1R. 336

REPORTS

DATE

3-21-08

CERTIFIED MAIL
RETURN RECIEPT NO. 7099 3400 0017 2053

March 21, 2008

Mr. Edward Hansen New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE:

FINAL REPORT AND REQUEST FOR CLOSURE EME I-1 SWD Offsite Encroachment Site T20S, R36E, Section 1, Unit Letter I NMOCD Case No.: 1R0336

Mr. Hansen:

A *Corrective Action Plan* (CAP) for the above-referenced site was sent to the NMOCD last year on February 27, 2007 (Attachment A), in which Rice Operating Company (ROC) presented the following conclusions and recommendations:

- 1. Hydrocarbon impact is localized in the immediate vicinity of boring B-1 (15-ft to 20-ft interval) with no evidence of hydrocarbon impact observed in the surrounding borings (B-4 and MW-1). Furthermore, the area to the north was excavated during the closure of the former redwood tanks. Previous remedial actions by ROC (excavation, backfilling, and lining of the former redwood tank area) and conversion of the boring B-1 into a passive vapor extraction well has minimized the risk for potential migration of VOCs into groundwater; therefore, no further mitigation is proposed.
- Chloride concentrations in the vadose zone are statistically close to the range of background concentrations (300-400 mg/kg) in all borings and do not present a threat to groundwater; therefore, no further corrective actions for chlorides within the vadose zone are proposed or recommended.
- 3. It appears that the cause for the chloride and TDS impacted groundwater at the I-1 SWD facility is from an upgradient offsite source. Groundwater in this area of Monument, New Mexico, has been reported as regionally impacted with chlorides and unusable as early as 1952 (Nicholson and Clebsch, Groundwater Report 6). The exact source of groundwater impact at the I-1 SWD facility is unknown because of the numerous potential facilities, past and present, located upgradient from the facility. Chloride and TDS concentrations at the on site monitoring wells are above Water Quality Control Commission (WQCC) standards however they are below background concentrations as established by samples from an

upgradient offsite monitoring well (MW-18 at the Red Bryd #1 site). The excavation, backfilling, and lining activities performed by ROC, as described in the EME SWD I-1 Tank and Pit Closure report submitted to the NMOCD on November 5, 2004, has mitigated any potential threat of chlorides or TDS from the former redwood tank area (Final Form C-103 included in Attachment B).

Evidence from vadose zone characterization and four more quarters of groundwater monitoring continue to support the conclusion that conditions at the site do not meet the criteria that would mandate corrective action under NMOCD Rule 116 or Rule 19; therefore ROC respectfully requests closure of the regulatory file for this site. Upon NMOCD approval of site closure, ROC will plug the monitoring wells and vapor extraction well. The 2007 Annual Groundwater Monitoring Report is included as a separate submission with this Final Report and Request for Closure.

ROC is the service provider (agent) for the EME Salt Water Disposal System and has no ownership of any portion of pipeline, well, or facility. The EME SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

Thank you for your consideration concerning this request for site closure. If you have any questions, please contact me at (432) 638-8740 or Kristin Pope at (505) 393-9174.

Sincerely,

Gilbert J. Van Deventer, PG, REM

cc: KFP, JSC

attachments: CAP, ICP, and Final C-103,

ATTACHMENT A

Corrective Action Plan

And

Investigation & Characterization Plan

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2190

February 27, 2007

Mr. Edward Hansen New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe. New Mexico 87504

RE: CORRECTIVE ACTION PLAN

EME I-1 SWD OFFSITE ENCROACHMENT SITE

NMOCD CASE No.: 1R0464

T20S-R37E-Section 1, Unit Letter I

LEA COUNTY, NEW MEXICO

Mr. Hansen:

RICE Operating Company (ROC) retained Trident Environmental to address potential environmental concerns at the above-referenced site. An Investigation and Characterization Plan (ICP), submitted to the OCD Hobbs District office on February 25, 2005, is attached to this Corrective Action Plan (CAP) with the NMOCD approval. This Corrective Action Plan (CAP) incorporates the findings from the Investigation & Characterization Plan (ICP) and proposes recommendations for corrective action.

Site Description

The I-1 SWD Offsite Encroachment site (NMOCD Case No. 1R0464) is operated by ROC and is located on State Land in township 20 south, range 36 east, section 1, unit letter I approximately 1 mile south of the intersection of County Road 322 and County Road 41 in Lea County, NM as shown on the attached topographic map (Figure 1) and aerial photo map (Figure 2). The I-1 SWD facility is used to collect produced water from oil and gas leases within the Eunice-Monument-Eumont (EME) system for injection into a non-oil producing formation. ROC has a Salt Water Disposal Easement (SWD-062) with the New Mexico State Land Office at this location. ROC is the service provider (agent) for the EME SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

The primary structures at the site consist of two 500 barrel sub-grade fiberglass tanks, a junction box, an underground 10-inch polyethylene pipeline, and one saltwater disposal well. Several other oil and gas production facilities are located within and around the I-1 SWD facility including the following:

- A crude oil pipeline operated by Plains Petroleum is located approximately 700 feet north of the SWD well where a groundwater monitoring site (Red Byrd #1) has been undergoing investigation and remediation since February 2000 (NMOCD Case # 1RP-85) with a network of approximately 15 groundwater monitoring wells (Figure 2).
- Two steel gas lines owned by Sid Richardson traverses along the west and north portions of the I-1 SWD site (~260 ft northwest of site).
- A southwest-northeast trending gas pipeline marked as being owned by Texaco is located about 350 feet northwest of the SWD facility.
- The El Paso Natural Gas (EPNG) Monument Booster Station is located approximately ½ mile northwest of the I-1 SWD site (Figure 2).
- o The Monument Gas Plant operated by Targa Midstream Services, L.P. (Targa) is located approximately ¾ mile northwest of the I-1 SWD site. According to the Ground Water Discharge Plan (GW-025) this facility has two brine ponds and a network of 18 groundwater monitoring wells associated with it (Figure 2).
- An abandoned hydrochloric acid manufacturing plant (DLD Resources, formerly Climax Chemical Company) is located about one-mile northwest of the I-1 SWD site. There are several groundwater monitoring wells associated with this facility however no active regulatory directives towards further investigation and remediation of this facility are known to be in progress (Figure 2).
- A high concentration of oil & gas wells (active and plugged) and associated structures (tank batteries, pits, pipelines, etc.) are located in this area of Monument. Many of these are obviously visible in Figure 2 (aerial photograph).

Site History

The upgrade of the EME I-1 SWD facility was initiated in February 2002 in accordance with the revised Generic Closure Plan for Emergency Overflow Pits and Below-Grade Redwood Tanks (last revision February 23, 2000). Excavation activities began in October 2002. Because of the existence of an active 10-inch diameter asbestos-concrete saltwater pipeline and an abandoned Conoco 4-inch steel pipeline excavation work did not extend further southwest due to safety concerns and suspected encroachment from an offsite source in that area not associated with the redwood tanks. ROC submitted the EME SWD I-1 Tank and Pit Closure (Partial) Report on November 5, 2004. This report was designated as "partial" because it addressed just the tank and pit closure area and not other suspected offsite encroachment sources. An ICP for assessment of the other suspected offsite encroachment sources was submitted to the NMOCD on February 25, 2005, and approved on January 10, 2006. Field work for the ICP was initiated on February 6, 2006, and resulted in the completion of four soil borings (B-1 through B-4) and three monitoring wells (MW-1 through MW-3). One of the soil borings (B-1) was converted into a 4" diameter passive vapor extraction well.

Regional and Local Geology

According to published information (Nicholson and Clebsch, 1961, Barnes, 1976, and Anderson, Jones, and Green, 1997) the site is underlain by Quaternary eolian and piedmont deposits composed of sand, silt, and gravel deposited by slopewash, and talus from the Ogallala Formation. The eolian and piedmont deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The lithology of the eolian and piedmont deposits is very similar to that of the Ogallala since the Ogallala is the source of these re-deposited colluvial sediments. The nearest outcropping of the Ogallala Formation occurs approximately four miles north of the I-1 SWD facility along what is known as the Llano Estacado (caprock). The thickness of the colluvium deposits and Ogallala Formation is approximately 75 feet, however it varies locally as a result of significant paleo-topography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the colluvial deposits and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the water bearing colluvial deposits and therefore limit the amount of recharge to the underlying Dockum Group. The thickness of the Dockum Group is estimated at approximately 300 feet in the site area although its thickness in southern Lea County varies from 0 to 1,270 feet thick (Nicholson and Clebsch, 1961). Figure 3 shows the surface geology of the site.

The subsurface soils at the site are dominated by fine to medium-grained dune sand in the upper few feet. This layer is underlain by a silty fine sand, and then caliche with some fine-grained sand in matrix to a depth of 10 to 15 ft bgs. Below this layer the caliche content generally lessens and sand grain size increases with depth. More detailed descriptions of the subsurface lithology are provided in boring and monitoring well logs (Appendix A).

Regional and Local Hydrogeology

Potable ground water used in southern Lea County is derived primarily from the Ogallala Formation (including the colluvial deposits) and the Quaternary alluvium. Lower yields have also been provided by water bearing zones within the Triassic Dockum Group in a few scattered areas within southern Lea County. No potable water is known to be derived below the Triassic Dockum Group. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, stock, domestic, industrial, and public supply purposes.

Nicholsen and Clebsch (1961) found that the regional gradient of the Ogallala and interconnected colluvial aquifer in the site area generally flows toward the southeast and the hydraulic gradient varies from approximately 0.001 to 0.01 feet/feet. Recent data from the monitoring wells at the I-1 SWD facility confirm a similar potentiometric surface (south-southeast at 0.003 ft/ft). Depth to ground water beneath the site area is approximately 32 feet bgs. There are no surface water bodies located within a mile of the site.

Concentrations of Constituents of Concern in the Vadose Zone

Between February 6 and 8, 2006, soil samples were collected at 5-foot intervals using an airrotary drilling rig at 7 locations to depths of approximately 32 feet bgs to determine the horizontal extent of the impacted soils. Three of the borings were converted into monitoring wells. Soil samples were tested for chloride content using field-adapted Method 9253 (QP-03) and headspace readings were recorded using a Thermal Instrument Model 580B photoionization detector (PID) calibrated with 100 isobutylene in accordance with procedures explained in QP-07 (ICP Appendices). Select samples were submitted for laboratory analysis of chlorides (EPA Method 300.0), benzene, toluene, ethylbenzene, and xylenes (BTEX; EPA Method 8021B), and gas and diesel range organics (GRO/DRO; Method TX 1005). Results of all chloride field tests, PID readings, and lab analytical results are summarized in Table 1 and also depicted in Figure 4. Photodocumentation of field activities are included in Appendix B. Laboratory analytical reports and chain of custody documentation are included in Appendix C.

Chloride concentrations in the soil borings ranged from a minimum of 56 ppm at 20 ft bgs in B-1 to a maximum of 609 ppm at 20 ft bgs in B-2. Chloride concentrations in the soil borings generally averaged between 308 ppm to 405 ppm which is representative of background levels.

There was no indication of hydrocarbon impact to the vadose zone in any of the samples, with the exception of boring B-1. PID readings in boring B-1 ranged from 458 ppm to 539 ppm in the upper 17 ft bgs, but quickly diminished to levels at or below 15 ppm to the bottom of the boring at 32 ft bgs. Laboratory analysis of hydrocarbon constituents of concern (benzene, BTEX, and TPH) in boring B-1 indicate impact is limited to the upper 15 to 20 feet of the vadose zone as summarized in Table 1. Boring B-1 was advanced immediately adjacent to the southwestern edge of the excavated area and represents very localized impact. To mitigate potential migration of volatile organic compounds (VOCs) boring B-1 was converted into a passive vapor extraction well which consists of 4-inch diameter PVC, screened across the 5 to 20 ft interval, and fitted with a wind-powered ventilating turbine.

Concentrations of Constituents of Concern in Groundwater

On February 6 and 8, 2006, three monitoring wells were installed on site to assess groundwater conditions. The depth to ground water at the site is approximately 32 feet bgs. Each monitoring well indicates chloride and TDS concentrations above Water Quality Control Commission (WQCC) standards, however after four consecutive quarterly sampling events it is clear that the upgradient monitoring well (MW-2) has higher concentrations of chlorides and total dissolved solids (TDS), which indicates an upgradient (north and/or northwest) source for these constituents. Existence of an upgradient source was further confirmed based on a one-time sampling event from an offsite monitoring well (MW-18) located approximately 600 feet north of the site at the Red Byrd #1 site (NMOCD Case No. 1R085). The chloride and TDS concentrations of the offsite monitoring well MW-18 (4,850 mg/l) taken on September 6, 2006 are considered representative of background

concentrations, based on its upgradient location with respect to the I-1 SWD site. Chloride concentrations of the offsite monitoring well MW-18 was approximately 25% higher than the chloride concentration of MW-2 (3,880 mg/L) taken a week earlier on August 28, 2006. A groundwater gradient map with concentrations of the constituents of concern for the third quarter 2006 sampling event that includes the three on site monitoring wells and the upgradient well (MW-18) at the Red Byrd #1 site is depicted in Figure 5.

BTEX concentrations for the three on site monitoring wells at the I-1 SWD site have been below WQCC standards since February 2006 (four consecutive quarters). Upgradient well MW-2 has indicated detectable levels of BTEX (slightly above laboratory detection limits) which confirms the existence of a known upgradient offsite source Red Byrd #1 site for hydrocarbon constituents.

Depths to groundwater and laboratory analytical results for the three monitoring wells are summarized in Table 2. The 2006 Annual Groundwater Monitoring Report includes the complete historical groundwater data for the I-1 SWD site and has been submitted to the NMOCD as a separate document with this CAP.

Recommendations for Corrective Action to Vadose Zone

Boring B-1 represents a small localized area impacted by hydrocarbons within the upper 15 to 20 feet of the vadose zone. This impact is localized because no evidence of hydrocarbon impact was observed in the surrounding borings (B-4 and MW-1), and the area to the north was excavated during the closure of the former redwood tanks. Previous remedial actions by ROC (excavation, backfilling, and lining of the former redwood tank area) and conversion of the boring B-1 into a passive vapor extraction well has minimized the risk for potential migration of VOCs into groundwater; therefore, no further mitigation is proposed with the exception of leaving the passive vapor extraction well in place.

Chloride concentrations in the vadose zone are statistically close to the range of background concentrations (300-400 mg/kg) in all borings and do not present a threat to groundwater; therefore, no further corrective actions for chlorides within the vadose zone are proposed or recommended.

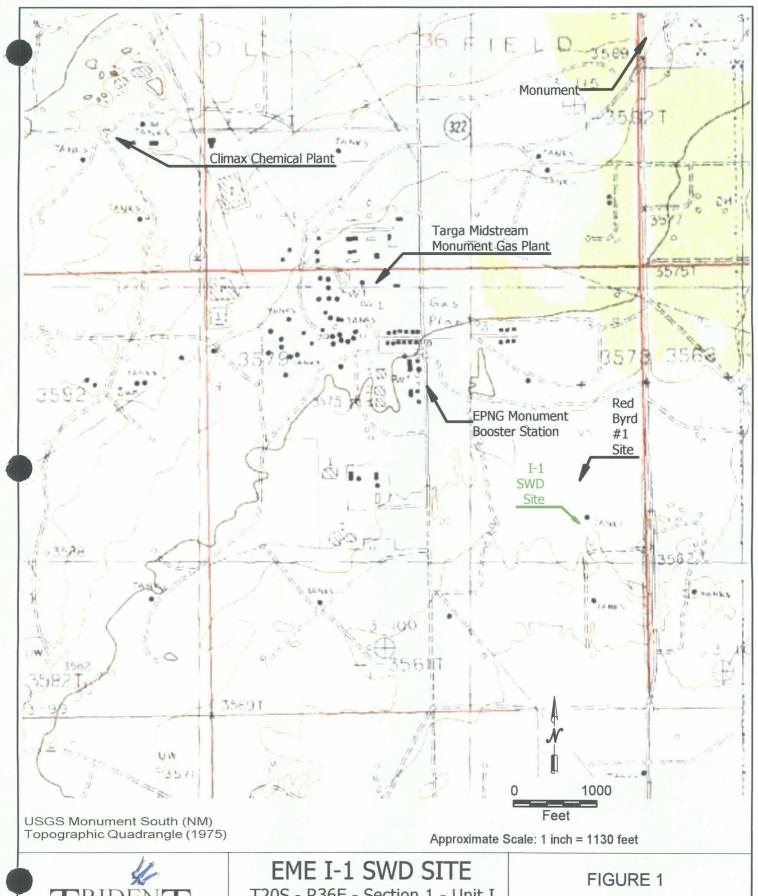
Recommendations for Corrective Action to Groundwater

It appears that the cause for the chloride and TDS impacted groundwater at the I-1 SWD site is from an upgradient offsite source. Groundwater in this area of Monument, New Mexico, has been reported as regionally impacted with chlorides and unusable as early as 1952 (Nicholson and Clebsch, Groundwater Report 6). A portion of this reference is reproduced in Figure 6. The exact source of groundwater impact at the I-1 SWD site is unknown because of the numerous potential facilities, past and present, located upgradient as partially listed in the previous Site Description section of this CAP. Chloride and TDS concentrations at the on site monitoring wells are above WQCC standards however they are below background concentrations as established by samples from an upgradient offsite monitoring well (MW-18

at the Red Bryd #1 site). The excavation, backfilling, and lining activities performed by ROC, as described in the EME SWD I-1 Tank and Pit Closure report submitted to the NMOCD on November 5, 2004, has mitigated any potential threat of chlorides or TDS from the former redwood tank area.

Evidence from groundwater monitoring and vadose zone characterization support the conclusion that conditions at the site do not meet the criteria that would mandate corrective action under NMOCD Rule 116 or Rule 19. We propose to continue demonstrating that the site poses no environmental threat by sampling each monitoring well for an additional four quarters (2007 calendar year). If quarterly sampling results support this conclusion, a final report will be submitted with a request for final closure in the first quarter of 2008. After site closure, the monitoring wells may remain operational, contributing data on an as-needed basis for the investigation of the upgradient offsite sources of chloride and TDS impacts to groundwater.

We appreciate the opportunity to work with you on this project. Please feel free to call me at 432-638-8740 or Kristin Pope at 505-393-9174, if you have any questions.


Gilbert J. Van Deventer, REM, PG

Trident Environmental

cc: CDH, JSC, KFP

enclosures: Figures, tables, lithologic logs/well construction diagrams, photodocumentation, and lab reports

Figures

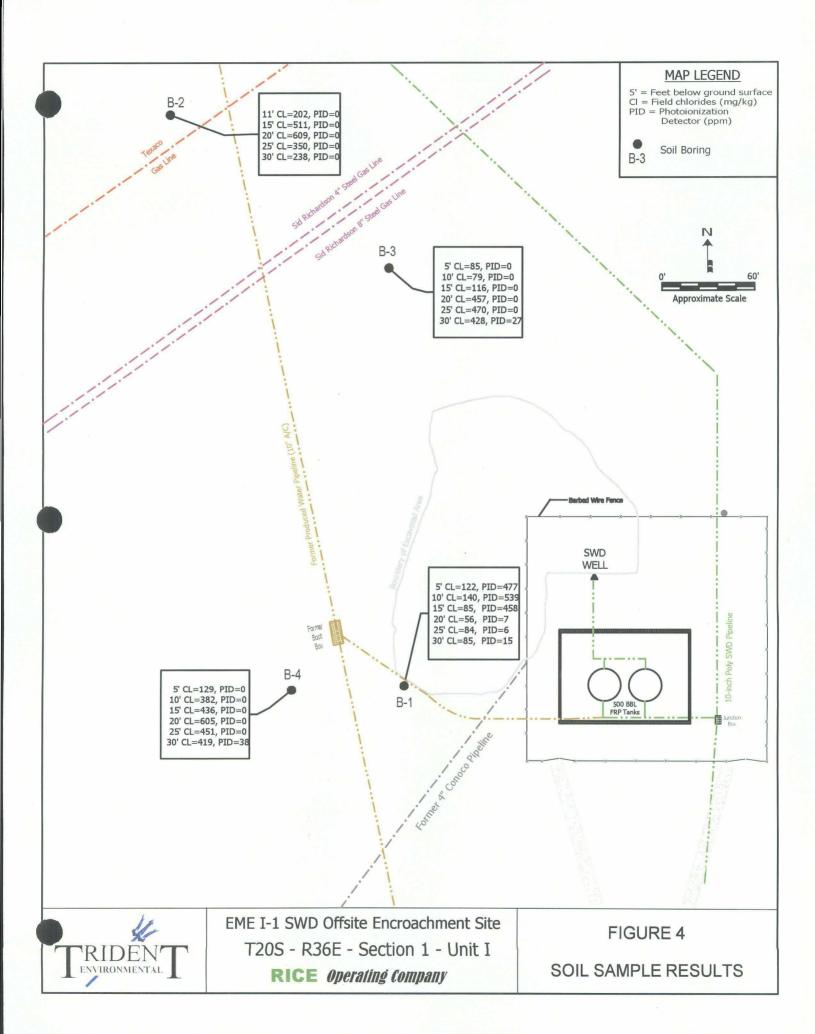


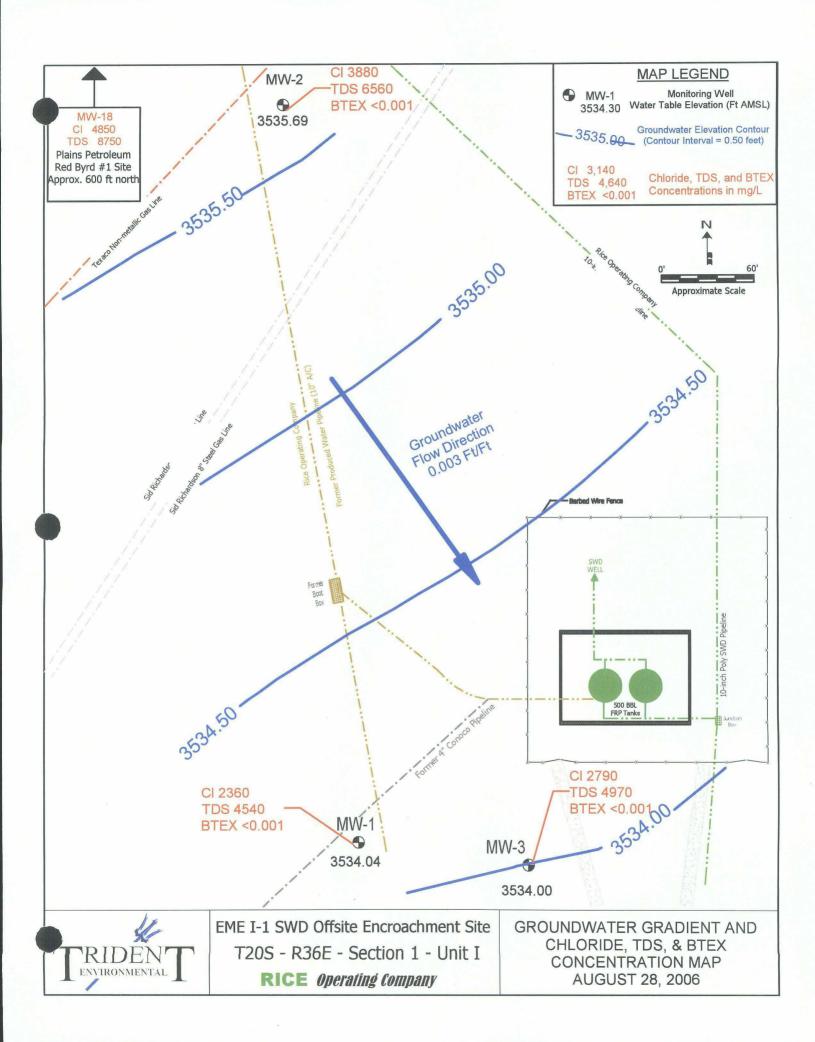
T20S - R36E - Section 1 - Unit I

RICE Operating Company

TOPOGRAPHIC MAP




EME I-1 SWD SITE


T20S - R36E - Section 1 - Unit I

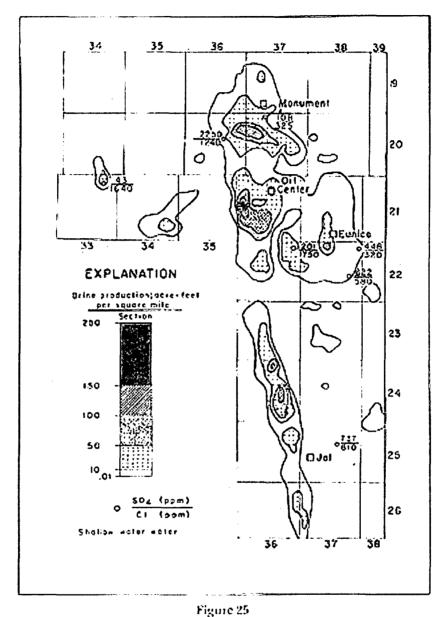

RICE Operating Company

FIGURE 2
AERIAL PHOTO (2005)

Oil-FIELD BRINE FRODUCTION IN SOUTHURN LEA COUNTY, N. MEN., 1952
Showing locations of selected water wells that have been contaminated by brine. Upper
figure adjacent to well symbol is sulfate concentration; lower figure is chloride
concentration.

The figure above "shows the distribution of and magnitude of brine production as of 1952. The data were taken from the New Mexico Oil Conservation Commission Annual Report for 1952." Areas with high brine production as "shown on the map constitute potential centers of ground water contamination."

EME I-1 SWD SITE

T20S - R36E - Section 1 - Unit I

RICE Operating Company

FIGURE 6

Source: Nicholson and Clebsch, Ground-Water Report 6, 1961 (pgs 88-89). Tables

Table 1
Field Testing and Laboratory Analytical Results for Soil Boring Samples

	1	iela l'estin	ig allu Lau	oratory	Anarytic	ai Nesuita	5 101 3011	Dornig 3	ampies		
Boring	Depth	Field Chloride	Lab	PID	В	Т	Е	X	BTEX	GRO	DRO
Boring	(ft bgs)	(ppm)	Chloride (mg/kg)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	5' - 7'	122		477	< 0.400	< 0.400	4.87	25.6	30.47	2090	10475
	10' - 12'	140		539	< 0.400	< 0.400		8.27	11.56	2780	16781
D 1	15' - 17'	85		458							
B-1	20' - 22'	56		7	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025		
	25' - 27'	84		6							
	30' - 32'	85		15	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025		
	11' - 13'	202		0							
	15' - 17'	511		0							
B-2	20' - 22'	609		0]
	25' - 27'	350		0							
	30' - 32'	238		0.							
	5' - 7'	85		0							
	11' - 13'	79		0							
B-3	15' - 17'	116		0							
D-3	20' - 22'	457		0							
	25' - 27'	470		0							
	30' - 32'	428	295	27							
	5' - 7'	129		0							
B-4	11' - 13'	382		0							
	15' - 17'	436		0							
	20' - 22'	605		0							
	25' - 27'	451		0							
	30' - 32'	419	537	38	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025		
I J	4.5	it was not n	1	1	1						

⁻⁻⁻ Indicates constituent was not measured or analyzed.

Field chloride values obtained using modified Method 9253 (QP-03). Lab chloride analyzed using EPA Method 300.0 PlD readings obtained using a Thermal Instrument Model 580B calibrated with 100 isobutylene (QP-07).

BTEX analyzed by Environmental Lab of Texas using EPA Method 8021B.

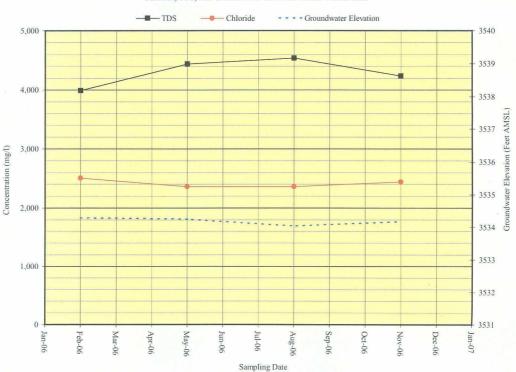
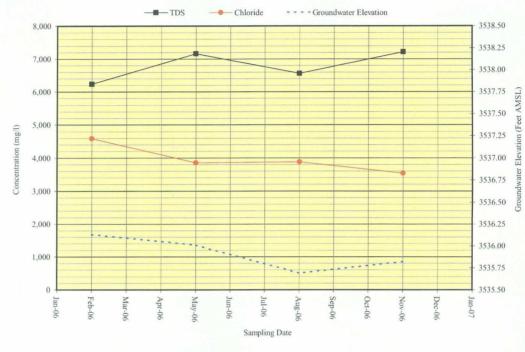
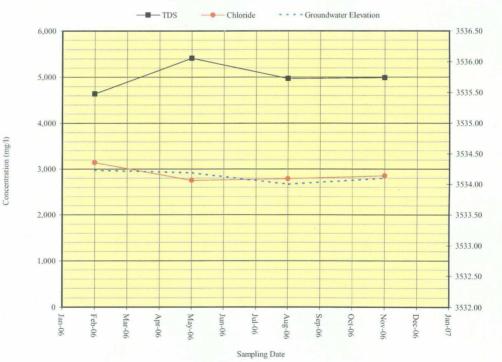

GRO/DRO analyzed by Environmental Lab of Texas using Method TX 1005.

Table 1 Summary of Groundwater Sampling Results

T		Daniel to	Groundwater	EME I-1 S					
Monitoring Well	Sample Date	Depth to Groundwater (feet BTOC)	Elevation (feet AMSL)	Chloride (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)
MW-I	02/15/06	35.09	3534.30	2,510	3,990	< 0.001	< 0.001	< 0.001	< 0.001
	05/22/06	35.12	3534.27	2,360	4,440	< 0.001	< 0.001	< 0.001	< 0.001
	08/28/06	35.35	3534.04	2,360	4,540	< 0.001	< 0.001	< 0.001	< 0.001
	11/27/06	35.20	3534.19	2,440	4,240	0.001	0.001	0.001	< 0.001
MW-2	02/15/06	33.52	3536.13	4,590	6,240	0.003	0.003	0.006	0.007
	05/22/06	33.64	3536.01	3,850	7,160	0.001	< 0.001	0.001	< 0.001
	08/28/06	33.96	3535.69	3,880	6,560	0.001	< 0.001	0.007	0.002
	11/27/06	33.83	3535.82	3,540	7,220	0.002	0.001	0.003	0.002
	02/15/06	34.59	3534.23	3,140	4,640	< 0.001	< 0.001	< 0.001	< 0.001
MANU 2	05/22/06	34.63	3534.19	2,750	5,410	< 0.001	< 0.001	< 0.001	< 0.001
MW-3	08/28/06	34.82	3534.00	2,790	4,970	< 0.001	< 0.001	< 0.001	< 0.001
	11/27/06	34.72	3534.10	2,850	4,990	< 0.001	0.001	< 0.001	< 0.001
/QCC Standards				250	1000	0.01	0.75	0.75	0.62

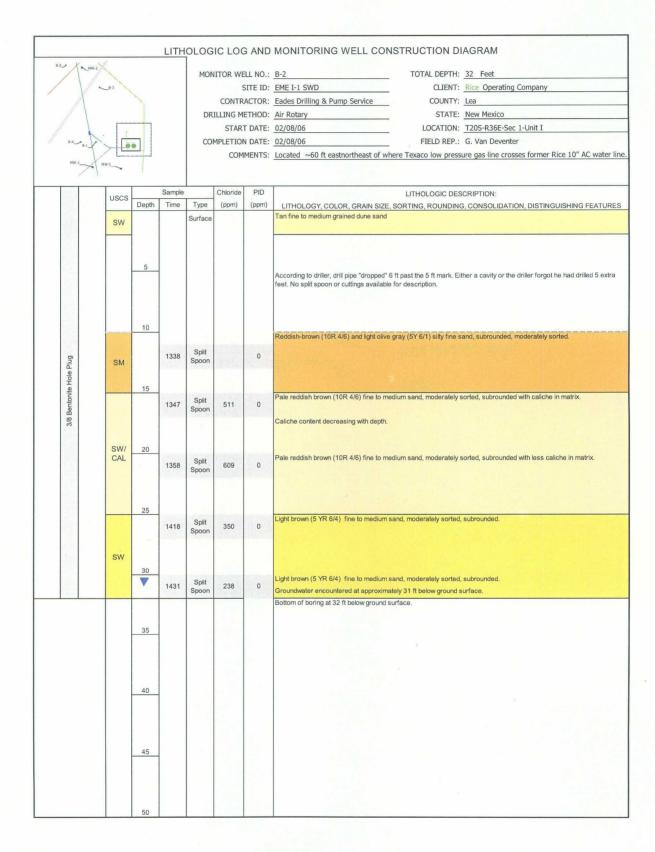

Total Dissolved Soilds (TDS), chloride, and BTEX concentrations listed in milligrams per liter (mg/L)
Analyses performed by Environmental Lab of Texas (Odessa TX) and TraceAnalysis (Midland TX).
Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.
AMSL - Above Mean Sea Level ETOC - Below Top of Casing
Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

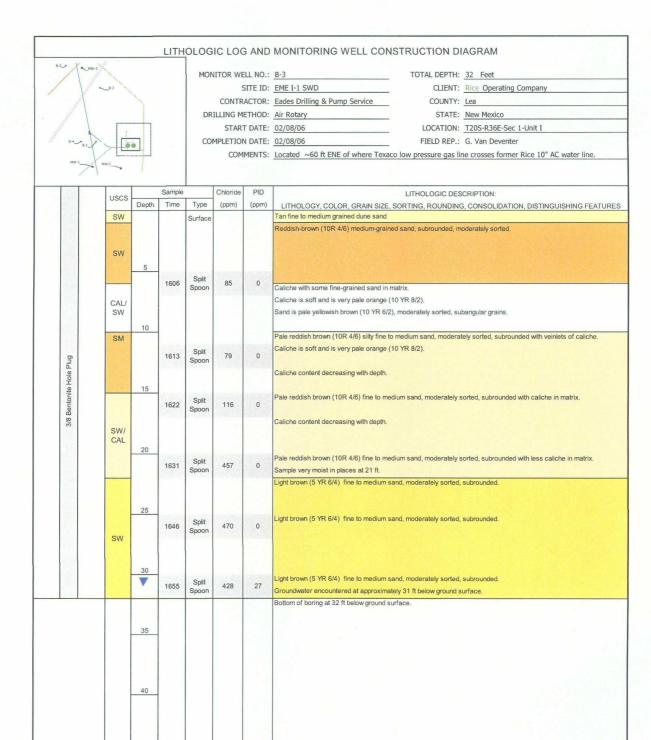
MW-1 Chloride, TDS, and Groundwater Elevation Values Versus Time

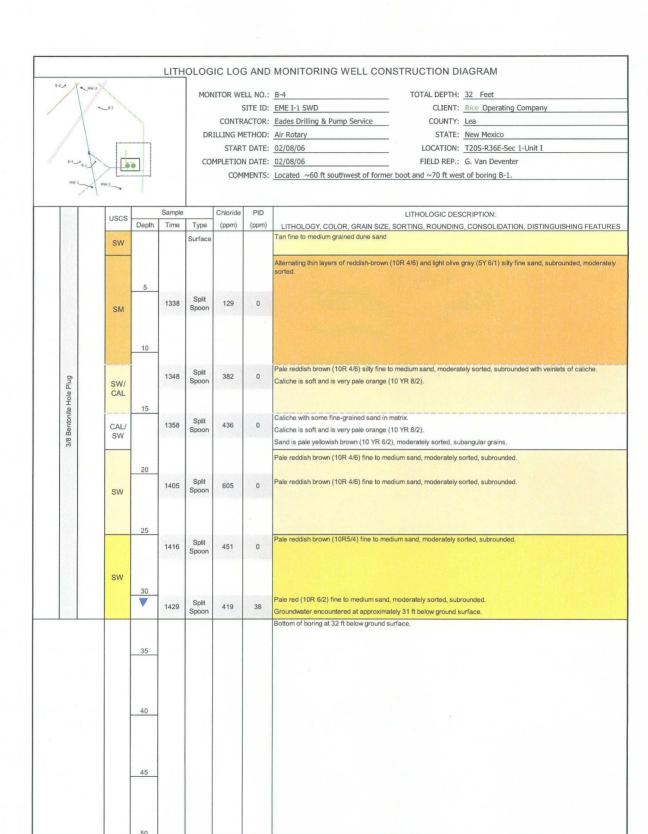


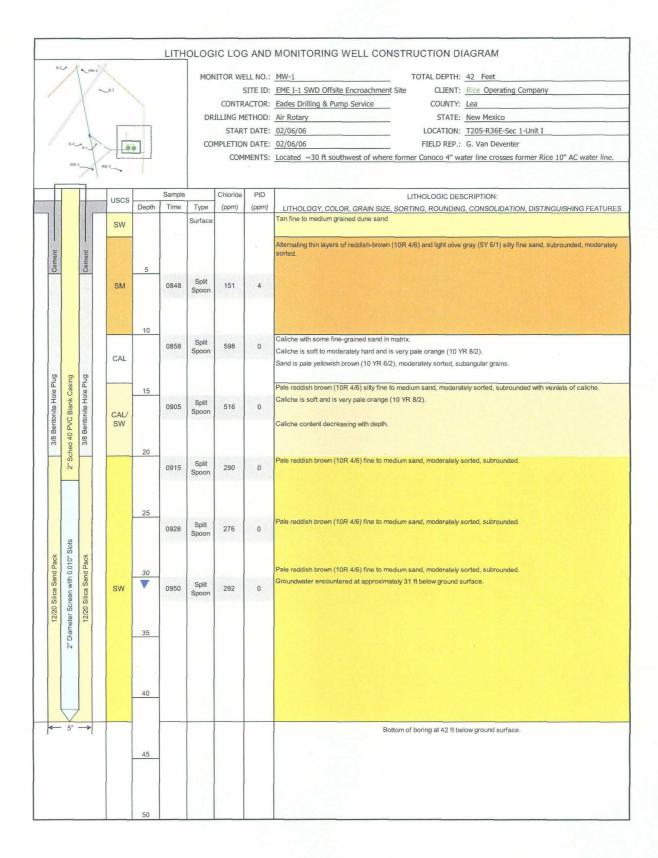
Groundwater Elevation (Feet AMSL)

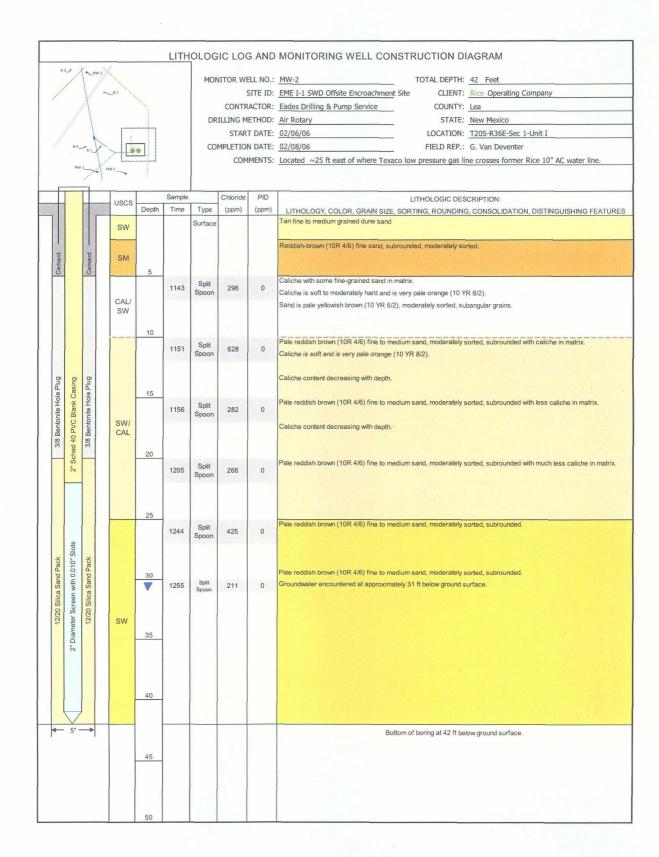
MW-2 Chloride, TDS, and Groundwater Elevation Values Versus Time

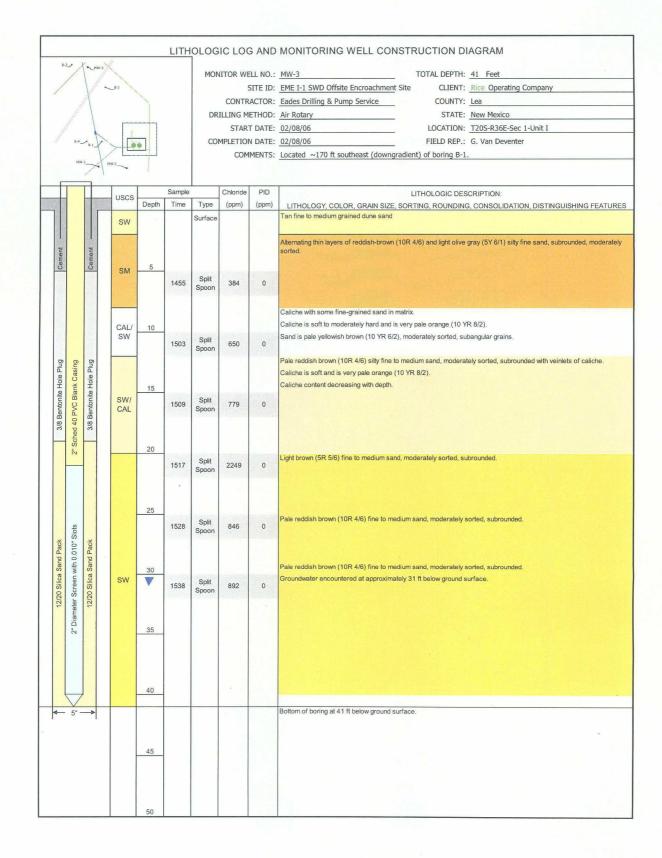

 $$\operatorname{MW-3}$$ Chloride, TDS, and Groundwater Elevation Values Versus Time

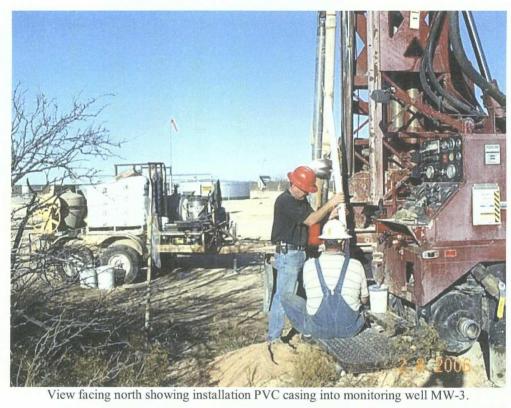



Appendix A


Lithologic Logs and Well Construction Diagrams


		8-2	,	NW-2	4			14/	ELL ID	TOTAL DEDTIL: 22 Foot					
		/		1					ELL ID.:	: B-1 TOTAL DEPTH: 32 Feet : EME I-1 SWD CLIENT: Rice Operating Company					
		/		1	8-3					: Eades Drilling & Pump Service COUNTY: Lea					
				*											
/ /				START DATE:			200 2000								
				COMPLETION DATE:											
B-4 B-1							: Located adjacent to southwest corner of excavated area that has been backfilled and lined with clay.								
C	TO	1	MW	1-1	MW-3	-		COM	PILIVIS.	This boring was converted into a 4" diameter passive vapor extraction well and fitted with a					
di	Miles.	W		/		į				wind-powered turbine (Empire model TV04G).					
13	Casing					Sample		Chloride	PID	LITHOLOGIC DESCRIPTION:					
	Ca			USCS	Depth	Time	Type	(ppm)	(ppm)	ADM/ADM/2015/2015/2015/2015/2015/2015/2015/2015					
onite	PV	onite		SW			Surface			Tan fine-grained dune sand and caliche cover.					
3/8 Bentonite	Sched 40 PVC	3/8 Bentonite								Light brown (5R 5/6), greenish gray (5Y 6/1), and brownish black (5YR 2/1) silty fine sand, subrounded, moderated sorted, very moist with strong hydrocarbon odor, some oil seepage at 6 ft.					
	.4			SM	-										
	199				5		Split	78803							
						1139	Spoon	122	477						
	ots									Caliche with some fine-grained sand in matrix and strong hydrocarbon odor.					
<u>m</u>	o" Slots									Caliche is soft to moderately hard and is light greenish gray (5 GY 8/1).					
1/2" - 3/8" Pea Gravel	4" Diameter Screen with 0.010"	1/2" - 3/8" Pea Gravel		CAL/	10					Sand is pale yellowish brown (10 YR 6/2), moderately sorted, subangular grains.					
ea G	vith C	ea G		SW		1149	Split	140	539						
/8" F	en v	/8" P					Spoon								
3	Scre	3								Pale reddish brown (10R 4/6) silty fine to medium sand, moderately sorted, subrounded with caliche in matrix.					
1/2	eter	1/2			45	-				Pale readish brown (TUK 4/o) slity tine to medium sand, moderately sorted, subrounded with caliche in matrix. Strong hydrocarbon odor.					
	Diam				15	Split				Caliche is soft and is very pale orange (10 YR 8/2).					
	4" [SM/ CAL		1157	Spoon	85	458	Caliche content decreasing with depth.					
						10000	NVE AU								
	912														
,					20										
—	9" -	->		1- 41		1207	Split	56	7	Pale red (10R 6/2) fine to medium sand, moderately sorted, subrounded.					
						200	Spoon	22 - 01							
				10											
				V-14	25										
				01	20		Split			Pale reddish brown (10R5/4) fine to medium sand, moderately sorted, subrounded.					
				SW		1218	Spoon	84	6						
				23											
					30		XACA ONLY	description of		Dale red (40D S/2) five to medium cond. mederately and					
						1229	Split Spoon	85	15	Pale red (10R 6/2) fine to medium sand, moderately sorted, subrounded. Groundwater encountered at approximately 31 ft below ground surface.					
						1 = 1 110	Оробії			Bottom of boring at 32 ft below ground surface.					
					35										
				-	40					a second					
										E					
					45										
								•							
										1-0.1					
										5.00 8.					




Appendix B

Photodocumentation

View facing north showing drilling activities at monitoring well MW-2.

View facing east showing passive vapor extraction well at location of boring B-1.

Appendix C

Laboratory Analytical Reports and

Chain of Custody Documentation

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME I-1

Project Number: None Given

Location: None Given

Lab Order Number: 6B07009

Report Date: 02/14/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: EME I-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/14/06 10:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2 (10'-12')	6B07009-01	Soil	02/06/06 11:51	02/07/06 14:28
B-3 (30'-31')	6B07009-02	Soil	02/06/06 16:55	02/07/06 14:28

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: EME I-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/14/06 10:17

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units .	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (10'-12') (6B07009-01) Soil									
Chloride	180	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
B-3 (30'-31') (6B07009-02) Soil									
Chloride	295	10.0	mg/kg	20	EB61301	02/10/06	02/13/06	EPA 300.0	
% Moisture	18.2	0.1	%	1	EB60806	02/07/06	02/08/06	% calculation	

Project: EME I-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/14/06 10:17

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-3 (30'-31') (6B07009-02) Soil									
Benzene	ND	25.0	ug/kg dry	25	EB61005	02/10/06	02/10/06	EPA 8260B	
Toluene	ND	25.0	n	n	"	,,		n	
Ethylbenzene	ND	25.0	*	u	"	"	"	n	
Xylene (p/m)	ND	25.0		*	"	n	н	n	
Xylene (o)	ND	25.0		н	н	n	n	n	
Surrogate: Dibromofluoromethane		117%	70	139	"	".	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	52	149	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	76	125	·n	n	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	66	145	"	"	"	"	

Project: EME I-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/14/06 10:17

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	;	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB60806 - General Preparation (Prep)									
Blank (EB60806-BLK1)				Prepared: (02/07/06	Analyzed: 02	2/08/06			
% Solids	100		%							
Duplicate (EB60806-DUP1)	Sou	rce: 6B06017-	01	Prepared: (02/07/06	Analyzed: 02	2/08/06			
% Solids	90.2		%		90.2			0.00	20	
Duplicate (EB60806-DUP2)	Sou	rce: 6B06018-	07	Prepared: (02/07/06	Analyzed: 02	2/08/06			
% Solids	97.7		%		97.9			0.205	20	
Duplicate (EB60806-DUP3)	Sou	rce: 6B06018	27	Prepared: (02/07/06	Analyzed: 02	2/08/06	,		
% Solids	99.4		%		99.3			0.101	20	
Duplicate (EB60806-DUP4)	Sou	rce: 6B07006-	02	Prepared: (02/07/06	Analyzed: 02	2/08/06			
% Solids	91.2		%		92.1			0.982	20	-
Batch EB61301 - Water Extraction										
Blank (EB61301-BLK1)				Prepared: (02/10/06	Analyzed: 02	2/13/06			
Chloride	ND	0.500	mg/kg							
LCS (EB61301-BS1)				Prepared: (02/10/06	Analyzed: 02	2/13/06			
Chloride	8.86		mg/L	10.0		88.6	80-120			
Calibration Check (EB61301-CCV1)				Prepared: (02/10/06	Analyzed: 02	2/13/06			
Chloride	9.05		mg/L	10.0		90.5	80-120			
Duplicate (EB61301-DUP1)	Sou	rce: 6B07009-	-01	Prepared: (02/10/06	Analyzed: 02	2/13/06			
Chloride	180	5.00	mg/kg		180			0.00	20	

Project: EME I-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/14/06 10:17

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61005 - EPA 5030C (GCMS)		<u> </u>								
Blank (EB61005-BLK1)				Prepared &	k Analyzed:	02/10/06				
Benzene	ND	25.0	ug/kg wet							
Toluene	ND	25.0								
Ethylbenzene	ND	25.0	Þ							
Xylene (p/m)	ND	25.0								
Xylene (o)	ND	25.0								
Surrogate: Dibromofluoromethane	61.8		ug/kg	50.0		124	70-139			
Surrogate: 1,2-Dichloroethane-d4	53.3		"	50.0		107	52-149			
Surrogate: Toluene-d8	49.0		"	50.0		98.0	76-125			
Surrogate: 4-Bromofluorobenzene	51.9		n	50.0		104	66-145			
LCS (EB61005-BS1)				Prepared 8	& Analyzed:	02/10/06				
Benzene	1130	25.0	ug/kg wet	1250		90.4	70-130			
Toluene	1330	25.0		1250		106	70-130			
Ethylbenzene	1400	25.0	•	1250		112	70-130			
Xylene (p/m)	2800	25.0	*	2500		112	70-130			•
Xylene (o)	1500	25.0	n	1250		120	70-130			
Surrogate: Dibromofluoromethane	62.8		ug/kg	50.0		126	70-139			
urrogate: 1,2-Dichloroethane-d4	55.8		"	50.0		112	52-149			
Surrogate: Toluene-d8	51.1		"	50.0		102	76-125			
Surrogate: 4-Bromofluorobenzene	52.0		"	50.0		104	66-145			
Calibration Check (EB61005-CCV1)				Prepared 8	& Analyzed:	02/10/06				
Toluene	52.1		ug/kg	50.0		104	70-130			
Ethylbenzene	51.7		н	50.0		103	70-130			
Surrogate: Dibromofluoromethane	58.8		"	50.0		118	70-139			
Surrogate: 1,2-Dichloroethane-d4	53 . 7		"	50.0		107	52-149			
Surrogate: Toluene-d8	49.4		"	50.0		98.8	76-125			
Surrogate: 4-Bromofluorobenzene	52.9		"	50.0		106	66-145			

Project: EME I-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/14/06 10:17

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	,
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Ratch FR61005 FPA 5030C (CCMS)										

Matrix Spike (EB61005-MS1)	Source	e: 6B06017	-13	Prepared &	Analyzed:	02/10/06				
Benzene	1410	25.0	ug/kg dry	1540	ND	91.6	70-130			
Toluene	1650	25.0		1540	ND	107	70-130			
Ethylbenzene	1730	25.0	*	1540	ND	112	70-130			
Xylene (p/m)	3480	25.0		3090	ND	113	70-130			
Xylene (o)	1860	25.0	N	1540	ND	121	70-130			
Surrogate: Dibromofluoromethane	62.6		ug/kg	50.0		125	70-139			
Surrogate: 1,2-Dichloroethane-d4	55.8		"	50.0		112	52-149			
Surrogate: Toluene-d8	49.8		"	50.0		99.6	76-125			
Surrogate: 4-Bromofluorobenzene	51.5		"	50.0		103	66-145			
Matrix Spike Dup (EB61005-MSD1)	Source	e: 6B06017	-13	Prepared &	Analyzed:	02/10/06				
Benzene	1430	25.0	ug/kg dry	1540	ND	92.9	70-130	1.41	20	
Toluene	1650	25.0	*	1540	ND	107	70-130	0.00	20	
Ethylbenzene	1740	25.0	,	1540	ND	113	70-130	0.889	20	
Xylene (p/m)	3490	25.0	n	3090	ND	113	70-130	0.00	20	
Xylene (o)	1860	25.0	*	1540	ND	121	70-130	0.00	20	
Surrogate: Dibromofluoromethane	62.4		ug/kg	50.0		125	70-139			
Surrogate: 1,2-Dichloroethane-d4	55.4		"	50.0		111	52-149			
Surrogate: Toluene-d8	51.0		"	50.0		102	76-125			

50.0

52.4

Surrogate: 4-Bromofluorobenzene

105

66-145

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:
02/14/06 10:17

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:	Raland	KJul
Report Approved by.		

_ Date:

2/14/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

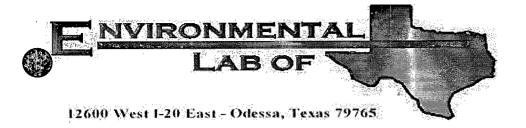
This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

48
exas
O
Ö
<u>_</u>
1
* Record
<u></u>
ental
men
e L
nmen

Odessa, Texas 79765 12655 West I-20 East

CHAIN OF CUSTODY RECORD AND ANALYSIS R


Phone: 432-563-1800 Fax: 432-563-1713

ristin Pape

TAT brebnet2 Laboratory Comments: hardelivered (SHT TAT (Pre-Schedule) soubs ka Custody Seals (Containes) Cooler Temperature Upon Receipt: 2, 5, 5 M.G.R.M Sample Containers Intact? Analyze Fo 31EX 80218/5030 or 61EX 8260) Project Name: EME Metals: As Ag Ba Cd Cr Ph Ng Se TCLP PO #: Project #: Project Loc: Juious (CJ. 204, CO3, HCO3). Cations (Ca, Mg, Na, K) 1428 THE 418 1 BUSIN 1005 1006 Quier (specify): Matrix lios 32-07-C appnia Date Date Yvater Other (Specify) None *os²H Preservativ HOPN ion James months EONH. ics No. of Containers Fax No: 020 Time Sampled <u>\</u> 165 Received by ELOT: Email: Kpricesud @ Nalornetican 24-06 2-1-06 Received by: らならせつ Date Sampled qile rthicks consolt, com 2.23 Time Time 4016-808 2/2 Date FIELD CODE , b b5 Company Address: 122 Telephone No: 505, MW-7 Project Manager: Company Name City/State/Zip: Sampler Signature: AB # (lab use only) Special Instructions: Q

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Contact Person:
Sample Receipt Checklist
Sample Receipt Checklist
Sample Receipt Checklist Temperature of container/cooler? Shipping container/cooler? Shipping container/cooler in good condition? Custody Seals intact on shipping container/cooler? Ves No Chit present Gustody Seals intact on sample bottles? Ves No Not present Coustody Seals intact on sample bottles? Sample Instructions complete on Chain of Custody? Sample Instructions complete on Chain of Custody? Sample Instructions complete on Chain of Custody? Chain of Custody signed when relinquished and received? Chain of Custody agrees with sample label(s) Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples proper container/bottle? Samples proper container/bottle? Samples proper governed? Samples proper governed? Sample sold in the Custody? Freservations documented on Chain of Custody? Freservation
Sample Receipt Checklist Temperature of container/cooler? Shipping container/cooler? Shipping container/cooler in good condition? Custody Seals intact on shipping container/cooler? Ves No Chit present Gustody Seals intact on sample bottles? Ves No Not present Coustody Seals intact on sample bottles? Sample Instructions complete on Chain of Custody? Sample Instructions complete on Chain of Custody? Sample Instructions complete on Chain of Custody? Chain of Custody signed when relinquished and received? Chain of Custody agrees with sample label(s) Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples proper container/bottle? Samples proper container/bottle? Samples proper governed? Samples proper governed? Sample sold in the Custody? Freservations documented on Chain of Custody? Freservation
Sample Receipt Checklist Temperature of container/cooler?
Sample Receipt Checklist Temperature of container/cooler?
Temperature of container/cooler? Shipping container/cooler in good condition? Custody Seals intact on sample bottles? Custody Seals intact on sample bottles? Chain of custody present? Chain of custody present? Chain of Custody signed when relinquished and received? Chain of custody agrees with sample label(s) Sample Matrix and properties same as on chain of custody? Sample Matrix and properties same as on chain of custody? Samples procedy preserved? Samples procedy preserved? Samples procedy preserved? Sample should be stated? Containers documented on Chain of Custody? Freservations documented on Chain of Custody? F
Temperature of container/cooler? Shipping container/cooler in good condition? Custody Seals intact on sample bottles? Custody Seals intact on sample bottles? Chain of custody present? Chain of custody present? Chain of Custody signed when relinquished and received? Chain of custody agrees with sample label(s) Sample Matrix and properties same as on chain of custody? Sample Matrix and properties same as on chain of custody? Samples procedy preserved? Samples procedy preserved? Samples procedy preserved? Sample should be stated? Containers documented on Chain of Custody? Freservations documented on Chain of Custody? F
Shipping container/cooler in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample bottles? Chain of custody present? Chain of custody present? Chain of custody present? Chain of Custody signed when relinquished and received? Chain of custody signed when relinquished and received? Chain of custody signed when relinquished and received? Container labels legible and intact? Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples in procer container/bottle? Samples properly preserved? Sample bottles intact? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Containers ample amount for indicated test? Containers documented within sufficient hold time? Lamples have zero headspace? Variance Documentation: Contacted by: Regarding:
Custody Seals intact on shipping container/cooler? Custody Seals intact on sample bottles? Chain of custody present? Chain of custody present? Chain of custody signed when relinquished and received? Chain of Custody signed when relinquished and received? Chain of custody agrees with sample label(s) Container labels legible and intact? Cample Matrix and properties same as on chain of custody? Sample Matrix and properties same as on chain of custody? Samples procery preserved? Samples procery preserved? Samples procery preserved? Containers documented on Chain of Custody? Freservations documented on Chain of Custody? Area, I No Sufficient sample amount for indicated test? An oppose received within sufficient hold time? Freservations: Variance Documentation: Contact Person: Contacted by: Regarding:
Sample Instructions complete on Chain of Custody? Chain of Custody signed when relinquished and received? Chain of Custody agrees with sample label(s) Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples Matrix and properties same as on chain of custody? Samples properly preserved? Samples properly preserved? Samples properly preserved? Samples properly preserved? Freservations documented on Chain of Custody? Freservations documented on Chain of Custody? Freservations documented on Chain of Custody? Sufficient sample amount for indicated test? All imples received within sufficient hold time? Samples have zero headspace? Variance Documentation: Centact Person:
Sample Instructions complete on Chain of Custody? Chain of Custody signed when relinquished and received? Chain of Custody agrees with sample label(s) Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples Matrix and properties same as on chain of custody? Samples properly preserved? Samples properly preserved? Samples properly preserved? Samples properly preserved? Freservations documented on Chain of Custody? Freservations documented on Chain of Custody? Freservations documented on Chain of Custody? Sufficient sample amount for indicated test? All imples received within sufficient hold time? Samples have zero headspace? Variance Documentation: Centact Person:
Sample Instructions complete on Chain of Custody? Chain of Custody signed when relinquished and received? Chain of Custody agrees with sample label(s) Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples Matrix and properties same as on chain of custody? Samples properly preserved? Samples properly preserved? Samples properly preserved? Samples properly preserved? Freservations documented on Chain of Custody? Freservations documented on Chain of Custody? Freservations documented on Chain of Custody? Sufficient sample amount for indicated test? All imples received within sufficient hold time? Samples have zero headspace? Variance Documentation: Centact Person:
Chain of Custody signed when relinquished and received? Chain of custody agrees with sample label(s) Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples in procer container/bottle? Samples procerly preserved? Samples procerly preserved? Samples bottles intact? Freservations documented on Chain of Custody? Freservations to the freservation of Custody? Freservation of Custody? Freservations to the freservation of Custody? Freservati
Container labels legible and intact? Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples in procer container/bottle? Camples properly preserved? Camples properly preserved? Cample bottles intact? Cest No Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Cest No C
Container labels legible and intact? Sample Matrix and properties same as on chain of custody? Samples in procer container/bottle? Samples procer's preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test? A mighes received within sufficient hold time? Camples have zero headspace? Variance Documentation: Contact Person: Date/Time: Contacted by: Regarding:
Samples in procer container/bottle? Samples in procer container/bottle? Samples properly preserved? Samples procerly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test? A miples received within sufficient hold time? Samples have zero headspace? Variance Documentation: Contact Person: Date/Time: Contacted by: Regarding:
Samples in procer container/bottle? Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test? All simples received within sufficient hold time? Wariance Documentation: Contact Person: Date/Time: Contacted by: Regarding:
Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test? Amples received within sufficient hold time? Amples received within sufficient hold time? Contact Person: Variance Documentation: Contact Person: Contact Person: Contact Person: Contact Person: Contacted by: Regarding:
Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test? All imples received within sufficient hold time? Variance Documentation: Contact Person: Date/Time: Contacted by: Regarding:
Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test? A miles received within sufficient hold time? Labamples have zero headspace? Other observations: Variance Documentation: Contact Person: Date/Time: Contacted by: Regarding:
Contact Person:
Sufficient sample amount for indicated test? A miples received within sufficient hold time? Lamples have zero headspace? Other observations: Variance Documentation: Contact Person:
Alternation received within sufficient hold time? Cest No Not Apolicable Other observations: Variance Documentation: Centact Person: Date/Time: Contacted by: Regarding:
Other observations: Variance Documentation: Centact Person: Date/Time: Contacted by: Régarding:
Other observations: Variance Documentation: Centact Person: Date/Time: Contacted by: Regarding:
Variance Documentation: Centact Person: Date/Time: Contacted by: Regarding:
Variance Documentation: Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Centact Person: Date/Time: Contacted by: Regarding:
Régarding:
Corrective Action Taken:

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Rice Operating Co.
Project Number: None Given
Location: EME I-1 Site

Lab Order Number: 6B09015

Report Date: 02/21/06

Project: Rice Operating Co.
Project Number: None Given

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1 6'	6B09015-01	Soil	02/08/06 11:39	02/09/06 15:55
B-1 12'	6B09015-0 2	Soil	02/08/06 11:49	02/09/06 15:55
B-1 20'	6B09015-03	Soil	02/08/06 12:07	02/09/06 15:55
B-1 30'	6B09015-04	Soil	02/08/06 12:29	02/09/06 15:55
B-4 30'	6B09015-05	Soil	02/08/06 14:29	02/09/06 15:55
MW-3 20'-22'	6B09015-06	Soil	02/08/06 15:17	02/09/06 15:55

Project Number: Rice Operating Co.
Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:
02/21/06 15:34

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 6' (6B09015-01) Soil									
Carbon Ranges C6-C12	2090	50.0	mg/kg dry	2	EB61031	02/13/06	02/13/06	TX 1005	
Carbon Ranges C12-C28	3950	50.0	29	a		н	"	n	
Carbon Ranges C28-C35	245	50.0	н	п		н	"	H	
Total Hydrocarbon C6-C35	6280	50.0			n	n	M		
Surrogate: 1-Chlorooctane		86.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		60.0 %	70-1	30	n	"	"	"	S-06
B-1 12' (6B09015-02) Soil	<u>. </u>								
Carbon Ranges C6-C12	2780	50.0	mg/kg dry	2	EB61031	02/13/06	02/13/06	TX 1005	-
Carbon Ranges C12-C28	6740	50.0	*	,	*	n	м	п	
Carbon Ranges C28-C35	261	50.0			и		м	Ħ	
Total Hydrocarbon C6-C35	9780	50.0	H	н		,		*	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	. "	"	"	
Surrogate: 1-Chlorooctadecane		90.0 %	70-1	30	"	"	"	"	

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

Fractionation of Aliphatics by TNRCC Method 1006 Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 6' (6B09015-01) Soil						•••			
C6-C8	172	10.0	mg/kg dry	1	EB62002	02/17/06	02/21/06	TX 1006	
>C8-C10	314	10.0		Ħ		n	"	и	
>C10-C12	318	10.0		u u		n	н		
>C12-C16	733	10.0	v	a	*	"	N	"	
>C16-C21	612	10.0	n	н	n	,	H	"	
>C21-C35	568	10.0	*	n		н	п	и	
Total Hydrocarbon C6-C35	2720	10.0	n	u		н	я	и	
B-1 12' (6B09015-02) Soil					_		_		
C6-C8	101	10.0	mg/kg dry	1	EB62002	02/17/06	02/21/06	TX 1006	
>C8-C10	382	10.0	u	ø		n	R	W	
>C10-C12	571	10.0	H			n	n	¥	
>C12-C16	1420	10.0	#	*	n	n	n	n	
>C16-C21	1230	10.0	•	,,	n	n	"	u	
>C21-C35	925	10.0	•	"	"	•	n	n	
Total Hydrocarbon C6-C35	4630	10.0	*		"	u	*		

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

Fractionation of Aromatics by TNRCC Method 1006 Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 6' (6B09015-01) Soil									
C7-C8	ND	10.0	mg/kg dry	1	EB62002	02/17/06	02/21/06	TX 1006	
>C8-C10	56.7	10.0		n	n	n		м	
>C10-C12	146	10.0		и	"	Ħ	*	•	
>C12-C16	409	10.0			,	n	h	n	
>C16-C21	571	10.0	H	,	•	n		M	
>C21-C35	624	10.0	н		n	R	N		
Total Hydrocarbon C6-C35	1810	10.0	м	"	n	"	и	II	
B-1 12' (6B09015-02) Soil									
C7-C8	ND	10.0	mg/kg dry	1	EB62002	02/17/06	02/21/06	TX 1006	
>C8-C10	45.6	10.0	•	,		R	II.	и	
>C10-C12	124	10.0	**	n	#	*	и	u	
>C12-C16	344	10.0	n	,	n	n	*	u	
>C16-C21	469	10.0	U	"	n	"	н	H	
>C21-C35	488	10.0	. и		n	,		P	
Total Hydrocarbon C6-C35	1470	10.0	N		н	,		•	

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 6' (6B09015-01) Soil		•							
% Moisture	4.4	0.1	%	1	EB61305	02/10/06	02/13/06	% calculation	
B-1 12' (6B09015-02) Soil									
% Moisture	1.0	0.1	. %	1	EB61305	02/10/06	02/13/06	% calculation	
B-1 20' (6B09015-03) Soil									
% Moisture	0.4	0.1	%	1	EB61305	02/10/06	02/13/06	% calculation	
B-1 30' (6B09015-04) Soil									
Chloride	19.4	5.00	mg/kg	10	EB61605	02/13/06	02/13/06	EPA 300.0	
% Moisture	3.7	0.1	%	1	EB61305	02/10/06	02/13/06	% calculation	
B-4 30' (6B09015-05) Soil									
Chloride	537	10.0	mg/kg	20	EB61605	02/13/06	02/13/06	EPA 300.0	
% Moisture	2.9	0.1	%	1	EB61305	02/10/06	02/13/06	% calculation	
1W-3 20'-22' (6B09015-06) Soil								•	
Chloride	2460	50.0	mg/kg	100	EB61605	02/13/06	02/13/06	EPA 300.0	

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:
02/21/06 15:34

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 6' (6B09015-01) Soil									
Benzene	ND	400	ug/kg dry	400	EB61006	02/10/06	02/10/06	EPA 8260B	
Toluene	ND	400	"	н	n	n	n	m	
Ethylbenzene	4870	400	"	Ħ		п		n	
Xylene (p/m)	25100	400	и	n		н	H	n	
Xylene (o)	500	400			н	н	•		
Naphthalene	4610	400	*	n	н	н	•	н	
Surrogate: Dibromofluoromethane		121 %	70-1	39	"	n	n	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	70-1	21	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	84-1	38	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	59-1	45	"	"	"	"	
B-1 12' (6B09015-02) Soil									
Benzene	ND	400	ug/kg dry	400	EB61006	02/10/06	02/10/06	EPA 8260B	
Toluene	ND	400	•		н	н	*	н	
Ethylbenzene	3290	400	н		n	н	н	"	
Xylene (p/m)	8270	400	"		п	н	n	U	
xylene (o)	ND	400	ø		н	п	н	а	
Naphthalene	3330	400	10	н	n	n	M	u .	
Surrogate: Dibromofluoromethane		123 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		111 %	70-1	21	"	"	"	"	
Surrogate: Toluene-d8		95.4 %	84-1	38	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.8 %	59-1	45	"	"	"	n	
B-1 20' (6B09015-03) Soil									
Benzene	ND	25.0	ug/kg dry	25	EB61006	02/10/06	02/10/06	EPA 8260B	
Toluene	ND	25.0	n	"	*	*	"	а	
Ethylbenzene	ND	25.0		"	4	n	н		
Xylene (p/m)	ND	25.0	"	,,	н	n		19	
Xylene (o)	ND	25.0	n	n	н	n		u	
Naphthalene	J [18.3]	25.0	и		H	н	N	н	
Surrogate: Dibromofluoromethane		113 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-1	21	"	"	"	"	
Surrogate: Toluene-d8		97.6%	84-1	38	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	59-1	45	"	"	"	,,	

Project: Rice Operating Co.
Project Number: None Given

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:
02/21/06 15:34

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 30' (6B09015-04) Soil								· · · · · · · · · · · · · · · · · · ·	
Benzene	ND	25.0	ug/kg dry	25	EB61006	02/10/06	02/10/06	EPA 8260B	
Toluene	ND	25.0	n	п	"	"	Ħ	n	
Ethylbenzene	ND	25.0	*	п	ĸ	,	н	ø	
Xylene (p/m)	ND	25.0		"	Ħ	"	Ħ		
Xylene (o)	ND	25.0	,		п	18	n	,	
Naphthalene	J [13.8]	25.0	н	*	"	n	W	19	:
Surrogate: Dibromofluoromethane		121 %	70-13	9	"	"	"	n n	
Surrogate: 1,2-Dichloroethane-d4		105 %	70-12	1	"	"	"	"	
Surrogate: Toluene-d8		100 %	84-13	8	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	59-14	5	"	"	"	"	
B-4 30' (6B09015-05) Soil									
Benzene	ND	25.0	ug/kg dry	25	EB61006	02/10/06	02/10/06	EPA 8260B	
Toluene	ND	25.0	*	n	"	n	n	п	
Ethylbenzene	ND	25.0	u	n	u	"		н	
Xylene (p/m)	ND	25.0	V	s	"		11	n	
Kylene (o)	ND	25.0	н	н	R	ır	н	"	
Naphthalene	ND	25.0	в	n	n		•	n	
Surrogate: Dibromofluoromethane		116%	70-13	9	"	"	n	"	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-12	1	"	"	"	"	
Surrogate: Toluene-d8		98.6 %	84-13	8	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	59-14	15	n	"	"	"	

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61031 - Solvent Extraction (GC)										
Blank (EB61031-BLK1)				Prepared: (02/10/06 Aı	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	ND	25.0	mg/kg wet							
Carbon Ranges C12-C28	ND	25.0	н							
Carbon Ranges C28-C35	ND	25.0	n							
Total Hydrocarbon C6-C35	ND	25.0	,							
Surrogate: 1-Chlorooctane	47.1		mg/kg	50.0		94.2	70-130			
Surrogate: 1-Chlorooctadecane	35.2		"	50.0		70.4	70-130			
LCS (EB61031-BS1)				Prepared: (02/10/06 Aı	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	465	25.0	mg/kg wet	500		93.0	75-125		*	
Carbon Ranges C12-C28	525	25.0	n	500		105	75-125			
Total Hydrocarbon C6-C35	990	25.0	и	1000		99.0	75-125			
Surrogate: 1-Chlorooctane	56.3		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	44.9		"	50.0		89.8	70-130			
Calibration Check (EB61031-CCV1)				Prepared: (02/10/06 Aı	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	478		mg/kg	500		95.6	80-120			
Carbon Ranges C12-C28	563		10	500		113	80-120			
Total Hydrocarbon C6-C35	1040		и	1000		104	80-120			
Surrogate: 1-Chlorooctane	58.5		"	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	54.4		"	50.0		109	70-130			
Matrix Spike (EB61031-MS1)	Sou	rce: 6B09002	2-08	Prepared: (02/10/06 Aı	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	578	25.0	mg/kg dry	569	ND	102	75-125			- 4
Carbon Ranges C12-C28	631	25.0	u	569	ND	111	75-125			
Total Hydrocarbon C6-C35	1210	25.0	u	1140	ND	106	75-125			
Surrogate: 1-Chlorooctane	60.4		mg/kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	49.6		"	50.0		99.2	70-130			

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	_	%REC	_	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD `	Limit	Notes

Batch	EB61031	-	Solvent	Extraction	(GC)

Matrix Spike Dup (EB61031-MSD1)	Source	Prepared: 0	2/10/06 A						
Carbon Ranges C6-C12	564	25.0	mg/kg dry	569	ND	99.1	75-125	2.45	20
Carbon Ranges C12-C28	640	25.0	n	569	ND	112	75-125	1.42	20
Total Hydrocarbon C6-C35	1200	25.0	N	1140	ND	105	75-125	0.830	20
Surrogate: 1-Chlorooctane	59.5		mg/kg	50.0		119	70-130		
Surrogate: 1-Chlorooctadecane	48.1		"	50.0		96.2	70-130		

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

Fractionation of Aliphatics by TNRCC Method 1006 - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62002 - Solvent Extraction (GC)							••			
Blank (EB62002-BLK1)				Prepared: 0	02/17/06 A	nalyzed: 02	2/21/06			
C6-C8	ND	10.0	mg/kg wet							
>C8-C10	ND	10.0	,							
>C10-C12	ND	. 10.0								
>C12-C16	ND	10.0	H							
>C16-C21	ND	10.0	н							
>C21-C35	ND	10.0	*							
Total Hydrocarbon C6-C35	ND	10.0	n							
LCS (EB62002-BS1)				Prepared: 0	02/17/06 A	nalyzed: 02	2/21/06			
Total Hydrocarbon C6-C35	788	10.0	mg/kg wet	1000		78.8	60-140			
Calibration Check (EB62002-CCV1)				Prepared: 0	02/20/06 A	nalyzed: 02	2/21/06			
Total Hydrocarbon C6-C35	973		mg/kg	1000		97.3	80-120			
Duplicate (EB62002-DUP1)	Sor	urce: 6B09015	5-01	Prepared: (02/20/06 A	nalyzed: 02	2/21/06			
C6-C8	144	10.0	mg/kg dry		172			17.7	20	
>C8-C10	264	10.0			314			17.3	20	
>C10-C12	261	10.0	N		318			19.7	20	
C12-C16	604	10.0			733			19.3	20	
C16-C21	533	10.0	,		612			13.8	20	
>C21-C35	476	10.0			568			17.6	20	
Total Hydrocarbon C6-C35	2280	10.0			2720			17.6	20	

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

Fractionation of Aromatics by TNRCC Method 1006 - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB62002 - Solvent Extraction (GC)										
Blank (EB62002-BLK1)				Prepared: 0	2/17/06	Analyzed: 02	2/21/06			
C7-C8	ND	10.0	mg/kg wet						-	
>C8-C10	ND	10.0								
>C10-C12	ND	10.0	М							
>C12-C16	ND	10.0	H							
>C16-C21	ND	10.0	,							
>C21-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	н						•	
LCS (EB62002-BS1)				Prepared: (02/17/06	Analyzed: 02	2/21/06			
Total Hydrocarbon C6-C35	788	10.0	mg/kg wet	1000		78.8	60-140			
Calibration Check (EB62002-CCV1)				Prepared: (02/20/06	Analyzed: 02	2/21/06			
Total Hydrocarbon C6-C35	973		mg/kg	1000		97.3	80-120			
Duplicate (EB62002-DUP1)	Sou	rce: 6B09015	-01	Prepared: (02/20/06	Analyzed: 02	2/21/06			
C7-C8	ND	10.0	mg/kg dry		ND				20	
>C8-C10	51.0	10.0	n		56.7			10.6	20	
>C10-C12	133	10.0			146			9.32	20	
C12-C16	384	10.0	н		409			6.31	20	
C16-C21	520	10.0	н		571			9.35	20	
>C21-C35	579	10.0	n		624			7.48	20	

1810

8.05

20

1670

10.0

Total Hydrocarbon C6-C35

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/21/06 15:34

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61305 - General Preparation (Prep)										
Blank (EB61305-BLK1)				Prepared: (2/10/06	Analyzed: 02	/13/06			
% Solids	100		%			•				
Duplicate (EB61305-DUP1)	Sou	rce: 6B09009-	01	Prepared: (02/10/06	Analyzed: 02	2/13/06			
% Solids	97.2		%		96.6			0.619	20	
Duplicate (EB61305-DUP2)	Sou	rce: 6B09016-	06	Prepared: (2/10/06	Analyzed: 02	2/13/06			
% Solids	90.4		%		94.9			4.86	20	
Duplicate (EB61305-DUP3)	Sou	rce: 6B10001-	09	Prepared: (02/10/06 A	Analyzed: 02	/13/06			
% Solids	95.1		%		95.4			0.315	20	
Duplicate (EB61305-DUP4)	Source: 6B10005-05 Prepared: 02/10/06 Analyzed: 02/1									
% Solids	73.9		%		75.0			1.48	20	
Batch EB61605 - Water Extraction		_								
Blank (EB61605-BLK1)				Prepared &	Analyze	d: 02/13/06				
Chloride	ND	0.500	mg/kg							
LCS (EB61605-BS1)				Prepared &	Analyze	d: 02/13/06				
hloride	8.65		mg/L	10.0		86.5	80-120		,,	
Calibration Check (EB61605-CCV1)				Prepared &	Analyze	d: 02/13/06				
Chloride	9.06		mg/L	10.0		90.6	80-120			
Duplicate (EB61605-DUP1)	Sou	rce: 6B10001-	05	Prepared &	Analyze	d: 02/13/06				
Chloride	167	5.00	mg/kg		166			0.601	20	

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

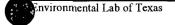
Reported: 02/21/06 15:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

	70ti	Reporting	T To idea	Spike	Source	D/DEC	%REC	nnn	RPD	37-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61006 - EPA 5030C (GCMS)										
Blank (EB61006-BLK1)				Prepared &	Analyzed:	02/09/06				
Benzene	ND	25.0	ug/kg wet						-	
Toluene	ND	25.0								
Ethylbenzene	ND	25.0	*							
Xylene (p/m)	ND	25.0	*							
Xylene (o)	ND	25.0	и							
Naphthalene	ND	25.0	н							
Surrogate: Dibromofluoromethane	56.3		ug/l	50.0		113	70-139			
Surrogate: 1,2-Dichloroethane-d4	48,1		"	50.0		96.2	70-121			
Surrogate: Toluene-d8	46,9		"	50.0		93.8	84-138			
Surrogate: 4-Bromofluorobenzene	51.3		"	50.0		103	59-145			
LCS (EB61006-BS1)				Prepared: (02/09/06 Aı	nalyzed: 02	/10/06	•		
Benzene	1380	25.0	ug/kg wet	1250		110	70-130			
Toluene	1400	25.0	n	1250		112	70-130			
Ethylbenzene	1330	25.0	11	1250		106	70-130			
Xylene (p/m)	2730	25.0		2500		109	70-130			
Xylene (0)	1380	25.0	r	1250		110	70-130			
J aphthalene	1130	25.0	11	1250		90.4	70-130			
Surrogate: Dibromofluoromethane	56.4		ug/l	50.0		113	70-139		***	
Surrogate: 1,2-Dichloroethane-d4	57.2		"	50.0		114	70-121			
Surrogate: Toluene-d8	50.1		"	50.0		100	84-138			
Surrogate: 4-Bromofluorobenzene	48.5		"	50.0		97.0	59-145			
Calibration Check (EB61006-CCV1)				Prepared &	k Analyzed:	02/09/06				
Toluene	49.3		ug/l	50.0		98.6	70-130			
Ethylbenzene	53.7		•	50.0		107	70-130			
Surrogate: Dibromofluoromethane	59.0		"	50.0		118	70-139		•	
Surrogate: 1,2-Dichloroethane-d4	53.6		"	50.0		107	70-121			
Surrogate: Toluene-d8	48.7		"	50.0		97.4	84-138			
Surrogate: 4-Bromofluorobenzene	52.4		"	50.0		105	59-145			

Project: Rice Operating Co.

Project Number: None Given
Project Manager: Kristin Farris-Pope


Fax: (505) 397-1471

Reported: 02/21/06 15:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61006 - EPA 5030C (GCMS)										
Matrix Spike (EB61006-MS1)	Source	e: 6B08021	-01	Prepared: (02/09/06 A	nalyzed: 02	/10/06			
Benzene	1530	25.0	ug/kg dry	1420	ND	108	70-130			
Toluene	1550	25.0	m	1420	ND	109	70-130			
Ethylbenzene	1460	25.0	"	1420	ND	103	70-130			
Kylene (p/m)	3090	25.0	н	2850	ND	108	70-130			
Xylene (o)	1550	25.0		1420	ND	109	70-130			
Naphthalene	1420	25.0	н	1420	15.3	98.9	70-130			
Surrogate: Dibromofluoromethane	55.9		ug/l	50.0		112	70-139			
Surrogate: 1,2-Dichloroethane-d4	57.8		"	50.0		116	70-121			
Surrogate: Toluene-d8	48.7		**	50.0		97.4	84-138			
Surrogate: 4-Bromofluorobenzene	48.9		"	50.0	•	97.8	59-145			
Matrix Spike Dup (EB61006-MSD1)	Source	e: 6B08021	-01	Prepared: (02/09/06 A	nalyzed: 02	/10/06			
Benzene	1590	25.0	ug/kg dry	1420	ND	112	70-130	3.64	20	
Γoluene	1600	25.0	N	1420	ND	113	70-130	3.60	20	
Ethylbenzene	1550	25.0	,	1420	ND	109	70-130	5.66	20	
Kylene (p/m)	3180	25.0		2850	ND	112	70-130	3.64	20	
Xylene (o)	1610	25.0	. "	1420	ND	113	70-130	3.60	20	
Yaphthalene	1460	25.0	71	1420	15.3	102	70-130	3.09	20	
Surrogate: Dibromofluoromethane	57.2		ug/l	50.0		114	70-139			
Surrogate: 1,2-Dichloroethane-d4	58.2		"	50.0		116	70-121			
Surrogate: Toluene-d8	49.0		"	50.0		98.0	84-138			
Surrogate: 4-Bromofluorobenzene	50.0		"	50.0		100	59-145			

Rice Operating Co.Project:Rice Operating Co.Fax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope02/21/06 15:34

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's. J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry Relative Percent Difference RPD LCS Laboratory Control Spike MS Matrix Spike Dup Duplicate

	Kaland K Julia			
Report Approved By:	Kacan C 1.0	Date:	2/21/2006	

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Phone: 432-563-1800 Fax: 432-563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT basbnet2 Blubario2-a19) TAT H2U9 OO 1 X 1 Moisture Ŝ Project Name: Rice Operating Company eabnoldC otal Dissolved Solids V21W C-136 Sample Containers Intact?
Temperature Upon Receipt.
Laboratory Comments: VELW C-117 00000181508 X3TE Project Loc. EME 1-1 Site Analyze Metals: As Ag Ba Cd Cr Pb Hg Se TCLP SAR / ESP / CEC PO # Project #: Anions (Cl, SO4, CO3, HCO3) Sations (Ca, Mg, Na, K) Time ador ador maton rate Han Time Ogista (specify): nos Sindge Date VVater Oliter (Specify) Mone OSTH HOEN Fax No: 505-397-1471 HOR ONH Email results to gil@rthicksconsult.com and kpriceswd@valornet.com 93 No. of Containers 7 20 12071 アルク Q 7 (1) Time Sampled Ň Received by ELOT 30-3-2 2-8-5 2-8-06 30-8-4 12-06 Received by: Date Sampled 250 Civile Copy New Mexico 88240 Time Time company Name Rice Operating Company 2/9/06/2 Date Company duress: 122 West Taylor FIELD CODE Telegraphic CT 5393-9174 Project Assertie 22-22 72 0 h-8 Sampler Segrature: Ļ 3 Ω 22 会等 (lab use only) Special Instructions: Relinquished by: 100

ALWAY SA

3.68

2/9/04

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

client: Dice_Oo_					
alaha tare					
te/Time: 29/00 3.55					
order#: 10809015					
7. A.					
nitials:					
Sample Receipt	Checkli	ist	÷		
emperature of container/cooler?	Yes	No I	3.5	C	
hipping container/cooler in good condition?	Yes	No			
ustody Seals intact on shipping container/cooler?	Yes	No	Mct prese	18.	
ustody Seals intact on sample bottles?	des	No	Not preser		
hain of custody present?	Yes	No			
ample Instructions complete on Chain of Custody?	YES	No			
hain of Custody signed when relinquished and received?	YEs.	No	A 10		
hain of custody agrees with sample label(s)	Yes,	No		 i	
ontainer labels legible and intact?	Yes	No			
ample Matrix and procerties same as on chain of custody?	Yas	No			
amples in procer container/bottle?	Yes	No			
amples procerly preserved?	Yes	No	· ,		
ample bottles intact?	YES	No		j	
Preservations documented on Chain of Custody?	Yes	No.		-	
Containers documented on Chain of Gustody?	Y(#\$)	No.		i	
Sufficient sample amount for indicated test?	Yes	No			
All samples received within sufficient hold time?	Yes	No			
samples have zero headspace?	Yes)	No.	Not Apolica	ble	
		· · · · · · · · · · · · · · · · · · ·			
Variance Docu Contact Person: Date/Time: Regarding:	A., 14 a. a.,				
Corrective Action Taken:			· ·		
	· · · · · · · · · · · · · · · · · · ·				
			s. ————————————————————————————————————		
	_				
				· -	

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME I-1 SWD

Project Number: None Given

Location: T20S-R36E-Sec1T, Lea County, NM

Lab Order Number: 6H31004

Report Date: 09/06/06

Rice Operating Co.
Project Number: Project Number: None Given
Hobbs NM, 88240 Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample (1)	Laboratory ID	Matrix	Date Sampled	Data Received
Monitor Well #1	6Н31004-01	Water	08/28/06 10:25	08-31-2006 10:15
Monitor Well #2	6Н31004-02	Water	08/28/06 11:40	08-31-2006 10:15
Monitor Well #3	6Н31004-03	Water	08/28/06 09 05	08-31-2006.10:15

Project EME I-1 SWD

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC Environmental Lab of Texas

Ariallyte	Result	Reporting Limit	Units	Dilution	Bairh	Prepared	Analyzed	Method	Notes
Monitor Well #1 (GH31004-91) Water	2	-							×
Benzene	ND	0.00100	mg/L	1	EH63104	08/31/06	08/31/06	EPA 8021B	k í
Toluenc	ND	0,00100	**	÷,	.7	4 .	?, u	*	
Fithylbouzene	ND	0.00100	n	,п.	7	P ₂ :	Th.	•	
Xylene (p/m)	ND	0.00100	· ir	π,	₩.	. 17		7 0 ,	
Xylenc (o)	ND	0.00100	•	Ť			•	TN	<u> </u>
Swrogae: a,a,a-Trifluorotoluene		110%	80-I	20	*	,,	p	R	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	ĵø.	Ħ	w;	'n	
Monitor Well #2 (6H31004-02) Water	a. *	is de d	994	نبدر	<u> </u>			e de la companione	<u></u>
Benzene	0.00130	0:00100	mg/L	1	EH63104	08/31/06	08/31/06	EPA 8021B	
Tolucae	f [0.000562]	0.00100	•	· •	75	ù	7	Ħ	
Ethylhenzenc	0.00359	0.00100	, " ,	π	· • .		*	u ,3	
Xylene (p/m)	0.00229	0.00100	*	T.		7	#	Ħ	
Xylenc (o)	ND	0.00100		•	. **		Ä	a	
Surrogate: a,a,a-Trifluorotoluene		110%	80-1	120	7	a.,	*	*	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	*		1991	ń	
Monitor Well #3 (6H31004-03) Water							. 1		- 3 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Benzene	מא	0.00100	πg/L	ı	EH63104	08/31/06	08/31/06	EPA 8021B	i.
Toluene	ND	0.00100	(e)		ed.	•	•	Ť.	
Ethylbenzene	ND	0,00100	çπ"	'n	'n	•	•	ff	
Xylenc (p/m)	ND	0.00100	**	-	₩.	*	'n	Ď	
Xylene (o)	ND	0.00100	: 1	h	::9	•	=	7	
Surragate: a,a,a-Trifluorotoluene		101.%	80-	120	7		, n	r.	
Surrogate: 4-Bromofluorobenzene		87.5 %	80-	120	ĕ	-	ř.	₹'	

Project: EME I-1 SWD

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

General Chemistry Parameters by EPA/Standard Methods

		1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.141.	W. V.	. reduces	2.5		, , , , , , , , , , , , , , , , , , , ,	
Amilyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6331004-01) Water	% ·				ogro.	431.c. 1	<u> </u>		- X
Total Alkaliony	396	4,00	mg/L	2	EH63107	08/3]/06	08/31/06	EPA 310.1M	
Coloride	2360	25.0	*	50	EH63108	08/31/06	08/31/06	EPA 300.0	
Total Dissolved Solids	4540	10,0	**	4	E160203	08/31/06	09/05/06	EPA 160.1	
Sulfate	66.7	25.0	ï	50	EH63108	08/31/06	08/31/06	EPA 300.0	
Monitor Well #2 (61131004-02) Water	* 8		· · · · · ·						
Total Alkalinity	400	4.00	ng/L	2	EH63107	08/31/06	08/31/06	EPA 310.1M	187 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Chloride	3880	50.0	*	100	EHG3108	08/31/06	08/31/06	EPA 300.0	
Total Dissolved Solids	6560	10.0	<u> </u>	3	1:160503	08/31/06	09/05/06	EPA 160 I	
Solfate	98.3	50.0	ુ .	100	EH63108	08/31/06	08/31/06	EPA 300.0	
Monitor Well #3 (6H31004-03) Water								in Emple	
Total Alkalinity	400	4.00	тę/L	2	EH63107	08/31/06	08/31/06	EPA 310.1M	
Cliloride	2790	50.0	П	100	FH63108	08/31/06	08/31/06	EPA 300.0	
Total Dissolved Solids	4970	10,0	4	1	E160503	08/31/06	09/05/06	EPA 160(1	
Silfate	139	50.0	. w	100	EH63108	08/31/06	08/31/06	FPA 300.0	
T.									

Project, EME I-1 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods Environmental Lab of Texas

the first term of the control of the	***								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analy26d	Method	Note
Monitor Well #J (6H31004-01) Water	\$1.1		\ <u>:</u>	<u> </u>		4.5		Antican Superiora	aner Turn de sed
Calcium	409	4.05	mg/I.	50	EH63111	08/31/06	08/31/0G	EPA 6010B	
Magnesium	201	1,80		ů.	Ħ	•	•		
Potasslum	16.9	0.600	•	10		jů.		₩\ 	
Sodium	852	10.8	•	2Š0.	#	· " "	*	•	
Monitor Well #2 (6H31004-02) Water						e diament			
Calcium	609	20,2	mg/L	250	EH63111	08/31/06	08/31/06	EPA 6010B	46.55
Magnesium	340	9.00	**	₩	7 256 (g) *	(p)	ñ	R.	
Potassiom	25.4	0.600	,	10	H	R [Ą	₹	
Sodium	1260	10.8	u	250	B ₁ ·	 π		in .	
Moditor Well #3 (6H31004-03) Water		* 1	-		Lee	e vijak	. 1941 for all		
Calcium	449	4.05	mg/I.	50	EH63111	08/31/06	08/31/06	EPA 6010B	光緒 赞
Magnesium	195	1.80	44	*	100 mg 100 mg		**	ń	
Porassium	18.4	0.600	ń	10	· u	•	ř	~**	
Sodium	952	10,8	•	250	75	7)	•	ű.	

Project. EME I-1 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

3	 ***	Reporting	Spike Source	%REC	RPD	1. As In an 467
Analyte	Result	Limit Units	Level Result	%REC Limits	RPD Limit	Notes

Stank (EH63104 ELK)	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
ND	Batch EH63104 - EPA 5030C (GC)		\$46.0	~				at a mark or		- 250	<u>-</u> .
Column ND	Biank (EH63104-BLK1)	95 95 		3.	Prepared &	Analyzed	08/31/06	. 344			end Florida and
Supplementary No. 0.00100 1.	Benzthe	ND	0.00100	mg/L			7.5.3			- 110 to 110 to 1	
Spience (p/m) ND	Tolueno	ND	0.00100	₩./							
Spina ND	Ediylbenzena	ND	0.00 000	•							
ND 0.0010 1971 40.0 97.5 50-120	· 1500 후 140 원래(1) -	ND	0.00100	· P							
	Xylane (o)	ND	0.00100	•							
CS (EXIGN Prepared & Analyzed: 08/31/06 Prepared & Analyzed: 08/31/06	Surrogale: a.a.d-Trifluorptolucne	39.0	<u> </u>	ug/l	40.0	<u> </u>	97.5	80-120		AL EST	With the street of
Senization Column Column	Surrogate: 4-Aromofluorobenzene	36.9		a	40.0		92.2	80-170			
Search 0.0459 0.00100 reg 0.0500 37.8 80-120	LCS (EI163104-BS1)	3 9 4 1 4 1 .	e, Q.,		Prepared &	Analyzed	08/31/06				and the second
Solicy S	Benzene	0.0489	0.00100	mg/L	0.0500		97.8	80-120		24	Market Trades
Kyleiae (p/m) 0.119 0.00100 " 0.100 119 80-120 Kylane (o) 0.0574 0.00100 " 0.0500 115 80-120 Surrogate: A.a.a-Trifluorisoluime 43.5 upt 40.0 109 80-120 Surrogate: A.Bromufluoriobeticine 47.5 " 40.0 119 80-120 Calibration Check (EH63104-CCV1) Prepared & Analyzed: 08/31/06 Prepared & Analyzed: 08/31/06 Calibration Check (EH63104-CCV1) Prepared & Analyzed: 08/31/06 Surrogate: 4Bromufluoriobetic EH63104-CCV1 \$0.0 103 80-120 Column \$1.7 up/ \$0.0 103 80-120 Chylene (p/m) 109 " 100 109 80-120 Autrogate: Acar Trifluoriothume 44.9 " 40.0 112 80-120 Marth: Spike (EH63104-MS1) Source: 6H31005-03 Prepared & Analyzed: 08/31/06 Marth: Spike (EH63104-MS1) Source: 6H31005-03 Prepared & Analyzed: 08/31/06	Toliens	0,0518	0.00100		0,0500		104	80-120			
Value (a) 0.0574 0.00100 0.0500 115 30-120	Ethylbenzens	0.0507	0.00100		0.0500		[0]	80-120			
Surrogate: a,a,a-Triffuorotoliume	Xylcae (p/m)	0.119	0.00100	я	0.100		119	80-120			
Surveyete: d. a, a-Trifluorosolueme	Xylene (0)	0.0574	0.00100		0.0500		115	80-120		10, 500	amuna e e sub e da
April	Surrogale: a.a.a-Trifluorotolvane	43.5		up/l	10.0		109	80-120			
Selection S1.7 mg/l S0.0 103 80-120	Surrogate: 4-Bromufluorobenzene	47.5		D	40,D		119	80-120			
Solid	Calibration Check (EH63104-CCV1)		44.4		Prepared &	. Analyzed	08/31/06				
Stylenc (p/m) 109 100 109 80-120	Bearing	31.7	****	11 <u>2</u> /1	50.0	**	103	80-120		•	Mingally (Stolenie)
Section Sect	Toluene	54.4			50,0		109	XO-120			
Solution	Ethylbenzene	52.4		÷	50.0		105	80-120			
Autrogate: a,a,a-Trifluorotoluene	Xylene (p/m)	109		'n	100		109	BO-120			
### ##################################	Xyluno (a)	52.8		н	50.0		106	80-120		\$	
Source: 6H31005-03 Prepared & Analyzed: 08/31/06	Surrogate: a.a.a-Trifluorotoluene	44.9		n	40.0		112	80-120		() Takib	<u>Their gangs</u>
Selection 0.0511	Surrogale: 4 Bromofluorobenzene	39.8		ú	40.0		99.5	80-120			
Politicale 0.0537 0.00100 " 0.0500 ND 107 80-120 Sthylbenzene 0.0500 0.00100 " 0.0500 ND 100 80-120 Syline (p/m) 0.118 0.00100 " 0.100 ND 118 80-120 Syline (o) 0.0564 0.00100 " 0.0500 ND 113 80-120 harrogate: a,d,a-Triftuorotoluene 43.9 ug/l 40.0 110 80-120	Matrix Spike (EH63104-MS1)	Sour	ce: 6H31005	-03	Prepared &	. Analyzed	08/31/06				
######################################	Велите	0.0511	0,00100	тд∕1.	0.0500	ND	102	80-120		7	<u> </u>
Sylene (p/m) 0.118 0.00100 " 0.100 ND 118 80-120 Sylene (o) 0.0564 0.00100 " 0.0500 ND 113 80-120 Surrogate: a,d,a-Trifluorotaluene 43.9 ug/l 40.0 110 80-120	Tolucue	0.0537	0.00100	n.	0.0500	ND	107	80-120			
Sylcine (o) 0.0564 0.00100 * 0.0500 ND 113 80-120 surrogate: a,d,a-Trifluorosaluene 43.9 ugrl 40.0 110 80-120	Ethylbenizene	0,0500	0,00100	п	0.0500	ND	100	80-120			
urrogate: a, a, a-Trifluorotoluene 43.9 ugl 40.0 110 80-120	Xylene (p/m)	0.118	0.00100	н	0.100	ND	811	80-120			
으로 하게 하게 하게 하게 되었다. 그는 이 도시에는 그를 보고 있다면 보다 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그는 이 사람이 없는 그를 보고 있다면 보다 되었다. 그를 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보고 있다면 보다 되었다. 그를 보다 되었다. 그를 보고 있다면 보다 되었다면 보다 되었다. 그를 보고 있다면 보다 되었다면 보다 되었다면 보다 되었다면 보다 되었다면 보다 되었다. 그를 보고 있다면 보다 되었다면 보	Xylene (o)	0.0564	0.00100	*	0.0500	ND	t 13	80-120			
urrogots; 4-Brimuftwordenzene 46.1 " 40.0 115 80-120	Surrogate: a,a,a-Trifluarotaluene	43.9	600,000	l/gu	40.0		110	80-120			···· <u>·</u>
	Surrogota; 4-Bromofluerobenzene	46.1		te.	40.0		115	80-120			

Project EME I-1 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control

Analyte	Result	Kepotung Limit	Units	Level	Result	%REC	Limits	RPD	RPD Limit	Notes
Batch EH63104 - EPA 5030C (GC)	Sin.	ar gr			7 (eren in	
Matrix Spike Dop (EH63104-MSD1)	Son	ree: 6)(31005	-03	Prepared &	: Analyzed:		500 T.			
Benizono	0.0513	0.00100	mg/L	0,0500	ND	103	80-120	0.976	20	
Toluena	0.0536	0.00100	•	0.0500	ND	107	80-120	0,00	20	
Ethylberzens	0.0511	0.00100	à	0.0500	ND	102	80-120	1.98	2.14	
Xylene (p/m)	0.112	0.00100	,	0.100	ND	112	80-120	5.22	20 20	
Xylena (o)	0.0531	0,00100	*	0,0500	ND	106	80-120	5.39	20	
Surrogate: a,a,u-Trifluorotaluene	43.9	100	υς/Ι	40.0		110	80-120			
Surrogate: 4-Brownfluorobenzene	46.1		Ü	40.0		115	80-120			

Project: EME I-1 SWD

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Ancilyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH63107 - General Preparation (V	VctChem)			<u> </u>	UN 0	~;, <u>~_i</u>	. ;	- Mar		10 10 10 10 10 10 10 10 10 10 10 10 10 1
Blank (EH63107-BLK1)				Prepared &	Analyzed	: 08/31/06	<u> </u>	agas ass		
Total Alkahuity	ND	2.00	mg/L			e both Ste				
LCS (E063107-BS1)	na z secul		<u> 22</u>		Analyzed	: 08/31/06	Miller Sas de combinación			C (50)
Bicarbonate Alkalinity	186	2.00	mg/L	200	***	93.0	85-115		2.500	14 641 461
Duplicate (CH63107-DUP1)	Soc	irce: 6H29001-	-02	Prepared &	& Analyzed	1: 08/31/06	<u> </u>			New Section .
Total Alkalinity	136	2.00	mg/L	The party	140			2.90	20	SERRICA CONTRACTOR
Reference (EH63107-SRM1)	and the second		u site a 1 december	Prepared o	& Analyzco	1: 08/31/06			5 - 550 o ta di <u>ata</u>	
Total Alkalinity	252	· · · · · · · · · · · · · · · · · · ·	mg/T.	250		101	90-110		reference i for	
Batch EH63108 - General Preparation (V Blank (EH63108-BLK1)	WetChem)	**************************************		Prepared	& Analyzeo	1 08/31/06		7 2981		XX 40
Chloride	ND	0.500	mg/L						.: %1	4.7 6.2
Sulfate	СĺЙ	0,500	. п							
LCS (EH63108-BSI)	,			Prepared a	& Analyzeo	1: D8/31/06				
Sulfate	10,6	0.500	mg/L	10,0	p., 4 8.	106	80-120			
Chloride	10.7	0.500	(m)	10.0		107	80-120			
Calibration Check (EH63108-CCV1)				Prepared	& Analyzci	d: 08/31/06				
Sulfate	11.0		mg/L	10,0		170	80-120	er (byw.		
Chloride	10.8		T.	10.0		108	80-120			
Duplicate (EH63108-DUP1)	So	nree: 6H31002	-01	Prepared	& Analyze	d: 08/31/06	e entre de	N.T	ug konstr	n 1845û ha ye. a.
Chloride	4150	100	mg/L		4180	1		0.720	20	
					ND					

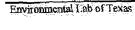
Project: EME I-1 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Analyte	Rosult	Reporting Limit	Upits	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch EH63108 - General Proparation (We	5-ya. 1				**************************************					
Duplicate (EH63108-DUP2)	Sou	rce: 6H31006	02	Prepared &	Analyzed:	08/31/06	 			
Chlorida	386	12,5	mg/L		386		•	0.00	20	
Sulfate	516	123	н		515			0.194	20	
Matrix Spike (EH63108-MS1)	Sou	rce: 6H31002	01	Prepared &	Analyzed	08/31/06				20,00
Salfato	2000	100	mg/L	2000	ND	100	80-120			سننكه برور
Chloride	6290	100	T.	2000	4180	106	80-120			
Mutrix Spike (EH63108-MS2)	Sou	rce: 6H31006	02	Prepared &	Analyzed:	08/31/06	.*			
Sulfide	777	12.5	ng/L	250	515	105	80-120			
Chlande	654	12,5	•	250	386	107	80-120			
Batch E160503 - Filtration Preparation	T 88			Tara su						
Bhipk (E160503-BLK1)	Na saa			Prepared: 0	08/30/06 A	nalvzed: 09	/05/06		- particle si	
l'otal Dissolved Solids	סא	10.0	mg/L		Silve		, at west			
Duplicate (EI60503-DUP1)	Son	rce: 6H30007-	01	Prepared: 0	8/30/06 A	nalvzed: 09	/05/06			
Total Dissolved Solids	2770	10.0	mg/L	Daniel Control	2820	<u> van Majorija Prist (1975)</u>	<u></u>	1.79	5	
Duplicate (£160503-DUP2)	Soo	ree: 6H31005	04	Prepared: 0	8/31/06 A	nalyzed: 09	/05/06		·"	
Cetal Dissolved Solids	3360	10.0	mg/L		3400			1,18	5	



Project EME I-1 SWD

Project Number, None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control

Anabra	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		***		100		.,	Way (li Li	76) - 12	
Batch EH63111 - 6010B/No Digestion				tali i albi i i		A Services		A 1 2	¢ j:	7.
Blank (EH63111-BLK1)				Prepared 8	Analyzed	08/31/06			- 20 <u>00.</u> - 10 % 1	
Calcium	ND	0.0810	mg/L				,			
Magnesium	ND ND	0.0360	•							
Potastium		0.0600	n.							
Sodium	ND	0.0130	n .							
Calibration Check (EH63111-CCVI)	2			Prepared &	ž Analyzed	08/31/06	<u> </u>	<u> </u>		
Calcium	2.23		mg/L	2.00		112	85-115	THAT SUIT Y		1000 000°
Majnosium.	2.25		11	2.00		112	25-115			
Petristani	1.72 1.83		. m.:	2.00		86.0	83-115			
Sodium	1.83.		#	2.00		91,5	85-115			
Duplicate (EHG3111-DUPI)	So	arce: 6H30007	-01	Prepared a	z Analyzed					
Calcium	11.8	0.810	mg/L		12.5	TOTAL SE		5,76	20 20	ATEC CO.
Magnisium	5.41	0.360	i di		4.96			8,68		
Potissium.	6.31	0.600	300		6.38			1:10	20:	
Sodium	908	10,8	·		∍857			5.78	20	

Rice Operating Co.
Project: EME I-1 SWD
Project Number: None Given
Hobbs NM, 88240
Project Manager: Kristin Farris-Pope

Notes and Definitions

Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference Laboratory Control Spike LÇS MS Matrix Spike Dup Duplicate

	Kaland K July		aurit dath y en er e
Report Approved By:		Date:	9/6/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Comish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

12800 West |-20 East Odessa, Texas 78765

Phone: 432-553-1900 Fax: 432-563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

kpope@riceswd.com

Project Manager: Kristin Farris Pope

Company Name RICE Operating Company Company Address: 122 W. Taylor Street city/state/zip. Hobbs, New Mexico 88240

Sampler Signature: Rozanne Johnson (505) 631-9310

Telephone No: (505) 393-9174

Email: tozanne@valomet.com

PO Number: Fax No: (505) 397-1471

Project Number:

EME I-1 SWD

Project Name

F20S-R36E-Sec1T, Les County NM

Project Loc:

IO: OEDS/16/2018 X3LE AS EM MAIN OF DA SA SERBE Alons (CI, SO4, CO3, HCO3) May, No. KJ 3001, 2001 M3108 1.814.HF

TAT bashnet2

Total Diacolved Solids

gos

asprils

TOTELVI

705**9**H

HOW

'ON (C)

المراجة (المحدد 3년대 파티 (() 호프씨

원으와 근갖되면 km CD+ (도) KDH4

STEMBINGO TO GM

belgmes smiT

belgmo2 etsQ

(dubado 3-019) TAT HRUS

× × Outra (abecay);

× ×

× ×

× ×

'n က

1.40 10.25

> 8/28/2003 8/28/2008

Monitor Well #2 Monitor Well #3

Monitor Well #1

8/28/2006

FIELD CODE

9:05

PLEASE Email RESULTS TO: kpope@rlceswd.com; mfranks@rlceswd.com

Special Instructions

Received by:

3.8 5

2/3/106

20/18/18

뫒

2.3

8/31/00

	5	

	٠,			45	
	r.	-		₹	٠.
4	á,		1	e"	ĺ,
. 1		٠.	٠.		
1	1	7			

1	Environi	nental	Lab of	Texas	, i
	Corrective				

	$0 \leftarrow \lambda$
Client:	<u> </u>
Date/ Time:	<u>83106 1015 - </u>
Lab ID#	6H31004-
Initials:	QV-,
	Sample Receipt Checklist

		A TO TO COMPANY SERVICES	er. Sie en Newsen		lient initials
#1	Temperature of container/ cooler?	Yes	Nô	¿O ° ° ¢	
	Shipping container in good condition?	Yes	No		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Custody Seals intact on shipping container/ cooler?	⊁ 98 _	No	Not Present	344 (MC 11
	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
	Chain of Custody present?	Xes	No		المراجع والمالية
#6	Sample instructions complete of Chain of Custody?	₩	No		
		(e)	No		
#8	Chain of Custody agrees with sample label(s)?	Yes)	No	ID written on Cont./ Lid	9 9 9 8
#9	Container label(s) legible and intact?	Xes	No	Not Applicable	
#10	The first of the control of the cont	Yes	No		
#11	Containers supplied by ELOT?	(Ve)	No		
#12	Samples in proper container/ bottle?	7(es)	No	See Below	
#13	Samples properly preserved?	γ €ε	No	See Below	; ; .
#14	Sample bottles intact?	yes	No		: \$4.x
#15	Preservations documented on Chain of Custody?	(F)S	No		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
#16	Containers documented on Chain of Custody?	// es	No		1 W
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	544 1344
#18	All samples received within sufficient hold time?	(res	No	See Below	11
#19	VOC samples have zero headspace?	(Yes	No	Not Applicable	1.75

Variance Documentation

Contact:		Contac	ted by:		Date/ Time	£
Regarding:	<u> </u>	; 	· · · · · · · · · · · · · · · · · · ·	<i>2</i>		<u> </u>
Corrective Action Taken:		· · · · · · · · · · · · · · · · · · ·		——————————————————————————————————————	·	

Check all that Apply:		Client unde	ed e-mail/ fax erstands and wo ocess had begur		eed with analysis ampling event	

Appendix D

Investigation & Characterization Plan

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2565

February 25, 2005

Mr.Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: INVESTIGATION & CHARACTERIZATION PLAN

EME I-1 Offsite Encroachment T20S-R36E-Section 1, Unit Letter I NMOCD CASE # 1R0336

Mr. Price:

RICE Operating Company (ROC) has retained Trident Environmental to address potential environmental concerns at the above-referenced site. ROC would like to retract the earlier submitted work plan dated October 1, 2004, for consideration of the further actions proposed herein as a response to the concerns expressed in your email dated December 8, 2004, which reads in part, as follows:

"The Trident report dated October 01, 2004 included in ROC's plan, mentioned above, does not clearly point out how this site will be remediated and closed. It appears it is a stand alone plan not to be associated with any generic plan previously approved. Therefore, OCD has the following concerns:

- 1. What TPH, BTEX and Chlorides levels will be used for delineation.
- 2. Please define most highly contaminated soils. What TPH and Chloride levels?
- 3. Please define unimpacted overburden. What TPH, BTEX and Chloride levels?
- 4. What will be the levels of TPH, BTEX and Chlorides for backfill material. Will these materials be leachable?
- 5. If only one liner is installed and it is at the bottom, what will prevent infiltration from seeping through the backfill and simply running off to the side into groundwater?
- 6. The plan mentions the surface will be contoured, reseeded with native vegetation and monitored for growth, implying this procedure will eliminate any ponding and promote evapotranspiration, thereby minimizing natural infiltration. The plan does not provide any evidence this will work or a plan for future monitoring. OCD understands this year along there has been enormous rainfall in the Hobbs/Monument area. Is this accounted for?
- 7. Upon completion of activities, the plan mentions that closure samples will be collected. Please provide a more detail explanation.
- 8. Will the plan delineate to groundwater if necessary?

Please respond so OCD may properly evaluate this proposal."

BACKGROUND

The I-1 Offsite Encroachment site is located on State Land in township 20 south, range 36 east, section 1, unit letter I approximately 1 mile south of the intersection of County Road 322 and County Road 41 in Lea County, NM as shown on the attached Site Location Map. ROC has a Salt Water Disposal Easement (SWD-062) with the New Mexico State Land Office at this location. Land in the site area is primarily utilized for crude oil production and cattle ranching. Area crude oil production is operated by Chevron Texaco and Amerada Hess.

PREVIOUS WORK

The upgrade of the EME I-1 SWD facility was initiated in February 2002 in accordance with the revised Generic Closure Plan for Existing Pits and Below-Grade Redwood Tanks (last revision February 23, 2000). Excavation activities began in October 2002. Because of the existence of an active 10-inch diameter asbestos-concrete saltwater pipeline and an abandoned Conoco 4-inch steel pipeline (see site map) excavation work did not extend further southwest due to safety concerns and suspected encroachment from an offsite source in that area not associated with the redwood tanks. ROC submitted the EME SWD I-1 Tank and Pit Closure (Partial) Report on November 5, 2004. This report was designated as "partial" because it addressed just the tank and pit closure area and not other suspected offsite encroachment sources.

RECOMMENDATION FOR FURTHER ACTIONS

Due to the excavation, lining and backfilling of the source area below the former redwood tanks and the emergency overflow pit there no longer remains a threat of impact from the vadose zone in that portion of the site. However, during the excavation activities it was apparent that impacted soils in the southwest portion of the site were from a source *other than* the redwood tanks and/or emergency pit (offsite source and/or historic line leaks). Further northwest of the site along the 10-inch pipeline is another area suspected of possible impact from offsite encroachment. Recently, the 10-inch pipeline and junction box were relocated to the eastern portion of the site allowing for further actions, as recommended below, to address these areas.

Task 1 Evaluate Concentrations of Constituents of Concern in the Vadose Zone

A more complete delineation of the vadose zone in this area of the site and assessment of the potential for groundwater impact are necessary to assist ROC in selecting the appropriate soil and/or groundwater remedy. An environmental drilling firm will be mobilized on site to acquire subsurface soil samples for characterization of the lateral and vertical extent of hydrocarbon- and chloride-impacted soil. Samples will be collected with a split-spoon sampling tool in accordance with the procedures explained in QP-02, QP-03, and QP-07 (attached). Soil samples will be collected periodically (five feet intervals) and field-tested for chloride content using the titration method. Soil samples submitted to the laboratory shall be analyzed for gas and diesel range organics (GRO and DRO) using EPA Method 8015 to determine TPH concentrations. Samples will also be collected for headspace analysis using an organic vapor meter (OVM), which will be calibrated to assume a benzene response factor. Samples with headspace readings or GRO levels above 100 ppm will also be analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8021B.

The following concentrations of analytes will be used to delineate the lateral and vertical extent of impact to the vadose zone:

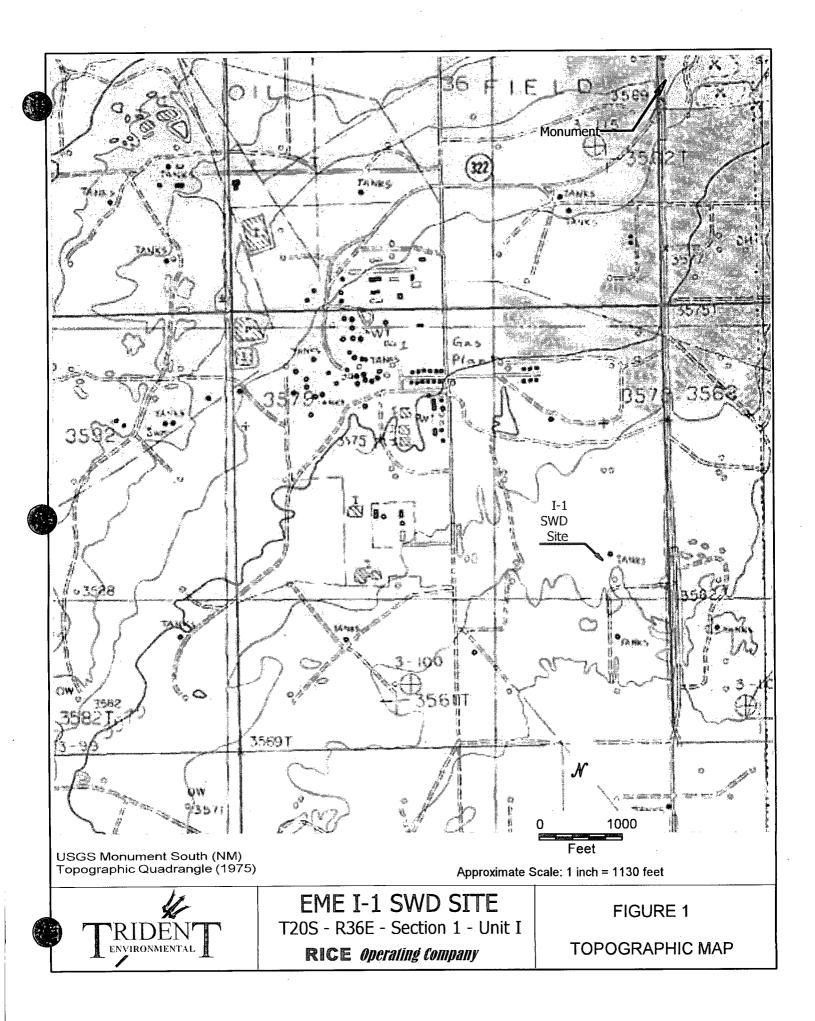
- o 100 mg/kg TPH
- o 100 ppm OVM, and/or 10 mg/kg benzene and 50 mg/kg BTEX
- o 250 ppm chloride

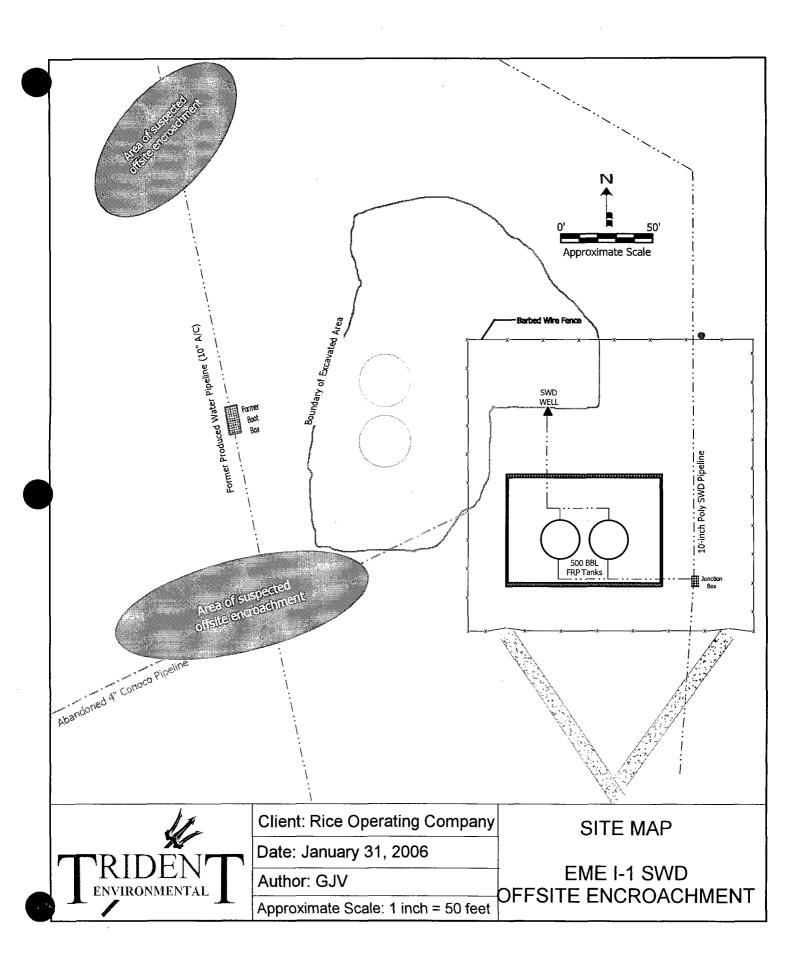
Task 2 Evaluate Concentrations of Constituents of Concern in the Groundwater

If the soil sampling conducted in Task 1 indicates groundwater impact from hydrocarbons and/or chlorides is likely, a minimum of one monitoring well will be installed at the location where impact is most suspected. If groundwater impact is confirmed above WQCC standards, additional monitoring wells may be installed to determine the extent of groundwater impact. Groundwater samples will be collected in accordance with procedures explained in QP-04 and QP-05 (attached), and analyzed for BTEX, major ions, and total dissolved solids (TDS).

The information gathered from tasks 1 and 2 will be evaluated and utilized to design a soil and/or ground water remedy if needed. The remedy that offers the greatest environmental benefit while causing the least environmental impairment will be selected. Such recommendations and findings will be presented to NMOCD in a subsequent Corrective Action Plan (CAP). When evaluating any proposed remedy or investigative work, ROC will confirm that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

ROC is the service provider (operator) for the EME SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental projects of this magnitude require System Partner AFE approval and work begins as funds are received. In general, project funding is not forthcoming until NMOCD approves the work plan. Therefore, your timely review of this submission is requested.


We appreciate the opportunity to work with you on this project. Please feel free to call me at 432-638-3106 or Kristin Farris Pope at 505-393-9174, if you have any questions.


Sincerely,

Gilbert J. Van Deventer, REM, PG, NMCS Trident Environmental - Project Manager

cc: CDH, KFP, file

enclosures: site location map, site map, and sampling procedures

From: "Gilbert Van Deventer" <gilbertvandeventer@cox.net>
To: "Hansen, Edward J., EMNRD" <edwardj.hansen@state.nm.us>

Cc: "Wayne Price" <wayne.price@state.nm.us>; "Kristin Pope" <kpope@riceswd.com>;

"Carolyn Haynes" <chaynes@riceswd.com>

Subject: Corrective Action Plan - EME I-1 SWD Offsite Encroachment Site (NMOCD

Case No. 1R0464)

Date: Tuesday, February 27, 2007 1:26 PM

Attention: Edward Hansen, New Mexico Oil Conservation Division - Environmental

Bureau

Subject: Corrective Action Plan

Site Name: EME I-1 SWD Offsite Encroachment Site

NMOCD Case No.: 1R0464 1R0336

Site Location: T20S-R36E-Section 1, Unit Letter I

Site Agent: RICE Operating Company

Hello Edward:

Trident Environmental is pleased to submit the attached Corrective Action Plan (CAP) for the above-referenced site. Only the text portion is attached herein due to file size limitations. One complete hard copy and one copy on compact disk is being sent via USPS Certified Mail (# 7099 3400 0017 1737 2190).

Thank you for your consideration of this CAP. If you have any questions, please contact me at 432-638-8740, or Kristin Pope at ROC, 505-393-9174.

Sincerely, Gilbert J. Van Deventer, PG, REM

Trident Environmental P. O. Box 7624 Midland TX 79708

www.trident-environmental.com

Work/Mobile: 432-638-8740

Fax: 413-403-9968 Home: 432-682-0727 ATTACHMENT B

Final C-103

Submit 3 Copies To Appropriate District Office	State of	New Me	exico		Form C	
District I	Energy, Minerals	and Natu	ral Resources	Timer April	Revised March 25,	1999
1625 N. French Dr., Hobbs, NM 87240				WELL API NO.		
District II B11 South First, Artesia, NM 87210	OIL CONSER	VATION	DIVISION	30-025-04150 5. Indicate Type	of Lagra	
District III	1220 S. S	t. Francis	Drive	STATE		
000 Rio Brazos Rd., Aztec, NM 87410 District IV	Santa F	e, NM 87	7505		Gas Lease No.	
220 S. St. Francis, Santa Fe, NM 87505				J. Sidic On oc.	Gus LAdou IIV.	
DO NOT USE THIS FORM FOR PROPOS DIFFERENT RESERVOIR. USE "APPLIC		EPEN OR PL	UG BACK TO A	7. Lease Name Name:	or Unit Agreement	
PROPOSALS.) 1. Type of Well:		54		Eunice Mon	ument-Eumont (EME)
Oil Well Gas Well	Other SWD We			0 17 11 37		
2. Name of Operator	PERATING COMPAN	v		8. Well No.	I-1	
RICE OF Address of Operator	EKATING COWIFAIN	I	· · · · · · · · · · · · · · · · · · ·	9. Pool name o		- :- :
	TAYLOR, HOBBS, NM	1 88240		SAN ANDRES	A Comment	
4. Well Location				*		
Unit Letter I : Section 1		20S	Range 36E	NMPM	he EAST line	
	3560' GL; 3577' DF					
	ppropriate Box to I	ndicate N				
NOTICE OF IN			1	SEQUENT RI		
PERFORM REMEDIAL WORK	PLUG AND ABANDO	Ν□	REMEDIAL WOR	sk 🗆	ALTERING CASIN	IG L
TEMPORARILY ABANDON 🗀	CHANGE PLANS		COMMENCE DR	ILLING OPNS.	PLUG AND ABANDONMENT	
PULL OR ALTER CASING	MULTIPLE COMPLETION		CASING TEST /	CEMENT JOB	ADAMOQNIMENT	
OTHER: Redwood Tank and Overflo	ow Pit Closure		OTHER:			[
 Describe proposed or complete of starting any proposed work). or recompilation. 						
Proposed work according to Nemergency overflow pits: Install fiberglass tanks within secon redwood tanks and clean-up pit and events including boring, sampling e	dary containment and r	eroute line t to NMOC	s to new tanks. De D guidelines. Work	lineate site for con to begin late in M	tamination, remove	
Information from the USGS ground Unit Letter "J" of Sec. 1, T20S, R30 indication of surface water bodies v	6E which is more than 1	1000' from	the facility at SWD	Well I-1. Topogr	aphic maps show no	ń
Depth to Groundwater: <50' = 2	•	ce within 1 Assessn	-	No surface water	er body within 1000°	= 0
I hereby certify that the information	Labove is true and com	plete to the	best of my knowled	ige and belief.	 	-
SIGNATURE A CAME	levor	TITLE_	Project Leader-I		DATE 04046	/ 23
Type or print name Donnie Ander	SOO	_		Telephor	ne No. 505-393-9174	
(This space for State use)						
					'a	
APPROVED BY		_TITLE		·-·	DATE	