

STAGE 1 ABATEMENT PLAN

STAGE 1 FINAL INVESTIGATION REPORT AND CORRECTIVE ACTION PLAN

EME JCT. K-6 SITE (AP-46) T20S, R37E, SECTION 6, UNIT LETTER K LEA COUNTY, NEW MEXICO

Prepared for:

RICE Operating Company 122 West Taylor Hobbs, New Mexico 88240

RECEIVED

MAR 1 2 2007 Environmental Bureau Oil Conservation Division Prepared by:

P. O. Box 7624 Midland, Texas 79708

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2183

March 7, 2007

RECEIVED

Mr. Edward Hansen New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504 MAR 1 2 2007 Environmental Bureau Oil Conservation Division

RE: Stage 1 Final Investigation Report and Corrective Action Plan EME Jct. K-6 Site (AP-46) T20S-R37E-Section 6, Unit Letter K Lea County, New Mexico

Dear Mr. Hansen

On behalf of Rice Operating Company (ROC), enclosed are the Stage 1 Final Investigation Report and Corrective Action Plan for the above-referenced site.

This Stage 1 Final Investigation Report includes the findings from recent investigation activities in accordance with the NMOCD-approved Stage 1 Abatement Plan. In addition, corrective actions are proposed in Section 7.0.

Review of previous investigations and the results of the Stage 1 investigation uphold our conclusion that operation of the K-6 junction box has not caused, contributed to, or could contribute to the degradation of groundwater quality. Chloride concentrations in the vadose zone of all borings and trenches were less than 1,000 ppm and averaged 351 ppm which is representative of background levels.

Each monitoring well indicates chloride and total dissolved solids (TDS) concentrations above Water Quality Control Commission (WQCC) standards, however after two consecutive quarterly sampling events it is clear that the upgradient monitoring well (MW-3) has higher concentrations of chlorides and TDS than those observed near the junction box (MW-1), which indicates an upgradient source (north and/or northwest) for these constituents.

Evidence from potential upgradient offsite sources, onsite groundwater monitoring, and vadose zone characterization support the conclusion that conditions at the site do not meet the criteria that would mandate corrective action under NMOCD Rule 116 or Rule 19. However, ROC proposes to continue sampling each monitor well for an additional four quarters (2007 calendar year). If quarterly sampling results continue to support this conclusion, a request for final closure will be submitted in the first quarter of 2008.

The surface soils surrounding K-6 junction box are supportive of vegetation. The surrounding area will be re-seeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. ROC will monitor the site for continued healthy growth of native vegetation and add amendments if necessary.

If you have any questions please call me at 432-638-8740 or Kristin Pope at 505-393-9174.

Sincerely,

7 Van lint

. 11

Gilbert Van Deventer Trident Environmental

cc: CDH, JSC, KFP

Gilbert Van Deventer

From:	"Gilbert Van Deventer" <gilbertvandeventer@cox.net></gilbertvandeventer@cox.net>
To:	"Hansen, Edward J., EMNRD" <edwardj.hansen@state.nm.us></edwardj.hansen@state.nm.us>
Cc:	"Carolyn Haynes" <chaynes@riceswd.com>; "Wayne Price" <wayne.price@state.nm.us>; "Kristin Pope"</wayne.price@state.nm.us></chaynes@riceswd.com>
	<kpope@riceswd.com></kpope@riceswd.com>
Sent:	Wednesday, March 07, 2007 11:46 PM
Attach:	K6_FIR_CAP_text_tables.pdf
Subject:	EME Jct K-6 Site (AP-46) - Stage 1 Final Investigation Report & Corrective Action Plan

Attention: Edward Hansen, New Mexico Oil Conservation Division - Environmental Bureau

Subject: Stage 1 Final Investigation Report and Corrective Action Plan

Site Name: EME Jct K-6 Site

NMOCD Case No.: AP-46

MAR 1.2 2007

RECEIVED

Environmental Bureau Oil Conservation Division

Site Location: T20S-R37E-Section 6, Unit Letter K

Site Agent: RICE Operating Company

Hello Edward:

Trident Environmental is pleased to submit the attached Stage *1 Final Investigation Report and Corrective Action Plan* (CAP) for the above-referenced site. Only the text portion is attached herein due to file size limitations. One complete hard copy and one copy on compact disk is being sent via USPS Certified Mail (# 7099 3400 0017 1737 2183).

If you have any questions, please contact me at 432-638-8740, or Kristin Pope at ROC, 505-393-9174.

Sincerely, Gilbert J. Van Deventer, PG, REM Trident Environmental P. O. Box 7624 Midland TX 79708

www.trident-environmental.com Work/Mobile: 432-638-8740 Fax: 413-403-9968 Home: 432-682-0727

TABLE OF CONTENTS

1.0	EXEC	CUTIVE SUMMARY 1
2.0	CHRO	ONOLOGY OF EVENTS
3.0	BACK	GROUND
	3.1 3.2	SITE LOCATION AND LAND USE
4.0	GEO	LOGY AND HYDROGEOLOGY
	4.1 4.2	REGIONAL AND LOCAL GEOLOGY
5.0	VAD	OSE ZONE CHARACTERISTICS
6.0	GRO	UNDWATER QUALITY
	6.1 6.2 6.3	Monitoring Program
7.0	PROF	POSED CORRECTIVE ACTIONS
	7.1 7.2 7.3	Corrective Action to the Vadose Zone

FIGURES

FIGURE 1...... SITE LOCATION MAP

FIGURE 2...... AERIAL PHOTO MAP

FIGURE 3...... SOIL SAMPLE RESULTS

FIGURE 4...... GEOLOGIC MAP

FIGURE 5...... REGIONAL GROUNDWATER MAP

FIGURE 6...... SITE GROUNDWATER MAP

FIGURE 7...... MAP FROM NICHLOSON AND CLEBSCH, GROUNDWATER REPORT 6

TABLES

 TABLE 1......
 Summary of Soil Sampling Results

 TABLE 2
 Summary of Groundwater Monitoring Results

APPENDICES

APPENDIX A------ Lithologic Logs & Well Construction DiagramsAPPENDIX B------ PhotodocumentationAPPENDIX C------ Laboratory Reports & Chains of Custody

and the second second

in a strain the memory of the second second

1.0 EXECUTIVE SUMMARY

The K-6 junction box (Jct. K-6) site is part of the Eunice Monument Eumont (EME) Salt Water Disposal (SWD) system which is operated by Rice Operating Company (ROC). The site is located in township 20 south, range 37 east, section 6, unit letter K approximately 4 miles west-southwest of Monument, NM as shown on the attached topographic map (Figure 1) and aerial photographic map (Figure 2).

Identification of soil and ground water impacts occurred during line replacement being performed as part of the approved Junction Box Upgrade Program. In January 2002, the subsurface soils at the Jct. K-6 site were investigated by trenching with a backhoe and field-tested for chloride and hydrocarbon levels and a monitoring well (MW-1) was installed within a few feet of the former junction box. On July 18 and 19, 2006, two additional monitoring wells (MW-2 and MW-3) and seven soil borings were installed in accordance with the Stage 1 Abatement Plan. A site map showing soil sample results for the on site borings at the Jct. K-6 site is depicted in Figure 3.

This Stage 1 Final Investigation Report includes the findings from recent investigation activities in accordance with the NMOCD-approved Stage 1 Abatement Plan. In addition, corrective actions are proposed in Section 7.0.

Review of previous investigations and the results of the Stage 1 investigation uphold our conclusion that operation of the K-6 junction box has not caused, contributed to, or could contribute to the degradation of groundwater quality. Chloride concentrations in the vadose zone of all borings and trenches were less than 1,000 ppm and averaged 351 ppm which is representative of background levels.

Each monitoring well indicates chloride and total dissolved solids (TDS) concentrations above Water Quality Control Commission (WQCC) standards, however after two consecutive quarterly sampling events it is clear that the upgradient monitoring well (MW-3) has higher concentrations of chlorides TDS and than those observed near the junction box (MW-1), which indicates an upgradient source (north and/or northwest) for these constituents.

Evidence from potential upgradient offsite sources, onsite groundwater monitoring, and vadose zone characterization support the conclusion that conditions at the site do not meet the criteria that would mandate corrective action under NMOCD Rule 116 or Rule 19. However, ROC proposes to continue sampling each monitor well for an additional four quarters (2007 calendar year). If quarterly sampling results continue to support this conclusion, a request for final closure will be submitted in the first quarter of 2008.

The surface soils surrounding K-6 junction box are supportive of vegetation. The surrounding area will be re-seeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. ROC will monitor the site for continued healthy growth of native vegetation and add amendments if necessary.

2.0 CHRONOLOGY OF EVENTS

- The upgrade of Jct. K-6 was initiated in January 2002, and resulted in the replacement of the existing vent junction box with a lined watertight plastic junction box and replacement of the 10-inch diameter transite pipeline with 6-inch diameter PVC pipeline;
- The subsurface soils at the Jct. K-6 site were investigated as part of the approved Junction Box Upgrade Program on January 22, 2002, by trenching with a backhoe and field-tested for chloride and hydrocarbon levels. This investigation indicated chloride and hydrocarbon impact to the vadose zone;
- A monitoring well (MW-1) was installed within a few feet of the former vent junction box on January 23, 2002, and has been sampled and analyzed for major ions (including chloride), total dissolved solids (TDS), and benzene, toluene, ethylbenzene, and xylenes (BTEX), on a quarterly basis since that date;
- On February 4, 2002, ROC submitted notification of ground water impact to the NMOCD;
- An Investigation & Characterization Plan was prepared by Trident Environmental and submitted to the NMOCD on March 11, 2005;
- On May 5, 2005, Mr. Daniel Sanchez of the NMOCD requested that ROC submit an abatement plan to the NMOCD pursuant to Rule 19;
- A Stage 1 Abatement Plan was prepared by R. T. Hicks Consultants Ltd. and submitted to the NMOCD on October 17, 2005,
- On November 18, 2005, the NMOCD approved the Stage 1 Abatement Plan as administratively complete and assigned it case number AP-46;
- ROC submitted proof of public notifications to the NMOCD on January 13, 2006;
- On May 30, 2006, the NMOCD gave verbal approval of the Stage 1 Abatement Plan Proposal;
- The BLM approved an amendment to the right-of-way (ROW) agreement (NM-057346) to increase the total acreage to 17.33 acres to allow the installation of additional monitoring wells and soil borings;
- Stage 1 Abatement Plan activities were performed on July 18 and 19, 2006. Two additional monitoring wells (MW-2 and MW-3) and seven soil borings (B-1 through B-7) were installed at the Jct. K-6 site. Soil and groundwater samples were collected for analysis of the constituents of concern. Site activity was witnessed by Stephen Smith of Boone Archaeological Services in accordance with BLM conditions for the ROW amendment;
- The 2006 Annual Groundwater Monitoring Report for the Jct. K-6 site was prepared by Trident Environmental and submitted to the NMOCD as a separate document along with this report.

3.0 BACKGROUND

3.1 Site Location and Land Use

The EME Jct. K-6 site is located on Bureau of Land Management (BLM) Land in township 20 south, range 37 east, section 6, unit letter K approximately 4 miles west-southwest of Monument, NM as shown on the attached Site Location Map (Figure 1). ROC has had a right-of-way agreement with the BLM (NM-057346) since June 18, 1964. The junction box at this site is used to direct produced water from oil and gas leases to the M-5 SWD, approximately ³/₄ mile east, where it is injected into a non-oil producing formation. ROC is the service provider (agent) for the EME SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

Land in the site area is primarily utilized for crude oil production and cattle grazing. Several oil and gas production facilities are located within and around the Jct. K-6 site including those listed below:

- A former tank battery and landfarmed area of hydrocarbon-impacted soil is located immediately adjacent to the south and southeast of Jct. K-6 (Figure 3).
 Soon after the plugging and abandonment of the Britt A #003 well on October 19, 2004, three 210-barrel tanks were removed in 2005, however the area with hydrocarbon-impacted soil is still present.
- A NNW-SSE trending gas pipeline marked as being owned by Southern Union is located about 100 feet west of Jct. K-6 (Figure 3).
- A NW-SE trending gas pipeline marked as being owned by Targa Resources is located about 160 feet west of Jct. K-6 (Figure 3).
- A north-south trending gas pipeline marked as being owned by Duke Energy Field Services is located about 240 feet east of Jct. K-6 (Figure 3).
- The J. R. Phillips No. 2 Tank Battery site (NMOCD Case No. 1R0255) operated by Chevron is located less than ¹/₂ mile NNW of Jct. K-6 (Figures 2 and 5). Groundwater conditions are being monitored by Chevron on an annual frequency. Average chloride and TDS concentrations at the 8 monitoring wells are about 10,000 mg/L and 19,000 mg/L, respectively.
- The Monument Gas Plant operated by Targa Midstream Services, L.P. (Targa) is located approximately 1 mile northwest of the Jct. K-6 site (Figures 2 and 5). According to the Ground Water Discharge Plan (GW-025) this facility has two brine ponds and a network of 18 groundwater monitoring wells associated with it.
- An abandoned hydrochloric acid manufacturing plant (DLD Resources, formerly Climax Chemical Company) is located about 1 ½ miles northwest of the Jct. K-6 site. There are several groundwater monitoring wells associated with this facility however no active regulatory directives towards further investigation and remediation of this facility are known to be in progress.

- A high concentration of oil & gas wells (active and plugged) and associated structures (tank batteries, pits, pipelines, etc.) are located in this area of Monument. Many of these are obviously visible in Figure 2 (aerial photograph) including two plugged and abandoned oil wells located just north of the site (Figure 1).
- Review of a historical aerial photograph from the Lea County Soil Survey (published in 1974) indicates the presence of several contiguous pits covering an approximate area of 40,000 sq. ft. located less than 200 ft. southwest of Jct. K-6 and adjacent to the west side of the former tank battery. The former presence of these pits is also evident in recent aerial photographs as shown in the attached photodocumentaion in the appendices and Figure 2.

3.2 Summary of Previous Work and Investigations

The upgrade of the EME K-6 vent junction box was initiated in January 2002, which included the replacement of the existing vent junction box with a lined watertight plastic junction box and replacement of the 10-inch diameter transite pipeline with 6-inch diameter PVC pipeline. In addition, 36 cubic yards of impacted soils were transported to an OCD-approved disposal facility.

A monitoring well (MW-1) was installed within a few feet of the former vent junction box on January 23, 2002, and has been sampled and analyzed for BTEX, major ions, and total dissolved solids (TDS) on a quarterly basis since that date.

On July 18 and 19, 2006, two additional monitoring wells (MW-2 and MW-3) and seven soil borings (B-1 through B-7) were installed at the Jct. K-6 site. Soil and groundwater samples were collected for analysis of the constituents of concern. Site activity was witnessed by Stephen Smith of Boone Archaeological Services in accordance with BLM conditions for the ROW amendment.

4.0 GEOLOGY AND HYDROGEOLOGY

4.1 Regional and Local Geology

According to published information (Nicholson and Clebsch, 1961, Barnes, 1976, and Anderson, Jones, and Green, 1997) the site is underlain by Quaternary eolian and piedmont deposits composed of sand, silt, and gravel deposited by slopewash, and talus from the Ogallala Formation. The eolian and piedmont deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The lithology of the eolian and piedmont deposits is very similar to that of the Ogallala since the Ogallala is the source of these re-deposited colluvial sediments. The nearest outcropping of the Ogallala Formation occurs approximately four miles north of Jct. K-6 along what is known as the Llano Estacado (caprock). The thickness of the colluvium deposits and Ogallala Formation at the Jct. K-6 site is estimated at 75 feet, however it varies locally as a result of significant paleo-topography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the colluvial deposits and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the water bearing colluvial deposits and therefore limit the amount of recharge to the underlying Dockum Group. The thickness of the Dockum Group is estimated at approximately 300 feet in the site area although its thickness in southern Lea County varies from 0 to 1,270 feet thick (Nicholson and Clebsch, 1961). Figure 4 shows the surface geology of the site.

The first few feet from ground surface are dominated by fine to medium-grained dune sand. Based on the descriptions provided in lithologic logs the subsurface soils are composed of caliche, sand, sandstone stringers, and some clay. More detailed descriptions of the subsurface lithology are provided in the soil boring and monitoring well logs (Appendix A).

4.2 Regional and Local Hydrogeology

Potable ground water used in southern Lea County is derived primarily from the Ogallala Formation and the Quaternary alluvium. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, stock, domestic, industrial, and public supply purposes. Water well records from the Office of the State Engineer (NMOSE) and the United States Geological Survey (USGS) websites were reviewed to determine if there are any active water supply wells in use for domestic, irrigation, livestock, municipal, or industrial purposes in the Jct. K-6 area. As a result of this review and several field reconnaissance efforts there currently are no known potential water supply receptors within ½ mile of the Jct. K-6 site. However, one abandoned water well (NMSEO File No. L-3810) which is out of service (no submersible pump or windmill) is being used as a groundwater monitoring point for Chevron's J. R. Phillips No. 2 Tank Battery Site (NMOCD File No. 1R0255).

Recent data from the three monitoring wells at Jct. K-6 shows that the water table slopes towards the southeast at a magnitude of approximately 0.003 ft/ft. The groundwater gradient at Jct. K-6 is consistent with those of several other groundwater monitoring sites in the Monument area and the regional gradient as cited in published reports (Nicholsen and Clebsch, 1961). A groundwater gradient map for the southwest portion of Monument is depicted in Figure 5. This more regionalized gradient map is based on measurements obtained during the third quarter of 2006 from several groundwater monitoring sites that are under the direction of ROC, Plains Petroleum, and Targa Midstream Services. The most recent groundwater gradient at the Jct. K-6 site is shown in Figure 6. Depth to ground water beneath the site area is approximately 34 feet bgs. There are no surface water bodies located within a mile of the site.

5.0 VADOSE ZONE CHARACTERISTICS

Results of previous soil and groundwater investigations were thoroughly described in the Stage 1 Abatement Plan. Based on those findings and in accordance with the Stage 1 Abatement Plan, seven additional soil borings (B-1 through B-7) were installed on July 18 and 19, 2006, to further delineate the horizontal and vertical extent to the vadose zone. Each boring was advanced to a depth of 30 feet bgs and samples were collected at 5-foot intervals. Soil samples were analyzed in the field for chlorides using field-adapted Method 9253 (QP-03). In addition, headspace readings were obtained using a calibrated Thermal Instruments Model 580B Organic Vapor Meter (OVM) in accordance with procedures described in QP-07. Select samples with OVM readings exceeding 100 ppm were analyzed for BTEX and total petroleum hydrocarbons (TPH) at a laboratory. Results of the soil sampling activities are shown on Figure 3 and summarized in Table 1. Photodocumentation of field activities are included in Appendix B. Laboratory analytical reports and chain of custody documentation are included in Appendix C.

Chloride concentrations at all borings were less than 1,000 ppm and averaged 351 ppm which is representative of background levels. Duplicates of soil samples (the two highest field tested concentrations for the borings) were submitted to the lab for confirmation of field testing activities. Each duplicate sample resulted in a lab chloride concentration less than that measured in the field as shown in Table 1. This suggests that the field measured chloride values may be conservatively higher than actual concentrations. It has been concluded that the chloride load in all vadose zone samples taken at the Jct K-6 site indicate levels much too low to suggest that any release from the junction box contributed to the chloride concentrations observed in the groundwater at the Jct. K-6 site. Therefore, there is no need to employ HYDRUS-1D or ground water mixing model to evaluate the potential of chlorides to impair ground water quality at the site.

OVM readings within the vadose zone in all borings were minimal, with the exception of borings B-5 and B-7. However, BTEX concentrations in the intervals with the greatest OVM readings in these two borings indicate levels well below the OCD recommended guidelines for benzene (10 mg/kg) and BTEX (50 mg/kg). Therefore, there is no need to employ a ground water fate and transport model such as VLEACH to evaluate the potential of regulated hydrocarbon constituents (benzene and BTEX) to impair ground water quality at the site since no threat exists from the junction box.

6.0 GROUNDWATER QUALITY

6.1 Monitoring Program

Monitoring well (MW-1) has been sampled on a quarterly basis for major ions, TDS, and BTEX, since January 2002. On July 18 and 19, 2006, two additional monitoring wells (MW-2 and MW-3) were installed at the Jct. K-6 site to evaluate upgradient (northwest) and downgradient (southeast) groundwater quality conditions. A summary of historical analytical results and ground water elevations for monitoring wells MW-1, MW-2, and MW-3 is shown in Table 2. A map of the most current groundwater quality conditions for the Jct. K-6 site is depicted in Figure 6. A copy of the laboratory analytical report and chain of custody form for the most recent ground water sampling event is included in Appendix C.

6.2 Hydrocarbons in Ground Water

BTEX concentrations in monitoring wells MW-1, MW-2, and MW-3 have been below the laboratory detection limit of 0.001 mg/L for each constituent and for every sampling event taken place.

6.3 Other Constituents of Concern

- Chloride concentrations in monitoring wells MW-1 (9,520 mg/L), MW-2 (10,600 mg/L), and MW-3 (10,200 mg/L) exceed the WQCC standard of 250 mg/L.
- The TDS concentrations in monitoring wells MW-1 (19,100 mg/L), MW-2 (22,500 mg/L), and MW-3 (20,700 mg/L) exceed the WQCC standard of 1,000 mg/L.

Each monitoring well indicates chloride and TDS concentrations above WQCC standards, however after two consecutive quarterly sampling events it is clear that the upgradient monitoring well (MW-3) has higher concentrations of chlorides and total dissolved solids (TDS) than those observed near the junction box (MW-1), which indicates an upgradient source (north and/or northwest) for these constituents.

The 2006 Annual Groundwater Monitoring Report includes the complete historical groundwater data for the Jct. K-6 site and has been submitted to the NMOCD as a separate document with this Final Investigation Report.

7.0 PROPOSED CORRECTIVE ACTIONS

7.1 Corrective Action to the Vadose Zone

Chloride concentrations in the vadose zone of all borings and trenches were less than 1,000 ppm and averaged 351 ppm which is representative of background levels. It is also important to note that during the initial investigation in January 2002, field chloride tests in monitoring well MW-1, which is located adjacent to the junction box, did not exceed 450 ppm (capillary fringe). Soil samples collected at the capillary fringe of monitoring wells MW-2 and MW-3 indicated chloride concentrations slightly above 1,000 mg/kg, however these slightly elevated levels are due to the transfer of chlorides from the groundwater to the capillary fringe and not from the vadose zone above. It has been concluded that the chloride load in all vadose zone samples taken at the Jct K-6 site indicate levels much too low to suggest that any release from the junction box contributed to the chloride concentrations observed in the groundwater at the Jct. K-6 site. Therefore, there is no need to employ HYDRUS-1D or ground water mixing model to evaluate the potential of chlorides to impair ground water quality at the site.

OVM readings within the vadose zone in all borings were minimal, with the exception of borings B-5 and B-7. However, BTEX concentrations in the intervals with the greatest OVM readings in these two borings indicate levels well below the OCD recommended guidelines for benzene (10 mg/kg) and BTEX (50 mg/kg). Therefore, there is no need to employ a ground water fate and transport model such as VLEACH to evaluate the potential of regulated hydrocarbon constituents (benzene and BTEX) to impair ground water quality at the site since no threat exists from the junction box.

The surface soils surrounding K-6 junction box are supportive of vegetation. The surrounding area will be re-seeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. ROC will monitor the site for continued healthy growth of native vegetation and add amendments if necessary.

7.2 Corrective Action to the Groundwater

Water well records from the NMOSE and the USGS websites were reviewed to determine if there are any active water supply wells in use for domestic, irrigation, livestock, municipal, or industrial purposes in the Jct. K-6 area. As a result of this review and several field reconnaissance efforts there currently are no known potential water supply receptors within $\frac{1}{2}$ mile of the Jct. K-6 site.

The new construction of a watertight junction box and removal of 36 cubic yards of impacted soils by ROC at the EME Jct. K-6 site has effectively mitigated any potential threat of chlorides, TDS, benzene, or BTEX from the junction box area.

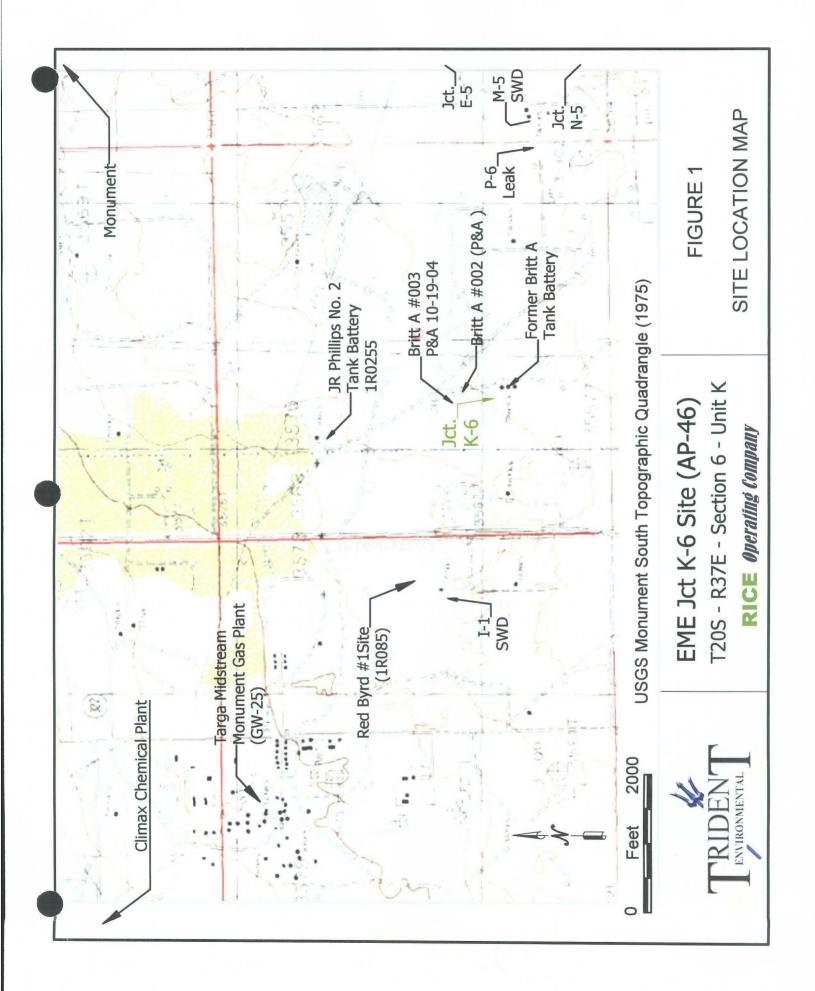
It appears that the cause for the chloride and TDS impacted groundwater at the Jct. K-6 site is from an upgradient offsite source. Groundwater in this area of Monument, New Mexico, has

been reported as regionally impacted with chlorides and unusable as early as 1952 (Nicholson and Clebsch, Groundwater Report 6). A portion of this reference is reproduced in Figure 7. The exact source of groundwater impact at the Jct. K-6 site is unknown because of the numerous potential facilities, past and present, located upgradient as partially listed in section 3.1 of this Stage 1 Final Investigation Report. Chloride and TDS concentrations at the monitoring wells are above WQCC standards however they are below background concentrations as established by samples from an upgradient site (production battery) which has indicated chloride and TDS concentrations as high as 23,300 mg/L and 26,750 mg/L, respectively.

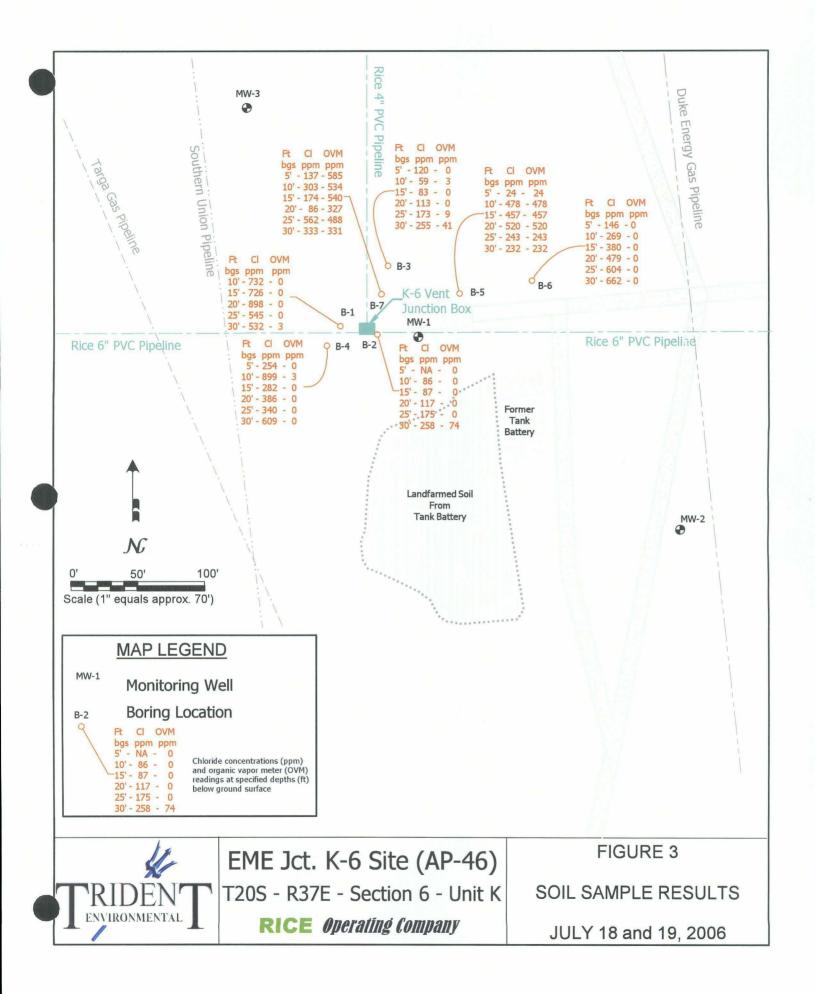
Numerous groundwater investigation sites have been identified near the site area. These sites have shown a potential as source for chlorides and TDS as observed at the Jct. K-6 site. Sites of concern include:

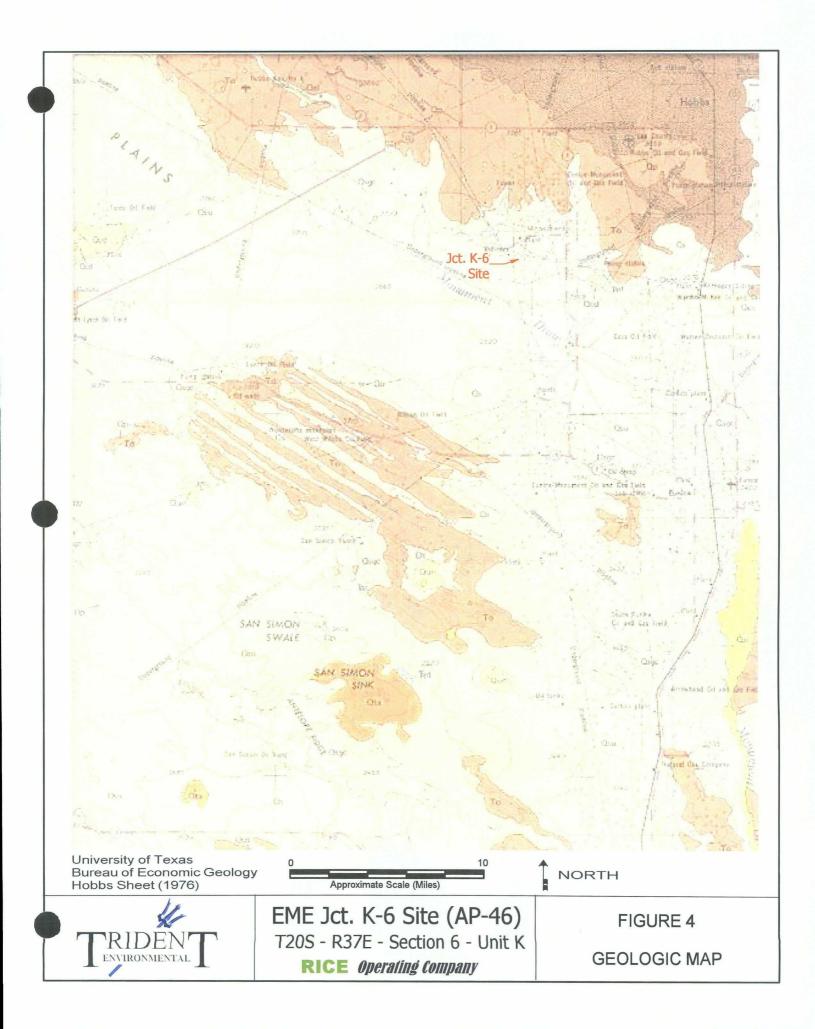
- The J. R. Phillips No. 2 Tank Battery site (NMOCD Case No. 1R0255) operated by Chevron is located less than ½ mile NNW of Jct. K-6 (Figures 2 and 5). Groundwater conditions are being monitored by Chevron on an annual frequency. Average chloride and TDS concentrations at the 8 monitoring wells are about 10,000 mg/L and 19,000 mg/L, respectively.
- The Monument Gas Plant operated by Targa Midstream Services, L.P. (Targa) is located approximately 1 mile northwest of the Jct. K-6 site (Figures 2 and 5).
 According to the Ground Water Discharge Plan (GW-025) this facility has two brine ponds and a network of 18 groundwater monitoring wells associated with it.
- An abandoned hydrochloric acid manufacturing plant (DLD Resources, formerly Climax Chemical Company) is located about 1 ½ miles northwest of the Jct. K-6 site. There are several groundwater monitoring wells associated with this facility however no active regulatory directives towards further investigation and remediation of this facility are known to be in progress.
- The former drilling pits associated with two plugged and abandoned oil wells (Britt A #002 and Britt A #003) located north of Jct. K-6.
- A former tank battery (Britt A) and landfarmed area of hydrocarbon-impacted soil is located immediately adjacent to the south and southeast of Jct. K-6. Three 210-barrel tanks were removed from this former facility in early 2005, however the area with hydrocarbon-impacted soil is still present.
- Several contiguous pits covering an approximate area of 40,000 sq. ft. located less than 200 ft. southwest of Jct. K-6 and adjacent to the west side of the former tank battery are evident in the Lea County Soil Survey (based on 1955 and 1966 aerial photography). The former presence of these pits is also evident in recent aerial photographs as shown in the attached photodocumentaion in the appendices and Figure 2.

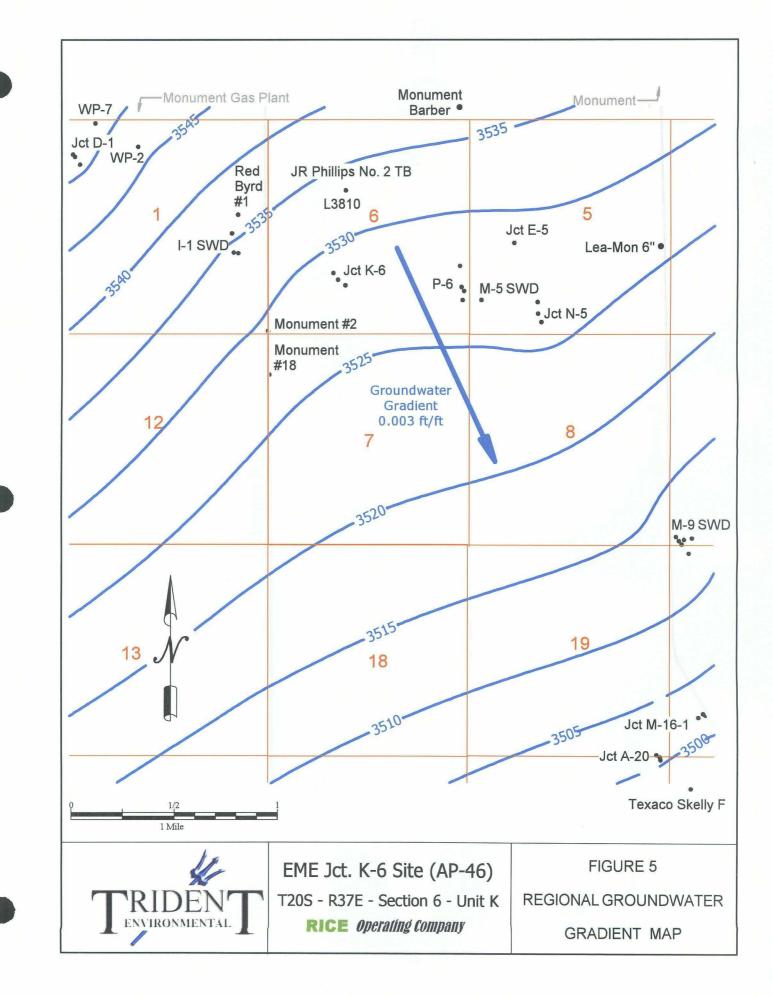
It has become clear that the upgradient monitoring well (MW-3) has higher concentrations of chlorides and total dissolved solids (TDS) than those observed near the junction box (MW-1), which indicates an upgradient source (north and/or northwest) for these constituents.

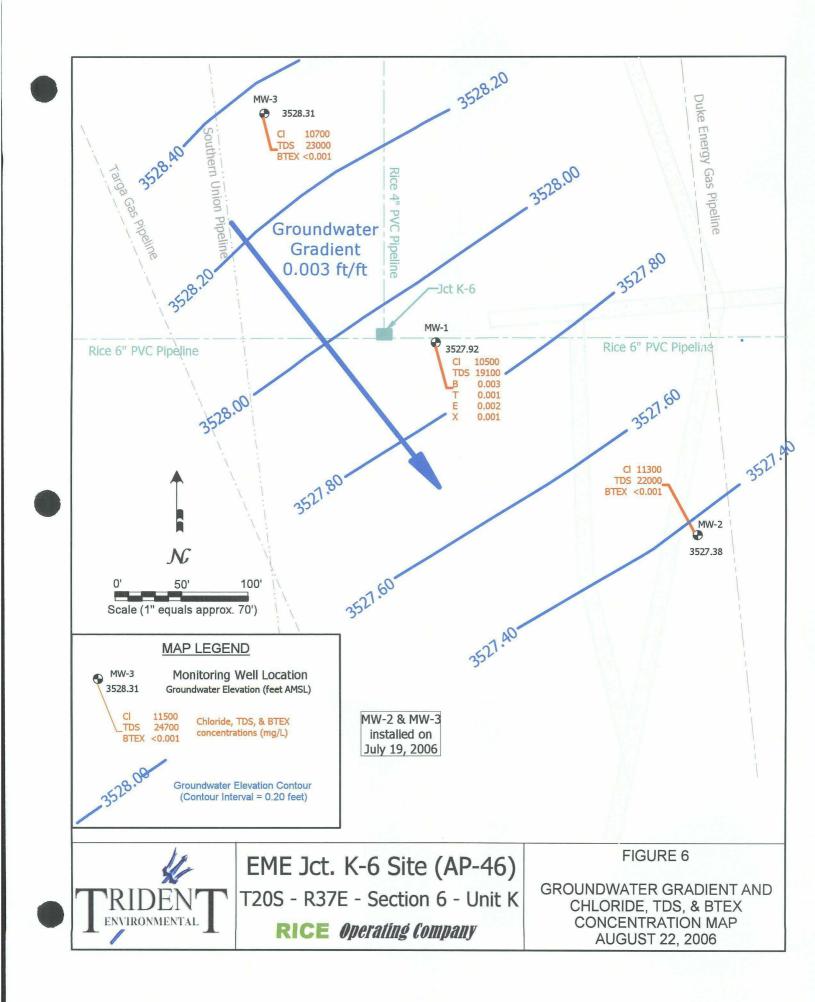

One or more of the offsite sources listed above may be the cause, or other potential release sites that have yet to be assessed including the former tank battery and pits adjacent to the south side of the Jct. K-6 site.

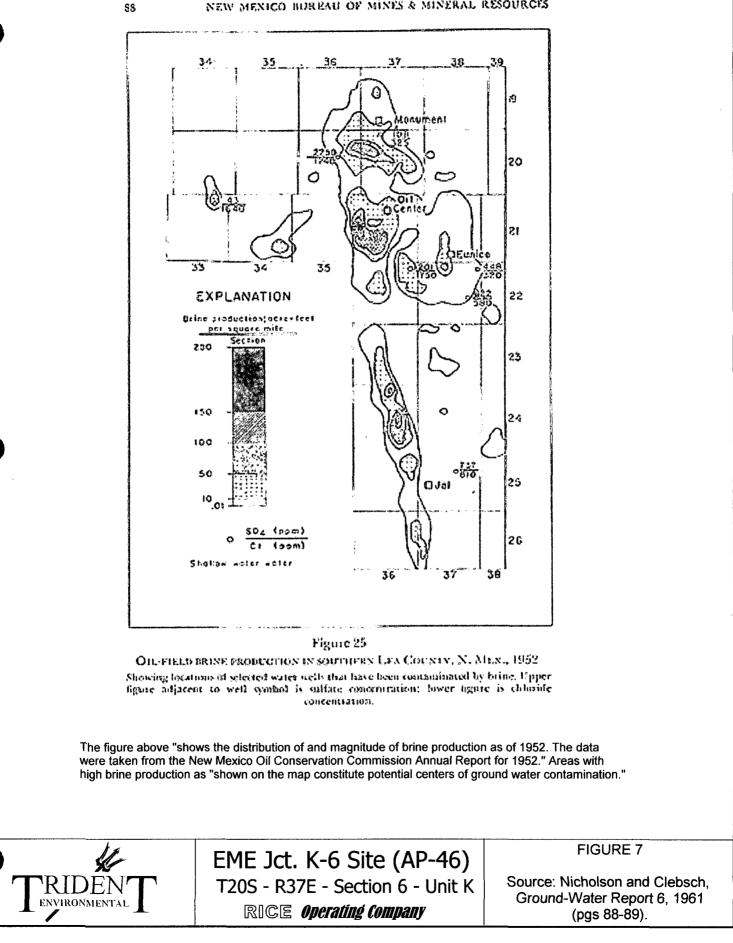
7.3 Closure and Proposed Schedule of Activities


Vadose zone delineation activities have revealed that operation of the K-6 junction box has not caused, contributed to, or could contribute to the degradation of groundwater quality. Evidence from potential upgradient offsite sources, onsite groundwater monitoring, and vadose zone characterization support the conclusion that conditions at the site do not meet the criteria that would mandate corrective action under NMOCD Rule 116 or Rule 19. We propose to continue sampling each monitor well for an additional four quarters (2007 calendar year). If quarterly sampling results continue to support this conclusion, a final report will be submitted with a request for final closure in the first quarter of 2008.


FIGURES


: الروانية المراجع





NEW MENICO BUREAU OF MINES & MINERAL RESOURCES

TABLES

ъ

EME Jct. K-6 Site (AP-46) Stage 1 Final Investigation Report and Corrective Action Plan

	Field Te	esting and	Laborator	y Analyt	tical Resu	ults for S	oil Samp	oles	
Boring/								g/kg)	
Monitoring Well	(ft bgs)	Chloride (nnm)	Chloride (mg/kg)	(ppm)	В	Т	Е	X	BTEX
w en	5' - 7'	(ppm)		0					
	10' - 12'	732		0					
	15' - 17'	732		0					
B-1	20' - 22'	898	588	0					
	25' - 27'	545		0					
	28' - 30'	532		3					
	<u>28 - 30</u> 5' - 7'			0					
	10' - 12'	86		0					
	15' - 17'	87		0					
B-2	20' - 22'	117		0					
	25' - 27'	175		0					
	28' - 30'	258		74					
	<u>28 - 30</u> 5' - 7'	120		0					
	10' - 12'	59		3					
	15' - 17'	83	·	0					
B-3	20' - 22'	113		0					
	25' - 27'	173		9					
	28' - 30'	255		41					
	<u>28 - 30</u> 5' - 7'	254		0					
	10' - 12'	899	592	3					
	15' - 17'	282	592	0,					
B-4	20' - 22'	386		0					
	20 - 22	340		0					
	28' - 30'	609		0					
· · · · · ·	<u>28 - 30</u> 5' - 7'	181		24					
	10' - 12'	365		478	0.006	0.009	2 16	 6 1 9	•
1	10 - 12	168		478		0.009	2.16	6.48	8.66
B-5	20' - 22'	165		437 520	0.002	0.009	 1.74	5 60	
	20 - 22	103		243	0.003			5.68	7.42
	23 - 27	121		243					
	<u>28 - 30</u> 5' - 7'	143		0					
	10' - 12'	269		0					
	15' - 17'	380		0					
B-6	20' - 22'	479		0					
	20 - 22	604		0					
	23 - 27	662		0					
· · ·	5' - 7'	137		585	<0.020	< 0.020	0.786	2.04	2.83
	10' - 12'	303		534	<0.020			2.04	2.03
	15' - 17'	174	[540	0.179	0.985	2.84	8.56	12.6
B-7	20' - 22'	-86		327	0.175	0.905	2.04		12.0
	25' - 27'	562		488	<0.020	<0.020	0.035	0.074	0.109
	28' - 30'	333		331					
	5' - 7'	60.		0.					
	10' - 12'	56		Õ					
	15' - 17'	115		Ŏ					
M W -2	20' - 22'	143		0					
	25' - 27'	431		Ő					
	30' - 31'	1004		Ŏ					
· · · · · · · · · · · · · · · · · · ·	5' - 7'	80		0					
	10' - 12'			0					
	1								
M W - 3	15' - 17'	569		0					
	20' - 22'	683		0	~				
1	25' - 27'	738		0					
1		1 1011		0					
	30' - 32'	1014		v					
Average C	30' - 32' hloride	1014 351		0					

÷

1.16

Table 1 . . . **---**. .

• •

1

i

ε

Stage 1 Final Investigation Report and Corrective Action Plan

Table 2

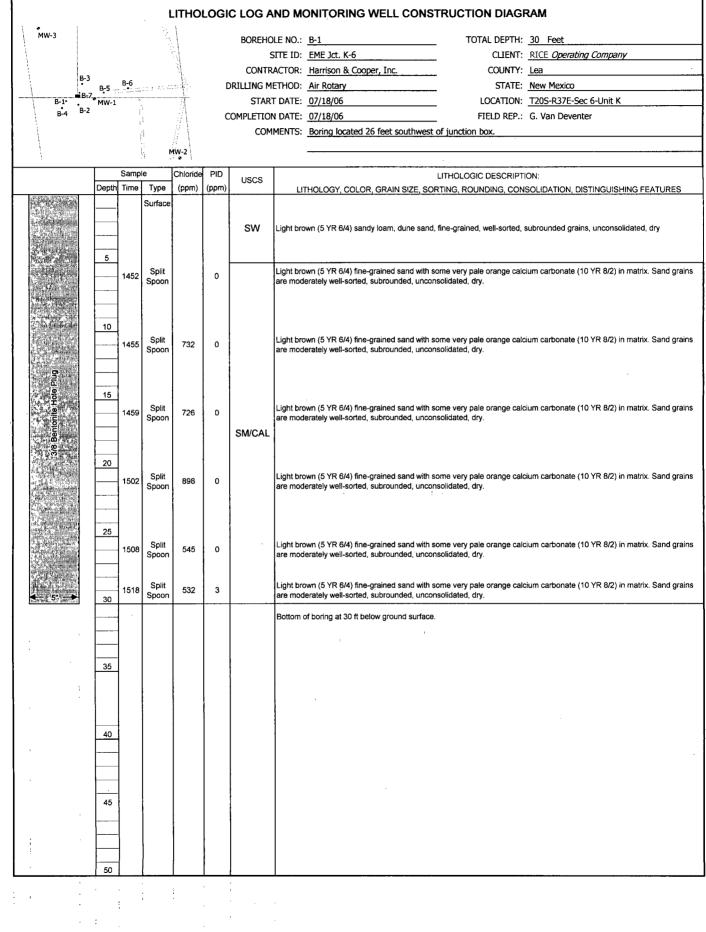
Summary of Groundwater Sampling Results

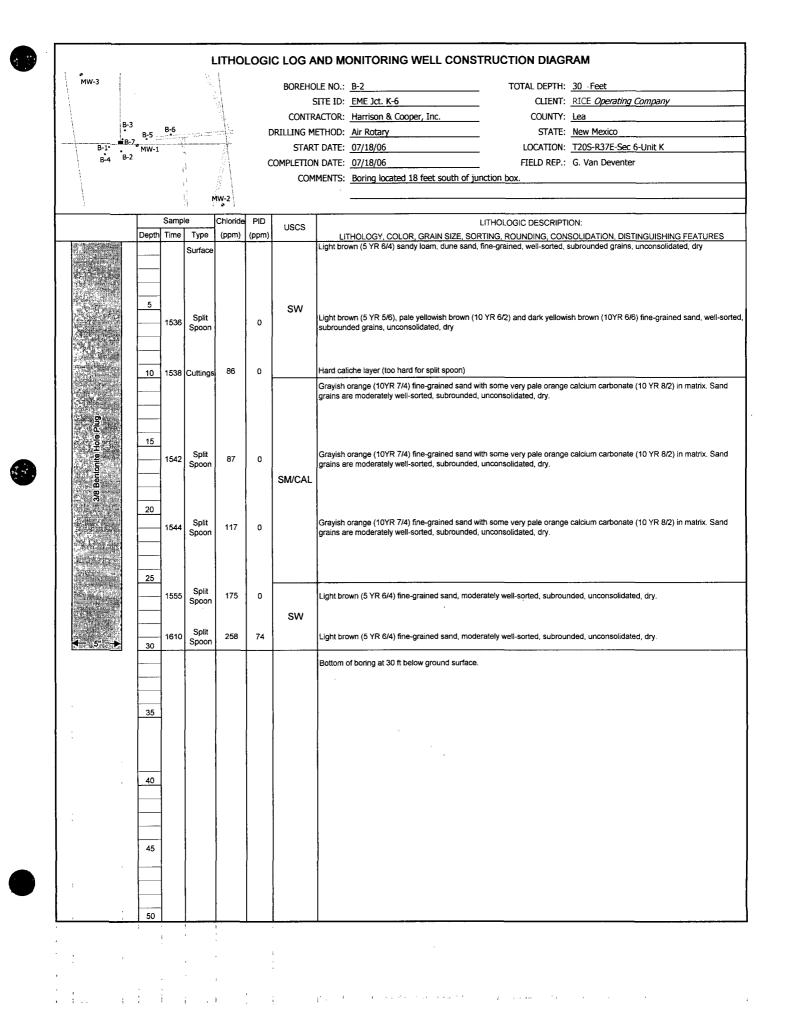
Monitoring Well	Sample Date	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)	Chloride (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)
	01/25/02	37.20	3525.16	12,096	23,370	<0.002	< 0.002	0.002	0.006
	05/14/02	37.30	3525.06	12,000	26,700	0.001	0.003	<0.001	0.004
	08/28/02	37.52	3524.84	13,796	29,180	<0.002	<0.002	0.003	<0.006
	11/11/02	38.65	3523.71	12,200	26,400	0.001	0.001	0.001	0.003
	02/27/03	37.78	3524.58	12,800	25,900	0.001	0.001	0.001	0.003
	05/29/03	37.80	3524.56	12,400	27,000	0.002	0.001	0.001	0.001
	08/21/03	37.90	3524.46	12,000	26,400	0.003	<0.001	0.002	0.004
	11/19/03	38.17	3524.19	11,500	26,500	0.003	0.001	<0.001	0.001
	02/18/04	38.40	3523.96	11,796	26,172	0.003	<0.002	<0.002	<0.006
MW-1	05/27/04	37.60	3524.76	13,800	25,700	0.001	<0.001	< 0.001	0.001
IVI W - 1	09/07/04	37.96	3524.40	11,500	24,600	0.003	<0.001	0.001	0.003
	11/24/04	37.53	3524.83	10,800	23,900	0.005	0.004	0.005	0.015
	02/09/05	36.54	3525.82	11,200	23,500	0.003	<0.001	<0.001	0.002
	05/03/05	35.60	3526.76	11,200	25,400	0.003	0.001	0.002	0.001
	08/11/05	34.44	3527.92	10,500	23,600	0.004	<0.001	0.004	0.002
	11/28/05	34.89	3527.47	9,480	25,600	0.002	0.001	0.003	0.002
	02/21/06	34.26	3528.10	10,400	23,700	0.002	0.003	0.004	0.006
	05/17/06	34.18	3528.18	11,500	22,400	0.002	0.001	0.002	0.001
	08/22/06	34.44	3527.92	10,500	19,100	0.003	0.001	0.002	0.001
	11/08/06	34.14	3528.22	9,520	19,100	0.006	0.029	0.006	0.007
MW-2	08/22/06	31.92	3527.38	11,300	22,000	<0.001	<0.001	<0.001	<0.001
101 00 -2	11/08/06	31.62	3527.68	10,600	22,500	<0.001	<0.001	<0.001	<0.001
MW-3	08/22/06	34.85	3528.31	10,700	23,000	<0.001	< 0.001	<0.001	<0.001
191 99 - 5	11/08/06	34.55	3528.61	10,200	20,700	<0.001	<0.001	<0.001	<0.001
WQCC Standards 250 1000 0.01 0.75 0.75 0.6								0.62	

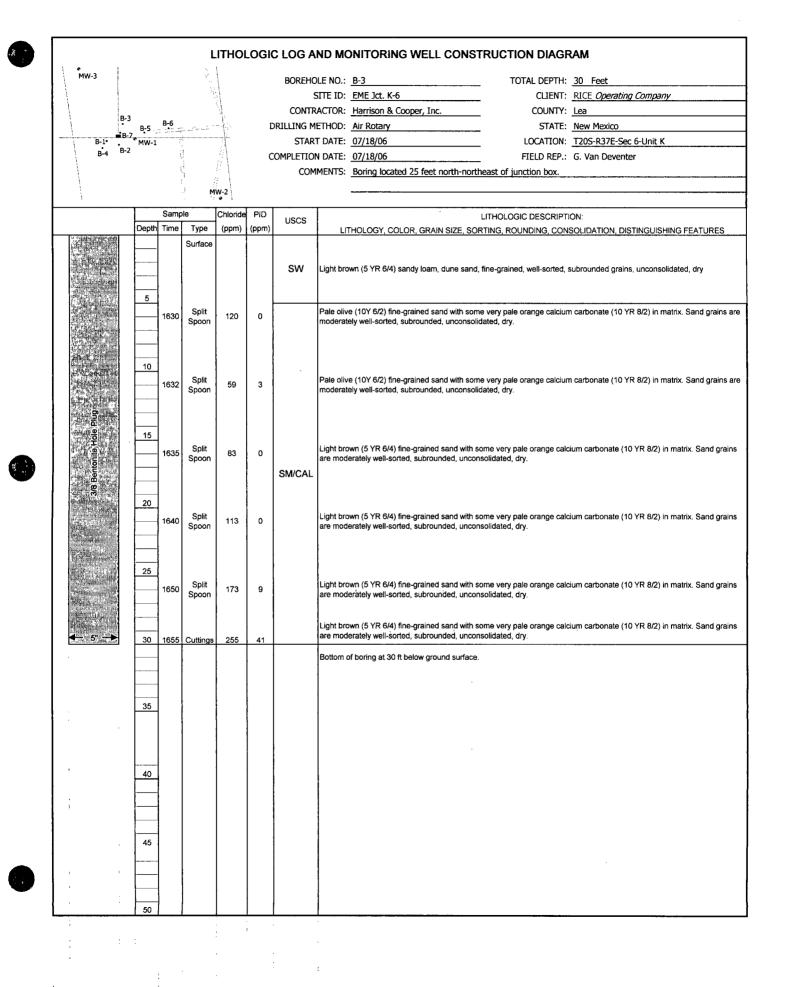
;

Total Dissolved Soilds (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L) Analyses performed by Environmental Lab of Texas (Odessa TX) or Cardinal Laboratories (Hobbs NM). Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

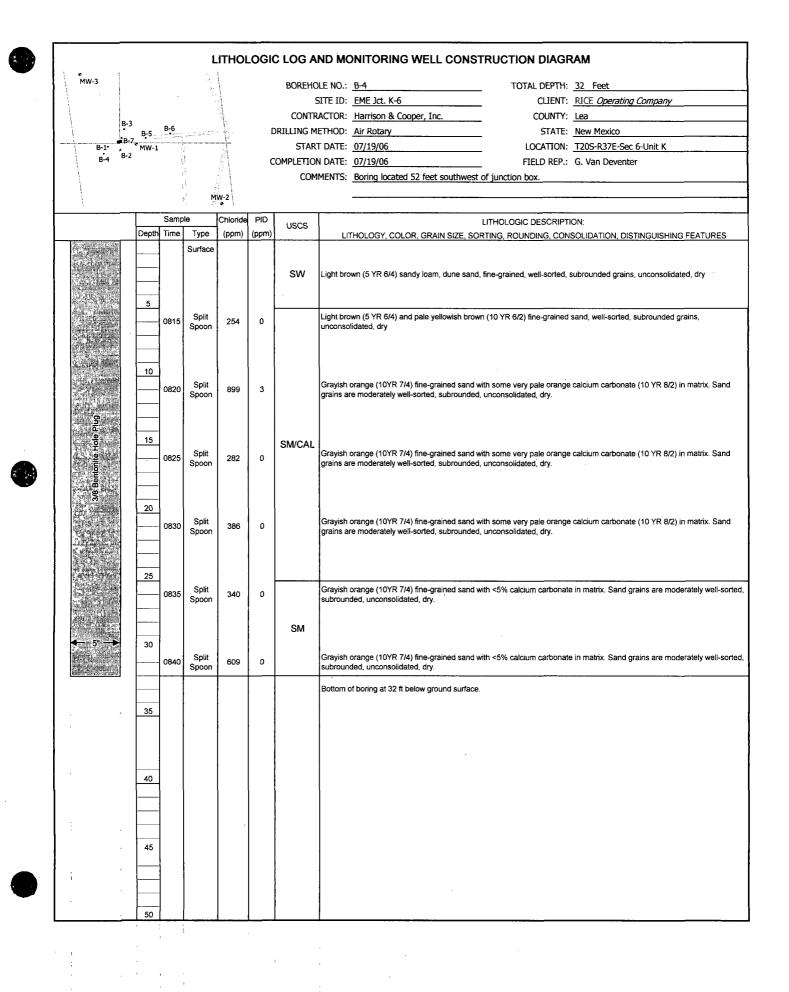
APPENDIX A

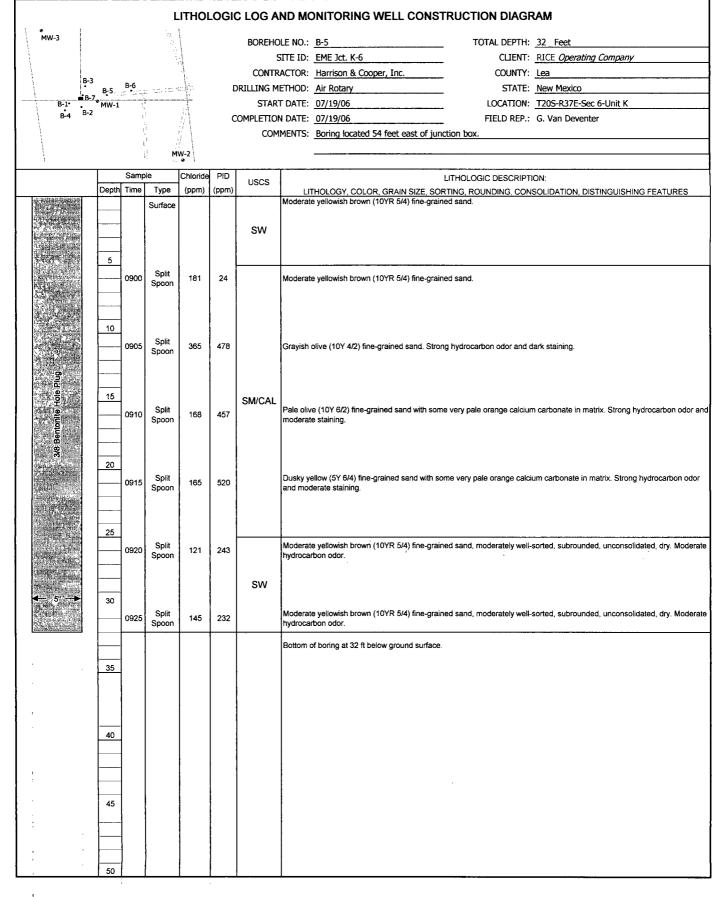

LITHOLOGIC LOGS

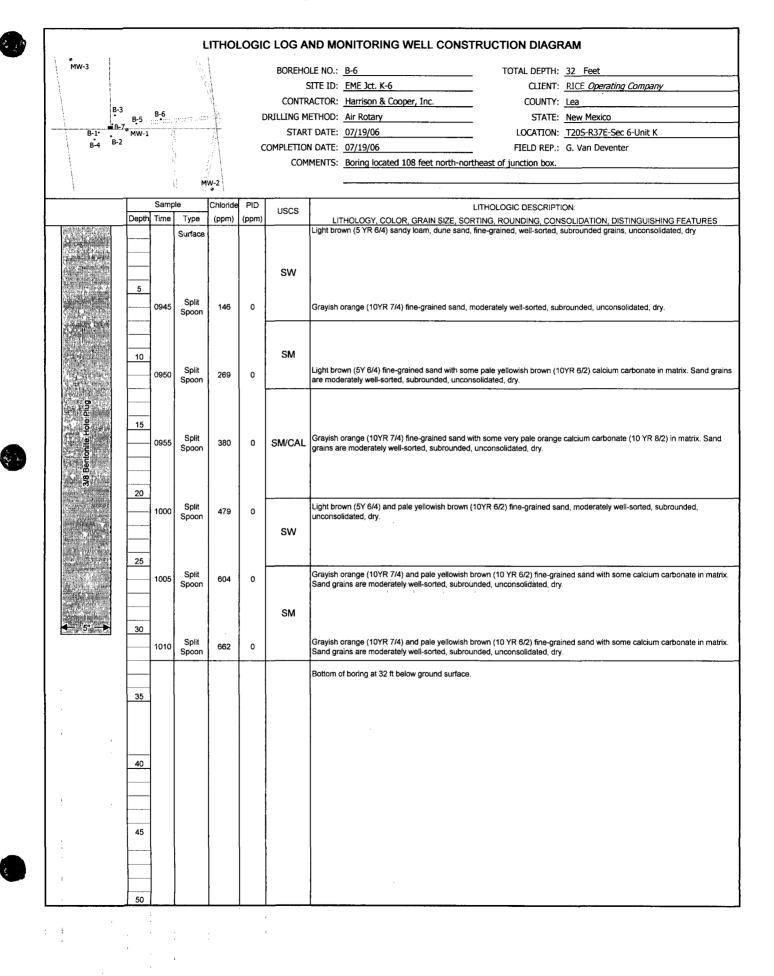

AND

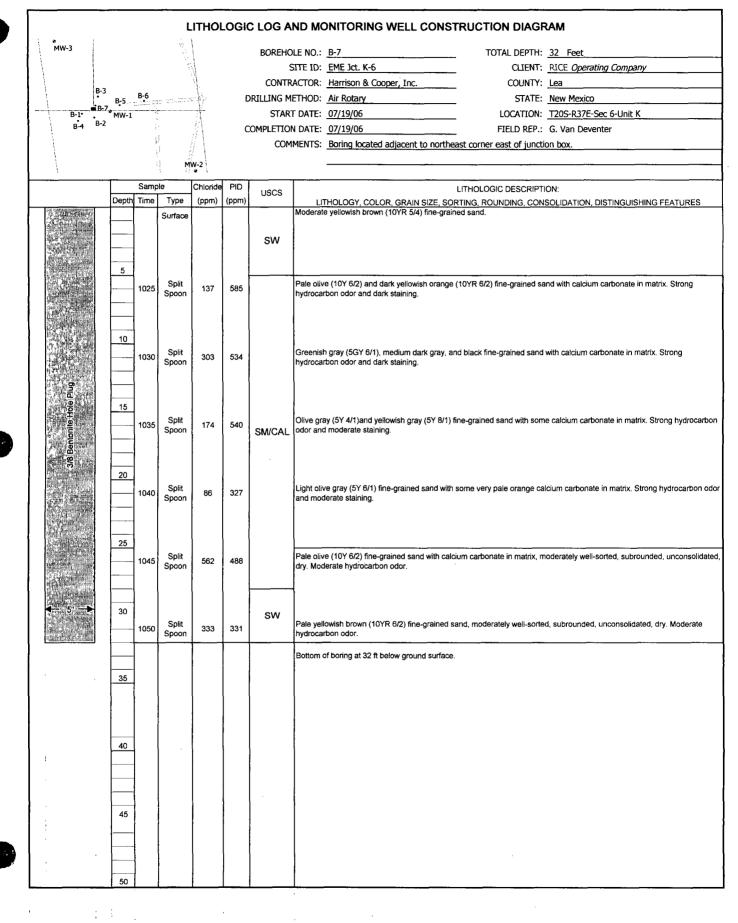

MONITORING WELL CONSTRUCTION DIAGRAMS

 $\mathcal{L} = \{0, \dots, 0\} : \{0, \dots, 0\} \in \mathbb{N}$


and a star in the second




search conclusion for the search 1.1.1.1


Ð

÷

í ł í ł

;

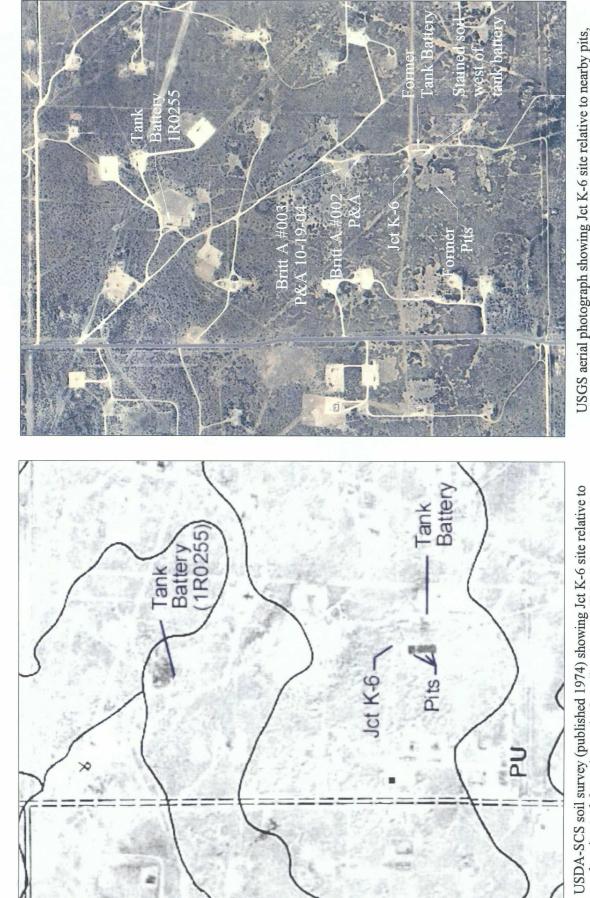
ŝ

DRILLING	LOG	Site Name/Location					Logged by: FDR
RICE Operarting C		Jct. Box K-6	Well No.	Date Drilled:	3/02	Drifter. Eades	Construction:
122 West Tay	/lor	6-T20S-R37E	Well Depth: 407	Boring Depth: 40		Well Material PVC	Installed 2" PV(
Hobbs, New Mexico 88240 EME			Casing Length: 43'	Boring Diameter:		Casing Size:	monitor well,
Phone: (505) 393	3-9174	SWD System	Screen Length: 15'	Drilling Method:	r Rotary	Slot Size:	sand & grout.
Fax (505) 397-	1471	Lea County, NM		TEST		······	
DEPTH	SUBSUR	FACE LITHOLOGY	SAMPLE TYPE	(ppm)	R	EMARKS	Boring
0 Ground	t surface			СГ	TPH		
1 Top So	li						
2							
3 Caliche	3						
5			Grab	250	odor	Field Test	
6				200			
7					ļ		
8							
9 Sand					Į		
10			Grab	250	odor	Field Test	
11							
12				300	odor	Field Test	
13			Grab	250	odor	Field Test	
15			Giab	230	0001	rieid iest	
16			Grab	250	odor	Field Test	
17							
18			Grab	275	odor	Field Test	
19							
20			Grab	275	odor	Field Test	
	nd sandst	one stringers(moist)					
22			Grab	250	odor	Field Test	
23 24		1	Carb	050		Ciald Tast	
24 25 Sand a	nd clay (m	niet	Grab	250	odor	Field Test	
25 Sand a	ina unay (III	iolog	Grab	250	odor	Field Test	
27)					
28			Grab	250	odor	Field Test	
29				ių, Es			
30			Grab	450	odor	Field Test	
31			Orah	100	! .		
32 Sand (r	noist)		Grab	450	odor	Field Test	
33							
35							
36			Grab	600	odor	Field Test	
37	,			1104	161	Lab Test	
38			Grab	600	odor	Field Test	
38 39							
40			Water Sample	12,096	<0.002	Lab Test	

. 1

STE ID: EMBADD CLEMT: ECC Operating Company. B ⁺ / ₂ 0.5 0.00178CT02 EMBADD COMTRACT02 CLEMT: ECC Operating Company. B ⁺ / ₂ 0.2 0.00178CT02 Minimol & Cooper.Inc. COMTRACT02 COMTRA			1					MC	ONITOR WE	ELL NO.: MW-2 TOTAL DEPTH: 45 Feet					
CONTRACTOR: Earlier CONTRACTOR: <															
Mark Bit Bit Diff Diff <thdiff< th=""> Diff <thdiff< th=""></thdiff<></thdiff<>				2											
Bit Start DATE: D/15/06 LOCATION: TOCHNOM: LOCATION: TOCKNOM: LOCATION: TOCKNOM: LOCATION: TOCKNOM: LOCATION: TOCKNOM: LOCATION: TOCKNOM: Location is and the provide of the provide optimate			B-	B-5	B-6			D	RILLING M	ETHOD: Air Rotary STATE: New Mexico					
Def Communication Communication <thcommunication< th=""> <thcommunication< th=""> <</thcommunication<></thcommunication<>	1	B-1	mi B	-/ MW-1			-		STAR	T DATE: 07/18/06 LOCATION: T20S-R37E-Sec 6-Unit K					
New 2 LITHOLOGY, COLOR, GRAW SZE, SORTING, KOLNONO, CONSOLDATION, DISTINGUESING FF Under Name Surface Provide Providence Surface Under Name Surface Surface Surface Surface Under Name Surface Surface Surface Surface Under Name Surface Surface Surface Surface Unconsolidated, dry. Very paids strange (10 YR 82) fine-grained and with some calcium carbonate in matics, submunded grains Unconsolidated, dry. Very paids strange (10 YR 82) fine-grained and with some calcium carbonate in matics, submunded grains Unconsolidated, dry. Very paids strange (10 YR 82) fine-grained and with some calcium carbonate in matics, submunded grains Unconsolidated, dry. SW Usph brown (SYR 64) fine-grained and with some calcium carbonate (10 YR 82) in matrix, submunded grains Usph brown (SYR 64) fine-grained and with some calcium carbonate (10 YR 82) in matrix, submunded grains, dry. <td></td> <td>B-4</td> <td>B-</td> <td>2</td> <td></td> <td></td> <td></td> <td>C</td> <td>OMPLETION</td> <td>N DATE: 07/18/06 FIELD REP.: G. Van Deventer</td>		B-4	B-	2				C	OMPLETION	N DATE: 07/18/06 FIELD REP.: G. Van Deventer					
View Sample LITHOLOGY, COLOR, GRAIN SZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FJ View Deeh Time Type Gray bit-compe (10 YR 7/4) sandy loam, dure sand, fine-grained, well-sorted, subrounded grains, uncon View Deeh Time SW Gray bit-compe (10 YR 7/4) sandy loam, dure sand, fine-grained, well-sorted, subrounded grains, uncon View Deeh Time SW View pale orange (10 YR 7/4) sandy loam, dure sand, fine-grained sand with some calcium carbonate in matrix, subrounded grains 000 Split 5 0045 Split 56 0 SWCAL View pale orange (10 YR 82) fine-grained sand with some calcium carbonate in matrix, subrounded grains Unconscildated, dry. View View SW View pale orange (10 YR 82) fine-grained sand with some calcium carbonate in matrix, subrounded grains Unconscildated, dry. View SW View View SW View View View SW View View SW View View SW View View View View View View View View View View <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>COM</td><td>MENTS: Monitoring well located approximately 240 feet southeast of former junction box .</td></td<>									COM	MENTS: Monitoring well located approximately 240 feet southeast of former junction box .					
Sample Dirichler PID USCS LITHOLOGY, COLOR, GRAIN SEE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING F J Value Surface Image: Surface Im						M	W-2								
Theory Upper Opper USCS THPOLOGY, COLOR, GRAN SEE, BORTING, POLUDRIG, CONSOLUDATON, DISTINGUISHINE F. 1 Surface Surface Graylet-orange (10 YR 7/4) samely loan, durie sand, fine-grained, well-sorted, subrounded grains, uncon 1 0 Surface Surface Surface Graylet-orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, uncon 0 0 SW Very pale grange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsidiated, dry. 0 0 SWICAL Very pale grange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsidiated, dry. 0 0 SWICAL Very pale grange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsidiated, dry. 0 0 SWICAL Very pale grange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsidiated, dry. 0 0 SWICAL Ught brown (SYR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 0 0 SWICAL Ught brown (SYR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 0 0 SWICAL Ught brown (SYR 6/4) fine-grained sand, subrounded	ĥ		-				0 1								
Junc Surface				Deat	1	1			USCS	Delate of the matrix diversity of the second					
year Summe Summe Summe Summe Summe 0 5 0.935 \$Spoin 60 0 Wey pale prange (10 YR 8/2) fine-grained sand with some calcum carbonate in matrix, subrounded grains unconsolidated, dry. 0 0.940 \$Spoin 56 0 SM(CAL Very pale prange (10 YR 8/2) fine-grained sand with some calcum carbonate in matrix, subrounded grains unconsolidated, dry. 0 0.940 \$Spoin 56 0 SM(CAL Very pale prange (10 YR 8/2) fine-grained sand with some calcum carbonate in matrix, subrounded grains unconsolidated, dry. 0 0.940 \$Spoin 115 0 Very pale prange (10 YR 8/2) fine-grained sand with some calcum carbonate in matrix, subrounded grains unconsolidated, dry. 0 0.940 \$Spoin 143 0 SW Ught brown (5YR 6/4) fine-grained sand with some calcum carbonate (10 YR 8/2) in matrix, subrounded grains, unconsolidated, dry. 0 0 25 0.955 \$Spoin 143 0 SW/CAL Ught brown (5YR 6/4) fine-grained sand with some calcum carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 0 0.050 \$Spoin 1004 0 \$SW/CAL Ught brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 0<			Г	Dept	n Time		(ppm)	(ppm)		LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATU Grayish-orange (10 YR 7/4) sandy loam, dune sand, fine-grained, well-sorted, subrounded grains, unconsolida					
Number S Split 60 0 0 Market Arrow 000 000 10 000 5000 500 0 Numerosidated, dry. 000 000 5000 56 0 SWCAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 000 15 0845 Split 15 0 SWCAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 000 15 0845 Split 15 0 SWCAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0100 0945 Split 115 0 SWCAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0100 15 0845 Split 13 0 SWCAL Ught brown (SYR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matre, subrounded grains 01000 Split 100 SWCAL SW/CAL Light brown (SYR 6/4) fine-grained sand, subrounded grains, dry. 010000 Split<						Surface									
Organization Spicit 60 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0000 900 900 000 900 900 900 900 900 90	1								SW						
Organization Spicit 60 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0000 900 900 000 900 900 900 900 900 90	nent		nent						-						
Organ 0045 Spoon 60 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains Organ 0040 Split 56 0 SM/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0040 20 0045 Split 115 0 SM/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0 20 0045 Split 143 0 SW/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0 20 0950 Split 143 0 SW Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains 0 25 0955 Split 131 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains 0 30 1000 Split 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 0 35 40 Spoon 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry.	Cer		Cer	5	-										
Organ Organ Split Split <th< td=""><td></td><td></td><td></td><td></td><td>0935</td><td></td><td>60</td><td>0</td><td></td><td>Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry.</td></th<>					0935		60	0		Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry.					
Big Description Open of a participation Spill Spill <t< td=""><td></td><td>b</td><td rowspan="4">Plug</td><td></td><td></td><td>opoort</td><td>-</td><td></td><td></td><td></td></t<>		b	Plug			opoort	-								
Big 10 0940 Spitilitie 56 0 SM/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0940 0940 0945 Spitilitie 0 SM/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0940 0940 0940 Spitilitie 0 SM/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 0940 0950 Spitilitie 0 SW/CAL Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains 10 20 0950 Spitilitie 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains 10 1000 Spitilitie 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 1000 1001 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 1000 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 1001 1004 0 SW/CAL Light brown (5YR		Casir							-						
deg er N deg er 1 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in weak or an intervery pale ora inter		ank (10										
deg er N deg er 1 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in weak or an intervery pale ora inter	Bnlc	CBI			0940		56	0							
deg er N deg er 1 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in weak or an intervery pale ora inter	lole F	0 PV	lole F		1.0	Spoon	50			Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains,					
deg er N deg er 1 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in matrix, subrounded grains, dry. very pale orange (10 YR 8/2) in weak or an intervery pale ora inter	lite H	ed 4	H H						SM/CAL	unconsolidated, dry.					
90 80 1 0945 Split 115 0 Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains, unconsolidated, dry. 90 1 20 950 Split 143 0 Light brown (5YR 6/4) fine-grained sand, subrounded grains, moderately well-sorted, dry. 90 1 25 955 Split 431 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. 90 1 30 955 Split 431 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, subrounded grains, moderately well-sorted, dry. 90 1 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 90 1 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	enton		enton	45											
Yord program Yord program Spoon 1.43 0 Light brown (5YR 6/4) fine-sand, subrounded grains, moderately well-sorted, dry. Yord program 25 Spinit 431 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. Yord program 30 1000 Spinit 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yord program 35 1000 Spinit 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yord program 35 40 40 40 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 40 40 45 45 45 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 45 45 45 45 45 45 45 45	/8 Be	2"	/8 Be	/8 Be	15		Split				Very pale orange (10 YR 8/2) fine-grained sand with some calcium carbonate in matrix, subrounded grains				
Yet 0 0 Split 143 0 Light brown (5YR 6/4) fine sand, subrounded grains, moderately well-sorted, dry. Yet 0 0 SW Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-sorted, dry. Yet 30 0 Split 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yet 30 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yet 35 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. Yet 40 40 40 5 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 45 45 45 46 46 46 46 45 45 45 46 46 46 46 46 46 46 46 47 48 46 46 46 46 46 46	3		ŝ		0945		115	0							
Yord program 30 Split 143 0 SW Light brown (5YR 6/4) fine sand, subrounded grains, moderately well-sorted, dry. Yord program 30 0955 Split 1000 Split 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, subrounded grains, dry. Yord program 30 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yord program 35 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yord program 35 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. Yord program 40 40 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 415 45 46 47 5 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 45 46 46 46 46 46 46 46 47 48 48 46 <															
Yord program 30 Split 143 0 SW Light brown (5YR 6/4) fine sand, subrounded grains, moderately well-sorted, dry. Yord program 30 0955 Split 1000 Split 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, subrounded grains, dry. Yord program 30 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yord program 35 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yord program 35 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. Yord program 40 40 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 415 45 46 47 5 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 45 46 46 46 46 46 46 46 47 48 48 46 <															
Yord pues solits 30 25 Spoin 143 0 SW Yord pues solits 0955 Spint 431 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, finderately weil-solited, diy. Yord pues solits 30 1000 Spint 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, finderately weil-solited, diy. Yord pues solits 30 1000 Spint 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 1000 Spint 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 1000 40 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 40 45 40 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 45 46 46 46 46 46 46 45 45 46 46 46 46 46 46 46				20	-										
yeed purgs envision of the second se					0950		143	0		Light brown (5YR 6/4) fine sand, subrounded grains, moderately well-sorted, dry.					
Yet our solution 25 0955 Split 431 0 Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, subrounded grains, dry. Yet our solution 30 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. Yet our solution 35 1000 Split 1004 0 SW/CAL Light brown (5YR 6/4) fine-grained sand, with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 1000 40 40 40 5 5 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 40 45 45 45 45 45 5 SW Bottom of boring at 45 ft below ground surface. 8 Bottom of boring at 45 ft below ground surface.	-								SW						
year pues solid for the second stand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains, dry. 1000 Split, 1000 Split, 1004 0 SW/CAL 1000 SW/CAL 1															
yead pues seligs 000 very 400 very 40				25		_									
YOR DUES FOR ON OUT 30 Image: Solution of boring at 45 ft below ground surface. YOR DUES FOR ON OUT 40 Image: Solution of boring at 45 ft below ground surface.					0955		431	0	_	Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded grains,					
40 40 40 40 40 40 40 40 40 40						Spoon									
40 40 40 40 40 40 40 40 40 40															
40 40 40 40 40 40 40 40 40 40	S		×.	30					014/10.01						
40 40 40 40 40 40 40 40 40 40	d Pa	Slots	d Pa		1000	Split	1004	0	SW/CAL	Light brown (5YR 6/4) fine-grained sand with some calcium carbonate (10 YR 8/2) in matrix, subrounded graine					
40 40 40 40 40 40 40 40 40 40	San	10"	San		1000	Spoon	.004								
40 40 40 40 40 40 40 40 40 40	Silica	h 0.0	Silica												
40 40 40 40 40 40 40 40 40 40	ady \$	n wit	ady S	25											
40 40 40 40 40 40 40 40 40 40	to Br	scree	10 Br	35						Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry.					
N 40 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 Bottom of boring at 45 ft below ground surface.	20/4	ater S	20/4												
N 40 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 Bottom of boring at 45 ft below ground surface.		iame													
40 SW Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry. 45 Bottom of boring at 45 ft below ground surface.															
45 Bottom of boring at 45 ft below ground surface.				40	-				SW	Light brown (5YR 6/4) fine-grained sand, subrounded graine, dou					
								-		and some of the organized series, subjudituded grants, dry.					
	f	\bigvee		45						Bottom of boring at 45 ft below ground surface.					
	-	5" -	-												

e M\	V-3					1			
							MONIT		KLL NO.: MW-3 TOTAL DEPTH: 45 Feet GITE ID: EME Jct. K-6 CLIENT: RICE Operating Company
							C		ACTOR: Harrison & Cooper, Inc. COUNTY: Lea
		B-3	B-5	B-6					ETHOD: Air Rotary STATE: New Mexico
	B-1	B-	MW-1	_				STAR	T DATE: 07/18/06 LOCATION: T20S-R37E-Sec 6-Unit K
	в-	4 B-2					COMP	LETION	DATE: 07/18/06 FIELD REP.: G. Van Deventer
								COM	MENTS: Monitoring well located approximately 210 feet northwest of former junction box .
1					M	W-2			
Г	-	7	1	Sam	ole	Chloride	PID		LITHOLOGIC DESCRIPTION:
			Depth	Time	Туре	(ppm)	(ppm)	USCS	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES
					Surface				Light brown (5Y 6/4) sandy loam, dune sand, fine-grained, well-sorted, subrounded grains, unconsolidated, dry
Cement		tent					-	_	
Cen		Cement	5	1110	Cuttings	80	0		
									Light brown (5Y 6/4) sandy loam, dune sand, fine-grained, well-sorted, subrounded grains, unconsolidated, dry
	br							SW	
	Sched 40 PVC Blank Casing								
3/8 Bentonite Hole Plug	slank		10	1115	Cuttings		0		
	VC B	Bentonite Hole Plug							
	140 F	Hole						_	Light brown (5YR 6/4) sandy loam, dune sand, fine-grained, well-sorted, subrounded grains, unconsolidated, dry
	Schec	tonite							
	2"	3 Ber	15	1120	Cuttings	569	69 0		
		3/8				•			Grayish-orange (10 YR 7/4) fine-grained sand with some very pale orange (10YR 8/2) calcium carbonate in matrix, subrounded grains, unconsolidated, dry.
							SM/C AL		
		-							
			20	1125	Cuttings	683	0		Light brown (5Y 6/4) fine sand with <5% calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-
								-	sorted, dry.
			25	1125	Cuttings	738	0		
			25	1135	Cuttings	/30	0		Light brown (5Y 6/4) fine sand with <5% calcium carbonate (10 YR 8/2) in matrix, subrounded grains, moderately well-
								SW/	sorted, dry.
								CAL	(Calcium carbonate decreases with death)
K		8	30	1140	Cuttings	1014	0		(Calcium carbonate decreasg with depth)
PL La	Slots	20/40 Brady Silica Sand Pack		1					Light brown (5Y 6/4) fine-grained sand with some calcium carbonate in matrix, subrounded grains, dry.
20/40 Brady Silica Sand Pack	Diameter Screen with 0.010" Slots	a Sar							, , ,
ollo	ith 0.	Silic							
srady	en w	Brady	35						
10401	r Scre	0/40 E							Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry.
V	metel	2(
	2" Dia				-				
	1		40			-		SW	Light house (EVD 6/4) for period and enhanced in the
									Light brown (5YR 6/4) fine-grained sand, subrounded grains, dry.
-	\bigvee		45						Bottom of boring at 45 ft below ground surface.
-	5" .								


APPENDIX B

PHOTODOCUMENTATION

View facing northwest showing completed MW-2 (foreground) and drilling activities at boring B-3 (background) near Jct. K-6.

USDA-SCS soil survey (published 1974) showing Jct K-6 site relative to nearby pits, tank batteries, and other oil and gas facilities (photobase from 1955 and 1966 aerial photography).

USGS aerial photograph showing Jct K-6 site relative to nearby pits, tank batteries, and other oil and gas facilities (photo taken July 2005).

APPENDIX C

LABORATORY ANALYTICAL REPORTS

AND

CHAIN OF CUSTODY DOCUMENTATION

Summary Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 8, 2006

Work Order: 6072113

Project Location:	Sec 6K T205 R37E,Lea County,NM
Project Name:	EME K-6 Vent Jet Box
Project Number:	EME K-6 Vent Jet Box

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
96007	B-1 (20'-22')	soil	2006-07-18	15:02	2006-07-20
96008	B-4 (10'-12')	soil	2006-07-19	08:20	2006-07-20
96009	B-5 (10'-12')	soil	2006-07-19	09:05	2006-07-20
96010	B-5 (20'-22')	soil	2006-07-19	09:15	2006-07-20
96011	B-7 (5'-7')	soil	2006-07-19	10:25	2006-07-20
96012	B-7 (15'-17')	soil	2006-07-19	10:35	2006-07-20
96013	B-7 (25'-27')	soil	2006-07-19	10:45	2006-07-20

	TPH DRO	TPH GRO
	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)
96013 - B-7 (25'-27')	2370	43.0

Sample: 96007 - B-1 (20'-22')

Param	Flag	Result	Units	RL
Chloride		588	mg/Kg	1.00

Sample: 96008 - B-4 (10'-12')

Param	Flag	Result	Units	RL
Chloride		592	mg/Kg	1.00

Sample: 96009 - B-5 (10'-12')

Param	Flag	Result	\mathbf{Units}	RL
C6-C35, Unfractionated		16300	mg/Kg	50.0
C6, Aliphatic		<1000	m mg/Kg	50.0
C6-C8, Aliphatic		<1000	m mg/Kg	50.0
C8-C10, Aliphatic		<1000	mg/Kg	50.0

continued ...

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296

Report Date: August 8, 2006	Work Order: 6072113	Page Number: 2 of 4
EME K-6 Vent Jet Box	EME K-6 Vent Jet Box	Sec 6K T205 R37E,Lea County,NM

sample 96009 continued ...

Param	Flag	Result	Units	RL
C10-C12, Aliphatic		<1000	mg/Kg	50.0
C12-C16, Aliphatic		2090	m mg/Kg	50.0
C16-C21, Aliphatic		1980	mg/Kg	50.0
C21-C35, Aliphatic		2650	mg/Kg	50.0
C6-C7, Aromatic		<1000	mg/Kg	50.0
C7-C8, Aromatic		<1000	mg/Kg	50.0
C8-C10, Aromatic		<1000	mg/Kg	50.0
C10-C12, Aromatic		<1000	mg/Kg	50.0
C12-C16, Aromatic		<1000	mg/Kg	50.0
C16-C21, Aromatic		<1000	m mg/Kg	50.0
C21-C35, Aromatic		1060	m mg/Kg	50.0
Percent Recovery		66.7	%	0.00
Benzene		64.5	$\mu { m g}/{ m Kg}$	10.0
Toluene		90.2	$\mu { m g}/{ m Kg}$	10.0
Ethylbenzene		2160	$\mu { m g}/{ m Kg}$	10.0
m,p-Xylene		5530	$\mu \mathrm{g}/\mathrm{Kg}$	10.0
o-Xylene		949	$\mu g/Kg$	10.0
Naphthalene		2650	$\mu \mathrm{g}/\mathrm{Kg}$	50.0

Sample: 96010 - B-5 (20'-22')

Param	Flag	Result	Units	RL
C6-C35, Unfractionated		5360	mg/Kg	50.0
C6, Aliphatic		$<\!500$	mg/Kg	50.0
C6-C8, Aliphatic		$<\!500$	mg/Kg	50.0
C8-C10, Aliphatic		<500	mg/Kg	50.0
C10-C12, Aliphatic		<500	mg/Kg	50.0
C12-C16, Aliphatic		911	mg/Kg	50.0
C16-C21, Aliphatic		756	mg/Kg	50.0
C21-C35, Aliphatic		545	m mg/Kg	50.0
C6-C7, Aromatic		$<\!500$	m mg/Kg	50.0
C7-C8, Aromatic		<500	m mg/Kg	50.0
C8-C10, Aromatic		$<\!500$	m mg/Kg	50.0
C10-C12, Aromatic		$<\!500$	m mg/Kg	50.0
C12-C16, Aromatic		<500	m mg/Kg	50.0
C16-C21, Aromatic		$<\!500$	m mg/Kg	50.0
C21-C35, Aromatic		$<\!500$	m mg/Kg	50.0
Percent Recovery		75.9	%	0.00
Benzene		26.1	$\mu { m g}/{ m Kg}$	10.0
Toluene		88.3	$\mu { m g}/{ m Kg}$	10.0
Ethylbenzene		1740	$\mu { m g}/{ m Kg}$	10.0
m,p-Xylene		4700	$\mu { m g}/{ m Kg}$	10.0
o-Xylene		977	$\mu { m g}/{ m Kg}$	10.0
Naphthalene		2460	$\mu \mathrm{g}/\mathrm{Kg}$	50.0

Sample: 96011 - B-7 (5'-7')

Param	Flag	Result	Units	\mathbf{RL}
C6-C35, Unfractionated		892	mg/Kg	50.0
C6, Aliphatic		<250	mg/Kg	50.0
				continued

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296

.i (

· 17

Report Date: August 8, 2006	Work Order: 6072113	Page Number: 3 of 4
EME K-6 Vent Jet Box	EME K-6 Vent Jet Box	Sec 6K T205 R37E,Lea County,NM

sample 96011 continued ...

Param	Flag	Result	\mathbf{Units}	RL
C6-C8, Aliphatic		<250	mg/Kg	50.0
C8-C10, Aliphatic		$<\!250$	mg/Kg	50.0
C10-C12, Aliphatic		$<\!250$	mg/Kg	50.0
C12-C16, Aliphatic		$<\!250$	m mg/Kg	50.0
C16-C21, Aliphatic		$<\!250$	mg/Kg	50.0
C21-C35, Aliphatic		$<\!250$	mg/Kg	50.0
C6-C7, Aromatic		$<\!250$	m mg/Kg	50.0
C7-C8, Aromatic		$<\!250$	m mg/Kg	50.0
C8-C10, Aromatic		$<\!250$	mg/Kg	50.0
C10-C12, Aromatic		$<\!250$	mg/Kg	50.0
C12-C16, Aromatic		$<\!250$	m mg/Kg	50.0
C16-C21, Aromatic		$<\!250$	mg/Kg	50.0
C21-C35, Aromatic		$<\!250$	mg/Kg	50.0
Percent Recovery		69.0	%	0.00
Benzene		<20.0	$\mu { m g}/{ m Kg}$	10.0
Toluene		<20.0	$\mu { m g}/{ m Kg}$	10.0
Ethylbenzene		786	$\mu { m g}/{ m Kg}$	10.0
m,p-Xylene		2010	$\mu { m g}/{ m Kg}$	10.0
o-Xylene		26.3	$\mu { m g}/{ m Kg}$	10.0
Naphthalene		996	$\mu { m g}/{ m Kg}$	50.0

Sample: 96012 - B-7 (15'-17')

Param	Flag	Result	\mathbf{Units}	RL
C6-C35, Unfractionated		5930	mg/Kg	50.0
C6, Aliphatic		<500	m mg/Kg	50.0
C6-C8, Aliphatic		<500	m mg/Kg	50.0
C8-C10, Aliphatic		<500	m mg/Kg	50.0
C10-C12, Aliphatic		$<\!500$	m mg/Kg	50.0
C12-C16, Aliphatic		969	m mg/Kg	50.0
C16-C21, Aliphatic		926	mg/Kg	50.0
C21-C35, Aliphatic		939	mg/Kg	50.0
C6-C7, Aromatic		<500	mg/Kg	50.0
C7-C8, Aromatic		$<\!500$	m mg/Kg	50.0
C8-C10, Aromatic		$<\!500$	m mg/Kg	50.0
C10-C12, Aromatic		$<\!500$	m mg/Kg	50.0
C12-C16, Aromatic		<500	mg/Kg	50.0
C16-C21, Aromatic		$<\!500$	m mg/Kg	50.0
C21-C35, Aromatic		$<\!500$	m mg/Kg	50.0
Percent Recovery		69.0	%	0.00
Benzene		179	$\mu { m g}/{ m Kg}$	10.0
Toluene		985	$\mu { m g}/{ m Kg}$	10.0
Ethylbenzene		2840	$\mu { m g}/{ m Kg}$	10.0
m,p-Xylene		6620	$\mu { m g}/{ m Kg}$	10.0
o-Xylene		1940	$\mu { m g}/{ m Kg}$	10.0
Naphthalene	····	2480	$\mu g/Kg$	50.0

Sample: 96013 - B-7 (25'-27')

ŧ

continued ...

Report Date: August 8, 2006 EME K-6 Vent Jet Box Work Order: 6072113 EME K-6 Vent Jet Box Page Number: 4 of 4 Sec 6K T205 R37E,Lea County,NM

sample 96013 continued ...

Param	Flag	Result	Units	RL
Param	Flag	Result	Units	RL
Benzene		<20.0	$\mu g/Kg$	10.0
Toluene		$<\!20.0$	$\mu { m g}/{ m Kg}$	10.0
Ethylbenzene		35.0	$\mu { m g}/{ m Kg}$	10.0
m,p-Xylene		51.6	$\mu g/Kg$	10.0
o-Xylene		22.0	$\mu \mathrm{g}/\mathrm{Kg}$	10.0
Naphthalene		579	$\mu g/Kg$	50.0

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79932 888 • 588 • 3443 E-Mail: lab@traceanalysis.com 806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944

Analytical and Quality Control Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 8, 2006

Work Order: 6072113

Project Location:Sec 6K T205 R37E,Lea County,NMProject Name:EME K-6 Vent Jet BoxProject Number:EME K-6 Vent Jet Box

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
96007	B-1 (20'-22')	soil	2006-07-18	15:02	2006-07-20
96008	B-4 (10'-12')	soil	2006-07-19	08:20	2006-07-20
96009	B-5 (10'-12')	soil	2006-07-19	09:05	2006-07-20
96010	B-5 (20'-22')	soil	2006-07-19	09:15	2006-07-20
96011	B-7 (5'-7')	soil	2006-07-19	10:25	2006-07-20
96012	B-7 (15'-17')	soil	2006-07-19	10:35	2006-07-20
96013	B-7 (25'-27')	soil	2006-07-19	10:45	2006-07-20

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 17 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael Abr

Dr. Blair Leftwich, Director

Analytical Report

Sample: 96007 - B-1 (20'-22')

Analysis:	Chloride (IC)	Analytical Method:	E 300.0		Prep Method:	N/A
QC Batch:	28529	Date Analyzed:	2006-07-30		Analyzed By:	WB
Prep Batch:	24946	Sample Preparation:	2006-07-29		Prepared By:	WB
		RL				
Parameter	Flag	Result	Units	Dilution		RL
Chloride		588	mg/Kg	100		1.00

Sample: 96008 - B-4 (10'-12')

Analysis:	Chloride (IC)	Analytical Method:	E 300.0		Prep Method:	N/A
QC Batch:	28773	Date Analyzed:	2006-08-04		Analyzed By:	WB
Prep Batch:	25148	Sample Preparation:	2006-08-04		Prepared By:	WB
		RL				
Parameter	Flag	Result	Units	Dilution		RL
Chloride		592	mg/Kg	50		1.00

Sample: 96009 - B-5 (10'-12')

Analysis:	TX1006	Analytical Method:	TX1006	Prep Method:	N/A
QC Batch:	28403	Date Analyzed:	2006-07-27	Analyzed By:	SP
Prep Batch:	24847	Sample Preparation:	2006-07-27	Prepared By:	SP

		RL			
Parameter	Flag	Result	Units	Dilution	RL
C6-C35, Unfractionated	· · · · · · · · · · · · · · · · · · ·	16300	mg/Kg	20	50.0
C6, Aliphatic		<1000	mg/Kg	20	50.0
C6-C8, Aliphatic		<1000	mg/Kg	20	50.0
C8-C10, Aliphatic		<1000	mg/Kg	20	50.0
C10-C12, Aliphatic		<1000	mg/Kg	20	50.0
C12-C16, Aliphatic		2090	mg/Kg	20	50.0
C16-C21, Aliphatic		1980	mg/Kg	20	50.0
C21-C35, Aliphatic		2650	mg/Kg	20	50.0
C6-C7, Aromatic		<1000	mg/Kg	20	50.0
C7-C8, Aromatic		<1000	mg/Kg	20	50.0
C8-C10, Aromatic		<1000	mg/Kg	20	50.0
C10-C12, Aromatic		<1000	mg/Kg	20	50.0
C12-C16, Aromatic		<1000	mg/Kg	20	50.0
C16-C21, Aromatic		<1000	mg/Kg	20	50.0
C21-C35, Aromatic		1060	mg/Kg	20	50.0
Percent Recovery		66.7	%	20	0.00

 e^{i}

Sample: 96009 - B-5 (10'-12')

Analysis:VolatilesQC Batch:28464Prep Batch:24903		Analytical M Date Analyz Sample Prej	zed:	S 8260B 2006-07-28 2006-07-28		Prep Methoc Analyzed By Prepared By	/: JG
		RL					
Parameter	Flag	Result		Units]	Dilution	RL
Benzene		64.5		µg/Kg		2	10.0
Toluene		90.2		μ g/Kg		2	10.0
Ethylbenzene		2160		μ g/Kg		2	10.0
m,p-Xylene		5530		μ g/Kg		2	10.0
o-Xylene		949		μ g/Kg		2	10.0
Naphthalene		2650		μg/Kg		2	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		848	$\mu g/Kg$	<u>z</u>	500	85	42 - 129
Toluene-d8	1	1150	μ g/Kg	g 2	500	115	93 - 107
4-Bromofluorobenzene (4-BFB)	988	μg/Kg	g <u>2</u>	500	99	78 - 120

Sample: 96010 - B-5 (20'-22')

Analysis: TX1006 QC Batch: 28403 Prep Batch: 24847	Analytical Method: Date Analyzed: Sample Preparation:	TX1006 2006-07-27 2006-07-27	Prep Method: Analyzed By: Prepared By:	N/A SP SP
	RL			
Parameter Flag	Result	Units	Dilution	RL
C6-C35, Unfractionated	5360	mg/Kg	10	50.0
C6, Aliphatic	<500	mg/Kg	10	50.0
C6-C8, Aliphatic	<500	mg/Kg	10	50.0
C8-C10, Aliphatic	<500	mg/Kg	10	50.0
C10-C12, Aliphatic	<500	mg/Kg	10	50.0
C12-C16, Aliphatic	911	mg/Kg	10	50.0
C16-C21, Aliphatic	756	mg/Kg	10	50.0
C21-C35, Aliphatic	545	mg/Kg	10	50.0
C6-C7, Aromatic	<500	mg/Kg	10	50.0
C7-C8, Aromatic	<500	mg/Kg	10	50.0
C8-C10, Aromatic	<500	mg/Kg	10	50.0
C10-C12, Aromatic	<500	mg/Kg	10	50.0
C12-C16, Aromatic	<500	mg/Kg	10	50.0
C16-C21, Aromatic	<500	mg/Kg	10	50.0
C21-C35, Aromatic	<500	mg/Kg	10	50.0
Percent Recovery	75.9	%	10	0.00

Sample: 96010 - B-5 (20'-22')

Analysis:	Volatiles	Analytical Method:	S 8260B	Prep Method:	S 5030B
QC Batch:	28464	Date Analyzed:	2006-07-28	Analyzed By:	JG
Prep Batch:	24903	Sample Preparation:	2006-07-28	Prepared By:	JG

¹High surrogate recovery due to peak interference.

5

5

5

5

5

5

5

5

5

5

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

0.00

		RL	,				
Parameter	Flag	Result	t	Units		Dilution	RL
Benzene		26.1		μg/Kg	<u></u>	2	10.0
Toluene		88.3	\$	μ g/Kg		2	10.0
Ethylbenzene		1740)	μ g/Kg		2	10.0
m,p-Xylene		4700)	μ g/Kg		2	10.0
o-Xylene		977	,	μ g/Kg		2	10.0
Naphthalene		2460)	µg/Kg		2	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		856	μg/Kg	2	500	86	42 - 129
Toluene-d8		1030	μ g/Kg	2	500	103	93 - 107
4-Bromofluorobenzene (4-BFB))	1010	μ g/Kg	2	500	101	78 - 120

Sample: 96011 - B-7 (5'-7')

Analysis:TX1006QC Batch:28403Prep Batch:24847	Analytical Method: Date Analyzed: Sample Preparation:	TX1006 2006-07-27 2006-07-27	Prep Method: Analyzed By: Prepared By:	N/A SP SP
	RL			
Parameter Fla	g Result	Units	Dilution	RL
C6-C35, Unfractionated	892	mg/Kg	5	50.0
C6, Aliphatic	<250	mg/Kg	5	50.0
C6-C8, Aliphatic	<250	mg/Kg	5	50.0
C8-C10, Aliphatic	<250	mg/Kg	5	50.0
C10-C12, Aliphatic	<250	mg/Kg	5	50.0
C12-C16, Aliphatic	<250	mg/Kg	5	50.0

<250

<250

<250

<250

<250

<250

<250

<250

<250

69.0

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%

Sample: 96011 - B-7 (5'-7')

C16-C21, Aliphatic

C21-C35, Aliphatic

C6-C7, Aromatic

C7-C8, Aromatic

C8-C10, Aromatic

C10-C12, Aromatic

C12-C16, Aromatic

C16-C21, Aromatic

C21-C35, Aromatic

Percent Recovery

1. 1

Analysis:VolatilesQC Batch:28464Prep Batch:24903		Analytical Method: Date Analyzed: Sample Preparation:	S 8260B 2006-07-28 2006-07-28	Prep Method: Analyzed By: Prepared By:	
Parameter	Flag	RL Result	Units	Dilution	RL
Benzene	U	<20.0	μg/Kg	2	10.0
Toluene		<20.0	μg/Kg	2	10.0
Ethylbenzene		786	μg/Kg	2	10.0

. . .

continued ...

sample 96011 continued ...

		RL					
Parameter	Flag	Result		Units	I	Dilution	RL
m,p-Xylene		2010		μg/Kg		2	10.0
o-Xylene		26.3		μ g/Kg		2	10.0
Naphthalene		996		µg/Kg		2	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		860	μg/Kg	2	500	86	42 - 129
Toluene-d8		972	μg/Kg	2	500	97	93 - 107
4-Bromofluorobenzene (4-BFE	3)	1130	μg/Kg	2	500	113	78 - 120

Sample: 96012 - B-7 (15'-17')

Analysis: TX1006 QC Batch: 28403 Prep Batch: 24847	Analytical Method: Date Analyzed: Sample Preparation:	TX1006 2006-07-27 2006-07-27	Prep Method: Analyzed By: Prepared By:	N/A SP SP
	RL			
Parameter F	ag Result	Units	Dilution	RL
C6-C35, Unfractionated	5930	mg/Kg	10	50.0
C6, Aliphatic	<500	mg/Kg	10	50.0
C6-C8, Aliphatic	<500	mg/Kg	10	50.0
C8-C10, Aliphatic	<500	mg/Kg	10	50.0
C10-C12, Aliphatic	<500	mg/Kg	10	50.0
C12-C16, Aliphatic	969	mg/Kg	10	50.0
C16-C21, Aliphatic	926	mg/Kg	10	50.0
C21-C35, Aliphatic	939	mg/Kg	10	50.0
C6-C7, Aromatic	<500	mg/Kg	10	50.0
C7-C8, Aromatic	<500	mg/Kg	10	50.0
C8-C10, Aromatic	<500	mg/Kg	10	50.0
C10-C12, Aromatic	<500	mg/Kg	10	50.0
C12-C16, Aromatic	<500	mg/Kg	10	50.0
C16-C21, Aromatic	<500	mg/Kg	10	50.0
C21-C35, Aromatic	<500	mg/Kg	10	50.0
Percent Recovery	69.0	%	10	0.00

Sample: 96012 - B-7 (15'-17')

Analytical Method:	S 8260B	Prep Method:	
•		• •	JG JG
Sample Propulation		i reputed 253.	
RL			
ag Result	Units	Dilution	RL
179	μg/Kg	2	10.0
985	μ g/Kg	2	10.0
2840	μ g/Kg	2	10.0
6620	μ g/Kg	2	10.0
L	Date Analyzed: Sample Preparation: RL lag Result 179 985 2840	Date Analyzed: 2006-07-28 Sample Preparation: 2006-07-28 RL lag Result Units 179 μg/Kg 985 μg/Kg 2840 μg/Kg	Date Analyzed:2006-07-28Analyzed By:Sample Preparation:2006-07-28Prepared By:RLImage: ResultUnitsDilution179 $\mu g/Kg$ 2985 $\mu g/Kg$ 22840 $\mu g/Kg$ 2

continued ...

. .

sample 96012 continued ...

		RL					
Parameter	Flag	Result		Units	Ι	Dilution	RL
o-Xylene		1940		μg/Kg		2	10.0
Naphthalene		2480 µg/Kg		2		50.0	
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		846	μg/Kg	2	500	85	42 - 129
Toluene-d8		1050	μ g/Kg	2	500	105	93 - 107
4-Bromofluorobenzene (4-BFE	3)	997	μ g/Kg	2	500	100	78 - 120

Sample: 96013 - B-7 (25'-27')

Analysis: QC Batch: Prep Batch:	TPH DRO 28236 24717		Analytical Met Date Analyzed Sample Prepar	: 2006-07-		Analy	Method: N/A zed By: SE red By: SE
			RL				
Parameter	Fl	ag	Result	Unit	S	Dilution	RL
DRO			2370	mg/Kg	g	20	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontan	e	212	mg/Kg	20	7.50	141	50 - 150

Sample: 96013 - B-7 (25'-27')

Analysis: QC Batch: Prep Batch:	TPH GRO 28235 24716		Date Ana	l Method: lyzed: reparation:	S 8015B 2006-07-21 2006-07-21		Prep Me Analyze Prepare	ed By: MT
· .			RL					
Parameter	Flag	5	Result		Units		Dilution	RL
GRO			43.0		mg/Kg		5	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		0.877	mg/Kg	5	0.200	88	68 - 129.6
4-Bromofluo	orobenzene (4-BFB)		1.22	mg/Kg	5	0.200	122	71.9 - 123.7

Sample: 96013 - B-7 (25'-27')

Analysis:	Volatiles	Analytical Method:	S 8260B	Prep Method:	S 5030B
QC Batch:	28464	Date Analyzed:	2006-07-28	Analyzed By:	JG
Prep Batch:	24903	Sample Preparation:	2006-07-28	Prepared By:	JG

continued ...

sample 96013 continued ...

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Naphthalene		579		μg/Kg		2	50.0
o-Xylene		22.0		μ g/Kg		2	10.0
m,p-Xylene		51.6		μ g/Kg		2	10.0
Ethylbenzene		35.0	·	μ g/Kg		2	10.0
Toluene		<20.0		μ g/Kg		2	10.0
Benzene		<20.0		μg/Kg		2	10.0
Parameter	Flag	RL Result		Units	I	Dilution	RL
Parameter	Flag	Result		Units	I	Dilution	RL

Junogate	Ting	Result	Onits	Ditution	Amount	Recovery	Linnts
Dibromofluoromethane		862	μg/Kg	2	500	86	42 - 129
Toluene-d8		947	μ g/Kg	2	500	95	93 - 107
4-Bromofluorobenzene (4-BFB)		1040	μ g/Kg	2	500	104	78 - 120

Method Blank (1) QC	Batch:	28235
---------------------	--------	-------

QC Batch: 28235 Prep Batch: 24716		Date An QC Prep	alyzed: paration:	2006-07-21 2006-07-21	·	-	zed By: MT ed By: MT
				DL			
Parameter	Flag		Res	ult	Unit	S	RL
GRO		· · · · · · · · · · · · · · · · · · ·	2.	46	mg/K	g	1
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	U	0.955	mg/K	z 1	1.00	96	81.7 - 119
4-Bromofluorobenzene (4-BFB)		0.821	mg/K		1.00	82	60.1 - 102

Method Blank (1) QC Batch: 28236

QC Batch: Prep Batch:	28236 24717		Date Analyzed QC Preparatio				Analyzed By: Prepared By:	SE SE
				MDL				
Parameter		Flag]	Result	ι	Units		RL
DRO				<10.7	m	g/Kg		50
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery		overy mits
n-Triacontan		178	mg/Kg	1	150	119	50 -	150

.

Method Blank (1) QC Batch: 28403

QC Batch: 28403	Date Analyzed:	2006-07-27		Analyzed By:	SP
Prep Batch: 24847	QC Preparation:	2006-07-27		Prepared By:	SP
		MDL			
Parameter	Flag	Result	Units		RL
C6-C35, Unfractionated		5.83	mg/Kg	······	50
C6, Aliphatic		<5.00	mg/Kg		50
C6-C8, Aliphatic		<5.00	mg/Kg		50
C8-C10, Aliphatic		<5.00	mg/Kg		50
C10-C12, Aliphatic		<5.00	mg/Kg		50
C12-C16, Aliphatic		< 5.00	mg/Kg		50
C16-C21, Aliphatic		< 5.00	mg/Kg		50
C21-C35, Aliphatic		< 5.00	mg/Kg		50
C6-C7, Aromatic		<5.00	mg/Kg		50
C7-C8, Aromatic		<5.00	mg/Kg		50
C8-C10, Aromatic		<5.00	mg/Kg		50
C10-C12, Aromatic		<5.00	mg/Kg		50
C12-C16, Aromatic		<5.00	mg/Kg		50
C16-C21, Aromatic		<5.00	mg/Kg		50
C21-C35, Aromatic		< 5.00	mg/Kg		50
Percent Recovery		0.00	%		0

Method Blank (1) QC Batch: 28464

QC Batch: Prep Batch:		Date Analyzed: OC Preparation:		Analyzed By: Prepared By:	
riep Baten.	27903	QC Treparation.	2000-07-28	Trepared By.	50

		MDL		
Parameter	Flag	Result	Units	RL
Bromochloromethane		< 0.825	μg/Kg	10
Dichlorodifluoromethane		< 0.889	μ g/Kg	10
Chloromethane (methyl chloride)		< 0.929	μ g/Kg	10
Vinyl Chloride		< 0.463	μ g/Kg	10
Bromomethane (methyl bromide)		<1.71	μ g/Kg	50
Chloroethane		<3.68	μ g/Kg	10
Trichlorofluoromethane		< 0.306	μ g/Kg	10
Acetone		47.8	μ g/Kg	100
Iodomethane (methyl iodide)		<0.640	μ g/Kg	50
Carbon Disulfide		< 0.346	μ g/Kg	10
Acrylonitrile		<1.51	μ g/Kg	10
2-Butanone (MEK)		<3.78	μ g/Kg	50
4-Methyl-2-pentanone (MIBK)		<7.86	μ g/Kg	50
2-Hexanone		<5.70	μ g/Kg	50
trans 1,4-Dichloro-2-butene		<1.33	μ g/Kg	100
1,1-Dichloroethene		< 0.639	μ g/Kg	10
Methylene chloride		7.98	μ g/Kg	50
MTBE		< 0.362	μ g/Kg	10
trans-1,2-Dichloroethene		< 0.419	μ g/Kg	10
1,1-Dichloroethane	,	<0.257	μ g/Kg	10
cis-1,2-Dichloroethene		< 0.627	μg/Kg	10
				continued

continued ...

method blank continued ...

· •···

Parameter	MDL Flag Result	Units	RI
2,2-Dichloropropane	<0.593	μg/Kg	10
1,2-Dichloroethane (EDC)	<0.524	μg/Kg	10
Chloroform	<0.440	μg/Kg	10
1,1,1-Trichloroethane	<0.750	μg/Kg	10
1,1-Dichloropropene	<0.622	μg/Kg	10
Benzene	<0.644	μg/Kg	10
Carbon Tetrachloride	<0.485	μg/Kg	10
1,2-Dichloropropane	<0.547	μg/Kg	1(
Trichloroethene (TCE)	<0.836	μg/Kg	10
Dibromomethane (methylene bromide)	<0.435	μg/Kg	10
Bromodichloromethane	<0.457	μg/Kg	10
2-Chloroethyl vinyl ether	<0.547	μg/Kg	50
cis-1,3-Dichloropropene	<0.596	μg/Kg	10
trans-1,3-Dichloropropene	<0.561	μg/Kg	10
Toluene	4.34	μg/Kg	10
1,1,2-Trichloroethane	<3.25	μg/Kg	10
1,3-Dichloropropane	<0.505	μg/Kg	10
Dibromochloromethane	<0.552	μg/Kg	10
1,2-Dibromoethane (EDB)	<0.688	μg/Kg	10
Tetrachloroethene (PCE)	<0.826	μg/Kg	10
Chlorobenzene	<0.426	μg/Kg	10
1,1,1,2-Tetrachloroethane	<0.289	μg/Kg	10
Ethylbenzene	0.560	μg/Kg	1(
m,p-Xylene	1.28	μg/Kg	10
Bromoform	<0.426	μg/Kg	10
Styrene	0.860	μg/Kg	10
o-Xylene	<0.679	μg/Kg	10
1,1,2,2-Tetrachloroethane	<0.703	μg/Kg	10
2-Chlorotoluene	<1.26	μg/Kg	10
1,2,3-Trichloropropane	<0.504	μg/Kg	10
Isopropylbenzene	<1.30	μg/Kg	10
Bromobenzene	<0.480	μg/Kg	10
n-Propylbenzene	0.740	μg/Kg	10
1,3,5-Trimethylbenzene	<2.10	μg/Kg	10
tert-Butylbenzene	0.470	μg/Kg	10
1,2,4-Trimethylbenzene	1.95	μg/Kg	10
1,4-Dichlorobenzene (para)	1.22	μg/Kg	10
sec-Butylbenzene	1.32	μg/Kg	10
1,3-Dichlorobenzene (meta)	<0.534	μg/Kg	10
p-Isopropyltoluene	1.25	μg/Kg	10
4-Chlorotoluene	<0.675	μg/Kg	10
1,2-Dichlorobenzene (ortho)	<0.475	μg/Kg	10
n-Butylbenzene	2.14	μg/Kg	10
1,2-Dibromo-3-chloropropane	<0.883	μg/Kg	50
1,2,3-Trichlorobenzene	<3.64	μg/Kg	51
1,2,4-Trichlorobenzene	<2.28	μg/Kg	50
Naphthalene	5.82	μg/Kg	50
Hexachlorobutadiene	<3.24	μg/Kg	50

Report Date: August 8, 2006	Work Order: 6072113
EME K-6 Vent Jet Box	EME K-6 Vent Jet Box

Surrogate	Flag	Result	Units	Dilution	Spike Amount		rcent I overy	Recovery Limits
Dibromofluoromethane		431	µg/Kg	1	500			42 - 129
Toluene-d8		483	μ g/Kg	1	500	1		93 - 107
4-Bromofluorobenzene (4-BFB	b)	517	µg/Kg	1	500	1	03	78 - 120
Matrix Blank (1) QC Batc	h: 28529							
QC Batch: 28529		Date Ana		6-07-30			Analyzed B	
Prep Batch: 24946		QC Prepa	aration: 200	6-07-29			Prepared By	: WB
Demonstration	F1		MDL Basselt		I.I.			DI
Parameter Chloride	Flag		Result <0.0222	<u> </u>	UnUn			
						кg		1
Matrix Blank (1) QC Batc	h: 28773							
QC Batch: 28773		Date Ana	alyzed: 200	6-08-04			Analyzed B	y: WB
Prep Batch: 25148		QC Prep	aration: 200	6-08-04			Prepared By	v: WB
			MDL					
Parameter	Flag		Result		Un		_	RL
Chloride	<u></u>		<0.0222		mg	/Kg	_	1
		1						
Laboratory Control Spike (L	CS-1)							
QC Batch: 28235		Date Ana	alyzed: 200	6-07-21			Analyzed B	y: MT
Prep Batch: 24716		QC Prep	aration: 200	6-07-21			Prepared B	y: MT
LCS	LCSD		Spike	Matrix			Rec.	RPD
Param Result	Result Ur	nits Dil.	Amount	Result	Rec.	RPD	Limit	Limi
GRO 8.90	8.59 mg	/Kg 1	10.0	<0.121	89	4	80 - 120	20
Percent recovery is based on th	e spike result. F	PD is based of	on the spike a	nd spike duplic	cate result.			
	L	CS LCS	SD		Spike	LCS	LCSD	Rec.
Surrogate		sult Resu			Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)		978 0.93	-	-	1.00	98 98	93	80 - 120
4-Bromofluorobenzene (4-BFE		919 0.82	23 mg/K	g 1	1.00	92	82	80 - 120
Laboratory Control Spike (L	CS-1)		alumada and)6 07 24			A mol	or
QC Batch: 28236 Prep Batch: 24717		Date An	•	06-07-24 06-07-21			Analyzed I Prepared E	-
24/J/			Jarahon. 200	JU-U/-21			FICHAIGU D	יאי איי

continued ...

Report Date: August 8, 2006
EME K-6 Vent Jet Box

L	CS	LCSD			Spike	Matrix	ĸ			Rec.	RPD
Param Re	esult	Result	Units	Dil.	Amount	Resul	t Rec.	RPE)	Limit	Limit
L	.CS	LCSD			Spike	Matrix	K			Rec.	RPD
Param Re	esult	Result	Units	Dil.	Amount	Resul	t Rec.	RPE)	Limit	Limit
DRO ² 2	265	312	mg/Kg	1	250	<10.7	7 106	16	62	2.4 - 111	20
Percent recovery is b	ased on	the spike res	ult. RPD is	based on th	e spike an	d spike du	plicate resu	t.			
		LCS	LCSD			:	Spike	LCS	LC	SD	Rec.
Surrogate		Result	Result	Units	Di		mount	Rec.	Re	ec.	Limit
n-Triacontane		162	176	mg/Kg	; 1		150	108	1	17	50 - 150
Laboratory Control QC Batch: 28403 Prep Batch: 24847	l Spike	(LCS-1)		Date Analyz QC Preparat		6-07-27 6-07-27				Analyzed I Prepared B	
QC Batch: 28403	l Spike	(LCS-1) LCS					Matrix			-	
QC Batch: 28403	l Spike		(ion: 200	6-07-27	Matrix Result	Rec.		Prepared B	by: SP

Laboratory Control Spike (LCS-1)

QC Batch:	28464	Date Analyzed:	2006-07-28	Analyzed By:	JG
Prep Batch:	24903	QC Preparation:	2006-07-28	Prepared By:	JG

1	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
1,1-Dichloroethene	476	480	μg/Kg	1	500	< 0.639	95	1	76.9 - 114	20
Benzene	486	489	μ g/Kg	1	500	<0.644	97	1	79.7 - 113	20
Trichloroethene (TCE)	522	520	μ g/Kg	1	500	< 0.836	104	0	84.2 - 119	20
Toluene	425	426	μ g/Kg	1	500	4.34	84	0	82 - 110	20
Chlorobenzene	494	492	μ g/Kg	1	500	< 0.426	99	0	85.9 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	447	450	μg/Kg	1	500	89	90	87 - 108
Toluene-d8	478	481	μ g/Kg	1	500	96	96	92.3 - 106
4-Bromofluorobenzene (4-BFB)	482	490	µg/Kg	1	500	96	98	83.4 - 117

Laboratory Control Spike (LCS-1)

QC Batch:	28529	Date Analyzed:	2006-07-30	Analyzed By:	WB
Prep Batch:	24946	QC Preparation:	2006-07-29	Prepared By:	WB

•

²LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occured properly. ³LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occured properly.

Report Date: August 8, 2006 Work Order: 6072113 Page Number: 12 of 17 Sec 6K T205 R37E,Lea County,NM EME K-6 Vent Jet Box EME K-6 Vent Jet Box Spike LCS LCSD Matrix Rec. RPD Result Dil. Amount Result Limit Param Result Units Rec. 90 - 110 Chloride 13.3 13.2 mg/Kg 1 12.5 < 0.0222 106 0 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Laboratory Control Spike (LCS-1) QC Batch: 28773 Date Analyzed: 2006-08-04 Analyzed By: Prep Batch: 25148 QC Preparation: 2006-08-04 Prepared By: LCS LCSD Spike Matrix Rec. Dil. RPD Param Result Result Units Amount Result Rec. Limit Chloride 13.1 12.5 < 0.0222 104 0 90 - 110 13.1 mg/Kg 1 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Matrix Spike (MS-1) Spiked Sample: 96003

QC Batch:	28235	Date Analyzed:	2006-07-21	Analyzed By:	MT
Prep Batch	: 24716	QC Preparation:	2006-07-21	Prepared By:	MT

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
GRO	7.98	8.83	mg/Kg	1	10.0	<0.121	80	10	51.6 - 137	19.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.785	0.864	mg/Kg	1	1	78	86	50 - 133
4-Bromofluorobenzene (4-BFB)	0.928	1.07	mg/Kg	1	1	93	107	62.4 - 157

Matrix Spike (MS-1) Spiked Sample: 96003

QC Batch:	28236	Date Analyzed:	2006-07-24	Analyzed By:	SE
Prep Batch:	24717	QC Preparation:	2006-07-21	Prepared By:	SE

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
DRO	265	266	mg/Kg	1	250	<10.7	106	0	60.1 - 107	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD	.	D'1	Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	155	158	mg/Kg	1	150	103	105	50 - 150

Matrix Spike (MS-1) Spiked Sample: 96011

QC Batch:	28403	Date Analyzed:	2006-07-27	Analyzed By:	SP
Prep Batch:	24847	QC Preparation:	2006-07-27	Prepared By:	SP

RPD

Limit

20

WB

WB

RPD

Limit

20

Report Date: August 8, 2006 EME K-6 Vent Jet Box Work Order: 6072113 EME K-6 Vent Jet Box

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.Matrix Spike (MS-1)Spiked Sample: 96011QC Batch: 28464Date Analyzed: 2006-07-28Analyzed By: Prepared By:MSMSMSDSpikeMatrixRec.FMSMSDSpikeMatrixRec.FMSMSDSpikeMatrixRec.FMSMSDSpikeMatrixRec.FImmed to the spike and spike duplicate result.MSMSMSDSpikeMatrixRec.FMSMSMSDSpikeMatrixRec.FMatrix Spike (MS-1)Spi SofSpikeMSMSDSpikeMatrixMSMSDSpikeMatrixMatrixMatrixMatrixMatrixMSMSDSpikeMatrixMatrixMSMS	Param	MS Result	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec	. RPD	Rec. Limit	RPD Limit
Matrix Spike (MS-1)Spiked Sample: 96011QC Batch:28464 Prep Batch:Date Analyzed:2006-07-28Analyzed By: Prepared By:ParamResultResultUnitsDil.AmountResultRec.RPD[1,1-Dichloroethene6599554 $\mu g/Kg$ 2250<1.28	C6-C35, Unfractionated	⁴⁵ 1920	1730	mg/Kg	5	100	892	206	5 10	70 - 130	20
QC Batch:28464 24903Date Analyzed:2006-07-28Analyzed By: Prepared By:ParamMSMSDSpikeMatrixRec. <td< td=""><td>Percent recovery is based of</td><td>n the spike res</td><td>ult. RPD is</td><td>based on t</td><td>he spike a</td><td>and spike d</td><td>uplicate res</td><td>ult.</td><td></td><td></td><td></td></td<>	Percent recovery is based of	n the spike res	ult. RPD is	based on t	he spike a	and spike d	uplicate res	ult.			
Prep Batch:24903QC Preparation: $2006-07-28$ Prepared By:ParamResultResultUnitsDil.AmountResultRec.RCRC1,1-Dichloroethene6599554 $\mu g/Kg$ 2250<1.28	Matrix Spike (MS-1) Sp	iked Sample:	96011								
Prep Batch:24903QC Preparation: $2006-07-28$ Prepared By:ParamResultResultQUIItsDil.AmountResultRec.RCRC1,1-Dichloroethene6599554 $\mu g/Kg$ 2250<1.28	DC Batch: 28464		I	Date Analy	zed: 20	06-07-28				Analyzed H	By: JG
ParamResultResultUnitsDil.AmountResultResRPDLimitL1,1-Dichloroethene $^{\circ}$ 599554 $\mu g/Kg$ 2250<1.28	•					006-07-28					
I-Dichloroethene 6 599 554 $\mu g/Kg$ 2 250 <1.28 120 8 76.1 - 115 Benzene 78 596 565 $\mu g/Kg$ 2 250 10.4 117 5 82.1 - 110 Frichloroethene (TCE) 633 595 $\mu g/Kg$ 2 250 <1.67 127 6 75.5 - 129 Follorene 910 600 566 $\mu g/Kg$ 2 250 <1.67 127 6 75.5 - 129 Chlorobenzene 910 600 566 $\mu g/Kg$ 2 250 <1.3 99 6 82.3 - 108 Chlorobenzene 910 600 566 $\mu g/Kg$ 2 250 <0.852 120 6 84.1 - 111 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. MS MSD Spike MS MSD Rec. Image: Comparison of the spike for the		MS	MSD			Spike	Matrix			Rec.	RPD
Senzene 78 596 565 $\mu g/Kg$ 2 250 10.4 117 5 82.1 - 110 Trichloroethene (TCE) 633 595 $\mu g/Kg$ 2 250 <1.67	Param		Result	Units	Dil.	Amount	Result	Rec.	RPD		Limi
Anderic503503 $\mu_{\rm g}$ Kg22.5010.411.755.12Foluene509478 $\mu_{\rm g}$ Kg2250<1.67			554				<1.28	120		76.1 - 115	20
Foluene509478 $\mu g/Kg$ 22501399682.3 - 108Chlorobenzene910600566 $\mu g/Kg$ 2250<0.852	Selizene	590					10.4		5		20
Chlorobenzene910600566 $\mu g/Kg$ 2250<0.852120684.1 - 111Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.SurrogateMSMSDSpikeMSMSDRec.Dibromofluoromethane889878 $\mu g/Kg$ 2500898887.9 -Foluene-d8968973 $\mu g/Kg$ 2500979790.2Bromofluorobenzene (4-BFB)984990 $\mu g/Kg$ 2500989982.9 -Matrix Spike (MS-1)Spiked Sample: 96846QC Batch:28773Date Analyzed:2006-08-04Analyzed By: VPrep Batch:25148QC Preparation:2006-08-04Prepared By: VParamResultUnitsDil.AmountResultRec.FeChloride66.466.1 $m g/Kg$ 512.59.5191015.3 - 175Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)CBatch:28235Date Analyzed:2006-07-21Analyzed By: V	• •								-		20
Childbelizere000500 $\mu g \cdot g$ 2250 (0.32) 1200 64.1 ± 111 Percent recovery is based on the spike result.MSMSDSpikeMSMSDRec.SurrogateResultResultUnitsDil.AmountRec.Rec.LimDibromofluoromethane889878 $\mu g / K g$ 2500898887.9 -Foluene-d8968973 $\mu g / K g$ 2500979790.2 -H-Bromofluorobenzene (4-BFB)984990 $\mu g / K g$ 2500989982.9 -Matrix Spike (MS-1)Spiked Sample:96846QC Batch:28773Date Analyzed:2006-08-04Analyzed By: MarinaPrep Batch:25148QC Preparation:2006-08-04Prepared By: MarinaParamResultUnitsDil.AmountRec.Rec.ParamResultResultUnitsDil.AmountRec.RPDChloride66.466.1mg/K g512.59.5191015.3 - 175Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)QC Batch:28235Date Analyzed:2006-07-21Analyzed By:			-								20
MSMSDSpikeMSMSDRec.BurrogateResultUnitsDil.AmountRec.Rec.LimDibromofluoromethane889878 $\mu g/Kg$ 2500898887.9Foluene-d8968973 $\mu g/Kg$ 2500979790.2-Bromofluorobenzene (4-BFB)984990 $\mu g/Kg$ 2500989982.9Matrix Spike (MS-1)Spiked Sample:96846QC Batch:28773Date Analyzed:2006-08-04Analyzed By:YPrep Batch:25148QC Preparation:2006-08-04Prepared By:YParamResultUnitsDil.AmountResultRec.Rec.Rec.Chloride66.466.1 mg/Kg 512.59.5191015.3 - 175Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)Analyzed:2006-07-21Analyzed By:QC Batch:28235Date Analyzed:2006-07-21Analyzed By:Standard By:	Indiddenzene							· · ·	6	84.1 - 111	20
SurrogateResultResultUnitsDil.AmountRec.Rec.LimDibromofluoromethane 889 878 $\mu g/Kg$ 2 500 89 88 87.9 -Foluene-d8968973 $\mu g/Kg$ 2 500 97 97 90.2 -Horonfluorobenzene (4-BFB)984990 $\mu g/Kg$ 2 500 98 99 82.9 -Matrix Spike (MS-1)Spiked Sample:96846QC Batch:28773Date Analyzed:2006-08-04Analyzed By:YPrep Batch:25148QC Preparation:2006-08-04Prepared By:YParamResultResultUnitsDil.AmountResultRec.FChloride66.466.1 mg/Kg 512.5 9.51 91 0 $15.3 - 175$ Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)Analyzed:2006-07-21Analyzed By:QC Batch:28235Date Analyzed:2006-07-21Analyzed By:Standard By:	Percent recovery is based of	n the spike res	ult. RPD is	based on t	he spike a	and spike d	uplicate res	ult.			
Dibromofluoromethane889878 $\mu g/Kg$ 2500898887.9 -Foluene-d8968973 $\mu g/Kg$ 2500979790.2 -I-Bromofluorobenzene (4-BFB)984990 $\mu g/Kg$ 2500989982.9 -Matrix Spike (MS-1)Spiked Sample: 96846QC Batch:28773Date Analyzed: 2006-08-04Analyzed By: VPrep Batch:25148QC Preparation: 2006-08-04Prepared By: VParamResultResultUnitsDil.AmountResultResultUnitsDil.AmountResultRec.FChloride66.466.1mg/Kg512.59.5191015.3 - 175Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)Analyzed By: 2006-07-21Analyzed By: 2006-07-21	. .				T T 1 .	5.1	-				Rec.
Foluene-d8968973 $\mu g/Kg$ 2500979790.2 -I-Bromofluorobenzene (4-BFB)984990 $\mu g/Kg$ 2500989982.9 -Matrix Spike (MS-1)Spiked Sample: 96846QC Batch:28773Date Analyzed:2006-08-04Analyzed By:YOrep Batch:25148QC Preparation:2006-08-04Prepared By:YParamResultResultUnitsDil.AmountResultRec.FChloride66.466.1 $m g/Kg$ 512.59.5191015.3 - 175Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)Date Analyzed:2006-07-21Analyzed By:											
t-Bromofluorobenzene (4-BFB)984990 $\mu g/Kg$ 2500989982.9 -Matrix Spike (MS-1)Spiked Sample: 96846QC Batch:28773Date Analyzed:2006-08-04Analyzed By:YPrep Batch:25148QC Preparation:2006-08-04Prepared By:YMSMSDSpikeMatrixRec.FParamResultResultUnitsDil.AmountResultRec.FChloride66.466.1mg/Kg512.59.5191015.3 - 175Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Standard (ICV-1)QC Batch:28235Date Analyzed:2006-07-21Analyzed By:						0					
Matrix Spike (MS-1) Spiked Sample: 96846 QC Batch: 28773 Date Analyzed: 2006-08-04 Analyzed By: Prep Batch: 25148 QC Preparation: 2006-08-04 Prepared By: MS MSD Spike Matrix Rec. Fe Param Result Units Dil. Amount Result Rec. Fe Chloride 66.4 66.1 mg/Kg 5 12.5 9.51 91 0 15.3 - 175 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Standard (ICV-1) QC Batch: 28235 Date Analyzed: 2006-07-21 Analyzed By:						0					
QC Batch: 28773 Date Analyzed: 2006-08-04 Analyzed By: Prepared	-Bromonuorobenzene (4-1	<u> </u>	904	990	μg/K	<u>g 2</u>			90	99 0.	2.9 - 110
Prep Batch: 25148 QC Preparation: 2006-08-04 Prepared By: Prepared By: MS MSD Spike Matrix Rec. Rec. Rec. Param Result Result Units Dil. Amount Result Rec. Rec. Chloride 66.4 66.1 mg/Kg 5 12.5 9.51 91 0 15.3 - 175 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Standard (ICV-1) QC Batch: 28235 Date Analyzed: 2006-07-21 Analyzed By:	Matrix Spike (MS-1) Sp	iked Sample:	96846				•				
MS MSD Spike Matrix Rec. Rec. Param Result Result Units Dil. Amount Result Rec. Rec. Rec. Chloride 66.4 66.1 mg/Kg 5 12.5 9.51 91 0 15.3 - 175 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Standard (ICV-1) QC Batch: 28235 Date Analyzed: 2006-07-21 Analyzed By:	QC Batch: 28773		E	Date Analyz	zed: 20	06-08-04				Analyzed B	y: WB
Result Result Units Dil. Amount Result Rec. RPD Limit L Chloride 66.4 66.1 mg/Kg 5 12.5 9.51 91 0 15.3 - 175 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Standard (ICV-1) QC Batch: 28235 Date Analyzed: 2006-07-21 Analyzed By:	Prep Batch: 25148		Ç	C Preparat	tion: 20	06-08-04				Prepared By	: WB
Result Result Units Dil. Amount Result Rec. RPD Limit L Chloride 66.4 66.1 mg/Kg 5 12.5 9.51 91 0 15.3 - 175 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Standard (ICV-1) QC Batch: 28235 Date Analyzed: 2006-07-21 Analyzed By:	MS	MSD			Spike	Mat	rix			Rec	RPD
Chloride 66.4 66.1 mg/Kg 5 12.5 9.51 91 0 15.3 - 175 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Standard (ICV-1) Standard (ICV-1) Analyzed: 2006-07-21 Analyzed By:			Units	Dil.	-			c.	RPD		Limi
Standard (ICV-1)QC Batch: 28235Date Analyzed: 2006-07-21Analyzed By:	Chloride 66.4	66.1	mg/Kg	5	12.5	9.5	1 91	1	0	15.3 - 175	20
QC Batch: 28235 Date Analyzed: 2006-07-21 Analyzed By:	Percent recovery is based of	n the spike res	ult. RPD is	based on t	he spike a	and spike d	uplicate res	ult.			
	Standard (ICV-1)										
ICVs ICVs ICVs Percent	QC Batch: 28235		Ľ	Date Analyz	zed: 200	6-07-21				Analyzed B	y: MT
			ICV	['] s	ICVs	,	ICVs		Percent		

			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/L	1.00	0.856	86	85 - 115	2006-07-21

÷

⁴Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁶Spike recovery out of control due to matrix effect. LCS/LCSD spike recoveries within limits showing analysis to be in control. •

⁷Spike recovery out of control due to matrix effect. LCS/LCSD spike recoveries within limits showing analysis to be in control. • ⁸Spike recovery out of control due to matrix effect. LCS/LCSD spike recoveries within limits showing analysis to be in control. •

⁹Spike recovery out of control due to matrix effect. LCS/LCSD spike recoveries within limits showing analysis to be in control. •

¹⁰Spike recovery out of control due to matrix effect. LCS/LCSD spike recoveries within limits showing analysis to be in control. •

Report Date: August EME K-6 Vent Jet Bo			ork Order: 607 IE K-6 Vent Je			Page N Sec 6K T205 R37E	lumber: 14 of 17 ,Lea County,NM
Standard (CCV-1)							
QC Batch: 28235		Date	e Analyzed:	2006-07-21	l	Ana	lyzed By: MT
Param Flag	Units	CCVs True Conc.	CCV Four Con	nd	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO 11	mg/L	1.00	0.83		83	85 - 115	2006-07-21
Standard (ICV-1)							
QC Batch: 28236		Dat	e Analyzed:	2006-07-24	4	Ana	alyzed By: SE
		ICVs True	ICV Fou	nd	ICVs Percent	Percent Recovery	Date
Param Flag DRO	Units mg/Kg	Conc. 250	Cor 27		Recovery 109	Limits 75 - 125	Analyzed 2006-07-24
Standard (CCV-1) QC Batch: 28236		Dat	e Analyzed:	2006-07-24	4	An	alyzed By: SE
		CCVs True	CC Fou		CCVs Percent	Percent Recovery	Date
Param Flag	Units	Conc.	Cor	nc.	Recovery	Limits	Analyzed
DRO	mg/Kg	250	24	3	97	75 - 125	2006-07-24
Standard (ICV-1)							
QC Batch: 28403		Dat	e Analyzed:	2006-07-2	7	An	alyzed By: SP
Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
C6-C35, Unfractionat		mg/Kg	500	405	81	70 - 130	2006-07-27
Standard (CCV-1)							
QC Batch: 28403		Dat	te Analyzed:	2006-07-2	7	An	alyzed By: SP
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param C6-C35, Unfractionat	Flag ed	Units mg/Kg	Conc. 500	Conc. 440	Recovery 88	<u> </u>	Analyzed 2006-07-27
Standard (CCV-2) QC Batch: 28403		Dat	te Analyzed:	2006-07-2	7	An	alyzed By: SP

í.

¹¹GRO outside of control limits on CCV(ICV). CCV(ICV) component average is 86.8 which is within acceptable range. This is acceptable by Method 8000.

Report Date: August 8, 200 EME K-6 Vent Jet Box	6		Work Order: 60 EME K-6 Vent J		S	Page N ec 6K T205 R37E,	umber: 15 of 1' Lea County,NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
C6-C35, Unfractionated		mg/Kg		436	87	70 - 130	2006-07-27
			·				
Standard (CCV-3)							
QC Batch: 28403			Date Analyzed:	2006-07-27		Ana	lyzed By: SP
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
C6-C35, Unfractionated		mg/Kg	500	414	83	70 - 130	2006-07-2
Standard (CCV-1)							
QC Batch: 28464			Date Analyzed:	2006-07-28		Ana	alyzed By: JC
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Vinyl Chloride		µg/Kg	50.0	43.2	86	80 - 120	2006-07-2
1,1-Dichloroethene		μg/Kg	50.0	51.0	102	80 - 120	2006-07-2
Chloroform		μg/Kg	50.0	47.6	95	80 - 120	2006-07-2
1,2-Dichloropropane		μg/Kg	50.0	49.0	98	80 - 120	2006-07-2
Toluene		μg/Kg	50.0	43.8	88	80 - 120	2006-07-2
Ethylbenzene		μg/Kg	50.0	48.8	98	80 - 120	2006-07-2
Standard (ICV-1)							
QC Batch: 28529			Date Analyzed:	2006-07-30		Anal	yzed By: WE
				CVs	ICVs	Percent	
			True Fo	ound	Percent	Recovery	Date
Param Flag	Units	(Conc. C	onc.	Recovery	Limits	Analyzed
Chloride	mg/Kg		12.5 1	2.0	96	90 - 110	2006-07-3
Standard (CCV-1)							
QC Batch: 28529			Date Analyzed:	2006-07-30		Anal	yzed By: WE
		(CCVs C	CVs	CCVs	Percent	
			True F	ound	Percent	Recovery	Date
Param Flag	Units			onc.	Recovery	Limits	Analyzed
Chloride	mg/Kg		12.5	2.0	96	90 - 110	2006-07-3

Standard (ICV-1)

QC Batch: 28773

Date Analyzed: 2006-08-04

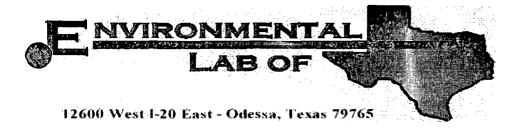
Analyzed By: WB

Report Date EME K-6 Ve	: August 8, 200 ent Jet Box	6		der: 6072113 5 Vent Jet Box		Page Number: 16 of 17 Sec 6K T205 R37E,Lea County,NM			
Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed		
Chloride		mg/Kg	12.5	13.5	108	90 - 110	2006-08-04		
Standard (C	CCV-1)								
QC Batch:	28773		Date Anal	yzed: 2006-08	-04	Ana	llyzed By: WB		
			CCVs	CCVs	CCVs	Percent			
			True	Found	Percent	Recovery	Date		
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
Chloride		mg/Kg	12.5	11.9	95	90 - 110	2006-08-04		

L		. •	ļ	155 McCu El Paso	Itcheon, Suite Texas 79932	I		СНА	IN-OF	-cus	гору	AND /	ANAL	YSIS R	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST
Fax (806) 794.1298 1 (800) 378-1296 email: lab@traceanalysis.com	IraceAnalysis, Inc.	ysis,	Inc.	Fax (9 Fax (9 1 (88)	lei (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443	<u> </u>		. ت ر ا	LAB Orc	Order ID #	60	22	11	3	
Derating Co.		a.	44	505) 393-9174	PL 18		243/1				ANALYSIS REQUEST	IS RE	QUES		
Hobbs	NM 88-240		Fax#: (505)	1797-147	Ichi		afty				or specify method			n	
pe/Melanie	Franks Kpo	لکوری سکارد ا	E-mail: Speperer 1 ce Swel, com	1 1	in Frankiericesuch con	Lan	95) 90N								
Invoice to: (If different from above)	-	-				624	\$ \$7								
K-6 Vent Jet Box		<i>مرب</i> ع	Enoject Name:	Vent	Jet. Bo	1 809	9 (80	ТИНС				9297		·	
7 7	n (ounty	NN s	Sampler Signature:		1	2872	978)			S	1 624		808		·····
		MATRIX	PRESE	PRESERVATIVE METHOD	SAMPLING	[]			sA pA	selitelo		8 .IoV			
FIELD CODE	ENIATN OmA \ 91					1CUR	11208	AD CIO	, gA ziste N eiste M	Volatile: Volatile Vesticid	8 10A S	.ima2 2 \ 2808	19 sabi	re Cont	
		SOIL SOIL	H ³ 2O HNO ³ HCI	NONE ICE NªOH	∃TAQ	TIME 38TM	X 3 T 8		TCLP	1CLP	RCI	GC/W		<u> </u>	
(20-22)	1 42	>		>	1 40/12	1502								5	
B-4(10-12-)	1 402	2		2	7/1 7/ 0820	25								7	
B-5(10 '-12')	1 402	>		>	2080 ap/	105	2							2	
D-5(20'-22')	1 42	2		7	7/4 4/20 09/15	215	2			2.74 X				<u> </u>	
B-7(5-7-)	1 402	2		7	749/02S	520	2							>	
(اکر-۱۲۲)	1 42	2		7	7196035	235	2							~	
8-7 (25'-27')	1 402	2		7	7/14	1045	2	5	_					•	
	Received by:			e: Time:			_ 	ABUSI	_ш		REMARKS	;;		_	
- 1 - 10 4	C C C C C C C C C C C C C C C C C C C	MAJA	102/L ~	g	1630			> onr∕	~						
Utry 720 66 1700			/ /				Intact		N / X			Dry Weight Basis Required TRRP Report Required	Basis F ort Requ	equired ired	
Dåte: Time:	Received At	At Laboratory &	(y:/ Date:	e: Time: -0 <i>U</i> /0	10. HD	ļ	Temp <u>y</u> Log-in-Revie <mark>w</mark>	Ç eview_	MÅ		55] []	Check If Special Reporting Limits Are Needed	becial Re Needed	porting	
Submittel of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C. 40	Ferms and Condition	ons listed on r	reverse side of	C. O. C. 40			Carrier #	ALANNA	3	3	H	Z Bro	Ø	B	371
				,	141				X				J	1	

Report Date: August 8, 2006 EME K-6 Vent Jet Box

Turn Around Time if different from standard


K Gol

Work Order: 6072113 EME K-6 Vent Jet Box

Hold

Page Number: 17 of 17 Sec 6K T205 R37E,Lea County,NM

HISCHIL

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. K-6 Project Number: None Given Location: T20S-R37E-Sec6K, Lea Co, NM

Lab Order Number: 6H25011

Report Date: 09/05/06

12 Ho

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: EME Jct. K-6 Project Number: None Given Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6H25011-01	Water	08/22/06 12:45	08-25-2006 15:22
Monitor Well #2	6H25011-02	Water	08/22/06 11:05	08-25-2006 15:22
Monitor Well #3	6H25011-03	Water	08/22/06 09:45	08-25-2006 15:22

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H25011-01) Water		· · · · · · · · · · · · · · · · ·							
Benzene	0.00269	0.00100	mg/L	1	EH62520	08/25/06	08/28/06	EPA 8021B	
Toluene	J [0.000990]	0.00100	"	"			*		
Ethylbenzene	0.00216	0.00100		"	"	"	11	u	
Xylene (p/m)	0.00134	0.00100	"	"	н	11	u	**	
Xylene (o)	ND	0.00100	"	n	"	"	**	n	
Surrogate: a,a,a-Trifluorotoluene		110 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	80	120	"	"	"	"	
Monitor Well #2 (6H25011-02) Water									
Benzene	ND	0.00100	mg/L	1	EH62520	08/25/06	08/28/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	"	"	
Ethylbenzene	ND	0.00100	"	"		"	"	**	
Xylene (p/m)	ND	0.00100	"	"	"	"	"	"	
Xylene (o)	ND	0.00100	**	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		108 %	80	120	"	"	"	n	
urrogate: 4-Bromofluorobenzene		101 %	80	120	n	"	"	n	
Monitor Well #3 (6H25011-03) Water									
Benzene	ND	0.00100	mg/L	1	EH62520	08/25/06	08/28/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	**	"	11	
Ethylbenzene	ND	0.00100	"	"	"	"		*	
Xylene (p/m)	ND	0.00100	"	"	"	"	и	11	
Xylene (o)	ND	0.00100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		105 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.5 %	80-	120	"	n	n	"	

Environmental Lab of Texas

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: EME Jct. K-6 Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H25011-01) Water									
Total Alkalinity	560	4.00	mg/L	2	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	10500	250	"	500	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	19100	10.0	"	1	EH62916	08/28/06	08/30/06	EPA 160.1	
Sulfate	3710	250	51	500	EH63019	08/28/06	08/28/06	EPA 300.0	
Monitor Well #2 (6H25011-02) Water									
Total Alkalinity	472	4.00	mg/L	2	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	11300	250	"	500	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	22000	10.0	"	1	EH62916	08/28/06	08/30/06	EPA 160.1	
Sulfate	4560	250	"	500	EH63019	08/28/06	08/28/06	EPA 300.0	
Monitor Well #3 (6H25011-03) Water									
Total Alkalinity	460	4.00	mg/L	2	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	10700	250	"	500	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	23000	10.0	."	• 1	EH62916	08/28/06	08/30/06	EPA 160.1	
ulfate	4160	250	**	500	EH63019	08/28/06	08/28/06	EPA 300.0	

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H25011-01) Water								,	
Calcium	832	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	278	1.80	н	50	"		"	"	
Potassium	37.0	3.00	"	"		**	"	**	
Sodium	7690	43.0	n	1000	"	**	"	"	
Monitor Well #2 (6H25011-02) Water									
Calcium	999	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	312	1.80	n	50	"	"	"	**	
Potassium	36.6	3.00	"	"	"	"		**	
Sodium	9220	43.0	n	1000	"	**	"	n	
Monitor Well #3 (6H25011-03) Water									
Calcium	775	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	270	1.80	"	50	н	. "	"	"	
Potassium	49.2	3.00	μ		**	"	"		
odium	7500	43.0	"	1000	"	"	"	"	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

				_						
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62520 - EPA 5030C (GC)

······				· · · · · · · · · · · · · · · · · · ·			
Blank (EH62520-BLK1)				Prepared: 08	8/25/06 A	nalyzed: 08	8/28/06
Benzene	ND	0.00100	mg/L				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00100	"				
Yylene (0)	ND	0.00100	Ħ				
Surrogate: a,a,a-Trifluorotoluene	42.0		ug/l	40.0		105	80-120
Surrogate: 4-Bromofluorobenzene	43.1		"	40.0		108	80-120
LCS (EH62520-BS1)				Prepared: 08	8/25/06 A	nalyzed: 08	8/28/06
Benzene	0.0508	0.00100	mg/L	0.0500		102	80-120
Toluene	0.0533	0.00100	"	0.0500		107	80-120
thylbenzene	0.0539	0.00100	"	0.0500		108	80-120
(ylene (p/m)	0.120	0.00100		0,100		120	80-120
(ylene (o)	0.0559	0.00100	n	0.0500		112	80-120
urrogate: a,a,a-Trifluorotoluene	43.0		ug/l	40.0		108	80-120
urrogate: 4-Bromofluorobenzene	46.7		"	40.0		117	80-120
alibration Check (EH62520-CCV1)				Prepared &	Analyzed	: 08/25/06	
enzene	45.2		ug/l	50.0		90.4	80-120
bluene	48.4			50.0		96.8	80-120
hylbenzene	52.4		"	50.0		105	80-120
ylene (p/m)	109		"	100		109	80-120
ylene (0)	54.1			50.0		108	80-120
urrogate: a,a,a-Trifluorotoluene	41.9		"	40.0		105	80-120
urrogate: 4-Bromofluorobenzene	38.5		"	40.0		96.2	80-120
latrix Spike (EH62520-MS1)	Sou	rce: 6H23008-	01	Prepared &	Analyzed	: 08/25/06	
enzene	0.0517	0.00100	mg/L	0.0500	ND	103	80-120
bluene	0.0561	0.00100	н	0.0500	ND	112	80-120
hylbenzene	0.0509	0.00100	"	0.0500	ND	102	80-120
(ylene (p/m)	0.118	0.00100	"	0.100	ND	118	80-120
ylene (o)	0.0546	0.00100	"	0.0500	ND	109	80-120
urrogate: a,a,a-Trifluorotoluene	47.5		ug/l	40.0		119	80-120
Surrogate: 4-Bromofluorobenzene	47.0		"	40.0		118	80-120

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

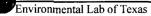
Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62520 - EPA 5030C (GC)

Matrix Spike Dup (EH62520-MSD1)	Sou	Prepared &	Analyzed:	08/25/06					
Benzene	0.0542	0.00100	mg/L	0.0500	ND	108	80-120	4.74	20
Toluene	0.0563	0.00100	н	0.0500	ND	113	80-120	0.889	20
Ethylbenzene	0.0539	0.00100	**	0.0500	ND	108	80-120	5.71	20
Xylene (p/m)	0.106	0.00100	"	0.100	ND	106	80-120	10.7	20
Xylene (o)	0.0525	0.00100	. "	0.0500	ND	105	80-120	3.74	20
Surrogate: a,a,a-Trifluorotoluene	45.9		ug/l	40.0	·····	115	80-120		
Surrogate: 4-Bromofluorobenzene	45.3		0	40.0		113	80-120		



General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Ameliate	Result	Reporting	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Nata
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62916 - Filtration Preparation							_			
Blank (EH62916-BLK1)				Prepared: 0	08/28/06 A	nalyzed: 08	/29/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EH62916-DUP1)	Sour	ce: 6H25010-	-01	Prepared: 0	08/28/06 A	nalyzed: 08	/29/06			
Total Dissolved Solids	2480	10.0	mg/L		2580			3.95	5	
Duplicate (EH62916-DUP2)	Sour	ce: 6H25013-	-01	Prepared: 0)8/28/06 A	nalyzed: 08	/29/06			
Fotal Dissolved Solids	1350	10.0	mg/L		1400			3.64	5	
Batch EH63019 - General Preparation (V	VetChem)									
Blank (EH63019-BLK1)				Prepared &	Analyzed:	08/28/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EH63019-BS1)				Prepared &	Analyzed:	08/28/06				
Chloride	10.2	0.500	mg/L	10.0		102	80-120			
Sulfate	10.1	0.500	"	10.0		101	80-120			
Calibration Check (EH63019-CCV1)				Prepared &	Analyzed:	08/28/06				
hloride	9.87		mg/L	10.0		98.7	80-120			•
Sulfate	12.0		"	10.0		120	80-120			
Duplicate (EH63019-DUP1)	Sour	ce: 6H24003	-01	Prepared &	Analyzed:	08/28/06				
Chloride	94.7	5.00	mg/L		102			7.42	20	
Sulfate	225	5.00	"		227			0.885	20	
Duplicate (EH63019-DUP2)	Sour	ce: 6H25013	-01	Prepared &	Analyzed:	08/28/06				
Chloride	420	10.0	mg/L		418			0.477	20	
Sulfate	40.5	10.0	"		40.9			0.983	20	

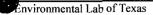
General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH63019 - General Preparati	on (WetChem)		<u></u>							
Matrix Spike (EH63019-MS1)	Sourc	e: 6H24003-	01	Prepared &	Analyzed:	08/28/06				
Sulfate	338	5.00	mg/L	100	227	111	75-125			
Chloride	204	5.00	"	100	102	102	80-120			
Matrix Spike (EH63019-MS2)	Sourc	e: 6H25013-	01	Prepared &	Analyzed:	08/28/06				
Sulfate	239	10.0	mg/L	200	40.9	99,0	75-125			
Chloride	645	10.0	"	200	418	114	80-120			
	on (WetChem)			Prepared &	Analyzed:	08/31/06		⁼¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹		
Blank (EH63106-BLK1)	on (WetChem) ND	2.00	mg/L	Prepared &	z Analyzed:	08/31/06		<u>, , , , .</u>		
Blank (EH63106-BLK1) Total Alkalinity	· · · · · · · · · · · · · · · · · · ·	2.00	mg/L	Prepared & Prepared &						
Batch EH63106 - General Preparati Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity	· · · · · · · · · · · · · · · · · · ·	2.00	mg/L mg/L				85-115			
Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1)	ND 190		mg/L	Prepared &	z Analyzed:	08/31/06 95.0	85-115			
Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity	ND 190	2.00	mg/L	Prepared & 200	z Analyzed:	08/31/06 95.0	85-115	3.92	20	
Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity Duplicate (EH63106-DUP1)	ND 190 Sourc	2.00 e: 6H24003-	mg/L 01	Prepared & 200	Analyzed: Analyzed: 156	08/31/06 95.0 08/31/06	85-115	3.92	20	

Environmental Lab of Texas

Total Metals by EPA / Standard Methods - Quality Control


Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62802 - 6010B/No Digestion

Blank (EH62802-BLK1)				Prepared & Analyze	d: 08/28/06				
Calcium	ND	0.0810	mg/L						
Magnesium	ND	0.0360	"						
Potassium	ND	0.0600	"						
Sodium	ND	0.0430	"						
Calibration Check (EH62802-CCV1)				Prepared & Analyze	d: 08/28/06				
Calcium	1.97		mg/L	2.00	98.5	85-115			
Magnesium	2.13		"	2.00	106	85-115			
Potassium	1.74			2.00	87.0	85-115			
Sodium	1.84		"	2.00	92.0	85-115			
Duplicate (EH62802-DUP1)	Sour	ce: 6H25010-	-01	Prepared & Analyze	ed: 08/28/06				
Calcium	267	4.05	mg/L	251			6.18	20	
Magnesium	81.9	1.80	н	77.6			5.39	20	
Potassium	7.20	0.600		7.76			7.49	20	
Sodium	396	2.15	"	409			3.23	20	

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K Jul

9/5/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Texas	Phone: 432-563-1800	Eave 429 503 4742
Labo	Phone:	
Enverymental Lab of Texas	12600 West (-20 East	Adama Tawan Tâtes

÷

.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

			County NM						zbilds befored Solids Pre-Schedule TAT HSUR TAT Disbirds	x x	x	x X X X						z International International		うちち		
	EME Junction K-6		T20S-R37E-Sec6K, Lea County NM				Analyze For:		SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg Sc Semivolatiles BTEX 60218/5030 RCI RCI	X	×	X					Sample Containers Infact?	Labels on container? Custody Seals. <u>Containers</u> / Cooler	Lemperature upon receipt	Laboratory Comments:		
	EMEJ		T20S-				TCLP	T	Other (specify): Cations (Ci, SO4, CO3, HCO3) Amons (Ci, SO4, CO3, HCO3)	XX	××	××					 Samp	Custo - Custo		Time Labó	¢ [13:11	Time
	Project Name:	Project Number:	Project Loc:	PO Number:				tive Matrix	Water Other (Specify) Water		1 X	4 X						griceswd.com		Date	8-25-04	Date
	,			-	Fax No: (505) 397-1471			Preservative	Na. of Confainers HCI (2) 40 ml glass viats HCI (2) 40 ml glass viats HCI (2) 40 ml glass viats HCI (2) 40 ml glass viats	3 X 2	3 X 2	3 X 2						kpope@riceswd.com;		-	Amen	
	mo				Fax No: <u>(</u>			-1-	bəlqms2 əmiT,	12:45	11:05	9:45	. 1		-+			oe@riceswd.c		/ /	" formet	
	kpope@riceswd.com	-				31-9310		1 HER	Date Sampled	8/22/2006	8/22/2006	8/22/2006	- - - -	-		 			:	Received by:		<u>۳</u>
Fax: 432-563-1713		Company Name RICE Operating Company	Taylor Street	city/state/zip: Hobbs, New Mexico 88240	93-9174	sampler signature: Rozanne Johnson (505) 631-9310	Email: rozanne@valornet.com		FIELD CODE									PLEASE Email RESULTS TO: rozanne@valomet.com		Date Time	8-25-04 13:10	Date Time
3765	Project Manager: Kristin Farris Pope	any Name RICE C	company Address: 122 W. Taylor Street	ristate/zip: Hobbs,	Telephone No: (505) 393-9174	Signature: Rozanr	Email: <u>rozann</u> (Monitor Well #1	-02 Monitor Well #2	OX Monitor Well #3	- 1 					P	0	$\langle \cdot \rangle$		A A
Odessa, Texas 79765	Project	Comp	Company	City	Tele	Sampler (UND CON	10-	Î Î	9					Special Instructions:			Relinquished by:	Rozanne Johnsol	Relinguished by:

a de la companya de l La companya de la comp

۲.

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ht:	Rice Operating	<u>. </u>
Date/ Time:	08-25-06 @ 1522	-
Lab ID # :	6425011	<u> </u>
Initials:	JMM	

Sample Receipt Checklist

.

				CI	ient Initials
#1	Temperature of container/ cooler?	(Yes)	No	1.0 °C	
#2	Shipping container in good condition?	Yes	· No		
#3	Custody Seals intact on shipping container/ cooler?	(Tes)	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	(res)	No	Not Present	*
#5	Chain of Custody present?	(Yes)	No		
#6	Sample instructions complete of Chain of Custody?	Yes	No		
#7	Chain of Custody signed when relinquished/ received?	(res)	No		
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#11	Containers supplied by ELOT?	(Yes)	No		
#12	Samples in proper container/ bottle?	(Yes)	No	See Below	
#13	Samples properly preserved?	Ves	No	See Below	
#14	Sample bottles intact?	(Yes)	No		
#15	Preservations documented on Chain of Custody?	(Yes)	No		
14 - L.J.	Containers documented on Chain of Custody?	(Tes)	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	(Yes)	No	See Below	
#19	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:	Contacted by:	Date/ Tir	ne:
Regarding:	1		
Corrective Action Taken:			
<u></u>			
Check all that Apply:		uld like to proceed with analysis	
	Cooling process had begu	n shortly after sampling event	
	•		

44 . . .