est Rea	adings for Specimen No. 3
	Horizontal				Shear	Vertical
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Stress psf	Def. Dial in.
27	0.1350	0.9328	29.3	5.6		-0.0051
28	0.1400	0.9392	29.5	5.8		-0.0051
29	0.1450	0.9392	29.5	6.0		-0.0050
30	0.1500	0.9392	29.5	6.2		-0.0049
31	0.1550	0.9392	29.5	6.4		-0.0049
32	0.1600	0.9392	29.5	6.6		-0.0048
33	0.1650	0.9328	29.3	6.8		-0.0048
34	0.1700	0.9328	29.3	7.0	917	-0.0047
35	0.1750	0.9328	29.3	7.2	917	-0.0047
36	0.1800	0.9328	29.3	7.4	917	-0.0046
37	0.1850	0.9328	29.3	7.6	917	-0.0046
38	0.1900	0.9296	29.2	7.9	914	-0.0046
39	0.1950	0.9296	29.2	8.1	914	-0.0046
40	0.2000	0.9296	29.2	8.3	914	-0.0046
41	0.2050	0.9328	29.3	8.5	917	-0.0045
42	0.2100	0.9296	29.2	8.7		-0.0045
43	0.2150	0.9296	29.2	8.9	914	-0.0045
44	0.2200	0.9296	29.2	9.1		-0.0045
45	0.2250	0.9264	29.1	9.3		-0.0045
46	0.2300	0.9264	29.1	9.5		-0.0045
47	0.2350	0.9232	29.0	9.7		-0.0045
48	0.2400	0.9232	29.0	9.9		-0.0046
49	0.2450	0.9232	29.0	10.1		-0.0046
50	0.2500	0.9201	28.9	10.3		-0.0046
51	0.2550	0.9201	28.9	10.5		-0.0046
52	0.2600	0.9201	28.9	10.7		-0.0046
53	0.2650	0.9232	29.0	11.0		-0.0047
54	0.2700	0.9232	29.0	11.2		-0.0047
55	0.2750	0.9232	29.0	11.4		-0.0047
56	0.2800	0.9264	29.1	11.6		-0.0047 -0.0047
57 58	0.2850 0.2900	0.9264	29.1	11.8 12.0		-0.0047
58 59	0.2900	0.9264 0.9264	29.1 29.1	12.0		-0.0047
60	0.2930	0.9264	29.1	12.2		-0.0047
61	0.3050	0.9264	29.1	12.4		-0.0047
62	0.3100	0.9264	29.1	12.8		-0.0047
63	0.3150	0.9296	29.2	13.0		-0.0046
64	0.3200	0.9328	29.3	13.2		-0.0046
65	0.3250	0.9328	29.3	13.4		-0.0046
66	0.3300	0.9360	29.4	13.6		-0.0046
67	0.3350	0.9360	29.4	13.8		-0.0045
68	0.3400	0.9360	29.4	14.0	920	-0.0045
69	0.3450	0.9360	29.4	14.3	920	-0.0044
70	0.3500	0.9328	29.3	14.5	917	-0.0044
71	0.3550	0.9328	29.3	14.7	917	-0.0044
72	0.3600	0.9328	29.3	14.9	917	-0.0043
73	0.3650	0.9328	29.3	15.1	917	-0.0043
					Knight F	Piesold Geotechnical Lab.

				Т	est Rea	dings fo
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
74	0.3700	0.9328	29.3	15.3	917	-0.0042
75	0.3750	0.9328	29.3	15.5	917	-0.0043
76	0.3800	0.9328	29.3	15.7	917	-0.0042
77	0.3850	0.9360	29.4	15.9	920	-0.0041
78	0.3900	0.9328	29.3	16.1	917	-0.0041
79	0.3950	0.9328	29.3	16.3	917	-0.0041
80	0.4000	0.9328	29.3	16.5	917	-0.0040
81	0.4050	0.9328	29.3	16.7	917	-0.0040
82	0.4100	0.9328	29.3	16.9	917	-0.0039
83	0.4150	0.9296	29.2	17.1	914	-0.0039
84	0.4200	0.9264	29.1	17.4	911	-0.0038
85	0.4250	0.9264	29.1	17.6	911	-0.0038
86	0.4300	0.9201	28.9	17.8	905	-0.0037
87	0.4350	0.9201	28.9	18.0	905	-0.0037
88	0.4400	0.9201	28.9	18.2	905	-0.0036
89	0.4450	0.9232	29.0	18.4	908	-0.0036
90	0.4500	0.9201	28.9	18.6	905	-0.0036
91	0.4550	0.9201	28.9	18.8	905	-0.0036
92	0.4600	0.9137	28.7	19.0	898	-0.0035
93	0.4650	0.9137	28.7	19.2	898	-0.0035
94	0.4700	0.9073	28.5	19.4	892	-0.0035
95	0.4750	0.9073	28.5	19.6	892	-0.0035
96	0.4800	0.9137	28.7	19.8	898	-0.0036
97	0.4850	0.9137	28.7	20.0	898	-0.0036
98	0.4900	0.9137	28.7	20.2	898	-0.0036
99	0.4950	0.9137	28.7	20.5	898	-0.0037

Checked By: JDB

DIRECT SHEAR TEST

8/18/2018

Date:	8/6/18										
Client:	Geomat										
Project:	Kimbeto, S.Escavada	Kimbeto, S.Escavada & Rincon Ponds									
Project No.:	DV108-00304/04										
Depth:	10-20'		Sample Number:	6834							
Description:											
Remarks:	Failure chosen at 109	% and 20% strain	n. Test was inundated	1.							
Type of Sample:	Remolded										
Assumed Specific G	ravity=2.7 L	-L=	PL=	PI=							

	Parameters	s for Specimen No. 1		
Specimen Parameter	Initial	Consolidated	Final	
Moisture content: Moist soil+tare, gms	148.510		550.800	
Moisture content: Dry soil+tare, gms.	131.750		524.480	
Moisture content: Tare, gms.	0.000		392.730	
Moisture, %	12.7	20.0	20.0	
Moist specimen weight, gms.	148.5			
Diameter, in.	2.42	2.42		
Area, in. ²	4.60	4.60		
Height, in.	1.00	1.00		
Net decrease in height, in.		0.00		
Wet density, pcf	123.0	131.4		
Dry density, pcf	109.1	109.5		
Void ratio	0.5447	0.5396		
Saturation, %	63.1	100.0		

Test Readings for Specimen No. 1

Load ring constant = 31.408 lbs. per input unit Normal stress = 500 psf Strain rate, %/min. = 0.04 Fail. Stress = 366 psf at reading no. 49

Ult. Stress = 341 psf at reading no. 99

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
0	0.0000	0.0000	0.0	0.0	0	0.0000
1	0.0050	0.3470	10.9	0.2	341	-0.0002
2	0.0100	0.5253	16.5	0.4	517	0.0002
3	0.0150	0.5826	18.3	0.6	573	0.0012
4	0.0200	0.5571	17.5	0.8	548	0.0025
5	0.0250	0.4839	15.2	1.0	476	0.0036
6	0.0300	0.4457	14.0	1.2	438	0.0041
7	0.0350	0.4234	13.3	1.4	416	0.0045
8	0.0400	0.4139	13.0	1.7	407	0.0048
9	0.0450	0.4107	12.9	1.9	404	0.0051
10	0.0500	0.4043	12.7	2.1	398	0.0054
11	0.0550	0.4043	12.7	2.3	398	0.0056
12	0.0600	0.3980	12.5	2.5	391	0.0058
13	0.0650	0.4011	12.6	2.7	394	0.0060
					Knight	Diasold G

				Т	est Rea	dings for Specimen No. 1	
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress	Vertical Def. Dial	
14	0.0700	0.3980	12.5	2.9	psf 391	in.	
14	0.0700	0.3980	12.5	3.1	388	0.0061 0.0062	
		0.3948			385	0.0062	
16	0.0800		12.3	3.3	382		
17	0.0850	0.3884	12.2	3.5 3.7	382 379	0.0063	
18	0.0900	0.3852	12.1		379	0.0064 0.0065	
19	0.0950 0.1000	0.3852 0.3820	12.1 12.0	3.9 4.1	379	0.0066	
20	0.1000	0.3789			373	0.0067	
21		0.3789	11.9 11.9	4.3	373	0.0067	
22	0.1100			4.5		0.0067	
23 24	0.1150 0.1200	0.3789 0.3789	11.9	4.8	373 373	0.0069	
			11.9 11.9	5.0	373	0.0070	
25	0.1250	0.3789		5.2		0.0071	
26	0.1300	0.3789	11.9	5.4	373		
27	0.1350	0.3789	11.9	5.6	373	0.0071	
28	0.1400	0.3789	11.9	5.8	373	0.0072 0.0073	
29	0.1450	0.3852	12.1	6.0	379		
30	0.1500	0.3852	12.1	6.2	379	0.0073	
31	0.1550	0.3852	12.1	6.4	379	0.0074	
32	0.1600	0.3852	12.1	6.6	379	0.0074	
33	0.1650	0.3820	12.0	6.8	376	0.0075	
34	0.1700	0.3789	11.9	7.0	373	0.0076	
35	0.1750	0.3789	11.9	7.2	373	0.0077	
36	0.1800	0.3789	11.9	7.4	373	0.0079	
37	0.1850	0.3789	11.9	7.6	373	0.0080	
38	0.1900	0.3789	11.9	7.9	373	0.0082	
39	0.1950	0.3789	11.9	8.1	373	0.0083	
40	0.2000	0.3789	11.9	8.3	373	0.0084	
41	0.2050	0.3789	11.9	8.5	373	0.0086	
42	0.2100	0.3820	12.0	8.7	376	0.0087	
43	0.2150	0.3820	12.0	8.9	376	0.0088	
44	0.2200	0.3820	12.0	9.1	376	0.0089	
45	0.2250	0.3789	11.9	9.3	373	0.0091	
46 47	0.2300 0.2350	0.3789 0.3789	11.9 11.9	9.5 9.7	373 373	0.0092 0.0093	
47	0.2330	0.3789	11.9	9.7 9.9	373	0.0093	
48 49	0.2400	0.3725	11.7	9.9	366	0.0095	
49 50	0.2430	0.3725	11.7	10.1	366	0.0095	
51	0.2550	0.3725	11.7	10.5	366	0.0095	
52	0.2600	0.3725	11.7	10.5	366	0.0096	
53	0.2650	0.3725	11.7	11.0	366	0.0096	
54	0.2000	0.3725	11.7	11.0	366	0.0096	
55	0.2700	0.3725	11.7	11.2	366	0.0097	
55 56	0.2730	0.3725	11.7	11.4	366	0.0097	
57	0.2800	0.3725	11.7	11.8	366	0.0097	
58	0.2830	0.3693	11.7	12.0	363	0.0097	
50 59	0.2900	0.3725	11.0	12.0	366	0.0097	
59 60	0.2930	0.3693	11.7	12.2	363	0.0098	
00	0.5000	0.5075	11.0			Piesold Geotechnical Lab.	
					runght F		

				Т	'est Rea	dings fo
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
61	0.3050	0.3661	11.5	12.6	360	0.0099
62	0.3100	0.3661	11.5	12.8	360	0.0100
63	0.3150	0.3661	11.5	13.0	360	0.0100
64	0.3200	0.3661	11.5	13.2	360	0.0101
65	0.3250	0.3661	11.5	13.4	360	0.0101
66	0.3200	0.3661	11.5	13.4	360	0.0102
67	0.3350	0.3661	11.5	13.8	360	0.0103
	0.3350					
68	0.3400	0.3661	11.5	14.0	360	0.0106
69 70		0.3661	11.5	14.3	360	0.0107
70	0.3500	0.3629	11.4	14.5	357	0.0107
71	0.3550	0.3597	11.3	14.7	354	0.0107
72	0.3600	0.3629	11.4	14.9	357	0.0108
73	0.3650	0.3597	11.3	15.1	354	0.0109
74	0.3700	0.3597	11.3	15.3	354	0.0110
75	0.3750	0.3597	11.3	15.5	354	0.0111
76	0.3800	0.3597	11.3	15.7	354	0.0112
77	0.3850	0.3597	11.3	15.9	354	0.0114
78	0.3900	0.3597	11.3	16.1	354	0.0116
79	0.3950	0.3597	11.3	16.3	354	0.0117
80	0.4000	0.3597	11.3	16.5	354	0.0118
81	0.4050	0.3566	11.2	16.7	351	0.0119
82	0.4100	0.3534	11.1	16.9	347	0.0120
83	0.4150	0.3534	11.1	17.1	347	0.0121
84	0.4200	0.3534	11.1	17.4	347	0.0122
85	0.4250	0.3534	11.1	17.6	347	0.0123
86	0.4300	0.3534	11.1	17.8	347	0.0124
87	0.4350	0.3534	11.1	18.0	347	0.0125
88	0.4400	0.3534	11.1	18.2	347	0.0126
89	0.4450	0.3534	11.1	18.4	347	0.0127
90	0.4500	0.3534	11.1	18.6	347	0.0128
91	0.4550	0.3534	11.1	18.8	347	0.0129
92	0.4600	0.3534	11.1	19.0	347	0.0129
93	0.4650	0.3534	11.1	19.2	347	0.0130
94	0.4700	0.3534	11.1	19.4	347	0.0130
95	0.4750	0.3502	11.0	19.6	344	0.0131
96	0.4800	0.3470	10.9	19.8	341	0.0132
97	0.4850	0.3470	10.9	20.0	341	0.0132
98	0.4900	0.3470	10.9	20.2	341	0.0133
99	0.4950	0.3470	10.9		341	0.0133
99	0.4950	0.3470	10.9	20.5	341	0.0133

Specimen Parameter	Initial	for Specimen No. 2 Consolidated	Final	
Moisture content: Moist soil+tare, gms.	147.470	Consolidated	550.450	
Moisture content: Dry soil+tare, gms.	131.250		524.670	
Moisture content: Tare, gms.	0.000		393.420	
Moisture, %	12.4	19.6	19.6	
Moist specimen weight, gms.	147.5			
Diameter, in.	2.42	2.42		
Area, in. ²	4.60	4.60		
Height, in.	1.00	0.99		
Net decrease in height, in.		0.01		
Wet density, pcf	122.1	131.8		
Dry density, pcf	108.7	110.2		
Void ratio	0.5506	0.5301		
Saturation, %	60.6	100.0		
	est Reading	s for Specimen No.	2	
Load ring constant = 31.408 lbs. per input				

Strain rate, %/min. = 0.04

Fail. Stress = 639 psf at reading no. 49

Ult. Stress = 642 psf at reading no. 99

No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
0	0.0000	0.0000	0.0	0.0	0	0.0000
1	0.0050	0.2706	8.5	0.2	266	-0.0005
2	0.0100	0.4043	12.7	0.4	398	-0.0010
3	0.0150	0.4807	15.1	0.6	473	-0.0014
4	0.0200	0.5380	16.9	0.8	529	-0.0017
5	0.0250	0.5762	18.1	1.0	567	-0.0019
6	0.0300	0.6208	19.5	1.2	610	-0.0020
7	0.0350	0.6399	20.1	1.4	629	-0.0020
8	0.0400	0.6431	20.2	1.7	632	-0.0020
9	0.0450	0.6335	19.9	1.9	623	-0.0019
10	0.0500	0.6144	19.3	2.1	604	-0.0020
11	0.0550	0.6081	19.1	2.3	598	-0.0022
12	0.0600	0.6081	19.1	2.5	598	-0.0025
13	0.0650	0.6081	19.1	2.7	598	-0.0027
14	0.0700	0.6081	19.1	2.9	598	-0.0029
15	0.0750	0.6081	19.1	3.1	598	-0.0031
16	0.0800	0.6081	19.1	3.3	598	-0.0033
17	0.0850	0.6081	19.1	3.5	598	-0.0034
18	0.0900	0.6113	19.2	3.7	601	-0.0036
19	0.0950	0.6144	19.3	3.9	604	-0.0038
20	0.1000	0.6144	19.3	4.1	604	-0.0039
21	0.1050	0.6144	19.3	4.3	604	-0.0040
22	0.1100	0.6208	19.5	4.5	610	-0.0041
23	0.1150	0.6208	19.5	4.8	610	-0.0042
24	0.1200	0.6272	19.7	5.0	617	-0.0043
25	0.1250	0.6272	19.7	5.2	617	-0.0044
26	0.1300	0.6272	19.7	5.4	617	-0.0045

		N. These		Ţ	'est Rea	dings for Specimen No. 2	
	Horizontal				Shear	Vertical	
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Stress psf	Def. Dial in.	
27	0.1350	0.6272	19.7	5.6	617	-0.0045	
28	0.1400	0.6272	19.7	5.8	617	-0.0046	
29	0.1450	0.6272	19.7	6.0		-0.0047	
30	0.1500	0.6272	19.7	6.2	617	-0.0048	
31	0.1550	0.6304	19.8	6.4	620		
32	0.1600	0.6335	19.9	6.6	623	-0.0049	
33	0.1650	0.6335	19.9	6.8	623	-0.0050	
34	0.1700	0.6399	20.1	7.0	629		
35	0.1750	0.6399	20.1	7.2	629	-0.0051	
36	0.1800	0.6399	20.1	7.4	629		
37	0.1850	0.6399	20.1	7.6	629	-0.0052	
38	0.1900	0.6399	20.1	7.9	629	-0.0052	
39	0.1950	0.6399	20.1	8.1	629	-0.0052	
40	0.2000	0.6399	20.1	8.3	629	-0.0052	
41	0.2050	0.6399	20.1	8.5	629	-0.0052	
42	0.2100	0.6431	20.2	8.7	632	-0.0052	
43	0.2150	0.6463	20.3	8.9	635	-0.0053	
44	0.2200	0.6463	20.3	9.1	635	-0.0053	
45	0.2250	0.6463	20.3	9.3	635	-0.0053	
46	0.2300	0.6463	20.3	9.5	635	-0.0053	
47	0.2350	0.6463	20.3	9.7	635	-0.0053	
48	0.2400	0.6463	20.3	9.9	635	-0.0053	
49	0.2450	0.6495	20.4	10.1		-0.0053	
50	0.2500	0.6495	20.4	10.3		-0.0053	
51	0.2550	0.6495	20.4	10.5		-0.0053	
52	0.2600	0.6495	20.4	10.7		-0.0052	
53	0.2650	0.6526	20.5	11.0		-0.0052	
54	0.2700	0.6463	20.3	11.2		-0.0051	
55	0.2750	0.6463	20.3	11.4		-0.0051	
56	0.2800	0.6463	20.3	11.6		-0.0051	
57	0.2850	0.6463	20.3	11.8		-0.0050	
58 59	0.2900 0.2950	0.6463 0.6463	20.3 20.3	12.0 12.2		-0.0050 -0.0050	
59 60	0.2950	0.6463	20.3	12.2		-0.0030	
61	0.3050	0.6495	20.3	12.4		-0.0049	
62	0.3100	0.6526	20.4	12.8		-0.0049	
63	0.3150	0.6526	20.5	13.0		-0.0049	
64	0.3200	0.6526	20.5	13.2		-0.0048	
65	0.3250	0.6463	20.3	13.4		-0.0048	
66	0.3300	0.6463	20.3	13.6		-0.0047	
67	0.3350	0.6463	20.3	13.8		-0.0047	
68	0.3400	0.6463	20.3	14.0		-0.0046	
69	0.3450	0.6463	20.3	14.3		-0.0046	
70	0.3500	0.6463	20.3	14.5		-0.0045	
71	0.3550	0.6463	20.3	14.7		-0.0045	
72	0.3600	0.6526	20.5	14.9		-0.0045	
73	0.3650	0.6495	20.4	15.1	639	-0.0044	
Knight Piesold Geotechnical Lab.							

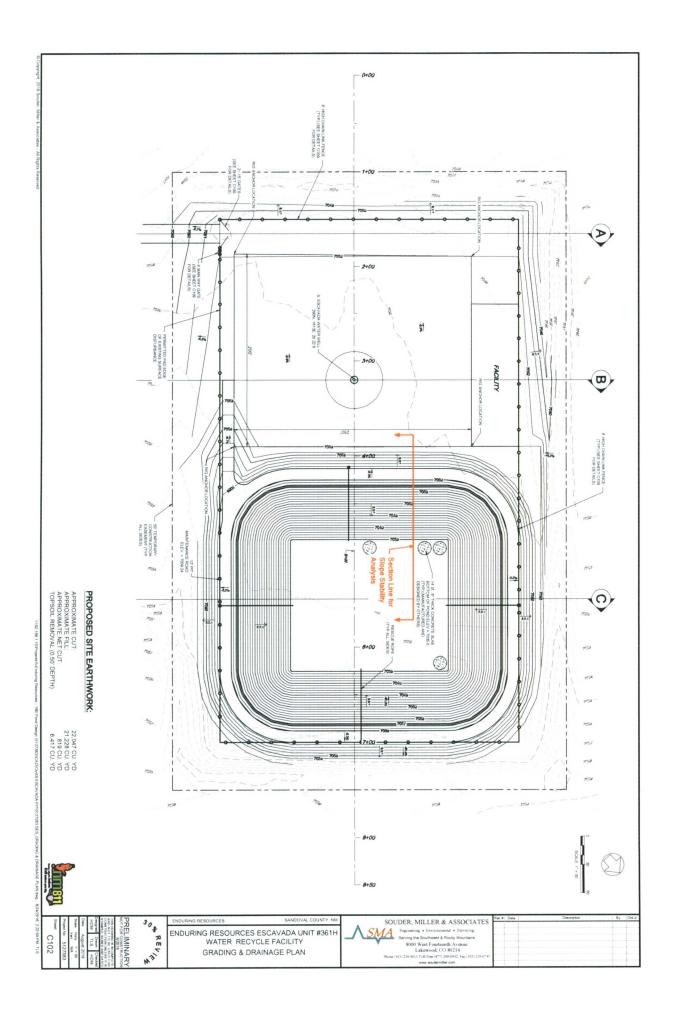
Test Read						
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
74	0.3700	0.6495	20.4	15.3	639	-0.0044
75	0.3750	0.6463	20.3	15.5	635	-0.0044
76	0.3800	0.6495	20.4	15.7	639	-0.0044
77	0.3850	0.6495	20.4	15.9	639	-0.0044
78	0.3900	0.6526	20.5	16.1	642	-0.0044
79	0.3950	0.6526	20.5	16.3	642	-0.0044
80	0.4000	0.6526	20.5	16.5	642	-0.0043
81	0.4050	0.6526	20.5	16.7	642	-0.0043
82	0.4100	0.6526	20.5	16.9	642	-0.0042
83	0.4150	0.6590	20.7	17.1	648	-0.0042
84	0.4200	0.6590	20.7	17.4	648	-0.0042
85	0.4250	0.6590	20.7	17.6	648	-0.0041
86	0.4300	0.6590	20.7	17.8	648	-0.0041
87	0.4350	0.6590	20.7	18.0	648	-0.0041
88	0.4400	0.6590	20.7	18.2	648	-0.0041
89	0.4450	0.6558	20.6	18.4	645	-0.0040
90	0.4500	0.6526	20.5	18.6	642	-0.0041
91	0.4550	0.6590	20.7	18.8	648	-0.0041
92	0.4600	0.6590	20.7	19.0	648	-0.0041
93	0.4650	0.6590	20.7	19.2	648	-0.0041
94	0.4700	0.6590	20.7	19.4	648	-0.0042
95	0.4750	0.6590	20.7	19.6	648	-0.0042
96	0.4800	0.6590	20.7	19.8	648	-0.0043
97	0.4850	0.6590	20.7	20.0	648	-0.0043
98	0.4900	0.6558	20.6	20.2	645	-0.0044
99	0.4950	0.6526	20.5	20.5	642	-0.0044

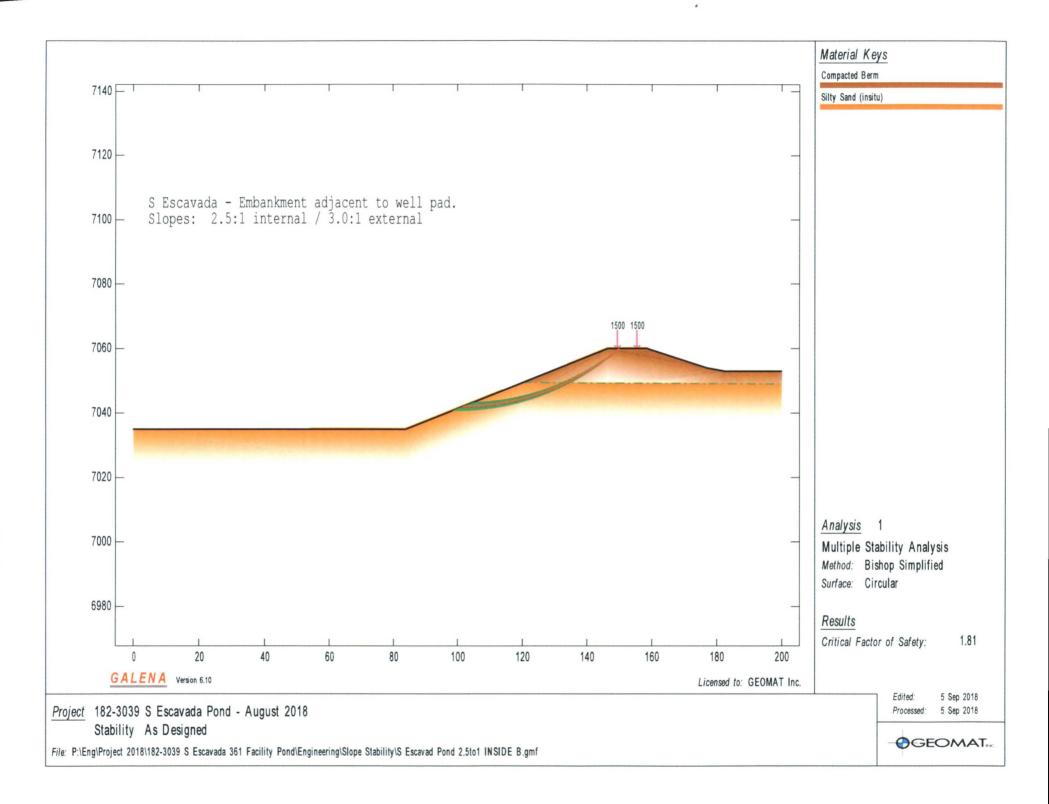
Specimen Parameter	Initial	Consolidated	Final	Cancers and a ferral and a reaction of the
Moisture content: Moist soil+tare, gms.	148.360		550.870	
Moisture content: Dry soil+tare, gms.	131.260		524.880	
Moisture content: Tare, gms.	0.000		392.950	
Moisture, %	13.0	19.7	19.7	
Moist specimen weight, gms.	148.4			
Diameter, in.	2.42	2.42		
Area, in. ²	4.60	4.60		
Height, in.	1.00	0.99		
Net decrease in height, in.		0.01		
Wet density, pcf	122.9	131.7		
Dry density, pcf	108.7	110.0		
Void ratio	0.5504	0.5318		
Saturation, %	63.9	100.0		
T	est Reading	s for Specimen No.	3	

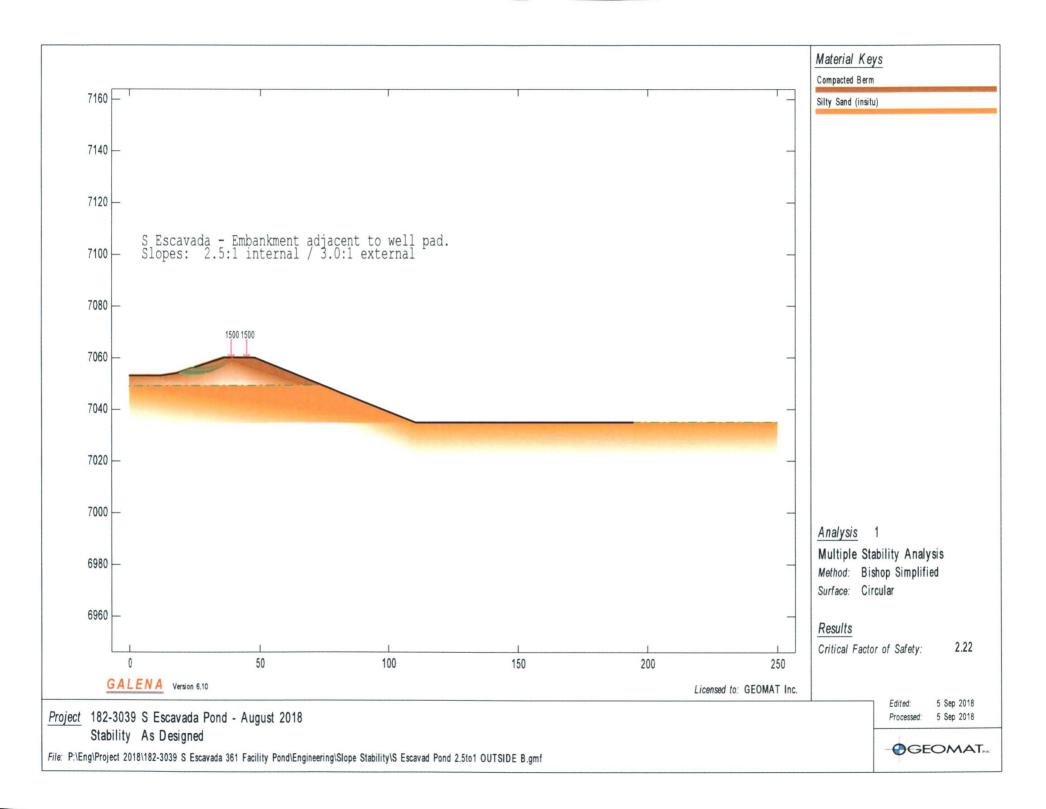
Normal stress = 1500 psf

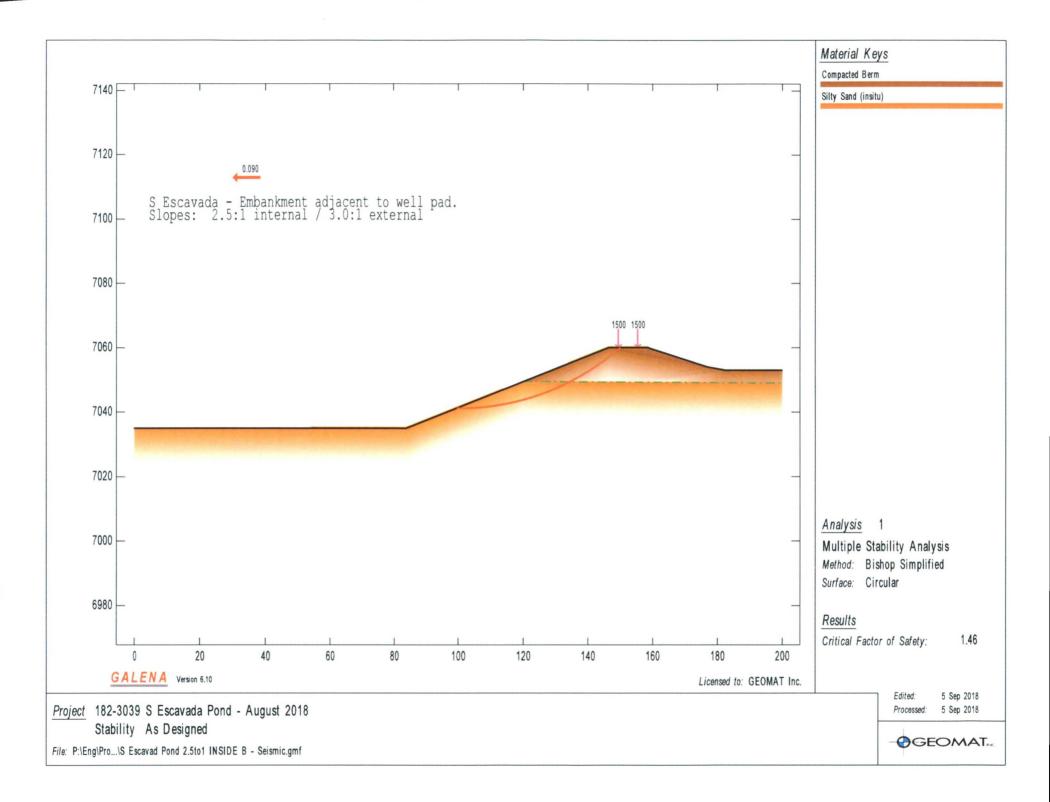
Strain rate, %/min. = 0.04

Fail. Stress = 949 psf at reading no. 49


Ult. Stress = 905	psf at	t reading	no . 99
---------------------	--------	-----------	----------------


No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
0	0.0000	0.0000	0.0	0.0	0	0.0000
1	0.0050	0.6845	21.5	0.2	673	0.0001
2	0.0100	0.9137	28.7	0.4	898	0.0001
3	0.0150	0.9710	30.5	0.6	955	0.0004
4	0.0200	0.9774	30.7	0.8	961	0.0007
5	0.0250	0.9710	30.5	1.0	955	0.0009
6	0.0300	0.9646	30.3	1.2	949	0.0011
7	0.0350	0.9615	30.2	1.4	945	0.0012
8	0.0400	0.9583	30.1	1.7	942	0.0012
9	0.0450	0.9583	30.1	1.9	942	0.0012
10	0.0500	0.9519	29.9	2.1	936	0.0012
11	0.0550	0.9519	29.9	2.3	936	0.0012
12	0.0600	0.9487	29.8	2.5	933	0.0012
13	0.0650	0.9455	29.7	2.7	930	0.0011
14	0.0700	0.9455	29.7	2.9	930	0.0011
15	0.0750	0.9424	29.6	3.1	927	0.0011
16	0.0800	0.9455	29.7	3.3	930	0.0012
17	0.0850	0.9424	29.6	3.5	927	0.0012
18	0.0900	0.9455	29.7	3.7	930	0.0012
19	0.0950	0.9487	29.8	3.9	933	0.0012
20	0.1000	0.9519	29.9	4.1	936	0.0013
21	0.1050	0.9519	29.9	4.3	936	0.0013
22	0.1100	0.9583	30.1	4.5	942	0.0013
23	0.1150	0.9646	30.3	4.8	949	0.0013
24	0.1200	0.9646	30.3	5.0	949	0.0013
25	0.1250	0.9646	30.3	5.2	949	0.0013
26	0.1300	0.9646	30.3	5.4	949	0.0013


Knight Piesold Geotechnical Lab.


				Т	est Rea	dings for	Specimen No. 3
	Horizontal				Shear	Vertical	
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Stress psf	Def. Dial in.	
27	0.1350	0.9710	30.5	5.6	955	0.0014	
28	0.1400	0.9710	30.5	5.8	955	0.0014	
29	0.1450	0.9710	30.5	6.0	955	0.0014	
30	0.1500	0.9710	30.5	6.2	955	0.0014	
31	0.1550	0.9742	30.6	6.4	958	0.0015	
32	0.1600	0.9774	30.7	6.6	961	0.0017	
33	0.1650	0.9774	30.7	6.8	961	0.0018	
34	0.1700	0.9774	30.7	7.0	961	0.0019	
35	0.1750	0.9774	30.7	7.2	961	0.0019	
36	0.1800	0.9774	30.7	7.4	961	0.0020	
37	0.1850	0.9806	30.8	7.6	964	0.0021	
38	0.1900	0.9806	30.8	7.9	964	0.0022	
39	0.1950	0.9774	30.7	8.1	961	0.0023	
40	0.2000	0.9742	30.6	8.3	958	0.0023	
41	0.2050	0.9710	30.5	8.5	955	0.0024	
42	0.2100	0.9710	30.5	8.7	955	0.0024	
43	0.2150	0.9710	30.5	8.9	955	0.0025	
44	0.2200	0.9678	30.4	9.1	952	0.0026	
45	0.2250	0.9646	30.3	9.3	949	0.0027	
46	0.2300	0.9646	30.3	9.5	949	0.0027	
47	0.2350	0.9646	30.3	9.7	949	0.0028	
48	0.2400	0.9646	30.3	9.9	949	0.0028	
49	0.2450	0.9646	30.3	10.1	949	0.0029	
50	0.2500	0.9583	30.1	10.3	942	0.0029	
51	0.2550	0.9583	30.1	10.5	942	0.0030	
52	0.2600	0.9551	30.0	10.7	939	0.0030	
53	0.2650	0.9551	30.0	11.0	939	0.0030	
54	0.2700	0.9519	29.9	11.2	936	0.0031	
55	0.2750	0.9519	29.9	11.4	936	0.0031	
56	0.2800	0.9487	29.8	11.6	933	0.0031	
57	0.2850	0.9519	29.9	11.8	936	0.0031	
58	0.2900	0.9519	29.9	12.0	936	0.0032	
59	0.2950	0.9519	29.9	12.2	936	0.0033	
60	0.3000	0.9519	29.9	12.4	936	0.0034	
61	0.3050	0.9455	29.7	12.6	930	0.0034	
62	0.3100	0.9455	29.7	12.8	930	0.0035	
63	0.3150	0.9455	29.7	13.0	930	0.0035	
64	0.3200	0.9455	29.7	13.2	930	0.0035	
65	0.3250	0.9392	29.5	13.4	923	0.0036	
66	0.3300	0.9392	29.5	13.6	923	0.0037	
67	0.3350	0.9392	29.5	13.8	923	0.0038	
68 60	0.3400	0.9392	29.5	14.0	923	0.0039	
69 70	0.3450	0.9360	29.4	14.3	920	0.0040	
70	0.3500	0.9328	29.3	14.5	917	0.0041	
71	0.3550	0.9328	29.3	14.7	917	0.0042	
72 73	0.3600	0.9328	29.3	14.9 15.1	917 917	0.0043 0.0044	
73	0.3650	0.9328	29.3				ante a brita a la ch
1000					knight F	riesold G	eotechnical Lab.

Test Readin						
No.	Horizontal Def. Dial in.	Load Dial	Load Ibs.	Strain %	Shear Stress psf	Vertical Def. Dial in.
74	0.3700	0.9328	29.3	15.3	917	0.0045
75	0.3750	0.9328	29.3	15.5	917	0.0045
76	0.3800	0.9328	29.3	15.7	917	0.0046
77	0.3850	0.9328	29.3	15.9	917	0.0047
78	0.3900	0.9328	29.3	16.1	917	0.0047
79	0.3950	0.9328	29.3	16.3	917	0.0047
80	0.4000	0.9296	29.2	16.5	914	0.0047
81	0.4050	0.9264	29.1	16.7	911	0.0048
82	0.4100	0.9264	29.1	16.9	911	0.0048
83	0.4150	0.9264	29.1	17.1	911	0.0048
84	0.4200	0.9264	29.1	17.4	911	0.0049
85	0.4250	0.9264	29.1	17.6	911	0.0049
86	0.4300	0.9264	29.1	17.8	911	0.0049
87	0.4350	0.9264	29.1	18.0	911	0.0049
88	0.4400	0.9264	29.1	18.2	911	0.0049
89	0.4450	0.9264	29.1	18.4	911	0.0049
90	0.4500	0.9264	29.1	18.6	911	0.0048
91	0.4550	0.9264	29.1	18.8	911	0.0048
92	0.4600	0.9264	29.1	19.0	911	0.0048
93	0.4650	0.9264	29.1	19.2	911	0.0048
94	0.4700	0.9264	29.1	19.4	911	0.0047
95	0.4750	0.9264	29.1	19.6	911	0.0047
96	0.4800	0.9232	29.0	19.8	908	0.0046
97	0.4850	0.9264	29.1	20.0	911	0.0046
98	0.4900	0.9201	28.9	20.2	905	0.0045
99	0.4950	0.9201	28.9	20.5	905	0.0044

Appendix C

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnicalengineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled*. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated*.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full.*

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- · the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

This Report May Not Be Reliable

- Do not rely on this report if your geotechnical engineer prepared it:
- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only*. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists.*

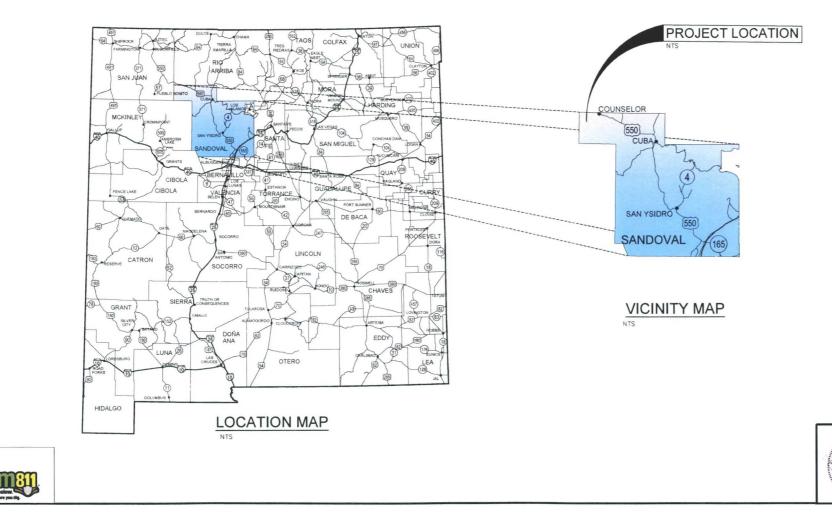
Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

ATTACHMENT B - CONTAINMENT CONSTRUCTION PLANS

ENDURING RESOURCES SOUTH ESCAVADA WATER CONTAINMENT PIT PROJECT **CONSTRUCTION PLANS**

SITE CONTROL


CENTER OF WELL: Lat: 36° 7' 2" N Long: 107° 29' 20" W

SECTION 20, TOWNSHIP 22 NORTH, RANGE 6 WEST, NEW MEXICO PRINCIPAL MERIDIAN, SANDOVAL COUNTY, NEW MEXICO

SANDOVAL COUNTY, NEW MEXICO September 2018

PROJECT DESCRIPTION: SOUTH ESCAVADA RECYCLING PIT

COV
GEN
SITE
SITE
SITE
SITE
HOR
LINE
GEO
LINE
PIT A
CHA
SITE
SITE

Sheet List Table

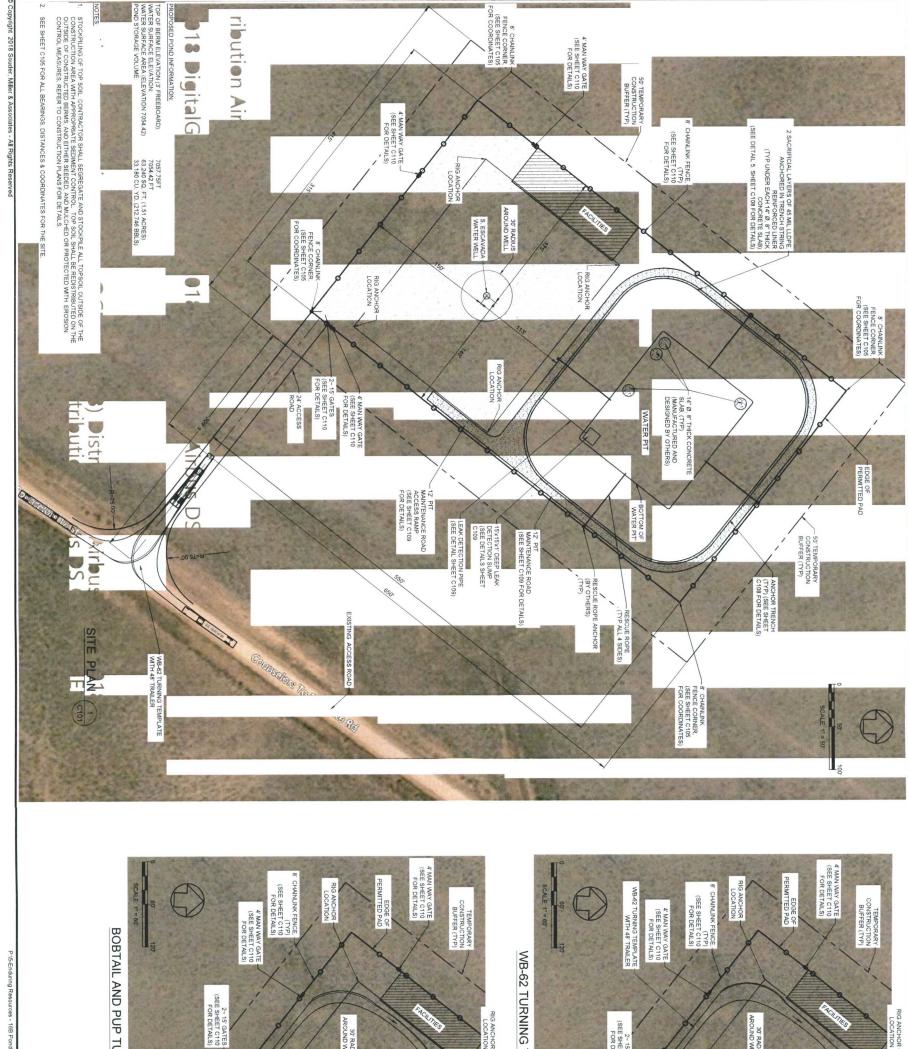
Sheet Title

- VER SHEET
- NERAL NOTES AND LEGEND
- **PLAN**
- GRADING AND DRAINAGE PLAN
- PROFILE

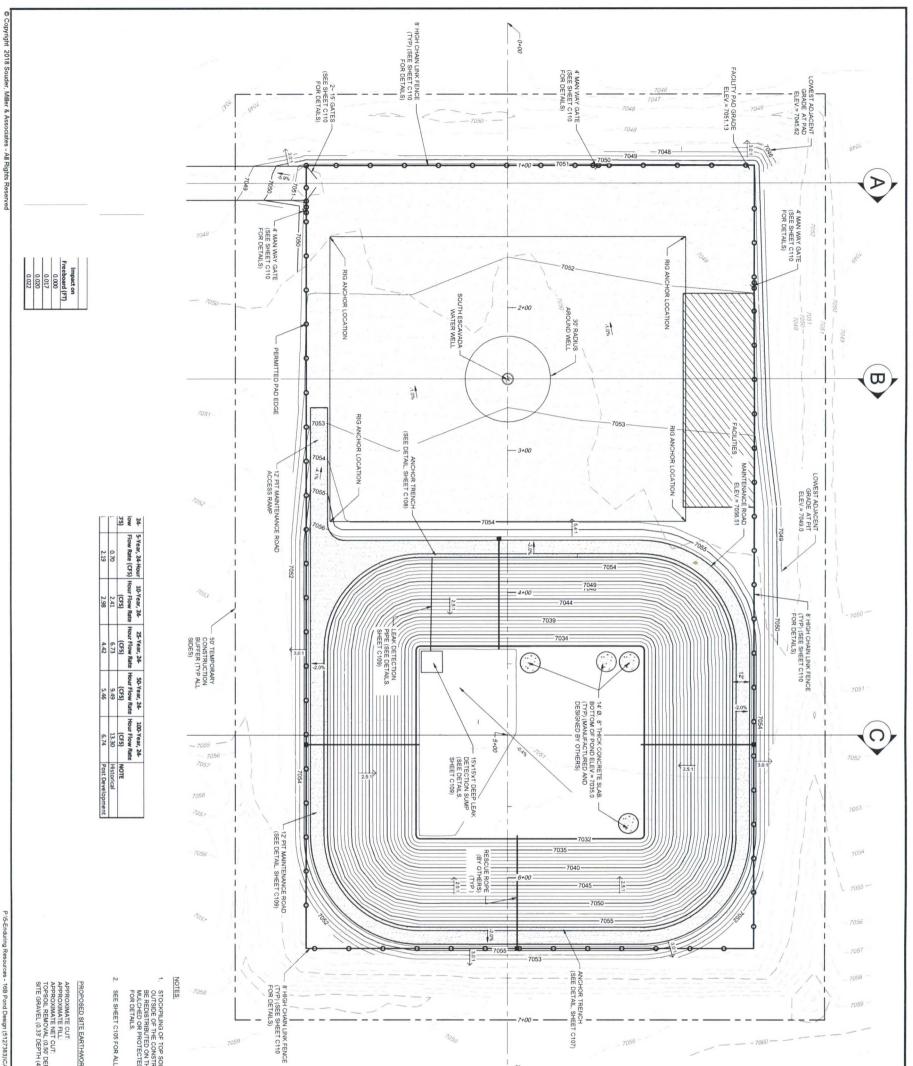
- E CROSS SECTIONS
- RIZONTAL CONTROL PLAN
- ERS, BALLAST TUBES AND GEOCOMPOSITE GRID PLAN
- OCOMPOSITE DETAILS
- ER AND BALLAST TUBE DETAILS
- ACCESS ROAD AND PAD SECTIONS AND LEAK DETECTION DETAILS
- AIN LINK SECURITY FENCE DETAILS
- E EROSION AND SEDIMENTATION CONTROL PLAN
- SITE EROSION AND SEDIMENTATION CONTROL DETAILS

		CIFICATIONS WERE PREPARED UNDER MY BEHALF OF SOUDER, MILLER & ASSOCIATES.
Heather D. MCDAN PROJECT MANAGER	NIEL, P.E. NM	September 28, 2018
Description	By Child	SOUDER, MILLER & ASSOCIATES 8000 W. 14th Avenue Lakewood. CO 80214 Phene (30) 239-9011 Fax (30) 239-0745 www.soudermille.com Serving the Southwest & Rocky Mountains Athegenerge Crafted From Kernel State From Serving the Southwest & Rocky Mountains

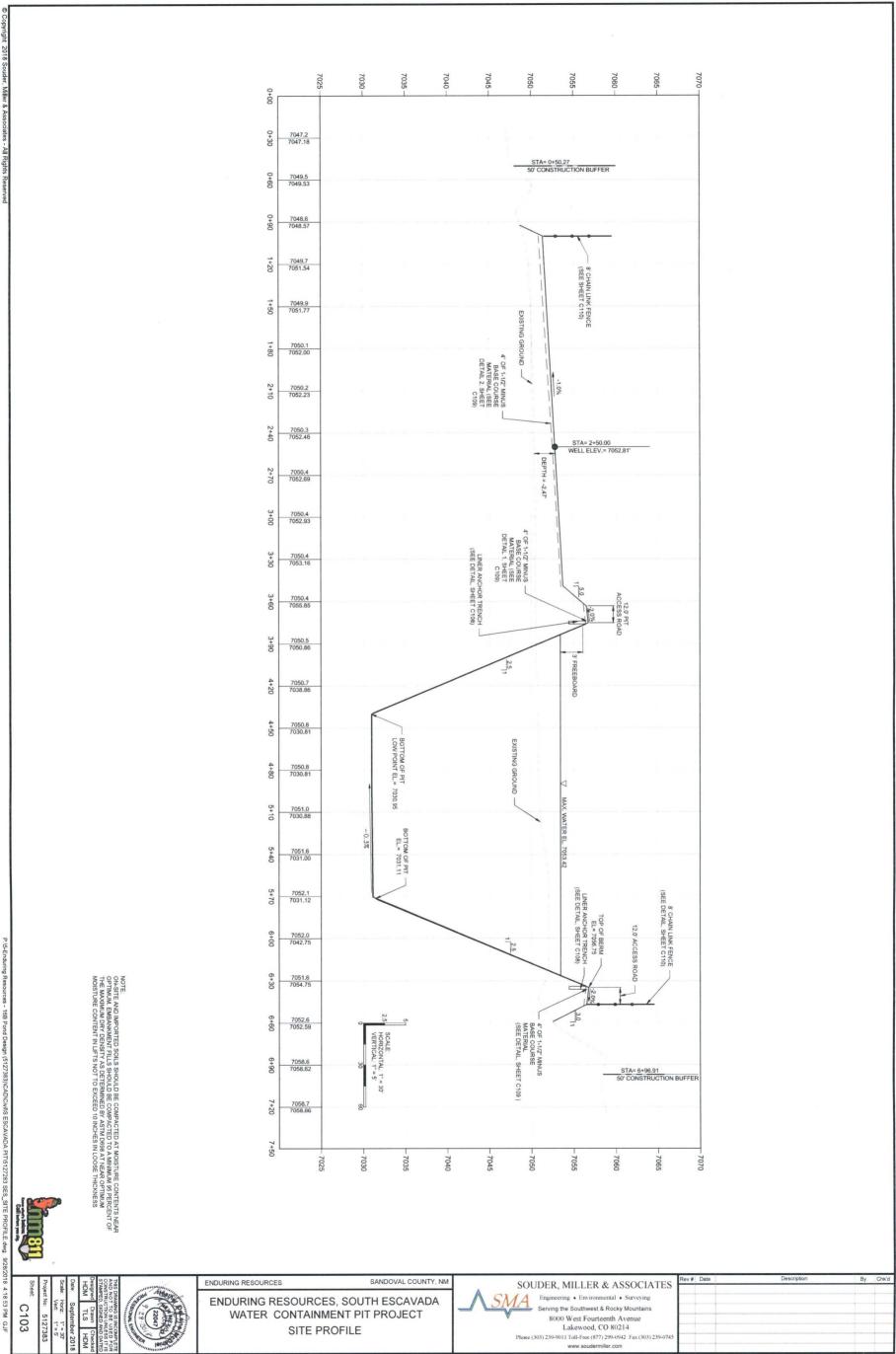
25. THE CONTRACTOR SHALL REVIEW AND FOLLOW THE RECOMMENDATIONS PROVIDED IN THE "GEOTECHNICAL ENGINEERING REPORT STUDY SOUTH ESCAVADA 36tH WATER RECYCLE FACILITY SANDOVAL COUNTY, NEW MEXICO, PREPARED BY GEOMATINC., DATED SEPTEMBER 05, 2018 FOR MOISTURE CONTENT, MAXIMUM COMPACTED LIFT DEPTHS, AND MINIMUM COMPACTION REQUIREMENTS FOR THE PROJECT.	. THE CONTRACTOR SHALL BE RESPONSIBLE FOR NOTIFYING THE RESPECTIVE UTILITY COMPANIES PRIOR TO GRADING OR TRENCHING	23. NEW MEXICO 811 LOCATES SHALL BE FIELD VERIFIED BY THE CONTRACTOR THROUGH POTHOLING AND COORDINATION WITH UTILITY OWNER.	22. THE CONTRACTOR SHALL NOTIFY ALL UTILITY COMPANIES BEFORE COMMENCING WORK AND SHALL BE RESPONSIBLE FOR COMPLYING WITH NEW MEXICO ONE-CALL PROCEDURES. ANY DAMAGE TO EXISTING UTILITIES MUST BE IMMEDIATELY REPORTED TO THE APPROPRIATE UTILITY COMPANY.	21. UTILITY LOCATIONS SHOWN WITHIN THE PROJECT BOUNDARY ARE BASED UPON THE BEST AVAILABLE EVIDENCE. BUT THE POSITIONS ARE NOT WARRANTED TO BE ACCURATE CONTACT UTILITY PROVIDERS BEFORE STARTING ANY EXCAVATION WORK. SHOULD CONFLICTING INFORMATION OR INTERFERENCE PROLEMS APPEAR IN THE CONSTRUCTION DEAVINESS THE CONTRACTOR SHALL BRING THAT INFORMATION TO THE ATTENTION OF THE ENGINEER IMMEDIATELY PRIOR TO INSTALLATION. FAILURE TO DO SO SHALL NOT BE A BASIS OF EXTRA PAYMENT TO THE CONTRACTOR.	20 UNSUITABLE CONSTRUCTION MATERIALS AND DEBRIS FROM CLEARING AND GRUBBING ARE TO BE PLACED IN AN ENVIRONMENTALLY SUITABLE DISPOSAL SITE.	19. THE CONTRACTOR SPALLER REPORTSIBLE FOR ALL REMOVEDS REQUISED TO COMPLETE IN TERVOLED. ADDITIONAL REMOVEDS NOT SHOWN ON THE PLANS WILL BE DESIGNATED BY THE OWNERS REPRESENT ATWE OR DESIGNEE. THIS WORK WILL BE CONSIDERED AS NUCLUGED IN THE CONTRACT PRICE FOR REMOVAL OF STRUCTURES AND OBSTRUCTIONS AND THE CONTRACTOR WILL NOT RECEIVE ADDITIONAL COMPENSATION FOR UNLISTED REMOVALS.		AL, WORK IN THE VICINITY OF LVIE STREAMS, WATER IMPOUNDMENTS, WETLANDS OR IRRIGANDS SUPPLIES SHALL BE AFFECTED IN MANNER AS TO MINIMIZE VIGETATION REMOVAL, SOICI DISTURBAVICE AND EROSION, CROSSINGS OF LVIE STREAMS, WITH HEAVY EQU SHALL BE MINIMIZE DAS DETERMINED BY THE OWNERS REPRESENTATIVE OR DESIGNEE. EQUIPMENT REFUELING, MAINTEMAWCE AN DUMPING IN THE VICINITY OF WATER COURSES IS STRICTLY PROHIBITED AND SHALL BE PERFORMED IN PROPER CONTAINMENT ARE		15. THROUGHOUT THE LIFE OF THE PROJECT THE CONTRACTOR SHALL KEEP LANDOWKERS INFORMED IN TWELY FASHION OF ANY LANE CLOSURES WHICH MILL RESTRICT THE NORMAL FLOW OF TRAFFIC. THERE WILL BE NO DIRECT PAYMENT FOR THIS WORK.	14. EXISTING FENCE. SIGNS AND OTHER ITEMS OF PRIVATE PROPERTY FOUND TO BE WITHIN THE RIGHT-OF-WAY ARE TO BE REMOVED AND REPLACED AT THE EDGE OF RIGHT-OF-WAY. BY THE CONTRACTOR. THIS WORK WILL BE CONSIDERED INCIDENTAL TO THE COMPLETION OF THE PROJECT AND NO MEASUREMENT OF PAYMENT WILL BE MADE THEREFORE.	 Intel PAIMERY OF CANARELE AND ADDRESS DAYS, DE DESEDURY DE MONTANT MANY THES AN UNELEMANDE DE DUCTO CONSTRUCTION OR IF & AUMITITY CHANGE IS REQUIRED DUE TO ERRORS ON THE PLANS, THE PAYMENT SHALL BE BASED ON COMPUTED FIELD QUANTITIES MEASURED TO NEAT LINES. 		SHALL BE RESPONSIBLE FOR REPORTING PAST SPILLS ENCOUNTERED DURING CONSTRUCTION AND OF CURRENT SPILLS NOT ASSOCIATED WITH CONSTRUCTION, REPORTS SHALL BE MADE IMREDIATELY TO THE ENVIRONMENTAL EMERGENCY SPILL REPORTING UNEAT 1-488-428-655 AND TO THE OWNER'S REPRESENTATIVE OR DESIGNEE. ANY UNREPORTED SPILLS IDENTIFIED AFTER CONSTRUCTION AND ASSOCIATED WITH PROJECT CONSTRUCTION SHALL BE CLEANED UP BY THE CONTRACTOR IN ACCORDANCE WITH THE CONTRACT. THE CONTRACTOR SHALL BEAR THE FULL COST OF CLEANING OF SUCH UNREPORTED SPILLS.	 THE CONTRACTOR SHALL BE RESPONSIBLE FOR REPORTING AND CLEAU PO 5 PSILLS ASSOCIATED WITH PROLECT CONSTRUCTION AND SHALL REPORT AND RESPOND TO SPILLS OF HAZARDOUS MATERIAL SUCH AS GASOLINE. DIESEL. MOTOR OILS, SOLVENTS, CHEMICALS, TOXIC AND CORROSTRE SUBSTANCES, AND OTHER MATERIALS WHICH MAY BE A THREAT TO PUBLIC HEALTH OR THE ENVIRONMENT. THE CONTRACTOR 		EMERGENCY ACCESS SHALL REMAIN OPEN AT ALL TIMES.	THE PROJECT BOUNDARIES ON THIS PROJECT. THIS WORK SHALL BE CONSIDERED INCIDENTAL TO THE COMPLETION SEPARATE MEASUREMENT OR PAYMENT MILL BE MADE THEREFORE.	9. THERE IS NO CONSTRUCTION CLEAR ZONE FOR THIS PROJECT. THE CONTRACTOR SHALL NOT STORE EQUIPMENT OR MATERIAL OUTSIDE OF	8. THE CONTRACTOR IS HEREBY ADVISED THAT UTILITY RELOCATION BY UTILITY COMPANIES WILL BE DONE CONCURRENTLY WITH CONSTRUCTION. THE CONTRACTOR SHALL PROVIDE FOR UTILITY WORK IN CONJUNCTION WITH CONSTRUCTION OPERATIONS AND SHALL COORDINATE THE SCHEDUING OF WORK WITH THE RESPECTIVE UTILITY COMPANIES IN ORDER TO AVOID DELAYS DUE TO UTILITY WORK. THE CONTRACTOR SHALL PROVIDE FOR THESE CONTINGENCIES WHEN BIDDING THE PROJECT. NO CLAIM FOR DELAYS DUE TO UTILITY WORK WILL BE ALLOWED.	 THE CONTRACTOR SHALL MAINTAIN REASONABLE ACCESS TO ALL ADJACENT PROPERTIES BY PROVIDING EASY RIDING CONNECTIONS TO TURNOUTS AND DRIVEWAYS AS DETERMINED ACCEPTABLE BY THE OWNER'S REPRESENTATIVE OR DESIGNEE. THIS WORK WILL BE CONSIDERED INCIDENTAL TO COMPLETION OF THE PROJECT AND NO MEASUREMENT OF PAYMENT WILL BE MADE THEREFORE. 	6. ALL EXISTING TRAFFIC SIGNS MILEPOST MARKERS AND DEUNEATORS WITHIN CONSTRUCTION LIMITS SHALL BE REMOVED OR OFFSET BY THE CONTRACTOR AS DIRECTED BY THE OWNER'S DESIGNED. INFORMATION SIGNS ARE TO BE OFFSET, AND ALL OTHERS ARE TO BE REMOVED. THIS WORK MILL BE INCLUDED IN THE UNIT BID PRICE FOR REMOVAL OF STRUCTURES AND DESTRUCTIONS.		OR MILL BE RESPONSIBLE FOR THE REPAIR AND/OR REPLACEMENT OF ANY DAMAGE DETERMINED TO BE CAUSED J (OF THIS PROJECT TO ROADS, FENCES, DRAINAGES, DRAINAGE STRUCTURES, UTILITIES, INCLUDING CONDUIT, MO DE BEBRADTICS, THE CONTRACTOR SHALL REPAIR AND/OR REPLACE ALL DESTROYED OR DAMAGED SURFACE IMP MENTS EQUAL TO THOSE REMOVED.	3. SITE CONDITIONS, EACH SUBCONTRACTOR DOING WORK ON THE PROJECT SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR THE SAFETY OF ALL PERSONS AND PROPERTY MITHIN THEIR WORK AREAS, DAY AND NIGHT, DURING BOTH WORKING AND NOWWORKING HOURS; AND, SHALL PROVIDE ALL BARRICADES, SHORING, FLAG MEN, SIGNS, LIGHTING AND OTHER DEVICES REQUIRED THEREOF.	 CLARIFICATIONS AND/OR REQUESTS REGARDING PROJECT INTENT AND MODIFICATIONS SHALL BE SUBMITTED TO THE ENGINEER PRIOR OR DURING CONSTRUCTION IN A FORMAL WRITTEN REQUEST FOR INFORMATION (RFI). THE ENGINEER SHALL NOT BE HELD LIABLE IF RECOMMENDATION(S) ARE ALTERED BY OTHERS. 	PLANS AND SPECIFICATIONS, ANY SUCH CHANGE IN FIELD CONDITIONS AND/OR REGULATIONS MAY REQUIRE ADDITIONAL DESIGN SERVICES AND COMMENSURATE FEE INCREASE TO ACCOMMODATE SUCH CHANGES.	DATE ON THE PLANS. DUE TO POSSIBLE CHANGES TO THE SITE. CODES, REGULATIONS, MDERGROUND UTILITES, ETC. BETWEEN THE SEALED DATE ON THE PLANS AND DATE OF CONSTRUCTION COMMENCEMENT. THE DESIGN AND RECOMMENTIONS ROUDED ARE UNITED TO THE SALED DATE ON THE PLANS, IF CHANGES TO ANY SITE CONNITIONS ADDR REGULATIONS OCUR BEFORE THE PROJECT CONSTRUCTION DATE. THE OWNER SHALL NOTITY ENGINEER OF SUCH CHANGES AND OFTAIN THE ENGINEERS OF DATE ON THE PLANS, IF CHANGES TO ANY SITE CONNITIONS ADDO BTAIN THE SUCH ON AS TO THE PROJECT CONSTRUCTION	GENERAL NOTES. 1. SIGNED AND SEALED CONSTRUCTION DRAMINGS ARE PREPARED BASED ON EXISTING SITE CONDITIONS AND REGULATIONS PER THE SEALED.
				51. ENGINEER HAS NO CONTROL OVER COST OF LABOR, MATERIALS, EQUIPMENT OR SERVICES FURNISHED BY OTHERS, COMPETITIVE BIDDING OR MARKET CONDITIONS.	50. CONTRACTOR SHALL COMPLY WITH ANY AND ALL CONDITIONS OF APPROVALS ISSUED BY THE REGULATORY AGENCIES AS DETERMINED BY OWNER.	49. THE OWNER WILL PROVIDE CONSTRUCTION OBSERVERS AND MATERIAL TESTERS TO OBSERVE AND TEST ALL CONTROLLED EARTHWORK. THE CONSTRUCTION OBSERVERS AND MATERIAL TESTERS SHALL PROVIDE CONTINUOUS ON-SITE OBSERVATION AND TESTING DURING CONSTRUCTION OF CONTROLLED EARTHWORK. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION OBSERVERS AND MATERIAL TESTERS AT I CASET MAN INFORMED CANNED AND MATERIAL TESTERS AND MATERIAL TESTERS AT	48. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING SAFE AND ADEQUATE SHORING FOR ALL PARTS OF THE PROJECT DURING CONSTRUCTION. ALL STRUCTURES SHOWN ON THE DRAMINGS HAVE BEEN DESIGNED FOR STABILITY UNDER FINAL CONFIGURATION.	46. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS IN THE FIELD. 47. THE CONTRACTOR SHALL COORDINATE STRUCTURAL ORAMINGS WITH OTHER DRAWINGS FOR INDIVIDUAL ITEMS. DISCREPANCIES UNCOVERED. 1F ANY, SHALL BE REPORTED BEFORE PROCEEDING WITH THE WORK SO THAT PROPER ADJUSTMENT CAN BE MADE.	45. EROSION AND SEDIMENTATION CONTROL MEASURES SHALL BE IMPLEMENTED AND SHALL BE KEPT IN PLACE UNTIL EROSION AND SEDIMENTATION POTENTIAL IS MITIGATED. REMOVAL OF SULT AND SEDIMENT IS RECURRED ONCE SULT AND SEDIMENT HAS REACHED HALF THE HEIGHT OF THE SILT FENCE. EROSION AND SEDIMENTATION CONTROL DEVICES SHALL BE CHECKED AND MAINTAINED PER THE OWNERS PERMIT.	44. OWNER WILL ENSURE THAT ALL INSTALLED EROSION AND SEDIMENTATION CONTROL MEASURES COMPLY WITH THEIR EXISTING ASSET STORMWATER POLLUTION PREVENTION PLAN (SWPPP).	 RECORD DRAWINGS OR WORK COMPLETED SHALL BE SUBMITTED TO ENGINEER PRIOR TO FINAL ACCEPTANCE OF THE INSTALLATIONS. IN THE EVENT A SERVICE OUTAGE IS REQUIRED, CONTRACTOR WILL NOTIFY ALL AFFECTED PARTIES WHEN AND HOW LONG THEY WILL BE WITHOUT SERVICE. 	ROADWAY SECTION REPLACEM BOOK STANDARDS FOR DEPTH	SANDOVAL COUNTY SHALL BE	THE FINISHED GRADE SHALL BE	38. ALL EXISTING DRAINAGE COURSES ON THE PROJECT SITE MUST CONTINUE TO FUNCTION DURING STORM CONDITIONS, PROTECTIVE MEASURERS AND TEMPORARY DRAINAGE PROVISIONS MUST BE USED TO PROTECT CONTIGUOUS PROPERTIES DURING GRADING OPERATIONS.	27. NO OBSTRUCTION OF FLOOD PLANS OR NATURAL WATER COURSES WILL BE PERMITTED.	DIN	35. ALL PROJECT LIMITS AND CONSTRUCTION AREAS SHALL BE CLEARLY DELINEATED IN THE FIELD PRIOR TO THE COMMENCEMENT OF ANY CONSTRUCTION AND/OR GRADING.	34. SPECIAL CONDITION: IF ANY ARCHEOLOGICAL RESOURCES ARE DISCOVERED ON THE SITE OF THIS GRADING OPERATION, SUCH OPERATION WILL CEASE IMMEDIATELY, AND THE PERMITTEE WILL NOTIFY THE OWNER'S REPRESENTATIVE.	33. NOTMITISTANDING THE APPROVAL OF THESE GRADING PLANS THE CONTRACTOR IS RESPONSIBLE FOR THE PREVENTION OF DAMAGE TO ADJACENT PROPERTY. NO PERSON SHALL EXCAVATE OU LAND SO CLOSE TO THE PROPERTY LINE AS TO ENDAVIGE ANY SUCH PROPERTY FROM SETTLING, CRACKING, EROSION, SILTING, SCOUR OR OTHER DAMAGE. WHICH MIGHT RESULT FROM THE GRADING DESCRIBED ON THE PLAN.	32. THE PROJECT MILL HAVE ALTERATION, VERIFICATION, AND SUBGRADE DENSITY TESTS COMPLETED BY A GEOTECHNICAL ENGINEERING COMPARY TO VERIFY COMPACTION. PROOF ROLLING WILL BE COMPLETED ALONG THE PROJECT SUBGRADE AND ANY SOFT SPOTS WILL BE REMOVED AND RECONSTRUCTED BEFORE THE CONTRACTOR BEGINS WORK.	31. THE EARTHWORK HAUL ON THIS PROJECT WILL BE CONSIDERED AS INCLUDED IN THE CONTRACT PRICE FOR UNCLASSIFIED EXCAVATION AND BORROW AS APPLICABLE, AND NO SEPARATE MEASUREMENT OR PAYMENT WILL BE MADE THEREFORE.	30. BACKFILL MATERIALS TO BE PLACED UNDER CONCRETE SLABS SHALL BE A GRANULAR SOIL AS SPECIFIED IN THE ACCOMPANYING TECHNICAL SPECIFICATIONS. EXPANSIVE TYPE SOILS ARE PROHIBITED AS BACKFILL MATERIALS.	IT MOISTURE C JM 95 PERCEN DING 10-INCHE	SUBGRADE SOILS BENEATH FILL AREAS95 ON SITE OR IMPORTED SOIL FILLS BENEATH FOOTINGS AND SLABS ON GRADE95	MINIMUM PERCENT MATERIAL INFR SIAGRADE PER LINER MANUFACTURED & RECOMMENDATIONS	MATERIALS SHOULD BE COMPACTED TO THE FOLLOWING:		MATERIAL AND HAUL ASSETS TO EMPLACE AND REMOVE THE CORRECT VOLUMES USING LOOSE SOIL CORRECTION FACTORS. NO SEPARATE MEASUREMENT OR PAYMENT WILL BE MADE THEREFORE.
					4	¢			LEGEND		ME MATCH EXI MCC MECHANIC MIL or MM MILLIMETEI		Р m	FG FINISH GRU HORIZ HORIZONT. LIF LINEAR FE		ELEV. ELEVATION	DIA. DIAMETER	CU, FT. CUBIC FEE CU, YD. CUBIC YAR		BLM BUREAU O				BUREAU OF LAN 6251 COLLEGE B FARMINGTON, N (505) 564-7600	(303) 239-9011 SURFACE OV	HEATHER D. MCI SOUDER, MILLEF 8000 WEST FOUR LAKEWOOD, COI	CIVIL ENGINE	ENDURING RESC 332 COUNTY RO AZTEC, NEW ME (505) 386-8887	FACILITY/PIT


Copyright 2018 Souder, Miller & Associates - All Rights Reserved

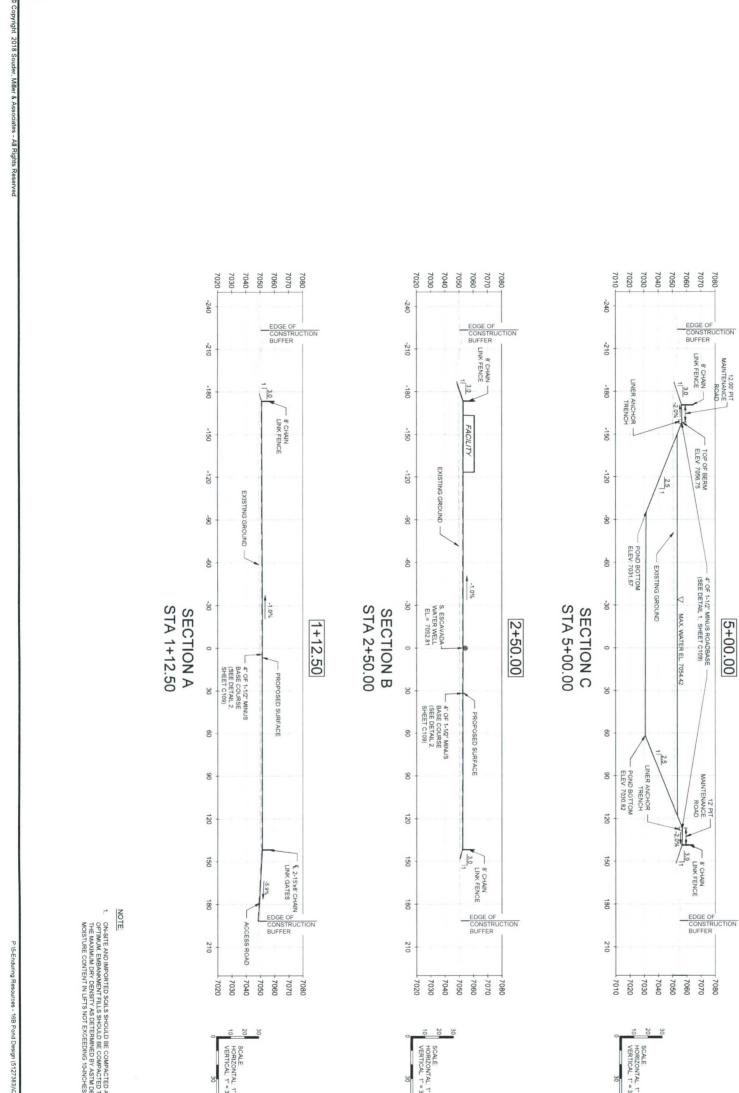
27. TRENCHES DEEPER THAN 5 IN DEPTH MUST BE SHORED, SLOPED, OR SHIELDED PER OSHA REGULATIONS. 28. EARTHWORK ESTIMATES ARE BASED ON COMPACTED AND IN-PLACE MATERIAL. CONTRACTOR IS RESPONSIBLE FOR PROVIDING THE REGUIRED


26. THE CONTRACTOR SHALL CONFORM TO ALL REQUIREMENTS SET FORTH BY THE TECHNICAL SPECIFICATIONS LOCATED IN THE PROJECT MANUAL

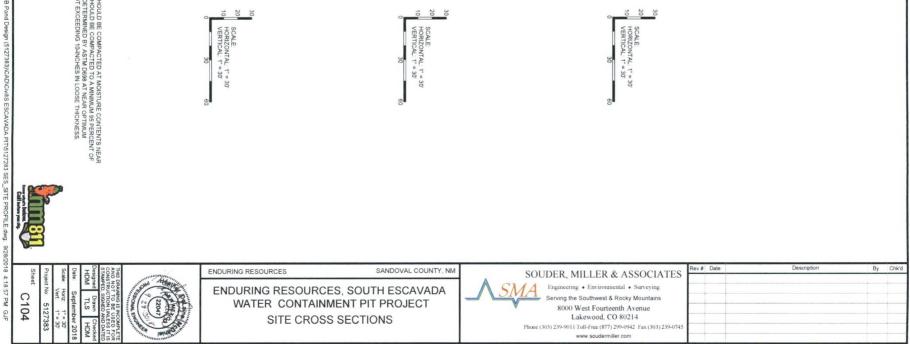
P-15-Enduring

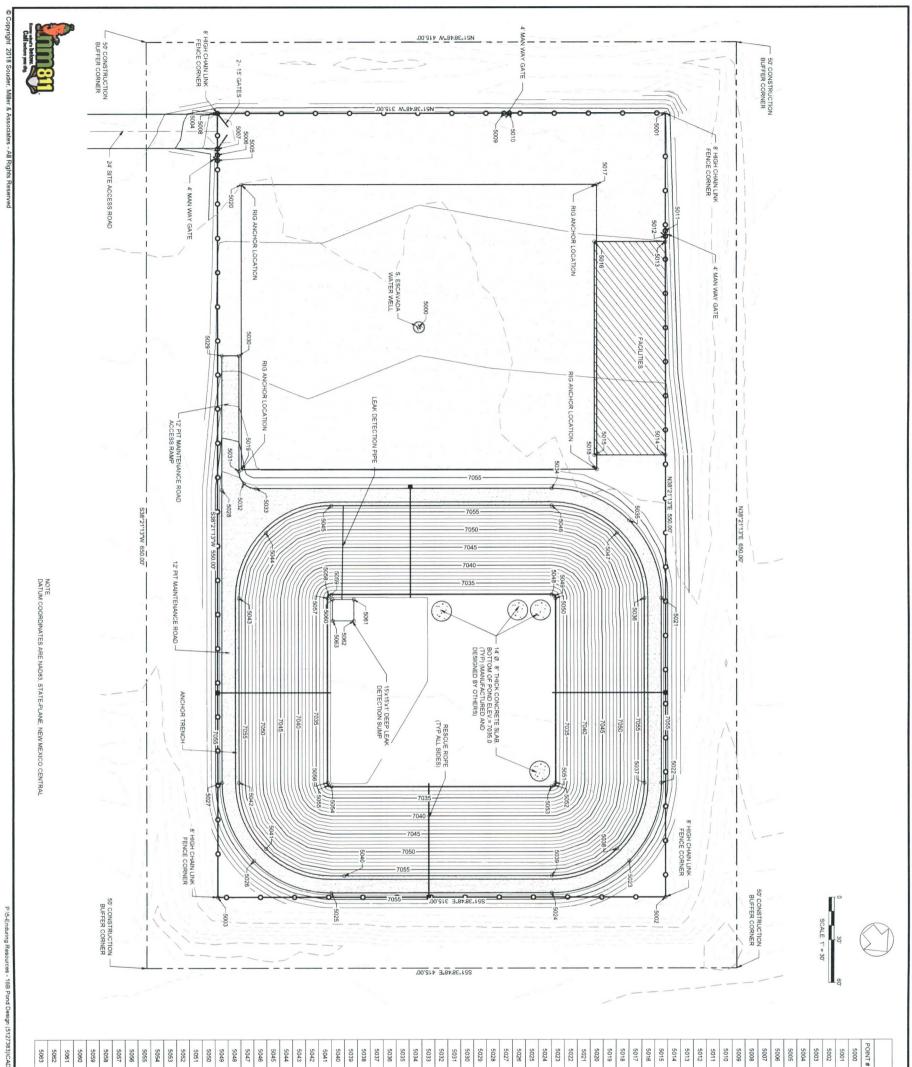

d Design (5127383)(CADICiviRs ESCAVADA PITI5127383 SES_GEN NOTES.dwg		 EXISTING INDEX CONTOURS EXISTING INTERMEDIATE CONTOURS PROPOSED INTERMEDIATE CONTOURS PROPOSED DRAINAGE PIPE PROPOSED CHAIN LINK FENCE PROPOSED MAN WAY PEDESTRIAN GATE 	ADENSITY POLYETHYLENE STING AL CONTROL CENTER R		TOP TOP OF BANK TYP TYPICAL	1 (2	FEE	LAND MANAGEMENT N.T.S. NOT TO SCALE		DI MANAGEMENT LIVID SUITE A EN MEXICO 87402	DAUREL P.E. 8 ASSOCIATES (SMA) 7TEENTH AVENUE LORADO 80214	AD 3100 XICO, 87410	OWNER
1. 9/28/2018 4:18:14 PM GJF	This Deaver is a successful of the successful of	ENDURING RESOURCES ENDURING RESOURCES WATER CONTAINME GENERAL NOTES	NT PIT PROJECT	<u></u>		Enginee Serving 800	ring • Enviro the Southwes 0 West Fou Lakewood	R & ASSOCIATES onmental • Surveying st & Rocky Mountains rteenth Avenue , CO 80214 (77) 299-0942 Fax (303) 239-0745 miller.com	Rev # Date		Description	E	3y Chk'd

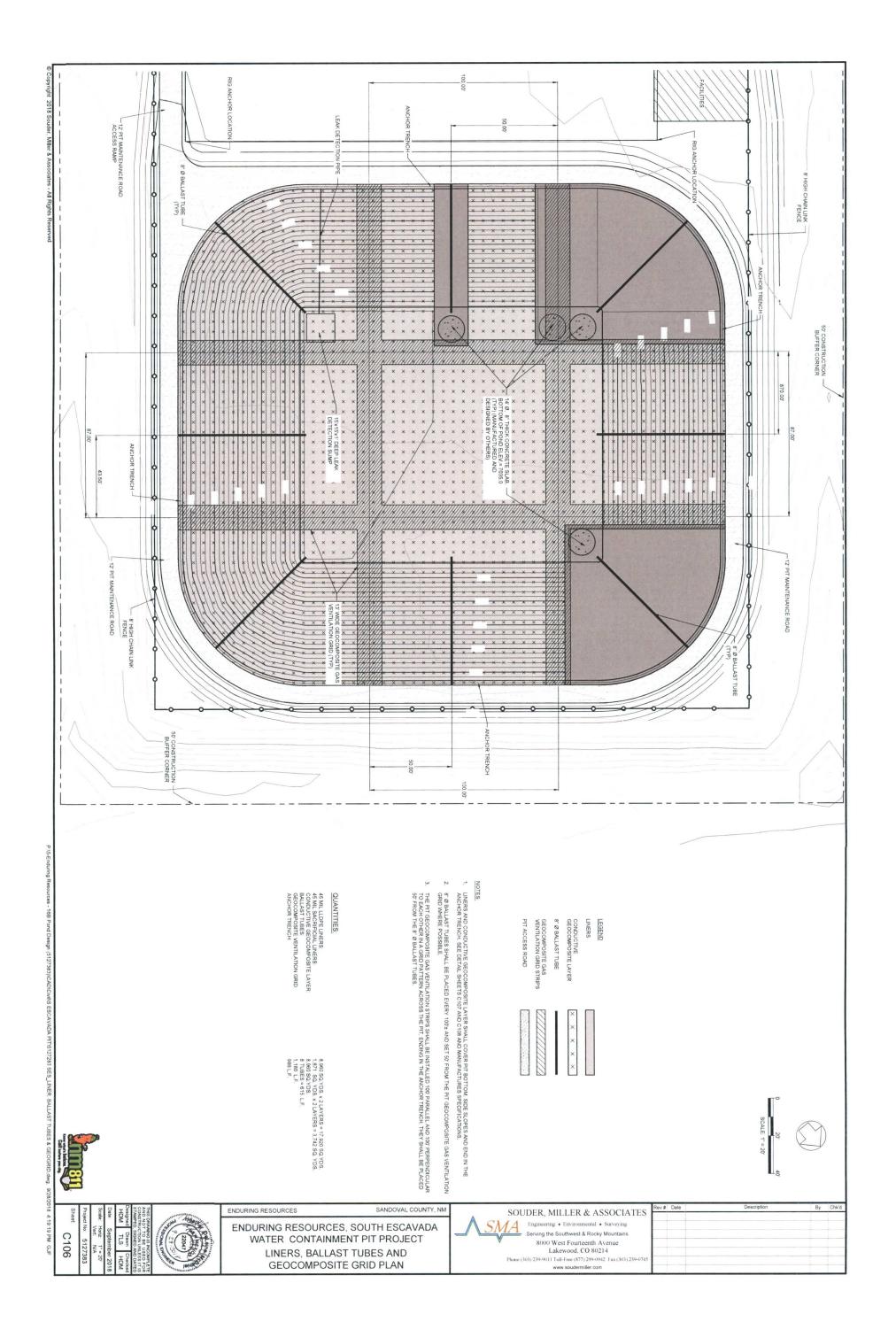
nd Design (5127383)\CAD\Civil\S ESCAVADA PIT\5127283 SES_SITE PLAN.dwg. 9/28/2	Entropy of the second s		24 ACCESS	EBEFAL TURNING TEMPLATE WITH PUP LOCATION LOCATION SEE SHEET C110 FOR DETAILS)	ADUS MEL BIG ANCHOR UCCATION	and the second second	TEMPLATE 2	RIGANCHOR			
018 4	Scale Proje She	AND CONS STAM Design HDI Date:	and the second	ENDURING RESOURCES	SANDOVAL COUNTY, NM		SOUDER, MILLER & ASSOCIATES	Rev # Date	Description	By Chk	(d
4:18:27 PM GJF	te: September 2018 alle: Horiz: VARIES Vert: N/A oject No: 5127383 heet C101	September 2018	A CONTRACTOR	WATER CONTA	RCES, SOUTH ESCAVADA INMENT PIT PROJECT TE PLAN	<u></u>	Engineering • Environmental • Surveying Serving the Southwest & Rocky Mountains 8000 West Fourteenth Avenue Lakewood, CO 80214 Phone (303) 239-901 Toll-Free (877) 299-0942 Fax (303) 239-0745 www.soudermiller.com				

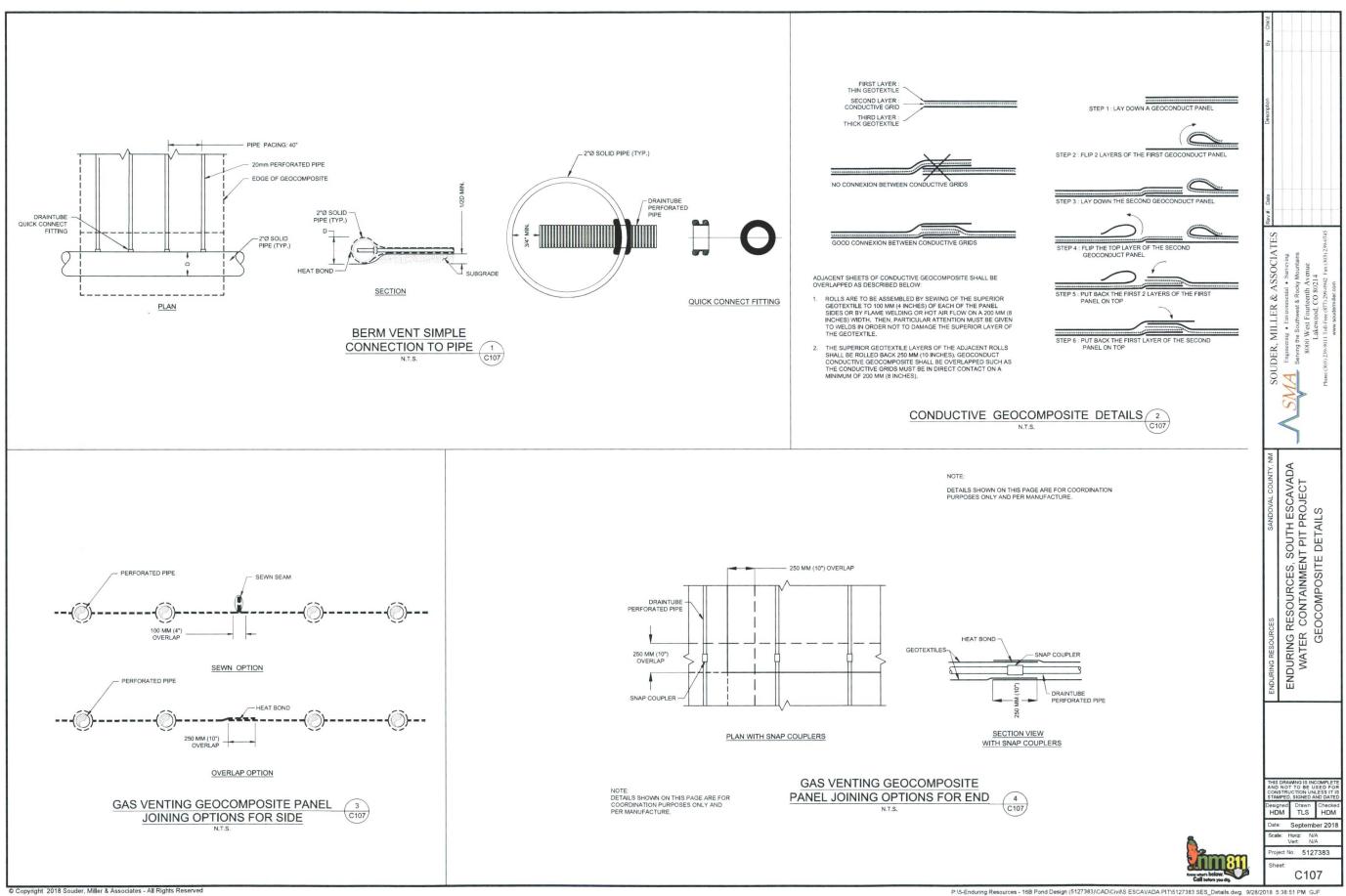

14 600 CU YD 13 191 CU YD (47)) 977 CU YD (47)) 977 CU YD CADCWIS ESCAVADA PITS127283 SES GRADING & DRAINAGE PLAN AM	ED WITH EROSION CONTROL MEASURES. REFER TO CONSTRUCTION P LL BEARINGS, DISTANCES & COORDINATES FOR THE SITE.	OIL: CONTRACTOR SHALL SEGREGATE AND STOCKPILE ALL TOPSOLL TPUCTION AREA WITH APPROPRIATE SEDIMENT CONTROL. TOP SOL SI THE OUTSIDE OF CONSTRUCTED EAND THE OUTSIDE OF CONSTRUCTED BERNS, AND EITHER SEEDED AND	m		7-90		0 30 SCALE 1" = 30	\int	
share we have a solution with the solution of	HIS DOWNER EVERTS		ENDURING RESOURCES, S ENDURING RESOURCES, S WATER CONTAINMEN SITE GRADING AND DF	T PIT PROJECT	SOUDER, MILLER & ASSOCIATES Engineering • Environmental • Surveying Serving the Southwest & Rocky Mountains 8000 West Fourteenth Avenue Lakewood, CO 80214 Phone (303) 239-9011 Toil-Free (877) 299-0942 Fax (303) 239-0745 www.soudermiller.com	Rev # Date	Description	By Chk	d

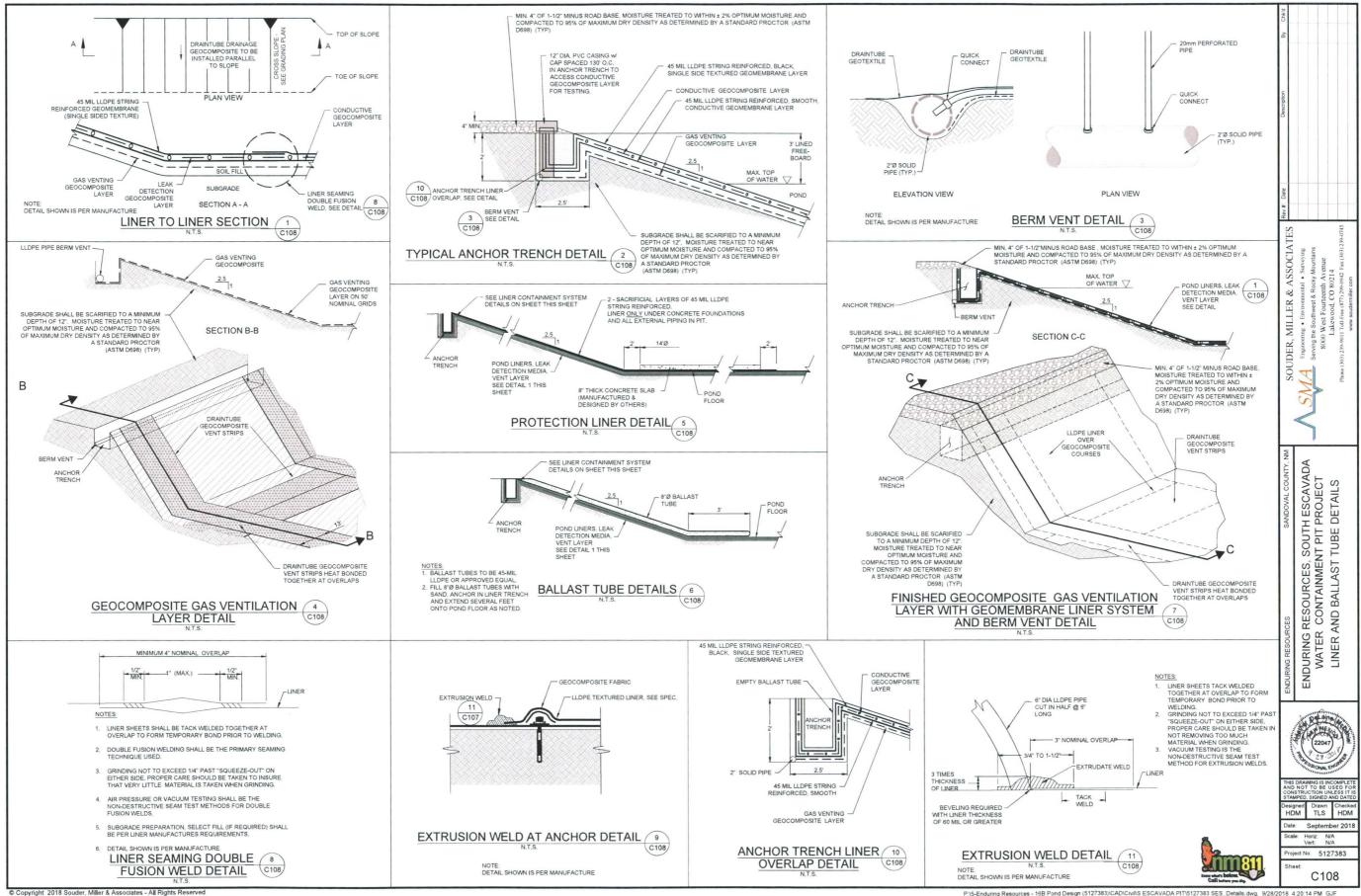
2018 Souder, Miller & Asso - All Rights Res

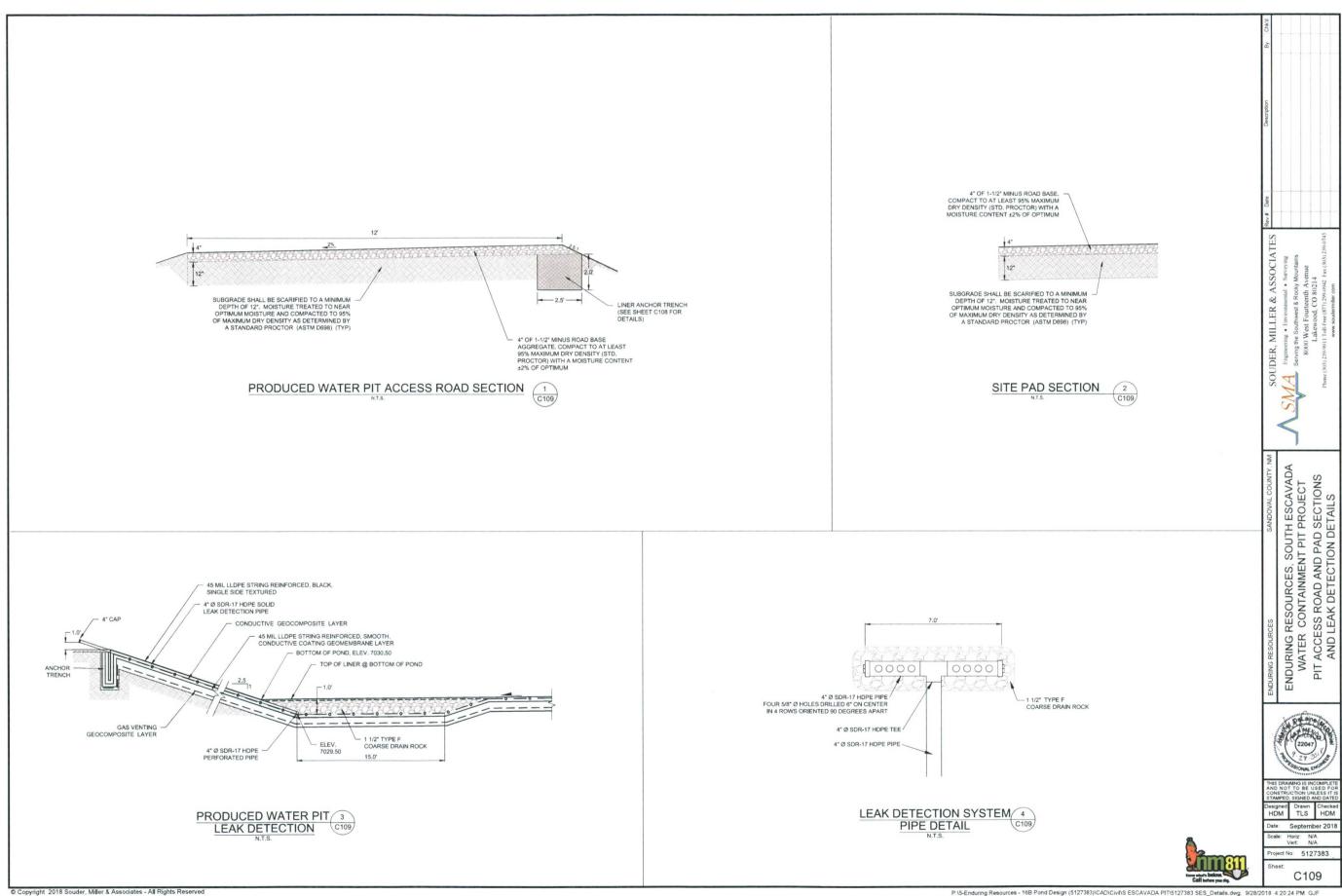

SIGN (512/ 383) CADICIVINS ESCAVADA

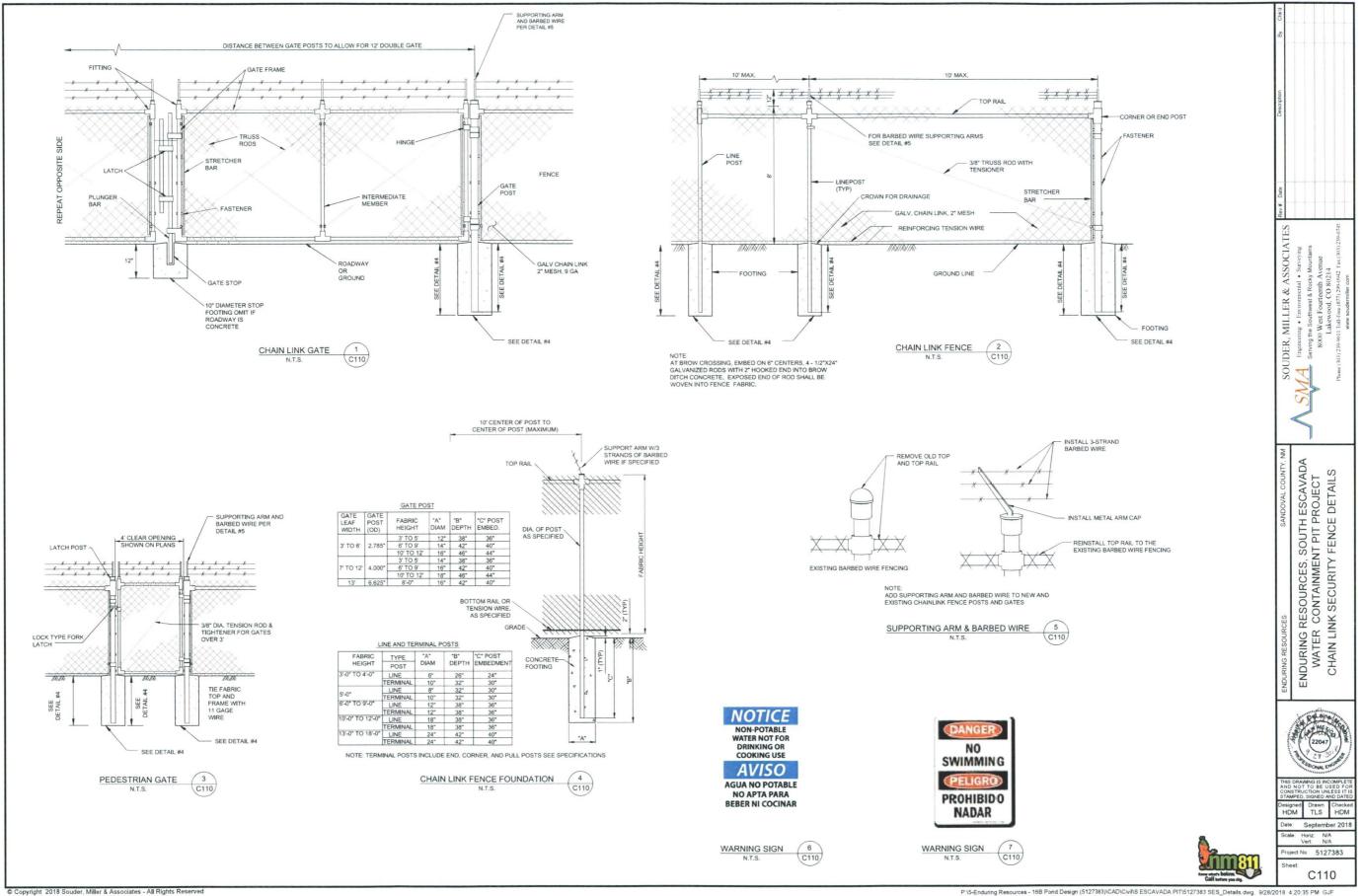

R107/87/6


12.00' PIT MAINTENANCE ROAD

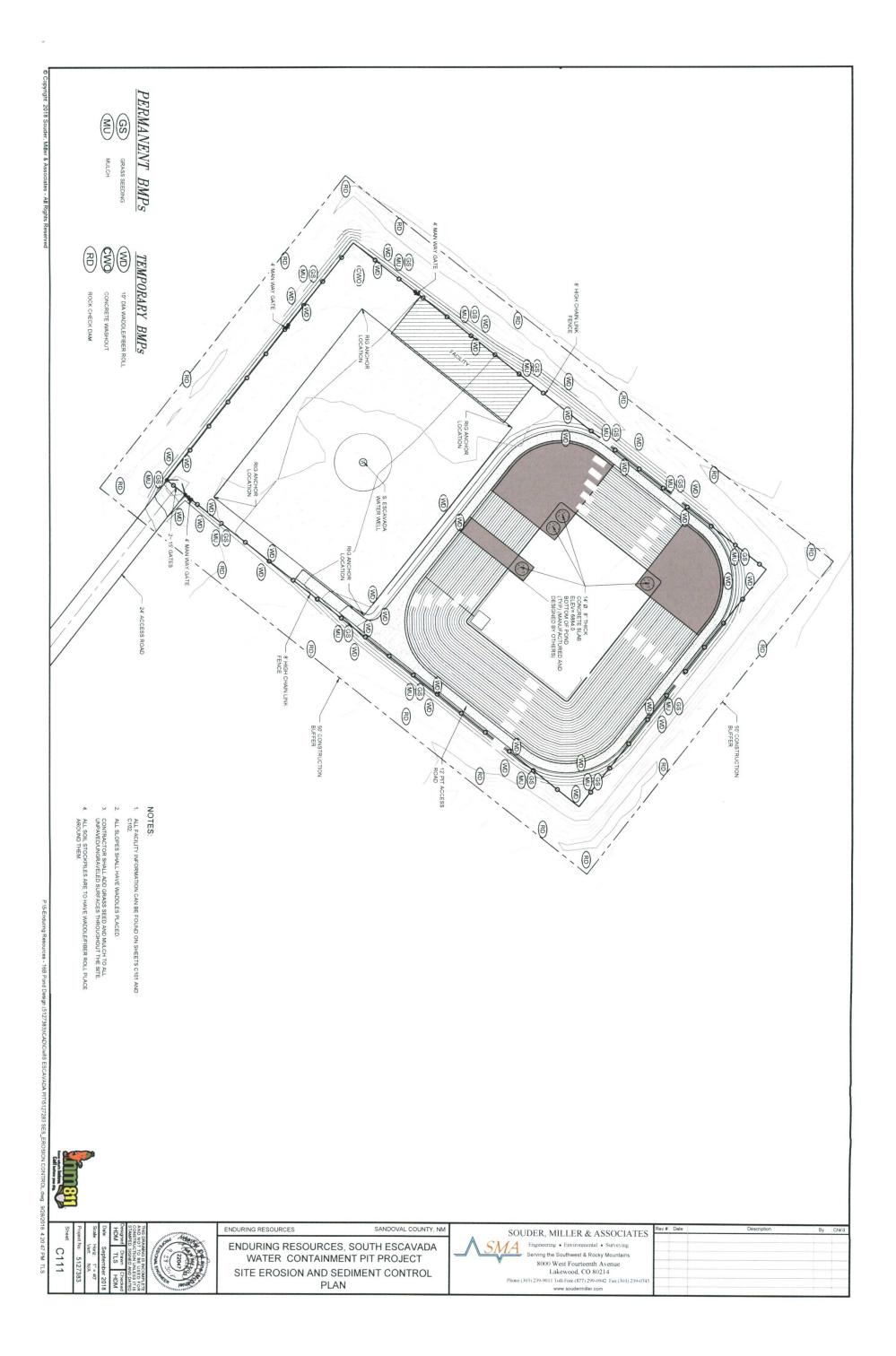

5+00.00

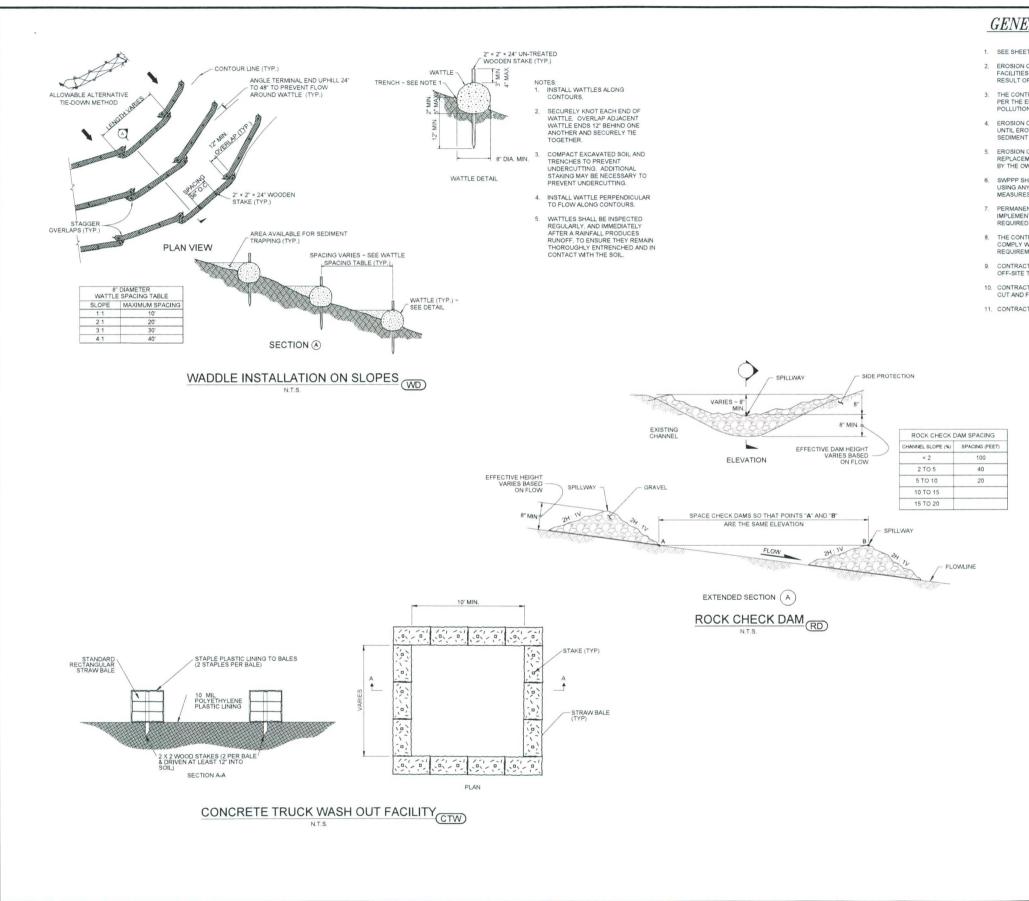



	GATE GATE GATE GATE GATE GATE GATE GATE
GATE GATE GATE GATE GATE GATE GATE GATE	



P:\5-Enduring Resources - 16B Pond Design (5127383)\CAD\Civil\S ESCAVADA PIT\5127383 SES_Details.dwg, 9/28/2018 5:38:51 PM GJF





P:\5-Enduring Resources - 16B Pond Design (5127383)\CAD\Civil\S ESCAVADA PIT\5127383 SES_Details.dwg. 9/28/2018 4:20:24 PM GJF

P:\5-Enduring Resources - 16B Pond Design (5127383)\CAD\Civil\S ESCAVADA PIT\5127383 SES_Details.dwg. 9/28/2018 4:20:35 PM GJF

GENERAL NOTES

1. SEE SHEET C111 FOR SITE SPECIFIC APPLICATION OF EROSION CONTROL

2. EROSION CONTROL SHALL BE IMPLEMENTED TO PROTECT PROPERTIES AND PUBLIC FACILITIES FROM THE ADVERSE EFFECTS OF EROSION AND SEDIMENTATION AS A RESULT OF CONSTRUCTION ACTIVITIES.

3. THE CONTRACTOR SHALL SET, LOCATE, AND MAINTAIN EROSION CONTROL MEASURES PER THE EROSION CONTROL PLAN, AND THE OWNER'S EXISTING ASSET STORMWATER POLLUTION PROTECTION PLAN. (SWPPP)

4. EROSION CONTROL MEASURES SHALL BE IMPLEMENTED AND SHALL BE KEPT IN PLACE UNTIL EROSION AND SEDIMENTATION POTENTIAL IS MITIGATED. REMOVAL OF SILT AND SEDIMENT IS REQUIRED PER SWPPP.

EROSION CONTROL DEVICES SHALL BE CHECKED AFTER EVERY STORM. REPAIRS OR REPLACEMENT TO THE EROSION CONTROL MEASURES SHALL BE MADE AS REQUIRED BY THE OWNERS PERMIT TO MAINTAIN PROPER PROTECTION.

SWPPP SHALL BE MODIFIED TO CONTROL EROSION AND SEDIMENT. TRANSPORT BY USING ANY MEANS SHOWN ON THIS PLAN OR IMPLEMENTING OTHER CONTROL MEASURES.

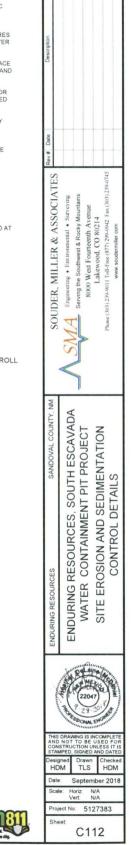
7. PERMANENT BEST MANAGEMENT PRACTICES (BMP'S) (I.E. SEEDED, MULCH) MUST BE IMPLEMENTED WITHIN 14 DAYS OF LAST CONSTRUCTION ACTIVITY IN THE AREA, AS REQUIRED PER THE SWPPP.

THE CONTRACTOR/OWNER SHALL UPDATE OR MODIFY THIS PLAN AS NEEDED TO COMPLY WITH THE APPLICABLE POLLUTANT DISCHARGE ELIMINATION SYSTEM REQUIREMENTS.

9. CONTRACTOR SHALL BE REQUIRED TO HAUL EXCESS CONCRETE AND WASHOUT OFF-SITE TO AN APPROVED/PERMITTED DISPOSAL SITE.

10. CONTRACTOR SHALL SPREAD STOCKPILED TOPSOIL BEFORE PLACING GRASS SEED AT CUT AND FILL LOCATIONS USING OWNER APPROVED MIX.

11. CONTRACTOR SHALL PLACE MULCH IN CONJUNCTION WITH GRASS SEEDING.


TEMPORARY BMPs

WD CTO	10" DIA WADDLE/FIBER RO
	CONCRETE TRUCK WASHOUT FACILITY
(RD)	ROCK DAM

PERMANENT BMPs

GRASS SEEDING MULCH

P: (5-Enduring Resources - 168 Pond Design (5127383)/CAD/Civil/S ESCAVADA PIT/5127383 SES_Erosion Control Details.dwg. 9/28/2018 4:21:19 PM GJF

Call before