OIL CONSERVATION DISISION P. O. Box 2088 ADMINISTRATIVE ORDER STATE OF NEW MEXICO SANTA FE. NEW MEXICO ENERGY AND MINERALS DEPARTMENT 87501 88 NFL -INFILL DRILLING FINDINGS PURSUANT TO SECTION 271.305(b) OF THE FEDERAL ENERGY REGULATORY COMMISSION REGULATIONS, NATURAL GAS POLICY ACT OF 1978 AND OIL CONSERVATION DIVISION ORDER NO. R-6013-A State Vacuum Unit Well No. 23 Operator ARCO OIL & GAS COMPANY Well Name and No. Cty. Lea Twp. 17South Rng. 34 East Sec. 32 Location: Unit J. II. THE DIVISION FINDS: (1) That Section 271.305(b) of the Federal Energy Regulatory Commission Regulations promulgated pursuant to the Natural Gas Policy Act of 1978 provides that, in order for an infill well to gualify as a new onshore production well under Section 103 of said Act, the Division must find that the infill well is necessary to effectively and efficiently drain a portion of the reservoir covered by the proration unit which cannot be so drained by any existing well within that unit. (2) That by Order No. R-6013-A, dated February 8, 1980, the Division established an administrative procedure whereby the Division Director and the Division Examiners are empowered to act for the Division and find that an infill well is necessary. . (3) That the well for which a finding is sought is completed in the Vacuum Grayburg San Andres Pool, and the standard spacing unit in said pool is 40acres. 40 (4) That a 32 17South, Rng. 34 East, is currently dedicated to the State Vacuum of Sec. . Twp. _ located in Unit ____J <u>Unit Well No. 14</u> of said section. (5) That this proration unit is (X) standard () nonstandard; if nonstandard, said unit was previous approved by Order No. NA That said proration unit is not being effectively and efficiently drained by the existing (6) well(s) on the unit. (7) That the drilling and completion of the well for which a finding is sought should result in _MCF of gas from the proration unit which would not the production of an additional <u>12,950</u> otherwise be recovered. That all the requirements of Order No. R-6013-A have been complied with, and that the well (8) for which a finding is sought is necessary to effectively and efficiently drain a portion of the reservoir covered by said proration unit which cannot be so drained by any existing well within the unit. (9) That in order to permit effective and efficient drainage of said proration unit, the subject application should be approved. IT IS THEREFORE ORDERED: (1) That the applicant is hereby authorized to drill the well described in Section I above as an infill well on the existing proration unit described in Section II(4) above. The authorization for infill drilling granted by this order is necessary to permit the drainage of a portion of the reservoir covered by said proration unit which cannot be effectively and efficiently drained by any existing well thereon. (2) That jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary. 84 DONE at Santa Fe, New Mexico, on this <u>8</u> day of August 19 WELL FILE ·CC: OCD HOBBS w NM LAND OFFICE DIVISION DIRECTOR EXAMINER

	OIL CONSERVATION DIVISION	Rueined: 12/13/83
STATE OF NEW MEXICO	P. O. Box 2088 Santa Fe, New Mexico	ADMINISTRATIVE ORDER
ENERGY AND MINERALS DEPARTMENT	87501	NFL A
		<i>0 •</i>
SECTION 271.30 COMMISSION REGUL	DRILLING FINDINGS PURSUANT TO 5(b) OF THE FEDERAL ENERGY REGUL ATIONS, NATURAL GAS POLICY ACT O VATION DIVISION ORDER NO. R-6013	DF 1978
7	•	
Operator <u>ARLO Oil + bas Company</u>	Well Name and No. Stat.	Vacuum Unit Well No. 23
Location: Unit <u>J</u> Sec. <u>3λ</u> Twp		
	• <u>// 20024</u> Rng. <u>34 £482</u> Cty	<u> </u>
II. THE DIVISION FINDS:		
(1) That Section 271.305(b) of the pursuant to the Natural Gas Policy A as a new onshore production well und infill well is necessary to effective by the proration unit which cannot b	ct'of 1978 provides that, in ord er Section 103 of said Act, the ely and efficiently drain a port	ler for an infill well to qualify Division must find that the tion of the reservoir covered
(2) That by Order No. R-6013-A, dat procedure whereby the Division Direc Division and find that an infill wel	tor and the Division Examiners a	
(3) That the well for which a findi	ng is sought is completed in the	Vacuum Grayburg San Andres
	d spacing unit in said pool is _	
	roration unit comprising the	
of Sec. 32, Twp. <u>17 South</u> , R Unit Well No. 14 locat	ng. <u>34 East</u> , is currently ded ed in Unit <u>J</u> of said se	
(5) That this proration unit is (1) approved by Order No.	standard () nonstandard; if no	onstandard, said unit was previously
(6) That said proration unit is not well(s) on the unit.	being effectively and efficient	ly drained by the existing
(7) That the drilling and completion	n of the well for which a findin	ng is sought should result in
the production of an additional otherwise be recovered.	2,950 MCF of gas from the	e proration unit which would not
(8) That all the requirements of Or for which a finding is sought is nec reservoir covered by said proration unit.	essary to effectively and effici	ently drain a portion of the
(9) That in order to permit effecti application should be approved.	ve and efficient drainage of sai	d proration unit, the subject
IT IS THEREFORE ORDERED:		
(1) That the applicant is hereby au infill well on the existing proratio for infill drilling granted by this reservoir covered by said proration any existing well thereon.	n unit described in Section II(4 order is necessary to permit the) above. The authorization drainage of a portion of the
(2) That jurisdiction of this cause Division may deem necessary.	is retained for the entry of su	
DONE at Santa Fe, New Mexico, on thi	sday of	
•		
	DIVISION DIRECTOR	EXAMINER
(C - Well File OCD Hobels NM. hand Office		
OCD Hobles		
In he it Office		n fan de la companya de la companya Reference de la companya de la compa Reference de la companya de la compa
Justice and and		

State Vacuum Unit #23 Lea County, New Mexico AR #46429 Joepuned 13/83

"Infill Finding"

12

Rules and Regulations Natural Gas Policy Act Infill Findings Administrative Procedure

Rule 3: No waivers from offset operators are necessary. See Exhibit 1

- Rule 5: See attached approved Form C-101 for the infil well and Form C-102 showing proration unit dedicated.
- Rule 6: See Well Completion Report and Log for name of the pool in which the infill well has been drilled and the standard spacing unit size therefor.
- Rule 7: Exhibit 2: Number of the Division Order approving the non-standard proration unit dedicated to the well.
- Rule 8: Exhibit I: Description of all wells drilled on proration unit.

Rule 9: See Engineering Discussion plus all "figures" associated within.

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

화양을 가지 않는 것 같아.

May 23, 1983

TONEY ANAYA GOVERNOR

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501 (505) 827-5800

ARCO OIL AND GAS COMPANY P.O. Box 1610 Midland, Texas 79702

Attention: J. A. Fraga

Administrative Order NSL-1699

Gentlemen:

Reference is made to your application for a non-standard location for your State Vacuum Unit Well No. 23, to be located 1530 feet from the South line and 2490 feet from the East line of Section 32, Township 17 South, Range 34 East, Vacuum Grayburg-San Andres Pool, Lea County, New Mexico.

By authority granted me under the provisions of Rule 104 F of the Division Rules and Regulations, the above-described unorthodox location is hereby approved.

kincerely, JOE D. RAMEY Director

JDR/RLS/dp

cc: Oil Conservation Division - Hobbs
Oil & Gas Engineering Committee - Hobbs
Oil & Gas Division - State Land Office - Santa Fe

JUN 01 1983 **CENTRAL FILES**

Engineering Discussion of Infill Drilling on the State Vacuum Unit

top with

INTRODUCTION

ARCO Oil and Gas Company's State Vacuum Unit produces from the Vacuum Grayburg-San Andres field in Lea County, New Mexico. It has been concluded that to effectively and efficiently produce this reservoir 20-acre well spacing is necessary. The following is a brief history of the State Vacuum Unit and the engineering and geological data supporting this finding.

HISTORY

The State Vacuum Unit was formed by ARCO on November 11, 1976 and water injection began on July 1, 1977. The unit was developed on 40-acre spacing using a 5-spot injection pattern. Primary reserves for this unit were calculated to be 3,266 MBO, or 24.8% of the OOIP. The unit has shown favorable response to the flood producing 347 MBO of secondary reserves as of April, 1983. However, several wells have experienced premature water breakthrough which has reduced the efficiency of the waterflood (see Figures 1, 2, and 3).

On July 26, 1983 we completed the State Vacuum Unit No. 23, our second 20-acre infill in the unit (see attached plat, Figure 4). This well had a 24 hour pump potential of 40 BO, 14 BW and 35 MCFPD. Because of the short producing history on this well, it is still too early to make any ultimate reserve predictions. Our first 20 acre infill, the No. 22, completed February, 1983, has been encouraging. The No. 22 had a 24 hour pump potential of 189 BO, 23 BW, and 15 MCFPD. The No. 22 is expected to recover new reserves of approximately 74 MSTBO. Gas production in association with this oil will be 12.95 MMCF. Figure No. 11 shows the Unit's predicted performance with the No. 22 infill. The final stabilized rate on the No. 22 was 75 BOPD and was projected to decline at 30% per year.

ARCO is presently in the process of updating its Engineering Study of 1976 for the State Vacuum Unit. This study will evaluate the current infill drilling program and will also lay out the final development plans for the unit.

GEOLOGY

The Vacuum Grayburg-San Andres field is located on an east-west trending anticline at the east end of the Artesia-Vacuum trend along the southern edge of the northwestern platform. The State Vacuum Unit is located in the western portion of the field (see attached structure map, Fig. 5). Oil production is principally from dolomite in the San Andres formation with minor contributions from limestone in the Grayburg. The main pay zone (first porosity zone in the San Andres) is an oolite dolomite continuous throughout the State Vacuum Unit (see cross-section Fig. 6). Attached is Table No. 1 showing basic reservoir data for this unit. Engineering Discussion

VOLUMETRIC CALCULATIONS

Volumetric calculations for the San Andres formation in the State Vacuum Unit yield an original-oil-in-place of 10,381,109 STB for the main pay and 13,305,882 STB for the total pay zone. The Grayburg formation was not included in any volumetric calculations. These calculations involved determination of porosity-feet (\emptyset h) for each well. Two isopachs were prepared, one for total \emptyset h (Figure 7) and one for main pay \emptyset h (Figure 8). These maps were constructed using logs and core data where available. Acre- \emptyset h numbers were determined by planimetering the isopach maps.

The original-oil-in-place numbers were calculated by transforming acre-Øh numbers into net hydrocarbon pore volume and converting to stock tank barrels using a formation volume factor of 1.26. The water saturation used in the conversion was taken from Figure 9, "Average of First Porosity vs. Water Saturation" from a field study of the Wasson San Andres reservoir by Shell Oil Company.

SECONDARY RESERVES FOR 40-ACRE SPACING

ARCO's Engineering Study of 1976 concluded that only the "main pay" section of the San Andres was continuous enough to be economically flooded. Secondary reserves were calculated to be 1,300 MBO which represents a ratio of 0.5:1 of secondary to primary reserves. This low ratio is due to the main pay being the only zone floodable on 40-acre spacing.

Secondary performance was determined with the aid of one of Atlantic Richfield Company's computer programs, which calculated sweep-out for a five-spot pattern. Three five-spot patterns were used to model performance within the 800-acre proposed project area. Each pattern was broken down into quarters five-spot elements. In each element, core and log analysis helped determine porosity, permeability, and net pay. Twelve elements were analyzed in a total of three five spots. Total performance of the eight five-spots were determined by summing representative five-spots. Permeability distribution was determined for each well having core data with Atlantic Richfield's core data sorting program. Stratification analysis was handled by dividing each five-spots. Total performance of the eight of the three typical five-spots.

SECONDARY AND PRIMARY RESERVES FOR 20-ACRE SPACING

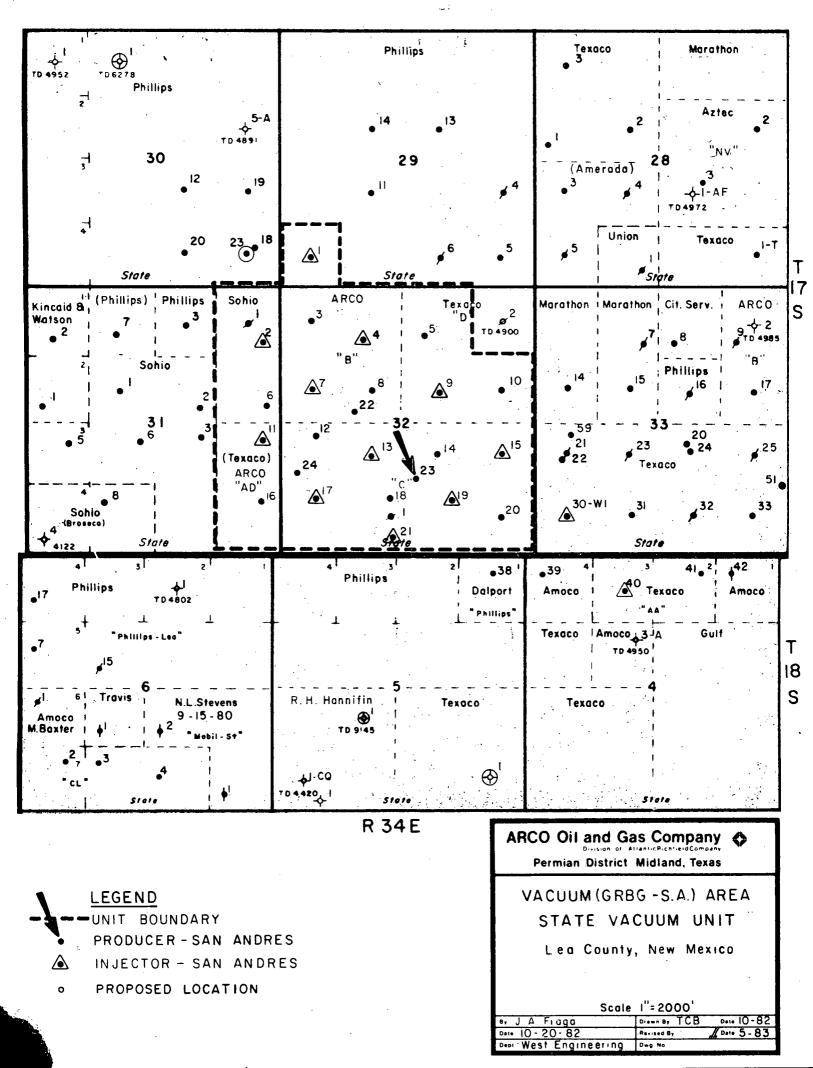
By infill drilling, additional pay in the San Andres will be floodable on closer spacing. Based on the Engineering-Geological Committee Report, November 1977, (Exhibit No. 4, Case No. 6570) for the East Vacuum Grayburg-San Andres Unit, it was determined that an estimated 3.9% increase in recovery of OOIP for the EVGSAU could be expected on 20-acre spacing. Since the State Vacuum Unit has similar reservoir characteristics and quality, an increase recovery value of 3.9% of the OOIP was used in predicting additional secondary oil reserves with 20-acre infills. This value includes encountering discontinuous intervals of porosity and improvement in recovery efficiency.

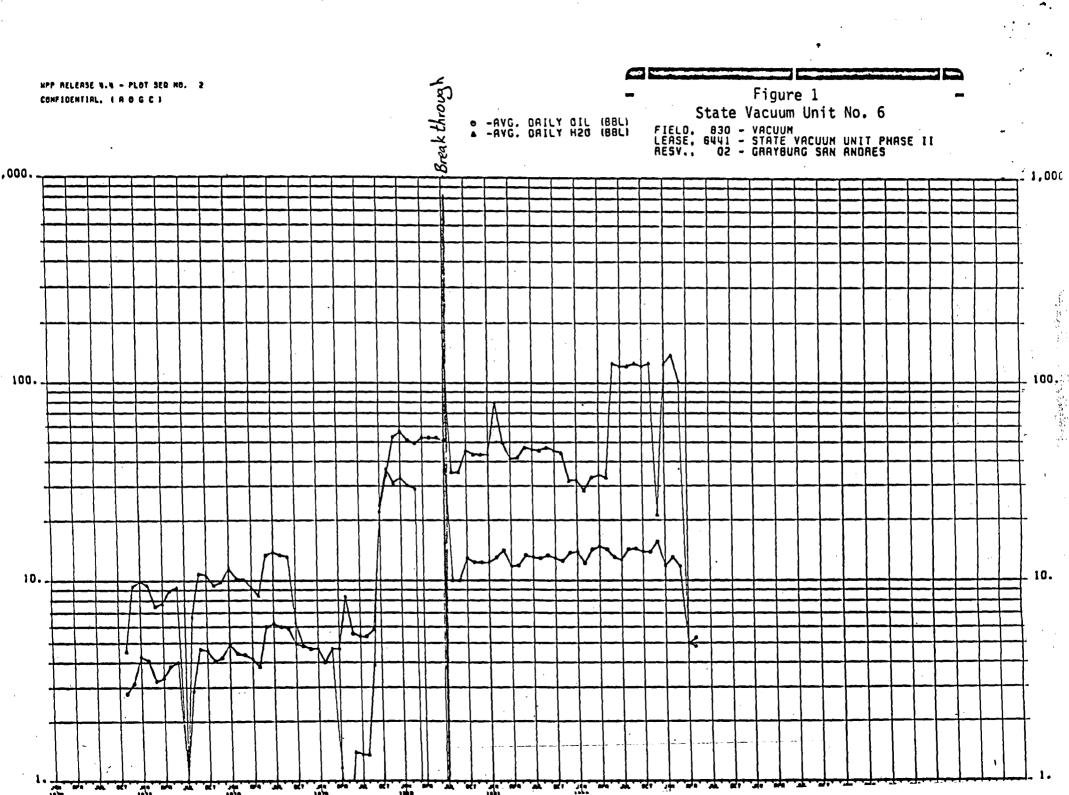
Using the 3.9% infill recovery value and the total pay zone OOIP reserves, additional secondary reserves of 518,929 STB were calculated for the unit. The 800 acre unit would require 20 equivalent 20-acre infill wells for a recovery of about 26 MBO/well location. These calculations are outlined in Appendix A. Engineering Discussion Page 3

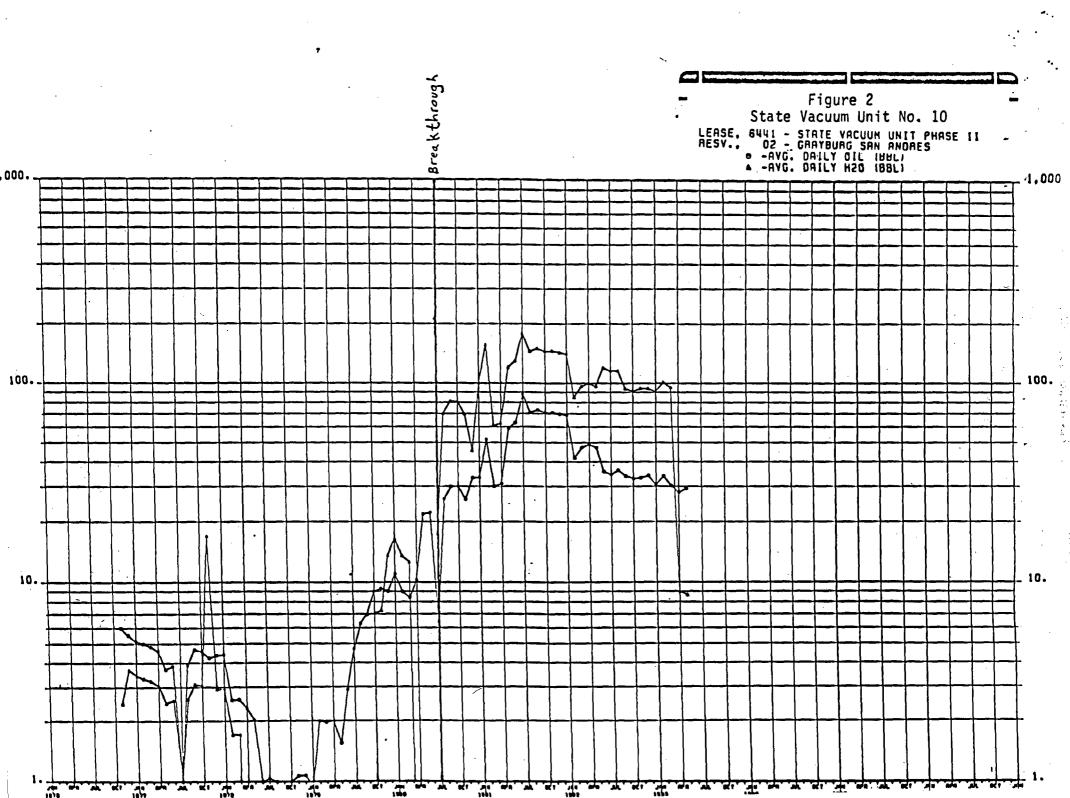
Primary drainage analysis of the State Vacuum Unit were done using volumetrics, decline curves and production data. This analysis indicated that each 20-acre infill well will drain 5 acres previously missed at 40-acre spacing. Incrementally each infill well will recovery 26 MBO (see Appendix A).

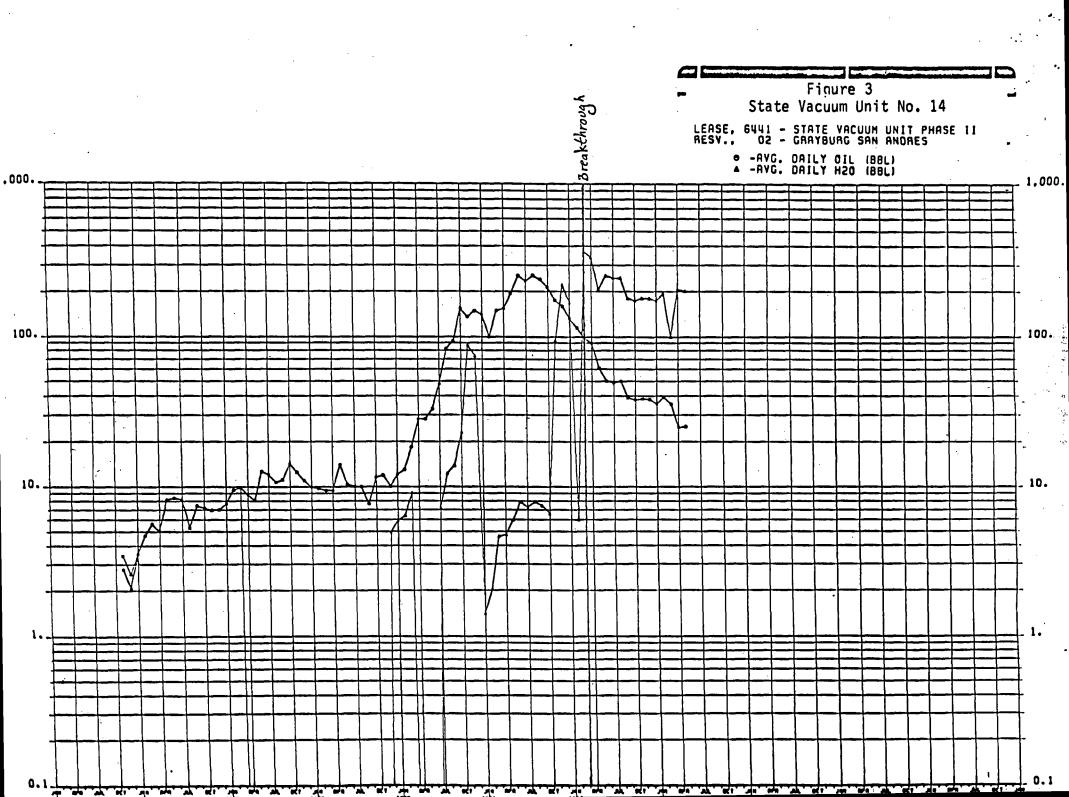
The State Vacuum Unit No. 23 will also produce primary reserves from a lower zone near the top of the Lovington Sand (see Figure 10). The porosity logs indicate this zone to contain 8 feet of net pay with about 12% porosity. Estimate recoverable primary reserves for the lower zone, using 20-acre spacing and a 24.8% recovery factor, is 22 MBO. Secondary reserves were not cal-culated since this zone at present is not being flooded.

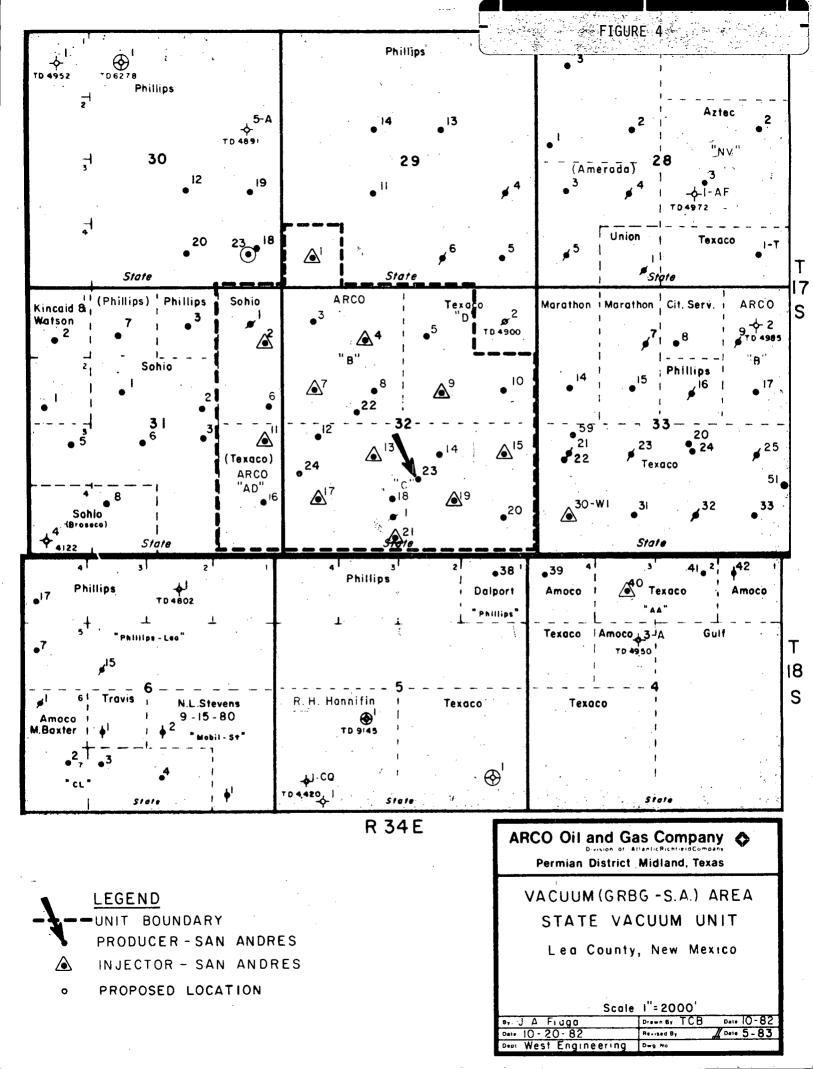
Premature water breakthrough has been experienced in several wells, as is seen in the attached plots (see Fig. 1-3). The 20-acre spacing will drain reserves being bypassed due to the breakthrough.

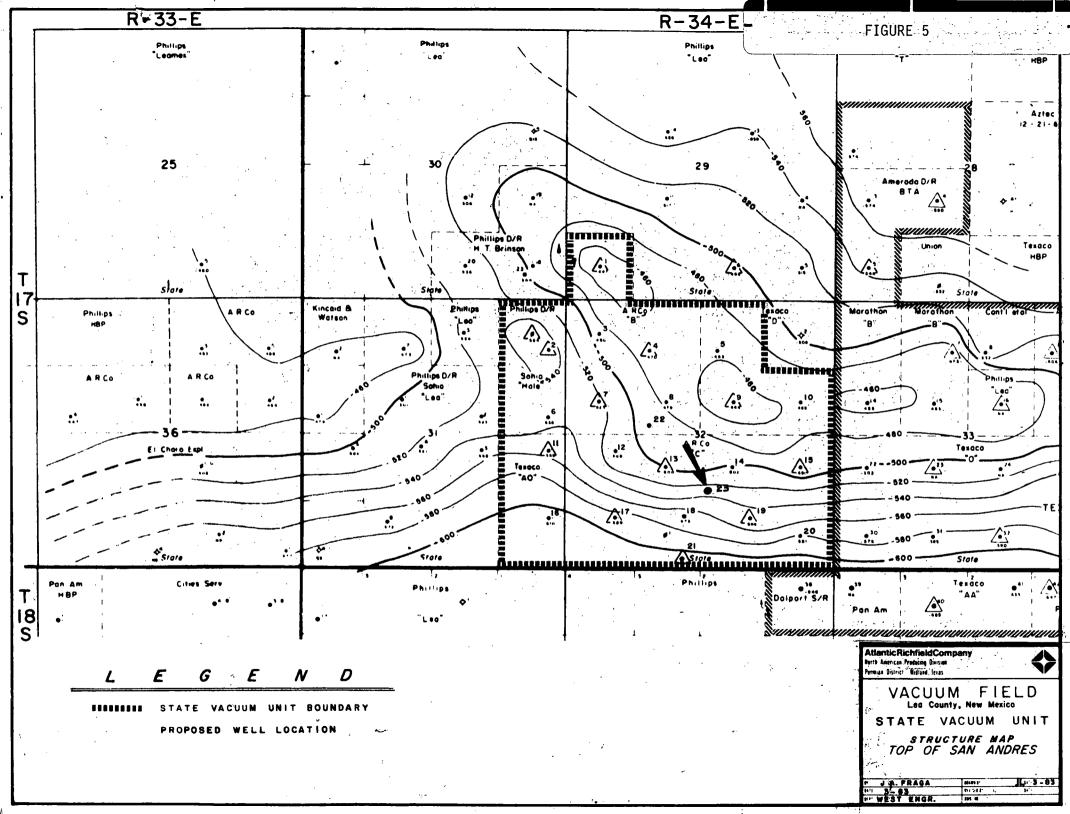

CONCLUSION


By drilling the infill Well No. 23 we will recover new reserves of approximately 74 MSTBO. Gas production in association with this oil will be 12.95 MMCF.


The production history of the State Vacuum Unit and other units in this field indicate that to effectively and efficiently produce the Vacuum Grayburg-San Andres reservoir, 20-acre spacing is necessary. By going to this closer spacing, additional pay will be encountered and flooded. Additional primary reserves that were undrained on 40-acre spacing will be recovered along with secondary reserves bypassed due to premature water breakthrough.

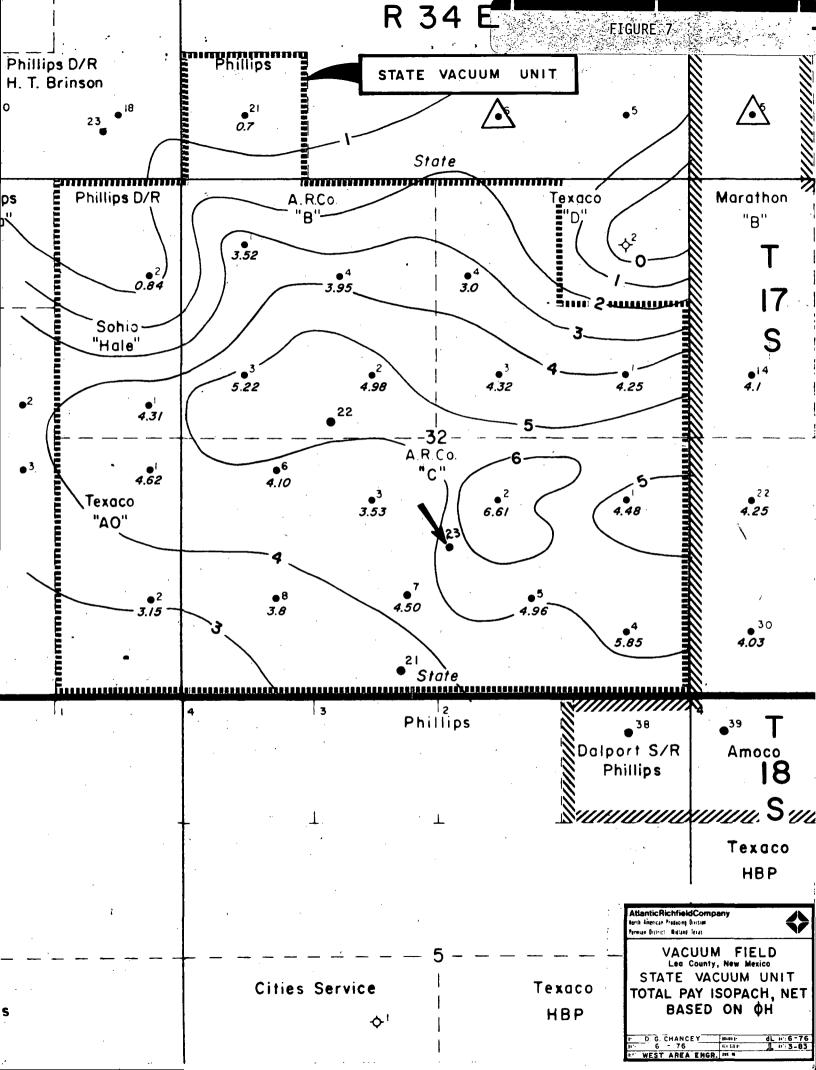

JAF:dmm

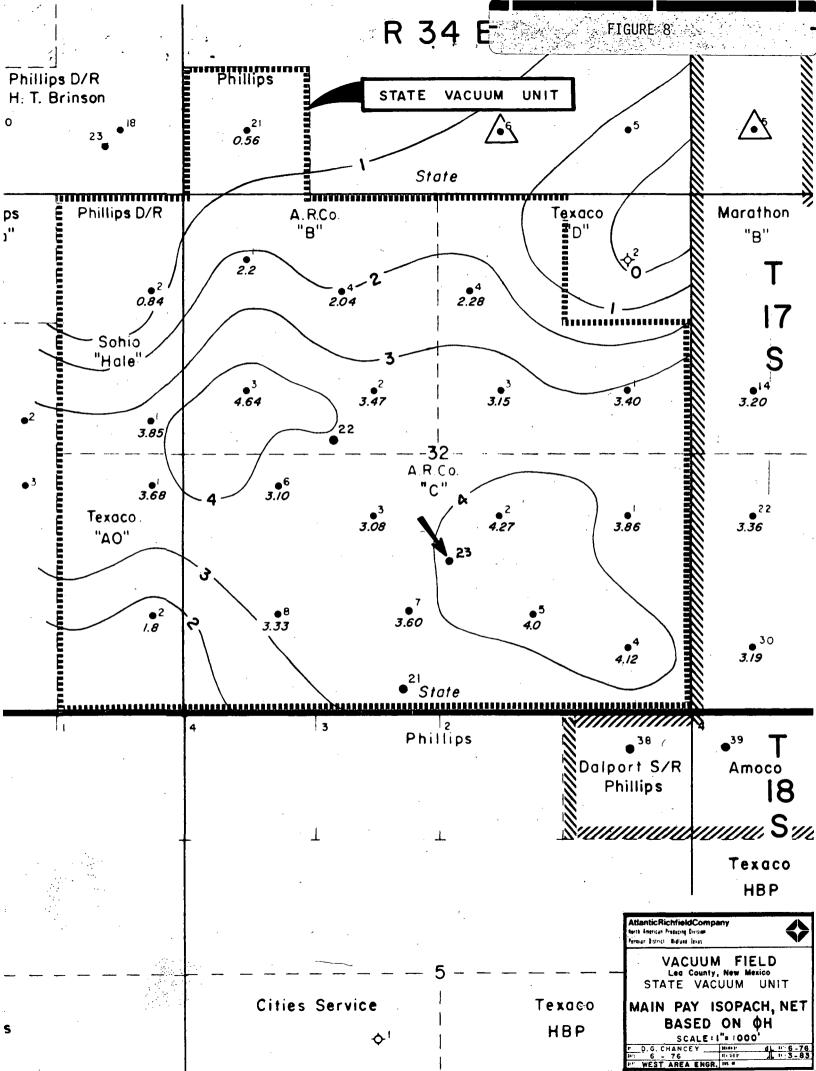

11/21/83

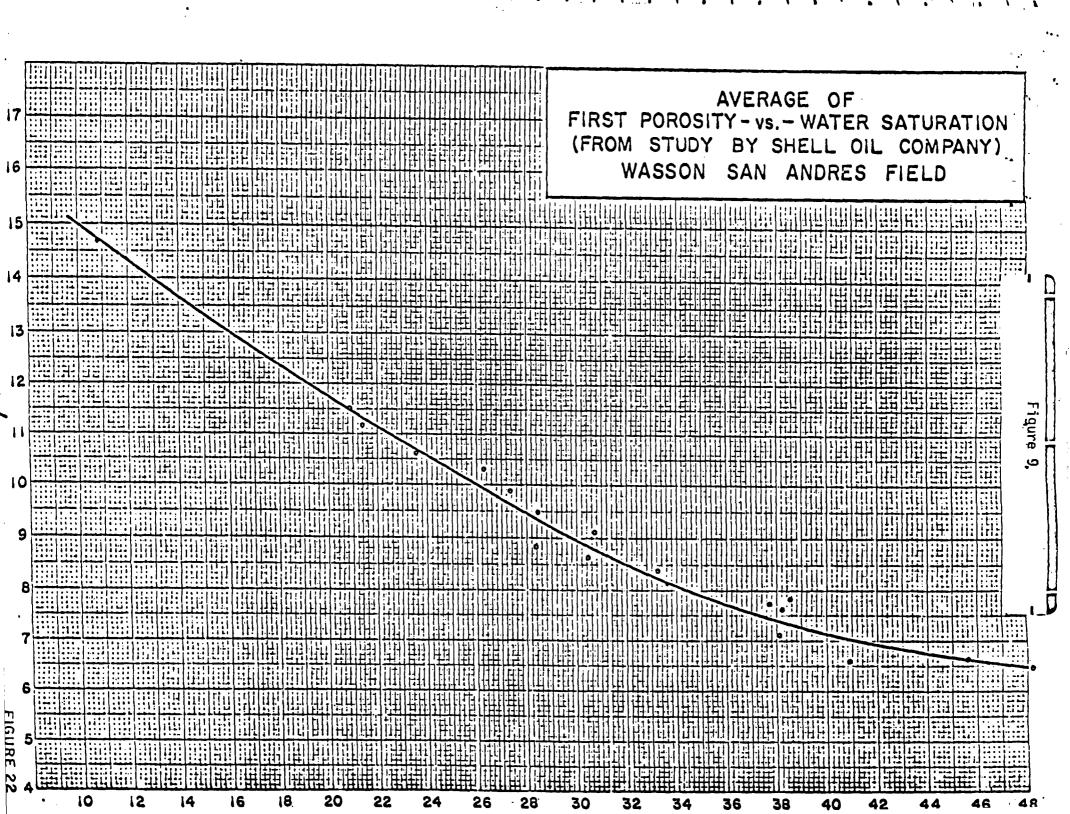


INTENTIONAL OMISSIONS

The following document(s) have been intentionally omitted from this file due to the indicated reasons.


FILE#____NFL 88


DESCRIPTION OF OMITTED DOCUMENTS


OMITTED DOCUMENT

REASON OMITTED

(Indey Map - Graph) igure 6 Too large ۱

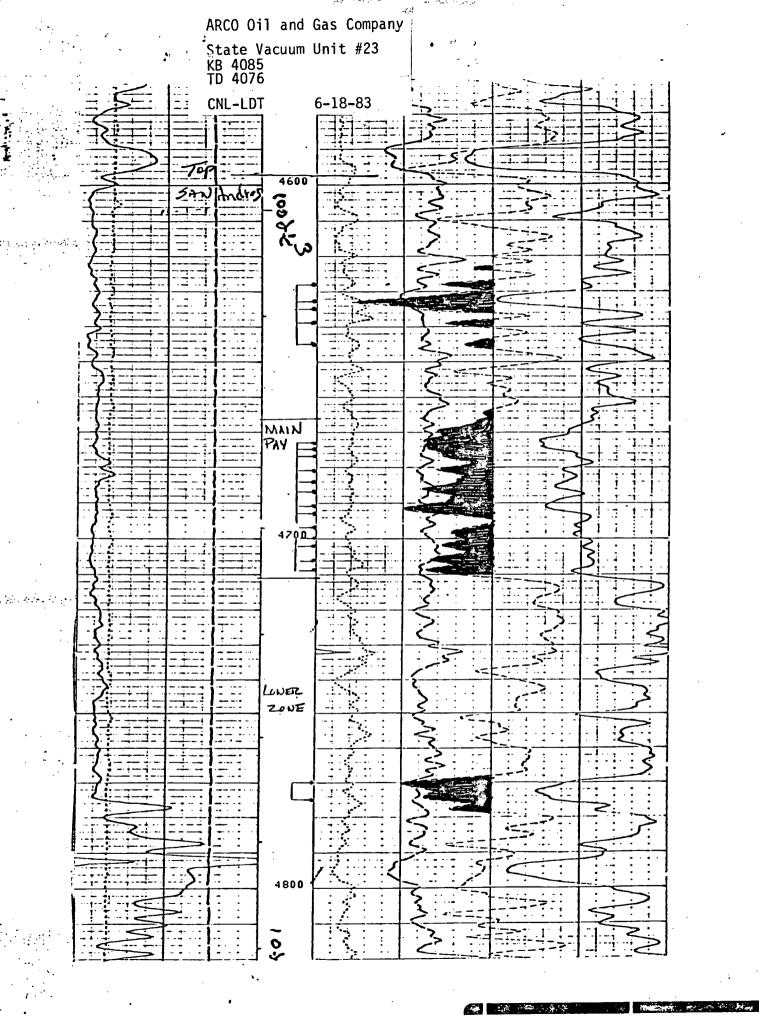


FIGURE 10

5

-

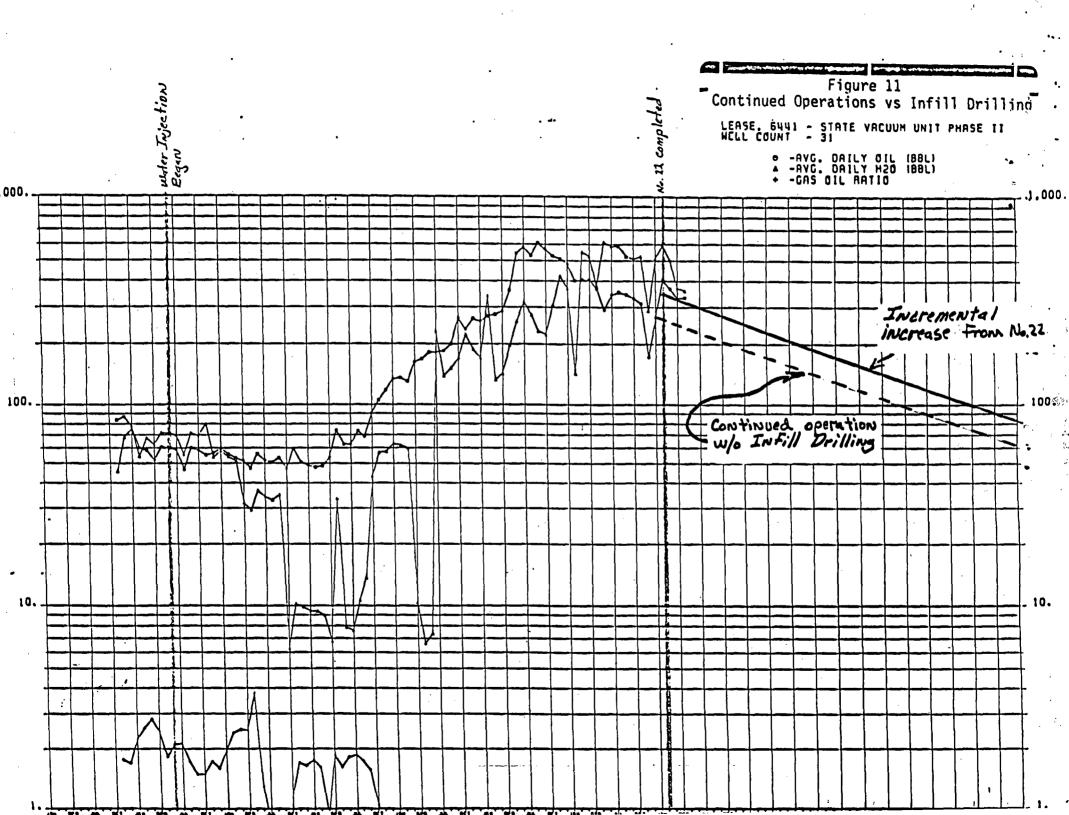


Table I

Basic Reservoir Data

Unit: Operator: Field: Lithology: Area: Average Porosity: Average Porosity: Average Permeability: Initial Formation Volume Factor: Connate Water Saturation: Connate Water Saturation: Residual Oil Saturation: Oil Gravity: Average GOR: Original Oil In Place: Primary Recovery (40-acres): Secondary Recovery (40-acres):

State Vacuum Unit ARCO Oil and Gas Company Vacuum Grayburg-San Andres Dolomite and Limestone 800 Acres 9.88% 17.8 md 1.26 RB/STB 26.5% 30.0% 37° API 175 SCF/bbl 13,306 MSTBO 3,266 MSTBO 1,700 MSTBO

•	% Thickness of Total	Kl, md	Scw.5	Sgx,%	sor,"
80-ACRE 5-SPOT NO. 1			•		
Layer #1	42.1	4.6	26.5	24.0	30.0
Layer #2	37.0	1.7	26.5	24.0	30.0
Layer #3	20,9	0.5	26.5	24,0	30.0
	100.0	• .			
			• .		
80-ACRE 5-SPOT NO. 2	·				~~ ~
Layer #1	25.4	26.0	26.5	24.0	30.0
Layer =2	30.8	8.6	26.5	24,0°	30.0
Layer #3	17.6	2.8	26.5	24.0	30.0
Layer #4	14.9	1.0	26.5	. 24.0	30 .0
Layer =5	11.3	0.4	26.5	24,0	30.0
	100.0	· ,		• · · ·	
80-ACRE 5-SPOT NO. 3					
Layer #1	18.2	19.8	26.5	24.0	30.0
Layer #2	23.5	7.0	26.5	24 . 0	30 .0
Layer #3	29.4	. 2,6	26.5	24.0	30.4
Layer. #4	12.6	0.9	26.5	24.0	30.4 -
Layer #5	16.3	0.3	26.5	24.0	30.4
Layer #5	100.0		,		•

Appendix A

Incremental Secondary Reserves with 20-acre Infills: Ι. 00IP = 13,306 MBO (Eng. Study 1976)Recovery Factor = .039 (EVU Eng. Study, Phillips) Additional Reserves from 20-acre Spacing = 519 MBO Unit Area = 800 acres therefore, Equivalent 20-acre infills required = 20 519 MBO + 20 Wells = 26 MBO/Well Incremental Oil (26 MBO/Well)(175 SCF/STB) = 4.55 MMCF/Well Incremental Gas II. Undrained Primary Reserves for Typical 20-acre Infill Location: Øh = 4.56 (log data) Sw = .265 (Eng. Study 1976) Recovery Factor = .248 (Eng. Study 1976) Boi = 1.26 RB/STB (Eng. Study 1976) A = 6 acres (Undrained area planimetered from drainage maps) $\frac{7758 \text{ A}\emptyset\text{h}(1-\text{Sw})}{\text{Boi}} \times \text{R}_{f} = \frac{7758(5)(4.56)(1-.265)}{1.26} \times .248 = 25.6 \text{ MBO Primary}$ Reserves from 20-acre Spacing 25.6 MBO x 175 SCF/STB = 4.48 MMCF Primary Gas III. New Primary Reserves from A Lower Zone: $\emptyset h = 0.96$ A = 20 acres $\frac{7758 \text{ A}\emptyset\text{h}(1-\text{Sw})}{\text{Boi}} \times R_{f} = \frac{7758(20)(1)(1-.265)}{1.26} \times .248 = 21.6 \text{ MBO Primary}$ Reserves for Low **Reserves** for Lower Zone

21.6 MBO x (175 SCF/STB) = 3.78 MMCF Primary Gas

: c : •

· .

o

State Vacuum Unit #23 Lea County, New Mexico AR #46429

"Infill Finding"

Rules and Regulations Natural Gas Policy Act Infill Findings Administrative Procedure

- Rule 3: No waivers from offset operators are necessary. See Exhibit 1
- Rule 5: See attached approved Form C-101 for the infil well and Form C-102 showing proration unit dedicated.
- Rule 6: See Well Completion Report and Log for name of the pool in which the infill well has been drilled and the standard spacing unit size therefor.
- Rule 7: Exhibit 2: Number of the Division Order approving the non-standard proration unit dedicated to the well.
- Rule 8: Exhibit I: Description of all wells drilled on proration unit.
- Rule 9: See Engineering Discussion plus all "figures" associated within.

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

May 23, 1983

TONEY ANAYA GOVERNOR

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501 (505) 827-5800

ARCO OIL AND GAS COMPANY P.O. Box 1610 Midland, Texas 79702

Attention: J. A. Fraga

Administrative Order NSL-1699

Gentlemen:

Reference is made to your application for a non-standard location for your State Vacuum Unit Well No. 23, to be located 1530 feet from the South line and 2490 feet from the East line of Section 32, Township 17 South, Range 34 East, Vacuum Grayburg-San Andres Pool, Lea County, New Mexico.

By authority granted me under the provisions of Rule 104 F of the Division Rules and Regulations, the above-described unorthodox location is hereby approved.

incerely, JOE D. RAMEY Director

JDR/RLS/dp

cc: Oil Conservation Division - Hobbs
Oil & Gas Engineering Committee - Hobbs
Oil & Gas Division - State Land Office - Santa Fe

CENTRAL FILES

Engineering Discussion of Infill Drilling on the State Vacuum Unit

INTRODUCTION

ARCO Oil and Gas Company's State Vacuum Unit produces from the Vacuum Grayburg-San Andres field in Lea County, New Mexico. It has been concluded that to effectively and efficiently produce this reservoir 20-acre well spacing is necessary. The following is a brief history of the State Vacuum Unit and the engineering and geological data supporting this finding.

HISTORY

The State Vacuum Unit was formed by ARCO on November 11, 1976 and water injection began on July 1, 1977. The unit was developed on 40-acre spacing using a 5-spot injection pattern. Primary reserves for this unit were calculated to be 3,266 MBO, or 24.8% of the OOIP. The unit has shown favorable response to the flood producing 347 MBO of secondary reserves as of April, 1983. However, several wells have experienced premature water breakthrough which has reduced the efficiency of the waterflood (see Figures 1, 2, and 3).

On July 26, 1983 we completed the State Vacuum Unit No. 23, our second 20-acre infill in the unit (see attached plat, Figure 4). This well had a 24 hour pump potential of 40 BO, 14 BW and 35 MCFPD. Because of the short producing history on this well, it is still too early to make any ultimate reserve predictions. Our first 20 acre infill, the No. 22, completed February, 1983, has been encouraging. The No. 22 had a 24 hour pump potential of 189 BO, 23 BW, and 15 MCFPD. The No. 22 is expected to recover new reserves of approximately 74 MSTBO. Gas production in association with this oil will be 12.95 MMCF. Figure No. 11 shows the Unit's predicted performance with the No. 22 infill. The final stabilized rate on the No. 22 was 75 BOPD and was projected to decline at 30% per year.

ARCO is presently in the process of updating its Engineering Study of 1976 for the State Vacuum Unit. This study will evaluate the current infill drilling program and will also lay out the final development plans for the unit.

GEOLOGY

The Vacuum Grayburg-San Andres field is located on an east-west trending anticline at the east end of the Artesia-Vacuum trend along the southern edge of the northwestern platform. The State Vacuum Unit is located in the western portion of the field (see attached structure map, Fig. 5). Oil production is principally from dolomite in the San Andres formation with minor contributions from limestone in the Grayburg. The main pay zone (first porosity zone in the San Andres) is an oolite dolomite continuous throughout the State Vacuum Unit (see cross-section Fig. 6). Attached is Table No. 1 showing basic reservoir data for this unit.

Engineering Discussion Page 2

VOLUMETRIC CALCULATIONS

Volumetric calculations for the San Andres formation in the State Vacuum Unit yield an original-oil-in-place of 10,381,109 STB for the main pay and 13,305,882 STB for the total pay zone. The Grayburg formation was not included in any volumetric calculations. These calculations involved determination of porosity-feet (\emptyset h) for each well. Two isopachs were prepared, one for total \emptyset h (Figure 7) and one for main pay \emptyset h (Figure 8). These maps were constructed using logs and core data where available. Acre- \emptyset h numbers were determined by planimetering the isopach maps.

The original-oil-in-place numbers were calculated by transforming acre-Øh numbers into net hydrocarbon pore volume and converting to stock tank barrels using a formation volume factor of 1.26. The water saturation used in the conversion was taken from Figure 9, "Average of First Porosity vs. Water Saturation" from a field study of the Wasson San Andres reservoir by Shell Oil Company.

SECONDARY RESERVES FOR 40-ACRE SPACING

ARCO's Engineering Study of 1976 concluded that only the "main pay" section of the San Andres was continuous enough to be economically flooded. Secondary reserves were calculated to be 1,300 MBO which represents a ratio of 0.5:1 of secondary to primary reserves. This low ratio is due to the main pay being the only zone floodable on 40-acre spacing.

Secondary performance was determined with the aid of one of Atlantic Richfield Company's computer programs, which calculated sweep-out for a five-spot pattern. Three five-spot patterns were used to model performance within the 800-acre proposed project area. Each pattern was broken down into quarters five-spot elements. In each element, core and log analysis helped determine porosity, permeability, and net pay. Twelve elements were analyzed in a total of three five spots. Total performance of the eight five-spots were determined by summing representative five-spots. Permeability distribution was determined for each well having core data with Atlantic Richfield's core data sorting program. Stratification analysis was handled by dividing each five-spots into layers. Table 2 gives the data used in each of the three typical five-spots.

SECONDARY AND PRIMARY RESERVES FOR 20-ACRE SPACING

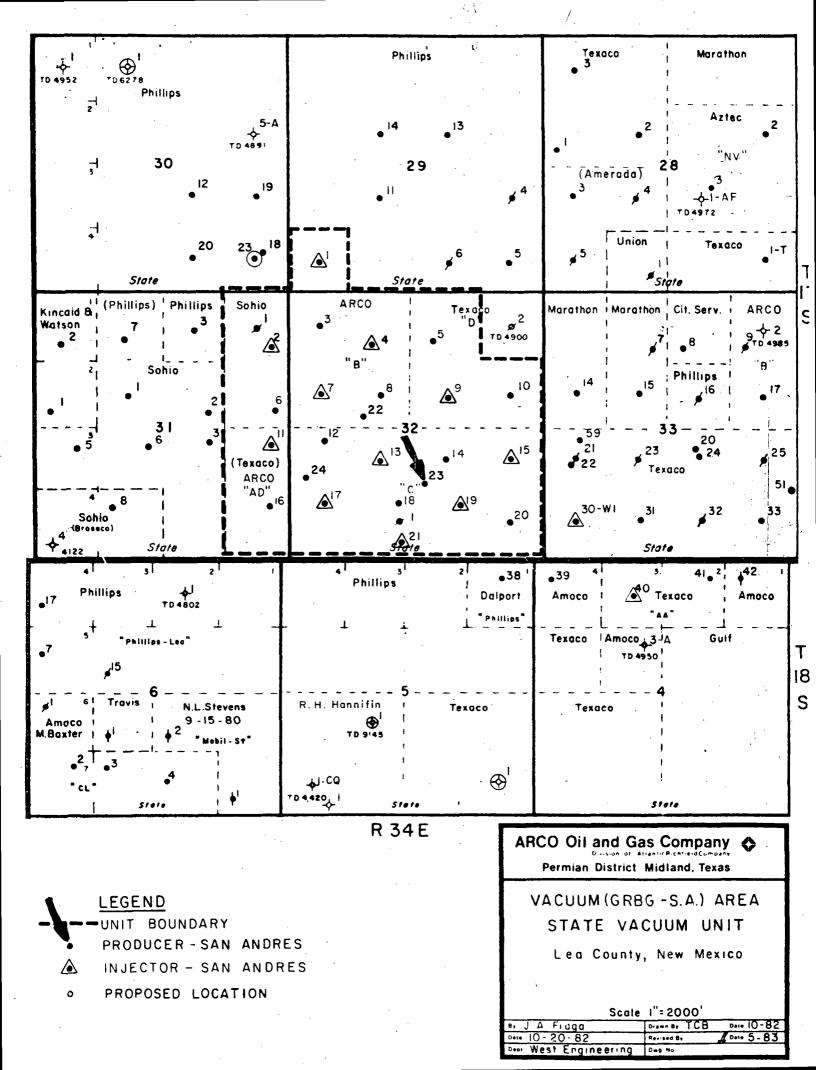
By infill drilling, additional pay in the San Andres will be floodable on closer spacing. Based on the Engineering-Geological Committee Report, November 1977, (Exhibit No. 4, Case No. 6570) for the East Vacuum Grayburg-San Andres Unit, it was determined that an estimated 3.9% increase in recovery of OOIP for the EVGSAU could be expected on 20-acre spacing. Since the State Vacuum Unit has similar reservoir characteristics and quality, an increase recovery value of 3.9% of the OOIP was used in predicting additional secondary oil reserves with 20-acre infills. This value includes encountering discontinuous intervals of porosity and improvement in recovery efficiency.

Using the 3.9% infill recovery value and the total pay zone OOIP reserves, additional secondary reserves of 518,929 STB were calculated for the unit. The 800 acre unit would require 20 equivalent 20-acre infill wells for a recovery of about 26 MBO/well location. These calculations are outlined in Appendix A. Engineering Discussion Page 3

Primary drainage analysis of the State Vacuum Unit were done using volumetrics, decline curves and production data. This analysis indicated that each 20-acre infill well will drain 5 acres previously missed at 40-acre spacing. Incrementally each infill well will recovery 26 MBO (see Appendix A).

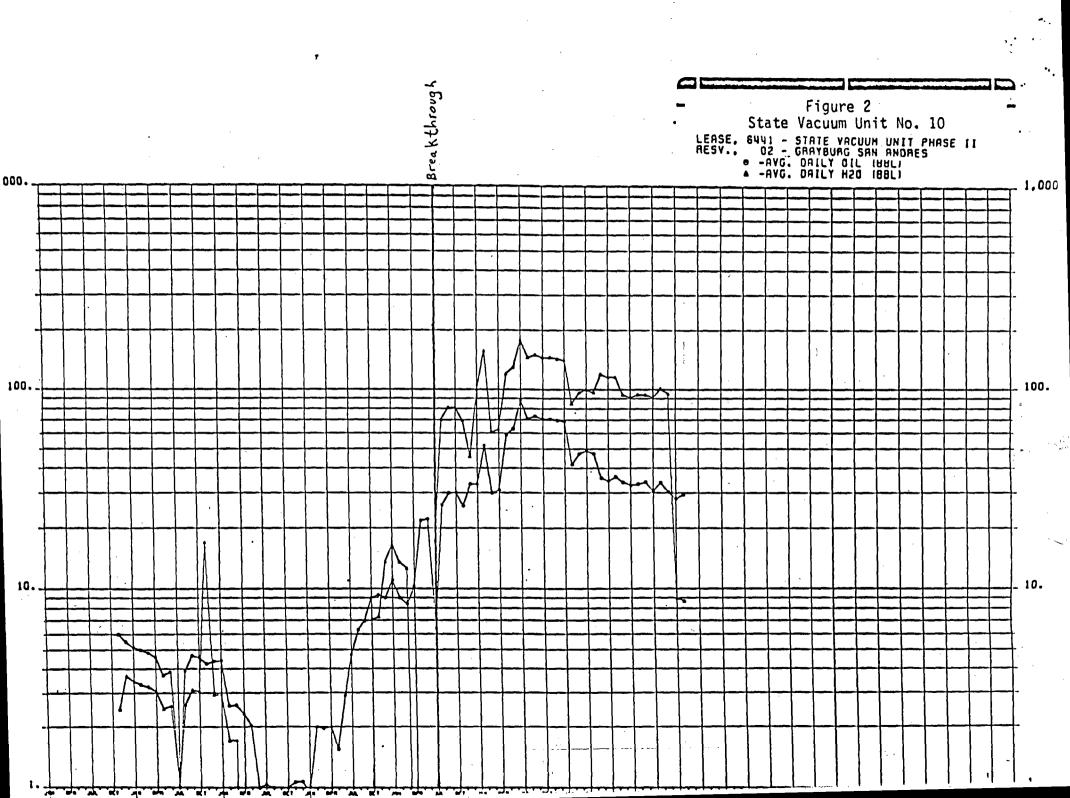
The State Vacuum Unit No. 23 will also produce primary reserves from a lower zone near the top of the Lovington Sand (see Figure 10). The porosity logs indicate this zone to contain 8 feet of net pay with about 12% porosity. Estimate recoverable primary reserves for the lower zone, using 20-acre spacing and a 24.8% recovery factor, is 22 MBO. Secondary reserves were not calculated since this zone at present is not being flooded.

Premature water breakthrough has been experienced in several wells, as is seen in the attached plots (see Fig. 1-3). The 20-acre spacing will drain reserves being bypassed due to the breakthrough.

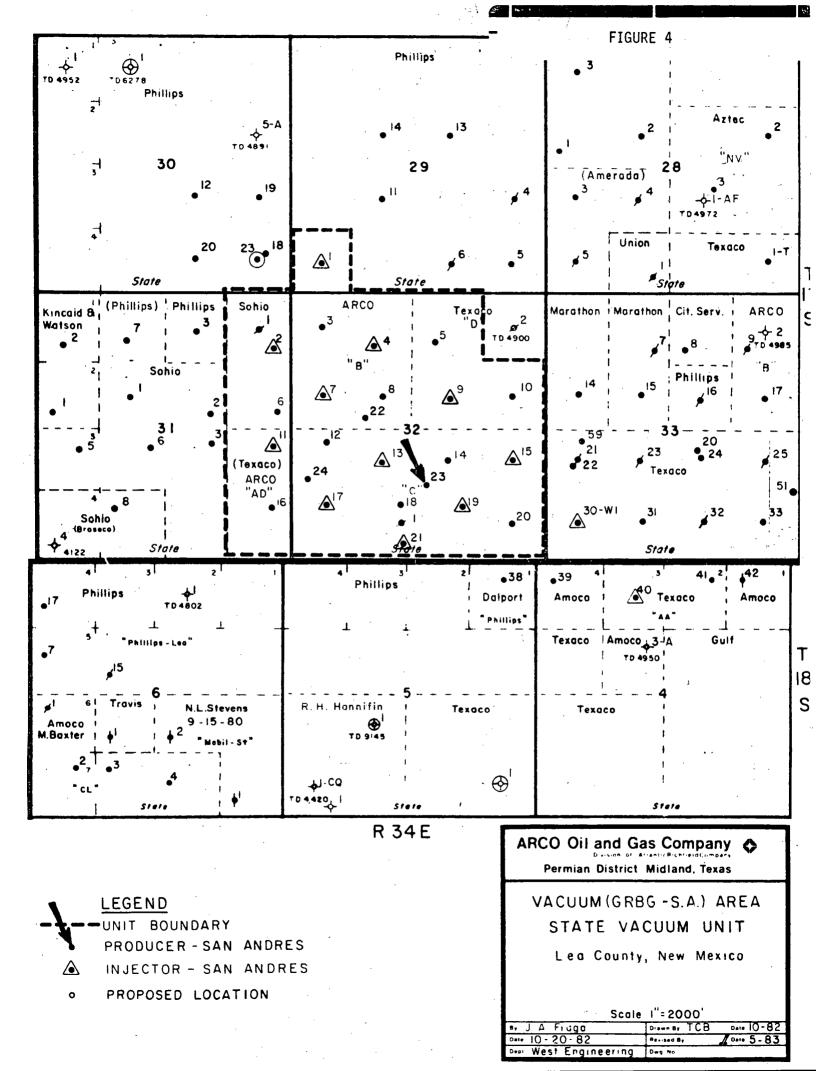

CONCLUSION

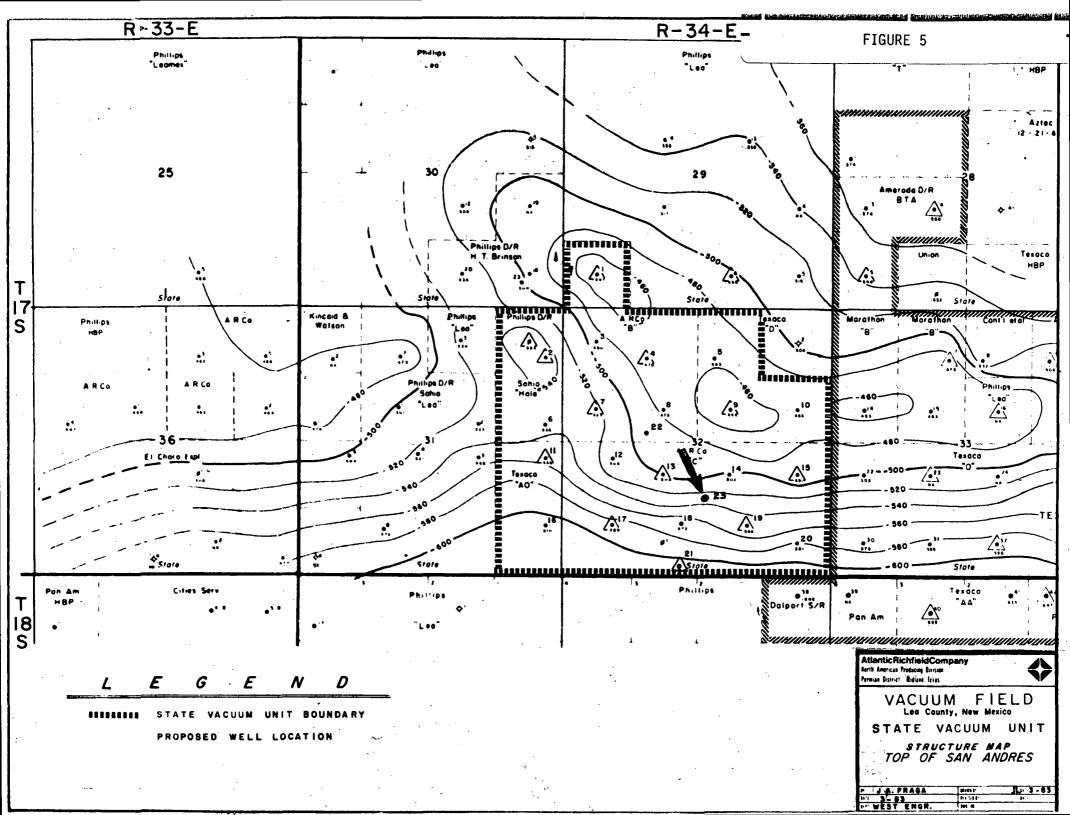
By drilling the infill Well No. 23 we will recover new reserves of approximately 74 MSTBO. Gas production in association with this oil will be 12.95 MMCF.

The production history of the State Vacuum Unit and other units in this field indicate that to effectively and efficiently produce the Vacuum Grayburg-San Andres reservoir, 20-acre spacing is necessary. By going to this closer spacing, additional pay will be encountered and flooded. Additional primary reserves that were undrained on 40-acre spacing will be recovered along with secondary reserves bypassed due to premature water breakthrough.

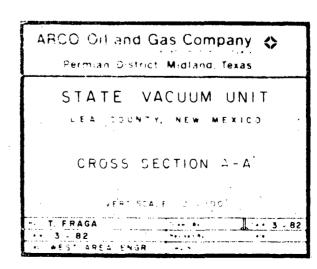

JAF:dmm

11/21/83

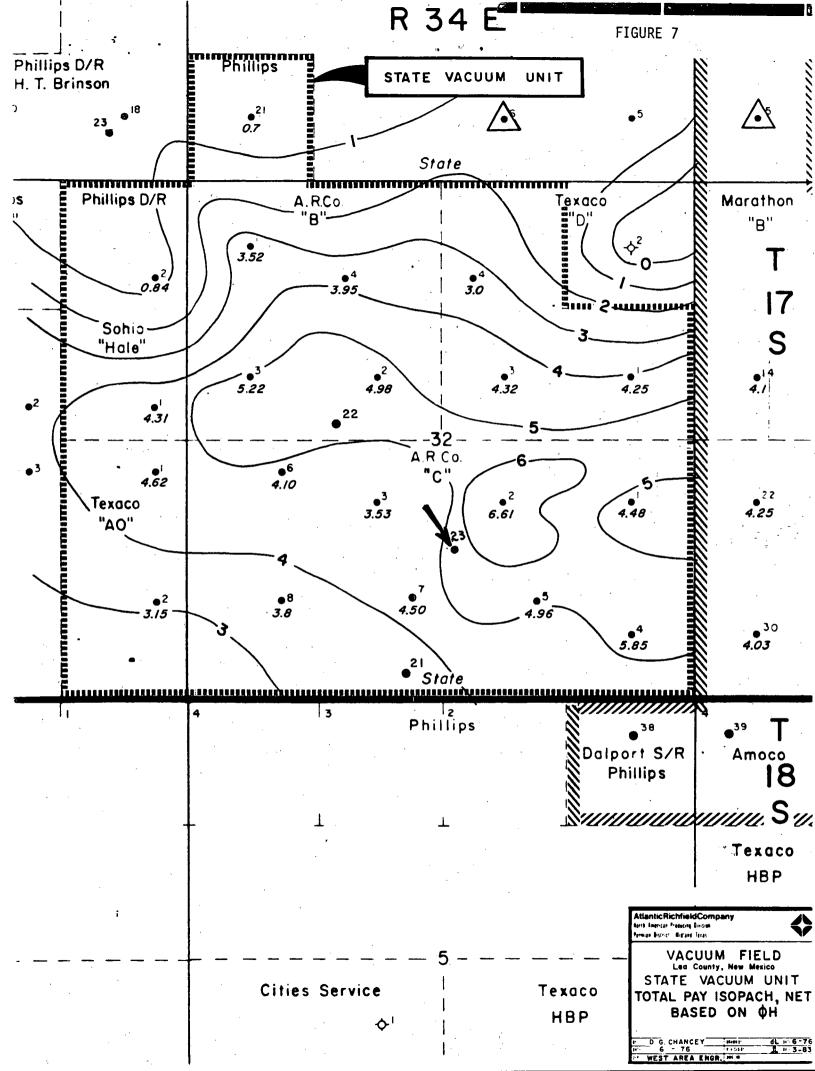


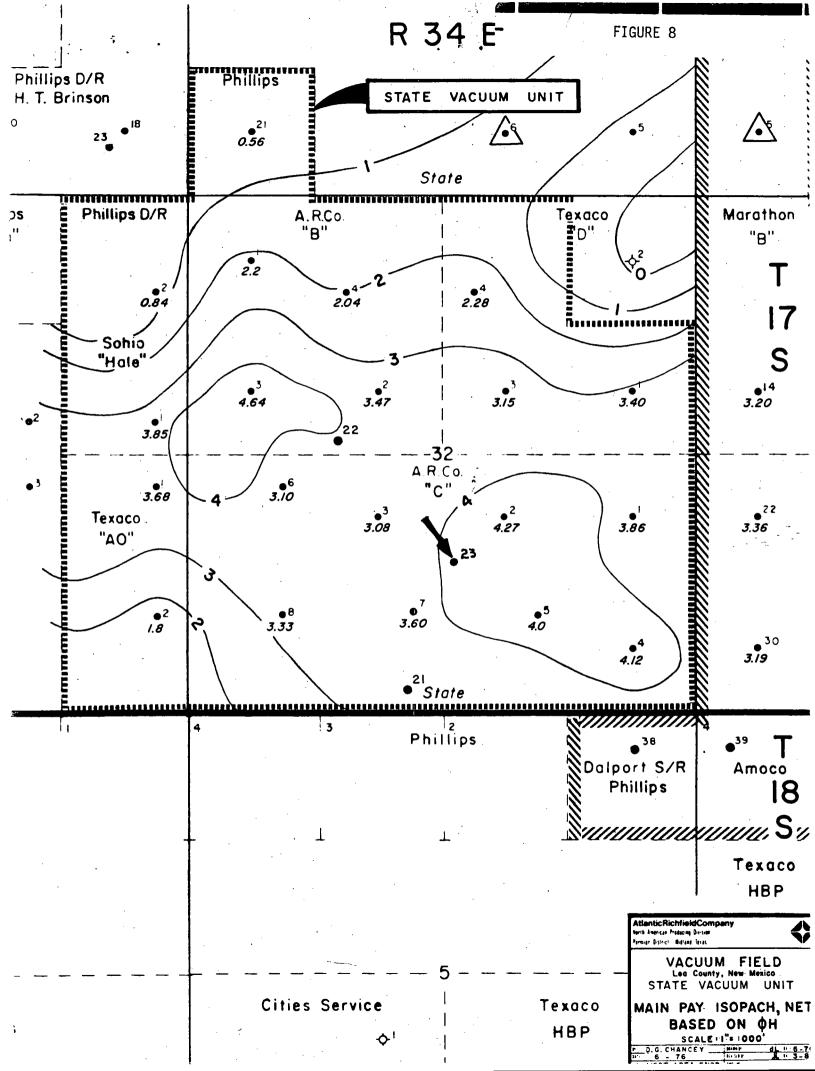


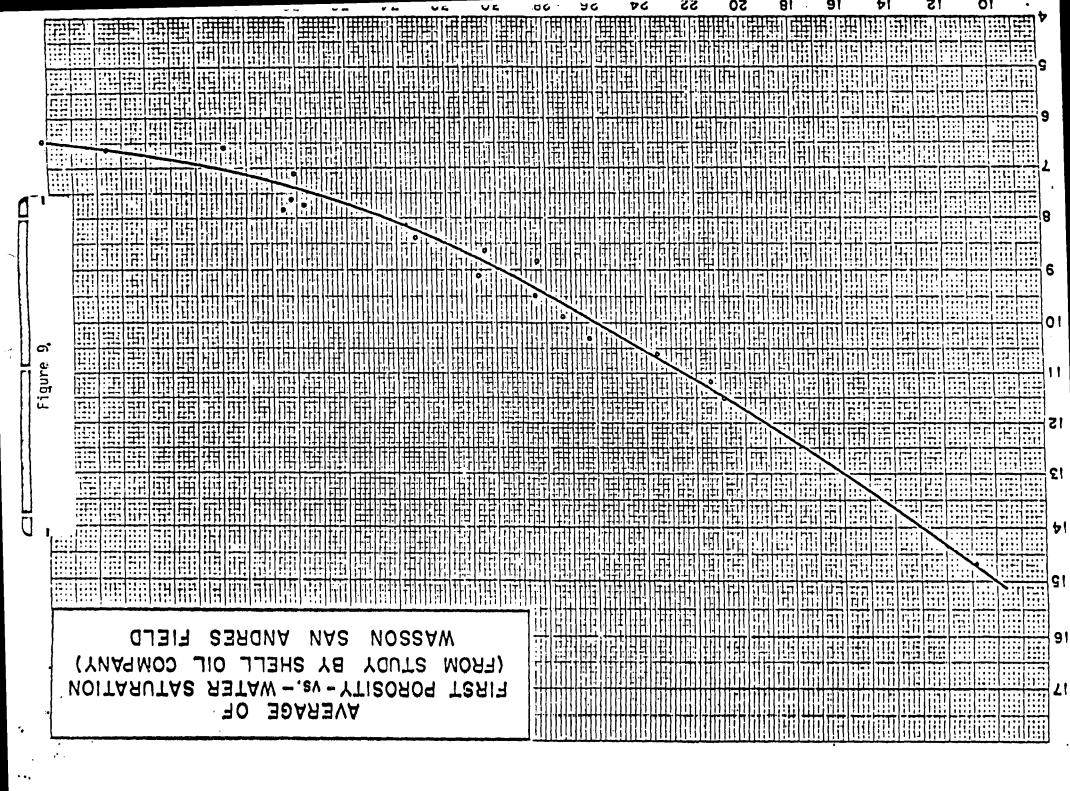
A.,



B-4113 NCT 4 **0** Dere · 1031 R.CO. (OP 6 50¹ Phillips B-4116 Doiser ANISON BAIIG CONTON Ġ., I taace H.B.P. 16 H.B.P. 8-10695 301 1 10 1 Texoze H.B.P. B-3936 8-3011 Yotes, H.E. Stan Tr.4 -ði


INDEX MAP Scole 1° 4000


	51 0.00			1
-	FIGURE	: 6 _.		
				J
			1	



SI

the star of the sect

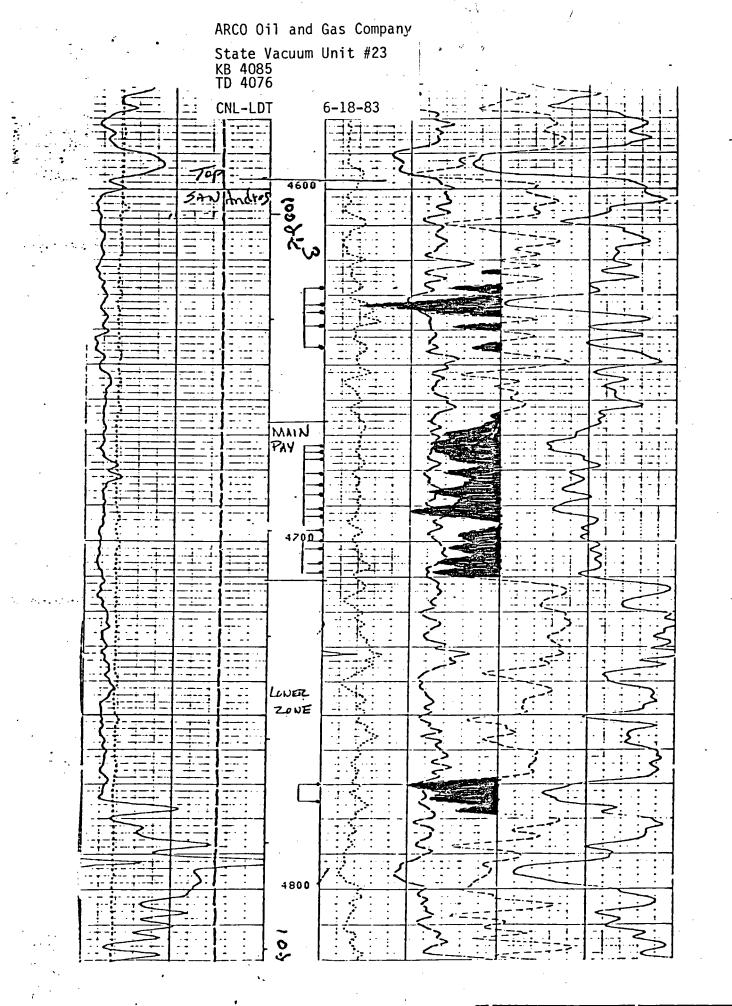


FIGURE 10

÷

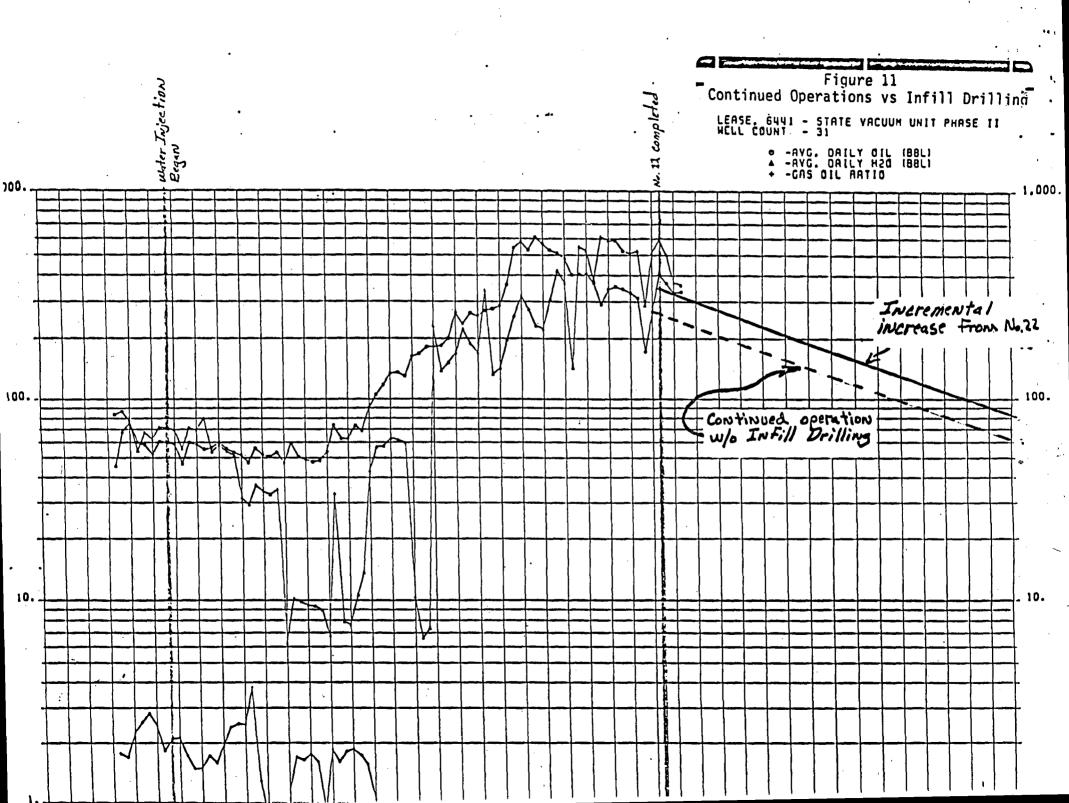
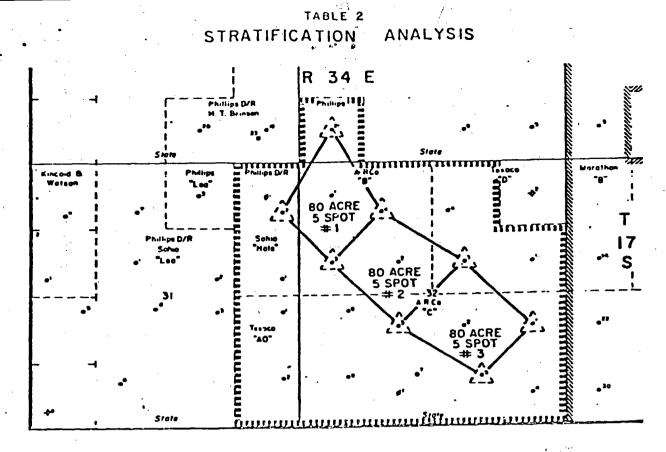



Table I

Basic Reservoir Data

Unit:	State Vacuum Unit
Operator:	ARCO Oil and Gas Company
Field:	Vacuum Grayburg-San Andres
Lithology:	Dolomite and Limestone
Area:	800 Acres
Average Porosity:	9.88%
Average Permeability:	17.8 md
Initial Formation Volume Factor:	1.26 RB/STB
Connate Water Saturation:	26.5%
Residual Oil Saturation:	30.0%
Oil Gravity:	37° API
Average GOR:	175 SCF/bb1
Original Oil In Place:	13,306 MSTBO
Primary Recovery (40-acres):	3,266 MSTB0
Secondary Recovery (40-acres):	1,700 MSTB0

•	% Thickness of Total	. K1, md	Scw."	Sgx, %	Sor, ⁴
80-ACRE 5-SPOT NO. 1					
Layer #1	42.1	4.6	26.5	24.0	30.0
Layer #2	37.0	1.7	26.5	24.0	30.0
Layer #3	20.9	0.5	26.5	24.0	30.0
- • ·	100.0	• .		• .	•
80-ACRE 5-SPOT NO. 2					20.0
Layer #1	25.4	26 . 0	26.5	24.0	30.0
Layer #2	30.8	8.6	26.5	24.0	30.0
Layer #3	17.6	2.8	26.5	24.0	30.0
Layer #4	14.9	1.0	26.5	. 24.0	30.0
Layer #5	11.3	0.4	26.5	24.0	30 .0
2	100.0			,	
•				•	
80-ACRE 5-SPOT NO. 3			06 F	24.0	30.0
Layer #1	18.2	19.8	26.5	24.0	30.0
Layer #2	23.5	7.0	26.5		30.4
Layer #3	29.4	2.6	26,5	21.0	30.4 -
Layer. #4	12.6	0.9	26.5	24.0	30.4 -
Layer #5	16.3	0.3	26.5	24.0	30.4
· · ·	100.0	·			•

Appendix A

I. Incremental Secondary Reserves with 20-acre Infills:

OOIP = 13,306 MBO (Eng. Study 1976)
Recovery Factor = .039 (EVU Eng. Study, Phillips)
Additional Reserves from 20-acre Spacing = 519 MBO
Unit Area = 800 acres
therefore, Equivalent 20-acre infills required = 20
519 MBO + 20 Wells = 26 MBO/Well Incremental Oil
(26 MBO/Well)(175 SCF/STB) = 4.55 MMCF/Well Incremental Gas

II. Undrained Primary Reserves for Typical 20-acre Infill Location:

Øh = 4.56 (log data)
Sw = .265 (Eng. Study 1976)
Recovery Factor = .248 (Eng. Study 1976)
Boi = 1.26 RB/STB (Eng. Study 1976)
A = 6 acres (Undrained area planimetered from drainage maps)

 $\frac{7758 \text{ A}\emptyset\text{h}(1-Sw)}{\text{Boi}} \times \text{R}_{f} = \frac{7758(5)(4.56)(1-.265)}{1.26} \times .248 = 25.6 \text{ MBO Primary} \\ \text{Reserves from} \\ 20-\text{acre Spacing}$

25.6 MBO x 175 SCF/STB = 4.48 MMCF Primary Gas

III. New Primary Reserves from A Lower Zone:

 $\emptyset h = 0.96$ A = 20 acres

 $\frac{7758 \text{ A}\emptyset\text{h}(1-Sw)}{\text{Boi}} \times R_{f} = \frac{7758(20)(1)(1-.265)}{1.26} \times .248 = 21.6 \text{ MBO Primary}_{Reserves for Lower}_{Zone}$

21.6 MBO x (175 SCF/STB) = 3.78 MMCF Primary Gas

ARCO Oil and Gas Company Natural Gas Marketing Post Office Box 2819 Dallas, Texas 75221 Telephone 214 880 4675

> Paul T. Davis Manager, Gas Regulations

February 1, 1984

FFB - 6 1984 **OIL CONSERVATION DIVISION**

SANTA FE

Department of Energy and Minerals Attn: Michael Stogner Oil Conservation Division P. O. Box 2088 Santa Fe, New Mexico 87501

RE: NGPA - Well Pricing Category Determination State Vacuum Unit #23 Lea County, New Mexico AR #46429

Gentlemen:

Pursuant to Order No.R-5878-B of the Oil Conservation Division, ARCO Oil and Gas Company, a Division of Atlantic Richfield Company (ARCO) submitted an application for determination of Section 103, New Onshore Well pricing category on December 13, 1983.

Please find attached another copy of our application for Infill Findings. We hope this is in compliance with New Mexico Oil Conservation Division's Order No. R-6013-A. We are sorry for this inconvenience.

Please return the extra copy of this letter with evidence of your receipt thereof, in the enclosed, self-addressed en-velope.

Very truly yours,

Smna D. Hanism

Donna G. Harrison Sr. Gas Regulations Administrator (214) 880-5168

DGH/1d

Enclosures

State Vacuum Unit #23 Lea County, New Mexico AR #46429

"Infill Finding"

Rules and Regulations Natural Gas Policy Act Infill Findings Administrative Procedure

- Rule 3: No waivers from offset operators are necessary. See Exhibit 1
- Rule 5: See attached approved Form C-101 for the infil well and Form C-102 showing proration unit dedicated.
- Rule 6: See Well Completion Report and Log for name of the pool in which the infill well has been drilled and the standard spacing unit size therefor.
- Rule 7: Exhibit 2: Number of the Division Order approving the non-standard proration unit dedicated to the well.
- Rule 8: Exhibit I: Description of all wells drilled on proration unit.
- Rule 9: See Engineering Discussion plus all "figures" associated within.

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT OIL CONSERVATION DIVISION

May 23, 1983

TONEY ANAYA

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501 (505) 827-5800

ARCO OIL AND GAS COMPANY P.O. Box 1610 Midland, Texas 79702

Attention: J. A. Fraga

Administrative Order NSL-1699

Gentlemen:

Reference is made to your application for a non-standard location for your State Vacuum Unit Well No. 23, to be located 1530 feet from the South line and 2490 feet from the East line of Section 32, Township 17 South, Range 34 East, Vacuum Grayburg-San Andres Pool, Lea County, New Mexico.

By authority granted me under the provisions of Rule 104 F of the Division Rules and Regulations, the above-described unorthodox location is hereby approved.

incerely, JOE D. RAMEY Director

JDR/RLS/dp

cc: Oil Conservation Division - Hobbs
Oil & Gas Engineering Committee - Hobbs
Oil & Gas Division - State Land Office - Santa Fe

CENTRAL FILES

Engineering Discussion of Infill Drilling on the State Vacuum Unit

INTRODUCTION

ARCO Oil and Gas Company's State Vacuum Unit produces from the Vacuum Grayburg-San Andres field in Lea County, New Mexico. It has been concluded that to effectively and efficiently produce this reservoir 20-acre well spacing is necessary. The following is a brief history of the State Vacuum Unit and the engineering and geological data supporting this finding.

HISTORY

The State Vacuum Unit was formed by ARCO on November 11, 1976 and water injection began on July 1, 1977. The unit was developed on 40-acre spacing using a 5-spot injection pattern. Primary reserves for this unit were calculated to be 3,266 MBO, or 24.8% of the OOIP. The unit has shown favorable response to the flood producing 347 MBO of secondary reserves as of April, 1983. However, several wells have experienced premature water breakthrough which has reduced the efficiency of the waterflood (see Figures 1, 2, and 3).

On July 26, 1983 we completed the State Vacuum Unit No. 23, our second 20-acre infill in the unit (see attached plat, Figure 4). This well had a 24 hour pump potential of 40 BO, 14 BW and 35 MCFPD. Because of the short producing history on this well, it is still too early to make any ultimate reserve predictions. Our first 20 acre infill, the No. 22, completed February, 1983, has been encouraging. The No. 22 had a 24 hour pump potential of 189 BO, 23 BW, and 15 MCFPD. The No. 22 is expected to recover new reserves of approximately 74 MSTBO. Gas production in association with this oil will be 12.95 MMCF. Figure No. 11 shows the Unit's predicted performance with the No. 22 infill. The final stabilized rate on the No. 22 was 75 BOPD and was projected to decline at 30% per year.

ARCO is presently in the process of updating its Engineering Study of 1976 for the State Vacuum Unit. This study will evaluate the current infill drilling program and will also lay out the final development plans for the unit.

GEOLOGY

The Vacuum Grayburg-San Andres field is located on an east-west trending anticline at the east end of the Artesia-Vacuum trend along the southern edge of the northwestern platform. The State Vacuum Unit is located in the western portion of the field (see attached structure map, Fig. 5). Oil production is principally from dolomite in the San Andres formation with minor contributions from limestone in the Grayburg. The main pay zone (first porosity zone in the San Andres) is an oolite dolomite continuous throughout the State Vacuum Unit (see cross-section Fig. 6). Attached is Table No. 1 showing basic reservoir data for this unit. Engineering Discussion

VOLUMETRIC CALCULATIONS

Volumetric calculations for the San Andres formation in the State Vacuum Unit yield an original-oil-in-place of 10,381,109 STB for the main pay and 13,305,882 STB for the total pay zone. The Grayburg formation was not included in any volumetric calculations. These calculations involved determination of porosity-feet (\emptyset h) for each well. Two isopachs were prepared, one for total \emptyset h (Figure 7) and one for main pay \emptyset h (Figure 8). These maps were constructed using logs and core data where available. Acre- \emptyset h numbers were determined by planimetering the isopach maps.

The original-oil-in-place numbers were calculated by transforming acre-Øh numbers into net hydrocarbon pore volume and converting to stock tank barrels using a formation volume factor of 1.26. The water saturation used in the conversion was taken from Figure 9, "Average of First Porosity vs. Water Saturation" from a field study of the Wasson San Andres reservoir by Shell Oil Company.

SECONDARY RESERVES FOR 40-ACRE SPACING

ARCO's Engineering Study of 1976 concluded that only the "main pay" section of the San Andres was continuous enough to be economically flooded. Secondary reserves were calculated to be 1,300 MBO which represents a ratio of 0.5:1 of secondary to primary reserves. This low ratio is due to the main pay being the only zone floodable on 40-acre spacing.

Secondary performance was determined with the aid of one of Atlantic Richfield Company's computer programs, which calculated sweep-out for a five-spot pattern. Three five-spot patterns were used to model performance within the 800-acre proposed project area. Each pattern was broken down into quarters five-spot elements. In each element, core and log analysis helped determine porosity, permeability, and net pay. Twelve elements were analyzed in a total of three five spots. Total performance of the eight five-spots were determined by summing representative five-spots. Permeability distribution was determined for each well having core data with Atlantic Richfield's core data sorting program. Stratification analysis was handled by dividing each five-spots into layers. Table 2 gives the data used in each of the three typical five-spots.

SECONDARY AND PRIMARY RESERVES FOR 20-ACRE SPACING

By infill drilling, additional pay in the San Andres will be floodable on closer spacing. Based on the Engineering-Geological Committee Report, November 1977, (Exhibit No. 4, Case No. 6570) for the East Vacuum Grayburg-San Andres Unit, it was determined that an estimated 3.9% increase in recovery of OOIP for the EVGSAU could be expected on 20-acre spacing. Since the State Vacuum Unit has similar reservoir characteristics and quality, an increase recovery value of 3.9% of the OOIP was used in predicting additional secondary oil reserves with 20-acre infills. This value includes encountering discontinuous intervals of porosity and improvement in recovery efficiency.

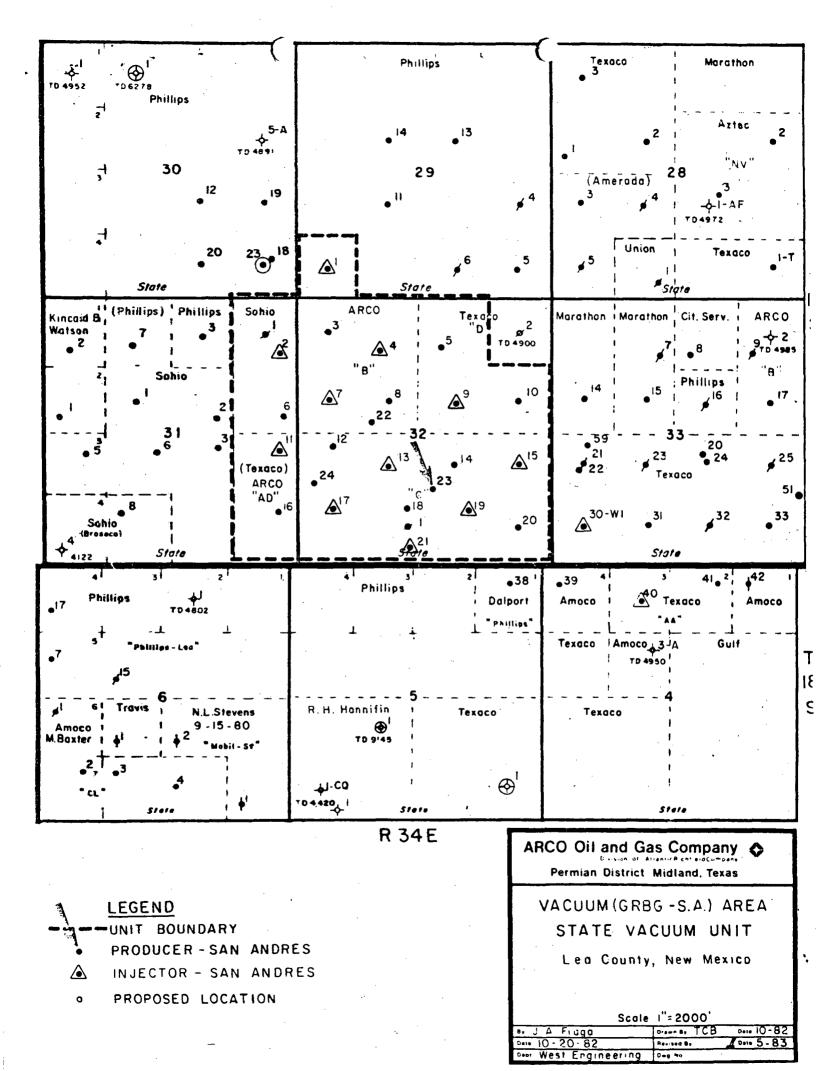
Using the 3.9% infill recovery value and the total pay zone OOIP reserves, additional secondary reserves of 518,929 STB were calculated for the unit. The 800 acre unit would require 20 equivalent 20-acre infill wells for a recovery of about 26 MBO/well location. These calculations are outlined in Appendix A. Engineering Discussion Page 3

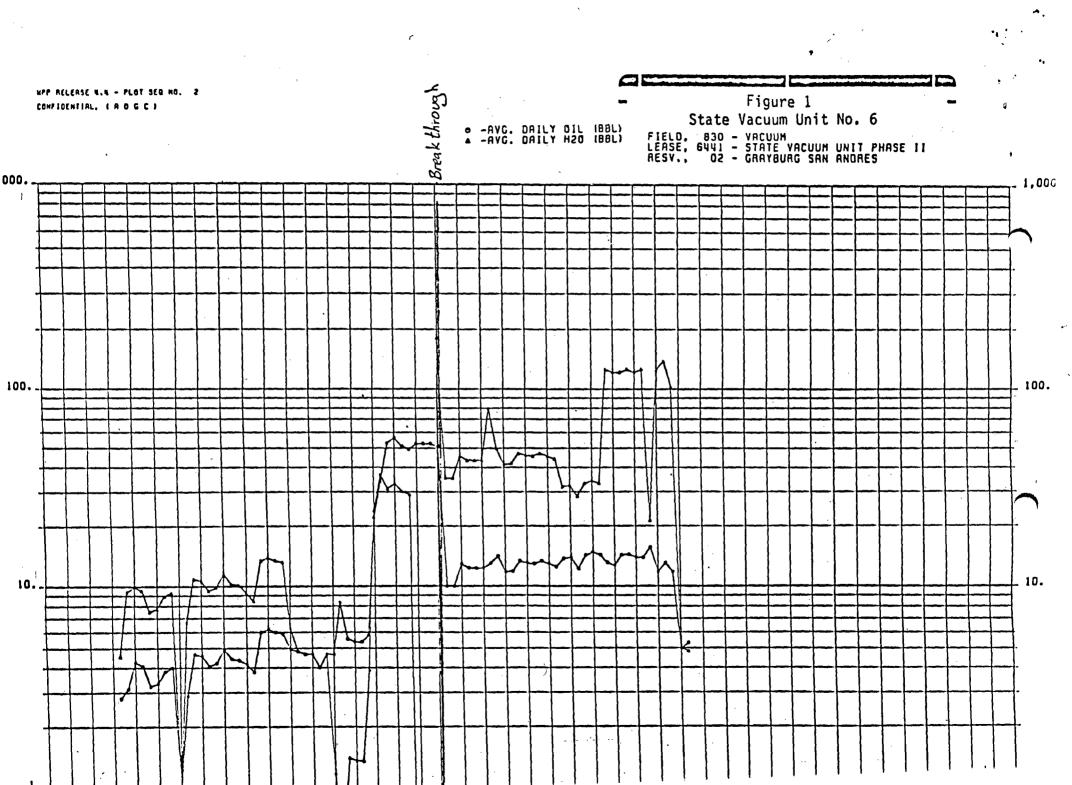
Primary drainage analysis of the State Vacuum Unit were done using volumetrics, decline curves and production data. This analysis indicated that each 20-acre infill well will drain 5 acres previously missed at 40-acre spacing. Incrementally each infill well will recovery 26 MBO (see Appendix A).

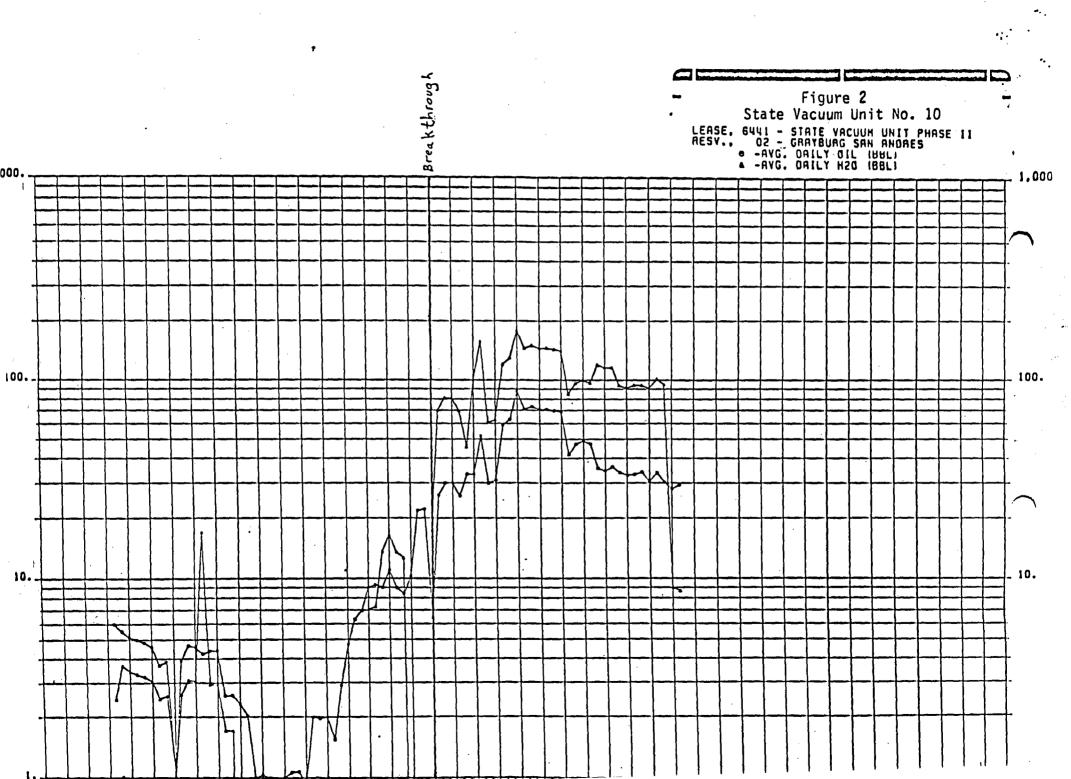
The State Vacuum Unit No. 23 will also produce primary reserves from a lower zone near the top of the Lovington Sand (see Figure 10). The porosity logs indicate this zone to contain 8 feet of net pay with about 12% porosity. Estimate recoverable primary reserves for the lower zone, using 20-acre spacing and a 24.8% recovery factor, is 22 MBO. Secondary reserves were not cal-culated since this zone at present is not being flooded.

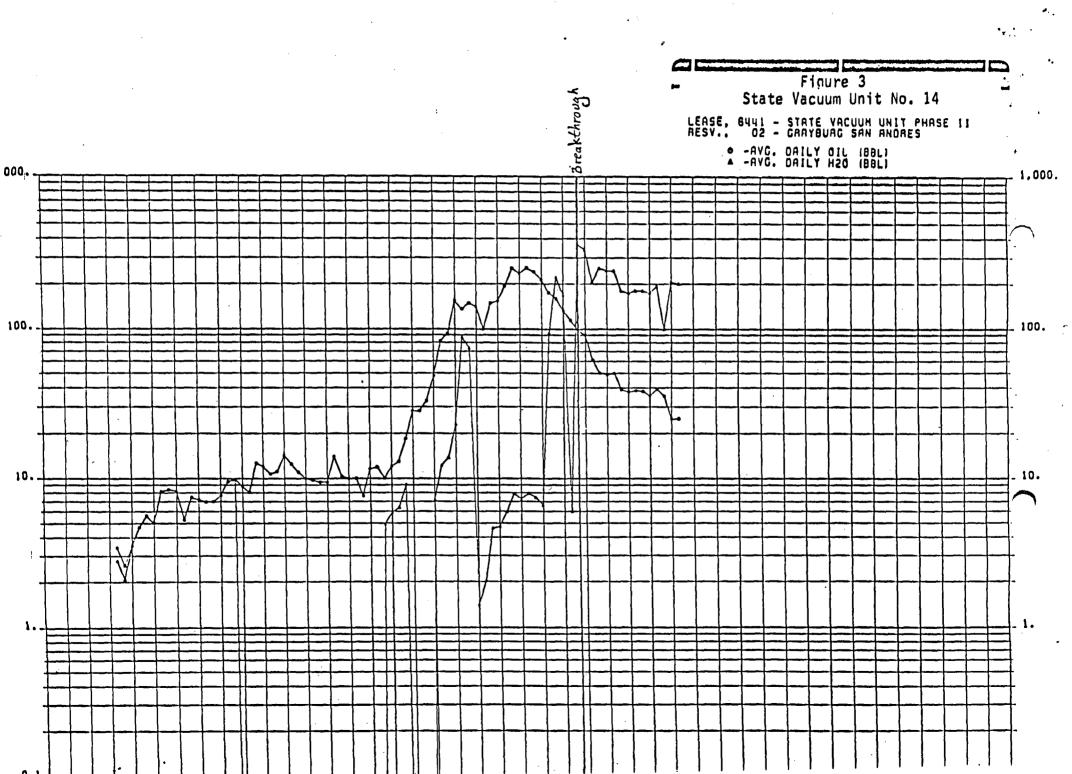
Premature water breakthrough has been experienced in several wells, as is seen in the attached plots (see Fig. 1-3). The 20-acre spacing will drain reserves being bypassed due to the breakthrough.

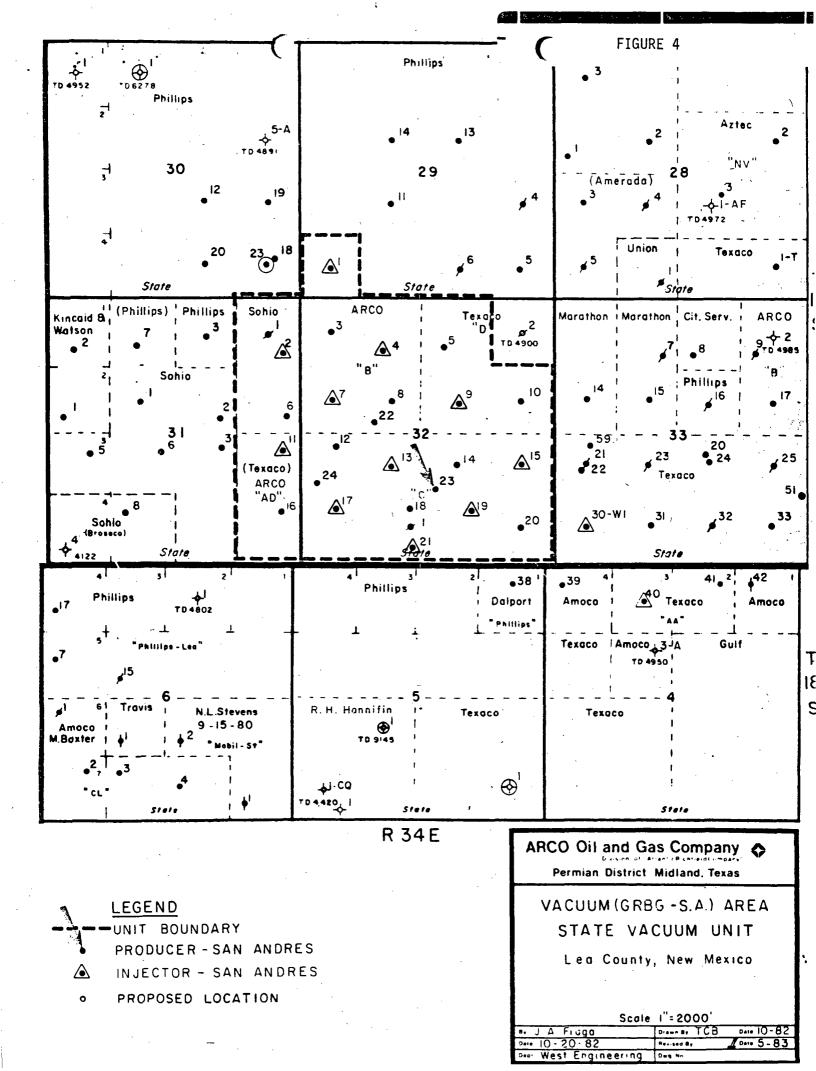
CONCLUSION

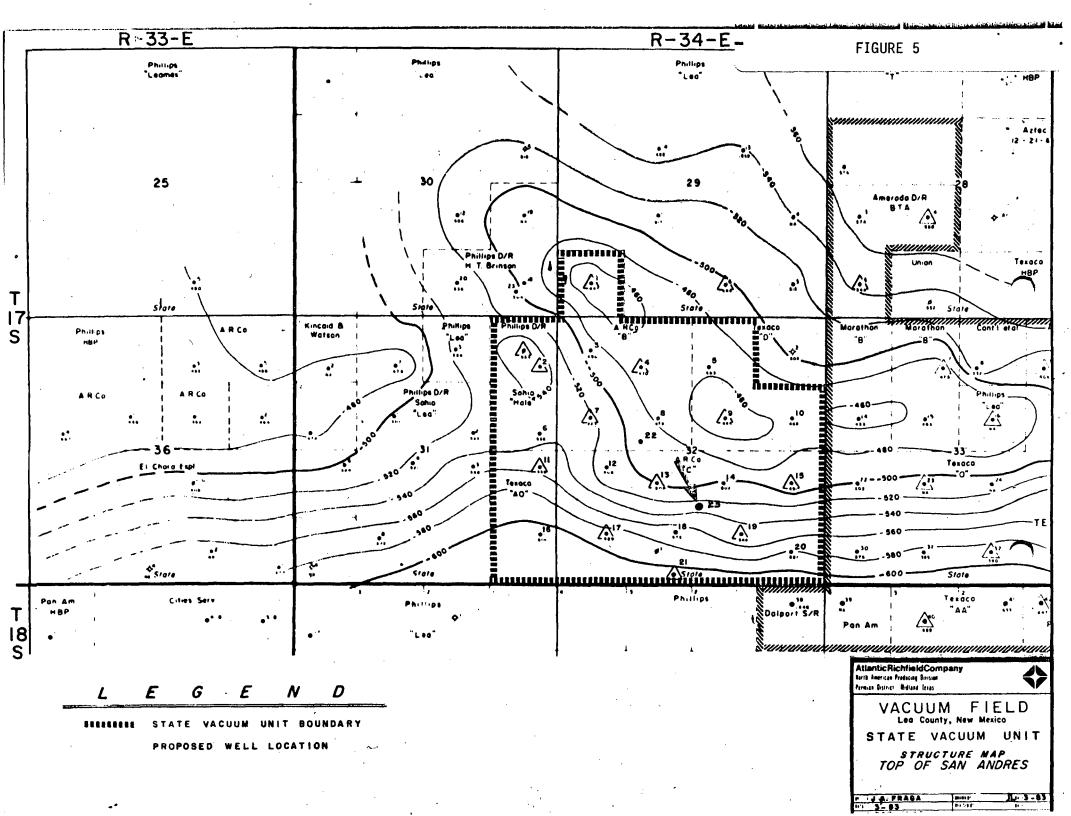

By drilling the infill Well No. 23 we will recover new reserves of approximately 74 MSTBO. Gas production in association with this oil will be 12.95 MMCF.


The production history of the State Vacuum Unit and other units in this field indicate that to effectively and efficiently produce the Vacuum Grayburg-San Andres reservoir, 20-acre spacing is necessary. By going to this closer spacing, additional pay will be encountered and flooded. Additional primary reserves that were undrained on 40-acre spacing will be recovered along with secondary reserves bypassed due to premature water breakthrough.


Jage


JAF:dmm

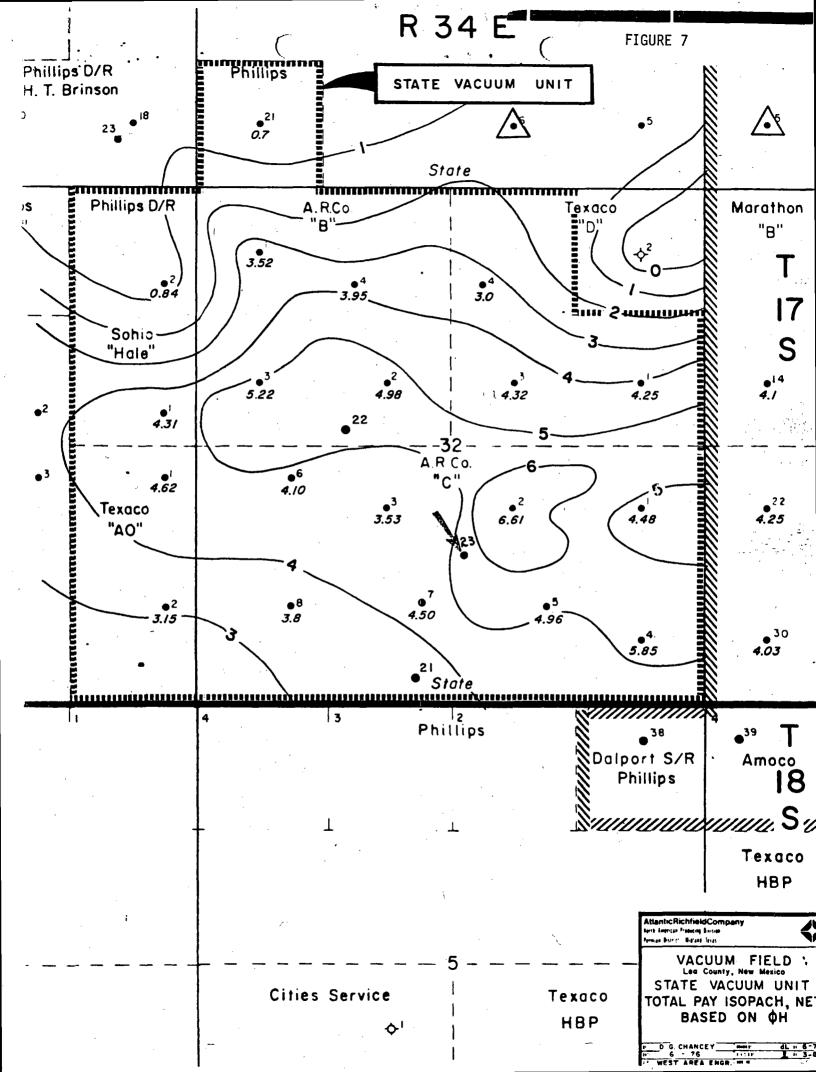

11/21/83

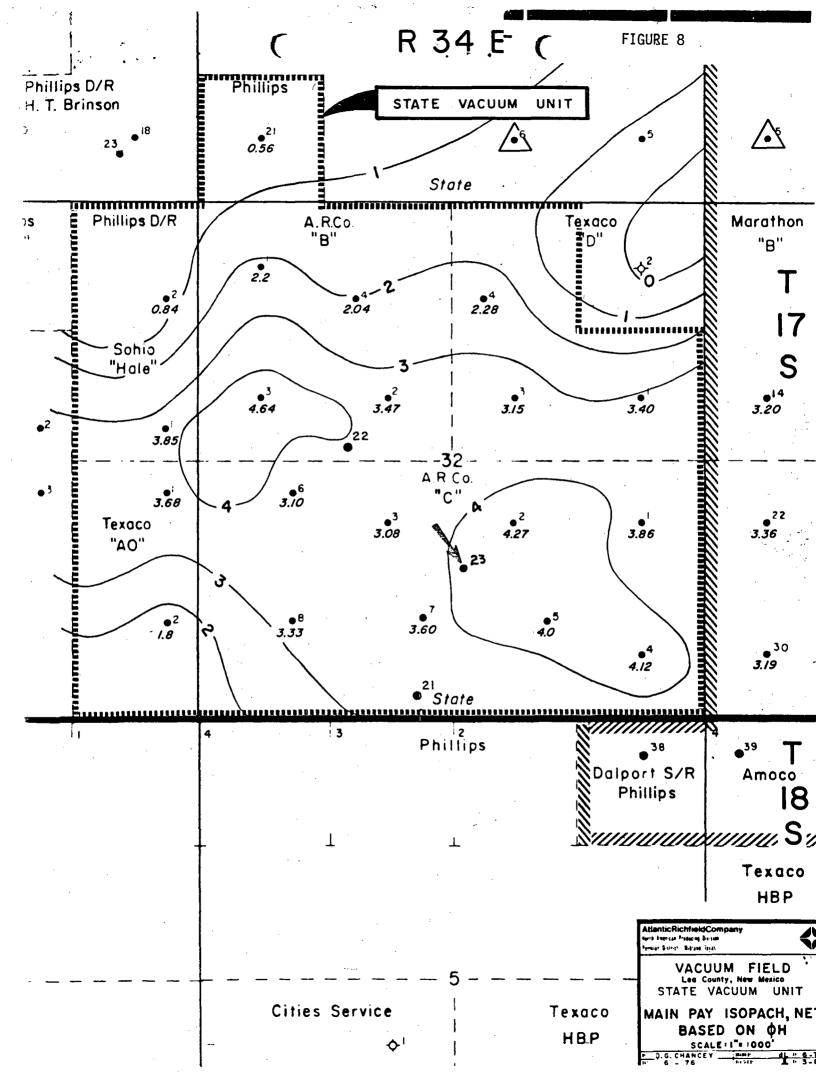


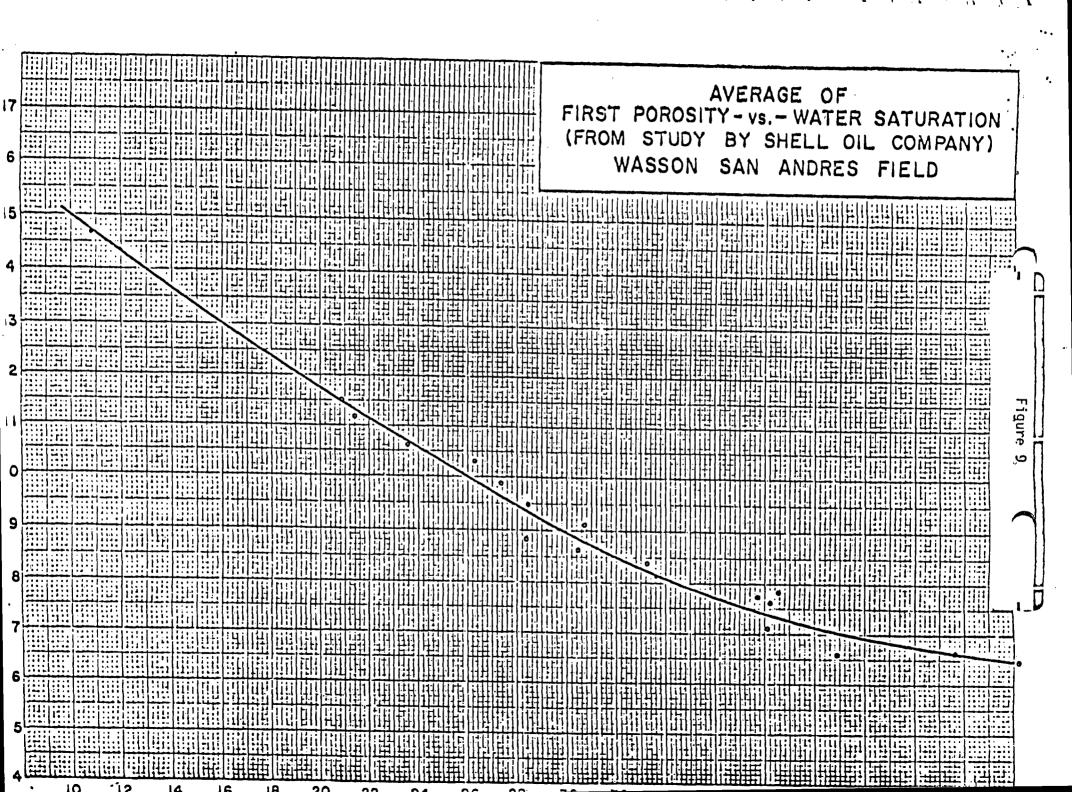
<u> </u>		
	B 1030	B-8097
•14		T IN H Smith 2.W
Ph.1 4		Signa Texas
Arca srore	5 5 Fridame	an Texats B-1020 1-7 MC7-3 P211
A 63 .	T 4000 5	a micont Sinelin)
A . L	3. • ¹⁰ i 1 • 1	5-41M 7
(ALAR)		33 21 ¹⁰ 24 25 Texaco Biss si
Summer of A	20 30	йста и ре на Stote
Bigde 4 Hits & HBMA Phillips B-4116	Dolwart Amocoli Baisert Amocoli	107+xc10 41 9 42 AA' Fon Am
	PER) H.B.P. Am	4456 H.B.P.
242	Terato H.B.P. B-3011 B-3936	- 4
States in a set Sedan.	Notes H.E. Nest Vacuu	en l State
	ARCO (OP ARCO (B-4118 PP-41-4-4 B-4118 PP-41-4-4 B-4118 PP-41-4-4 B-1010 T-105 B-1010 T-105 T-105 B-117 B-1010 T-105 T-105 B-117 D

INDEX MAP Scale I": 4000

FIGURE 6 ARCO Off and Gas Company 🛟 Permian District Midland Texas STATE VACUUM UNIT LEA DOONTY, NEW MEXICO CROSS SECTION -- A

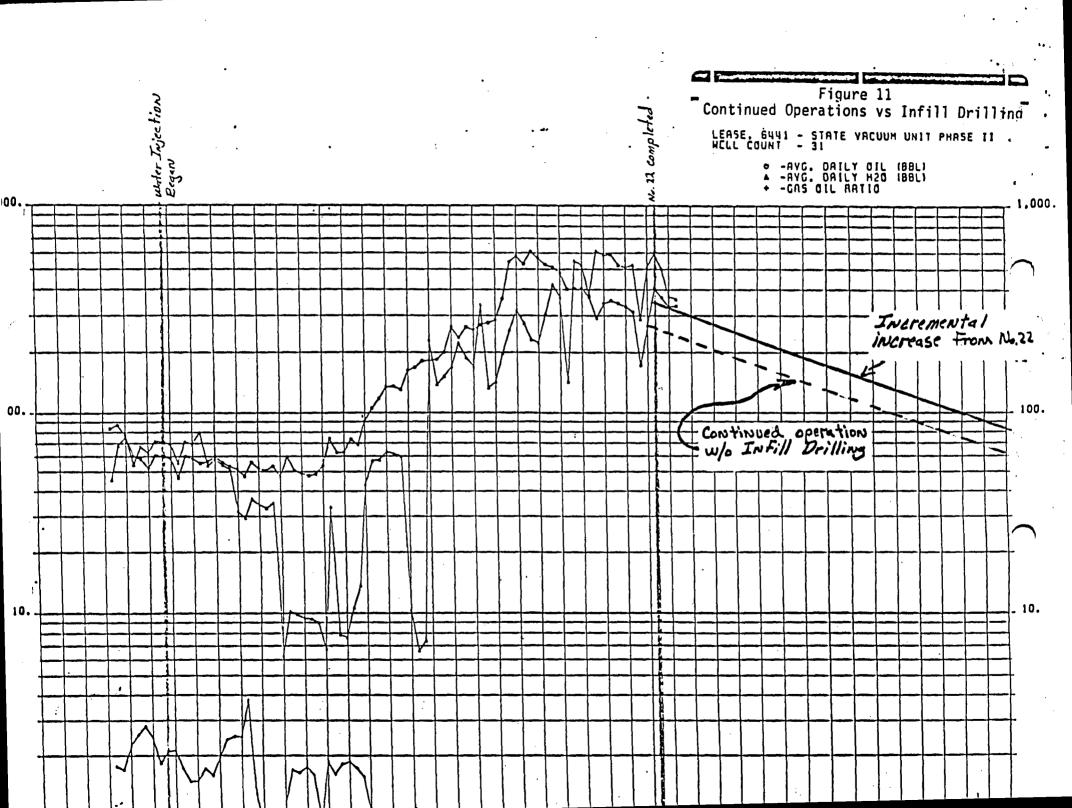

- 82


T. FRAGA


3 - 82

4.4.10

SI

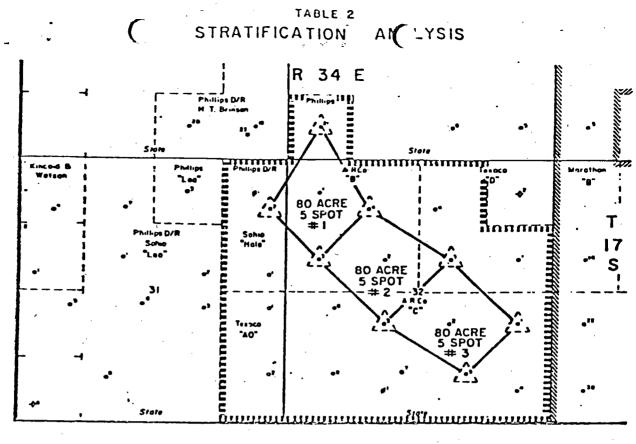


		AF	RCO 01	⊬and G	as Company		(
•	•••	S KI	tate V 8 4085	àcuum U	Init #23		C	-
			D 4076 NL-LDT		5-18-83			1
			•			3		
		Top		4600	<u> </u>			
		577	Andros	60)		<u> </u>		
	}			2,860)		2		$\sum_{i=1}^{n}$
				•]		5		\leq
			•••••					
				La		2		
]					~		
				MAIN PAY				3
		:	· · ·	4700				\leq
						$\sum_{i=1}^{n}$		
•							······································	
	>			LUNER ZONE		<u>ج</u> .	\sim	
•						SAX !!	<u></u>	
	3							
		>				~~~~~		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-		<u></u>		
				4800	/ < <			
•••		>	<u> </u>	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
• • •			<u> </u>	0.5		<u> </u>	}	

A TALL ROOM AND A CONTRACT FIGURE 10

water - alper




# Table I

(

с**С**.

# <u>Basic Reservoir Data</u>

11-24				
Unit:	State Vacuum Unit			
Operator:	ARCO Oil and Gas Company			
Field:	Vacuum Grayburg-San Andres			
Lithology:	Dolomite and Limestone			
Area:	800 Acres			
Average Porosity:	9.88%			
Average Permeability:	17.8 md			
Initial Formation Volume Factor:	1.26 RB/STB			
Connate Water Saturation:	26.5%			
Residual Oil Saturation:	30.0%			
Oil Gravity:	37° API			
Average GOR:	175 SCF/bbl			
Original Oil In Place:	13,306 MSTBO			
Primary Recovery (40-acres):	3,266 MSTB0			
Secondary Recovery (40-acres):	1,700 MSTB0			



•	% Thickness of Total	. K <b>l,</b> md	Scw,%	Sgx,%	Sor,"
80-ACRE 5-SPOT NO. 1			<del></del>		
Layer #1	42.1	4.6	26.5	24.0	30.0
Layer #2	37.0	1.7	26.5	24.0	30.0
Layer #3	20.9	0.5	26.5	24.0	30.0
~~;	100.0		20.0	21.0	
· · ·					
80-ACRE 5-SPOT NO. 2		•			
Layer #1	25.4	26.0	26.5	24.0	30 <b>.0</b>
Layer ∴2	30.8	8.6	26.5	24.0	30.0
Layer #3	17.6	2.8	26.5	24.0	30 <b>.0</b>
Layer +4	14.9 .	1.0	26.5	. 24.0	30.0
Layer =5	11.3	0.4	26.5	24.0	30.0
•	100.0		-	-	- <del>-</del>
		•		,	
· .			•		
80-ACRE 5-SPOT NO. 3					
Layer #1	18.2	19.8	26.5	24.0	30.0
Layer #2	23,5	7.0	26,5	24.0	30 <b>.0</b>
Layer #3	29.4	. 2.6	26, 5	21.0	30.4
Layer. #4	12.6	0.9	26.5	24.0	30.4
Layer #5	16.3	0.3	26.5	24.0	30.4
	100.0			21,0	

### Appendix A

Incremental Secondary Reserves with 20-acre Infills:

Ι.

OOIP = 13,306 MBO (Eng. Study 1976) Recovery Factor = .039 (EVU Eng. Study, Phillips) Additional Reserves from 20-acre Spacing = 519 MBO Unit Area = 800 acres therefore, Equivalent 20-acre infills required = 20 519 MBO + 20 Wells = 26 MBO/Well Incremental Oil (26 MBO/Well)(175 SCF/STB) = 4.55 MMCF/Well Incremental Gas II. Undrained Primary Reserves for Typical 20-acre Infill Location: Øh = 4.56 (log data)
Sw = .265 (Eng. Study 1976) Recovery Factor = .248 (Eng. Study 1976) Boi = 1.26 RB/STB (Eng. Study 1976) A = 6 acres (Undrained area planimetered from drainage maps)  $\frac{7758 \text{ A}\emptyset\text{h}(1-Siw)}{Boi} \times R_{f} = \frac{7758(5)(4.56)(1-.265)}{1.26} \times .248 = 25.6 \text{ MBO Primary}$ Reserves from 20-acre Spacing 25.6 MBO x 175 SCF/STB = 4.48 MMCF Primary Gas III. New Primary Reserves from A Lower Zone:  $\emptyset h = 0.96$ A = 20 acres  $\frac{7758 \text{ A}\emptyset h(1-Sw)}{Boi} \times R_{f} = \frac{7758(20)(1)(1-.265)}{1.26} \times .248 = 21.6 \text{ MBO Primary}$ Reserves for Lower Zone 21.6 MBO x (175 SCF/STB) = 3.78 MMCF Primary Gas