3R - 137

REPORTS

DATE: 8/28/2007

SR 0137 RECEIVED

3R0 141

2007 AUG 30 AM 11,06 No. 05161-007

August 28, 2007

7 Pr.

100

Mr. Glen von Gonten NMOCD 1220 South St. Francis Dr. Santa Fe, NM 87505

Phone (505) 476-3440

RE: DUNCAN OIL FIFTH 2006-2007 QUARTERLY MONITORING REPORT

Dear Mr. von Gonten:

Enclosed please find one (1) copy of the report entitled, *Duncan Oil Fifth 2006-2007 Quarterly Monitoring Report*. This report details the fourth quarterly monitoring for the North Hogback 12-1, and North Hogback 12-9 locations on the Navajo Nation in San Juan County, New Mexico.

We appreciate the opportunity to be of service. If you should have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully Submitted, ENVIROTECH, INC.

Greg Crabtree Environmental Engineer gcrabtree@envirotech-inc.com

Enclosure: One (1) copy

Cc: Mr. Fallin, Duncan Oil Mr. Lee, NNEPA Mr. Yarborough, BIA Mr. Walker, USEPA Client File 05161

DUNCAN OIL FIFTH 2006-2007 QUARTERLY MONITORING REPORT NORTH HOGBACK 12-1 AND 12-9 NAVAJO NATION SAN JUAN COUNTY, NEW MEXICO

TABLE OF CONTENTS

Introduction	n	
Groundwat	er Sampling and	Analysis1
Summary a	nd Conclusions.	2
Sections:	Section 1:	Figure 1, Vicinity Map Figure 2, North Hogback 12-1 and 12-9 Site Map Figure 3, North Hogback 12-1 and 12-9 Water Level Map Figure 4, North Hogback 12-1 and 12-9 Manganese Iso-Concentration Map
	Section 2:	Laboratory Water Sample Results
	Section 3:	Historical Data

Section 4: Field Notes

- - Viller

2 . 4 . A. C.

1. 1. - 2. C.

1.1.1.1

2 2 2

1. S.M.

S. 1. 1. 2

an a star a s

INTRODUCTION

Envirotech, Inc. has completed the fifth quarterly monitoring of four (4) monitor wells at the Duncan Oil North Hogback 12-1 and 12-9 well sites; see *Figure 1 Vicinity Map*. Contaminated soil was previously excavated from the sites in September and October of 2005 and monitor wells were installed. The contaminated soil was transported to Envirotech's NMOCD permitted landfarm at Hilltop, NM, for remediation. Water samples collected at the time of excavation indicated that the two (2) sites previously referenced had residual contaminants in the groundwater above the guidelines set forth by the USEPA and adopted by the NNEPA.

GROUNDWATER SAMPLING AND ANALYSIS

Groundwater sampling/monitoring was performed on four (4) monitor wells on July 05, 2007. Prior to sampling a minimum of three (3) well volumes of water were bailed out of each well with a new disposable bailer.

Water levels were calculated from the surveying data to draw a water level map. Water levels and groundwater gradient for the North Hogback 12-1 and 12-9 are shown on *Figure 3, North Hogback 12-1 and 12-9 Water Level Map.* It appears that the groundwater is moving from southeast to northwest across the 12-1 and 12-9 sites. Water levels for the individual wells are tabulated in *Table 1: Water Levels* below.

Name	Casing Elevation	Water Depth	Water Elevation
N. Hogback 12-1 MW-1	5025.84	19.91	5005.93
N. Hogback 12-1 MW-2	5027.47	19.41	5008.06
N. Hogback 12-9 MW-1	5026.12	8.55	5017.57
N. Hogback 12-9 MW-2	5025.61	9.25	5016.36
N. Hogback 12-4 MW-1	NS	NS	NS
N. Hogback 12-4 MW-2	NS	NS	NS
N. Hogback 12-4 MW-3	NS	NS	NS

Table 1: Water Levels

NS = Not Sampled

North Hogback 12-9

Samples were collected from the two (2) monitor wells at the North Hogback 12-9 and analyzed for lead, manganese, and iron via USEPA Method 6010B. Results from this analysis are summarized in *Table 2: Summary of Laboratory Metals Analysis of North Hogback 12-9* below and laboratory certificates are presented in *Section 2: Laboratory Water Sample Results*.

Table 2: Summary	of Laboratory	/ Metals Ana	lvsis for	North 1	Hoghack 12-9
	UI LAOUIACUI J	ITA COULD I MALES.	1,9 515 101	TIOT CHE	LIUZDAUN IM"/

Analyte	Monitor Well #1	Monitor Well #2	Regulated Level
Iron (ppm)	0.254	0.411	1.0
Manganese (ppm)	0.308	0.417	0.2
Lead (ppm)	ND	ND	0.050

Values in bold exceed the USEPA and NNEPA regulated level ND – indicates analyte is below the method detection limit

Manganese is above standards for both MW-1 and MW-2. Manganese concentrations decreased from the values reported in the fourth quarter sampling event in MW-1 and in MW-2; see *Section 3: Historical Data*.

North Hogback 12-1

Samples were collected from the two (2) monitor wells at the North Hogback 12-1 and analyzed for benzene, toluene, ethylbenzene, and total xylene (BTEX) via USEPA Method 8021B. Results from this analysis are summarized in *Table 3: Summary of Laboratory BTEX Analysis for North Hogback 12-1* below and laboratory certificates are presented in *Section 2: Laboratory Water Sample Results*. Both wells bailed dry after approximately 0.5 gallons of water was bailed out.

Analyte	Monitor Well #1	Monitor Well #2	Regulated Level
Benzene (ppb)	ND	ND	5.0
Toluene (ppb)	ND	ND	1,000
Ethylbenzene (ppb)	ND	ND	700
Total Xylenes (ppb)	0.4	0.5	10,000

ND - indicates analyte is below the method detection limit

SUMMARY AND CONCLUSIONS

Envirotech has completed the fifth quarterly monitoring of four (4) monitor wells at the North Hogback 12-1 and 12-9 well sites.

At the North Hogback 12-1 location, all contaminants of concern analyzed for are below the regulated limit. BTEX levels decreased from the previous sampling event, this could be from reentrainment of contamination from the vadose zone due to the fluctuation in water levels.

Envirotech recommends a minimum of two (2) additional sampling events at this site where contaminants of concern are below regulated limits.

At the North Hogback 12-9 location, manganese was slightly higher than the regulated level in both monitor wells at 0.308 ppm and 0.417 ppm respectively. Envirotech recommends a minimum of three (3) additional sampling events at this site, until contaminants of concern are below regulated limits. Although manganese is above the regulated level, it has shown a decrease from the last sampling event in January 2007.

Duncan Oil Fifth 2006-2007 Quarterly Monitoring August 29, 2007 Project No. 05161-007 Page 3

We appreciate the opportunity to be of service. Should you have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully submitted, ENVIROTECH, INC. Reviewed By:

Greg Crabtree, EIT Environmental Engineer gcrabtree@envirotech-inc.com

Kyle P. Kerr Chief Environmental Scientist NMCES #299 kpkerr@envirotech-inc.com

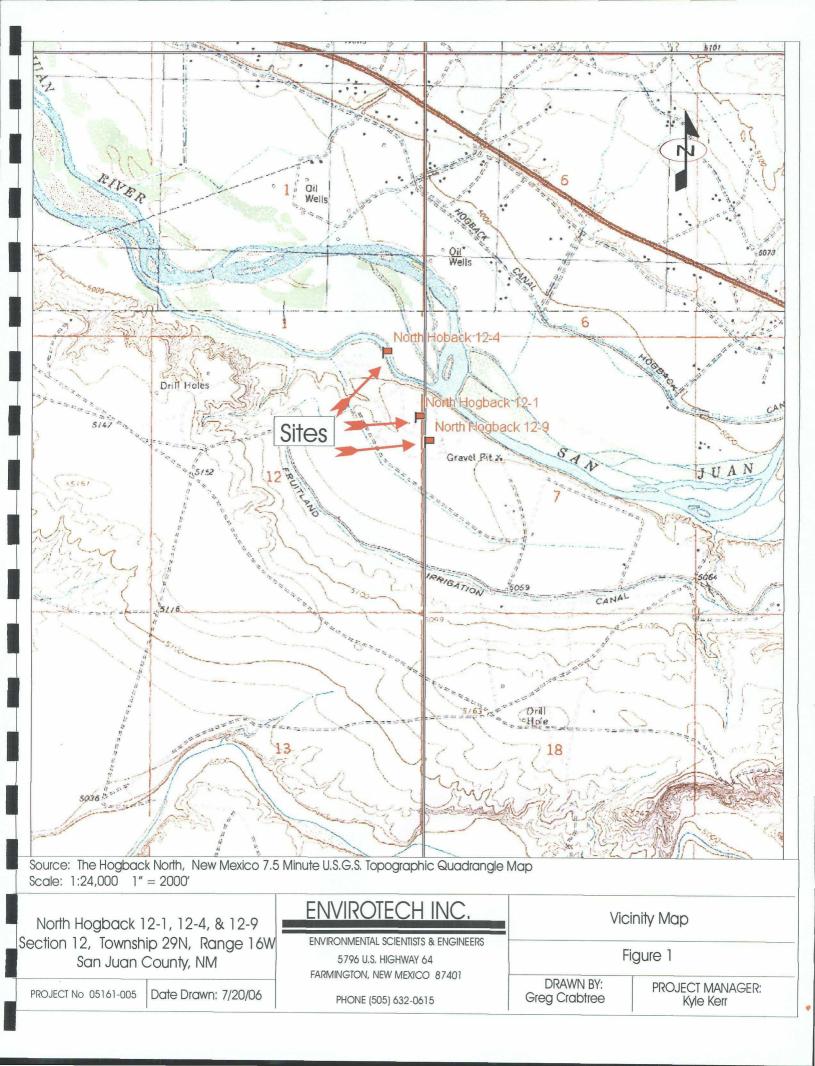
SECTION 1:

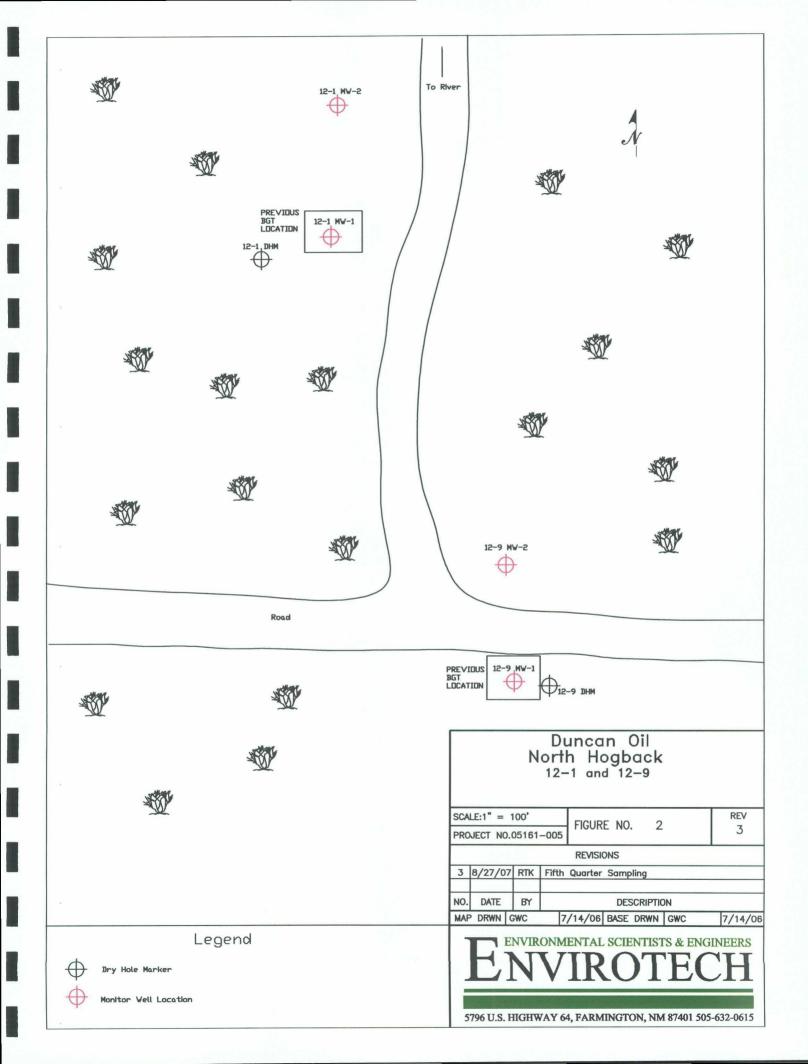
، در ¹ م

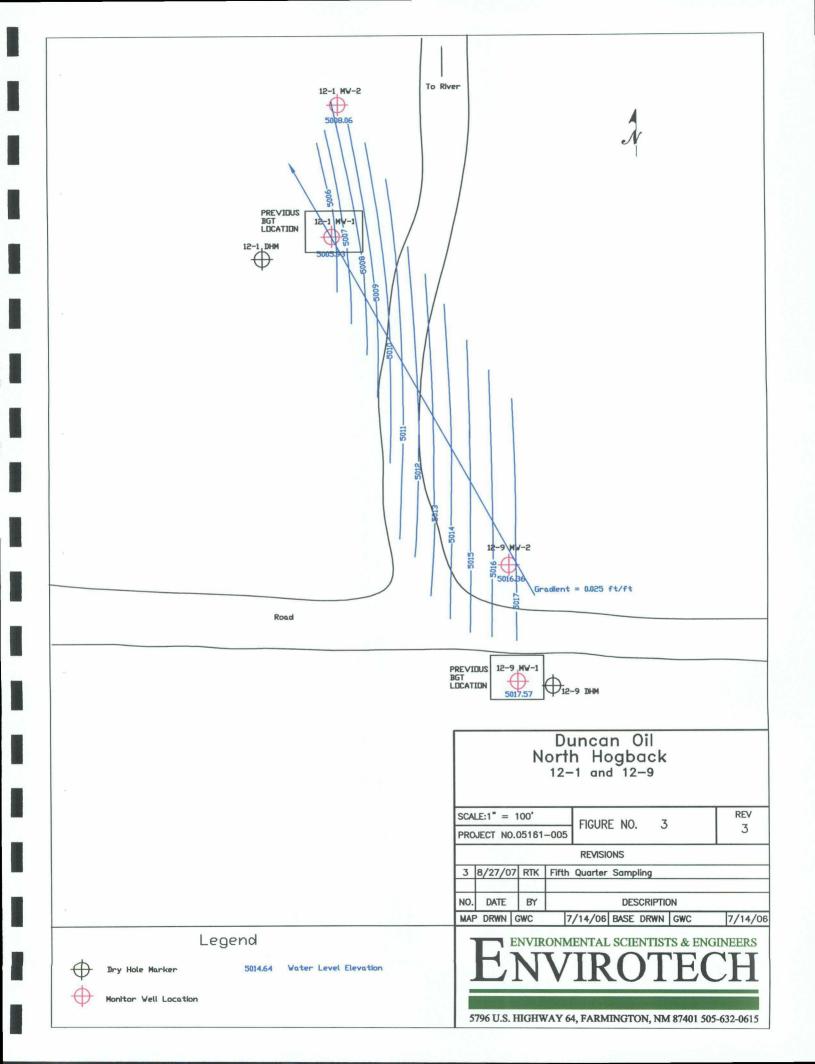
P . 44

tes.

3.4


4 A.


Figure 1, Vicinity Map


Figure 2, North Hogback 12-1 and 12-9 Site Map

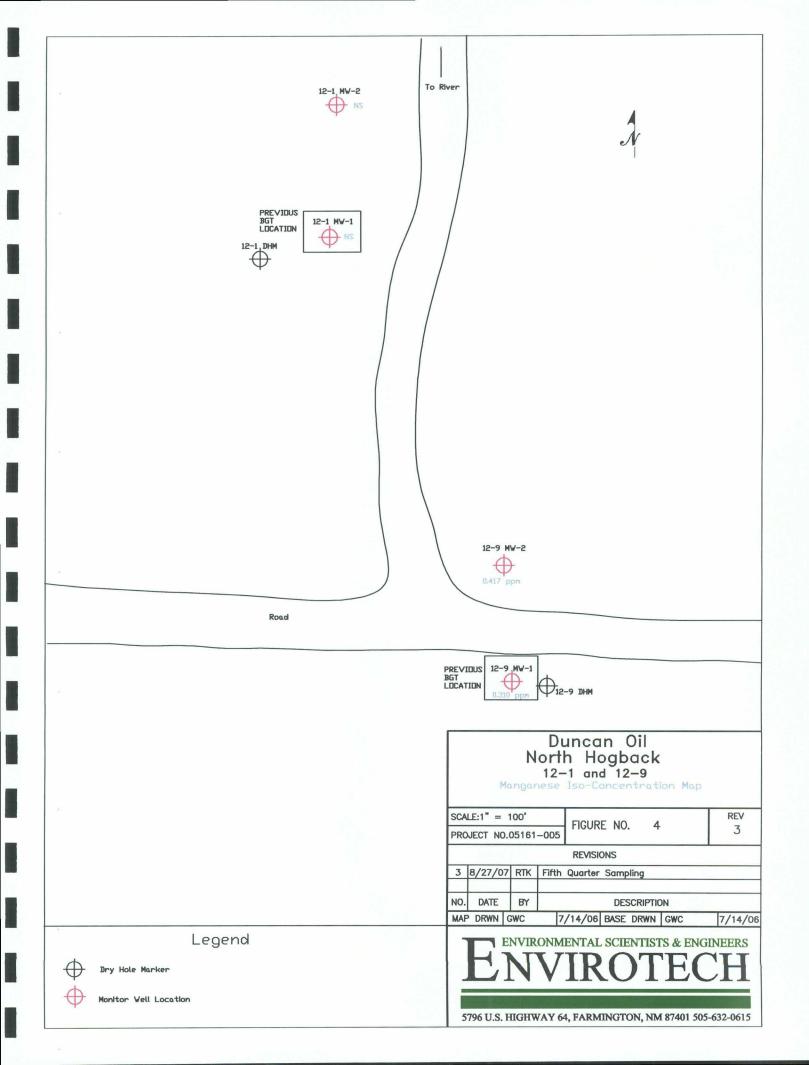

Figure 3, North Hogback 12-1 and 12-9 Water Level Map

Figure 4, North Hogback 12-1 and 12-9 Manganese Iso-Concentration Map

SECTION 2:

Sec. 1

1 States

をきまし

「「「「

「「ない」

の調整

Laboratory Water Sample Results

•

San San

がある

変要の

all the

and the second

10253

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Duncan Oil	Projec	ct #:	05161-007	
Sample ID:	12 - 1 MW #1	Date	Reported:	07-14-07	
Chain of Custody:	2951	Date	Sampled:	07-05-07	
Laboratory Number:	42311	Date	Received:	07-05-07	
Sample Matrix:	Water	Date	Analyzed:	07-14-07	
Preservative:	Cool / HCL	Analy	sis Requested:	BTEX	
Condition:	Cool & Intact				
					Det.
_		Concentration	Dilution		Limit
Parameter		(ug/L)	Factor		(ug/L)
Benzene		ND	1		0.2
Toluene		ND	1		0.2
Ethylbenzene		ND	1		0.2
p,m-Xylene		0.4	1		0.2
o-Xylene		ND	1		0.1
Total BTEX		0.4			

ND - Parameter not detected at the stated detection limit.

ent Recovery
99.8 %
99.8 %
99.8 %
\$

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: N. Hogback, NM.

stur nucetus

- C. Cep Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Duncan Oil	Project #:	05161-007
Sample ID:	12 - 1 MW #2	Date Reported:	07-14-07
Chain of Custody:	2951	Date Sampled:	07-05-07
Laboratory Number:	42312	Date Received:	07-05-07
Sample Matrix:	Water	Date Analyzed:	07-14-07
Preservative:	Cool / HCL	Analysis Requested:	BTEX
Condition:	Cool & Intact		

	Concentration	Dilution	Det. Limit
Parameter	(ug/L)	Factor	(ug/L)
Benzene	ND	1	0.2
Toluene	ND	1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	0.3	1	0.2
o-Xylene	0.2	1	0.1

Total BTEX

Sec. Sec.

1000

3.44A

的關鍵

100

調査の

32.00%

調査会社

1.50

2012

2.05

大学に

0.5

ND - Parameter not detected at the stated detection limit.

Surrogate Recover	ies: Parameter	Percent Recovery
	fluorobenzene	99.8 %
	1,4-difluorobenzene	99.8 %
	4-bromochlorobenzene	99.8 %
	/lethod 5030B, Purge-and-Trap, Test Methods for Evalua December 1996.	ating Solid Waste, SW-846, USEPA,
٨	lethod 8021B, Aromatic and Halogenated Volatiles by G	Gas Chromatography Using
F	hotoionization and/or Electrolytic Conductivity Detectors	s, SW-846, USEPA December 1996.
Comments:	J. Hogback, NM.	

Mistre Maeles

Review

1000

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

Street and

1000

No.

623. A.B.

1000

RACTICAL SOLUTIONS FOR A BETTLER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

		N/A		Project #:		N/A
Sample ID:		07-14-BTEX QA/	QC	Date Reported:		07-14-07
Laboratory Number		42311		Date Sampled:		N/A
Sample Matrix: Preservative:		Liquid N/A		Date Received: Date Analvzed:		N/A
Condition:		N/A N/A				07-14-07
				Analysis:		BTEX
Calibration and Detection Limi	ts (ug/L)	I-Cal RF:	C-Cal RF: Accept. Ra	%Diff. nge 0 - 15%	Blank Conc	Detect Limit
Benzene		2.4829E+007	2.4904E+007	0.30%	ND	0.2
Toluene		2.1429E+007	2.1494E+007	0.30%	ND	0.2
Ethylbenzene		1.5978E+007	1.6026E+007	0.30%	ND	0.2
p,m-Xylene		3.4436E+007	3.4540E+007	0.30%	ND	0.2
o-Xylene		1.4729E+007	1.4773E+007	0.30%	ND	0.1
Duplicate Conc.	(ug/L)	Sample	Duplicate	%Diff.	Accept Limit	
Benzene		ND	ND	0.0%	0 - 30%	
Toluene		ND	ND	0.0%	0 - 30%	
Ethylbenzene		ND	ND	0.0%	0 - 30%	
p,m-Xylene		0.4	0.4	0.0%	0 - 30%	
p,m-zylene		0.4	••••			
o-Xylene	1¥	ND	ND	0.0%	0 - 30%	Anadustin
o-Xylene Spike Conc. (ug/	L)	ND Sample	ND Amount Spiked	0.0% Spiked Sample	0 - 30% % Recovery	Accept Lin
o-Xylene Spike Conc. (ug/ Benzene	L)	ND Sample ND	ND Amount Spiked 50.0	0.0% Spiked Sample 49.9	0 - 30% % Recovery 99.8%	39 - 15(
o-Xylene Spike Conc. (ug/ Benzene Toluene	6	ND Sample ND ND	ND Amount Spiked 50.0 50.0	0.0% Spiked Sample 49.9 50.0	0 - 30% % Recovery 99.8% 100.0%	39 - 15(46 - 148
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene	E)	ND Sample ND ND ND	ND Amount Spiked 50.0 50.0 50.0	0.0% Spiked Sample 49.9 50.0 49.9	0 - 30% % Recovery 99.8%	39 - 15(
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene p,m-Xylene	L)	ND Sample ND ND ND 0.4	ND Amount Spiked 50.0 50.0	0.0% Spiked Sample 49.9 50.0 49.9	0 - 30% % Recovery 99.8% 100.0%	39 - 150 46 - 148 32 - 160
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene	t .)	ND Sample ND ND ND	ND Amount Spiked 50.0 50.0 50.0	0.0% Spiked Sample 49.9 50.0 49.9 100	0 - 30% % Recovery 99.8% 100.0% 99.9%	39 - 15(46 - 148
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	L)	ND Sample ND ND ND 0.4 ND	ND Amount Spiked 50.0 50.0 50.0 100	0.0% Spiked Sample 49.9 50.0 49.9 100	0 - 30% % Recovery 99.8% 100.0% 99.9% 100.0%	39 - 150 46 - 148 32 - 160 46 - 148
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	detected at the state Method 5030B, Put December 1996. Method 8021B, Arc	ND Sample ND ND 0.4 ND 0.4 ND d detection limit.	ND Amount Spiked 50.0 50.0 50.0 100 50.0 20.0	0.0% Spiked Sample 49.9 50.0 49.9 100 50.0 50.0	0 - 30% % Recovery 99.8% 100.0% 99.9% 100.0% 100.0%	39 - 150 46 - 148 32 - 160 46 - 148
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene ND - Parameter not	detected at the state Method 5030B, Put December 1996. Method 8021B, Arc	ND Sample ND ND 0.4 ND 0.4 ND d detection limit.	ND Amount Spiked 50.0 50.0 50.0 100 50.0 20.0	0.0% Spiked Sample 49.9 50.0 49.9 100 50.0 50.0	0 - 30% % Recovery 99.8% 100.0% 99.9% 100.0% 100.0%	39 - 150 46 - 148 32 - 160 46 - 148
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene ND - Parameter not	detected at the state Method 5030B, Pur December 1996. Method 8021B, Arc Photoionization and	ND Sample ND ND 0.4 ND 0.4 ND d detection limit.	ND Amount Spiked 50.0 50.0 50.0 100 50.0 sthods for Evaluating ad Volatiles by Gas C ictivity Detectors, SV	0.0% Spiked Sample 49.9 50.0 49.9 100 50.0 Solid Waste, SW-846 Chromatography Using V-846, USEPA Decemb	0 - 30% % Recovery 99.8% 100.0% 99.9% 100.0% 100.0%	39 - 150 46 - 148 32 - 160 46 - 148
o-Xylene Spike Conc. (ug/ Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene ND - Parameter not References:	detected at the state Method 5030B, Pur December 1996. Method 8021B, Arc Photoionization and QA/QC for s	ND Sample ND ND 0.4 ND 0.4 ND d detection limit.	ND Amount Spiked 50.0 50.0 50.0 100 50.0 sthods for Evaluating ad Volatiles by Gas C ictivity Detectors, SV	0.0% Spiked Sample 49.9 50.0 49.9 100 50.0 Solid Waste, SW-846 Chromatography Using V-846, USEPA Decemb	0 - 30% % Recovery 99.8% 100.0% 99.9% 100.0% 100.0%	39 - 150 46 - 148 32 - 160 46 - 148

Mar Contraction

1000

880.2%

あまうない

12442

1. A.

and week

N TOTAL

S. S. Car

Manganese	0.308	0.001	
Iron	0.254	0.001	
Parameter	Concentration (mg/L)	Limit (mg/L)	
Condition:	Cool & Intact	Analysis Needed:	Fe, Mn, Pb
Preservative:	Cool, HNO3	Date Digested:	07-06-07
Sample Matrix:	Water	Date Analyzed:	07-08-07
Chain of Custody:	2951	Date Received:	07-05-07
Laboratory Number:	42309	Date Sampled:	07-05-07
Sample ID:	12-9 MW #1	Date Reported:	07-08-07
Client:	Duncan Oil	Project #:	05161-00

ND - Parameter not detected at the stated detection limit.

References: Method 3050B, Acid Digestion of Sediments, Sludges and Soils. SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision Spectorscopy, SW-846, USEPA, December 1996.

Comments:

N. Hogback, NM Field Filtered

Analyst

Naeters Review

Sec. 1

の御堂

明史の

100

and the

1000

(imake

19 Mar

and the

Manganese	0.417	0.001	
Iron	0.411	0.001	
Parameter	Concentration (mg/L)	Det. Limit (mg/L)	
Condition:	Cool & Intact	Analysis Needed:	Fe, Mn, Pb
Preservative:	Cool, HNO3	Date Digested:	07-06-07
Sample Matrix:	Water	Date Analyzed:	07-08-07
Chain of Custody:	2951	Date Received:	07-05-07
Laboratory Number:	42310	Date Sampled:	07-05-07
Sample ID:	12-9 MW #2	Date Reported:	07-08-07
Client:	Duncan Oil	Project #:	05161-00

ND - Parameter not detected at the stated detection limit.

 References:
 Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

 SW-846, USEPA, December 1996.

 Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Comments:

N. Hogback, NM Field Filtered

Spectorscopy, SW-846, USEPA, December 1996.

Analyst

stre Milaete

(Carried

1. N. C.

TRACE METAL ANALYSIS Quality Control / Quality Assurance Report

Client:	QA/Q0	С	Project #:			N/A	
Sample ID:	07-08-	-TM QA/QC	C Date Reported:			07-08-07	
Laboratory Number:	42309)	Date Sampled:			N/A	
Sample Matrix:	Water	•	Date Rec	eived:		N/A	
Analysis Requested:	Fe, M	n, Pb	Date Ana	lyzed:		07-08-07	
Condition:	N/A		Date Dige	ested:		07-06-07	
Blank & Duplicate Conc. (mg/L)	Instrument Blank (mg/L)	5. 《法法》(1994)(2004)(2004)(2004)(2004)(2004))	Sample (mg/L)	and the second	e % Diff.	Acceptance Range	
 An example of the second state of	Construction of the second	S TEEL CELEVISE REPORTER	(3) 使用 法通知 心理 经收益的 经收益的 4.	and the second	STATISTICS AND STREET AND	1977 NO. 1977 N. 1977 No. 1978 No. 1977	
Conc. (mg/L)	Blank (mg/L)	Limit	(mg/L)	(mg/L)	Diff.	Range	

Spike Conc. (mg/L)	Spike Added	Sample (mg/L)			Acceptance Range
Iron	0.500	0.254	0.752	99.7%	80% - 120%
Manganese	0.500	0.308	0.806	99.8%	80% - 120%
Lead	0.500	ND	0.499	99.8%	80% - 120%

ND - Parameter not detected at the stated detection limit.

References: Method 3050B, Acid Digestion of Sediments, Sludges and Soils. SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision Spectorscopy, SW-846, USEPA, December 1996.

Comments:

nts: QA/QC for samples 42309 - 42310

Analyst

/ Mustine Muceters Review

			_	CUSTODY	RECORD			2 7 7	diame.	
Client / Project Name Du N CAN Oi C		Project Location	get, NM		X	ANALYSIS / PARAMETERS	ARAMETERS			
Sampler:		Client No. 05161-007	207	, of ainers 801	19-1			Rer	Remarks	
·. c	ple Sample e Time		Sample Matrix		108 #43				400	
12-9 #1 7/5/07	by 13:30	42309	WATER				i da	FIELD FID	Filtered	(WOa
	7/5/09 13:45		w Mter	$\left \right $			F. Ye	FIELD FILLERED	HING : H	(ND3
13-1 mw # 1 7/5/09	14:00	11564	WATER	Ľ	X		DRe	okes: Hel	して	
131 mw # 2 15/	75/07 14:10		where	К	X		- V	ores. He u	70	
Relinquished by: (Signature)			Date	Received by: (Signature)	gature)			Ď		Time
Rae Carers			15/02 15:30		Men	ll		7/5	7/5/07 15	530
Relinquished by: (Signature)				Received by: (Signature)	nature)					
Relinquished by: (Signature)				Received by: (Signature)	nature)					
			FOUROT		0			Sample Receipt	sceipt	
									N Y	N/A
			5796 U.S Farmington	5796 U.S. Highway 64 Farmington New Mexico 87401	401		Received Intact	d Intact	>	
			(505)	(505) 632-0615	2		Cool - Ice/Blue Ice	Blue Ice	>	
								san ji	san juan reproduction 578-129	on 578-129

SECTION 3:

Historical Data

Historical Data

NMED Act	ion Levels	5	1000	7 00	10000	1		0.05
Well No.	Sample Date	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Total Xylenes (ppb)	Iron (ppm)	Manganese (ppm)	Lead (ppm
North Hogback			<u> </u>			<u></u>		
12-1	07/20/06	NS	NS	NS	NS	NS	NS	NS
MW-1	10/13/06	4.30	2.40	3.90	12.20	NS	NS	NS
	01/11/07	ND	ND	0.20	1.50	NS	NS	NS
	04/02/07	121	301	359	1748	NS	NS	NS
	07/05/07	ND	ND	ND	0.4	NS	NS	NS
North Hogback								
12-1	07/20/06	NS	NS	NS	NS	NS	NS	NS
MW-2	10/13/06	5.90	3.00	7.10	15.80	NS	NS	NS
	01/11/07	0.20	17.60	5.00	46.30	NS	NS	NS
	04/02/07	ND	ND	0.60	1.80	NS	NS	NS
	07/05/07	ND	ND	ND	0.50	NS	NS	NS
North Hogback								
12-4	07/20/06	1.20	5.90	23.40	16.70	NS	NS	NS
MW-I	10/13/06	ND	1.90	1.30	1.90	NS	NS	NS
	01/11/07	ND	51.20	26.60	118.50	NS	NS	NS
North Hogback					I F			
12-4	07/20/06	1.60	1.80	1.60	8.70	NS	NS	NS
MW-2	10/13/06	3.10	1.60	2.80	6.70	NS	NS	NS
	01/11/07	ND	3.50	0.70	8.40	NS	NS	NS
North Hogback								
12-4	07/20/06	1.30	0.40	0.80	2.80	NS	NS	NS
MW-3	10/13/06	ND	ND	0.70	ND	NS	NS	NS
	01/11/07	ND	ND	ND	0.10	NS	NS	NS
North Hogback				[l I	·		
12-9	07/20/06	NS	NS	NS	NS	0.54	0.28	ND
MW-1	10/13/06	NS	NS	NS	NS	0.31	0.50	ND
	01/11/07	NS	NS	NS	NS	0.74	0.40	ND
	04/02/07	NS	NS	NS	NS	0.119	0.387	0.004
	07/05/07	NS	NS	NS	NS	0.250	0.310	ND
North Hogback	[
12-9	07/20/06	NS	NS	NS	NS	ND	0.22	ND
MW-2	10/13/06	NS	NS	NS	NS	0.22	0.54	ND
	01/11/07	NS	NS	NS	NS	0.46	0.55	ND
	04/02/07	NS	NS	NS	NS	0.325	0.493	0.003
	07/05/07	NS	NS	NS	NS	0.411	0.417	ND

NS = Not Sampled

が設置

読ん治

いたの

ALC: N

1000 H

ND = Not Detected

Historical Data

NMED Action Levels	.5 1000	700	10000	1 21	0.20
Well No. Sample Date	Benzene Toluene (ppb) (ppb)	Ethylbenzene (ppb)	Total Xylenes (ppb)	Iron (ppm) :	Manganese. (ppm)

Sec. 1

の言語

語を言

の語言

Sec. 2.

ない、ころう

2.6.432

や、情報

A. 76. 3

14

「「「

が見た

SECTION 4:

調合語

1. C. C. C.

14. Mar 19

No.

法正式

ten stan

all and a second

の語を

All and a second

No.

the second

Field Notes

, ,

ENVIROTECH INC. FARMINGTON, NM 5796 HIGHWAY 64 MONITOR WELL DATA

and the second

ではない。

122.22

Date: <u>7/5/04</u>	Project No: 05161-007
Project Name: <u>DUNCAN C.L</u>	Chain of Custody No:
Location: North Hogback Sites	12-1 and 12-9
Project Manager:	Sampler: <u>GWA/ERC</u>

MONITOR WELL DATA

WELL #	TIME	OVM ppm	рн	COND. µS	TEMP. °F	DEPTH TO WATER FT.	TOTAL DEPTH FT.	WATER COLUMN FT.	BAILED Water Gal.	PRODUCT Ft.	WATER LEVEL FT.
9 mw#1	13:B		8,42	1,39	70,8	8,55	21.05	12.5	6.0	-	
9 mw42	13:20		8.53	1,43	15,9	9.25	15,13		3.0		
-1 mu#1	13:50		8,11	1.80	69.6	19.91	a0.9	,99	15		
-1 mw#2	14:00		1.83	3,94	68.1	19.41	20.8	1,39	.15		
ļ	ļ	ļ									
											
	_					· · · · · · · · · · · · · · · · · · ·					
	<u> </u>										
 		 	 								
	-	ļ	ļ								
ļ		 	<u> </u>		<u> </u>						
		<u> </u>		ļ	<u> </u>						
		 									<u> </u>
					<u> </u>						
			<u> </u>		<u> </u>						
			<u> </u>								
				<u> </u>							
		- <u> </u>					╞────				
Notor	TOC = T	l	l		<u> </u>	<u></u>	L	<u> </u>	<u>I</u>	<u>L</u>	<u> </u>
Notes: Bailed	1 = 3 wel	l volum. 1 2 4	mes: .25" v .00" v	vell = (vell = (vell = 1).49 ga L.96 ga	l/ft.	a above				
]	Note we.	u ala	meter 1	1 1100 0	ne or tr		•		*5. * .	

U.S. ENVIRONMENTAL PROTECTION	DN AGENCY
NOTICE OF INSPECTION	N
Address (EPA Regional Office) Region 9 Environmental Inspection Agency 75 Hawthorne Street (WTR-9) San Francisco, CA 94105 Inspection Contractor MAVAJO HATIG: DEPERCENDER INSPECTION CONTROL DEPERCENDER INSPECTION CONTROL INSPECTION CON	Firm To Be Inspected RTDLinkun Environtech Tric. 5796 LISTINY GU Faimington WM 87401
Date $7 - 05 - 07$ Notice of inspection is hereby given according Safe Drinking Water Act (42 U.S.C. §300 f et	
Reason For Inspection Grutend Wale Sampling	
For the purpose of inspecting records, files, papers, processes, and obtaining samples to determine whether the person subject underground injection control program has acted or is acting in the Safe Drinking Water Act and any applicable permit or rule.	, controls and facilities, of to an applicable in compliance with
Raymond T Duncan No Hogback 12-9	
Monitor well # 1 sample with in monitor well # 2 sample with in	
Nullaglack 12-1 Scomple will he mondor well H. 1 Scomple will he	alet in the second s
montor well # 2 Sample and in Pit Conductivity, tenyerature re	eadings taken.
pit (unductivity, reinforder	
Section 1445(b) of the SDWA (42 U.S.C. §300)-4 (b) is quoted on the reverse of this form.	
Receipt of this Notice of Inspection is hereby acknowledged.	
Firm Representative Date	Inspector Dataria (164
	10. 1 7

USEPA - Region IX (White)

NEPA-GPCP (Yellow)

Operator (Pink)

10601 Lomas NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440

JR 0097 3R 0090

March 31, 2006

Mr. Glen Von Gonten	2006
State of New Mexico	ЯĨН
Oil Conservation Division	~
Environmental Bureau	ယ
1220 South Saint Francis Drive	Ρſ
Santa Fe, NM 87505	
*	
Dear Mr. Von Gonten:	23

Maxim Technologies (Maxim), on behalf of ConocoPhillips, submits this letter requesting permission to plug and abandon former air injection wells located at the Shephard and Kelsey #1 and Nell Hall #1 sites located in Bloomfield and Flora Vista, New Mexico, respectively. The air injection wells are out of use at both sites. Maxim also seeks approval to plug and abandon three monitoring wells located at the Nell Hall #1 site. These monitoring wells were replaced with deeper wells during February 2004 and are no longer sampled due to the lack of measurable groundwater within the screened intervals.

Maxim intends to complete this work during the week of May 15, 2006. Please notify me at (505) 237-8440 or <u>khenders@maximusa.com</u> before that time if you do not approve of this path forward, have any questions, or require additional information.

Sincerely,

Kelly Henderson

Kelly E. Henderson Project Manager/Geologist

Cc: Neal Goates, ConocoPhillips (electronic only) Denny Foust, NMED, Oil Conservation Division Robert Wirtanen, ConocoPhillips

10601 Lomas NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440

3130097 3R0090

March 31, 2006

Mr. Glen Von Gonten	2006
State of New Mexico	Abb
Oil Conservation Division	
Environmental Bureau	ယ
1220 South Saint Francis Drive	PM
Santa Fe, NM 87505	ن <u>ت</u> ۔
	}
Dear Mr. Von Gonten:	23

Dear Mr. Von Gonten:

Maxim Technologies (Maxim), on behalf of ConocoPhillips, submits this letter requesting permission to plug and abandon former air injection wells located at the Shephard and Kelsey #1 and Nell Hall #1 sites located in Bloomfield and Flora Vista, New Mexico, respectively. The air injection wells are out of use at both sites. Maxim also seeks approval to plug and abandon three monitoring wells located at the Nell Hall #I site. These monitoring wells were replaced with deeper wells during February 2004 and are no longer sampled due to the lack of measurable groundwater within the screened intervals.

Maxim intends to complete this work during the week of May 15, 2006. Please notify me at (505) 237-8440 or khenders@maximusa.com before that time if you do not approve of this path forward, have any questions, or require additional information.

Sincerely,

Killy E Henderson

Kelly E. Henderson Project Manager/Geologist

Cc: Neal Goates, ConocoPhillips (electronic only) Denny Foust, NMED, Oil Conservation Division Robert Wirtanen, ConocoPhillips

March 31, 2006

Mr. Glen Von Gonten State of New Mexico Oil Conservation Division Environmental Bureau 1220 South Saint Francis Drive Santa Fe, NM 87505

10601 Lomas NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440

BR 0097 3R0090

2006

Hdb

Dear Mr. Von Gonten:

Maxim Technologies (Maxim), on behalf of ConocoPhillips, submits this letter requesting permission to plug and abandon former air injection wells located at the Shephard and Kelsey #I and Nell Hall #I sites located in Bloomfield and Flora Vista, New Mexico, respectively. The air injection wells are out of use at both sites. Maxim also seeks approval to plug and abandon three monitoring wells located at the Nell Hall #I site. These monitoring wells were replaced with deeper wells during February 2004 and are no longer sampled due to the lack of measurable groundwater within the screened intervals.

Maxim intends to complete this work during the week of May 15, 2006. Please notify me at (505) 237-8440 or <u>khenders@maximusa.com</u> before that time if you do not approve of this path forward, have any questions, or require additional information.

Sincerely,

Kelly E. Henderson Project Manager/Geologist

Cc: Neal Goates, ConocoPhillips (electronic only) Denny Foust, NMED, Oil Conservation Division Robert Wirtanen, ConocoPhillips