1R- 428-58

REPORTS

DATE:

3-31-08

HOBBS R-33 VENT /R428-58

CLOSURR

31-02

RICE OPERATING COMPANY JUNCTION BOX FINAL REPORT

			F	BOX LOCA	TION					
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	NEW BOX	DIMENSIC	NS - FEET	
Hobbs	F-33 vent	F	33	18S	38E	Lea	Length	·Width	Depth	
eador	(#1R428-58)		- 55	100	50E	Lea	no boxS	System Abai	ndonment	
LAND TYPE: BL	.MST#	ATE <u>X</u>	FEE LANDO	OWNER			OTHER			
Depth to Ground	lwater	65	feet	NMOCD	SITE ASSI	ESSMENT F	RANKING S	CORE:	10	
Date Started	5/22/20	006	Date Cor	npleted	8/29/2007	NMOC	D Witness _		no	
Soil Excavated _	44	cubic yar	ds Exc	avation Le	ngth <u>10</u>	Width	10	Depth	12	feet
Soil Disposed	18	cubic yar	ds Off	fsite Facility	Sun	dance	Location	Eunice,	New Mexi	co
FINAL ANALY		ory test resu		oleted by usi	ing an appr	007 oved laborati lelines.			<u>n/a</u>	
	Sar	nple	F	PID (field)		Chic	oride			
		ation	-	ppm		mg	/kg			
	BACKFILL	. composite	28	.1 (pile 1)						
	(2:1 k		49	.7 (pile 2)		12	28			
General Description						g the summer o				
for this site was verbally a	approved by NMC	CD on 7/18/20	007 and confirm	ned via email c	on 8/8/2007. /	As prescribed in	the CAP, the	former box si	te was excav	ated
to the dimensions of 10 x	10 x 12-ft-deep c	luring Aug. 28-	-29, 2007. A d	clay barrier was	s installed belo	ow the surface a	and after the si	te was backfi	lled with nativ	e soil
mixed with clean, importe	d soil. The surfa	ce was seeded	l with a blend o	of native vegeta	ition and is exp	pected to return	to productive o	capacity at a i	normal rate.	The

enclosed Closure Report (Dec. 2007) by Hicks documents these activities and requests regulatory closure of this site.

to

I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

REPORT ASSEMBLED BY	Kristin Farris Pope	SIGNATURE	Knistin Jamie Pope
DATE	12/5/2007	TITLE	Project Scientist

Kristin Pope

From: To:	"Katie Lee" <katie@rthicksconsult.com> "Edward J. EMNRD Hansen" <edwardj.hansen@state.nm.us>; "Kristin Pope" <kpope@riceswd.com>; "Randall Hicks (Randall Hicks)" <r@rthicksconsult.com></r@rthicksconsult.com></kpope@riceswd.com></edwardj.hansen@state.nm.us></katie@rthicksconsult.com>
Sent:	Thursday, January 17, 2008 4:19 PM
Attach:	F-33 Closure Report.pdf
Subject:	F-33 Closure Report, NMOCD Case #1R0428-58

Mr. Hansen,

On behalf of Rice Operating Company, we are pleased to submit the attached Closure Report for F-33 Vent, NMOCD Case # 1R0428-58. A hard copy will follow via mail. If you have any questions or concerns, please don't hesitate to contact us at the number below, or Kristin Farris-Pope at 505-393-3174.

We respectfully request NMOCD approve site closure in writing. Thank you for your attention to this matter.

Best regards,

Katie Lee Staff Scientist R.T. Hicks Consultants, Ltd. ph. 505-266-5004 fax 505-266-0745 mobile 505-400-7925

January 17, 2008

F-33 Vent, NMOCD Case #1R0428-58

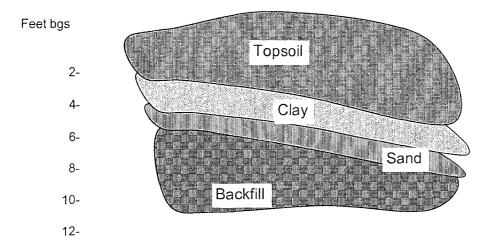
Rice Operating Company Closure Report

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745


January 17, 2008

Mr. Ed Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: NMOCD Case # 1R0428-58, F-33 Vent Hobbs SWD System Abandonment Closure Report

Dear Mr. Hansen:

This letter and Appendices are the final Closure Report for the F-33 Vent site. The NMOCD approved Corrective Action Plan (Section 6.0, pages 11-12) proposed remedy included excavation of soils in the upper vadose zone to the dimensions of $10 \times 10 \times 12$ feet deep, installation of a clay layer, native soil was mixed with clean, imported soil, as shown in Figure 1, below. The surface was re-seeded on August 29th, 2007 with native grass seed, creating an infiltration barrier by re-vegetation of the ground surface.

Figure 1. Schematic diagram of ET Infiltration Barrier

Appendix A includes the junction box closure form as well as the clay density test, disposal manifest for the 18 ft³ of off-hauled soil, laboratory results and PID measurements on backfill, and photographs documenting work at the site. Appendix B includes copies of previous submissions and the NMOCD approval email.

January 17, 2008 Page 2

We respectfully request NMOCD approve site closure in writing. Thank you for your attention to this matter.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee

Katie Lee Staff Scientist

Copy: Rice Operating Company Hobbs NMOCD Office

RICE OPERATING COMPANY JUNCTION BOX FINAL REPORT

				BOX LOCAT	ION					
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	NEW BOX		DNS - FEET	
Hobbs	F-33 vent	F	33	18S	38E	Lea	Length	Width	Depth	
	(#1R428-58)						no box	System Aba	indonment	
LAND TYPE: BLA	۸ST/	ATE X	FEE LAND	OWNER			OTHER			
Depth to Groundv	vater	65	leet	NMOCD	SITE ASSE	ESSMENT F	RANKING S		10	
Date Started	5/22/20	006	Date Cor	npleted	8/29/2007	NMOC	D Witness		no	
Soil Excavated	44	cubic yar	rda Exc	avation Ler	10 10	Width	10	Depth	12	feet
Soil Disposed	18	cubic yar	rds Off	ísite Facility	Sund	lance	Location	Eunice	, New Mexi	co
	ICAL RES					007			n/a	
	All laborato	ory test resu pr	ilts are comp ocedures pu	bleted by usi Irsuant to NI	ng an appro	oved laborat elines.	ory and test		n/a	
	All laborato	pry test resu pr nple	ilts are comp ocedures pu	bleted by usi Irsuant to Nf PID (field)	ng an appro	oved laborat elines. Chic	ory and test		n/a	
	All laborato	pry test resu pr nple	ilts are comp ocedures pu	bleted by usi Irsuant to N1 <u>PID</u> (field) ppm	ng an appro	oved laborat elines.	ory and test		<u>n/a</u>	
	All laborato	ory test resu pr nple ation composite	ilts are comp ocedures pu 1 28	bleted by usi Irsuant to Nf PID (field) ppm 1.1 (pile 1)	ng an appro	oved laborat elines. Chic	ory and test p <u>ride</u> /kg		n/a	
neral Description	All laborato San Locz BACKFILL (2:1 b	ory test resu pr nple ation composite lend)	ilts are comp ocedures pu [28 [28 [49	bleted by usi Irsuant to N1 <u>PID</u> (field) ppm	ng an appro MOCD guidi	oved laborat elines. <u>Chic</u> mg 12	ory and test <u>oride</u> /kg 28	ting		
neral Description i	All laborato San Loca BACKFILL (2:1 b of Remedial /	ny test resu pr nple ation composite ilend) Action: on & Characte	Its are comp ocedures pu [28 28 49 210 28 49	bleted by usi Irsuant to Nt <u>PID</u> (field) ppm 1.1 (pile 1) 1.7 (pile 2) 1.7 (pile 2)	ng an appro MOCD guid Model Ewig T. Hicks Cons	oved laborat elines. <u>Chic</u> mg 12	ory and test <u>pride</u> /kg 28 	ting	nd backhor n Pien (CAP)	
neral Description	All laborato San Loca BACKFILL (2:1 b of Remedial /	ny test resu pr nple ation composite ilend) Action: on & Characte	Its are comp ocedures pu [28 28 49 210 28 49	bleted by usi Irsuant to Nt <u>PID</u> (field) ppm 1.1 (pile 1) 1.7 (pile 2) 1.7 (pile 2)	ng an appro MOCD guid Model Ewig T. Hicks Cons	oved laborat elines. <u>Chic</u> mg 12	ory and test <u>pride</u> /kg 28 	ting	nd backhor n Pien (CAP)	
neral Description i	All laborato San Loca BACKFILL (2:1 b of Remedial / h the Invasigation	ory test resu pr nple ation composite lend) Action: on & Characte CD on 7/18/20	Its are comp ocedures pu [28 49 The couldr's Inzation Plan si 007 and confirm	bleted by usi Irsuant to NI <u>PID</u> (field) ppm 0.1 (pile 1) 0.7 (pile 2) 0.7 (pile 2)	ng an appro MOCD guid Theates during T. Hicks Cons n 6/8/2007 A	oved laborat elines. <u>Chic</u> mg 12 12 utlants (Jan 2) s prescribed in	ory and test <u>pride</u> /kg 28 28 206). The Col 1 the CAP, the	ting so horage a rrective Action a former box s	nd bankhon n Plen (CAP) ite was excev	ated
neral Description i hes in accordance wit	All laborato San Loca BACKFILL (2:1 b of Remedial / h the Invasigation proved by NMC 0 x 12-ft-deep d	pry test resu pr nple atton composite lend) Action: on & Characte CD on 7/18/20 uring Aug. 28-	Its are comp ocedures pu [28 49 The mater t inzation Plan si 207 and confirm -29, 2007. A c	bleted by usi Irsuant to N1 <u>PID</u> (field) ppm 0.1 (pile 1) 0.7 (pile 2) 0.2 s/2 s/2s de ubmitted by R. ned via email o clay barrier was	ng an appro MOCD guid MOCD guid T. Hicks Cons n 6/6/2007 A	oved laborat elines. <u>Chic</u> mg 12 utlants (Jan 2) is prescribed in w the surface in	ory and test oride /kg 28 	ting so-to-tage a rrective Action a former box s site was backt	nd backhor n Pien (CAP) ite was excev illed with nativ	ated /e soil

THEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

REPORT ASSEMBLED BY Krishn Farne Pope SIGNATURE Anitin Charlin Po De DATE 12/5/2007 Project Scientist TITLE

ENGINE RS SUB		LABORATORY TEST F PETTIGREW & ASSOC 1110 N. GRIMES HOBBS, NM 88240 (505) 393-9827		ASHTO R18 DEBRA P. HICKS, P WILLIAM M. HICKS, I	
To:	Rice Operating Attn: Hack Conder 122 W. Taylor		Material:	Red Clay (Wallach)	
	Hobbs, NM 88240		Test Method:	ASTM: D 2922	
Project:	General Information Project No. 2007.1007				
Date of Test:	August 29, 2007		Depth:	4' Below Finished Sul	bgrade
			Depth of Probe:	10"	
Test No		Location	Dry Density % Maximum	% Moisture	Depth
SG 9	H	lobbs F-33 Vent	95.0	10.7	

Control Density:	104.4 ASTM:	D 698	Optimum Moisture: 20.3%	
Required Compa	action:	85% - 95%	Densometer ID: 2505	
Lab No.:	07 7811		PETTIGREW & ASSOCIATES	
Copies To:	Rice			
			BY:	
			ВҮ:Р	P.E.

.

sundance Services, Inc.

.....

đ

P.O. Box 1737 🛣 Eunice, New Mexico 88231

(505) 394-2511

					Ticket # 2 2 2 2
Lease Oper	ator/Shipper/Company	· · · · · · · ·	·····		
Lease Nama	3'	•• 			
Transporter	Company:			Time	AM/PM
Date:	Vehic	le No.		Driver N	0
Charge To:		· · · · · · · · · · · · · · · · · · ·		an - , , , , , , , , , , , , , , , , , ,	
		TYPE	OF MATERIAL	paramanan	
. <u>()</u> Pro	duced Water		Drilling Fluids		Completion Fluids
Tar	ik Bottoms		Contaminated Soll	:	C-117 No.:
C Oth	ner Materials	1	BS&W Content:		
De:	scription:				JETOUT CALLOUT
VOLUME OF	MATERIAL		BBI S	ARDS	
JOR HERET OP NEVERIAL AN TOME OF SA DAVERTAL OF ALNOAS DERETARASS DERETARASS DERETARASS DERETARASS DERETARASS DERETARASS TRANSPORTOR STOREMENT of J	MPT FPOM HIT RESECRCE. 2007 FERRETION APPORDED OF ALONE OF A FORMERT O ACOMPTION FOR SUSDANCE PORTER REPRESENTS AND IN NOVIDE PARED BY THA LET CENTRY THAT the o In above described boar	TIS AND T CONSERT THE AND T DREED DREED REPRODUCT SERVIC S	WARKANTS THAT THE W CATION AND RECOVERS SAF CODT SELECTERS GILLEDS PRODUCTOW CORON OF CRUDE OF O IS THEN ONLY THE MATE BRID SUNDANCE SERVICE OMPORTER TOUGOD THE J THAT IT WAS TENDERED T	ASTE MATER ACTOL 1970 LEAND REG ALERS, AND REAL DELIN REAL DELIN ESTANCES I material re by the abo	WAL SHIPPED HERFWITH IS 5. AS AMENDED FROM TIME TO 6.LATIONS IGE ATED THERETO 9. OTHER WASTF ASSOCIATED 1. GAN OR GEOTHERMAL ENERGY FERIALS SHIPPED WITH THIS JOB (ERED BY OPER ATOR/SHIPPER TO
metikan.					
DRIVER:			and a second and a second s		
			· · · · ·		
FACILITY REF	RESENTATIVE:				

Sundance Services, Inc.

P.O. Box 1737 \star Eunice, New Mexico 88231

(505) 394-2511

			· · · · · · · · · · · · · · · · · · ·	Ticket # 1500 . 15
Lease U	perator/Shipper/Cor	npany:	میں ایک	
Lease N	ame:		a a service of the se	
Transpo	rter Company:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	_TimeAM/PM
Date:	· · · · · · · · · · · · · · · · · · ·	_Vehicle No.		Driver No.
Charge	To:	<i></i>		
		ТҮР	E OF MATERIA	Ê
	Produced Water		Drilling Fluids	Completion Fluids
	Tank Bottoms	-	Contaminated Soil	C-117 No.:
1 	Other Materials		BS&W Content:	
	Description:			JETOUT CALLOUT
VOLUME	OF MATERIAL		BBLS.	

AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB HERLIG, OPPEADOR'SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE. CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. 6901, ET SEO, THE NM HEALTH AND SAF, CODE 361,001 ET SEO,, AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE LAEME HON AFFORDED DRILLING FLUIDS. PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE ENPLOYATION, DEVELOPMENT OF PRODUCTION OF CRUDE OIL OR NATURAL GAS OF GEOTHERMAL ENERGY.

ALSO AS A COMDITION TO SUNDANCE SERVICES, INCESTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TECKET, TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INCESTACHTY FOR DISPOSAL.

THIS WILL CERTIFY that the above Transporter loaded the material represented by this Transporter Statement at the above described location, and that it was tondered by the above described shipper. This will verify that no additional materials were added to this load, and that the material was delivered without lincident.

DRIVER: مري مريد محمد ا

FACILITY REPRESENTATIVE:

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR HOBBS, NM 88240 FAX TO: (505) 397-1471

Receiving Date: 08/30/07 Reporting Date: 08/30/07 Project Owner: NOT GIVEN Project Name: HOBBS F-33 VENT Project Location: HOBBS F-33 VENT

LAB NO.

SAMPLE ID

Analysis Date: 08/30/07 Sampling Date: 08/29/07 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: CK Analyzed By: HM

> Cl⁻⁻ (mg/Kg)

H13198-1 2:1 MIXED BACKFILL COMPOSITE	128
Quality Control	480
True Value QC	500
% Recovery	96
Relative Percent Difference	2.1

METHOD: Standard Methods	4500-CI'B
Note: Analysis performed on a 1:4 w:v aqueous extra	ct.

<u>08-31-07</u> Date

H13198 RICE

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analysis. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be hable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

CDINAL LABORATORIES 2111 Beechwer 101 East Marland, Hobbs, NM 88240 2111 Beechwer 11 Lot Pape 2373-5113 Fax #: 50 5 - 357 - 1471 11 Project Owner: Hobb 11 Project Owner: MATRI 12 Lor (0) MB MATRI 12 Lor (0) MB MATRI 21 Lor (1) Loc (0) MB MATRI 21 Lor (1) Loc (2111 Beechwood, Abilene, TX 79603 2111 Beechwood, Abilene, TX 79603 (325) 673-7001 FAX (325)673-7020 (325) 673-7020 (325)	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST
Date: Received By: Time: Ti		sers or anserve. Phone Result: □ Yes □ No Add'I Phone #: Fax Result: A Yes □ No Add'I Fax #: REMARKS: f. Mai\ 74.6.4 4
Relinquished By: Date: Received By: Time:		ر. ب
Delivered Bv: (Circle One) Sample Condition Cool Intact Sampler - UPS Bus Other: 0	ndition CHECKED BY: ct (Initials) Yes No	Lucinheimer @ ricesud.com

K

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

RICE OPERATING COMPANY

122 West Taylor, Hobbs, NM 88240 Phone: (505) 393-9174 Fax: (505) 397-1471

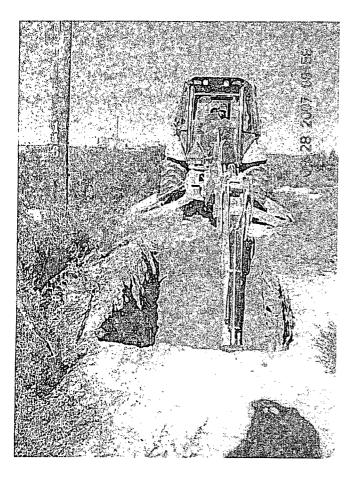
VOC FIELD TEST REPORT FORM

PID METER READING AND CALIBRATION

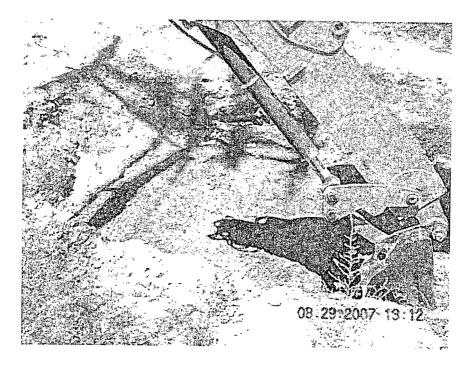
CHECK		MODEL: PGM 761S	SERIAL NO.: 104412	
MODEL	×	MODEL: PGM 7600	SERIAL NO.; 110-01374	4
NUMBER		MODEL: PGM 7600	SERIAL NO.: 110-12383	
		MODEL: PGM 7600	SERIAL NO.: 110-01292	0
LOT NO .:		07-3264	GAS COMPOSITION: ISOBUTYLENE 100PPI	M / AIR: BALANCE
FILL DATE:		8/17/2007	EXPIRATION DATE:	2/17/2009

FILL DATE: ACCURACY +/- 2%

EXPIRATION DATE: _____ 2/17/2009 102 ppm


SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE
Hobbs	F-33 vent		33	185	38E

SITE:


SAMPLE	PID READING	SAMPLE	PID READING
2:1 mixed backfill comp.			
pile #1	28.1		
2:1 mixed backfill comp.			
pile #2	49.7		
·			

I verify that I have calibrated the above instrument in accordance to the manufacturers operation manual.

SIGNATURE:	Lara Weinheimer	DATE:	8/29/2007
	demos		

Hobbs F-33 vent Excavating 10' x 10' x 12' hole

Hobbs F-33 vent Laying Clay Layer @ 4

Hobbs F-33 vent Compaction Layer Test

Hobbs F-33 vent Seeding disturbed area

,

Katie Lee

From:Kristin Pope [kpope@riceswd.com]Sent:Wednesday, October 31, 2007 3:30 PMTo:Katie LeeSubject:Fw: Summary of July 18 meeting

----- Original Message ----From: Hansen, Edward J., EMNRD
To: Kristin Pope
Cc: Carolyn Haynes ; Scott Curtis ; Sanchez, Daniel J., EMNRD ; Price, Wayne, EMNRD
Sent: Wednesday, August 08, 2007 11:26 AM
Subject: RE: Summary of July 18 meeting

Kristin,

Your summary appears to be accurate and complete. Attached is the summary that you sent with comments from me [OCD case #s and formal (email) approval dates]. I'll be sending more formal (via email) approvals for the closures and some of the CAPs soon. Also, I will review and comment on the other CAPs and the APs a.s.a.p.

Thanks for the summary. Let me know if you have any questions regarding my comments.

Edward J. Hansen Hydrologist Environmental Bureau 505-476-3489

From: Kristin Pope [mailto:kpope@riceswd.com]
Sent: Wednesday, August 08, 2007 10:34 AM
To: Sanchez, Daniel J., EMNRD; Price, Wayne, EMNRD; Hansen, Edward J., EMNRD
Cc: Carolyn Haynes; Scott Curtis
Subject: Summary of July 18 meeting

Gentlemen,

Please review the attached summary of our July 18 meeting. Please let me know if anything needs to be changed. OCD and ROC have already moved forward with several of the projects listed but I would like written confirmation for our files. Thanks again for your time.

Kristin Farris Pope Project Scientist RICE Operating Company Hobbs, New Mexico (505) 393-9174

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

OCD/ROC MEETING SUMMARY July 18, 2007

CLOSURES

- 1. Abatement Completion Report for <u>BD Zachary Hinton EOL</u> submitted by R.T. Hicks Consultants on 3/15/2007. AP-50
- Abatement Completion Report for <u>EME Marathon Barber (jct. E-5)</u> submitted by R.T. Hicks Consultants on 5/16/2007. 1R0427-91 *Approved soil work completed Dec. 2006*
- 3. Closure Report for <u>Hobbs I-29 EOL boot</u> submitted by R.T. Hicks Consultants on 5/23/2007. Approved soil work completed in 2006. 1R428-42
- 4. Closure Request for <u>BD jct. N-29</u> submitted by R.T. Hicks Consultants on 2/10/2007. #1R0426-37

APPROVALS

- Stage 1&2 Abatement Plan for <u>Vacuum F/G-35 SWD</u> submitted by R.T. Hicks Consultants; proof of public notice submitted Feb. 2006; AP-59 *Vadose zone remedy complete; reclaiming surface; groundwater treatment ongoing at F-35; evaluating treatment potential at G-35*
- 2. INVESTIGATION & CHARACTERIZATION PLANS (ICP) NMOCD Approved (1 – 14) via email August 6, 2007
 - 1. Hobbs O-5 Historical Release by Hicks on 4/11/2007 #1R428-69
 - 2. <u>EME State 'H' EOL</u> by P. Galusky on 5/1/2007 #1R427-15
 - 3. Justis E-1 vent by Highlander on 11/29/2006. #1R0432-06
 - 4. Vacuum State 'P' EOL by Galusky on 4/20/07 #1R425-26
 - 5. Vacuum jct. F-31-1 by Hicks on 4/17/07. #1R425-27
 - 6. <u>BD P-26-1 vent</u> by Trident on 2/12/2007. #1R0426-106
 - 7. <u>BD jct. P-26-2</u> by Trident on 2/12/2007. #1R0426-107
 - 8. <u>Hobbs jct. E-4, M-4 vent, & N-4 vent</u> (1 plan) by Hicks on 4/17/07 #1R428-71, #1R428-76, #1R428-68, respectively
 - 9. EME L-6 boot by Trident on 12/1/2006. #1R0427-09
 - 10. EME B-8 leak by Trident on 12/1/2006. #1R0480
 - 11. EME jct. F-18 by Arcadis on 7/6/2007 #1R427-16
 - 12. BD jct. F-25-1 by Arcadis on 7/12/2007 #1R426-10
 - 13. EME L-15-1 vent by Galusky on 7/16/2007 #1R427-173
 - 14. EME State 'Q' EOL boot by Galusky on 7/16/2007 #1R427-174
- Corrective Action Plan (CAP) for <u>Hobbs E-15 SWD</u> submitted on 11/28/2006 by Arcadis G&M. *Approved with clay or GCL condition* #1R428-40 NMOCD Approved with conditions via email July 27, 2007

- 4. CAP for <u>Hobbs F-29-1b boot</u> submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-45
- 5. CAP for <u>Hobbs O-29 vent</u> submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-43
- 6. CAP for <u>Hobbs I-29 vent</u> submitted by R.T. Hicks Consultants on 4/13/2007. #1R428-41
- 7. CAP for <u>Hobbs jct. E-33-1</u> submitted by R.T. Hicks Consultants on 1/2/2007. #1R428-67
- CAP for <u>Hobbs B-32 boot</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-57
- 9. CAP for <u>Hobbs jct. E-32-1</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-65
- CAP for <u>Hobbs F-33 vent</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-58
- 11. CAP for <u>EME A-2 leak</u> submitted by Highlander on 5/23/2007. # 1R0427-62 *condition: install clay at 4 ft instead of 3 ft as proposed*
- 12. CAP for jct. A-2-1 submitted by Highlander on 5/23/2007. # 1R0427-177 *condition: install clay at 4 ft instead of 3 ft as proposed*
- CAP for <u>EME I-1 off-site encroachment</u> submitted by Trident on 2/27/07. #1R0464

Rule 19 ABATEMENT PLANS

OCD granted approval to install monitoring wells as proposed while reviewing plans for administrative completeness:

- 1. Stage 1 & 2 Abatement Plan for <u>Hobbs F-29 SWD</u> submitted on 10/27/2006 by R.T. Hicks Consultants. *Public notice ready to submit upon approval*. AP-64
- 2. Stage 1 Abatement Plan for <u>EME C-16(1) leak</u> submitted on 5/25/2007 by L. Peter Galusky; #1R0476 *Public notice ready to submit upon approval*.
- 3. Stage 1 Abatement Plan for <u>EME C-16(2) leak</u> submitted on 5/25/2007 by L. Peter Galusky; #1R0477 *Public notice ready to submit upon approval*.
- 4. Stage 1&2 Abatement Plan for <u>BD Santa Rita release</u> site submitted on 12/11/2006 by Trident. AP-58 *want to drill more MWs*

- 5. Stage 1&2 Abatement Plan for <u>EME jct. M-16-1</u> submitted on 1/29/2007 by Arcadis G&M. AP-42
- Stage 1&2 Abatement Plan for <u>EME jct. A-20</u> submitted on 1/29/2007 by Arcadis G&M. AP-43
- Stage 1 Abatement Plan for <u>BD H-35 pit</u> submitted by Arcadis G&M on 3/23/2007. #1R0216
- 8. Stage 1 & 2 Abatement Plan for <u>Justis jct. L-1 boot</u> submitted by Highlander on 1/17/07. AP-48

OCD WILL REVIEW

- Stage 1 Final Report & Closure Request for <u>EME jct. K-33-1</u> submitted by Whole Earth on 12/28/2006. AP-60 OCD requests confirmation of regional gradient/impact
- 2. CAP for EME M-5 SWD submitted by Hicks on 9/10/2004. #1R424
- 3. Rule 19 Release and CAP for soil for <u>BD jct. F-17</u> submitted by Highlander on 8/30/06. *Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007.* AP-47
- 4. Request for Release from Rule 19 for <u>EME H-13 release</u> submitted on 8/30/2006 by Highlander Environmental. AP-44 *Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007. Showed current site photos.*
- 5. Final Investigation Report & CAP for <u>EME jct. K-6</u> submitted by Trident on 3/7/2007. AP-46.

OTHER

- 1. CAP for <u>BD K-4 leak</u> submitted by Highlander on 4/23/2007. #1R0459 *APPROVAL to begin pumping from MW-1 as proposed; OCD will evaluate CAP (soil work)*
- 2. CAP for <u>BD O-17-1</u> vent submitted by Highlander on 5/11/2007. #1R426-12 No groundwater impact; soil work only ROC WILL REVISE AND RE-SUBMIT FOR CLARIFICATION

 GEOSYNTHETIC CLAY LINER (GCL) option for Junction Box Upgrade Program Modification request required; can be emailed. NMOCD Approved with conditions via email July 27, 2007

Corrective Action Plan for F-33

Vent Junction Box Site Hobbs Sait Water Disposal System NMOCD Case #: 1R0428-58

> B.T. HICKS CONSULTANTS, LTD 901 Rio Grande Blvd. NW, Suite F-142, Albuquerque, NM 87104

1.0	Executive Summary 1
	Data Summary 1
	Conclusions
	Recommendations
2.0	Background
	2.1 Location
	2.2 Characterization Activities
3.0	Characteristics of the Vadose Zone
4.0	Evaluation of Vertical Chloride Flux
5.0	Evaluation of Vertical Hydrocarbon Flux
6.0	Proposed Remedy 12
7.0	Criteria for Closure

List of Figures, Tables & Plates

Figure 1	Map depicting the preliminary field screening results 6
Figure 2	Chloride Concentrations (mg/kg) versus Depth
Figure 3	PID Readings (ppm) versus Depth 8
Figure 4	Schematic diagram of ET Infiltration Barrier 11
Table 1	
Plate 1	Junction Box Site Location Map
Appendi	x A — Investigation Characterization Plan
Appendi	x B — Results of Field Program

Appendix C — Analytical Reports

R.T. HICKS CONSULTANTS, LTD

♥ 1.0 EXECUTIVE SUMMARY

This Corrective Action Plan presents the results of the characterization activities performed by R.T. Hicks Consultants (Hicks Consultants) and Rice Operating Company (ROC) at the F-33 Vent Junction Box site located in the Hobbs Salt Water Disposal System (SWD) and proposes closure of the site after implementation of the selected remedy.

The selected remedy includes excavation and blending of the upper 16 feet of hydrocarbon-impacted soil, placing a clay barrier beneath the root zone, creation of an infiltration barrier through surface restoration and re-vegetation of the site, and natural biodegradation of the small mass of hydrocarbons that may reside in the vadose zone below the practical reach of a backhoe. Excavation and disposal of high concentration areas will be performed as required to facilitate. This remedy is protective of ground water quality, human health and the environment. After re-vegetation of the site, ROC will submit a final closure report.

Data Summary

- 1. Hicks Consultants supervised field activities at the F-33 Vent site in May 2006. This involved general reconnaissance as well as supervision of backhoe sampling of the upper vadose zone.
- 2. Due to safety concerns with the high voltage powerline immediately above the former vent, a backhoe was used to collect samples instead of a drilling rig, as originally proposed in the NMOCD-approved workplan. Samples were collected at 2 ft sample intervals from ground surface to a depth of 12 ft at points located approximately 10 feet east, west, north, and south of the former vent. In addition, samples were collected at 1 ft intervals to a depth of 16 ft at the former vent. Samples were field-tested for chloride content and screened with a photoionization detector (PID) for indications of hydrocarbons. Soil samples were also submitted to a laboratory for more detailed hydrocarbon analysis.
- 3. Chloride concentration data show concentrations in the vadose zone are less than 1,000 ppm. At the vent site, chloride concentrations were highest (848 mg/kg) at a depth of 6 feet bgs directly beneath the vent location and declined below 6 feet bgs to a concentration of 230 ppm at 16 feet. In all sampling excavations 10 feet east,

R.T. HICKS CONSULTANTS, LTD.

north, south and west, chloride concentrations were less than 500 ppm. Chloride levels showed a consistent decline with depth.

- 4. Hydrocarbon impact is confined to the close vicinity of the vent and within the upper portion of the vadose zone. Although some samples from excavations detected hydrocarbon vapors in excess of 100 ppm, laboratory analyses detected neither benzene nor toluene. At the vent site, concentrations of ethylybenzene and xylene were 37.7 and 65.3 mg/kg respectively at a depth of 12 feet below land surface. At 16 feet below land surface in this same sampling excavation, the ethylybenzene concentrations was 27.7 mg/kg and the xylene concentration was 0.3 mg/kg. At sampling sites north, south, east and west of the vent, ethylbenzene and xylene concentrations are less than 1 ppm.
- 5. On July 20, 2006, an air rotary drilling rig was used to advance two soil borings as close to the former vent as possible, in an attempt to provide more certainty that hydrocarbon impact did not extend laterally into the deep vadose zone. These borings confirmed no chloride or hydrocarbon impact to the vadose zone at these two locations 22 feet east and 30 feet west of the vent, respectively. The borings were terminated at a depth of 50 feet bgs.
- 6. Based on data from other nearby sites, particularly the E-33-1 junction box site, depth to groundwater at the F-33 vent site is estimated at approximately 65 feet bgs.

Conclusions

- 1. At the vent site, concentrations of hydrocarbons decline with depth, based upon PID readings. Laboratory analyses show that neither benzene nor toluene were detected in any samples. Xylene declines from 65.3 mg/kg at 14 feet bgs to 0.3 mg/kg at 16 feet bgs and ethylbenzene declines form 37.7 mg/kg to 27.7 mg/kg in this same depth interval. From these data we conclude that the mass of subsurface hydrocarbons is small and limited to the upper vadose zone.
- 2. We conclude that the mass of subsurface chloride release at this site was not large enough to necessitate detailed simulation modeling of constituent fate and transport.

nage

R.T. HICKS CONSULTANTS, LID

3. Re-vegetation of the site will reduce the infiltration of precipitation and minimize the potential for any constituents of concern to migrate downward to ground water.

Recommendations

- Excavation of a 10-foot by 10-foot area at the former vent site to a depth of 12 feet and blending of material in the upper 12-feet of the vadose zone until field tests of the excavated soil mixture do not exceed 100 ppm of total organic vapors using a calibrated photoionization meter with the appropriate lamp (headspace method) and chloride concentrations in the backfill will not exceed 1,000 ppm. Disposal of high concentration zones of hydrocarbons may be necessary to meet the prescribed concentrations.
- 2. A minimum 10-12 inch thick clay layer will be installed at the base of the root zone, about 4 feet below ground surface. The clay layer will be sloped to the southeast, will extend laterally to deflect any potential infiltrating water from the surface and will be compacted according to protocols applied to backfill in new pipeline trenches.
- 3. Restoration and re-vegetation of the ground surface.
- 4. Upon documentation of these actions ROC will submit a closure report for the F-33 Vent Junction Box site and request closure of the regulatory file.

nane

R.T. HICKS CONSULTANTS, LTD

V 2.0 BACKGROUND

The Hobbs Salt Water Disposal System (SWD), which managed produced water from the late 1950s to the present, is now closed. Future releases from the system infrastructure are not possible. With the abandonment of the system in 2002, Rice Operating Company (ROC) excavated and removed the F-33 Vent. Closure of facilities like the F-33 Vent site within Hobbs SWD followed the July 16, 2003 NMOCD approved junction box investigation plan. This plan calls for delineation of any impact from these sites during the closure process and states:

If 12 feet vertical delineation at the source reveals Target Concentrations for TPH or BTEX will not meet NMOCD guidelines or TPH and BTEX will meet guidelines but there is not a significant decline vs. depth in chloride concentration, the site-impact is judged to be outside the scope of this work plan and will become a risk-based corrective action (RBCA) project-site.

The investigation and characterization used the same protocols as described in the NMOCD-approved work plan for the Section 29 sites and the field protocols were consistent with the Investigation Characterization Plan (ICP) submitted for the site (see Appendix A). However, the presence of electrical lines over the site prevented the use of a drill rig for deep vadose zone sampling, as originally proposed. Instead, a backhoe collected samples from the former vent site and nearby locations to the maximum reach of the backhoe, which is 14-16 feet. To determine if operation of the site caused lateral migration of chloride or hydrocarbons at depth, two soil borings were advanced as close as possible to the site.

2.1 Location

Plate 1 is an aerial photograph of the site when it was active, taken between 1996 and 1998 that shows the location of the boring and nearby roads.

The site is within unit letter F, Section 33, Township 18S Range 38E.

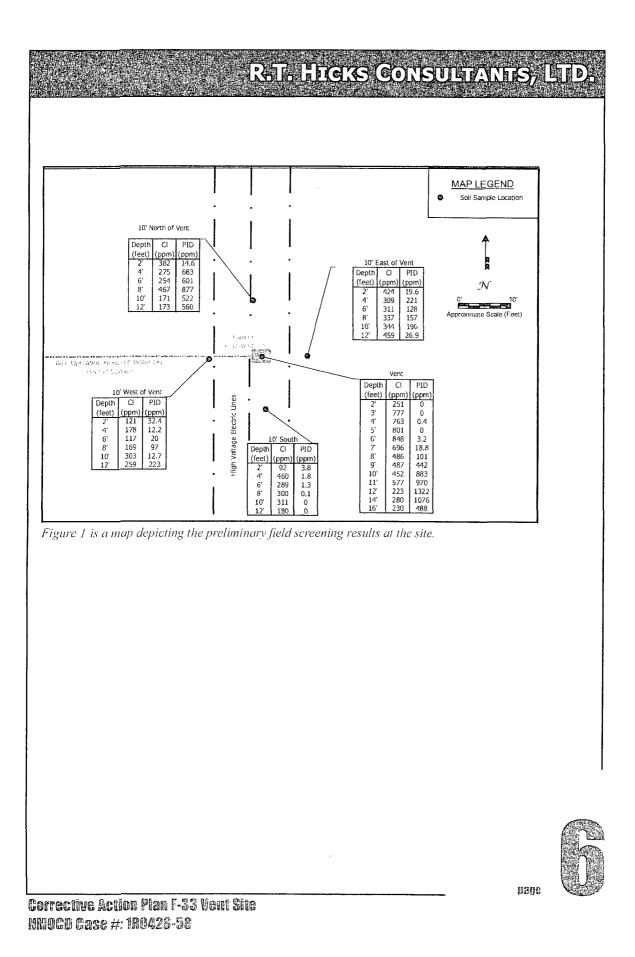
2.2 Characterization Activities

The investigation and characterization used the same protocols as described in the NMOCD-approved work plan for the Section 29 sites and was as consistent as possible with the Investigation Characterization Plan (ICP)

mane

R.T. HICKS CONSULTANTS, LTD.

submitted for the site (see Appendix A) as possible given the site limitations noted in section 2.0 and below. In order to permit comparison of the results from site borings with the ambient chloride concentrations in the vadose zone, collection of samples from a background soil boring was a critical element of the ICP. Appendix B shows the results of field chloride measurements from the background soil boringlocated about 500 feet north of F-29-1b.


Due to safety concerns with the high voltage powerline immediately above the former vent, a backhoe under ROC supervision was used on May 22, 2006, to collect samples instead of a drilling rig. Samples were collected at 2 ft sample intervals from ground surface to a depth of 12 ft at points located approximately 10 feet east, west, north, and south of the former vent (figure 1). In addition, samples were collected at 1 ft intervals to a depth of 16 ft at the former vent. Samples were field-tested for chloride content and screened with a PID for indications of hydrocarbons.

On July 20, 2006, an air rotary drilling rig was used to advance two soil borings as close to the former vent as possible, in an attempt to delineate the hydrocarbon impact vertically identified by the previous backhoe sampling activities. The first boring (B-1) was advanced at a point 22 ft east of the vent. The second (B-2) was placed 30 ft west of the vent.

Based on the results from the backhoe and soil boring sampling activities hydrocarbon-impact was confirmed in the upper vadose zone and is confined within the near vicinity of the F-33 vent. All data shows that there is negligible chloride impact to the vadose zone. Appendix B presents the results of the field program.

Corrective Action Plan F-33 Vent Site NMOCD Case #: 180428-58 page

R.T. LIEKS CONSULTANTS, LID

V 3.0 CHARACTERISTICS OF THE VADOSE ZONE

As the boring logs in Appendix B show, the upper 2 feet of the vadose zone at the site is composed a highly indurated caliche layer. Beneath the caliche is an 18 foot thick layer of calcic very fine-grained sand. An 8 foot thick layer of very fine to fine-grained sand with less calcic content lies below fine sand described earlier and this unit is underlain by calcic very-fine to fine-grained sand which continued to a depth of 50 feet bgs in boring B-2. A fine-grained sand with little or no calcium carbonate content was observed from 50 feet to the bottom of boring B-2 at 52 feet bgs. The lithologic logs for the two borings are included in Appendix B.

Chloride concentrations ranged from a maximum of 848 ppm at a point 6 ft below the vent source to a concentration of 92 ppm at a point 2 ft below a spot located 10 ft south of the former vent (see figure). The chloride concentration vs. depth profile is displayed in Figure ?

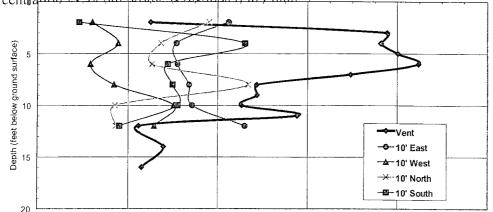


Figure 2: Chloride Concentrations (mg/kg) versus Depth

Soil samples with the highest PID readings and the deepest intervals were submitted to the laboratory for detailed hydrocarbon analysis using Methods 8260 for BTEX constituents and Method 1006 (a modified 8015 gas chro-matography) for gas and diesel range organics (GRO and DRO) and carbon fractionation. The laboratory analytical reports and chain of custody documentation are included in Appendix C. The PID readings vs. depth profile is displayed in Figure 3.

11346

Corrective Action Plan F-33 Vont Site NHOCD Case #: 1R0428-58

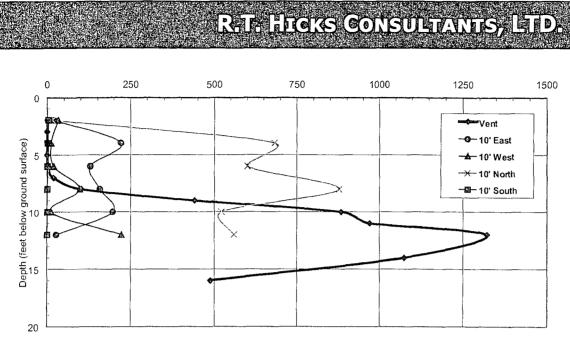


Figure 3: PID Readings (ppm) versus Depth

Based on the backhoe sampling results hydrocarbon-impact exists in the upper 16 feet of vadose zone and is confined within the near vicinity of the F-33 vent (less than 10-foot radius from the vent). Results of the laboratory analyses for regulated hydrocarbons are summarized in Table 1 below.

l ti	Depth (Ft bgs)	Regulated Hydrocarbons (mg/kg)			
Location		В	Т	E	Х
Vent Course	12'	<0.025	<0.025	37.7	65.3
Vent Source	16'	<0.025	<0.025	27.7	0.3
10 ft east of Vent	4'	<0.025	<0.025	0.513	0.429
TO IL east of vent	12'	<0.025	<0.025	0.516	<0.025
10 ft west of Vent	12'	<0.025	<0.025	0.117	0.058
10 ft north of vent	8'	<0.025	<0.025	0.094	0.590
TO IL DORTH OF VEHL	12'	<0.025	<0.025	0.073	0.293

Table 1: Summary of Regulated Hydrocarbons in the Vadose Zone

PID readings measured 0 ppm for each 2 ft interval sampled from 4 ft bgs to 20 ft bgs and then at 5 ft intervals from 20 ft bgs to 40 ft bgs in each boring. Chloride field-testing measurements varied from a minimum of 28 ppm in the 20-22 ft interval in boring B-2 to a maximum of 410 ppm in the 16-18 ft and 20-22 ft intervals of boring B-1. Results of the soil borings confirmed that any chloride and hydrocarbon impact to the vadose zone is confined to the near vicinity of the F-33 vent.

REFERENCE CONSULTANTIS, LID

W 4.0 EVALUATION OF VERTICAL CHLORIDE FLUX

The chloride concentrations at the site are consistently well below 1,000 mg/kg. Moreover, chloride concentrations decrease with increasing depth, suggesting that saturated or near-saturated flow did not exist in the upper vadose zone. With the construction of the simple ET infiltration barrier described in section 6.0, unsaturated flow will decrease to near zero.

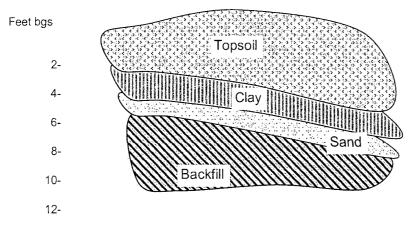
page

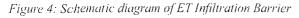
Corrective Action Plan F-33 Went Site NNOCD Case #: 1R0428-58

R.T. HICKS CONSULTANTS, LTD.

♥ 5.0 EVALUATION OF VERTICAL HYDROCARBON FLUX

With the construction of the simple ET infiltration barrier, unsaturated flow will decrease to near zero and any hydrocarbons in the upper vadose zone will not represent a threat to fresh water. Because of the low concentrations and attendant small mass of hydrocarbons neither unsaturated zone modeling or additional characterization is necessary at this site.




Corrective Action Plan F-33 Vent Site NWOCD Case #: 1R0428-58 page

R.T. HICKS CONSULTANTS, LTD.

🛛 6.0 PROPOSED REWEDY

The proposed corrective action for this site is excavation of soils in the upper vadose zone to a depth of about 12 feet, which is the maximum reach of a standard backhoe, or to a shallower depth if field testing of soils shows that total organic vapors are less than 100 ppm. Field testing of soils employs the headspace method and a properly calibrated PID with a appropriate lamp. Soil with total organic vapor concentrations above 100 ppm as determined by field testing of soils will be hauled to an NMOCD-approved facility unless the volume of soil can be blended with clean soil and remediated on site. Upon completion of excavation activities, closure samples will be collected to verify hydrocarbon vapors do not exceed 100 ppm. Chloride concentrations in the back fill will not exceed 1,000 ppm.

As shown in Figure 4, a minimum 10-12 inch thick clay layer will be installed at the base of the root zone, about 4-feet below ground surface. The clay layer will be sloped to the southeast and will extend laterally to insure sufficient deflection of any potential infiltrating water originating from the surface. The clay layer will be compacted using the same protocols employed to compact backfill in new pipeline trenches. Any excavated material that is not suitable as topsoil will be placed below the clay layer. If possible, a thin layer of coarse sand or caliche gravel excavated from the site will be placed immediately below the clay layer. The backfill (above the clay layer) will be composed of blended or remediated soil and will be placed up to a depth no higher than 2 feet bgs. This topsoil will also be compacted according to the same protocols employed for backfilling new pipeline trenches.

URGE

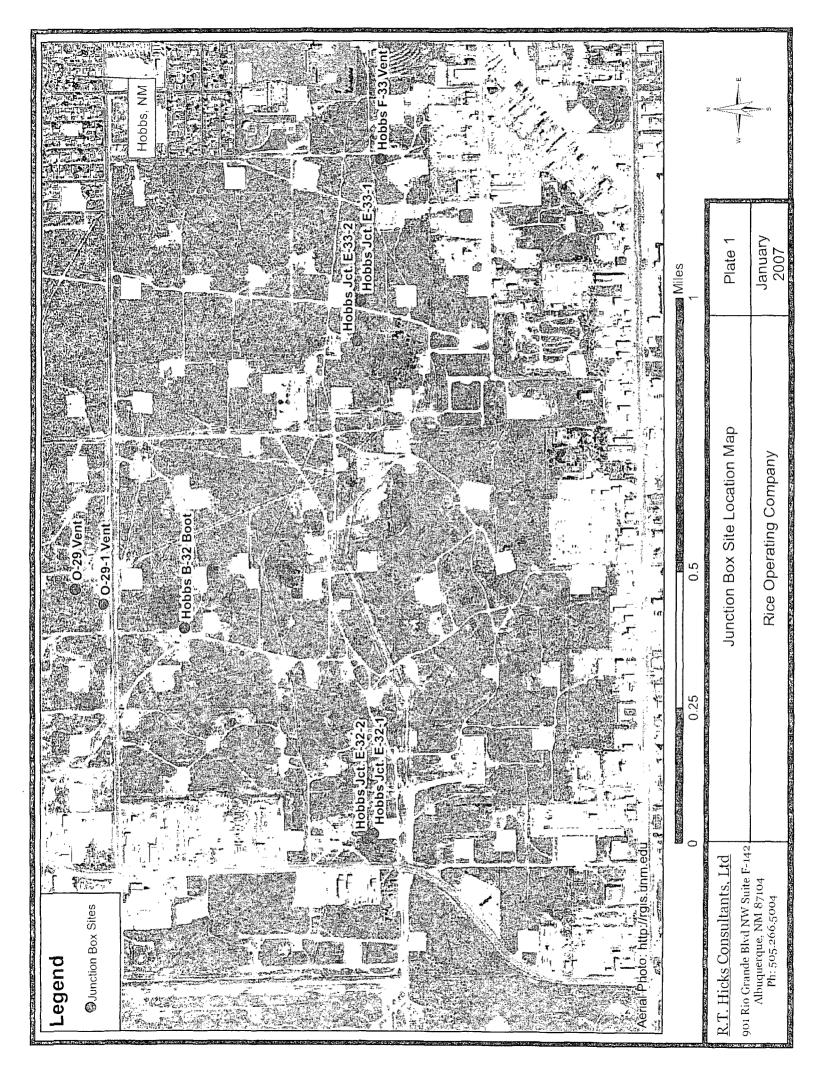
Corrective Action Plan F-33 Vent Site NWOCD Case #: 1R0428-58 R.T. HICKS CONSULTANTS, LTD

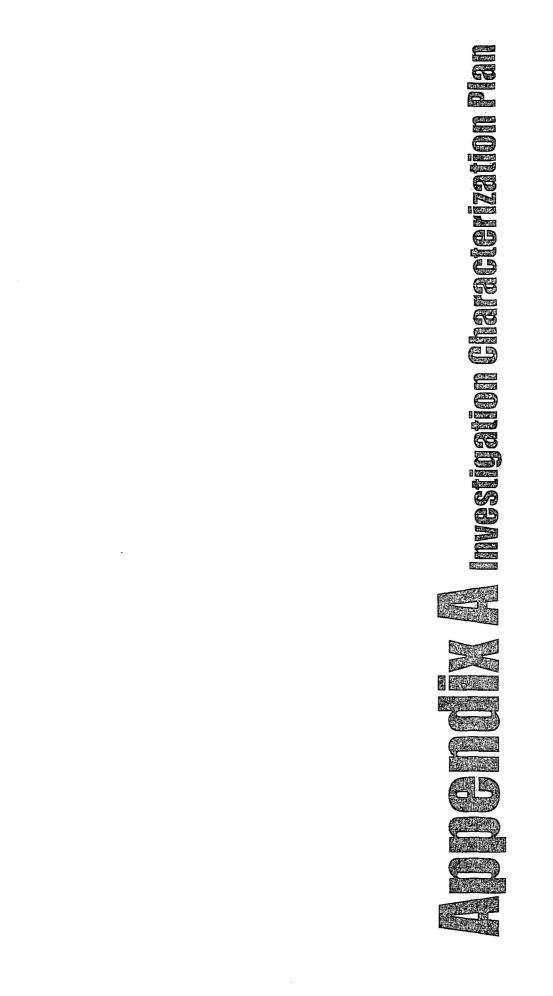
We propose incorporating clay and organic matter into the reserved topsoil and some sand/silt (as necessary) to create a 2-foot silt/loam topsoil surface layer, which will form an evapotranspiration (ET) barrier. HYDRUS-1D simulations of an ET infiltration barrier at other sites in the area and Sandia National Laboratory research of ET landfill covers demonstrate that vegetation on about 2-feet of fine-grained silt-loam effectively prevent measurable deep percolation of infiltration. This silt/loam soil combined with a vegetative cover will effectively sequester any residual hydrocarbons in the vadose zone. The surface will be contoured and reseeded with native vegetation to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration. Over time, residual hydrocarbons will naturally biodegrade. Furthermore, the reduction of the deep percolation rate to essentially zero will prevent vertical migration of hydrocarbon constituents to ground water.

nane

Corrective Action Plan F-33 Vent Site NWOCD Case #: 1R0428-58

R.I. HICKS CONSULTANTS, LID


W 7.0 CRITERIA FOR CLOSURE


After completion of the proposed remedy, ROC will submit a final report documenting the work elements identified herein and request closure of the regulatory file.

nage

Corrective Action Plan F-33 Vent Site NWOCD Case #: 1R0428-58

R. T. HICKS CONSULTANTS, LTD.

1909 Brunson Ave 🛦 Midland TX 79701 🛦 432.638.8740 🛦 Fax: 413.403.9968

CERTIFIED MAIL - RETURN RECIEPT NO. 7099 3400 0017 1737 2367

January 20, 2006

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: T18S R38E: E-33-1 Junction Box, B-32 Boot, E-32-1 Junction Box, E-32-2 Junction Box, F-33 Vent

Hobbs Salt Water Disposal System

Dear Mr. Price:

On behalf of Rice Operating Company, please accept this submission as our Initial Characterization Plan (ICP) for the five (5) sites referenced above within the Hobbs Salt Water Disposal System (Plate 1).

Rice Operating Company (ROC) is the service provider (operator) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners.

For all environmental projects, ROC will choose a path forward that:

- 1. protects public health,
- 2. provides the greatest net environmental benefit,
- 3. complies with NMOCD Rules, and
- 4. is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is a proposal for data gathering and site characterization and assessment.
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a <u>Corrective Action Plan</u> (CAP).
- 3. Finally, after implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

January 20, 2006 Page 2

Task 1Evaluate Chloride and BTEXN Concentrations in Soil at Five Sites,
Evaluate Ground Water Quality if Necessary

We will follow the same protocol for characterization of the unsaturated zone at the five new ROC sites listed below.

- o E-33-1 Junction Box
- o B-32 Boot
- E-32-1 Junction Box
- E-32-2 Junction Box
- o F-33 Vent

At each of the above-referenced sites, we will locate the sampling borehole as close as practical to the suspected release source. Earlier, we inspected each of the five sites nominated in this ICP and identified the boring location before the sites were backfilled and re-graded. Due to our recent experience with difficulties encountered in the installation of well clusters in this area, we plan to employ hollow-stem auger drilling techniques for sampling.

We will screen each sample in the field for chlorides and volatile organic compounds using the methods described in QP-03 and QP-07 (attached), respectively. Soil lithology and the presence of any observed staining or odor will be recorded. For any site, if we detect evidence of leakage within 15 feet of the water table (e.g. field chloride greater than 250 ppm in soil samples) we will complete the boring as a monitoring well in accordance with NMOCD Guidance. If three soil samples taken at 5-foot intervals test below 250 ppm chloride and below 100 ppm total volatile organic compounds, we will terminate the boring. However, all borings will penetrate at least 30 feet of the vadose zone.

Task 2 Evaluate Chloride and Hydrocarbon Flux from the Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 15-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to impair ground water quality above WQCC Standards. We have selected these two constituents for simulation modeling because each of these constituents is typically found in produced water and each is specifically regulated by New Mexico ground water regulations (WQCC). We will also employ vadose zone hydrocarbon migration predictive tools commonly employed by NMED in their PST program.

Task 3 Provide Investigative Results and/or Corrective Action Plan

Because the Hobbs SWD System no longer carries produced water, additional releases of produced water to ground water are highly unlikely. If modeling shows that the residual chloride and hydrocarbon mass in the vadose zone poses a no threat to ground water quality, we will prepare a report that makes this demonstration and request site closure.

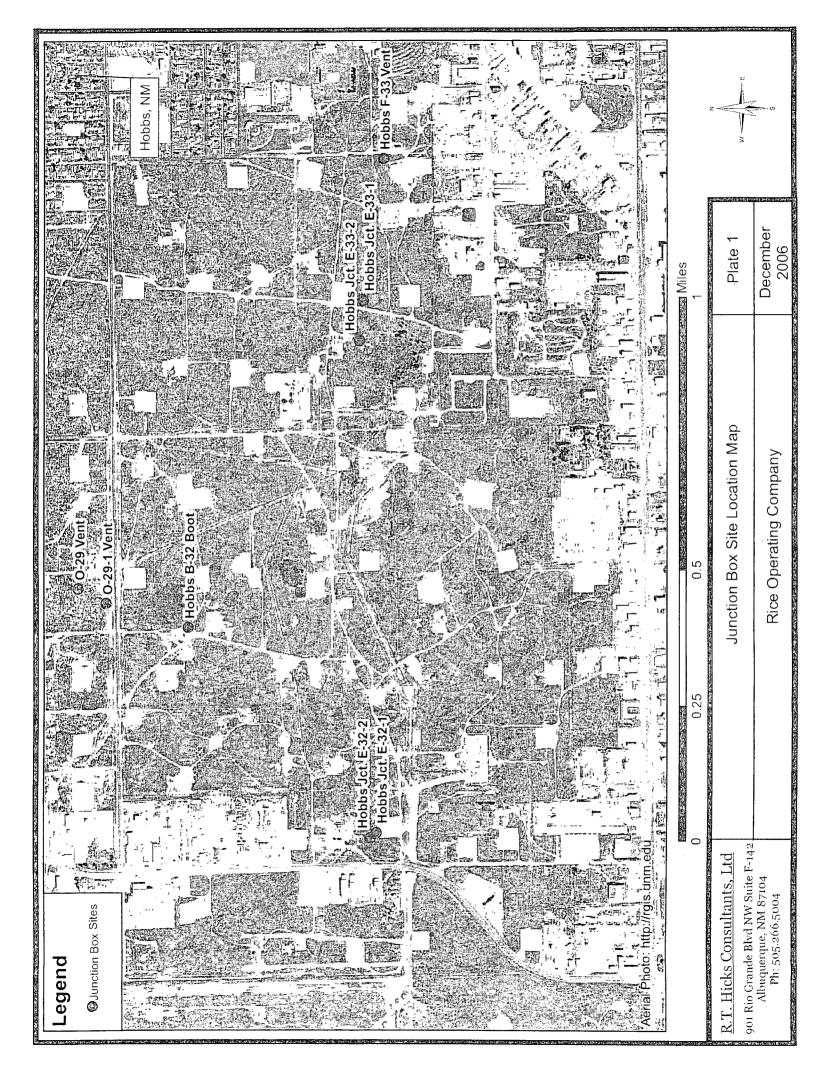
January 20, 2006 Page 3

If simulation experiments suggest that residual constituents pose a threat to ground water quality or if the field program demonstrates impairment, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. Excavation, disposal and replacement of clean soil to remove the chloride and hydrocarbon mass,
- 2. Installation of a low permeability barrier to minimize natural infiltration,
- 3. Surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 4. A combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will notify NMOCD and work collaboratively to determine the appropriate path forward.

Proposed Schedule


With NMOCD's approval of this work plan, we can perform the field activities at these sites in February or March. In late April or May, we plan to deliver any individual Correction Action Plans to address residual constituents in the vadose zone and any reports requesting site closure. If data suggest ground water impairment we plan to conduct two quarters of ground water monitoring to confirm any initial result then meet with NMOCD to develop an appropriate path forward. Your approval to move forward with this work plan will facilitate approval of expenditures by the System Partners.

Sincerely, R.T. Hicks Consultants, Ltd.

Liker O Van Devertes

Gilbert Van Deventer Project Manager

cc: Chris Williams, NMOCD Hobbs District Office Carolyn Haynes, Rice Operating Company - Hobbs Kristin Pope, Rice Operating Company – Hobbs Randy Hicks, R. T. Hicks Consultants, Ltd. - Albuquerque

Rice Operating Company

QUALITY PROCEDURE - 03

Sampling and Testing Protocol - Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite san1ple for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.2 The soil sample(s) shall be immediately inserted into a one-quart or large polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.

3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.

4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.

4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.

4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

5.1 Using a graduated pipette, remove 10 m1 extract and dispense into a clean plastic cup.

5.2 Add 2-3 drops potassium chromate (K:zcrO4) to mixture.

5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (HZO2) to mixture.

5.4 Using a 10 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.

5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>0.282 x 35,450 x ml AgNO₃</u>	Х	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

QUALITY PROCEDURE -07 Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

3.1 Sample Collection and Preparation

3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.

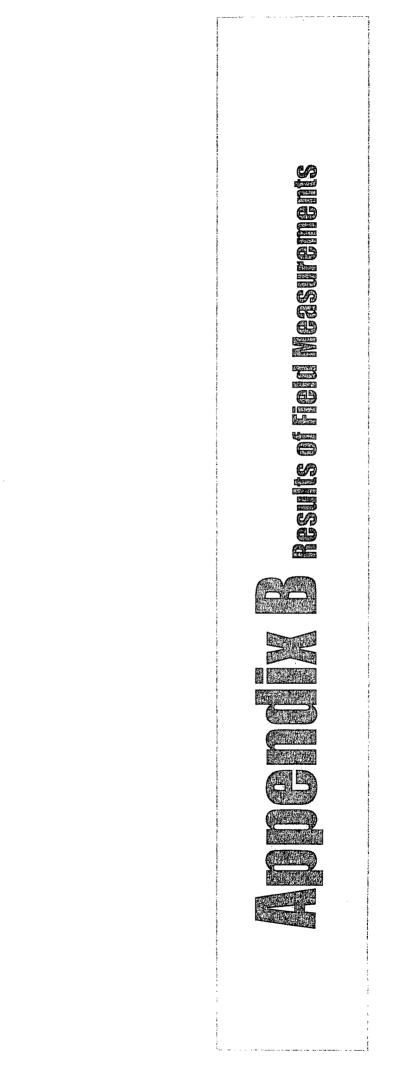
3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77° F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.

3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

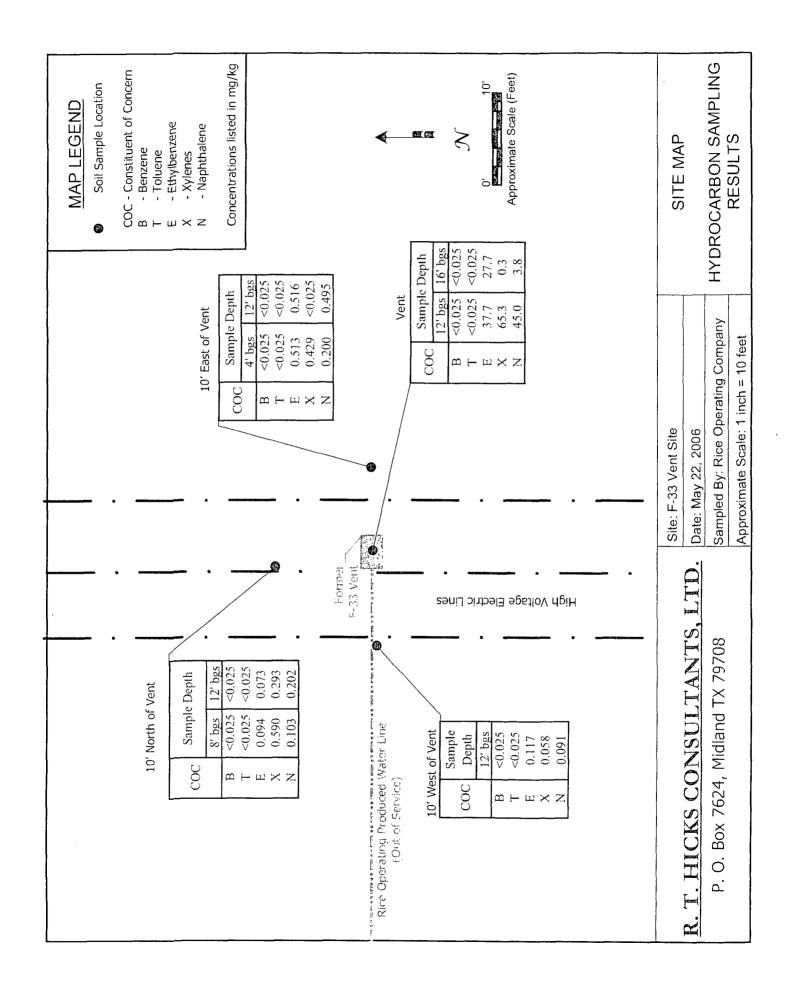
3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar pro-type instrument. (Device will be identified on VOC Field

Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.


3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.

3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.

3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-O2 and QP-O6. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing fur BTEX is necessary. File the Field Test Report Form in the project file.


4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal, IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

		<u></u>					LITHOLOGIC LOG
B-2 Notic aprication Pradactic Meth Class of Notics		High Voltage	a /	CON DRILLING STA COMPLET	ITRACTOR: 6 METHOD: ART DATE: ION DATE:	Hobbs Harris Air Ro 07/20/ 07/20/	IO6 LOCATION: T18S-R38E-Sec 33-Unit F IO6 FIELD REP.: G. Van Deventer / M. Franks
		Ĕ.		C	OMMENTS:		ed 22 ft east and 3 ft north of former vent location. tee of high voltage powerline prevented safe drilling directly above vent location.
USCS	Depth	Sample Time	э Турө	Recovery (inches)	Chloride (ppm)	PID (ppm)	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES
	5	0900)	Split Spoon	24-1-5 7-24-1-5	178	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
	10	0903-	Split Spoon	24,417	144	02	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
	15	0906	Split Spoon	9-92-12'A: 2-2	292	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
		0912 ;	Split Spoon	4. 	74 10	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4). fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Much harder.</u>
-	20	20916 ¹)	Split Spoon	4	41072	3-0°.)	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Much harder</u>
SM/CAL	25	- 0928,	Split/Spoon	0:5	5-7313 	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Very hard.</u>
	30	0930	Cuttings	NA	223	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Very hard.</u>
	35	0933	Cuttings	NA	119	0	Catcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained. subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Very hard.</u>
	40	10940	Split Spoon		89	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Very hard.</u>
	45	0945	Cuttings	NA	89	0	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). <u>Very hard.</u>
SW	50	70955	Split Spoon	12		0	Light brown sand (5 YR 6/4) and gravish orange (10 YR 7/4) fine sand subrounded, moderately well sorted. Bottom of boring at 52 feet below ground surface.
	55 60						

[· <u>····</u> ···,				
						Hobbs	LITHOLOGIC LOG TOTAL DEPTH: 40 Feet F-33 Vent CLIENT: RICE Operating Company
AN IN				DRILLING ST	METHOD: ART DATE: ION DATE:	Air Rot 07/20/	06 LOCATION: T18S-R38E-Sec 33-Unit F
						Locate	d 30 ft west of former vent location. ce of high voltage powerline prevented safe drilling directly above vent location.
USCS	Depth	Sample	Туре	Recovery (inches)	Chloride (ppm)	PID (ppm)	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES Celiches
	5	1030	Split Speon	24".	144	0	Calcic very fine and fine-grained sand. Moderately hard to hard. Sand component is gravish orange (10 YR 7/4), fine- grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
	10	1032	(Spit Spoon)	24%	113	0	Calcic very fine and fine-grained sand. Moderately hard to hard. Sand component is gravish orange (10 YR 7/4), fine- grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
SM/CAL	15	1035	Split Spoon	24	(86 , 7-	900 A	Calcic very fine and fine-grained sand. Moderately hard to hard. Sand component is gravish orange (10 YR 7/4), fine- grained, subangular. moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
	20	1038-1	Split Spoon Pale 21	, 12°,	60) 0	-0, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Calcic very fine and fine-grained sand. Moderately hard to hard. Sand component is grayish orange (10 YR 7/4), fine- grained, subangular, moderately well sorted, dry. Catcic matrix is very pate orange (10 YR 8/2).
	20	1040	Split Spoon	(12) (12) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	28	0.	Very fine and fine grained send with less calcium carbonate: Eight brown (5YR 6/4); subrounded, moderately sorted.
SW/SM	25	1051	Cuttings	NA	58	0	Very line and fine grained sand with less calcium carbonate. Eight brown (57/R 6/4), subrounded, moderately sorted.
	30	1053	Cuttings	NA	60	0	Calcic very fine and fine-grained sand. Sand component is gravish orange (10 YR 7/4), fine-grained, subangular. moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
SM/CAL	35	1057	Cuttings	NA	57	o	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2).
	40	<u> 31100 3</u>	SplitSpoon	VIENNE I		3 97)	Calcic very fine and fine-grained sand. Sand component is grayish orange (10 YR 7/4), fine-grained, subangular, moderately well sorted, dry. Calcic matrix is very pale orange (10 YR 8/2). Bottom of boring at 40 feet below ground surface.
	45	71					
	50						
	55						
	60						

Summary Table

Sample Location: Source												
Analysis	Analyical	Compounds	Sample Depth									
	Method	•••••	12' bgs	16' bgs								
		Benzene	< 0.025	< 0.025								
		Toluene	<0.025	< 0.025								
BTEX	8021B	Ethylbenzene	37.7	27.7								
DILA	0021D	Xylene	65.3	0.3								
		Naphthalene	45.0	3.8								
	_	Total BTEXN	148	32								
		GRO	2250	1120								
ТРН	8015M	DRO	10470	11300								
		Total TPH	12720	12420								
		>C6-C8	50.8	<10								
		>C8-C10	421	110								
Aliphatics	TX1006	>C10-C12	892	345								
Anphatics	INIUU	>C12-C16	2460	1540								
		>C16-C21	2300	1830								
		>C21-C35	1690	1440								
		>C6-C8	6.44	5.77								
		>C8-C10	69.5	46.7								
Aromatics	TX1006	>C10-C12	290	146								
	1221000	>C12-C16	1340	769								
		>C16-C21	1760	1340								
		>C21-C35	1670	1390								

Analyical Sample Depth Analysis Compounds Method 4' bgs 12' bgs Benzene < 0.025 < 0.025 Toluene < 0.025 < 0.025 Ethylbenzene 0.513 0.516 BTEX 8021B Xylene < 0.025 0.429 Naphthalene 0.200 0.495 Total BTEXN 1.142 1.011 GRO 596 25 TPH 8015M DRO 10480 1180 Total TPH 11076 1205 >C6-C8 <10 --->C8-C10 45.4 --->C10-C12 383 ---Aliphatics TX1006 >C12-C16 1800 ---->C16-C21 2300 --->C21-C35 2660 ~--->C6-C8 5.79 --->C8-C10 45.8 --->C10-C12 55.7 ---Aromatics TX1006 >C12-C16 669 --->C16-C21 1850 --->C21-C35 2880 ---

Sample Location: 10 Feet East of Source

Analysis	Analyical Method	Compounds	Sample	e Depth	Analysis	Analyical Method	Compounds	Sample Depth
			8' bgs	12' bgs		Method		12' bgs
		Benzene	<0.025	< 0.025			Benzene	< 0.025
		Toluene	<0.025	<0.025			Toluenc	< 0.025
BTEX	8021B	Ethylbenzene	0.094	0.073	BTEX	8021B	Ethylbenzene	0.117
DILA	00210	Xylene	0.590	0.293	DILA	8021D	Xylene	0.058
		Naphthalene	0.103	0.202			Naphthalene	0.091
		Total BTEXN	0.787	0.568			Total BTEXN	0.267
		GRO	1540	1450			GRO	877
ТРН	8015M	DRO	7462	7535	ТРН	8015M	DRO	7353
		Total TPH	9002	8985			Total	8230
		>C6-C8	<10	<10			>C6-C8	
		>C8-C10	268	126			>C8-C10	
Alinhuding	TX1006	>C10-C12	941	611	A link ation	TV1007	>C10-C12	
Aliphatics	IATUUU	>C12-C16	2650	1840	Aliphatics	TX1006	>C12-C16	
		>C16-C21	2470	1710			>C16-C21	
		>C21-C35	1840	1210			>C21-C35	
		>C6-C8	5.13	4.16			>C6-C8	
		>C8-C10	62.1	49.2			>C8-C10	
Aromatics	TX1006	>C10-C12	302	229	Aromatics	TX1006	>C10-C12	
	1711000	>C12-C16	1070	882	2 si omariço	17,1000	>C12-C16	
		>C16-C21	1520	1120			>C16-C21	
		>C21-C35	1230	984			>C21-C35	

Sample Location: 10 Feet North of Source

Sample Location: 10 Feet West of Source

All concentrations listed in units of milligrams per kilogram (mg/kg)

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H Lubbock, Texas 79424 800.•378.•1296 El Paso, Texas 79932 888.•588.•3443 E-Mail lab@traceanalysis.com 806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944

Analytical and Quality Control Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 1, 2006

Work Order: 6072111

Project Location:Sec 33/F T185 R 38E,Hobbs,NMProject Name:Hobbs F-33 VentProject Number:Hobbs F-33 Vent

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
96002	B-1 (20'-22')	soil	2006-07-20	09:16	2006-07-20

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

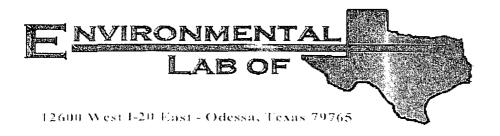
Dr. Blair Leftwich, Director

Analytical Report

Sample: 96002 - B-1 (20'-22')

Analysis: QC Batch: Prep Batch:	Chloride (IC) 28528 " 24944			Analytical Met Date Analyzed Sample Prepara	: 2	E 300.0 2006-07-30 2006-07-29			Prep Method: Analyzed By: Prepared By:	
"Matrix spik	e not reported %IA is	s 105 and RPD is	s 1.	-						
Parameter	F	Flag	R	RL lesult		Units		Dilution		RL
Chloride		······································		280		mg/Kg		10		1.00
Matrix Blar	ık (1) QC Ba	tch: 28528								
QC Batch: Prep Batch:	28528 24944			ate Analyzed: C Preparation:	2006-(2006-(Analyzed By: Prepared By:	WB WB
Parameter		Flag			MDL lesult			Units		RL
Chloride				<0.	0222		n	ng/Kg		1
QC Batch: Prep Batch:	Control Spike (1 28528 24944			ate Analyzed: C Preparation:	2006-(2006-(Analyzed By: Prepared By:	WB WB
Param	LCS Result	LCSD Result	Units		pike nount	Matrix Result	Rec.	RPD	Rec. Limit	RPD Limit
Chloride	13.2	13.3	mg/Kg	1 1	2.5	<0.0222	106	0	90 - 110	20
Percent reco Standard (H	very is based on t CV-1)	he spike resu	lt. RPD is	based on the sp	ike and :	spike duplicate	result.			
QC Batch:	28528		D	ate Analyzed:	2006-07	7-30			Analyzed By:	WB
Param Chloride	Flag	Units mg/Kg	Tr Co	rue Fo	CVs ound onc. 2.1	ICVs Percent Recovery 97		Percent Recovery Limits 90 - 110	Ana	ate lyzed -07-30
Standard (C	CV-1)									
OC Batala	19519		D	ata Analuzadi	2006.05	1 20				

QC Batch: 28528


Date Analyzed: 2006-07-30

Analyzed By: WB

Report Date: Hobbs F-33	August 1, 200 Vent	6		Order: 6072111 bs F-33 Vent		Page Number: 3 of 4 Sec 33/F T185 R 38E,Hobbs,NM				
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date			
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed			
Chloride		mg/Kg	12.5	12.0	96	90 - 110	2006-07-30			

.

Полити и полити	9				prepuers i	moni inereni) îi emi	T bnuorA muT bloH										7162	
McCulcheon Suile H Preso, Texas 73202 al (915) 555-3443 al (155) 55	4/	EQUEST		0.)														(HIL 8	
McCulcheon Suile H Preso, Texas 73202 al (915) 555-3443 al (155) 55		IS RI		1				210/147				 				-	iíreð .	-	R
McCutichen Suile H Pres, Texes 79932 at (915) 556-3443 at (916) 557-3443 at (916) 566-3443 at (916) 566-3443 at (916) 566-3443 at (916) 566-3443 at (916) 566-3443 at (916) 566-3443 at (916) 567-3443 at (916) 567		٨LYS	[]]	EST etho					>			 					s Requ	squired Report ed	1-2
McCulcheon Suile H Preso, Texas 73202 al (915) 555-3443 al (155) 55		ANA	3	EQU M		80	9/418	908 sebioitee9				 					ht Basi	port Re Special Neede	No.
McCouldheen, Suile H McCouldheen, Suile H Pass, Tess 79932 Pass, Tess 79932 Pass, Tess 79932 Att 1 (358) 588-3443 att (315) 588-3443 att (315) 588-3443 3 Vert E 3 Vert E 3 Vert E 1 SampLing 1 MPLING 3 Vert 1 F 1		AND	20	IS R		979 / 0022										is:	y Weig	rRP Re eck If (hits Are	\$
McCoulcheon, Suile H McCoulcheon, Suile H Pass, Tess, 79932 Pass, Tess, 79932 Pass, Tess, 79935 axi (3):558-3443 axi (3):558-3443 axi (3):558-3443 3-4174 A 3-4174 A 3-4174 A 3-4174 A A A 1 (395) 588-3443 3-4174 A A A B A B A B A B A B A B A B A B A B <t< td=""><td>(;) </td><td>λac</td><td></td><td>Spe</td><td></td><td>624</td><td>/ 8092</td><td></td><td></td><td> </td><td> </td><td></td><td></td><td></td><td></td><td>MARK</td><td></td><td>변 6년 </td><td>R</td></t<>	(;) 	λac		Spe		624	/ 8092			 						MARK		변 6년 	R
McCoulcheon, Suile H McCoulcheon, Suile H Pass, Tess, 79932 Pass, Tess, 79932 Pass, Tess, 79935 axi (3):558-3443 axi (3):558-3443 axi (3):558-3443 3-4174 A 3-4174 A 3-4174 A 3-4174 A A A 1 (395) 588-3443 3-4174 A A A B A B A B A B A B A B A B A B A B <t< td=""><td></td><td>USTC</td><td>#</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>h</td><td> </td><td></td><td></td><td></td><td>RE RE</td><td></td><td></td><td></td></t<>		USTC	#								h	 				RE RE			
McCoulcheon, Suite H McCoulcheon, Suite H Pass, T8932 Bass, T8932 Pass, T8932 Stata ax (315) Stata ax (315) Stata 37-1471 Antholic Etric Let Letric 37-1471 Antholic Etric Let Letric 37-1471 Anthele Etric Etric Let Letric 37-1471 Antholic Etric Letric 37-1471 Anthele Etric Etric Letric Anthele Environment Anthele Etric Etric Letric Anthele Etric Etric Anthele Etric Etric <td></td> <td>P-CI</td> <td>order 1</td> <td>rcle</td> <td></td> <td></td> <td>5</td> <td>TCLP Volatiles</td> <td></td> <td> </td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1-78</td>		P-CI	order 1	rcle			5	TCLP Volatiles		 		 							1-78
McCoulcheon, Suile H McCoulcheon, Suile H Pass, Tess, 79932 Pass, Tess, 79932 Pass, Tess, 79935 axi (3):558-3443 axi (3):558-3443 axi (3):558-3443 3-4174 A 3-4174 A 3-4174 A 3-4174 A A A 1 (395) 588-3443 3-4174 A A A B A B A B A B A B A B A B A B A B <t< td=""><td></td><td>NN-C</td><td>AB O</td><td>Cii</td><td></td><td></td><td>) 68 2A</td><td>. DA slejsM IsjoT</td><td></td><td> </td><td></td><td> </td><td></td><td></td><td></td><td>Ч SE</td><td>N</td><td>MM</td><td>3</td></t<>		NN-C	AB O	Cii) 68 2A	. DA slejsM IsjoT		 		 				Ч SE	N	MM	3
McCoulebeen, Suite H McCoulebeen, Suite H Pass, Tess 79932 Pass, Tess 79932 Pass, Tess 79932 Res 1 (395) 588-3443 ax (395) 588-3443 ax (395) 588-3443 3-4174 2-1471 3-4174 2-1471 3-4174 8TEX 80218 / 602 / 82608 / 624 1 (588) 588-3443 1 (588) 588-3443 3-4174 8TEX 80218 / 602 / 82608 / 624 1 Time: 1 (1690) 1 1 (11atc) 1 (11atc) 1 - H 1 (11atc)		CHP				SO / TVHC				 	<u> </u>	 <u></u>		<u></u>	<u> </u>	U III	é,	view	
мессицные Suite H Pase, Texas 79932 Pase, Texas 79932 as (1915) 586-3443 as (1915) 586-3443 as (1915) 586-3443 as (1915) 588-3443 as (1912) 588-3443 as (1912																٦ ×	Ct Ct Ct	p Re	ier#
мессицствоп, Suite H Pass, Texas, 79932 all (915) 585-3443 all (915) 585-3443 all (915) 585-3443 all (915) 585-3443 3 - 1 4 7 /				 	54 1,					 							Inta L	Log	Carr
MeCouterber Pass, Text (915) 55 (915) 5		Suite H 9932	443 1944 143	7	1 esul,		MPLING	TIME	de Dalle			 						00	Ņ
State for the server as a state of the		cheon, 1 Texas 7) 585-3 () 585-4 588-34	11	200	4 2	SAI	∃TA O	7129							15		Q	
ST01 Area frame Arcords 1000 ST01 Area frame Arcords TraceAnalysis, Inc. Fall (2000) State State 1000 Area Fall (2000) State State 1000 Area Contract Area 1000 Area Area 1000		McCult Paso,	el (915 ax (915 1 (838)	3.		1219	ш	TNON		 -		 				Time	Time	Time	
FOI ABREMANNELS IN SUMMERS IN THE SECTION OF THE SEC		155 E	μ	33	59 rtm	Mad	VATIV	ICE	\overline{Z}	 		 						10.	0.0
F01 American Averatie Ste 5 5 TraceAnalysis, Inc. Full constructions appeared Full constructions Full constructions Full constructions Full constructions Full constructions Full constructions Full constructions Full constructions constructions Full constructions Full constructions Full constructions constructions Full constructions Full constructions Full constructions Full constructions Construction Full constructions Full constructions Full constructions Full constructions Full constructions Construction Full construction Full constructions Full constructions Full constructions Full constructions Construction Full construction Full constructions Full constructions Full constructions Full constructions Construction Full construction Full constructions Full constructions Full constructions Full constructions Construction Full construction Full constructions Full constructions Full constructions Full constructions Construction Full construction Full constructions Full constructions<					~		REFE			 		 			+	20	Date:	Date:	of C
Total and the service of the servi			Ś	10,1		new line	PR			 		 							e side of
STO I Anomenia Area in Argentia State 5 Trace Analysis File (600) Teams 2005 File (600) Teams 2005 File (600) Teams 2005 File (700) Teams 2005 File (600) Teams 2005 File (700) Teams 2005 File (700) Teams 2005 File (700) Teams 2005 File (7000 Teams 2005 File (700) Teams 2005 File (7000 Teams 2005 File (700) Teams 2005 File (7000 Teams 2005 File (700) Teams 2005 File (700 Teams 2005 File (700) Team		þ	MONE MONE	hone	r+1	roject H o		HCI		 		 		_		E E		1	evers
FIL Absolution Amerile. Ste 3 TraceAmalysis Function Amerile. Ste 3 Function Amerile. Ste 3 Function Amerile. Ste 3 Function Amerile. Ste 3 Function Amerile. Ste 3 Function Amerile. Ste 3 Function Amerile. Ste 4 Function Amerile. Ste 4 CIET Luncture to: Function Amerile. Ste 4 Function Amerile. Ste 4 Function Amerile. Ste 4 Function Amerile. Ste 4 Function Amerile. Ste 4 Function Amerile. Ste 4 Function Amerile. Ste 4 Function Amerile. Ste 7 Function Amerile. Ste 4 Function Amerile. Ste 7 Function Amerile. Ste 7 Function Amerile. Franks. Function Amerile. Ste 7 Function Amerile. Ste 7 Function Amerile. Franks. Function Amerile. Ste 7 Function Amerile. Ste 7 Function Amerile. Franks. Function Amerile. Function Amerile. Ste 7 Function Amerile. Ste 7 Function Amerile. Franks. Function Amerile. Function Amerile. Ste 7 Function Amerile. Amerile. Amerile. Ste 7 Function Amerile. Franks. Function Amerile. Function		_	\mathcal{O}		L S		RIX N	·····				 			<u> </u>	13			uo pa
The server of		-	2		35		MAN		7			 				1 A		abora	ns listed
The first fraction of the first frace of the first		P	<u></u>					L	4	 		 				d by:	d by:	datL	nditio
The function of the set of the function of the set of t					6	2	ļ		3	 -		 				C leive	sceive	ceive	A CO
5701 Abartheen Avenue, Ste. 9 1 Vabartheen State 1 Vabartheen Avenue, Ste. 9 1 Vabartheen State 1 Vabartheen Value 1 Vabartheen Avenue, Ste. 1 Vabartheen Avenue 1 Vabartheen Avenue, Ste. 1 Vabartheen Avenue 1 Vabartheeen Avenue		•	6 F	1 1		, dolo	S9	# CONTAINE		 		 				2-3	<u> </u>		srms
STOI Atheriteen Avenue, Ste. 9 Luti (2005, Tear 2024) Fat (2005, Tear 2026) Earl (2005, Tear 2026) Earl (2005) 333-1256 erreal: Lab (2005) 333-1256 erreal: Lab (2005) 333-1256 Company Name: Company Name: Com			5	10	N											ime: Z	me:	me:	it to Te
STO1 Absirteen Avenue, Ste. 9 Lubbook, 794, 1296 Fax (806), 794, 120 Contrart, 120 Contrart, 120 Faither family All USE All USE All USE ONLY Contrart from above) Faither family Faither family Faithe			, eleveration encontraction	$ \mathcal{I} $	<u>-ğ</u> -	1 286		111	\sim							F ~~			semer
STO1 Abertheen Avenue, Ste 9 Lubbook, Tessan 99424 Fat (806), 734-4298 Fax (806), 734-4298 Fax (806), 734-4298 Fax (806), 734-4298 Fax (806), 734-4298 Fax (806), 734-4298 Fax (806), 74-429 Company Name: Company N		L	•	Ц а	I lo	D :: 0		cont	22				Ì			14.2	6	- iii	s agre
STO1 Aberteen Avenue, St. Lubbock, Tevas, 2024 Tevisors, Tevas, 2026 Eax (8005) 794, 2026 Eax (8005) 794, 2026 Eax (8005) 794, 2026 (1000) 794, 2026 F 7 7 7 Company Name: Company Name:		ത	orn	Pity, Z	Mel	ng sta		IELD	50							and C	Dat Dat	Dat	stitute
STOI Aberteen Aver Labors, Tears Tel (806) 794. Tel (806) 794. Tel (806) 3794. Tel (806) 3794. Tel (806) 3794. Tel (806) 3794. Tel (806) 3794. Tel (806) 3794. S 2 2 3 3 7 F 2 AB USE ONLY ONLY DONLY		Nie, St 79424 1796	1298 1296 alýsis c		per la			LAL .	$\overline{(2)}$	 		 				- Ar	R	3	Se con
STOI Abertie Let(2001) Fax (300 Fax (30		En Ave: Texas	6) 794- 6) 794-) 378-1 (acean)	sine:												Dy's	λq p	in the second se	sample
		Aberder tibbock, Tet rank	ax (80 1 (800 1 (800		$\frac{L}{j + \frac{1}{j + 1}{j + 1}}}}}}}}}}}}}}}}}}}}$	302 T		±# ,¥				 				in the	1000	uishe	tal of :
יין דיין איין איין איין איין איין איין א	л.,,	6701/ Lu	f email:	Compa	th voice	Project S&C		LAB L ONL	340							Relin A	Relind	Relind	Submit

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: F-33 Vent (UN0080) Project Number: Hobbs Abandonment Location: T18S, R38E, Sec. 33, Unit Letter F

Lab Order Number: 6E25001

Report Date: 06/07/06

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Source 12'	6E25001-01	Soil	05/22/06 10:30	05/25/06 08:00
Source 16'	6E25001-02	Soil	05/22/06 11:10	05/25/06 08:00
10' east 4'	6E25001-03	Soil	05/22/06 11:55	05/25/06 08:00
10' east 12'	6E25001-04	Soil	05/22/06 14:04	05/25/06 08:00
10' north 8'	6E25001-05	Soil	05/22/06 14:10	05/25/06 08:00
10' north 12'	6E25001-06	Soil	05/22/06 14:25	05/25/06 08:00
10' west 12'	6E25001-07	Soil	05/22/06 14:50	05/25/06 08:00

Rice Operating Co.			Project: F-3	3 Vent (UN	10080)			Fax: (505)	397-1471
122 W. Taylor		Project N	lumber: Hol	obs Abando	onment			Repor	ted:
Hobbs NM, 88240		Project M	anager: Kri	stin Farris-	Pope			06/07/06	5 10:45
		O	rganics b	y GC					
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Source 12' (6E25001-01) Soil				Dilation	Daten	Tepareu	Anaryzou	Method	Notes
	2250	20.0	mg/kg dry	2	EE(0210	06/02/07	0.5105.105	EPA 8015M	
Carbon Ranges C6-C12	9470	20.0	ing/kg ci y	2	EF60219	06/02/06	06/05/06	131 A 8013M	
Carbon Ranges C12-C28	1000	20.0		41			u		
Carbon Ranges C28-C35 Total Hydrocarbon nC6-nC35	12700	20.0			n		IF.	ш	
	12700	67.4 %	70-1	3()		"	n		
Surrogate: 1-Chlorooctane		59.6%	70-1		"	"	n	"	S-00
Surrogate: 1-Chlorooctadecane		59.0 70	/ (/-1	50					
Source 16' (6E25001-02) Soil						·			
Carbon Ranges C6-C12	1120	20.0	mg/kg dry	2	EF60219	06/02/06	06/05/06	EPA 8015M	
Carbon Ranges C12-C28	9970	20.0		11	0	"	н		
Carbon Ranges C28-C35	1330	20.0		۳	14	"	п	н	
Total Hydrocarbon nC6-nC35	12400	20.0	"	ŧr	11	"	н	н	
Surrogate: 1-Chlorooctane		58.4 %	70-1	30	"	n	"	"	S-06
Surrogate: 1-Chlorooctadecane		58.2 %	70-1	30	"	"	"	"	S-06
10' east 4' (6E25001-03) Soil									
Carbon Ranges C6-C12	596	20.0	mg/kg dry	2	EF60219	06/02/06	06/05/06	EPA 8015M	
Carbon Ranges C12-C28	8900	20.0	n	IF.	ι	"	n	н	
Carbon Ranges C28-C35	1580	20.0	н	ar .	п	"	p.		
Total Hydrocarbon nC6-nC35	11100	20.0	U.	u.	и	U.	и	n	
Surrogate: 1-Chlorooctane		52.8 %	70-1	30	"	"	н	11	S-00
Surrogate: 1-Chlorooctadecane		54.2 %	70-1	30	"	"	п	п	S-06
10' east 12' (6E25001-04) Soil									
Carbon Ranges C6-C12	24.8	20.0	mg/kg dry	2	EE62507	05/25/06	05/26/06	EPA 8015M	
Carbon Ranges C12-C28	978	20.0	"		"		и	"	
Carbon Ranges C28-C35	202	20.0	"	41	"	u.	0	11	
Total Hydrocarbon nC6-nC35	1200	20.0	n		11	u	v	"	
Surrogate: 1-Chlorooctane		52.6 %	70-1	30	H	"	11	"	S-06
Surrogate: 1-Chlorooctadecane		55.2 %	70-1	30	п	п	u	"	S-06

Rice Operating Co.	Project: F-33 V	/ent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs	Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin	1 Farris-Pope	06/07/06 10:45

Organics by GC

Environmental Lab of Texas

		Reporting						· · · · · · · · · · · · · · · · · · ·	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
10' north 8' (6E25001-05) Soil									
Carbon Ranges C6-C12	1540	20.0	mg/kg dry	2	EF60219	06/02/06	06/05/06	EPA 8015M	
Carbon Ranges C12-C28	6860	20.0			"	"	н	D	
Carbon Ranges C28-C35	602	20.0		••	0	U .	"	**	
Total Hydrocarbon nC6-nC35	9000	20.0	"	11	n	n	n	v	
Surrogate: 1-Chlorooctane		69.6 %	70-13	30	11	"	"	n	S-06
Surrogate: 1-Chlorooctadecane		68.2 %	70-1.	3()	п	"	"	"	S-06
10' north 12' (6E25001-06) Soil									
Carbon Ranges C6-C12	1450	20.0	mg/kg dry	2	EF60219	06/02/06	06/05/06	EPA 8015M	
Carbon Ranges C12-C28	6910	20.0	н	**	0	U.	н	u	
Carbon Ranges C28-C35	625	20.0	"	н	a	п	"	81	
Total Hydrocarbon nC6-nC35	8980	20.0	P	"	"	"	n	U	
Surrogate: 1-Chlorooctane		66.8 %	70-13	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		69.8 %	70-13	30	n	"	"	"	S-06
10' west 12' (6E25001-07) Soil									
Carbon Ranges C6-C12	877	20.0	mg/kg dry	2	EE62507	05/25/06	05/28/06	EPA 8015M	
Carbon Ranges C12-C28	6750	20.0	**	v	п	v	er	89	
Carbon Ranges C28-C35	603	20.0		"	"	0	н	W	
Total Hydrocarbon nC6-nC35	8230	20.0	"	11	n	"	и	ei	
Surrogate: 1-Chlorooctane		57.4 %	70-13	10	"	n	"	<i>ii</i>	S-06
Surrogate: 1-Chlorooctadecane		59.4 %	70-13	80	"	"	"	п	S-06

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

Fractionation of Aliphatics by TNRCC Method 1006

Environmental Lab of Texas

Analyta	Result	Reporting Limit	Units	D'1 -'	D	D '			
Analyte	Result	Limi	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Source 12' (6E25001-01) Soil									
C6-C8	50.8	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	
>C8-C10	421	10.0	"	"	**	"	n		
>C10-C12	892	10.0	н	u.	н		tł.	н	
>C12-C16	2460	10.0	"	u.	U		и	n	
>C16-C21	2300	10.0	e	R	н	n	"	в	
>C21-C35	1690	10.0	17	н	Ħ			п	
Total Hydrocarbon nC6-nC35	7810	10.0	n	v	11	11		μ	
Source 16' (6E25001-02) Soil									
C6-C8	ND	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	
>C8-C10	110	10.0	R	**	"	n	**		
>C10-C12	345	10.0	n	u	ų		н	"	
>C12-C16	1540	10.0	н	**	**	**			
>C16-C21	1830	10.0	в		w	"	11	17	
>C21-C35	1440	10.0		"	н	u			
Total Hydrocarbon nC6-nC35	5260	10.0	u.	**	"	P	Ð	H	
10' east 4' (6E25001-03) Soil									
C6-C8	ND	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	
>C8-C10	45.4	10.0	U U	н	U		μ	"	
>C10-C12	383	10.0	п			н	u.	**	
>C12-C16	1800	10.0	п	0	0			14	
>C16-C21	2300	10.0	н		0			0	
>C21-C35	2660	10.0		11	0	н	U	0	
Total Hydrocarbon nC6-nC35	7190	10.0	u	"		n	υ	U	
10' north 8' (6E25001-05) Soil									
C6-C8	ND	10.0	mg/kg dry]	EF60608	06/02/06	06/06/06	TX 1006	·
>C8-C10	268	10.0	**		R	n	н	п	
>C10-C12	941	10.0	**		R	u.	в	u.	
>C12-C16	2650	10.0	n	47	n	11	υ	"	
>C16-C21	2470	10.0	u.	"	n	17	u	11	
>C21-C35	1840	10.0	н			**		U	
Total Hydrocarbon nC6-nC35	8170	10.0	0	w	0		н	*	

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

Fractionation of Aliphatics by TNRCC Method 1006

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
10' north 12' (6E25001-06) Soil									
C6-C8	ND	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	
>C8-C10	126	10.0	0		a	н	μ		
>C10-C12	611	10.0	D.	0	n	u	0	0	
>C12-C16	1840	10.0	"	н	н	n	и	n	
>C16-C21	1710	10.0	н	п	н	n	u	"	
>C21-C35	1210	10.0	н	n	n	ч	н	"	
Total Hydrocarbon nC6-nC35	5500	10.0	"	"	"	**	п	"	

Environmental Lab of Texas

Rice Operating Co.	Project:	F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number:	Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	06/07/06 10:45

Fractionation of Aromatics by TNRCC Method 1006

Environmental Lab of Texas

Angleda	Result	Reporting Limit	Units	D 'l .'	D - 1	D 1			
Analyte	Kesuit	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Source 12' (6E25001-01) Soil									
C7-C8	J [6.44]	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	J
>C8-C10	69.5	10.0	"		u.	If.	•	u.	
>C10-C12	290	10.0	"	"	0	и	"	u	
>C12-C16	1340	10.0		"		"	н	u.	
>C16-C21	1760	10.0	*		"	U.	U.	"	
>C21-C35	1670	10.0		u.	"	u	*	er	
Total Hydrocarbon nC6-nC35	5130	10.0	11			"	u	n	
Source 16' (6E25001-02) Soil									
C7-C8	J [5.77]	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	J
>C8-C10	46.7	10.0	"	**	"	v	17	.,	
>C10-C12	146	10.0		**		r,	н	21	
>C12-C16	769	10.0		u	u	**	.0	88	
>C16-C21	1340	10.0			"	н	н	v	
>C21-C35	1390	10.0	\$r		42		н	u .	
Total Hydrocarbon nC6-nC35	3690	10.0	n	"	Ħ	u	п	u	
10' east 4' (6E25001-03) Soil									
C7-C8	J [5.79]	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	J
>C8-C10	45.8	10.0	"	н	**	u	н	**	
>C10-C12	55.7	10.0	**	н	v	н	п		
>C12-C16	669	10.0	**		**	ii.	"		
>C16-C21	1850	10.0	**	н	*1	н	u	u	
>C21-C35	2880	10.0	**		*1	a	n	**	
Total Hydrocarbon nC6-nC35	5500	10.0	**	"	"	н	ч	"	
10' north 8' (6E25001-05) Soil									
C7-C8	J [5.13]	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	J
>C8-C10	62.1	10.0	Þ	ч	н		11	0 U	
>C10-C12	302	10.0	0	u	н	0		Ð	
>C12-C16	1070	10.0	"	P	u	0	n		
>C16-C21	1520	10.0			в	11	п	н	
>C21-C35	1230	10.0	*	47	41	17	P	н	
Total Hydrocarbon nC6-nC35	4180	10.0		**	17	и	••	ŋ	

	Rice Operating Co.	Project: I	F-33 Vent (UN0080)	Fax: (505) 397-1471
1	122 W. Taylor	Project Number: 1	Hobbs Abandonment	Reported:
	Hobbs NM, 88240	Project Manager: 1	Kristin Farris-Pope	06/07/06 10:45

Fractionation of Aromatics by TNRCC Method 1006

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
10' north 12' (6E25001-06) Soil									
 C7-C8	J [4.16]	10.0	mg/kg dry	1	EF60608	06/02/06	06/06/06	TX 1006	l
>C8-C10	49.2	10.0	"	a		u.	"	0	
>C10-C12	229	10.0	12		**	**	**		
>C12-C16	882	10.0	0	ц		11	ч	"	
>C16-C21	1120	10.0	u.	0	"		р	"	
>C21-C35	984	10.0	**	"	"	"	"	14	
Total Hydrocarbon nC6-nC35	3260	10.0		u.		р	41	ei	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Γ								<u> </u>	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Source 12' (6E25001-01) Soil									
% Moisture	11.1	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	
Source 16' (6E25001-02) Soil									
Chloride	143	10.0	mg/kg	20	EE63005	05/29/06	05/29/06	EPA 300.0	
% Moisture	14.0	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	
10' cast 4' (6E25001-03) Soil									
Chloride	341	10.0	mg/kg	20	EE63005	05/29/06	05/29/06	EPA 300.0	
% Moisture	9.8	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	
10' cast 12' (6E25001-04) Soil		_							
% Moisture	8.7	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	
10' north 8' (6E25001-05) Soil									
% Moisture	4.3	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	
10' north 12' (6E25001-06) Soil									
% Moisture	3.7	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	
10' west 12' (6E25001-07) Soil									
% Moisture	4.6	0.1	%	1	EE62607	05/25/06	05/26/06	% calculation	

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Source 12' (6E25001-01) Soil									
Benzene	ND	50.0	ug/kg dry	50	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluenc	ND	50.0	"	u	u	п	n	**	
Ethylbenzene	3770	50.0			u.	11	"	"	
Xylene (p/m)	171	50.0	n	**	11	"		"	
Xylene (0)	J [48.2]	50.0	10	**	11	n	"		J
Naphthalene	4500	50.0	u	*	11	14	**	r.	
Surrogate: Dibromofluoromethane		107 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		87.6 %	52-1	49	"	"	п	"	
Surrogate: Toluene-d8		84.2 %	76-1	25	"	"	μ	"	
Surrogate: 4-Bromofluorobenzene		87.6 %	66-1	45	"	"	"	"	
Source 16' (6E25001-02) Soil									
Benzene	ND	25.0	ug/kg dry	25	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluene	ND	25.0	n	**	n	н	н	n	
Ethylbenzenc	277	25.0	u.			"	a	v	
Xyiene (p/m)	28.2	25.0	u	n	н		ч		
Xylene (o)	ND	25.0	n	"	"	п			
Naphthalene	378	25.0	11	rt	u	4	"	u	
Surrogate: Dibromofluoromethane		100 %	70-1	39	п	n	"	"	
Surrogate: 1,2-Dichloroethane-d4		79.2 %	52-1	49	"	п	"	"	
Surrogate: Toluene-d8		83.2 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	66-1	45	"	"	"	"	
10' cast 4' (6E25001-03) Soil			_						
Benzene	ND	25.0	ug/kg dry	25	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluene	ND	25.0		u	"	п	"		
Ethylbenzene	51.3	25.0	n		"	"	**	11	
Xylene (p/m)	J [24.1]	25.0		n	"		н	0	J
Xylenc (o)	J [18.8]	25.0	"	u	и	"	P	**	J
Naphthalene	200	25.0	"	н	n	P	li		
Surrogate: Dibromofluoromethane		104 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		86.2 %	52-1	49	"	11	"	"	
Surrogate: Toluene-d8		87.6 %	76-1	25	"	11	n	"	
Surrogate: 4-Bromofluorobenzene		94.4 %	66-1	45	"	"	"	н	

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
10' east 12' (6E25001-04) Soil								·····	
Benzene	ND	25.0	ug/kg dry	25	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluene	ND	25.0	89	"	н	"	n		
Ethylbenzene	51.6	25.0	n	н	"	"	U.	P	
Xylene (p/m)	ND	25.0	u		Р	ц	п	11	
Xylene (o)	ND	25.0	н		41	11	"	u	
Naphthalene	49.5	25.0	u	a	n	11	н		
Surrogate: Dibromofluoromethane		100 %	70-1	39	"	"	n	"	
Surrogate: 1,2-Dichloroethane-d4		81.6 %	52-1	49	"	"	"	n	
Surrogate: Toluene-d8		87.4 %	76-1	25	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		82.6 %	66-1	45	"	"	μ	п	
10' north 8' (6E25001-05) Soil									
Benzene	ND	25.0	ug/kg dry	25	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluene	ND	25.0	tt.	п		D.	19	n	
Ethylbenzene	93.8	25.0			ч		"	**	
Xylenc (p/m)	254	25.0		u	n	n	u	ĸ	
Xylene (0)	336	25.0	p	*	11	**		**	
Naphthalene	103	25.0	21	0	11	и	u	v	
Surrogate: Dibromofluoromethane		98.0 %	70-1	39	n	u	μ	"	
Surrogate: 1,2-Dichloroethane-d4		78.6 %	52-1	49	"	"	"	"	
Surrogate: Toluene-d8		82.6 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		123 %	66-1	45	"	"	"	n	
10' north 12' (6E25001-06) Soil									
Benzene	ND	25.0	ug/kg dry	25	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluene	ND	25.0	0			11	0	R	
Ethylbenzene	72.8	25.0	**				n	"	
Xylene (p/m)	101	25.0	u		e>	11		"	
Xylene (0)	192	25.0	P	и	"	0	17	P	
Naphthalenc	202	25.0	**	"	0	II.	n		
Surrogate: Dibromofluoromethane		101 %	70-1	39	"	"	"	"	
Surrogate: 1.2-Dichloroethane-d4		80.0 %	52-1	49	"	"	"	"	
Surrogate: Toluene-d8		84.4 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	66-1	45	"	"	н	"	

Rice Operating Co.	Project:	F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number:	Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	06/07/06 10:45

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
10' west 12' (6E25001-07) Soil									
Benzene	ND	25.0	ug/kg dry	25	EE62606	05/26/06	05/31/06	EPA 8260B	
Toluene	ND	25.0	**	**	н	ü	"	67	
Ethylbenzene	117	25.0	u			*	u	n	
Xylene (p/m)	25.1	25.0	"		U	н			
Xylene (0)	33.0	25.0		μ	` #	**	n	в	
Naphthalene	91.4	25.0				n	67	Ð	
Surrogate: Dibromofluoromethane		99.8 %	70-1	39	"	11	n	"	
Surrogate: 1,2-Dichloroethane-d4		80.4 %	52-1	49	"	"	"	"	
Surrogate: Toluene-d8		86.2 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	66-1	45	"	11	"	"	

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

Organics by GC - Quality Control

Environmental Lab of Texas

	1	Source		%REC		RPD	
Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	Units	Units Level	Units Level Result	Units Level Result %REC	Units Level Result %REC Limits	Units Level Result %REC Limits RPD	Units Level Result %REC Limits RPD Limit

Blank (EE62507-BLK1)				Prepared: 0	5/25/06 A	nalyzed: 05	5/26/06
Carbon Ranges C6-C12	ND	10.0	mg/kg wet				
Carbon Ranges C12-C28	ND	10.0	п				
Carbon Ranges C28-C35	ND	10.0	Ð				
Total Hydrocarbon nC6-nC35	ND	10.0	e.				
Surrogate: 1-Chlorooctane	43.6		mg/kg	50.0		87.2	70-130
Surrogate: 1-Chlorooctadecane	45.3		"	50.0		90.6	70-130
LCS (EE62507-BS1)				Prepared: 0	5/25/06 A	nalyzed: 05	5/26/06
Carbon Ranges C6-C12	546	10.0	mg/kg wet	500		109	75-125
Carbon Ranges C12-C28	561	10.0	u	500		112	75-125
Total Hydrocarbon nC6-nC35	1110	10.0	н	1000		111	75-125
Surrogate: 1-Chlorooctane	57.6		mg/kg	50.0		115	70-130
Surrogate: 1-Chlorooctadecane	49.2		'n	50.0		98.4	70-130
Calibration Check (EE62507-CCV1)				Prepared: 0	5/25/06 A	nalyzed: 05	5/30/06
Carbon Ranges C6-C12	268		mg/kg	250		107	80-120
Carbon Ranges C12-C28	286			250		114	80-120
Total Hydrocarbon nC6-nC35	554		"	500		111	80-120
Surrogate: 1-Chlorooctane	64.4		н	50.0		129	70-130
Surrogate: 1-Chlorooctadecane	62.4		n	50.0		125	70-130
Matrix Spike (EE62507-MS1)	Source	e: 6E24006	5-01	Prepared: 0	5/25/06 A	nałyzed: 05	5/26/06
Carbon Ranges C6-C12	573	10.0	mg/kg dry	520	ND	110	75-125
Carbon Ranges C12-C28	576	10.0	н	520	ND	111	75-125
Total Hydrocarbon nC6-nC35	1150	10.0	"	1040	ND	111	75-125
Surrogate: 1-Chlorooctane	55.5		mg/kg	50.0		111	70-130
Surrogate: 1-Chlorooctadecane	50.2		n	50.0		100	70-130

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		1	Project: F-3	33 Vent (UN	0080)				Fax: (505)	397-1471
122 W. Taylor		Project N	umber: Ho	bbs Abandor	nment				Repo	rted:
Hobbs NM, 88240		Project M	anager: Kr	istin Farris-P	ope				06/07/0	6 10:45
	Or	ganics by	y GC - Q	uality Co	ontrol					
		Environ	nental L	ab of Te	xas					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62507 - Solvent Extraction (GC)		(1)2 (0)	. 0.1			·····				
Matrix Spike Dup (EE62507-MSD1)		ce: 6E24000)5/25/06 A:					
Carbon Ranges C6-C12	575	10.0	mg/kg dry	520	ND	111	75-125	0.348	20	
Carbon Ranges C12-C28	579	10.0	u.	520	ND	111	75-125	0.519	20	
Fotal Hydrocarbon nC6-nC35	1150	10.0	μ	1040	ND	111	75-125	0.00	20	
Surrogate: 1-Chlorooctane	56.1		mg/kg	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	49.8		u.	50.0		99.6	70-130			
Batch EF60219 - Solvent Extraction (GC)										
Blank (EF60219-BLK1)				Prepared: (06/02/06 Ai	nalyzed: 06	/05/06			

						51 001 00	
Carbon Ranges C6-C12	ND	10.0	mg/kg wet	· · · · · · · · · · · · · · · · · · ·			
Carbon Ranges C12-C28	ND	10.0	н				
Carbon Ranges C28-C35	ND	10.0	"				
Total Hydrocarbon nC6-nC35	ND	10.0	e				
Surrogate: 1-Chlorooctane	45.4		mg/kg	50.0	90.8	70-130	
Surrogate: 1-Chlorooctadecane	46.5		n	50.0	93.0	70-130	
LCS (EF60219-BS1)				Prepared: 06/02/	06 Analyzed: 06	5/05/06	
Carbon Ranges C6-C12	567	10.0	mg/kg wet	500	113	75-125	
Carbon Ranges C12-C28	554	10.0	u	500	111	75-125	
Total Hydrocarbon nC6-nC35	1120	10.0	u	1000	112	75-125	
Surrogate: 1-Chlorooctane	58.5		mg/kg	50.0	117	70-130	
Surrogate: 1-Chlorooctadecane	52.7		U	50.0	105	70-130	
Calibration Check (EF60219-CCV1)				Prepared: 06/02/	06 Analyzed: 06	5/05/06	
Carbon Ranges C6-C12	290		mg/kg	250	116	80-120	
Carbon Ranges C12-C28	294		н	250	118	80-120	
Total Hydrocarbon nC6-nC35	584			500	117	80-120	
Surrogate: 1-Chlorooctane	57.9		"	50.0	116	70-130	
Surrogate: 1-Chlorooctadecane	58.2		"	50.0	116	70-130	

Environmental Lab of Texas

Г

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

٦

Rice Operating Co.	Project:	F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number:	Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	06/07/06 10:45

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	ľ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF60219 - Solvent Extraction (GC)

Matrix Spike (EF60219-MS1)	Sourc	Prepared: ()6/02/06 A							
Carbon Ranges C6-C12	734	10.0	mg/kg dry	696	ND	105	75-125			
Carbon Ranges C12-C28	728	10.0	н	696	42.5	98.5	75-125			
Total Hydrocarbon nC6-nC35	1460	10.0		1390	42.5	102	75-125			
Surrogate: 1-Chlerooctane	55.6		mg/kg	50,0		111	70-130			
Surrogate: 1-Chlorooctadecane	47.3		"	50.0		94.6	70-130			
Matrix Spike Dup (EF60219-MSD1)	Sourc	e: 6F02008	-01	Prepared: ()6/02/06 A	nalyzed: 06	5/05/06			
Carbon Ranges C6-C12	724	10.0	mg/kg dry	696	ND	104	75-125	1.37	20	
Carbon Ranges C12-C28	734	10.0	н	696	42.5	99.4	75-125	0.821	20	
Total Hydrocarbon nC6-nC35	1460	10.0	н	1390	42.5	102	75-125	0.00	20	
Surrogate: 1-Chlorooctane	55.0		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	46.4		"	50.0		92.8	70-130			

Environmental Lab of Texas

- 1				
	Rice Operating Co.	Project:	F-33 Vent (UN0080)	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	Hobbs Abandonment	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	06/07/06 10:45
	1			

Fractionation of Aliphatics by TNRCC Method 1006 - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF60608 - Solvent Extraction (GC)

Blank (EF60608-BLK1)				Prepared: 06/02/0	6 Analyzed: 06	/06/06			
C6-C8	ND	10.0	mg/kg wet						
>C8-C10	ND	10.0	п						
>C10-C12	ND	10.0	11						
>C12-C16	ND	10.0	0						
>C16-C21	ND	10.0	u.						
>C21-C35	ND	10.0	п						
Total Hydrocarbon nC6-nC35	ND	10.0	0						
LCS (EF60608-BS1)				Prepared: 06/02/0	6 Analyzed: 06	/06/06			
Total Hydrocarbon nC6-nC35	1730	10.0	mg/kg wet	2000	86.5	60-140			
Calibration Check (EF60608-CCV1)				Prepared & Analy	zed: 06/06/06				
Total Hydrocarbon nC6-nC35	568		mg/kg	500	114	80-120			
Duplicate (EF60608-DUP1)	Sourc	e: 6E25001	-01	Prepared & Analy	zed: 06/06/06				
C6-C8	48.7	10.0	mg/kg dry	50.	8		4.22	20	
>C8-C10	415	10.0	п	42	1		1.44	20	
>C10-C12	891	10.0	п	893	2		0.112	20	
>C12-C16	2500	10.0	п	246	60		1.61	20	
>C16-C21	2340	10.0	а	230	0		1.72	20	
>C21-C35	1730	10.0	"	169	0		2.34	20	
Total Hydrocarbon nC6-nC35	7920	10.0	17	781	Ô.		1.40	20	

Environmental Lab of Texas

R	ice Operating Co.	Project:	F-33 Vent (UN0080)	Fax: (505) 397-1471
12	22 W. Taylor	Project Number:	Hobbs Abandonment	Reported:
н	obbs NM, 88240	Project Manager:	Kristin Farris-Pope	06/07/06 10:45

Fractionation of Aromatics by TNRCC Method 1006 - Quality Control

Environmental Lab of Texas

1							· · · · · · · ·				
			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF60608 - Solvent Extraction (GC)

Blank (EF60608-BLK1)				Prepared: 06/02/0	6 Analyzed: 06	/06/06			
C7-C8	ND	10.0	mg/kg wet						
>C8-C10	ND	10.0	ч						
>C10-C12	ND	10.0	"						
>C12-C16	ND	10.0							
>C16-C21	ND	10.0							
>C21-C35	ND	10.0	Er.						
Total Hydrocarbon nC6-nC35	ND	10.0	u						
LCS (EF60608-BS1)				Prepared: 06/02/0	6 Analyzed: 06	/06/06			
Total Hydrocarbon nC6-nC35	1730	10.0	mg/kg wet	2000	86.5	60-140			
Calibration Check (EF60608-CCV1)				Prepared & Analy	/zed: 06/06/06				
Total Hydrocarbon nC6-nC35	568		mg/kg	500	114	80-120			
Duplicate (EF60608-DUP1)	Sourc	e: 6E25001	-01	Prepared & Analy	vzed: 06/06/06				
C7-C8	6.25	10.0	mg/kg dry	6.4	4		2.99	20	J
>C8-C10	73.4	10.0	u	69.	5		5.46	20	
>C10-C12	283	10.0	"	29	0		2.44	20	
>C12-C16	1360	10.0	"	134	0		1.48	20	
>C16-C21	1790	10.0	"	176	i0		1.69	20	
>C21-C35	1680	10.0		167	0		0.597	20	
Total Hydrocarbon nC6-nC35	5200	10.0	н	513	0		1.36	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project: F-33 Vent (UN0080) Project Number: Hobbs Abandonment Project Manager: Kristin Farris-Pope General Chemistry Parameters by EPA / Standard Methods - Quality Control								
General	-	eters by EPA nvironment:			ds - Qual	lity Con	trol		
Analyte	Result	Reporting Limit Uni	Spike ts Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62607 - General Preparatio	on (Prep)								
Blank (EE62607-BLK1)			Prepared: ()5/25/06 A	nalyzed: 05/	/26/06			
% Solids	100	%							
Duplicate (EE62607-DUP1)	Source	:: 6E24016-01	Prepared: ()5/25/06 A	nalyzed: 05/	/26/06			
% Solids	96.6	%		96.8			0.207	20	
Duplicate (EE62607-DUP2)	Source	:: 6E24016-21	Prepared: ()5/25/06 A	nalyzed: 05/	/26/06			
% Solids	99.6	%		99.9	· · · · · · · · · · · · · · · · · · ·	·	0.301	20	
Duplicate (EE62607-DUP3)	Source	:: 6E24016-41	Prepared: ()5/25/06 A	nalyzed: 05/	/26/06			
% Solids	99.7	%		99.5			0.201	20	
Duplicate (EE62607-DUP4)	Source	:: 6E25007-02	Prepared: ()5/25/06 A	nalyzed: 05/	/26/06			

% Solids

Batch EE63005 - Water Extraction

Blank (EE63005-BLK1)				Prepared & Anal	lyzed: 05/29/06				
Chloride	ND	0.500	mg/kg						
LCS (EE63005-BS1)				Prepared & Anal	yzed: 05/29/06				
Chloride	10.2	0.500	mg/kg	10.0	102	80-120			
Calibration Check (EE63005-CCV1)				Prepared & Anal	yzed: 05/29/06				
Chloride	10.3	1 - 1 - 0 1 - 10 - 0 - 00 - 00 - 00 - 0	mg/L	10.0	103	80-120			
Duplicate (EE63005-DUP1)	Sourc	e: 6E24016-	41	Prepared & Anal	yzed: 05/29/06				
Chloride	12.2	5.00	mg/kg	12	2.8		4.80	20	

%

89.7

1.22

20

90.8

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE63005 - Water Extraction										
Duplicate (EE63005-DUP2)	Sour	e: 6E25008-	02	Prepared &	Anałyzed:	05/29/06				
Chloride	181	20.0	mg/kg		179			1.11	20	
Matrix Spike (EE63005-MS1)	Sourc	c: 6E24016-	41	Prepared &	Analyzed:	05/29/06				
Chloride	102	5.00	mg/kg	100	12.8	89.2	80-120			
Matrix Spike (EE63005-MS2)	Sourc	e: 6E25008-	02	Prepared &	Analyzed:	05/29/06				
Chloride	571	20.0	mg/kg	400	179	98.0	80-120			

Environmental Lab of Texas

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Environmental Lab of Texas

							· · · · · · · · · · · · · · · · · · ·			
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE62606 - EPA 5030C (GCMS)

Blank (EE62606-BLK1)			Prepared & Ana	alyzed: 05/26/06	
Benzene NJ	D 25.0	ug/kg wet			
Toluene NI	D 25.0				
Ethylbenzene NI	25.0	u			
Xylene (p/m) NI	D 25.0				
Xylene (o) NI	D 25.0	н			
Naphthalene NI	25.0	**			
Surrogate: Dibromofluoromethane 53.	0	ug/l	50.0	106	70-139
Surrogate: 1,2-Dichloroethane-d4 43.	7	"	50.0	87.4	52-149
Surrogate: Toluene-d8 41.	3	"	50.0	82.6	76-125
Surrogate: 4-Bromofluorobenzene 37.	5	U.	.50.0	75.0	66-145
LCS (EE62606-BS1)			Prepared & Ana	alyzed: 05/26/06	
Benzene 56	8 25.0	ug/kg wet	625	90.9	70-130
Toluene 58	9 25.0	u.	625	94.2	70-130
Ethylbenzene 62	7 25.0		625	100	70-130
Xylene (p/m) 120	0 25.0	a1	1250	96.0	70-130
Xylene (o) 64	0 25.0	"	625	102	70-130
Naphthalene 53	4 25.0	u.	625	85.4	70-130
Surrogate: Dibromofluoromethane 47.	5	ug/l	50.0	95.0	70-139
Surrogate: 1,2-Dichloroethane-d4 41.	7	"	50.0	83.4	52-149
Surrogate: Toluene-d8 42.	8	"	50.0	85.6	76-125
Surrogate: 4-Bromofluorobenzene 40.	7	"	50.0	81.4	66-145
Calibration Check (EE62606-CCV1)			Prepared & Ana	ilyzed: 05/26/06	
Toluene 42.	9	ug/l	50.0	85.8	70-130
Ethylbenzene 40.:	5	н	50.0	81.0	70-130
Surrogate: Dibromofluoromethane 50.	6	"	50.0	101	70-139
Surrogate: 1,2-Dichloroethane-d4 43.	9	"	50.0	87.8	52-149
Surrogate: Toluene-d8 45.	7	"	50.0	91.4	76-125
Surrogate: 4-Bromofluorobenzene 43.	9	"	50.0	87.8	66-145

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: F-33 Vent (UN0080)	Fax: (505) 397-1471
122 W. Taylor	Project Number: Hobbs Abandonment	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	06/07/06 10:45

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Anaiyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE62606 - EPA 5030C (GCMS)

Matrix Spike (EE62606-MS1)	Sourc	e: 6E25028	-02	Prepared &	Analyzed	: 05/26/06				
Benzene	642	25.0	ug/kg dry	666	ND	96.4	70-130			
Toluene	670	25.0	н	666	ND	101	70-130			
Ethylbenzene	699	25.0	u	666	ND	105	70-130			
Xylene (p/m)	1330	25.0	v	1330	ND	100	70-130			
Xylene (o)	713	25.0	"	666	ND	107	70-130			
Naphthalene	547	25.0	н	666	32.7	77.2	70-130			
Surrogate: Dibromofluoromethane	46.8		ug/l	50.0		93.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	41.6		"	50.0		83.2	52-149			
Surrogate: Toluene-d8	41.1		"	50.0		82.2	76-125			
Surrogate: 4-Bromofluorobenzene	39.4		"	50.0		78.8	66-145			
Matrix Spike Dup (EE62606-MSD1)	Source: 6E25028-02 Prep		Prepared &	Prepared & Analyzed: 05/26/06						
Benzene	631	25.0	ug/kg dry	666	ND	94.7	70-130	1.78	20	
Toluene	655	25.0		666	ND	98.3	70-130	2.71	20	
Ethylbenzene	613	25.0	н	666	ND	92.0	70-130	13.2	20	
Xylene (p/m)	1220	25.0		1330	ND	91.7	70-130	8.66	20	
Xylene (o)	654	25.0	U.	666	ND	98.2	70-130	8.58	20	
Naphthalene	628	25.0		666	32.7	89.4	70-130	14.6	20	
Surrogate: Dibromofluoromethane	49.8		ug/l	50.0		99.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	48.8		"	.50.0		97.6	52-149			
C . T I IO	42.7		"	50.0		85.4	76-125			
Surrogate: Toluene-d8										

		D 22 1/ . (ID 10000)	Fax: (505) 397-1471	
Rice Operating Co.	Project:	F-33 Vent (UN0080)	1 ax. (505) 597-1471	
122 W. Taylor	Project Number:	Hobbs Abandonment	Reported:	
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	06/07/06 10:45	

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.

- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Ituds Report Approved By:

Date:

6/7/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

	ļ								200528	TAT HSUR TAT bisbinsi2	2.7.7.4	×	×	×	×	×	×	×			-	
									Paluhad	Chloride Chloride			×	$\overline{\mathbf{x}}$							z	
F			비	Ì				8001 :HqT			×	×	$\overline{\mathbf{x}}$		×	$\overline{\mathbf{x}}$				1		
JES			ette							TPH: 8015M					$\overline{\times}$			\times			10	0
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST			Sec 33, Unit Letter							sbilo2 bavlossiG leto]											-12	07
SIS F	a	Project #: Hobbs Abandonment	⊡							N.O.R.M.]	
IL YS	Project Name: F-33 Vent (UN0080)	Eu	033				Eg.			301	影診								[_	Sample Containers Intact? Temperature Upon Receipt:	. 🛇
ANA	ŝ	Pp					Ze F	_		BLEXN 8560		×	\times	×	×	×	×	\times			Sample Containers Intact? Temperature Upon Receip	tor dage
QN	E	bai	Project Location: T18S, R38E,				Analyze			safitatovime2											iners Jpon	
A US	2ei	A S	Ê				↓			selite;ov										_	onta ure (6
COF	33	췽	185						92 DH 93 -	0 bO 68 pA sA (sisiam	1986										eration of	
RE	ц,	I	-́-∣	r,			TCLP		(+00)	SAR / ESP / CEC	1.000											
λαο	ame	ict #	tion	ROC Billing Code			, F			Cations (Ca, Mg, Ma, J Anions (Ct, SO4, CO3,											JO P	<u>"</u> T 01
ISTO	ž ti	roje	.0CB) Gu				F			<u>. 1985</u> 1966					}					-	Time 7350
10	ojec	۵.	Ct L	Billi			┝┷┷╌┸╴	$-\frac{1}{2}$	9001 900	. Mere (specify): Other (specify):											4	
λΟ Λ	È		roje	8		E			, 	liog	1893 1983	×	×	×	×	×	~	×			-	
HAII			<u>c</u> .	a:		t. C		Matrix		⇒6pnj≲		$\hat{}$					\rightarrow	-	••••		-	N N
C	1	1	ł	1	F	Insi		ſ		Water	- 2243 - 7726						+			~+	-	Date Date
						Loc		+	+	Other (Specify)	1.58547 1.5653											1. 5
				[CKs.				anok	1346-1 18222						-				-	+- <u>v</u>
			ĺ	Ì		Ę		Į.	2	°05²H											-	
					-	ē		avr.		HOBN											1	
				1	47	rev		Presenvative	b	HCI											7	
		Į			-2	andrew@rthicksconsult.com		La la		hno ^{\$}									-+-		-	
					30	۰ð				;C0	1223	×	X	×	X	×	×	×			-	
					02	, E		L		No. of Containers	「然意		, -	<u>_</u>			-	.			7	1 3
					ې امب	d.C	Í				244										-	
					Fax No: 505-397-147	e@riceswo				bəlqms2 əmiT		10:30	11.10	11:55	2:04	2:10	2:25	2:50				The second secon
						l.com, kpop				balqms2 steD		SIL/21E	111	n	11	11	11	را				Received by.
				ļ	1	pw	S				1 54/4 74		16	4	12	8	4	12			-	
800 713						Ces	S			(f	∄ End							Ţ				
63-1 63-1]	0	3		y y	(yang cons) Sample Dep	<u> </u>	-40-20 0	<u></u>		<u></u>	ŝ		<u></u> N	2144 3		Ξ	10100
12-51 12-51						isyc	2				Begin (ft)	12	16		12	~	12	12				
.ai Lab of I exas Phone: 432-563-1800 Fax: 432-563-1713	Project Manager: <u>Kristin Pope</u>	company Name Rice Operating Company	122 West Taylor	cłty/state/zip: Hobbs, New Mexico 88240	Tølephone No: 505-393-9174	Email results to: gil@rthicksconsult.com, mfranks@riceswd.com, kpope@riceswd.com,	meller 4			צוברם כסםו		Source (12')	Source (16)	10' east (4')	10' east (12')	10' north (8')	10' north (12')	10' west (12')				Date Date Date
ERVITOMMEM121 12600 West I-20 East Odessa, Texas 79765	ct Manager:	npany Name	Company Address;	ty/State/Zip:	lephane No:	il results to:	Sampler Signature:			BOOD SID		414	414	415	415	415	416	417			1	57
1-20 (as 7	roje	Сол	тра	ΰ	T (b)	Ema	nple				00]				Special Instruction	led by:
Test Test	ц.		õ				Sar		(//100	i esu del) # 8A.J	12			50	91	5	Š	2			nstr	Relinquished by Relinquished by Relinquished by
O W 5Sa,											$[\dot{D}]$	N N	Ŷ	Q	9	٩Ì	\square	$\left \right $	l		ial l	auish
									- L.	4	3			1	<u>``</u> .	,	1	1-1			bec	elinc
									1 11		 I > I > I 		. 1					1	1	1	101	

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Dlient:	Ribe OP.
Date/Time:	5/25/06 8:00
Order #:	UE25001
nitials:	CK

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	2,0 0
Shipping container/cooler in good condition?	Yea	No	
Sustody Seals intact on shipping container/cooler?	YES	No	Not present
Dustody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	YES	No	
Sample Instructions complete on Chain of Custody?	B	No	
Chain of Custody signed when relinquished and received?	YES	No	
Chain of custody agrees with sample label(s)	Tas I	No	
Container Izbels legible and intact?	GEE	No	· · ·
Sample Matrix and properties same as on chain of custody?	(Fes	No	
Samples in procer container/bottle?	Kres	No	· · · · · · · · · · · · · · · · · · ·
Samples properly preserved?	(G)	No	
Sample bottles intact?	(25	No	
Preservations documented on Chain of Custody?	Yes	No	
Containers documented on Chain of Custody?	(es	No	
Sufficient sample amount for indicated test?	(es	No	
All samples received within sufficient hold time?	Ass	No	
/OC samples have zero headspace?	YPES	No	Not Applicable

Other observations:

Dentact Person: Regarding:	Variance Documentation: Date/Time:	_ Contacted by:
Dorrective Action Taken:		· · · · · · · · · · · · · · · · · · ·

R. T. HICKS CONSULTANTS, LTD.

1909 Brunson Ave 🛦 Midland TX 79701 🛦 432.638.8740 🛦 Fax: 413.403.9968

CERTIFIED MAIL - RETURN RECIEPT NO. 7099 3400 0017 1737 2367

January 20, 2006

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: T18S R38E: E-33-1 Junction Box, B-32 Boot, E-32-1 Junction Box, E-32-2 Junction Box, F-33 Vent

Hobbs Salt Water Disposal System

Dear Mr. Price:

On behalf of Rice Operating Company, please accept this submission as our Initial Characterization Plan (ICP) for the five (5) sites referenced above within the Hobbs Salt Water Disposal System (Plate 1).

Rice Operating Company (ROC) is the service provider (operator) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners.

For all environmental projects, ROC will choose a path forward that:

- 1. protects public health,
- 2. provides the greatest net environmental benefit,
- 3. complies with NMOCD Rules, and
- 4. is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is a proposal for data gathering and site characterization and assessment.
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a <u>Corrective Action Plan</u> (CAP).
- 3. Finally, after implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

January 20, 2006 Page 2

Task 1 Evaluate Chloride and BTEXN Concentrations in Soil at Five Sites, Evaluate Ground Water Quality if Necessary

We will follow the same protocol for characterization of the unsaturated zone at the five new ROC sites listed below.

- o E-33-1 Junction Box
- o B-32 Boot
- o E-32-1 Junction Box
- E-32-2 Junction Box
- o F-33 Vent

At each of the above-referenced sites, we will locate the sampling borehole as close as practical to the suspected release source. Earlier, we inspected each of the five sites nominated in this ICP and identified the boring location before the sites were backfilled and re-graded. Due to our recent experience with difficulties encountered in the installation of well clusters in this area, we plan to employ hollow-stem auger drilling techniques for sampling.

We will screen each sample in the field for chlorides and volatile organic compounds using the methods described in QP-03 and QP-07 (attached), respectively. Soil lithology and the presence of any observed staining or odor will be recorded. For any site, if we detect evidence of leakage within 15 feet of the water table (e.g. field chloride greater than 250 ppm in soil samples) we will complete the boring as a monitoring well in accordance with NMOCD Guidance. If three soil samples taken at 5-foot intervals test below 250 ppm chloride and below 100 ppm total volatile organic compounds, we will terminate the boring. However, all borings will penetrate at least 30 feet of the vadose zone.

Task 2 Evaluate Chloride and Hydrocarbon Flux from the Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 15-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to impair ground water quality above WQCC Standards. We have selected these two constituents for simulation modeling because each of these constituents is typically found in produced water and each is specifically regulated by New Mexico ground water regulations (WQCC). We will also employ vadose zone hydrocarbon migration predictive tools commonly employed by NMED in their PST program.

Task 3 Provide Investigative Results and/or Corrective Action Plan

Because the Hobbs SWD System no longer carries produced water, additional releases of produced water to ground water are highly unlikely. If modeling shows that the residual chloride and hydrocarbon mass in the vadose zone poses a no threat to ground water quality, we will prepare a report that makes this demonstration and request site closure.

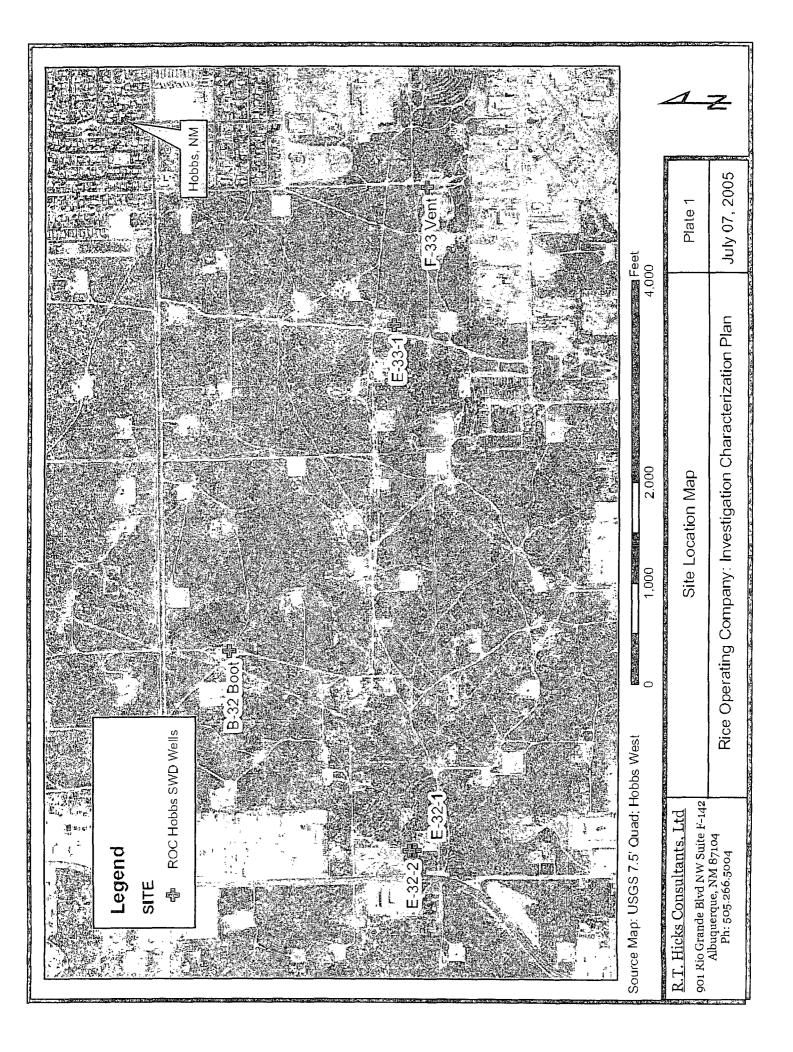
January 20, 2006 Page 3

If simulation experiments suggest that residual constituents pose a threat to ground water quality or if the field program demonstrates impairment, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. Excavation, disposal and replacement of clean soil to remove the chloride and hydrocarbon mass,
- 2. Installation of a low permeability barrier to minimize natural infiltration,
- 3. Surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 4. A combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will notify NMOCD and work collaboratively to determine the appropriate path forward.

Proposed Schedule


With NMOCD's approval of this work plan, we can perform the field activities at these sites in February or March. In late April or May, we plan to deliver any individual Correction Action Plans to address residual constituents in the vadose zone and any reports requesting site closure. If data suggest ground water impairment we plan to conduct two quarters of ground water monitoring to confirm any initial result then meet with NMOCD to develop an appropriate path forward. Your approval to move forward with this work plan will facilitate approval of expenditures by the System Partners.

Sincerely, R.T. Hicks Consultants, Ltd.

Gilbert of Vien Devention

Gilbert Van Deventer Project Manager

cc: Chris Williams, NMOCD Hobbs District Office Carolyn Haynes, Rice Operating Company - Hobbs Kristin Pope, Rice Operating Company -- Hobbs Randy Hicks, R. T. Hicks Consultants, Ltd. - Albuquerque

Rice Operating Company

QUALITY PROCEDURE

Sampling and Testing Protocol Chloride Titration Using 282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The scaled sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K2CrO4) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.
- 6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>.282 X 35,450 X ml AgNO₃</u>	Х	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, $(59-77^{\circ}F)$. The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

- 3.2 Sampling Procedure
 - 3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar PID-type instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
 - 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
 - 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
 - 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-02 and QP-06. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.
- 4.0 Clean-up

After testing; the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.