AP - 033

STAGE 1 REPORTS

DATE: 2/19/2004

RECEIVED

FEB 22 2004

Oil Conservation Division Environmental Bureau

STAGE 1 SITE INVESTIGATION REPORT FOR THE DEFS ELDRIDGE RANCH STUDY AREA, LEA COUNTY, NEW MEXICO

(Abatement Plan #AP-33)

February 2004

Prepared For

Duke Energy Field Services, LP 370 17th Street, Suite 2500 Denver, CO 80202

Prepared By

Remediacon Incorporated P.O. Box 302 Evergreen, Colorado 80437

1033

STAGE 1 SITE INVESTIGATION REPORT FOR THE DEFS ELDRIDGE RANCH STUDY AREA, LEA COUNTY, NEW MEXICO

(Abatement Plan #AP-33)

RECEIVED

FEB 22 2004

Prepared For

Oil Conservation Division Environmental Bureau

Duke Energy Field Services, LP 370 17th Street, Suite 2500 Denver, CO 80202

Prepared By

Remediacon P.O. Box 302 Evergreen, Colorado 80437 Telephone (303)674-4370 Facsimile (720)528-8132

February 19, 2004

EXECUTIVE SUMMARY

This Stage 1 investigation report provides the information required for Abatement Plan #AP-33 for the Eldridge Ranch study area. The study area is located approximately 1 mile north of and 0.75 miles east of the town of Monument in Lea County New Mexico. The area includes two properties; the Huston property and the DEFS Eldridge Property. The Eldridge property and its water rights were purchased by DEFS in early January 2004. The study area and the surrounding land within 1 mile are uninhabited and unimproved with the exception of one property that is unimpacted by the study area releases.

Seven buried pipelines owned by various parties transverse the study area. One producing gas well and an associated Chevron historic blowdown/burn pit are also within the study area boundaries. The Chevron March 2001 report indicates that hydrocarbon-contaminated soils contained total petroleum hydrocarbons at concentrations up to 2,500 mg/kg TPH within this pit. No sampling was completed below 4 feet, and no laboratory analyses for benzene, toluene, ethylbenzene and xylenes were completed. Wells surrounding the historic blowdown/burn pit contain elevated concentrations of chlorides that are indicative of a release to groundwater. A number of producing oil wells lie west of and adjacent to the study area.

Study area topography falls to the southeast. The surface drainage consists of two shallow swales that are separated by a low-relief divide. The surface drainages have not been impacted by hydrocarbon releases so they need not be considered in the report.

A hydrocarbon release was discovered in June 2000. An OCD contractor began evaluations in August 2001. DEFS began study area activities at OCD's request in July 2002. Since then, DEFS has completed numerous characterization activities and four sets of quarterly groundwater monitoring. As directed by OCD requirements, DEFS also commissioned the removal of free phase hydrocarbons in June 2003, and this activity continues.

Thirty-five wells were installed in November 2003 to provide the supplementary data necessary to complete this report. Twenty of the wells were primarily installed to investigate the dissolved phase hydrocarbons. The remaining 15 wells were installed to delineate the extent of free phase hydrocarbons at three locations within the study area. The resulting detailed geologic logs verified the lithologic distribution described in past reports. A continuous basal sand was identified beneath the entire study area; however, this sand does not appear to be substantially more permeable than the overlying saturated materials.

The groundwater flows toward the southeast in the northern part of the study area before being deflected to a more southerly direction near the DEFS Eldridge property boundary. The groundwater velocity is estimated at 3 feet per day; however, this number appears to be high. There is also a vertically-downward groundwater flow component based upon a well cluster at the Huston/DEFS Eldridge Property boundary.

i

EXECUTIVE SUMMARY (continued)

Three release areas are present in the study area. Each release area includes wells that contain free phase hydrocarbons (FPH). The north release area originates from a leak in the NMG-148 pipeline. The middle release area includes FPH from a second leak in the NMG-148 pipeline; however, the hydrocarbon distribution within the release area suggests that additional sources may be present. There is no known origin for the free phase hydrocarbons at the southern location. All of the leaks in the two DEFS pipelines within the study area have been identified. The remaining non-DEFS pipelines that could potentially be contributing hydrocarbons must be tested to verify that there are no continuing releases within the middle and south release areas. Hydrostatic testing and/or exposing pipelines to reveal historic or present leak locations must be completed because there is generally no surface evidence of a leak.

Benzene was selected as the constituent of concern at the study area because of its widespread occurrence in the groundwater and its stringent regulatory standards.

Three dissolved phase hydrocarbon plumes are present at the study area. Two of the plumes originate from the three release areas described above. These two plumes are aligned northwest to southeast in the same direction as the groundwater flow.

The third plume lies on both sides of DEFS Eldridge northern property boundary. It is believed to have originated from enhanced hydrocarbon migration that resulted from pumping of the high-capacity irrigation well on the northern DEFS Eldridge boundary. The hydrocarbon concentrations in this plume have been declining since the initiation of investigative activities because the pumping of the irrigation well is no longer drawing additional hydrocarbon mass into this region.

The study area has been sufficiently defined and characterized to proceed to Stage 2 of the abatement plan process. The non-DEFS pipelines that traverse the study area must either be hydrostatically tested or exposed and inspected to verify that they contain no FPH to ensure that there are no continuing leaks. Preparation of the Stage 2 workplan can begin upon OCD approval of this document.

The most important considerations relative to the completion of Stage 2 include:

- 1. Natural groundwater flow is generally southeastward on the Huston property and southward on the DEFS Eldridge property. Groundwater was deflected toward the irrigation well when it was operating.
- 2. The dissolved phase hydrocarbons originated from three geographically distinct areas that contain free phase hydrocarbons. Not all of the free phase hydrocarbons originated from the leaks in the NMG-148 pipeline that were identified in January 2003.
- 3. The dissolved phase hydrocarbons are attenuating from natural causes as they migrate away from the source areas.

EXECUTIVE SUMMARY (continued)

- 4. The entire plume on the DEFS Eldridge property and the Huston property immediately adjacent is shrinking because the irrigation well is no longer used..
- 5. Appropriate testing for potential non-DEFS hydrocarbons in the middle and south release areas must be completed to ensure that the selected remedy is appropriate. DEFS cannot ensure that any remedy proposed near MW-8 and MW-11, the probable source of the hydrocarbons in the irrigation well, will be effective unless all non-DEFS leaks are identified and adequately characterized.

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 Purpose and Objectives	1
	1.2 Report Organization	1
2	BACKGROUND INFORMATION	2
	2.1 Study Area Setting	2
	2.1.1 Study Area Location, Boundaries and Considerations	
	2.1.2 Study Area and Neighboring Land Uses	
	2.1.3 Topographic Setting	
	2.1.4 Surface-Water Conditions	
	2.1.5 Permitted Water Wells	4
	2.2 Summary of Pre-Fall 2003 Field Programs	4
	2.3 Summary of Remediation Activities	
3		7
	3.1 Installation Of Dissolved-Phase Hydrocarbon Characterization Wells	7
	3.2 Installation Of Free Phase Hydrocarbon Characterization Wells	9
	3.3 Detailed Lithologic Data Compilation	
	3.4 Comprehensive Quarterly Groundwater Monitoring	10
	3.5 Characterization Of Free-Phase Hydrocarbons	10
4	COMPREHENSIVE DATA SUMMARY	12
	4.1 Soils Analytical Data and Lithologic Distribution	12
	4.2 Saturated Material Properties	12
	4.3 Water-Table Elevation and Product Thickness Data	13
	4.3.1 Water-Table Elevations	
	4.3.2 Free Phase Hydrocarbon Thickness Data	13
	4.4 Dissolved Phase Constituents	14
	4.5 Free Phase Hydrocarbon Composition	14
5	INTERPRETATIONS AND CONCLUSIONS	
	5.1 Saturated Material Types and Properties	15
	5.1.1 Material Types	
	5.1.2 Hydrologic Material Properties	
	5.2 Groundwater Flow Direction and Gradient	
	5.2.1 Groundwater Flow Velocity	
	5.3 Hydrocarbon Constituent Distribution	
	5.3.1 Identification of Constituent of Concern	
	5.3.2 Dissolved Hydrocarbon Sources	
	5.3.3 Free Phase Hydrocarbon Characterization	
	5.3.4 Immobile and Dissolved Hydrocarbon Distribution and Fate	
_	5.4 Natural Attenuation Efficiency	
6	RECOMMENDED INTERIM ACTIVITIES	
7	REFERENCES	30

TABLE OF CONTENTS (continued)

TABLES

- Table 1- Permitted Water Well Information
- Table 2- Monitoring Well Information
- Table 3 Summary Field Photoionization (PID) Readings

Table 4 - Summary of Soils Analytical Data

Table 5 - Summary of Data from October 2002 Pumping Test

Table 6 - Summary of Water Table Elevations Corrected for Free Product

Table 7 - Summary of Free Phase Hydrocarbon Thickness Measurements

Table 8 - Summary of the Dissolved Benzene Concentrations

Table 9 - Summary of the Dissolved Toluene Concentrations

Table 10 - Summary of the Dissolved Ethylbenzene Concentrations

Table 11 - Summary of the Dissolved Total Xylenes Concentrations

Table 12 - Summary of Dissolved BTEX Constituents From Wells Containing Free Phase Hydrocarbons

Table 13 - Summary of December 2003/January 2004 Chloride Concentrations

Table 14 - Summary of Laboratory Evaluation of Free Phase Hydrocarbon Samples

 Table 15 - Summary of Isotopic Analyses of Free Phase Hydrocarbon Samples

 Table 16 - Summary of Interpreted Hydrocarbon Affected Intervals With and Without a Photoionization Detector

Table 17 - Comparison Between Field Photoionization Detector and Laboratory Results

Table 18 - Summary of Borings Containing Multiple Affected Intervals

FIGURES

Figure 1 - Study Area Location

Figure 2 - Study Area Property Owners and Topography

Figure 3 - Aerial Photograph with Pipeline Alignments and Swale Locations

Figure 4 - Monitoring Well Locations

Figure 5 - Permitted Water Well Locations

Figure 6 - Contour Map Of The Top Of The Hydrocarbon Affected Interval

Figure 7- Hydrocarbon Affected Interval Thickness

Figure 8 - North South Cross Section A-A'

Figure 9 - East West Cross Section B-B'

Figure 10 - East West Cross Section C-C'

Figure 11 - Monitoring Well Hydrographs

Figure 12 - Water-Table Map Based Upon The January 12, 2004 Gauging Data

Figure 13 - Depth to Top of Basal Sand Layer

Figure 14 - Aerial Photograph Showing Potential Hydrocarbon Source Locations

Figure 15 - Chart Showing Specific Gravity Analytical Results

Figure 16 - Trilinear Diagram Of The Paraffin, Isoparaffin And Aromatic Phases

Figure 17 - Carbon Isotope Analytical Results Aromatics Verses Saturates

Figure 18 – Carbon Isotope Analytical Results Resins Verses Saturates

Figure 19 - Benzene Isopleth Based Upon The 12/03 And 1/04 Sampling Results

APPENDICIES

Appendix 1 - Boring Logs and Completion Diagrams for November 2003 Wells Appendix 2 -December 2003, January 2004 Analytical Laboratory Reports Appendix 3 - Well Development and Sampling Forms

1 INTRODUCTION

This Stage 1 study area investigation report provides the information required for Abatement Plan #AP-33 for the Eldridge Ranch study area (study area). Remediacon Incorporated (Remediacon) prepared the plan for Duke Energy Field Services, LP (DEFS) to satisfy the requirements contained in 19.15.1.19.E (3) NMAC.

1.1 Purpose and Objectives

As stated in 19.15.1.19.E (3) NMAC, "(t)he purpose of Stage 1 of the abatement plan shall be to design and conduct a study area investigation that will adequately define study area conditions, and provide the data necessary to select and design an effective abatement option." The objectives of the investigation were derived based upon the purpose and requirements listed in NMAC section referenced above. The objectives included:

- Describing the surface setting and surface-water hydrology of the study area;
- Identifying all permitted water wells within 1 mile of the study area;
- Defining the distribution of subsurface materials;
- Measuring the hydrogeologic properties of the materials;
- Measuring the groundwater flow direction and gradient, and calculating a representative advective groundwater velocity;
- Selecting the appropriate hydrocarbon constituent(s) of concern;
- Delineating the release areas and distribution of the dissolved phase constituents of concern in the groundwater;
- Listing identified and potential release points for the groundwater sources;
- Analyzing the effects of natural attenuation on the constituents of concern; and
- Identifying any additional study area activities that must be completed prior to the initiation of the Stage 2 abatement activities.

1.2 Report Organization

The remainder of the report is divided into five additional sections. Section 2 describes the study area setting and summarizes the activities completed prior to November 2003. Section 3 describes the field activities that were completed in November 2003, December 2003 and January 2004. Section 4 presents the data collected during all of the field activities that were used to formulate interpretations and derive conclusions. Section 5 provides a detailed description of the study area's subsurface setting. This model will be used to analyze potential remediation options and to formulate a comprehensive remediation strategy. Section 6 recommends additional activities that should be completed independent of the preparation of the Stage 2 abatement plan.

2 BACKGROUND INFORMATION

This section presents background information that is relevant to this report. The first subsection describes the surface conditions within the study area. The second subsection reviews the investigative activities completed at the study area.

2.1 Study Area Setting

This section summarizes the study area conditions including: 1) a description of the study area location and boundaries; 2) the neighboring land uses; 3) the topographic setting; 4); the surface-water conditions and 5) permitted water wells within 1 mile of the study area.

2.1.1 Study Area Location, Boundaries and Considerations

The study area is located approximately 1 mile north of and 0.75 miles east of the town of Monument in Lea County New Mexico (Figure 1). The OCD location descriptor of Unit P, Section 21, Township 19 South, Range 37 East was derived from the irrigation well where the hydrocarbons were initially detected. The well's coordinates are 32 degrees 38.5 minutes north, 103 degrees 15.4 minutes east.

The study area boundaries were defined according to the methodology in 19.15.1.19.E (3) (b) (i) NMAC. The boundary locations are shown on Figure 2. Details on how the boundaries were derived are in Section 5.3.4.

The study area includes two properties (Figure 2). The Huston property, currently a trust, is the northern property and constitutes approximately 90 percent of the study area. The DEFS Eldridge property includes the southern approximate 10 percent of the study area. The Eldridge property and the water rights associated with it were purchased by DEFS in early January 2004. The property will now be referred to as the DEFS Eldridge property to indicate DEFS ownership while maintaining the Eldridge reference that was used in prior reports.

2.1.2 Study Area and Neighboring Land Uses

The study area, and land within 1 mile, is generally uninhabited and unimproved. The DEFS Eldridge property includes a residence (unoccupied) and numerous farm buildings.

The Huston property is leased for grazing. No windmills are present within the study area boundaries.

There is one residence located approximately 1,500 feet west-southwest of the study area (Figure 2). As discussed in Section 5.3.4, the groundwater beneath this property is upgradient from the study area and thus cannot be impacted by the releases.

Oil and gas production began on the study area prior to World War II, and it continues on the surrounding properties to the north, east and west. There is one active gas production well within the study area labeled Chevron Gas Well on Figure 3. There are numerous inactive or abandoned crude-oil production components (pits, pump jacks, heater treaters, gathering lines, etc.) present within and immediately surrounding the study area. An historic blowdown/burn pit that was associated with the Chevron gas well is also shown on Figure 3.

Seven buried pipelines transverse the study area. The pipelines are shown on the aerial photograph in Figure 3. The pipelines include:

- 1. The DEFS distribution line (DEFS ZZ-2, Figure 3).
- 2. A Conoco distribution line (Conoco, Figure 3).
- 3. Two northeast trending Sid Richardson gathering lines (Sid Richardson, Figure 3).
- 4. A Dynegy northeast trending gathering pipeline (Dynegy, Figure 3). This line is spiral welded, indicating that it is very old. A poly sleeve was inserted (slipped) into this line along the length that lies beneath the study area. A pipeline is typically slipped when the original line no longer possesses integrity at its operating pressure.
- 5. An historic pipeline that extends west and east across the study area passing immediately south of the Chevron gas well (Historic Gathering Line, Figure 3). There are no pipeline markers along the alignment; however, a consultant for Dynegy completed a site investigation on this line between State Highway 8 and the gas well shown on Figure 3.
- 6. The north-trending DEFS gathering line (NMG-148C, Figure 3) and the west trending DEFS gathering line (NMG-148A&B, Figure 3). These two lines are combined and called the NMG-148 pipeline in this report.

There are currently 62 temporary and permanent monitoring wells at the study area. Their locations are shown on Figure 4. The use of these wells, and the resulting data, is described in more detail below.

2.1.3 Topographic Setting

The study area topography generally slopes to the southeast (Figure 2). There are no deeply incised ravines within the study area boundaries.

2.1.4 Surface-Water Conditions

The surface drainage consists of two shallow swales that are separated by a low-relief high area. The swale locations are shown on Figure 3. The eastern swale is larger and better developed. The two drainages are the approximate eastern and western boundaries of the study area.

Neither swale is well defined and the grasses that grow within them best outline their alignments. Both swales probably only contain water during the most intense, long-

duration precipitation episodes. There are reaches where running water has scoured defined depressions; however, these reaches are limited and only capable of minimal surface-water storage between precipitation episodes.

Section 19.15.1.19.E (3) (b) (ii) of the NMAC requires evaluation of the surface-water hydrology within the study area, specifically the "magnitude of contamination and impacts to surface water and stream sediments." The surface-water bodies at this location were not impacted by the releases within the study area so they do not need to be evaluated any further.

2.1.5 Permitted Water Wells

A list of permitted water wells was obtained from The New Mexico State Engineer Water Administration Technical Engineering Resource System (W.A.T.E.R.S.) internet web site (http://www.seo.state.nm.us/water-info/). The query included Section 21, the section containing the study area, and the eight sections surrounding it (Sections 15, 16, 17, 20, 22, 27, 28 and 29). This area is slightly larger than the minimum 1-mile distance from the study area boundaries. The well locations are shown on Figure 5 and summarized in Table 1. The relationship, if any, between these wells and the affected groundwater beneath the study area is discussed in Section 5.3.4.

2.2 Summary of Pre-Fall 2003 Field Programs

This section summarizes the activities completed at the study area from the discovery of hydrocarbons in the groundwater to the date of this report. The section also describes the documents generated since the start of the investigative activities.

The irrigation well reportedly began discharging hydrocarbons in mid-June of 2000. The OCD was notified soon thereafter. The OCD and other state agencies reportedly collected water samples from the house well and the irrigation well on the DEFS Eldridge property. The NMED collected samples on October 26, 2000. Their results indicated that the house well contained 2.5 mg/l benzene. The benzene concentration in the irrigation well was measured at 4.4 mg/l.

The OCD also requested that the pipeline owners test their pipelines. DEFS pressure tested their pipelines in Fall 2000 and provided data to the OCD that indicated they were not leaking. Dynegy also completed limited subsurface characterization of the historic gathering pipeline that extends west from the vicinity of the Chevron well. Dynegy concluded that it was not leaking; however, the length that they investigated was west of the study area and thus outside the area of affected subsurface materials and groundwater. Dynegy did not investigate their northeast trending, spiral welded, gathering pipeline (Dynegy, Figure 3) that was slipped, probably because of integrity issues, within the study area.

The OCD commissioned AMEC Incorporated to evaluate the release. AMEC completed two investigations and prepared reports in August 2001 and May 2002. OCD then contacted DEFS based upon the results and conclusions of these investigations and requested that they continue investigating the release.

DEFS voluntarily complied with this request and retained Remediacon in late June 2002 to review the existing data and formulate the investigative plan requested by OCD. Remediacon prepared a work plan dated July 10, 2002 that proposed inventorying and sampling the existing 14 AMEC monitoring wells (MW-1 through MW-14). The results of the field investigation were detailed in an August 30, 2002 Remediacon letter that DEFS transmitted to the OCD.

The August 2002 letter concluded that more subsurface material and groundwater characterization was necessary. Remediacon formulated a work plan that was forwarded to OCD in early September 2002 and subsequently approved. The field work was completed from late September through mid-October of 2002. A Remediacon report titled "Characterization Report For The Eldridge Ranch Study Area, Lea County New Mexico" was submitted to the OCD on November 4, 2002.

Among the recommendations included in the November 2002 report was further investigation of all the potential origins of free phase hydrocarbons (FPH) on the groundwater including all of the pipelines traversing the study area. DEFS decided to test all of its gathering and distribution pipelines in the study area based upon this recommendation. Remediacon prepared a work plan for the pipeline testing that was submitted on or around November 22, 2002.

The 26-inch, high-pressure distribution (ZZ-2) pipeline was uncovered, inspected and pressure tested in late December 2002. No leaks were detected. DEFS then decided to hydrostatically test their gathering lines. DEFS directed their pipeline subcontractor to begin flagging the pipeline alignments as part of the "one call" procedure that must be completed prior to the start of any intrusive activities.

The DEFS pipeline contractor noted surface evidence of a leak on their pipeline right of way on state land north of the Huston property during the flagging activities. The pipeline was immediately exposed in this area and a leak was found. The affected materials were removed from this excavation and remediation is nearing completion. The release at this study area is a separate project, and it will not be considered any further in this report.

Hydrostatic testing began on the approximately 4,000 feet of the NMG-148A, B and C gathering lines the week of January 13, 2003. The pipeline was first isolated into five segments. Each segment was pressured to 100 psi with fresh water and then periodically checked for pressure declines. The surface along the segments that could not maintain a sustained pressure was inspected for wet spots that would be indicative of leaks. No wet spots appeared, so DEFS decided to expose the entire length of each segment. Each segment was then continually repressurized after exposure with water to 100 psi and

visually inspected for leaks. The entire pipeline was then removed from north of the Huston property boundary to State Highway 8.

The testing identified four leaks within the study area boundaries. Leaks NMG-148C#1 and NMG-148C#2 were too close together to separate into discrete release points so they were combined into a location that is referred to as NMG-148C#1. Locations NMG-148C#3 and NMG-148C#4 are physically distinct and were characterized individually.

Monitor wells were installed at the three potential release points at the locations shown on Figure 4. Well MW-25 was installed at pipeline leak location NMG-148C#4. Trace concentrations of hydrocarbons were measured in the groundwater. Well MW-26 was installed at combined pipeline leak locations NMG-148C#1. This well subsequently produced FPH. Well MW-27 was installed at pipeline leak location NMG-148C#3. This well also subsequently produced FPH. The field characterization activities and their associated results were summarized in a February 21, 2003 letter to the OCD.

Quarterly groundwater monitoring was completed in February, June and September 2003. The data from these episodes were provided to the OCD in summary reports, and they are integrated into this report.

DEFS notified OCD on March 25, 2003 that it would voluntarily initiate Rule 19 activities. DEFS provided a Stage 1 abatement plan work plan to OCD on May 30, 2003. An addendum that included a Sampling and Analysis Plan was submitted on or about July 7, 2003. OCD approved the plan in an October 22, 2003 letter.

2.3 Summary of Remediation Activities

FPH removal was initiated at the study area on July 24, 2003 in the six wells that contained free product (MW-8, MW-11, MW-18, MW-23, MW-26 and MW-27). The product is collected in FPH-only bailers that are emptied twice weekly. MW-18 no longer produces FPH but it is gauged twice weekly to verify that it has not returned.

FPH-only bailers were recently placed in the three new wells that contain FPH (MW-N, MW-CC and MW-EE). These bailers are also emptied twice weekly.

A total of 70 gallons of product have been removed as of February 9, 2004. DEFS will continue removing free product from all the above wells until approval of the Stage 2 abatement plan. The FPH removal program will then be modified to comply with the requirements set forth in that plan.

3 SUMMARY OF FALL 2003 INVESTIGATIVE FIELD ACTIVITIES

Five investigative activities were completed at the study area between November 2003 and January 2004. The activities included:

- Installation of wells to characterize the extent of dissolved-phase hydrocarbons (DPH) in the groundwater;
- Installation of wells to characterize the extent of FPH floating on the groundwater;
- Detailed lithologic data compilation;
- Comprehensive quarterly groundwater monitoring; and
- Characterization of free-phase hydrocarbons.

Each activity is discussed separately below.

3.1 Installation Of Dissolved-Phase Hydrocarbon Characterization Wells

Twenty wells were installed to better delineate the distribution of dissolved-phase hydrocarbons (DPH) on the Huston property. The well locations, labeled MW-A through MW-T, are shown on Figure 4. Well location, elevation and completion information is summarized in Table 2.

The wells were located according to the following rationale:

- MW-A, MW-B: Provide additional data on the Huston-DEFS Eldridge property boundary.
- MW-C through MW-G: Transect between the FPH in wells MW-8 and MW-11 and the anomalous DPH measured in MW-4.
- MW-H: Provide additional data to evaluate whether a preferential groundwater flow pathway is present in the western drainage.
- MW-I, MW-J, MW-K (in conjunction with MW-AA): Transect to track the groundwater migration patterns from the MW-8, MW-11 area.
- MW-L: Another well to provide data for preferential groundwater flow evaluation.
- MW-M through MW-S: Installed to evaluate DPH migration and attenuation from the MW-27 area.
- MW-T: Installed in a second phase to define conditions up-gradient from the MW-M through MW-S transect.

The wells were installed using sonic drilling technology. This method was selected because of its potential for maximizing core recovery while minimizing the generation of drill cuttings. The method produces a nominal 6-inch diameter boring.

The sonic technique provides 4-inch diameter core in 10-foot lengths. The core is extruded by vibration from the core barrel into a flexible, transparent plastic sleeve that retains the moisture and vapor. Overall core recovery was estimated at 90 percent.

All of the core generated was measured and evaluated using the following procedure:

- 1. The outside of the bag was marked on 1-foot increments using an indelible marker.
- 2. The probe of a photoionization detector (PID) was inserted through the sleeve midway between each 1-foot mark to measure the vapors emanating from the core.
- 3. The bag was sliced longitudinally to expose the core.
- 4. Split soil samples were collected from the intervals with the highest measured PID readings and from the vadose zone interval immediately above the uppermost identified saturated materials. The samples were placed in sealed plastic bags. One set of samples was placed in an ice-filled cooler for preservation. The remaining samples were placed in a warm location to permit any hydrocarbon vapors to volatize into the bag's headspace.
- 5. Representative pieces of the entire length of the core were removed and placed in a corebox in the appropriate order. Detailed logs of the materials were compiled while the core was being removed.
- 6. The core in the corebox was then photographed to document color variations.
- 7. The headspace of each retained sample was then measured with the PID.
- 8. Select samples that were preserved in the cooler were later submitted to the laboratory for analysis.

The excess core, the core from the corebox and the nominal volume of soil cuttings were placed in 55-gallon drums. The drums were then transported to a gondola where they were stored. All of the soil cuttings were then disposed of in a permitted landfarm.

The wells were installed using threaded, flush-coupled, Schedule 40 PVC with 0.010inch factory-cut slots. Artificially graded 6-20 sand was placed from the bottom of the boring to a minimum of 1 foot above the top of the slots. A minimum of 2-feet of hydrated bentonite was placed on top of the sand to seal the well from surface infiltration. The annular space at the surface was temporarily sealed. A locking J-plug was placed on each boring and secured with a locking nylon strap to provide evidence of any tampering. The wells will remain as temporary completions until a final decision is reached on abandonment or completing them as a permanent well.

Each well, except MW-N, was developed by removing a minimum of ten casing volumes of water using a 12-volt submersible pump. Well MW-N contained free product so it was not developed. The pump was decontaminated between each hole and new tubing was used to minimize the chance of cross contamination. Temperature, pH and conductivity were measured during development to ensure that the groundwater stabilized. The well was then purged and sampled using the standard monitoring procedures described in Section 3.4 below.

All of the above protocols meet or exceed the standards set forth in the approved Sampling and Analysis Plan (SAP).

3.2 Installation Of Free Phase Hydrocarbon Characterization Wells

Fifteen wells were installed to better delineate the extent of FPH present on the Huston property. The well locations, labeled MW-AA through MW-NN, are shown on Figure 4. Well location, elevation and completion information is summarized in Table 2.

The FPH wells were initially installed adjacent to the five wells with measurable thicknesses of FPH on the groundwater. An FPH well was also installed south of the historic Chevron blowdown/burn pit. A second phase of wells was then installed both down-gradient and cross gradient to better define the limits of measurable FPH. Well MW-NN was installed in a third phase down-gradient from MW-27 to ensure that the limits of FPH at this location had been established. A summary of the well installation rationale is provided below:

FPH Location	Initial Phase	Second Phase	Third Phase
MW-8:	MW-AA	MW-GG	
MW-11:	MW-BB	MW-HH, MW-II, MW-JJ	
MW-23:	MW-DD	MW-MM	
MW-26:	MW-EE		
MW-27:	MW-CC	MW-KK, MW-LL	MW-NN
Chevron blowdown/burn pit	MW-FF	2	
-			

The wells were installed using the techniques described in Section 3.1 above.

The wells were gauged periodically for the presence of FPH. Only wells MW-CC, MW-EE and DPH well MW-N contained FPH five weeks after they were installed. These two FPH wells and MW-N were not developed. The remaining FPH wells were developed as discussed in Section 3.1 above.

3.3 Detailed Lithologic Data Compilation

The primary objective of this task was to compile data from the core retrieved during the drilling program for evaluation for evidence of hydrocarbon-affected zones and lithologic intervals that might serve as preferential groundwater-flow pathways. The procedural details for gathering the lithologic data were included in Section 3.1 above.

The information from this activity is included on the boring logs. The logs for the 20 DPH wells and 15 FPH wells are attached as Appendix 1.

Eleven soil samples were also submitted to Environmental Labs of Texas to assess the relationship, if any, between the field PID readings and the concentration of the BTEX constituents present within the soil matrix.

3.4 Comprehensive Quarterly Groundwater Monitoring

All the pre-existing and new wells that did not contain FPH were sampled during the December 2003 quarterly groundwater-monitoring event. The existing and new wells on the Huston property were sampled the week of December 8, 2003. The existing wells on the DEFS Eldridge property, including the former House Well, were sampled on January 15, 2004, after DEFS assumed ownership of the property.

The wells were sampled using the protocol included in the approved SAP for this study area. All of the wells were initially gauged to provide data on the saturated thickness in each well. All of the new and existing wells on the Huston property were gauged on December 9, 2003. The wells on the Huston property were re-measured on January 12, 2003, along with the wells on the DEFS Eldridge property.

Each well was then purged until the field parameters (temperature, pH and conductivity) equilibrated within the range set in the SAP. Each well was sampled using a disposable bailer. The samples were stored in ice-filled chests until they could be delivered directly to Environmental Labs of Texas in Midland, Texas. Each sample was analyzed for benzene, toluene, ethylbenzene, xylenes and chlorides. Copies of the two laboratory reports and the chains of custody are included as Appendix 2

3.5 Characterization Of Free-Phase Hydrocarbons

The final field activity was the collection and analyses of FPH and DPH samples from the wells containing FPH. The FPH samples were subjected to physical properties, PIANO (paraffin, isoparaffins, aromatics, naththenics and olefins) measurement and isotopic analysis. These data were evaluated to differentiate different FPH sources.

PIANO analyses had already been completed on samples from wells MW-8, MW-11, MW-18, MW-23, MW-26 and MW-27 prior to the Fall 2003 field activities. PIANO analyses were completed on the FPH samples from MW-N, MW-CC and MW-EE as part of the fall field program. A copy of the laboratory report for the most recent analysis is in Appendix 2.

FPH samples were submitted to Humble Geochemical Services Division in Humble Texas for ¹³ C isotopic analysis. Samples from MW-8, MW-11, MW-18, MW-23, MW-26 and MW-27 were submitted in September 2003. Samples from MW-N, MW-CC and MW-EE were submitted in January 2004. Copies of their analytical reports are in Appendix 2.

The final activity completed in this task was the collection of DPH samples from the eight wells that contained FPH in the fall of 2003 (MW-8, MW-11, MW-18, MW-23, MW-26, MW-27, MW-N, MW-CC and MW-EE). The samples were collected directly beneath the product/water interface without purging the well. The samples from MW-8 through MW-27 were collected using a low-flow bladder pump with disposable bailers. The samples from MW-N, MW-CC and MW-EE were collected using a disposable bailer

after first removing the free product using a FPH-only bailer. The samples were analyzed for the BTEX constituents to assess relative contributions to the groundwater.

4 COMPREHENSIVE DATA SUMMARY

This section provides a comprehensive summary of all data collected at the study area. The results from the fall 2003 investigative program are included in comprehensive tables rather than separately.

4.1 Soils Analytical Data and Lithologic Distribution

Two kinds of subsurface material data were generated. The first type were the field and laboratory measurement of hydrocarbons. These measurements included the field PID measurements from the grab soil samples and the laboratory analytical data. The field PID readings are summarized in Table 3. The laboratory analytical data is summarized in Table 4.

The high recovery rate of the continuous core resulted in the generation of more detailed physical descriptions than in the past. This physical data included the lithologic composition of the materials as well as delineation of stained and odorous zones.

The PID data was combined with the visual and olfactory observations to define the hydrocarbon-affected intervals in each boring. Figure 6 is a contour map of the top of the hydrocarbon-affected interval based upon the November 2003 borings. A contour map of the thickness of the hydrocarbon interval is included as Figure 7.

The second data type were the detailed lithologic descriptions that were compiled for each of the November 2003 borings. Logs were generated for each boring that include lithologic, PID and saturated material descriptions. The boring logs are included in Appendix 3. North-south and east-west cross sections were also generated from the boring data (Figures 8, 9 and 10).

4.2 Saturated Material Properties

No additional hydraulic conductivity measurements were made during the most recent field program because the pumping test completed in October 2002 provided a representative measurement of the hydraulic conductivity of the subsurface materials. Table 5 provides the data from that test.

Purging data from the well development forms were evaluated to assess whether different areas have lower or higher hydraulic conductivity differences relative to each other. Additional slug and/or pump tests will be completed, if necessary, during the design phase.

4.3 Water-Table Elevation and Product Thickness Data

This section summarizes the water-table information and product thickness data. Depthto-water and product (if present) measurements have been completed nine times since the initial AMEC investigation in August 2001. The water-table elevation information is summarized first and then followed by the product thickness data.

4.3.1 Water-Table Elevations

Table 6 summarizes the calculated water-table elevations based upon the gauging data. The water-table elevations for the wells containing free product were estimated using the following formula:

 $GWE_{corr} = MGWE + (PT*PD)$: where

MGWE is the actual measured groundwater elevation; PT is the measured free-phase hydrocarbon thickness; and PD is the free phase hydrocarbon density (assumed 0.76).

This correction provides an accurate estimate of the water table elevation if free product was not present in the well.

Figure 11 is a hydrograph for select wells at the study area. The wells were selected based upon length of record and geographic location. Well MW-1D was included because it is the only well at the study area completed into the deeper saturated materials. Examination of the hydrograph indicates that the relative differences in groundwater elevations remain essentially constant after the water table is allowed to equilibrate following installation. The shape of the water table remains the same as it rises and falls if the relative water-table elevations do not change between wells. Figure 12 is the water-table map based upon the January 12, 2004 gauging data. This map reflects the greater data density resulting from the installation of 35 new wells between October 2003 and January 2004.

4.3.2 Free Phase Hydrocarbon Thickness Data

Nine of the 62 temporary and permanent study area monitoring wells have contained FPH. The free product thickness measurements are summarized in Table 7. Only eight wells currently contain measurable FPH as MW-18 only contained FPH in February and June 2003.

The interval between the well installation and the date that FPH first appeared varied by well. Well MW-8 did not produce measurable FPH until 14 months after it was installed (June 2003). Well MW-11 did not produce measurable FPH until 7 months after it was installed by AMEC (October 2002). Well MW-18 did not produce measurable FPH

until 3 months after it was installed by Trident. The remaining wells produced free product immediately after installation.

There is no obvious explanation for the differing lag times in FPH appearance. Wells MW-8 and MW-11 were installed using hollow-stem auger, and AMEC reportedly developed them in an unspecified fashion. Both wells were also purged and sampled a minimum of two times before they produced FPH. Wells MW-18, MW-23, MW-26 and MW-27 were installed using air rotary, and all four were developed in the fashion described in Section 3.1 above. Well MW-18 was purged and sampled once before it producted FPH. Wells MW-N, MW-CC and MW-EE were all installed using the sonic drilling technique described in Section 3.1 above.

4.4 Dissolved Phase Constituents

This section summarizes the DPH data generated during all of the episodes. It also includes the DPH result for the samples collected from the wells containing FPH.

The summary tables were divided into wells installed before and after November 2003. Table 8 summarize the benzene concentrations, Table 9 the toluene concentrations, Table 10 the ethylbenzene concentrations and Table 11 the total xylene concentrations.

Table 12 summarizes the BTEX results from the samples collected from the wells containing FPH. The samples were collected without purging from the static water column immediately below the product.

Table 13 summarizes the chloride concentrations measured in all of the wells. Chlorides can be a good indicator of a produced water spill or release from an oil/gas producing operation.

4.5 Free Phase Hydrocarbon Composition

The FPH samples collected from each well were subjected to physical properties, PIANO and speciated carbon isotopic analyses to evaluate their potential differing origins. The physical properties and PIANO analytical results are summarized in Table 14. The summarized chemical data includes the separated paraffin, isoparaffins, aromatics, naththenics and olefins fractions by weight percent and the BTEX constituents by weight percent. The physical property data includes the specific gravity, the color and the odor (as described by the lab) of each FPH sample.

The isotopic results are summarized in Table 15. Each sample was first separated into their respective saturate, aromatic and resin fractions. The ¹³C and ¹⁴C concentrations were then measured, and those ratios were compared to a standard.

5 INTERPRETATIONS AND CONCLUSIONS

This section presents the interpretations and conclusions that are based on the data presented above. The information provided below is sufficient to select an appropriate remediation strategy and prepare a preliminary design as part of the Stage 2 abatement plan process.

The information is grouped into separate sections on saturated material types and properties, the groundwater flow direction and gradient, hydrocarbon distribution and natural attenuation efficiency.

5.1 Saturated Material Types and Properties

The subsurface material types and their distribution were initially defined in the November 2002 Remediacon report. The recently-completed compilation of geologic data verified that no major material types were overlooked. The data was also evaluated for evidence of lithologic-based preferential groundwater flow pathways.

5.1.1 Material Types

This section describes the unconsolidated materials that contain the affected groundwater beneath the study area. The permitted water wells provide an indication of the thickness of the unconsolidated materials above the bedrock. There are five permitted wells in Section 21 (Figure 5). The depths for these wells vary between 60 and 83 feet. These values establish the thickness of the unconsolidated materials, assuming the drillers stopped their borings when they encountered bedrock.

The above values correlate well with the estimates provided by Nicholson and Clebsch (1961). Their maps indicate that the top of the red beds in this area are present at an elevation of 3,550 feet, resulting in an unconsolidated material thickness of approximately 75 feet.

The November 2002 Remediacon report listed the following four materials as present beneath the study area:

- An extensive upper layer of caliche;
- An unconsolidated sand that contains varying percentages of fines (clays and silts);
- A cemented (indurated) sand; and
- Low plasticity silts and clays.

This section also summarizes and updates the information on the composition and distribution of the above materials. Figure 8 is a cross section that generally follows the alignment of the western swale. Figures 9 and 10 are east-west trending cross sections near the northern end of the western drainage and approximately 500 feet north of the Huston-DEFS Eldridge property boundary.

Caliche is the uppermost continuous material beneath the study area. The caliche is usually the thickest in the center of the study area between the two swales. It generally lies above the saturated zones. Although the cementation associated with it makes the materials very hard, it does not act as a significant vertical hydrocarbon infiltration barrier based upon the areas of FPH that are present on top of the water table. The caliche is not considered important in evaluating potential remediation options except that it would impede any drilling and excavation activities.

The materials beneath the caliche occur in three geographic regions. The materials in the far western region of the study area are generally well-sorted, very-fine-grained sands that are overlain by between 4 and 16 feet of caliche. The cementation of these sands varies. In some areas, the sands are not cemented. Other areas contain alternating cemented and uncemented sands. The eastern boundary of this area appears to coincide with, and may be related to, the western boundary of the western surface drainage.

Varying mixtures of clays, silts and sands are the dominant materials beneath the caliche in the region between the two swales. These materials are described as very-fine grained with varying percentages of silt and clay. There were alternating cemented (chert) and uncemented intervals noted in both the 2003 and recent Trident logs.

A low-plasticity clay was encountered in the eastern region primarily beneath the eastern drainage swale. The logs for the borings in this area describe the clay as containing 20 percent silt and very-fine-grained sand. These clay layers are also described as interlayered with the same type of cemented fine-grained sands (chert) that are found throughout the study area.

The recent geologic data compilation activities identified an extensive, very-fine-grained sand as the basal material encountered in most borings. The depth to the top of this sand varies as shown in Figure 13. The depth to the sand is greater in the area between the two swales. The bottom of the sand was never encountered.

This sand may possess a higher primary permeability than the overlying materials. Trident reviewed their purging forms from the December sampling event and categorized the relative permeability of all of the wells that were sampled as low, medium and high based upon their ability to produce water. This evaluation did not include the eight wells that contained free product (MW-8, MW-11, MW-23, MW-26, MW-27, MW-N, MW-CC, MW-EE) since they were not purged. Their sampling forms are included in Appendix 3.

Trident classified wells MW-D, MW-G, MW-M, MW-KK and MW-FF as having medium permeability. It classified wells MW-7, MW-13, MW-14 and MW-BB as having low permeability. The remaining wells were all classified as having high permeabilities.

There is no correlation between the thickness of the basal sand and the permeability based upon the above qualitative evaluation. Well MW-BB, the only recent well with a

low permeability rating, contained 10 feet of the basal sand. The five wells with moderate permeabilities contained between 0.8 and 10.4 feet of sand. The material distribution is sufficiently defined to complete the Stage 2 process. There is no indication of a potential for preferential groundwater flow that would originate from lithologic differences. Additional characterization may be necessary during the design phase depending upon the remediation techniques selected.

5.1.2 Hydrologic Material Properties

A pumping test was completed in October 2002 to measure the hydraulic conductivity of the saturated materials along the Huston-DEFS Eldridge property boundary. The irrigation well was pumped for 250 minutes at an average flow rate of 73 gallons per minute. The resulting drawdown was measured in wells MW-1 through MW-5. The data was analyzed using the commercially-available Aqtesolv computer program. The data and results of that test are presented in Table 5 and are summarized below:

Well	Hydraulic Conductivity <u>(feet/day)</u>	Specific Yield <u>(-)</u>
MW-1	96	0.2
MW-2	191	0.5
MW-3	196	0.5

Wells MW-4 and MW-5 could not be analyzed because they had no measurable drawdown during the test.

The hydraulic conductivity values are considered moderate to high (US Bureau of Reclamation, 1977). The specific yield values are higher than normally anticipated. The above values were derived along the Huston-DEFS Eldridge property boundary; however, they appear to be representative for the entire study area based upon the results of Trident's evaluation of their January 2004 purge records. Further testing will not be completed unless it is necessary during the Stage 2 design process.

5.2 Groundwater Flow Direction and Gradient

This section summarizes groundwater flow beneath the study area. Historic water-table fluctuations are evaluated first. Horizontal and vertical groundwater flow is then assessed.

Figure 11 is a hydrograph showing the water-table changes over time in select wells. The earliest wells were selected because they show the longest period of record and they provide adequate coverage of the study area. Well MW-1D was included because it is completed into a deeper interval within the saturated materials.

Examination of Figure 11 indicates that the water-table elevation has remained relatively constant since DEFS contractors begin measuring the water levels in July 2002. This consistency indicates that down-gradient withdrawals, if any, are not reducing the saturated material thickness at the study area. Figure 11 also indicates that the relative water-table difference between the wells has remained constant since July 2002. The lateral groundwater flow relationships will remain constant as long as the relative head differences between wells are maintained.

Figure 12 shows the contoured water-table elevations based upon the January 2004 readings (Table 6). A relatively uniform groundwater gradient of approximately 0.003 feet per foot to the southeast is present between MW-EE and MW-18 (Figure 12). The groundwater gradient then deflects to the south and increases to approximately 0.016 feet/foot south of well MW-5. The gradient probably steepens because of the convergence of groundwater into a more restricted area on the DEFS Eldridge property. The gradient must steepen to increase the velocity to balance the regional groundwater flow rate as the flow area is reduced.

There are four locations where the water-table elevations of one or two wells are anomalous with the regional groundwater gradient (Figure 12). These locations include:

- MW-A and MW-B: The water-table elevations for these two wells are approximately 3.5 feet lower than the anticipated values. Both MW-A and MW-B are completed through the same approximate intervals as neighboring wells MW-1, MW-2, MW-3 and MW-5.
- MW-6 and MW-7: MW-7 sits on a slope approximately 6-feet higher than the wells to the east, and the water table elevations reflect this situation. The groundwater has been elevated at well MW-6 since the initiation of the DEFS studies in July 2002.
- MW-P, MW-Q, MW-R and MW-S: The water table elevations are also higher in these wells than anticipated. This same alignment also exhibits anomalous DPH concentrations as discussed below in Section 5.3.4.
- MW-KK: The measured water table is approximately 1-foot lower than the neighboring wells to the north (MW-22, MW-CC and MW-LL), the south (MW-M) and the east (MW-N).

The above anomalies do not impact the conclusions in this document, nor do they need to be reconciled to complete the Stage 2 activities. They may have to be more fully evaluated if they fall within areas where remediation activities will be implemented.

The vertical flow component must also be considered. The MW-1/MW-1D well cluster provides the sole point on the study area to measure the vertical groundwater gradient.

Water Table Elevations (feet)									
Well	02/03	06/03	09/03	12/03	01/04				
MW-1	3,598.68	3,598.59	3,598.36	3,598.48	3,598.47				
MW-1D	3,595.12	3,595.03	3,594.81	3,594.90	3,594.92				
Head Difference	3.56 down	3.56 down	3.55 down	3.58 down	3.55 down				

The measurements show that a consistent downward groundwater gradient is present at this location. The vertical gradient can be calculated using an average head difference of 3.56 feet and a 6-foot completion difference between the base of MW-1 (27 feet) and the top of the sand pack in MW-1D (33 feet). The resulting gradient is 0.59 feet/foot downward.

The area surrounding well MW-1 was selected for the deep well because of its location relative to the irrigation well. Remediacon believed that hydrocarbons in the deeper saturated materials would have migrated past this location before they reached the irrigation well. DPH have generally only been detected at trace concentrations in MW-1D, confirming that the DPH remain in the upper part of the saturated materials.

Remediacon proposed to install an additional deep monitoring well near MW-24 south of the former irrigated field on the DEFS Eldridge property as part of the Stage 1 field program. This activity was not completed because of the declines in the DPH in the affected wells on the property. The installation of additional wells into the deeper zone may be necessary as part of a boundary-monitoring effort. That possibility will be evaluated during the Stage 2 process.

5.2.1 Groundwater Flow Velocity

The average advective groundwater velocity is typically estimated using the hydraulic conductivity, the effective porosity and the measured groundwater gradient in a modified version of Darcy's Law:

V = (K * i) / Sy: where

- K is the hydraulic conductivity (100 to 200 feet/day based upon the information in the table in Section 5.1.2);
- Sy is the specific yield (0.2 to 0.5 rounded from the same table); and
- i is the groundwater gradient (two values: 0.003 in the northern study area and 0.016 beneath the DEFS Eldridge property as defined in opening paragraphs of this section).

Substituting the above values into the equation yields a calculated velocity between 0.6 and 3 feet per day for the Huston property and 3.2 and 160 feet per day for the DEFS Eldridge property. These calculated groundwater velocities represent an extremely high range of numbers that primarily originate from a high hydraulic conductivity. In fact, the upper velocity value for the DEFS Eldridge property is unrealistically high. The numbers are sufficient to complete the Stage 2 evaluation; however, further investigation may have to be completed during the Stage 2 design phase if a remediation component that requires a minimum residence time within an in-situ treatment zone is included.

It is also important to note that this calculation represents the average groundwater velocity and thus the average velocity of an unimpeded chemical constituent. The calculation does not factor in constituent-specific retardation, nor does it evaluate the attenuation effects of dispersion and biodegradation.

5.3 Hydrocarbon Constituent Distribution

This section describes the occurrence and distribution of the hydrocarbon constituents in the groundwater system. The November 2002 Remediacon report discussed the distribution of the inorganic constituents and further information on them is not necessary for the Stage 2 evaluations.

This section contains three subsections. The first subsection reviews the process used to select benzene as the constituent of concern. The second section identifies the locations where the hydrocarbons were introduced into the groundwater. The third subsection describes the distribution of DPH, specifically benzene, in the groundwater beneath the study area.

5.3.1 Identification of Constituent of Concern

Benzene was identified as the constituent of concern in the November 2002 Remediacon report. It was the hydrocarbon constituent that most often exceeded the groundwater standards. This fact, coupled with its far lower standard, makes benzene the major organic constituent of concern in the study area.

None of the data collected since the release of that report alters the above statement. In addition, no other constituents have been identified that warrant consideration. Dissolved benzene is present in the study area groundwater at the highest concentrations over the most extensive area. It is also has the lowest potential remediation standards of any of the hydrocarbon constituents.

5.3.2 Dissolved Hydrocarbon Sources

This subsection describes the areas where hydrocarbons are migrating from FPH into the groundwater. Figure 14 shows the aerial photograph of the study area overlain with the

pipelines, the wells containing the FPH and all of the wells containing greater than 1 mg/l of dissolved benzene. The FPH that are releasing the dissolved constituents are located in the three geographically distinct areas. They are labeled as the north release area, the middle release area and the south release area. The areas are shown on Figure 14.

The north release area includes wells MW-23, MW-26 and MW-EE. All three wells contain FPH. There are no wells containing dissolved benzene at concentrations greater than 1 mg/l. MW-26 is located directly beneath one of the leaks that DEFS located in the NMG-148 pipeline. There was no surface evidence of the hydrocarbon release from the pipeline.

The north release area as defined by the three wells is aligned northwest to southeast. This direction corresponds to the groundwater flow path based upon the water table contours shown in Figure 12. Wells MW-EE and MW-23 that contain FPH are located to the southeast 91 feet and 250 feet from MW-26 respectively. The FPH was not encountered 470 feet from MW-26 in MW-DD. There are no wells between MW-23 and MW-DD so the actual distance of FPH migration could be substantially shorter.

The middle release area includes three wells containing FPH (MW-27, MW-N and MW-CC). MW-27 is located directly beneath one of the leaks that DEFS identified in the NMG-148 pipeline. There was no surface evidence of the hydrocarbon release from the pipeline. There are also nine wells that contain greater than 1 mg/l dissolved benzene (MW-13, MW-LL, MW-M, MW-NN, MW-O, MW-OO, MW-P, MW-Q and MW-T).

MW-CC contains FPH within the middle release area, and it is approximately 40 feet south of MW-27. MW-N, also containing FPH is 300 feet southeast of MW-27. Well MW-NN, located 373 feet from MW-27, does not contain FPH. There is no FPH in well MW-OO that is located between wells MW-27 and MW-N.

The wells in the middle release area are aligned west to east just south of the historic gathering line. The middle release area is also substantially larger than either the north or the south release areas because of the alignment of wells parallel to the historic gathering line. This size difference probably originates from either multiple FPH sources or anomalous hydrocarbon migration. This topic is discussed in more detail in the DPH discussion in Section 5.3.4 below.

The south release area includes two wells that contain FPH (MW-8 and MW-11) and four wells that contain dissolved benzene in excess of 1 mg/l (MW- BB, MW-GG, MW-HH and MW-JJ). Wells MW-10 and MW-L were not included in this grouping because they are up-gradient from the remainder of the cluster. There was no surface evidence of a hydrocarbon release in this area.

Wells MW-8 and MW-11 in the south release area are separated by 153 feet. Well MW-AA does not contain FPH and it is 44 feet southeast of MW-8. MW-BB lies between MW-8 and MW-11 and it does not contain FPH. Well MW-11, the northernmost of the two FPH wells, is approximately 1,200 feet from the nearest leak

identified by DEFS in their NMG-148 line. The relationship between the two locations is shown on Figure 14.

The south release area surrounds the points where four pipelines cross. The DEFS ZZ-2 line was completely exposed by DEFS in December 2002, and there were no leaks or evidence of past leaks (clamps or replacement coating) along it. The Conoco line is parallel to the DEFS ZZ-2 line. The two Sid Richardson lines cross the DEFS ZZ-2 line and the Conoco line between MW-8 and MW-11 (Figure 14). The historic Chevron burn/blowdown pit also lies between the middle and south FPH areas.

There are five additional wells that do not fall within the boundaries of the north, middle and south release areas. None of these wells has ever contained FPH.

Two of these wells, MW-12 and MW-FF, are located adjacent to the Chevron burn/blowdown pit. These wells both contained dissolved chlorides at concentrations above background levels (Table 13). The elevated chloride concentrations indicate that releases from this pit have migrated to the groundwater. The limited March 2001 report prepared for Chevron indicates that hydrocarbon-contaminated soils contained total petroleum hydrocarbons measured in the field at concentrations up to 2,500 mg/kg TPH within this pit. No sampling was completed below 4 feet even though the TPH values still exhibited field measurements over 150 mg/kg. The laboratory results for the sample from 4 feet had elevated detection limits of 50 mg/kg, and no laboratory analysis was completed for benzene, toluene, ethylbenzene and xylenes.

Well MW-K is almost due east of the south FPH area (Figure 14). This well is also southeast (downgradient) from the middle release area. The final two wells MW-4 and MW-A are located to the south. The dissolved hydrocarbons were probably drawn to these two wells through the use of the irrigation well as discussed below in Section 5.3.4.

5.3.3 Free Phase Hydrocarbon Characterization

All of the FPH samples were tested to evaluate their relationships to each other. Only the two DEFS pipelines out of the seven pipelines that traverse the study area have been tested for leaks. Only the FPH associated with north release can be completely attributed to a leak from a DEFS pipeline. The other two areas may include releases from non-DEFS pipelines that have not been tested to ensure that they are not leaking.

A FPH sample from MW-18 was also analyzed. MW-18 contained FPH during the February 2002 and June 2002 sampling episodes. FPH have not been present in this well since the June 2002 episode. Well MW-18 lies southeast of the southern release area (Figure 4) so it is combined with MW-8 and MW-11.

The FPH samples from each location were analyzed for specific gravity, fractionation, and for carbon isotope analyses to evaluate their relationships. Each type of analyses is interpreted relative to distinguishing differing FPH types.

The specific gravity results are summarized on Table 14 and plotted on Figure 15. The samples are grouped by region. They are also similar for MW-27, MW-CC and MW-N from the middle release area. The specific gravities differ between MW-26, MW-EE and MW-23 in the north release area. The specific gravities are very similar for the MW-8, MW-11, and MW-18 grouping from the south release area, and their gravities are higher than those measured in the middle release area.

The FPH samples were also analyzed by separating them into their respective paraffin, isoparaffins, aromatics, naththenics and olefins phases. The paraffin, isoparaffin and aromatic phases accounted for 94 percent of all of the FPH components in each of the samples (Table 14). These three phases are plotted on a trilinear diagram to evaluate potential differences (Figure 16). One cluster includes the samples from the two NMG-148 pipeline leaks (MW-26, MW-27) along with the other two samples from the middle release area (MW-CC, MW-N). Another cluster includes the samples from the south release area (MW-8, MW-11) and MW-23 from the north release area. The samples from wells MW-EE and MW-18 plot at different locations.

Finally, the FPH samples were subjected to carbon isotopic analysis. Each sample was separated into its saturate, aromatic and resin phases. The carbon 13 isotope (^{13}C) concentration was measured for each phase and the resulting concentration was then compared to a standard. The results are reported as the difference between the number of ^{13}C in the sample and the PDB standard. The results are negative because the PDB standard contains more ^{13}C than the study area samples.

The analytical data is shown on Table 15. The data is plotted as two scatter plots the aromatic verses the saturate data is plotted on Figure 17 while the resin verses the saturate data is plotted on Figure 18. The samples from MW-8 and MW-11 plot in distinctly different locations from the other samples on both figures. The sample from MW-18 plots in an intermediate location. The samples from MW-27 and MW-EE have identical values for all three parameters so they plot in the same location on both graphs. The values for MW-23 and MW-26, MW-N and MW-CC plot in the area around the MW-27/MW-EE point.

The above results were evaluated relative to identifying differing FPH types. Locations that contain FPH that cannot be attributed to the leaks identified in the NMG-148 pipeline must be further evaluated to ensure that there are no continuing FPH leaks from non-DEFS pipelines or historic production facilities.

The FPH in the north release area in MW-26, MW-EE and MW-23 all appear to originate from the same DEFS NMG-148 release point. This conclusion is primarily based upon their up-gradient location relative to the other areas and the parallel alignment of the FPH plume to the groundwater flow direction.

The source of the FPH in the south release area is not from the two DEFS pipelines for the following reasons:

- 1. The physical and isotopic composition of the FPH in the south area is distinctly different than the FPH from the nearest DEFS source at MW-27 as discussed in this section.
- 2. As shown on Figure 14 the south release area is 1,200 feet from the nearest identified DEFS release. The maximum lateral FPH distances were 470 feet (maximum) for the north area, 370 feet for the middle area and 44 feet for the south area. The 1,200 foot value is 2.6 times greater than the maximum distance measured.
- 3. The DEFS ZZ-2 line was completely exhumed. There was no evidence of leaks along its entire alignment, and there were also no clamps or other indications of repairs along the entire pipeline.

It is more likely that the FPH in the south release area originated from a non-DEFS pipeline source. The two Sid Richardson pipelines and the Conoco pipeline lie within the southern release area between wells MW-8 and MW-11. There will probably be no surface evidence of a release based upon the results of the NMG-148 pipeline assessment activities. The only way to locate the leaks appears to be to hydrostatically test the lines and exhume them for evidence of historic leaks.

The FPH in the middle release area may originate from one or more sources. The release associated with MW-27 is in this area; however, the affected area is far greater than would be expected for a single release point as exhibited by the north and south release areas. The FPH data is inconclusive relative to identifying the number of releases. The DPH distribution in this area will be evaluated relative to the presence of multiple sources. The non-DEFS lines in this area for which testing information is not available include the Dynegy gathering line that originates at the Chevron pit and extends to the north and the historic gathering that was tested by Dynegy west of the study area.

5.3.4 Immobile and Dissolved Hydrocarbon Distribution and Fate

This section describes the distribution of the immobile hydrocarbon constituents in the unsaturated subsurface materials and the DPH in the groundwater at the study area. The hydrocarbon distribution is complex for the following reasons:

- 1. Multiple DPH plumes originate from different release areas as described above in Section 5.3.3.
- 2. The DPH have potentially migrated away from the release areas described above under two different groundwater flow conditions. The first condition is groundwater flow under natural conditions. This condition has been present since June 2000. It was also present in the past when the irrigation well on the northern boundary of the DEFS Eldridge property was not operating.

The second condition existed when the irrigation pump was operating. During this time, generally between February and November, groundwater flow would have been

deflected southward toward the irrigation well. The effects of pumping would expand northward through the irrigation season as the subsurface materials became progressively more dewatered.

- 3. Any DPH plume that intercepted the irrigation well's capture zone would expand toward the irrigation well. In addition, increased velocity from pumping would result in greater hydrocarbon travel distances as biodegradation occurred. Eventually, the hydrocarbon plume reached the irrigation well inlet and the affected groundwater was discharged.
- 4. The use of the irrigation well resulted in the dewatering of the saturated materials beneath the study area. These materials resaturated when pumping ceased. Both the dissolved and the free phase hydrocarbons (if present) would contact these materials as the water table fell and then recovered. This situation could have resulted in a thicker saturated interval of hydrocarbon-affected materials than would be encountered if only natural groundwater fluctuations were present.
- 5. The DPH that was transported outside of the natural, equilibrated plume areas are now biodegrading because they have been cut off from their original sources since pumping ceased in June 2000 and the groundwater flow direction and velocity returned to natural conditions.

The DPH plumes must be delineated to a degree that permits evaluation of potential remediation options as required in the Stage 2 abatement plan process. This effort includes: 1) delineating the area where a DPH plume is present under natural conditions; and 2) identifying areas outside of the natural plume boundaries where residual DPH transported during irrigation remain.

The immobile hydrocarbon distribution in the subsurface materials will be evaluated first. DPH distribution in the groundwater follows.

5.3.4.1 Hydrocarbon Distribution in the Subsurface Materials

The field and laboratory data from the recent borings was used to characterize the hydrocarbon distribution in the subsurface materials. Evaluation was limited to this data because it was collected at the same time over a representative part of the study area by the same personnel using consistent methods.

The typical subsurface materials characterization program assumes that the unsaturated interval containing affected hydrocarbons can be approximately delineated using a PID. This assumption is not valid for this study area, and the use of the PID results in overestimation of the affected region. Table 16 summarizes the difference in the affected-material thicknesses based upon characterization with and without PID data. The first characterization method was based solely upon the evaluation of direct physical data such as staining and odor. The second method incorporated the PID measurements into the evaluation. Well MW-H showed no impacts in either evaluation.

remaining 19 DPH borings had thickness differences between the two techniques that ranged between 1.8 and 21.2 feet. All 15 of the FPH borings had differing thickness evaluations that ranged between 3.2 and 24.2 feet.

Table 17 compares the PID readings to the soil analytical results. All of the samples had measured PID values in excess of 100 ppm, yet only three of the samples contained detectable BTEX constituents. The combination of a permeable material coupled with a FPH that has components with high vapor pressures produces this discrepancy. The interpretations presented below are based upon the non-PID results. The PID data was valuable because it indicates that the materials probably posses a high potential for transmitting soil vapors through the subsurface.

The results in Table 17 also indicate that the region of affected materials appears to be limited. MW-II is located approximately midway between MW-8 and MW-11 in the south release area. Location MW-OO is located between MW-27 and MW-N in the middle release area. The presence of high BTEX constituents in these two soil samples indicates that immobile FPH may be present at these locations. Well MW-T was installed to attempt to define the up-gradient limit of hydrocarbons found in the middle release area. The soil sample analyzed was collected from immediately above the water table. Again, the higher BTEX concentrations indicate that immobile FPH may also be present at this location.

Finally, some wells had more than one hydrocarbon-affected interval (Table 18). These wells were generally associated with the middle and south release areas . The distribution at well MW-O is of particular interest because it indicates the possibility of a shallow source location that is not associated with MW-27.

5.3.4.2 Dissolved Phase Hydrocarbon Distribution

Both temporal and areal DPH evaluation was completed. The temporal assessment defines the regions where DPH are present because of use of the irrigation well. The areal distribution must be delineated to evaluate potential remediation options during Stage 2. Benzene is used for the evaluation because it is the identified constituent of concern as discussed in Section 5.3.1 above. The December 2002, January 2003 benzene concentrations used in this evaluation are summarized in Table 8.

Four locations had benzene results that conflict with past sampling events. Wells MW-1, MW-1D, MW-5 and MW-22 are all wells that have historically had benzene concentrations near their detection limits. The December 2003 benzene concentrations in all of these wells were all above their historic values. These wells will have to be re-evaluated following the March 2004 quarterly monitoring episode. This information should be available for the preparation of the Stage 2 abatement plan report.

The benzene concentrations have decreased since sampling began in MW-4, MW-6, MW-10, MW-13, MW-14, MW-18, MW-19 and the house well. The rate of decrease in the wells with the higher benzene concentrations appears to be declining.

The benzene concentration in the former house well on the DEFS Eldridge property declined from 0.59 to 0.15 mg/l between December 2002 and December 2003. This well will be included in future monitoring episodes to track the continued decline of the DPH.

The benzene decline in wells MW-6, MW-18 and MW-19 indicates that the equilibrated plume boundary may lie to the north of these wells. Benzene is decreasing in MW-4; however, the original concentration was so elevated that it will take considerable time at the current rate for the benzene to decrease to nominal levels.

Figure 19 shows the benzene isopleth based upon the December 2003/January 2004 sampling results. The contours were generated using the Surfer program with the kriging option. The benzene concentrations in Table 12 for the wells containing FPH were incorporated into the data set to attempt to understand the relationships between the FPH release areas and the resulting DPH distribution.

DPH plumes underlie three geographically-distinct areas within the study area. The northern plume coincides with the north release area and will be referred to as the north plume. The middle plume includes the middle and south release areas so it will be called the m/s plume. The third plume originates from effects of the irrigation well so it is named the irrigation plume.

The north plume originates at MW-26 and trends to the southeast. The plume appears to be relatively narrow. Well MW-22, which had not had detectable DPH prior to the December 2003 sampling episode, marks the down-gradient extent of the plume; however, it is likely that the plume does not extend past the eastern swale.

The m/s plume includes both the middle and south release areas. The m/s plume is wider than would be expected if all of the DPH were emanating from the two FPH locations of MW-8/MW-11 and MW-27. The lateral expansion results from the hydrocarbons that are present in the alignment marked by wells MW-O, MW-13, MW-P and MW-Q. Together, these wells define a potential west-east-trending line source with a width of approximately 450 feet. The dissolved benzene concentrations decline moving from west (MW-O at 30.4 mg/l) to east (MW-Q at 7.44 mg/l).

There are two potential origins for this line source. The first would be a leak or leaks along the east-west historic gathering line that is immediately north of the line of wells. The second potential origin could be FPH that migrated laterally eastward from a point source rather than down the groundwater gradient like the configuration in the north and south release areas.

The existing monitoring well network establishes that DPH are absent or present at concentrations approaching the detection limit downgradient (southeast) of the m/s plume in wells MW-19, MW-C, MW-D, MW-F and MW-G. Further delineation of the dissolved plume is not necessary to complete the Stage 2 activities. It is important to establish that there are no continuing releases that will continue to supply FPH that would result in an expansion of the m/s plume.

The irrigation plume includes MW-4, MW-A and the House Well. This plume probably originated from DPH in the south release area migrating southward while the irrigation well was operating. The irrigation plume has now been cut off from the source, and it should continue to attenuate as long as the irrigation well is not used; however, the non-DEFS source(s) in the south release area continue to release DPH into the groundwater that will migrate to the southeast along the natural groundwater gradient.

The source of the benzenes in the house well is believed to be percolating irrigation water and/or water from the fish ponds that percolated to the water table and was then captured by the house well. The DPH in this water will also continue to decline from biodegradation.

Defining the origin of the irrigation plume is not necessary for completing the Stage 2 activities, as long as the declining DPH concentrations indicate that no continuing release is present.

The study area boundary is shown on Figure 5. The boundaries of the study area have been defined based upon the wells that contain DPH below a 0.005 mg/l concentration. This definition meets the requirement contained in 19.15.1.19.E(3)(b)(i).

The boundary of the study area based upon the DPH data is shown on Figure 5 to show the relationship between the permitted water wells and DPH plume. Permit 10238 shown on Figure 5 was issued to the only residence near the study area. This well is than the nearest part of the DPH plume. It is approximately 0.2 miles (1,050 feet) from and topographically higher than the southwestern boundary of the study area.

The only other permitted water well that could be potentially impacted by the DPH is 5336 (Figure 5). This well is believed to be the North Water Well that is currently included in the study area monitoring program.

5.4 Natural Attenuation Efficiency

The declines in the DPH concentrations discussed above provide direct evidence of active natural bioremediation in the groundwater. The shape of the northern plume will probably not change because it appears to have never been affected by the pumping of the irrigation well. The southern boundary for the middle/south plume may contract as natural bioremediation continues to remove residual DPH that was transported to the south by use of the irrigation well. The irrigation plume will also continue to contract and, in time, it could disappear entirely if it is no longer connected to an ongoing release.

6 RECOMMENDED INTERIM ACTIVITIES

No additional field activities need to be completed to complete the Stage 2 abatement plan activities. There are two activities that should be completed during the interim period between the submittal of this final investigative report and the onset of any design activities for the Stage 2 abatement plan.

First, the FPH removal program should continue. The program will be evaluated and modified as necessary during the Stage 2 process. Second, quarterly groundwater monitoring should continue. All of the new wells should be sampled in March 2004 to confirm the initial concentrations. A comprehensive monitoring program will be included in the remediation plan that is set forth during the Stage 2 process.

Additionally, the non-DEFS pipelines that could be contributing hydrocarbons must be tested to verify that there all no continuing releases. It is imperative that such testing be completed before a Stage 2 process is adopted in order to assure that all potential sources of hydrocarbons have been eliminated so that any remediation activities are not compromised by continuing releases.

DEFS Eldridge Stage 1 Investigation Report February 19, 2004 Page 29

7 REFERENCES

AMEC Earth and Environmental, Inc 2001. Monitoring Well Installation and Ground Water Sampling, Eldridge Ranch, Lea County New Mexico.

AMEC Earth and Environmental, Inc 2002. Phase II Monitoring Well Installation and Ground Water Sampling, Eldridge Ranch, Lea County New Mexico. Report to the Oil Conservation Division.

Barden, Michael, J., 2000. Section 4 Biodegradation of Fuel Hydrocarbons (BTEX) from National Groundwater Association Short Course, Natural Attenuation for Remediation of Contaminated Sites as presented in Denver, Colorado from November 6 to November 8, 2000.

Nicholson, A., Jr., and Clebsch, A., Jr., 1961. Geology and Ground-Water Conditions in Southern Lea County New Mexico. Prepared by the New Mexico State Bureau of Mines and Mineral Resources in conjunction with the U.S. Geological Survey.

Remediacon Incorporated, November 4, 2002. Characterization Report for the Eldridge Ranch Study Area, Lea County New Mexico for Duke Energy Field Services, LP.

US Bureau of Reclamation, 1977, Ground Water Manual. Published by the Government Printing Office, Washington, D.C.

DEFS Eldridge Stage 1 Investigation Report February 19, 2004 Page 30

· · TABLES

. .

.

			UTM	UTM			Depth
		ang galangan ganagan galagi galagi galagi	Zone 13	Zone 13	n	Well	to Wata
File Number	Owner (as listed in file)	Section	Easting (meters)	Northing (meters)	Permit	Depth (feet)	Stern they because
Theshumber	Owner (as instead in the)	Section	(incluis)	-(incicity)		(icer)	(1001)
1975	O&W Drlg Co	16	663,768	3,614,158	2/12/1953	50	20
2596	MAKIN DRILLING COMPANY	29	661,800	3,611,317	7/20/1954	50	20
2602	OSCAR BOURG DRILLING CO	16	662,944	3,615,353	7/29/1954	96	
2621	LAMANCEDRILLINGCOMPANY	21	663,284	3,612,846	9/13/1954	83	40
3185	CARPER DRILLING CO.	16	664,156	3,614,968	4/23/1956	86	45
3228	MAKIN DRILLING COMPANY	16	664,170	3,614,163	6/18/1956	102	42
3313	D-K DRILLING COMPANY	22	664,578	3,613,767	9/24/1956	90	40
3378	MAKIN DRILLING COMPANY	15	664,558	3,614,973			
3387	AMERADA PETROLEUM CO	22	664,490	3,613,064	12/16/1956	95	35
3417	SHELRO DRILLING COMPANY	15			1/18/1957	96	44
3515	CACTUS DRILLING COMPANY	27	665,019	3,611,364	10/11/1956	57	35
3517	CACTUS DRILLING COMPANY	15	664,551	3,615,375	10/22/1956	72	45
3525	DENVER DRILLING COMPANY	15		3,614,370	5/13/1957	100	50
3884, 3885	R.L. LEWIS	28	663,616	3,611,534	6/14/1958	47	30
3922	LEON DICKERSON	29		3,611,513	8/11/1958	42	22
3937, 3939	N.A. BYRD	28	664,214	3,611,352			
3940	N.A. BYRD	28	664,201	3,612,156			
3949	ROY L WHEELER	29		3,611,513	8/11/1958	36	18
3952	W.R. HURST	28	663,616	3,611,534			
3956	DENNIS C. SMITH	29	662,007	3,611,513	8/12/1958	40	20
3976	JIMMY T. COOPER	29	662,007	3,611,513			
3982	W.R. HURST	28	663,013	3,610,931			
4104	N.A. BYRD	28	664,319	3,610,849			
4105	N.A. BYRD	27	664,509	3,611,659			
4108	R.H. HUSTON	21	664,189	3,612,959	4/1/1959	70	22
4799	W.V. WHITAKER	29	662,611	3,610,926	8/16/1962	150	
5336	GULFOILCORPORATION	21	663,471	3,613,650	2/15/1964	71	30
5500	FIRST BAPTIST CHURCH	29	662,710	3,611,025	12/4/1964	55	
5790	MONUMENT WATER USERS COOP	29	662,007	3,611,513			
7223	W.J. HART	28	663,112	3,611,030	8/24/1974	60	
8217	DERL TIDWELL	27	664,509	3,611,659	2/19/1980	50	18
9163	LEROYLOTT	21	663,880	3,613,454	4/15/1983	60	47
10238	W.S. ISRAEL	21	663,290	3,612,445	3/18/1992	60	30
10295	TERRY ISRAEL	21	663,290	3,612,445	10/26/1992	70	30
10498	JIMMY T. COOPER	29	662,007	3,611,513			
6933(E)	GULF OIL CORPORATION	17	662,454	3,614,443	4/11/1972	100	65
9631.4, 9632.4 9633.4	L.L. ROBINET	29	662,202	3,611,322			

Table 1 – Permitted Wells Within 1 Mile of Section 21, Township 19 south, Range 37 east

Notes: All sections in Township 19 south, Range 37 east

Table 2 – Monitoring Well Information

			Total	an a	
	Installed	Date	NY AND	Screen	and the second state of th
Well	Ву	Installed	Depth	Interval	Interval
MW-1	AMEC	8/01	28.0	11.8-26.8	9.8-27
MW-1D	Trident	12/02	48.0	34-44	33-48
MW-2	AMEC	8/01	28.0	11.7-26.7	8.7-27
MW-3	AMEC	8/01	30.0	13.4-28.4	10.4-29
MW-4	AMEC	8/01	30.0	13.2-28.2	10.2-29
MW-5	AMEC	8/01	27.0	10.2-25.2	7.2-26
MW-6	AMEC	8/01	30.0	13.5-28.5	10.5-29.0
	AMEC	8/01	35.0	18.6-33.6	15.6-34
	AMEC	3/02	30.0	15.0-30.0	12-30
MW-9	AMEC	3/02	27.0	11.4-26.4	8.4-27
MW-10	AMEC	3/02	31.0	15.2-30.2	12-31
MW-11	AMEC	3/02	30.4	15.3-30.3	12-30.4
MW-12	AMEC	3/02	34.0	18-33	15-34
MW-13	AMEC	3/02	36.0	18.11-33.11	16-36
MW-14	AMEC	3/02	32.0	16.11-31.11	14-32
MW-15	Trident	9/02	35.5	20-35	18-35.5
MW-16	Trident	9/02	25.0	9.5-24.5	9-24.5
MW-17	Trident	9/02	25.0	9.5-24.5	9-24.5
MW-18	Trident	9/02	32.0	16.5-31.5,,,	15-32
MW-19	Trident	9/02	30.0	7-27	6-30
MW-20	Trident	9/02	32.0	16.5-31.5	15-32
MW-21	Trident	9/02	35.0	19.5-34.5	18-35
MW-22	Trident	9/02	36.0	17-32	15-36
MW-23	Trident	9/02	30.0	14.5-29.5	11-30
MW-24	Trident	12/02	35.0	19-34	17-34
MW-25	Trident	2/03	37.0	17-37	15-37
MW-26	Trident	2/03	35.0	15-35	13-35
MW-27	Trident	2/03	37.0	17-37	15-37
North Water Well	?	?	~38	?	?
South Water Well	?	?	~23	?	?
West Water Well All units in feet	?	?	~47	?	• ?

All units in feet

?: no information available Minimum of 2 feet of pelletized bentonite on top of all sand packs.

Table 2 – (continued)

			Total		
	Installed	Date	Well	Screen	Sand
Well	By	Installed	Depth	Interval	Interval
MW-A	Trident	11/03	26.5	11-26	8-26.5
MW-B	Trident	11/03	30.5	15-30	11-30.5
MW-C	Trident	11/03	26.5	11-26	9-26.5
MW-D	Trident	11/03	31.5	16-31	14-31.5
MW-E	Trident	11/03	31	15-30	13-31
MW-F	Trident	11/03	26	9-24	6-24
MW-G	Trident	11/03	26	10-25	5-25
MW-H	Trident	11/03	30.5	15-30	12-30
MW-I	Trident	11/03	36.5	19-34	17-36.5
MW-J	Trident	11/03	27.5	12-27	9-27.5
MW-K	Trident	11/03	26	10-25	8-26
MW-L	Trident	11/03	33	16-31	14-33
MW-M	Trident	11/03	38.5	23-38	21-38
MW-N	Trident	11/03	36.5	21-36	19-36.5
MW-O	Trident	11/03	36.5	21-36	19-36.5
MW-P	Trident	11/03	38	20-35	18-38
MW-Q	Trident	11/03	36	19-34	16-36
MW-R	Trident	11/03	31	15-30	13-31
MW-S	Trident	11/03	28.5	13-28	10-28.5
MW-T	Trident	11/03	37	20-35	17-37
MW-AA	Trident	11/03	32.5	17-32	15-32.5
MW-BB	Trident	11/03	29.5	14-29	12-29.5
MW-CC	Trident	11/03	36.5	21-36	19-36.5
MW-DD	Trident	11/03	32.5	17-32	15-32.5
MW-EE	Trident	11/03	33.5	18-33	16-33.5
MW-FF	Trident	11/03	36	15-30	13-36
MW-GG	Trident	11/03	31.5	16-31	14-31.5
MW-HH	Trident	11/03	31.5	16-31	14-31.5
MW-II	Trident	11/03	31.5	16-31	14-31.5
MW-JJ	Trident	11/03	31.5	16-31	14-31.5
MW-KK	Trident	11/03	36.5	21-36	19-36.5
MW-LL	Trident	11/03	37.5	22-37	20-37.5
MW-MM	Trident	11/03	36	19-34	16-36
MW-NN	Trident	11/03	36.5	21-36	19-36
MW-OO	Trident	11/03	37.5	22-37	19-37.5

All units in feet Minimum of 2 feet of pelletized bentonite on top of all sand packs.

Donth	A	В	C	D	É	F	G	H	I	s J	K	Ĺ	M	N	0	P	Q	Ŕ	S	T
Depth		B	- - -	<u>. D</u> .9	8 9 %		U.	¦,. F I,≙	5-2 1 -889	36 3 30	<u>.</u> .	8 4 235	<u>. 191</u>	00 1.N		 ↓ (8) 		<u> (18.58</u>	(D)	(185 -1 .)(
0-1	0	7	3	3	5	<10	0	11	5	0	7	14	6	10	8	48	2	5	0	28
1-2	0	7	16	3	9	18	1	11	5	0	21	19	1	9	60	88	8	5		49
2-3	0	7	16	7	18	18	1	11	15	13	35	14	0	11	162	120	89	5	2	45
3-4	0	7	5	7	18	18	2	11	24	37	15	14	0	11	86	204	251	15	5	86
4-5	4	10	13	7	18	18	12	30	24	37	15	39	0	9	126	153	162	15		39
5-6	3	15	17	12	48	18	9	23		74	21	26	0	13	63	71	281	15		7
6-7	1	11	11	19	9	4	3	6	8	24	10	6	0	· 6	174	29	281	51	2 ·	10
7-8	1	11	60	33	5	15	8	21	8	15	26	7	0	2	178	38	35	30	0	30
8-9	1	15	32	37	7	15	14	21	8	9	26	13	0	5	72	90	70	30	4	136
9-10	1	15	26	15	9.	20	6	25	8	12	15	10	0	14	78	56	70	30	3	57
10-11	1	15	46	30	32	7	8	10	8	45	29	1	0	8	122	50	70	21	8	49
11-12	4	10	20	30	22	7	8	26	20	17	18	1	0	2	143	58	38	8		167
12-13	9	19	15	16	50	7	8	26	20	7	27	9	0	7	110	110	78	8	3	202
13-14	16	21	15	24	39	5	8	15	.20	12	19	5	0	13	102	83	127	8	75	177
14-15	5	25	15	24	17	5	8	12	10	12	40	23	0	5	101	206	194	27	93	152
15-16	10	64	15	87	31	5	8.	18	10	9	40	11	0	8	62	226	216	64	78	90
16-17	4	145	145	44	277	5	8	61	271	15	11	.14	184	91	142	245	98	126	51	82
17-18	83	94	112	99	356	5	11	84	109	16	11	80	307	120	253	287	162	94	28	169
18-19	136	52	106	319	356	12	11	38	413		20	74	116	116	231	140	170	71	14	119
19-20	151	174	106	176	410	12	11	38	476		20	66	103	184	306	131	170	59	11	183
20-21	168	201	106	176	410	12	15	25	263		20		297	253	422	76	170	17	10	273
21-22	135	168	91	396	457	12	15	25	346		32	63	250	246	355	102	170	5	6	99
22-23	145	215	77	483	37	12	10	25	294		12	56	151	299	256	266	170	5		229
23-24	234	63	7	483	23	12	10	15	255	10	40	77	257	304	321	97	80	5	3	283
24-25	225	37	7	404	17	12	10	15	204	10	33	67	309	295	212	712	80	5		136
25-26	276	28	2	444	13	12	10	6	16	8		76	337	305	230	505	138	5		27
26-27		32		444	8				0			31	316	125	245	165	50	20	1	33
27-28		47		5	22				0			67	321	138	246	143	50	20	0	8
28-29		34		21	28				0			48		200				5		17
29-30		34		17	32				0			42	149	460				5		14
30-31				17	32				0			34	54		347			5		16
31-32									0			56	20		272					104
32-33		<u> </u>							0	-		14	17		256		1			110
33-34									0				17		121					102
34-35									0				18		176					160
35-36 Notes:			<u> </u>		ļ	<u> </u>	<u> </u>	<u> </u>	0	L_			18		191	91	95			114

Table 3 – Summary of Field Photoionization Detector (PID) Readings

Table 3 – (continued)

D. M. M.	2226-4036		00	- <u>19</u> 88		2 Correction	GG	-	, n	JJ	КK	L. C.		NDI	00
Depth	AA	BB	SCC	DD	EE	** FF.	<u>S. GG</u> SS	HH	汤(4)4		KK	(EL)	MM	NN	
									1.5						220
0-1	22	8	0	0	39	7	2	6	15	5	8	5	5	5	228
1-2	31	35	0	0	123	26	39	11	75	12	11	23	4	5	155
2-3	98	69	2	0	220	26	71	-96	171	126	28	70	5	9	62
3-4	88	53	0	0	312.5	55	114	. 134	277	246	18	49	8	17	23
4-5	83	59	0	4	198	16	224	85	270	71	12	51	8	7	25
5-6	75	52	0	6	308	23	197	57	65	101	15	117	13	22	22
6-7	91	7	2	20	319	0.	50	23	96	79	10	20	6	· 16	31
7-8	119	11	2	28	324	0	211	33	63	46	18	113	8	17	54
8-9	106	42	2	36	370	6	170	71	165	240	22.	57	7	11	31
9-10	97	44	4.	63	697	21	176	60	89	334	14	130	8	30	15
10-11	69	50	4	70	1014	16	. 278	156	146	108	15	18	11	64	7
11-12	36	74	4	86	694	11	98	123	149	93	29	44 .	9 .	7	13
12-13	76	155	2	341	401	8	42	91		77	37	17	60	8	22
13-14	4	106	9	342	400	8	80	82		62	38	31	330	10	8
14-15	17	106	18	343	417	8	152	254		90	57		293	6	
15-16	9	181	12	365	806	8	159	239		181	88		403	18	
16-17	244	181	135	382	661	31	527	422	223	394	29	322	449	188	298
17-18	84	247	500	307	565	5	488	341	244	445	350	373	561	168	460
18-19	28Í	297	379	381	397	5	484	268	316	423	280	449	440	411	405
19-20	198	364	189	426	537	38	599	466	578	441	284	387	363	411	384
20-21	228	340		428	674	53	585	330	636	659	310	518	168	1226	448
21-22	174	401		58	457	142	497	143	722	828	252	320	140	1362	385
22-23	107	478		42	826	142	65	127	392	745	790	506	175	1128	310
23-24	85	247	299	65	497	356	57	299	333	376	-621	717	152	1752	408
24-25	85	207	195	66	302	356	55	319	415	538	562	641	109	1930	299
25-26	63	340	216	142	105	49	-56	318	279	597	291	693	129	986	277
26-27	65	21	200	62	10	65	57	70	20		219	316	5	691	116
27-28	48	165	200	23	18	260	107	129	. 7	382	114	332	7	1053	129
28-29	48		200	11	10	100	152	53	8	443	443	340	9	761	127
29-30	21		200	40	15	51	105	35	13	532	· 440	412	5	500	457
30-31	14		158	31	22	. 39	141	38	13	279	57	348	7	582	378
31-32	7		108	67	12	19					31	268	12	1670	343
32-33			65	68	· 12	9					25	44	9	998	260
33-34			65	69	12	21					22	38	11	722	200
34-35			65	70	12	17					21	26	8	767	121
35-36			14	71	12	6					23	20	13	404	81

Notes: Depth units in feet, photoionization units in parts per million (ppm)

Table 4 – Summary of Soils Analytical Data

	1.12.02.03.200.050	Sample	Automatical and a second second	DRO				Total
Boring	Тор	CONTRACTOR STREET	(C6-C12)	Contraction of the second s	10228020220000000	APPROX PROPERTY	Ethylbenzene	\$355555\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
	(feet)	(feet)	(mg/l)	(mg/l)	(mg/l)	<u>(mg/l)</u>	(mg/l)	(mg/l)
Q	5	6	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
Q	14	15	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
Q	19	20	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
Т	23	24	51.8	<10	1.54	1.6	0.456	1.211
AA ·	18	19	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
BB	18	19	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
EE	22	23	<10	<10	0.065	0.073	< 0.025	0.053
GG	19	21	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
II	19	20	71.7	<10	0.69	0.499	0.198	0.624
NN	24.	25	<10	<10	< 0.025	< 0.025	< 0.025	< 0.025
00	26	28	483	⁻ <10	12.6	20.0	2.34	6.76

Notes: GRO: Total petroleum Hydrocarbons as gasoline range organics DRO: Total petroleum Hydrocarbons as diesel range organics Table 5 – Summary of Data from October 2002 Pumping Test

MW-1	
Elapsed Time	Drawdown
(minutes)	(feet)
2.0	0.15
2.5	0.17
3.0	0.17
3.5	0.18
4.0	0.19
4.5	0.19
5.0	0.20
6.0	0.22
7.0	0.24
8.0	0.26
9.0	0.28
14.3	0.33
20	0.29
25	0.30
30	0.31
37.5	0.34
42.5	0.36
50	0.39
60	0.43
70	0.46
86	0.50
90	0.51
100	0.54
150	0.63
175	0.68
201	0.74
226	0.76
250	0.81

MW-2	•
------	---

Elapsed Time (minutes)	Drawdown (feet)				
12	0				
36	0.02				
66	0.07				
126	0.13				
189	0.19				
235	0.24				

MW-3

Elapsed	Drawdown				
(minutes)	(feet)				
9	0.02				
39	0.03				
69	0.06				
124	0.1				
187	0.18				
232	0.21				

Interpretive Results

<u>Well</u>	Hydraulic Conductivity <u>(feet/day)</u>	Specific Yield (-)
MW-1	96	0.2
MW-2	191	0.5
MW-3	196	0.5

Note: Wells MW-4 and MW-5 could not be analyzed because of no measurable drawdown

Wéll	8/9/01	3/3/02	7/18/02	10/10/02	2/22/03	6/5/03	9/24/03	12/9/03	1/12/04
MW-1	3,602.20	3,599.02	3,598.68	3,598.55				3,598.48	
MW 1D								3,594.90	
MW-2					3,598.99				3,598.75
MW-3	3,601.67	3,601.67	3,599.11	3,598.96	3,599.09	3,599.01	3,598.80	3,598.89	3,598.89
MW-4								3,599.05	
MW-5	3,602.98	3,600.48	3,600.09	3,599.93	3,600.20	3,600.03	3,599.75	3,599.91	3,599.92
MW-6	3,606.44	3,603.99	3,603.42	3,603.22	3,603.27	3,603.21	3,603.01	3,602.99	3,602.99
MW-7	3,606.47	3,604.02	3,603.46	3,603.31	3,603.30	3,603.25	3,603.10	3,603.05	3,603.05
MW-8		3,605.22	3,602.50	3,602.33	3,602.34	3,602.25	3,602.00	3,602.00	3,602.13
MW-9								3,600.66	
MW-10		3,606.67	3,603.96	3,603.76	3,603.74	3,603.67	3,603.41	3,603.39	3,603.38
MW-11								3,603.07	
MW-12								3,604.32	
MW-13								3,604.40	
MW-14								3,605.47	
MW-15		· · · ·						3,608.41	
MW-16					3,593.10				3,592.82
MW-17				3,592.92	3,593.17	3,592.98	3,592.72		3,592.89
MW-18								3,600.04	
MW-19				3,599.70	3,600.05	3,599.78	3,599.45	3,599.64	3,599.67
MW-20								3,605.09	
MW-21								3,606.04	
MW-22								3,605.44	
MW-23								3,607.24	
MW-24						3,587.66			3,587.56
MW-25								3,611.86	
MW-26						-		3,609.18	
MW-27								3,606.09	
North							,		
Water				3,589.13	3,609.29	3,609.25	3,609.07	3,609.02	3,609.00
Well	-							-	-
South									
Water					3,591.96	3,591.83	3,591.62		3,591.84
Well									
West									
Water					3,607.83	3,607.83	3,607.75	3,607.74	3,607.72
Well All units in f									

Table 6 - Groundwater Elevations Corrected for Free Product When Present

All units in feet

Table 6 - (continued)

Well	12/9/03	1/12/04
gelt och ben han han hann han bier	- ALL 19 2020 ALL 19 19 19 19 19 19 19 19 19 19 19	
MW-A	3,594.96	3,594.95
MW-B	3,595.01	3,595.01
MW-C	3,597.77	3,597.78
MW-D	3,598.11	3,598.14
MW-E	3,598.83	3,598.84
MW-F	3,598.96	3,598.99
MW-G	3,598.98	3,599.01
MW-H	3,600.88	3,600.89
MW-I	3,602.15	3,602.17
MW-J	3,601.61	3,601.67
MW-K	3,601.89	3,601.90
MW-L	3,604.27	3,604.25
MW-M	3,605.18	3,605.16
MW-N	3,605.11	3,605.10
MW-O	3,605.10	3,605.08
MW-P	3,605.08	3,605.07
MW-Q	3,606.03	3,606.01
MW-R	3,604.97	3,605.01
MW-S	3,604.92	3,604.91
MW-T	3,605.08	3,605.06
MW-AA	3,602.45	3,602.44
MW-BB	3,603.45	3,603.44
MW-CC	3,605.16	3,605.14
MW-DD	3,606.98	3,606.96
MW-EE	3,607.61	3,607.59
MW-FF	3,604.81	3,604.80
MW-GG	3,602.60	3,602.58
MW-HH	3,603.73	3,603.71
MW-II	3,603.03	3,603.00
MW-JJ	3,603.47	3,603.44
MW-KK	3,604.14	3,604.12
MW-LL	3,605.10	3,605.08
MW-MM	3,606.65	3,606.62
MW-NN	3,605.09	3,605.07
MW-OO	3,605.17	3,605.15

All units in feet

n norio. Academica a construction						n - Charles Angles (Braile Angles Angles (Braile Angles (Braile) Angles (Braile)		
Well	3/03/02	7/18/02	10/10/02	2/22/03	6/04/03	9/24/03	12/09/03	1/12/04
		an ten forging og en formelle en	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW-8	0.00	0.00	0.00	0.00	0.30	0.47	0.50	0.00
MW-11	0.00	0.00	0.01	1.35	1.36	1.33	1.40	1.41
MW-18			0.00	0.40	0.40	0.00	0.00	0.00
MW-23			0.58	0.57	0.59	0.56	0.52	0.54
MW-26				0.71	0.84	0.21	0.05	0.02
MW-27				1.25	1.26	1.18	0.37	1.16
MW-N							1.10	1.10
MW-CC							1.20	1.20
MW-EE							0.27	0.26

Table 7 – Measured Free Product Thickness and Free Phase Hydrocarbons Removed

Removal of free product in wells MW-N, MW-CC and MW-EE began the week of Jan 12, 2004

	3 [이상이 명한 소수가 많이 다니었다.								Dec 03/
Well	Aug-01	Mar-02	Jul-02	Oct-02	Dec-02	Feb-03	Jun-03	Sep-03	Jan 04
MW-1	0.943	NS	0.279	NS	NŚ	0.018/0.021	0.004	0.002	0.034
MW-2	<.005	NS	< 0.001	NS	NS	< 0.001	0.006	< 0.001	< 0.001
MW-3	<.005	NS	0.002	NS	NS	<0.001	< 0.001	< 0.001	< 0.001
MW-4	10.0	NS	10.4	NS	NS	5.65	3.88	3.53	3.36
MW-5	0.217/0.182	NS	0.160	NS	NS	0.018	0.019/0.023		0.052
MW-6	0.600	NS	0.237/0.253	NS	NS	0.022	0.033	0.020	0.004
MW-7	<.005	NS	< 0.001	NS	NS	0.004	< 0.001	< 0.001	< 0.001
MW-8		8.60	8.37	NS	NS	9.62	FPH	FPH	FPH
MW-9		<.005	< 0.001	NS	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-10		10.6	14.0	NS	NS	12.4	9.78	7.04	6.95
MW-11		27.8	FPH	NS	NS	FPH	FPH	FPH	FPH
MW-12		9.08	6.95	NS	NS	15.1	11.9	15.2	14.7
MW-13		19.8	19.8	NS	NS	23.2	26.3	16.5	16.1
MW-14	_	1.04	1.21	NS	NS	0.895	0.537	0.388	0.398
MW-1D				NS	< 0.001	0.028	< 0.001	< 0.001	0.008
MW-15				0.002	NS	0.003	0.001	< 0.001	0.029
MW-16				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-17				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-18				0.008	NS	FPH	FPH	0.059	0.018
MW-19				0.003	NS	0.198	0.092	0.078	0.05
MW-20				< 0.001	NS	0.001	0.006	< 0.001	< 0.001
MW-21				0.01/0.011	NS	0.016/0.014	0.016/0.017	0.007/0.006	0.009
MW-22				< 0.001	NS	< 0.001	0.002	< 0.001	0.014
MW-23						FPH	FPH	FPH	FPH
MW-24				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-25					NS	0.004/0.004	0.004	0.009	0.002
MW-26						FPH	FPH	FPH	FPH
MW-27						FPH	FPH	FPH	FPH
North					0.385	0.383	0.333	0.359	0.21
water well					0.000	0.000			
South water well					<0.001	0.036	<0.001	<0.001	<0.001
West						-0.001	0.001	-0.001	.0.001
water well					NS	<0.001	0.001	<0.001	<0.001
House well					0.59	0.403	NS	NS	0.147

Table 8 - Summary of Dissolved Phase Benzene Concentrations

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled

Blank cells denote wells that had not been installed

Table 8 –(continued)

Well	Dec 03/ Jan 04
H.CIL STORES	a van v Therese and
MW-A	2.11
MW-B	0.321
MW-C	0.027
MW-D	0.008
MW-E	0.847
MW-F	<0.001
MW-G	< 0.001
MW-H	0.066
MW-I	0.522
MW-J	< 0.001
MW-K	2.33
MW-L	21.4
MW-M	1.67
MW-N	FPH
MW-O	30.4
MW-P	10.2
MW-Q	7.44
MW-R	0.004
MW-S	0.002
MW-T	4.3
MW-AA	0.356
MW-BB	4.34
MW-CC	FPH
MW-DD	0.772
MW-EE	FPH
MW-FF	3.22
MW-GG	5.96
MW-HH	3.23
MW-II	0.518
MW-JJ	15.9
MW-KK	0.263
MW-LL	13.7
MW-MM	0.237
MW-NN	31.5
MW-OO	31.5

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled Blank cells denote wells that had not been installed

Well	Aug-01	Mar-02	Jul-02	Oct-02	Dec-02	Feb-03	Jun-03	Sep-03	Dec 03/ Jan 04
	SSST ABB SOL							a na an	
MW-1	0.120	NS	0.002	NS	NS	0.004/0.005	0.002	0.001	0.039
MW-2	<.005	NS	< 0.001	NS	NS	< 0.001	0.003	<0.001	< 0.001
MW-3	<.005	NS	< 0.001	NS	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-4	6.96	NS	5.52	NS	NS	3.02	2.51	2.56	2.46
MW-5	0.185/0.159	NS	0.004	NS	NS	0.006	0.004/0.004	0.006/0.007	0.01
MW-6	0.502	NS	0.046/0.047	NS	NS	0.004	0.005	0.002	0.001
MW-7	<.005	NS	< 0.001	NS	NS	< 0.001	0.001	< 0.001	< 0.001
MW-8		0.482	0.176	NS	NS	1.06	FPH '	FPH	FPH
MW-9		<.005	< 0.001	NS	NS	< 0.001	<0.001	< 0.001	< 0.001
MW-10		<.100	0.144	NS	NS	0.126	0.174	0.155	0.019
MW-11		2.49	FPH	NS	NS	FPH	FPH	FPH	FPH
MW-12		0.281	0.190	NS	NS	0.491	0.346	0.278	0.142
MW-13		5.95	4.34	NS	NS	1.96	1.54	0.788	0.582
MW-14		0.0059	<0.010	NS	NS	0.002	0.003	0.002	0.002
MW-1D				NS	< 0.001	0.003	<0.001	<0.001	0.002
MW-15				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-16				< 0.001	NS	< 0.001	< 0.001	<0.001	< 0.001
MW-17				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-18				0.005	NS			0.042	0.006
MW-19				< 0.001	NS	< 0.001	< 0.001	<0.001	< 0.001
MW-20				<0.001	NS	0.001	< 0.001	<0.001	< 0.001
MW-21				0.022/0.024	NS	0.021/0.019	0.018/0.019	0.002/0.002	0.006
MW-22				<0.001	NS	< 0.001	<0.001	<0.001	0.012
MW-23					NS	FPH	FPH	FPH	FPH
MW-24				< 0.001	NS	< 0.001	< 0.001	<0.001	< 0.001
MW-25				0.002	NS	0.002	0.002	<0:001	< 0.001
MW-26						FPH	FPH	FPH	FPH
MW-27						FPH	FPH	FPH	FPH
North water well					0.001	0.007	0.002	0.002	0.006
South water well					<0.001	<0.001	<0.001	<0.001	<0.001
West water well		,				<0.001	< 0.001	<0.001	<0.001
House well					<0.001	<0.001	NS	NS	<0.001

Table 9 - Summary of Dissolved Phase Toluene Concentrations

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled

Blank cells denote wells that had not been installed

Table 9 – (continued)

Well	Dec 03/Jan 04
MW-A	1.8
MW-B	0.221
MW-C	0.019
MW-D	0.008
MW-E	0.012
MW-F	<0.001
MW-G	<0.001
MW-H	<0.001
MW-I	0.004
MW-J	< 0.001
MW-K	<0.001
MW-L	<.02
MW-M	0.108
MW-N	FPH
MW-O	0.129
MW-P	0.023
MW-Q	0.045
MW-R	0.003
MW-S	<0.001
MW-T	0.026
MW-AA	0.03
MW-BB	0.064
MW-CC	FPH
MW-DD	0.007
MW-EE	FPH
MW-FF	3.22
MW-GG	0.031
MW-HH	0.052
MW-II	0.167
MW-JJ	0.071
MW-KK	0.115
MW-LL	0.216
MW-MM	0.006
MW-NN	0.043
MW-OO	5.41

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled Blank cells denote wells that had not been installed

Well	Aug-01	Mar- 02	Jul-02	Oct-02	Dec-02	Feb-03	Jun-03	Sep-03	Dec 03/Jan 04
	B	<u></u>	1 - TUTHUTU - MANAG	amonto - Shreet				1.1.1.1.1.1 - 1993-1 419-1	
MW-1	0.052	NS	< 0.001	NS	NS	<.001/0.001	0.036	< 0.001	0.003
MW-2	<.005	NS	< 0.001	NS	NS	<0.001	<0.001	< 0.001	<0.001
MW-3	<.005	NS	< 0.001	NS	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-4	0.190	NS	0.189	NS	NS	0.141	0.133	0.092	0.142
MW-5	0.024/0.020	NS	0.020	NS	NS	0.011	0.01/0.01	0.006/0.006	0.021
			0.009/0.00						
MW-6	0.024	NS	9	NS	NS	0.006	0.013	0.006	0.006
MW-7	<.005	NS	< 0.001	NS	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-8		<.100	0.074	NS	NS	0.166	FPH		FPH
MW-9		<.100	<0.020	NS	NS	< 0.001	< 0.001	< 0.001	<0.001
MW-10		<.200	FPH	NS	NS	<.025	< 0.001	0.011	0.02
MW-11				NS	NS	FPH	FPH	FPH	FPH
MW-12		<.100	0.043	NS	NS	0.109	0.27	0.124	0.102
MW-13		0.205	0.206	NS	NS	0.228	0.214	0.179	0.139
MW-14		<.005	<0.010	NS	NS	<0.001	< 0.001	< 0.001	< 0.001
MW-1D				NS	<.001	<.001	< 0.001	< 0.001	0.001
MW-15				<0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-16				<0.001	NS	< 0.001	< 0.001	< 0.001	<0.001
MW-17				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-18				0.001	NS	FPH	FPH	0.025	0.002
MW-19				<0.001	: NS	<0.001	< 0.001	< 0.001	< 0.001
MW-20				< 0.001	NS	<0.001	< 0.001	< 0.001	< 0.001
MW-21				0.004/0.004	NS	0.01/0.009	0.01/0.007	0.003/0.003	0.006
MW-22				< 0.001	NS	<0.001	< 0.001	< 0.001	< 0.001
MW-23					NS	FPH	FPH	FPH	FPH
MW-24				<0.001	NS	<0.001	< 0.001	< 0.001	<0.001
MW-25				<0.001	NS	<0.001	< 0.001	< 0.001	< 0.001
MW-26						FPH	FPH	FPH	FPH
MW-27						FPH	FPH	FPH	FPH
North water well					0.002	0.002	0.001	0.001	<0.001
South water well					<0.001	<0.001	<0.001	<0.001	<0.001
West water well					NS	<0.001	<0.001	<0.001	<0.001
House well					0.005	0.006	NS	NS	< 0.001

Table 10 - Summary of Dissolved Phase Ethylbenzene Concentrations

All units in mg/l Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled

Blank cells denote wells that had not been installed

Table 10 –(continued)

Well	Dec 03/Jan 04
MW-A	0.218
MW-B	0.099
MW-C	0.004
MW-D	0.002
MW-E	0.003
MW-F	< 0.001
MW-G	< 0.001
MW-H	< 0.001
MW-I	0.001
MW-J	< 0.001
MW-K	<0.001
MW-L	0.13
MW-M	0.03
MW-N	FPH
MW-O	0.062
MW-P	0.036
MW-Q	0.015
MW-R	< 0.001
MW-S	< 0.001
MW-T	0.011
MW-AA	0.005
MW-BB	0.058
MW-CC	FPH
MW-DD	0.037
MW-EE	FPH
MW-FF	<.01
MW-GG	<.01
MW-HH	<.01
MW-II	0.01
MW-JJ	0.096
MW-KK	0.006
MW-LL	0.124
MW-MM	0.007
MW-NN	0.121
MW-00 All units in	0.209

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled Blank cells denote wells that had not been installed

.

Well	Aug-01	Mar-02	Jul-02	Oct-02	Dec-02	Feb-03	Jun-03	Sep-03	Dec 03 Jan 04
MW-1	0.06	NS	<0.001	NS	NS	0.002/0.003	0.224	<0.001	0.012
MW-2	<.005	NS	< 0.001	NS	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-3	<.005	NS	< 0.001	NS	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-4	0.632	NS	0.536	NS	NS	0.389	0.421	0.289	0.439
MW-5	0.129/0.019	NS	0.010	NS	NS	0.03	0.026/0.020		0.035
MW-6	0.100	NS	0.025/0.026	NS	NS	0.01	0.019	0.006	0.007
MW-7	<.005	NS	< 0.001	NS	NS	< 0.001	<0.001	0.001	< 0.001
MW-8		0.197	0.035	NS	NS	0.14	FPH	FPH	FPH
MW-9		<.005	< 0.001	NS	NS	< 0.001	0.002	< 0.001	0.002
MW-10	· · · · ·	<.100	< 0.020	NS	NS	<.025	<0.001	0.023	0.044
MW-11		0.376	FPH	NS	NS	FPH	FPH	FPH	FPH
MW-12		<.100	0.025	NS	NS	0.088	1.069	0.085	0.035
MW-13		0.432	0.453	NS	NS	0.435	0.298	0.242	0.226
MW-14		0.0085	< 0.010	NS	NS	< 0.001	0.001	0.001	0.001
MW-1D			0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001	0.003
MW-15				< 0.001	NS	0.001	0.001	0.001	< 0.001
MW-16				< 0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-17				< 0.001	NS	< 0.001	< 0.001	<0.001	< 0.001
MW-18				0.002	NS	FPH	FPH ·	0.121	0.011
MW-19				<0.001	NS	< 0.001	0.001	0.001	< 0.001
MW-20				<0.001	NS	< 0.001	< 0.001	< 0.001	< 0.001
MW-21				0.0013/0.012	NS	0.028/0.026	0.037/0.024	0.008/0.008	0.022
MW-22				<0.001	NS	< 0.001	< 0.001	< 0.001	0.002
MW-23					NS	FPH	FPH	FPH	FPH
MW-24					< 0.001	< 0.001	< 0.001	<0.001	< 0.001
MW-25						0.001/0.001	0.001	< 0.001	< 0.001
MW-26						FPH	FPH	FPH	FPH
MW-27						FPH	FPH	FPH	FPH
North water well					0.005	0.005	0.003	0.003	0.003
South water well					<0.001	<0.001	<0.001	<0.001	<0.001
West water well					NS	<0.001	<0.001	<0.001	<0.001
House well					< 0.001	0.001	NS	NS	< 0.001

.

Table 11 - Summary of Dissolved Phase Total Xylene Concentrations

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled

Cells marked with NW denote wells that were not sampled

Blank cells denote wells that had not been installed

400 B

Table 11 – (continued)

Well	Dec 03/Jan 04
MW-A	0.762
MW-B	0.271
MW-C	0.006
MW-D	0.004
MW-E	0.007
MW-F	<0.001
MW-G	<0.001
MW-H	<0.001
MW-I	0.003
MW-J	< 0.001
MW-K	< 0.001
MW-L	<.02
MW-M	<.02
MW-N	FPH
MW-O	<.05
MW-P	0.018
MW-Q	0.019
MW-R	0.001
MW-S	0.001
MW-T	0.023
MW-AA	0.007
MW-BB	0.011
MW-CC	FPH
MW-DD	0.059
MW-EE	FPH
MW-FF	<.01
MW-GG	0.014
MW-HH	<.01
MW-II	0.028
MW-JJ	<.02
MW-KK	0.013
MW-LL	0.172
MW-MM	0.009
MW-NN	0.028
MW-OO	0.455

All units in mg/l

Cells marked with FPH contained free phase hydrocarbons and were not sampled Cells marked with NW denote wells that were not sampled Blank cells denote wells that had not been installed

Well	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-8	9/03	28	17	0.35	0.99
MW-11	9/03	51	8.5	0.33	0.341
MW-23	9/03	8.1	1.2	0.34	0.773
MW-26	9/03	5.8	2.1	0.12	0.163
MW-27	9/03	11	1.8	0.11	0.217
MW-N	12/03	33.2	2.85	0.229	0.416
MW-CC	12/03	17.6	2.94	0.168	0.377
MW-EE	12/03	2.13	1.53	0.111	0.324

Table 12 – Summary of Dissolved BTEX Constituents from Wells Containing Free Phase Hydrocarbons

All units are mg/l

Well	Chloride
MW-1	64.2
MW-1D	44.3
MW-2	31.9
MW-3	62.0
MW-4	73.8
MW-5	65.0
MW-6	88.6
MW-7	93.1
MW-8	FPH
MW-9	44.3
MW-10	68.0
MW-11	FPH
MW-12	284
MW-13	73.8
MW-14	46.5
MW-15	44.3
MW-16	78.0
MW-17	51.0
MW-18	65.0
MW-19	65.0
MW-20	124.
MW-21	48.7
MW-22	44.3
MW-23	FPH
MW-24	42.5
MW-25	51.0
MW-26	FPH
<u>MW-27</u>	FPH
North Water well	106
South Water Well	62.0
West Water Well	106.0
House Well	78.0

Well Chloride 73.8 A B 70.9 82.7 C D 68.0 70.9 E 46.5 F G 46.5 H 60.9 59.1 62.0 59.1 102 L Μ 186 70.9 Ν 0 68.0 Ρ 68.0 Q 65.0 R 46.5 S 59.1 T 65.0 AA 88.6 97.5 BB CC 97.5 DD 48.7 EΕ 93.1 257 FF GG 74.4 HH 88.6 81.5 II IJ 93.1 KK 111 LL 76.8 MM 51.9 NN 70.9

All units mg/l FPH: Not analyzed for chlorides

68.0

00

Table 13 - Summary of December 2003/January 2004 Chloride Concentrations

1		
2.		
	÷.	

Table 14 - Summary of Laboratory Evaluation of Free Phase Hydrocarbon Samples

.

Parameter	NW-8	MW-11 MW-18 MW-23	MW-18	MW-23	LC-WW SC-WW	LC-WWW	N-WW	MW_CC	MM/EF
				sag ≠ d ≠ 100 kalan <u>a 100 k</u> alan					
Paraffin	22.454	21.905	18.24	22.019	28.44	28.846	28.618	29.075	22.741
Isoparaffins	30.722	30.427	31.794	31.461	31.08	32.172	31.822	31.466	28.135
Napththenics	41.034	41.629	45.956	40.544	32.14	32.789	33.49	33.632	43.303
% Paraffin, Isoparaffin and Napthenics	94.2	94.0	96.0	94.0	91.7	93.8	93.9	94.2	94.2
Aromatics	3.724	4.017	1.317	3.901	6.99	4.889	4.562	4.321	3.331
Olefins	1.959	2.105	2.589	1.979	1.3	1.296	1.507	1.506	2.483
Unknowns	0.107	0.097	0.104	0.096	0.04	0.007			0.007
Benzene	0.821	0.905	0.016	0.523	2.998	1.95	2.111	1.749	0.846
Toluene	0.271	2.45	0.02	0.219	0.225	0.007	pu	0.007	0.014
Ethylbenzene	1.892	2.093	0.6	1.971	3.133	2.481	2.301	2.3	1.804
Xylenes	0.694	0.737	0.651	1.033	0.588	0.447	0.15	0.265	0.633
Specific									
Gravity	0.7235	0.7259	0.7285	0.7231	0.7096	0.7058	0.7054	0.7035	0.7234
Color	sour	med straw	straw	straw	straw	straw	Straw	light straw	straw
Odor	sour	sour ngl	sour	sour cond	ngl	lgn	Sour NGL	Sour NGL Sour NGL Sour NGL	Sour NGL
Note: Hydrocarbon units a	re weight	are weight %, specific gravity is ratio to density of water	avity is rati	o to density o	of water.		;		

.

.

	は、 一手がた おいえがみやみの	δ^{13} C per mil	
Well	Saturate	Aromatic	Resin
MW-8	-28.6	-28.3	-27.4
MW-11	-28.3	-28.5	-27.9
MW-18	-29.4	-29.0	-28.0
MW-23	-29.8	-29.6	-29.1
MW-26	-29.9	-29.2	-28.1
MW-27	-29.9	-29.4	-28.2
MW-N	-29.8	-29.4	-28.4
MW-CC	-30.0	-29.5	-29.4
MW-EE	-29.9	-29.4	-28.2

Table 15 - Summary of Isotopic Analyses of Free Phase Hydrocarbon Samples

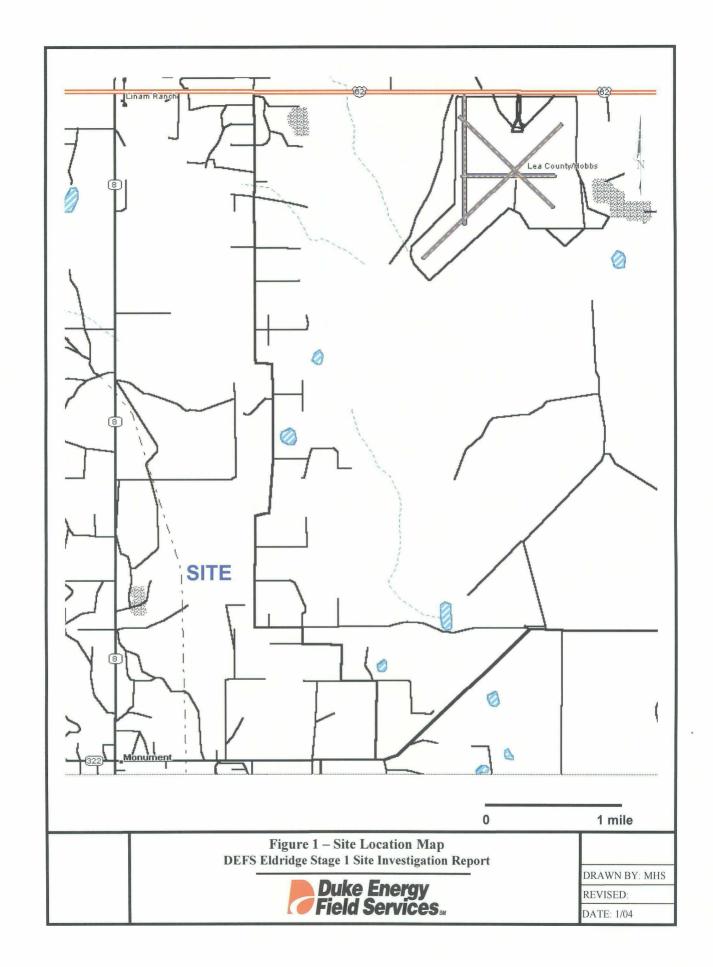
MW-EE -29.9 -29.4 Units based upon comparison to PDB sample.

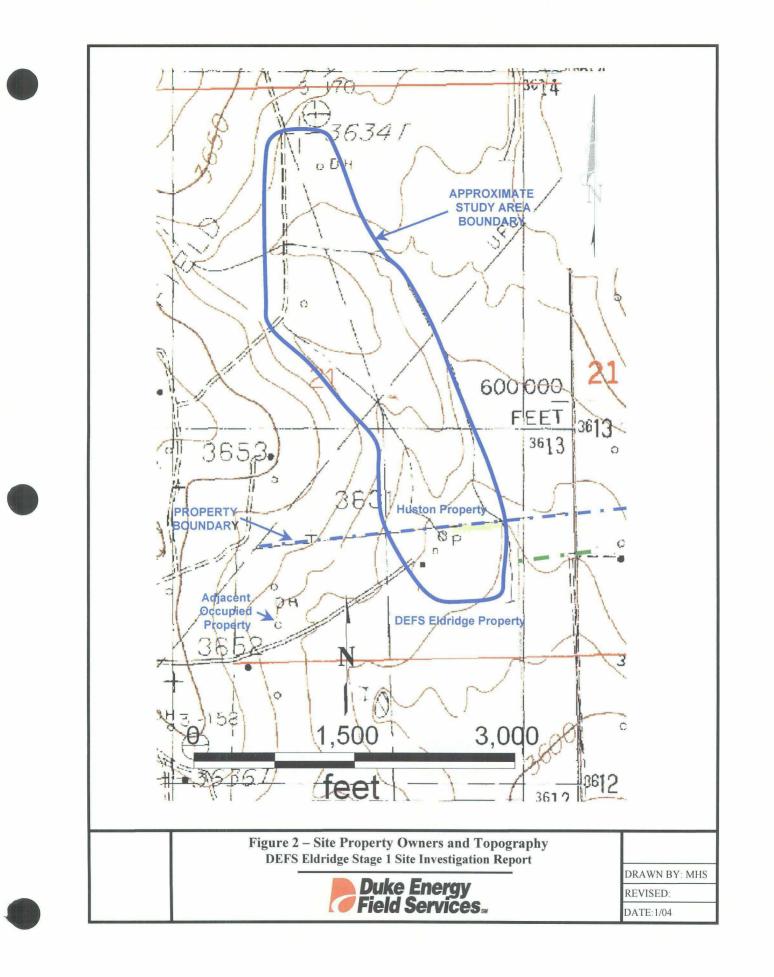
	Thickness	NESSESN 2003 201 0.149 39	Thickness
Well	Without PID	With PID	Difference
A	1.2	7.2	6.0
B	2.8	6.8	4.0
С	0.0	4.8	4.8
A B C D E F	4.4	9.0	4.6
E	0.8	13.0	12.2
F	7.6	7.6	0.0
G	8.0	8.0	0.0
H	0.0	0.0	0.0
I	7.0	8.8	1.8
I J	12.0	12.0	0.0
K L	11.6	11.6	0.0
L	0.0	11.2	11.2
М	4.8	14.0	9.2
N	8.8	18.4	9.6
0	27.0	33.2	6.2
Р	4.4	25.6	21.2
N O P Q R S T	9.6	14.0	4.4
R	10.4	10.4	0.0
S	14.4	14.4	0.0
Т	11.2	16.8	5.6
AA	0.0	9.2	9.2
BB	0.0	14.8	14.8
CC DD	4.0	16.0	12.0
EE	0.0 2.0	8.8 25.2	<u>8.8</u> 23.2
EE FF	0.0	7.2	7.2
гг GG	10.8	19.2	8.4
HH	0.8	19.2	17.2
III	0.0	20.8	20.8
JJ	1.2	25.4	20.3
KK	3.6	13.2	9.6
	3.6	21.2	17.6
MM	10.0	13.2	3.2
NN	9.2	19.6	10.4
00	2.4	22.0	19.6

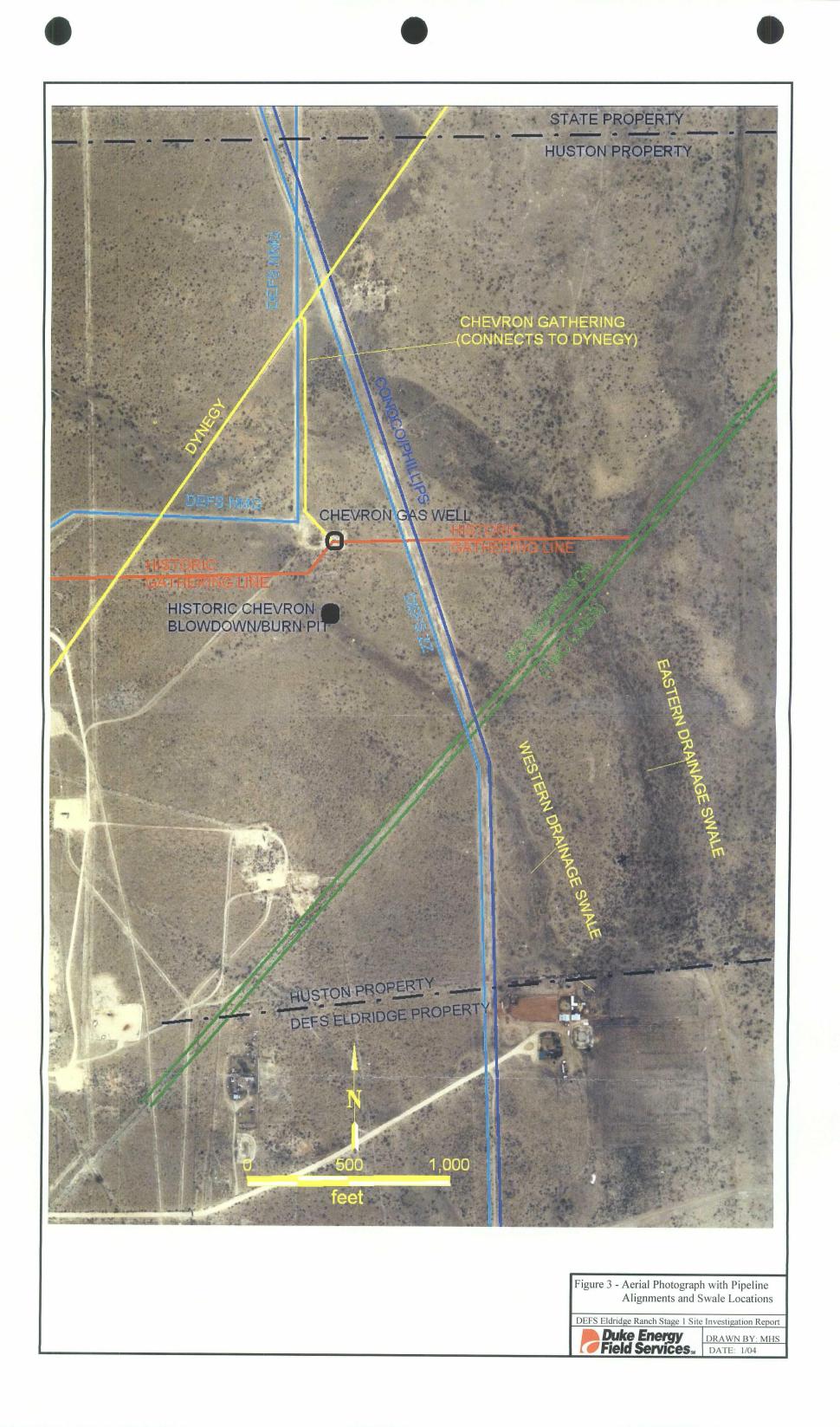
Table 16 – Summary of Interpreted Hydrocarbon Affected Intervals With and Without a Photoionization Detector

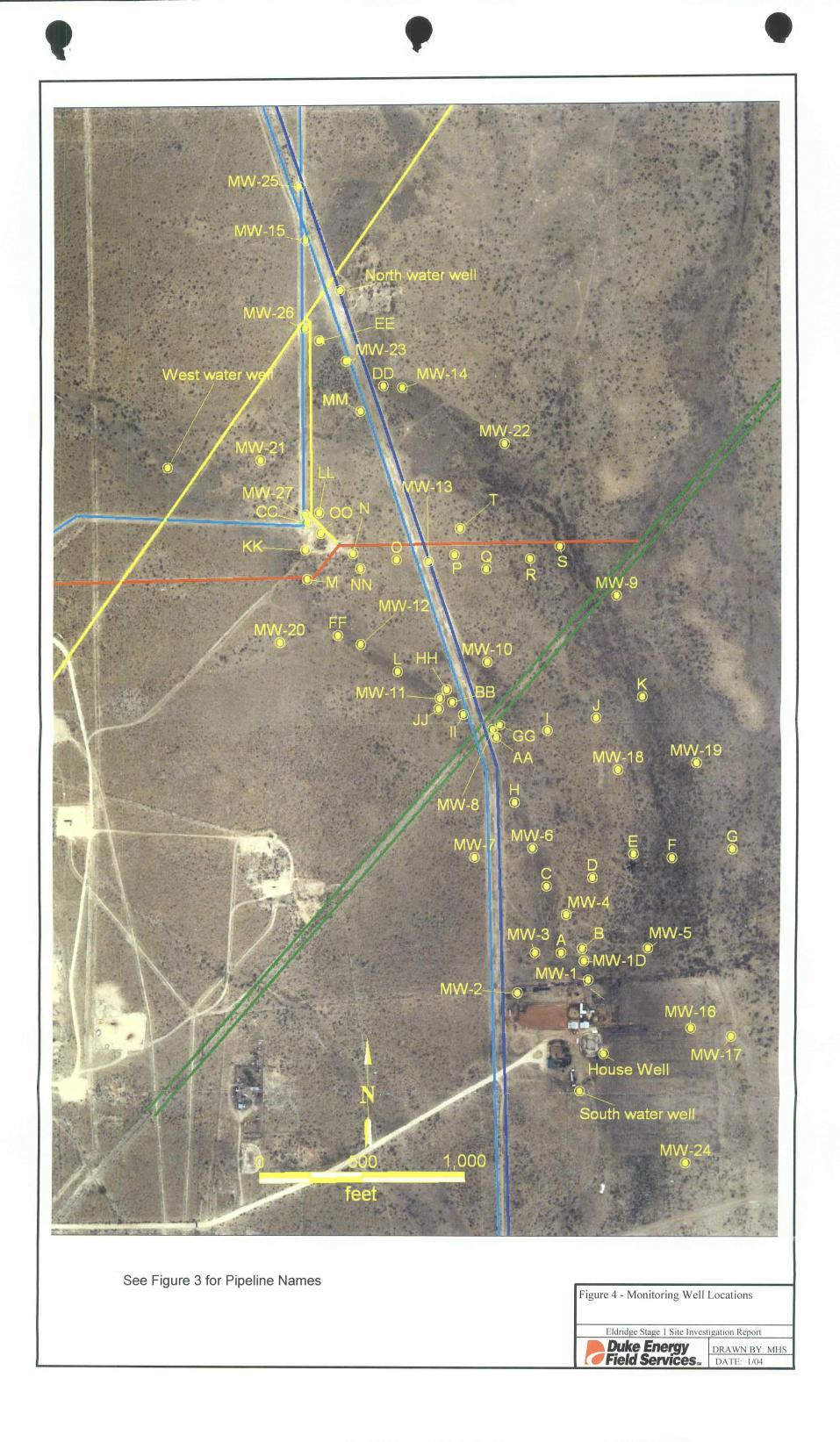
All units in feet

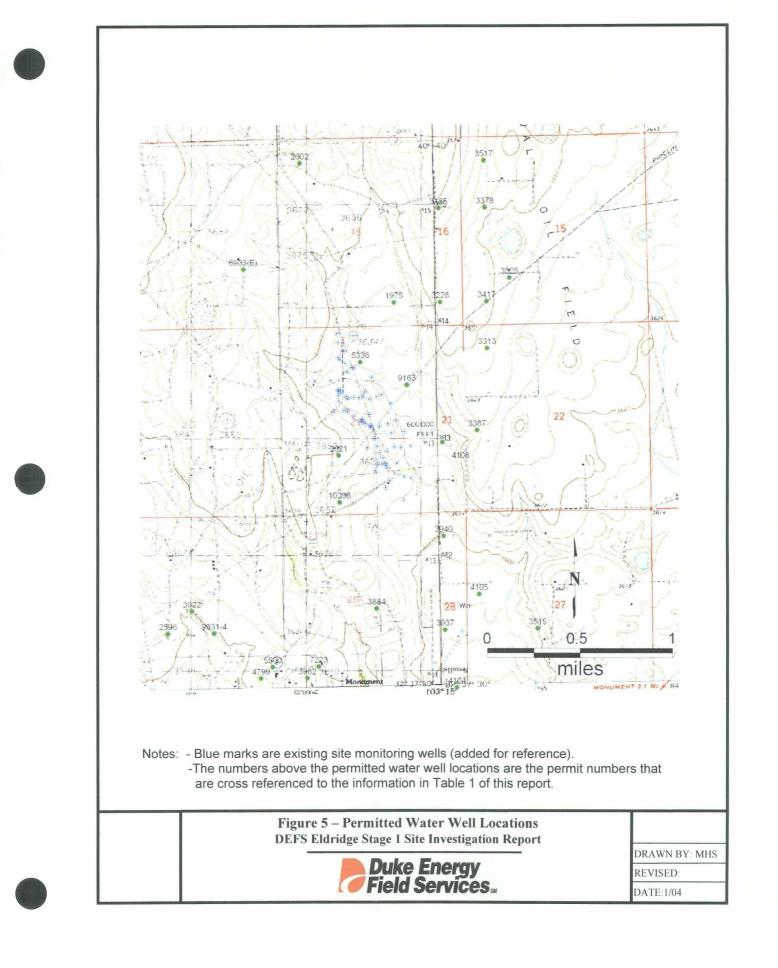
Boring	Тор	Bottom	PID Reading	Benzene	Toluene	Ethylbenzene	Xylenes
	(feet)	(feet)	(ppm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Q	5	6	281	< 0.025	< 0.025	<0.025	< 0.025
Q	14	15	194	< 0.025	< 0.025	< 0.025	< 0.025
Q	19	20	170	< 0.025	< 0.025	< 0.025	< 0.025
Т	23	24	283	1.54	1.6	0.456	1.211
AA	18	19	281	<0.025	< 0.025	< 0.025	< 0.025
BB	18	19	297	< 0.025	< 0.025	< 0.025	< 0.025
EE	22	23	826	0.065	0.073	< 0.025	0.053
			599				
GG	19	21	585	< 0.025	< 0.025	< 0.025	< 0.025
II	19	20	578	0.69	0.499	0.198	0.624
NN	24	25	1,930	< 0.025	< 0.025	< 0.025	< 0.025
			116				
00	26	28	129	12.6	20.0	2.34	6.76

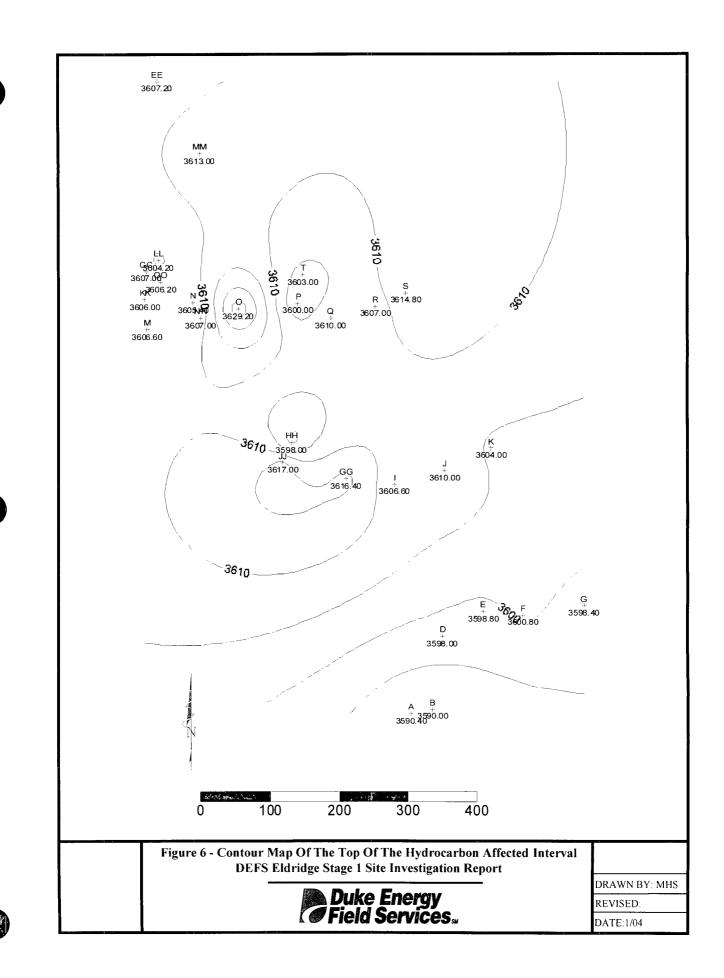

Table 17 – Comparison Between Field Photoionization Detector and Laboratory Results

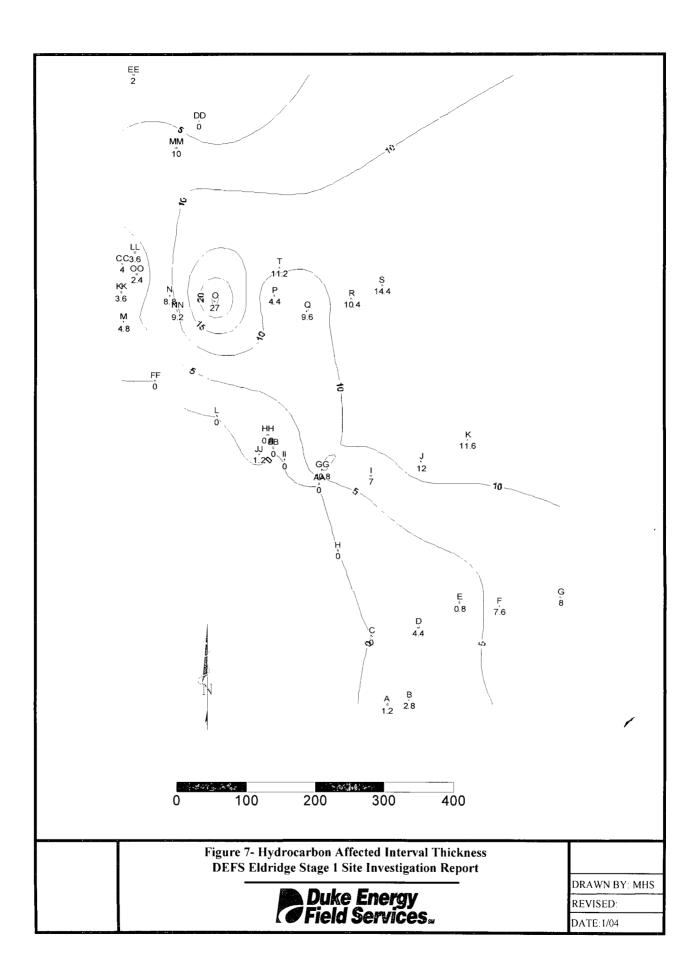

Table 18 - Summary of Borings Containing Multiple Affected Intervals

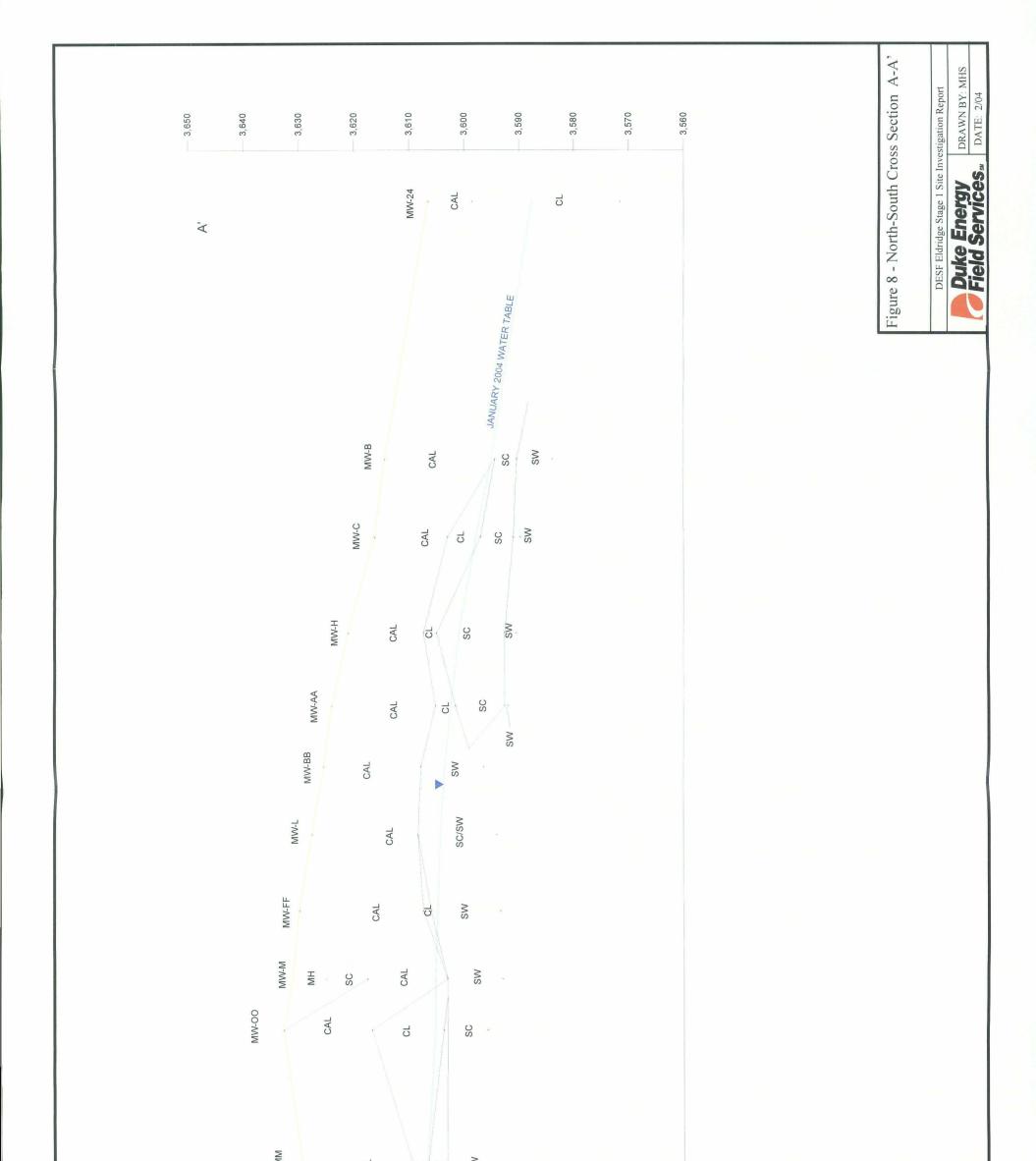

		Depth to
		Bottom of
Well	of Interval	Interval
MW-I	-18.53	-24.13
MW-I	-33.53	-34.93
MW-J	-12.35	-13.15
MW-J	-16.35	-27.55
MW-O	-2.43	-13.43
MW-O	-17.23	-19.63
MW-O	-22.43	-36.03
MW-Q	-18.1	-26.1
MW-Q	-34.5	-36.1
MW-R	-16.19	-18.19
MW-R	-22.99	-31.39
MW-S	-5.46	-10.26
MW-S	-14.26	-21.06
MW-S	-25.86	-28.66
MW-AA	-7.6	-9.6
MW-AA	-16.8	-24
MW-GG	-7.87	-11.47
MW-GG	-16.27	-20.27
MW-II	-2.5	-5.3
MW-II	-8.5	-26.5
MW-JJ	-3.76	-5.76
MW-JJ	-9.76	-33.16
MW-LL	-5.41	-10.61
MW-LL	-16.61	-32.61
MW-OO	0	-2.49
MW-OO	-16.49	-35.69

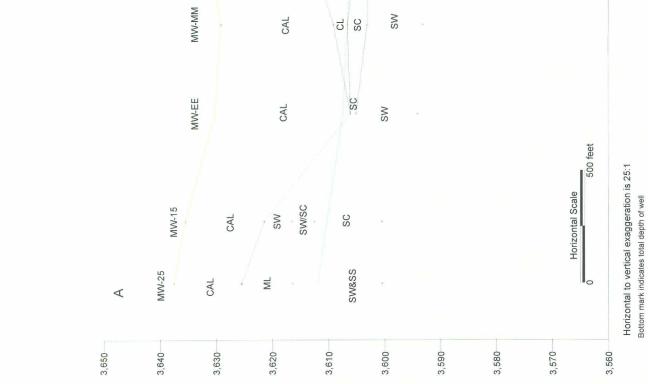

All units in feet from ground surface.

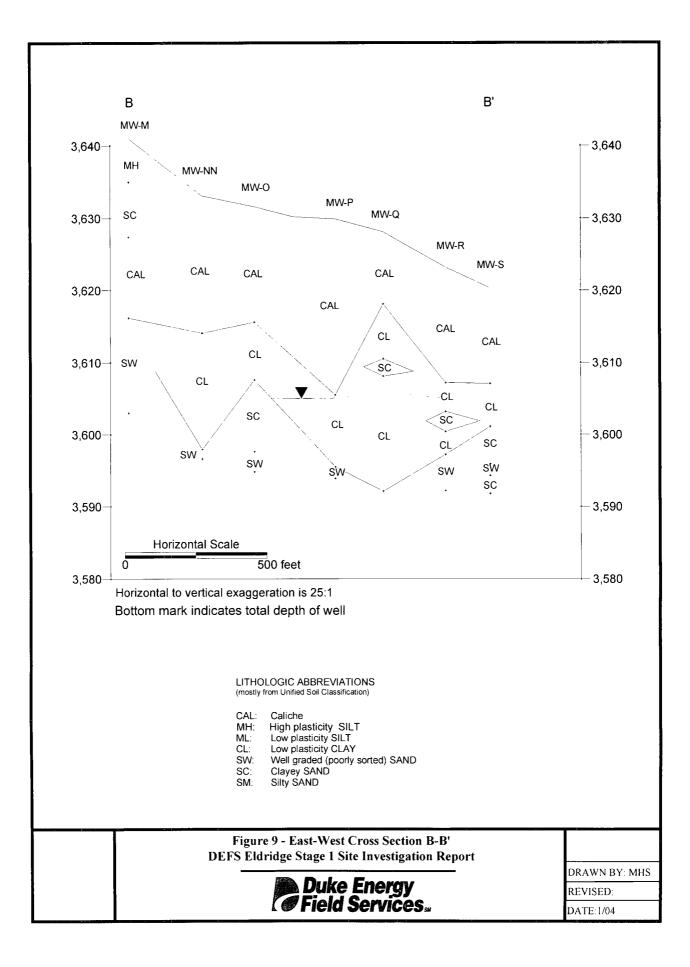

FIGURES

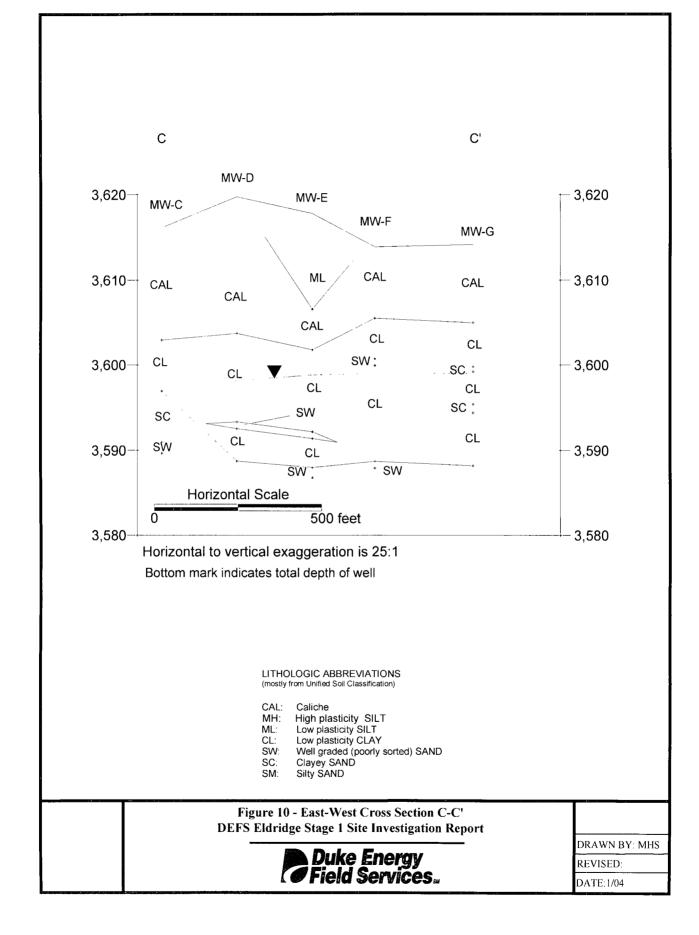


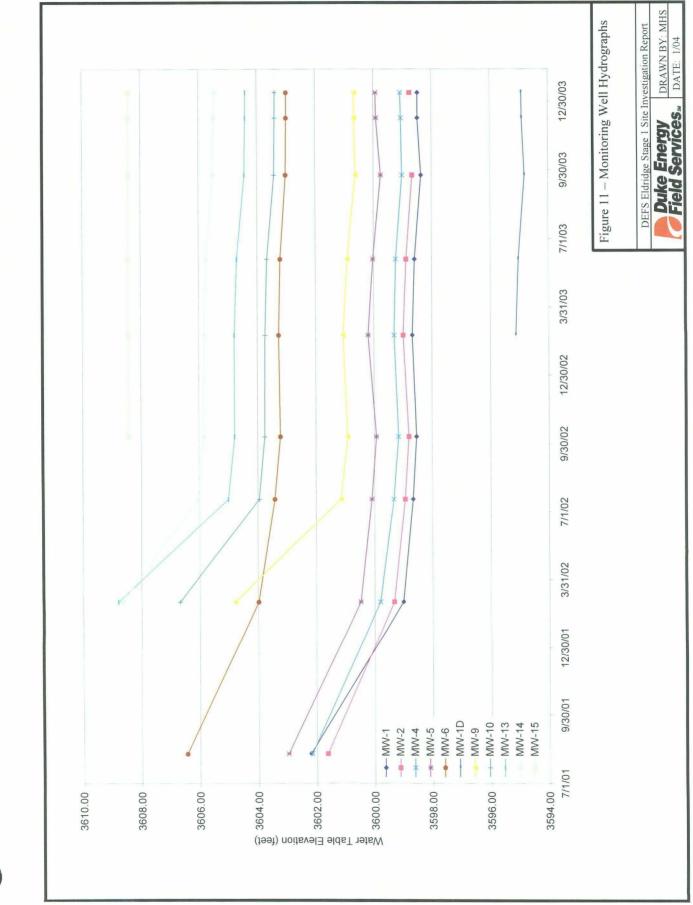


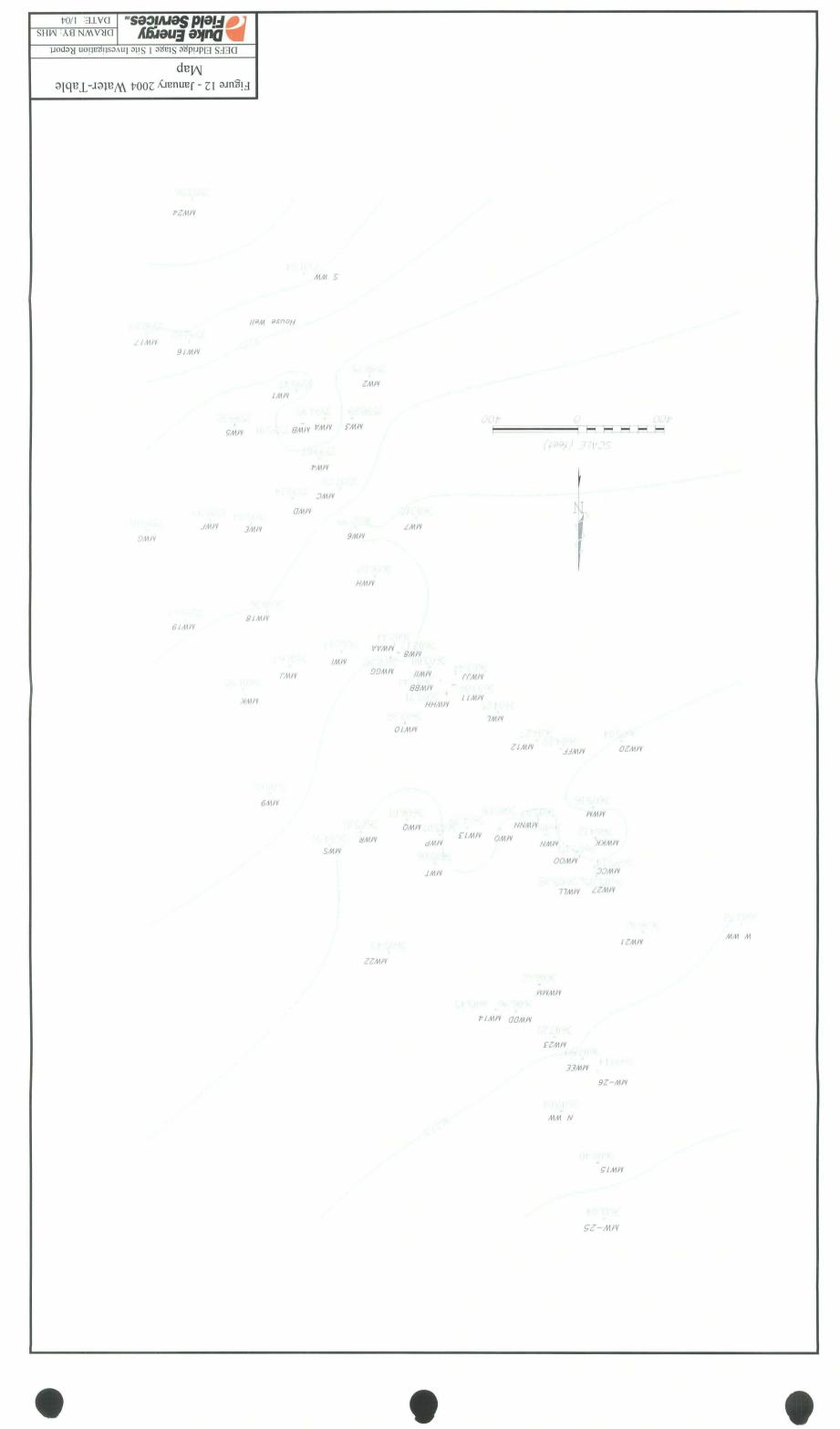


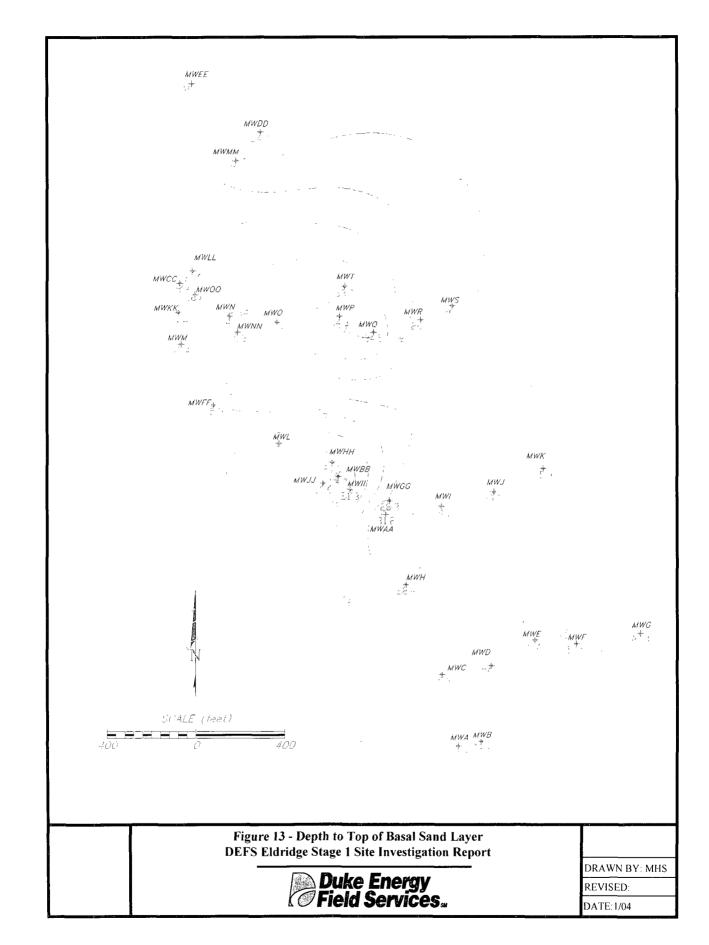


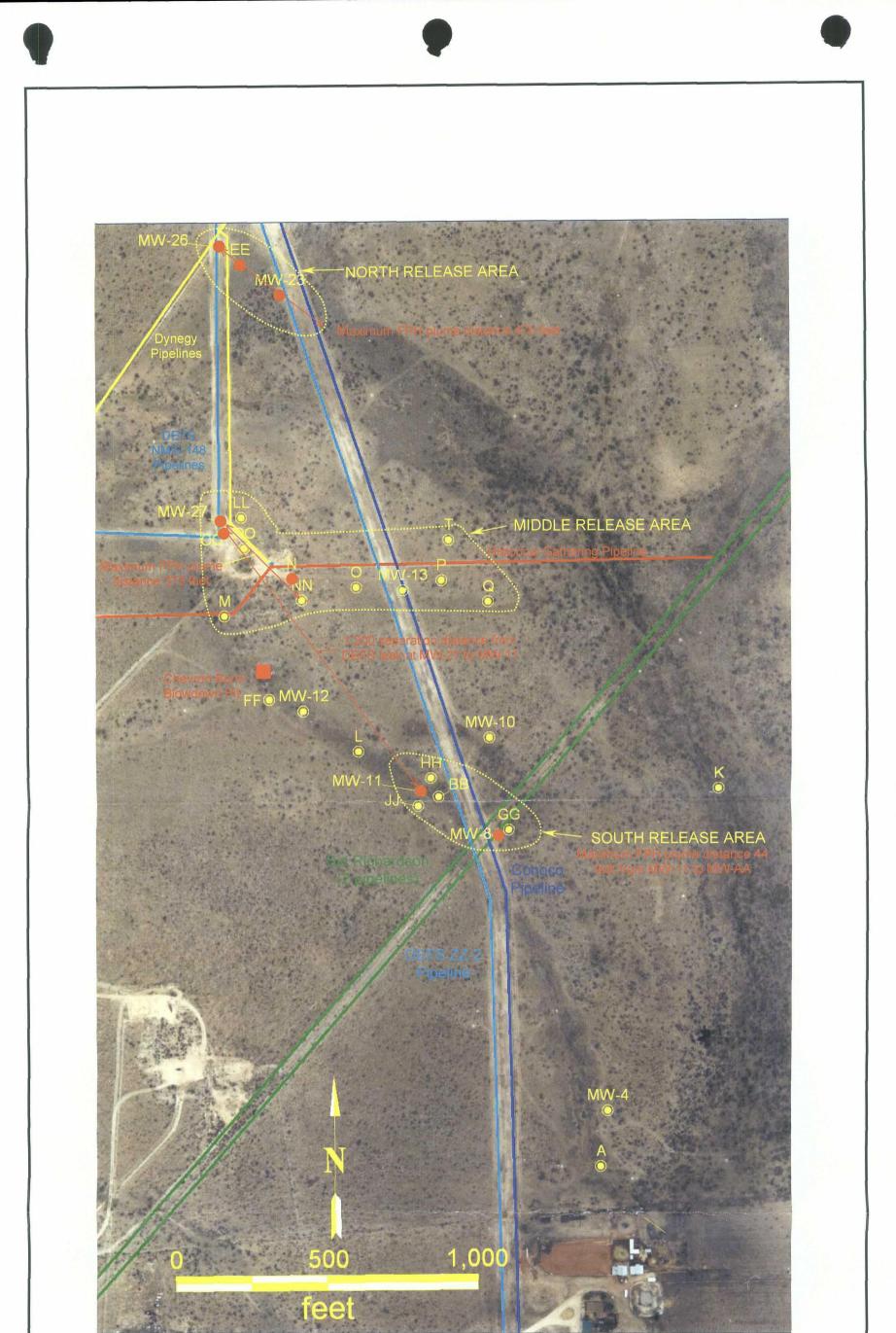


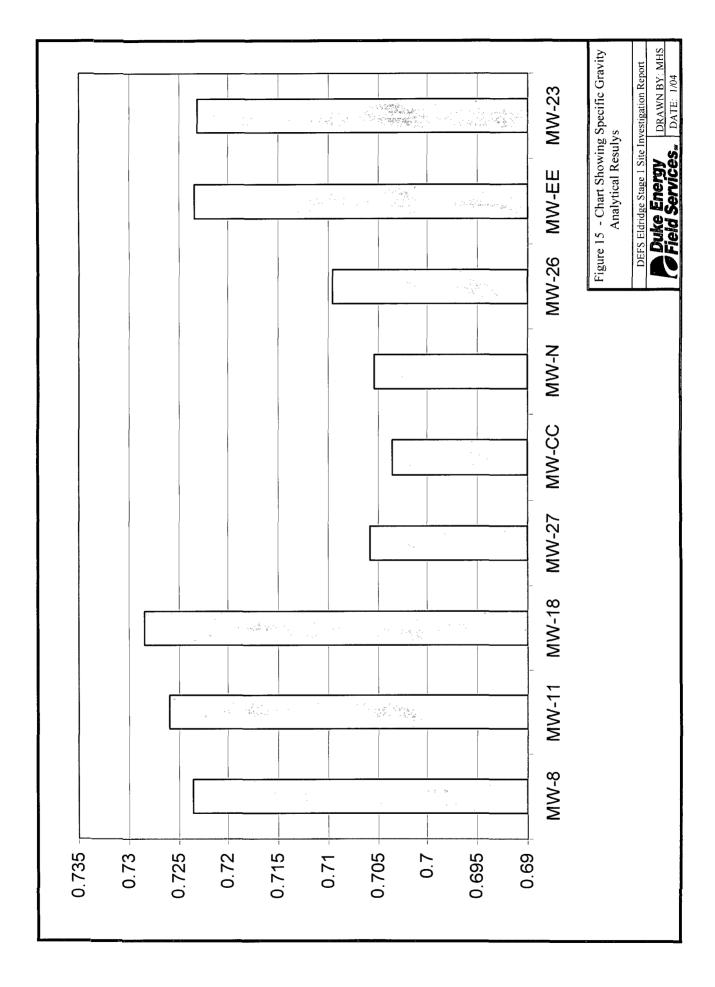


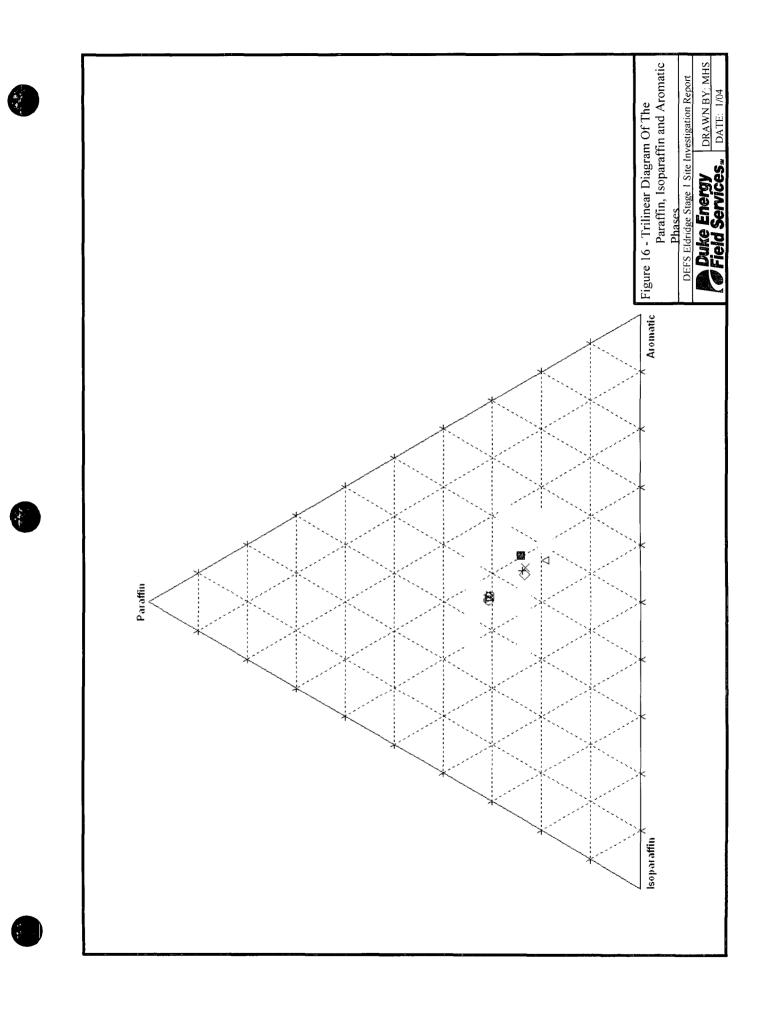



LITHOLOGIC ABBREVIATIONS (mostly from Unified Soil Classification)


Caliche	High plasticity SILT	Low plasticity SILT	Low plasticity CLAY	Well graded (poorly sorted) SAND	Clayey SAND	Silty SAND	
CAL:	MH:	ML:	CL:	SW:	SC:	SM:	







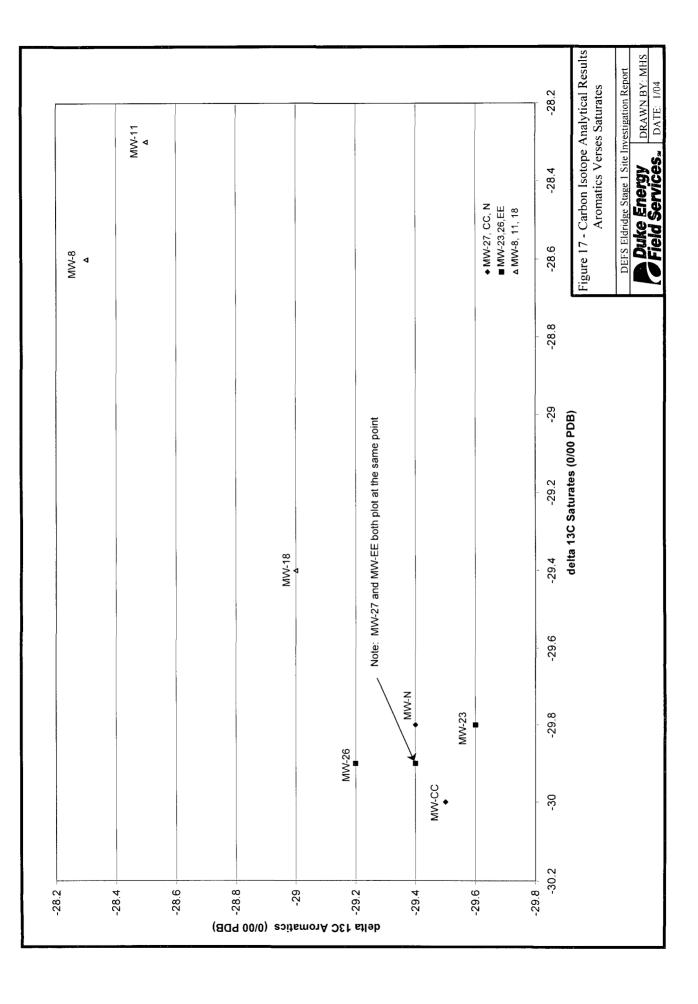
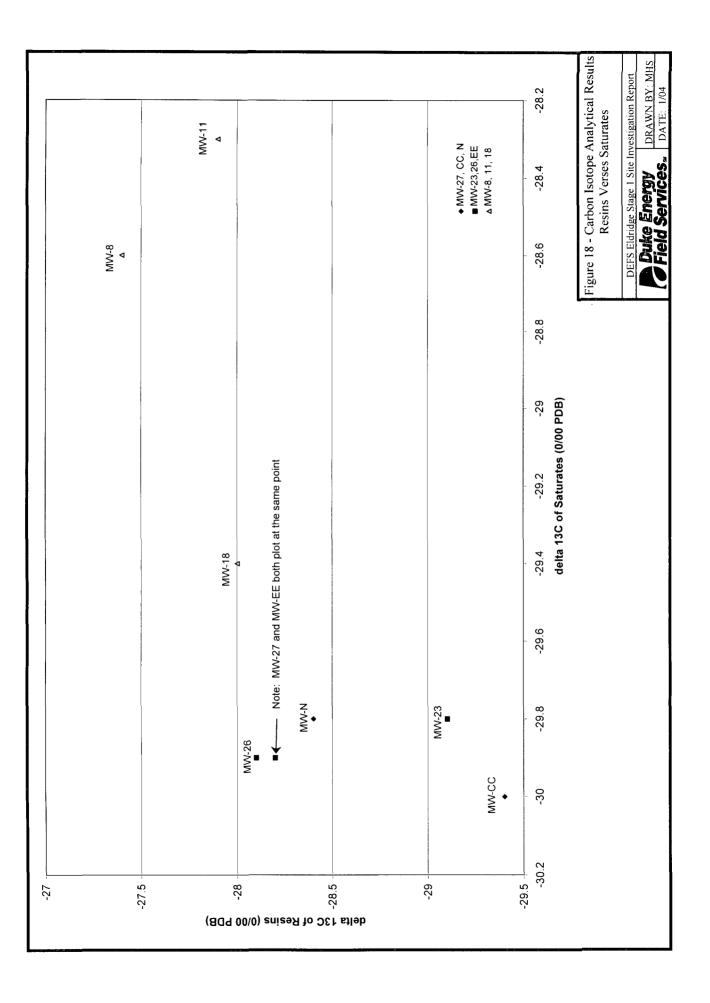
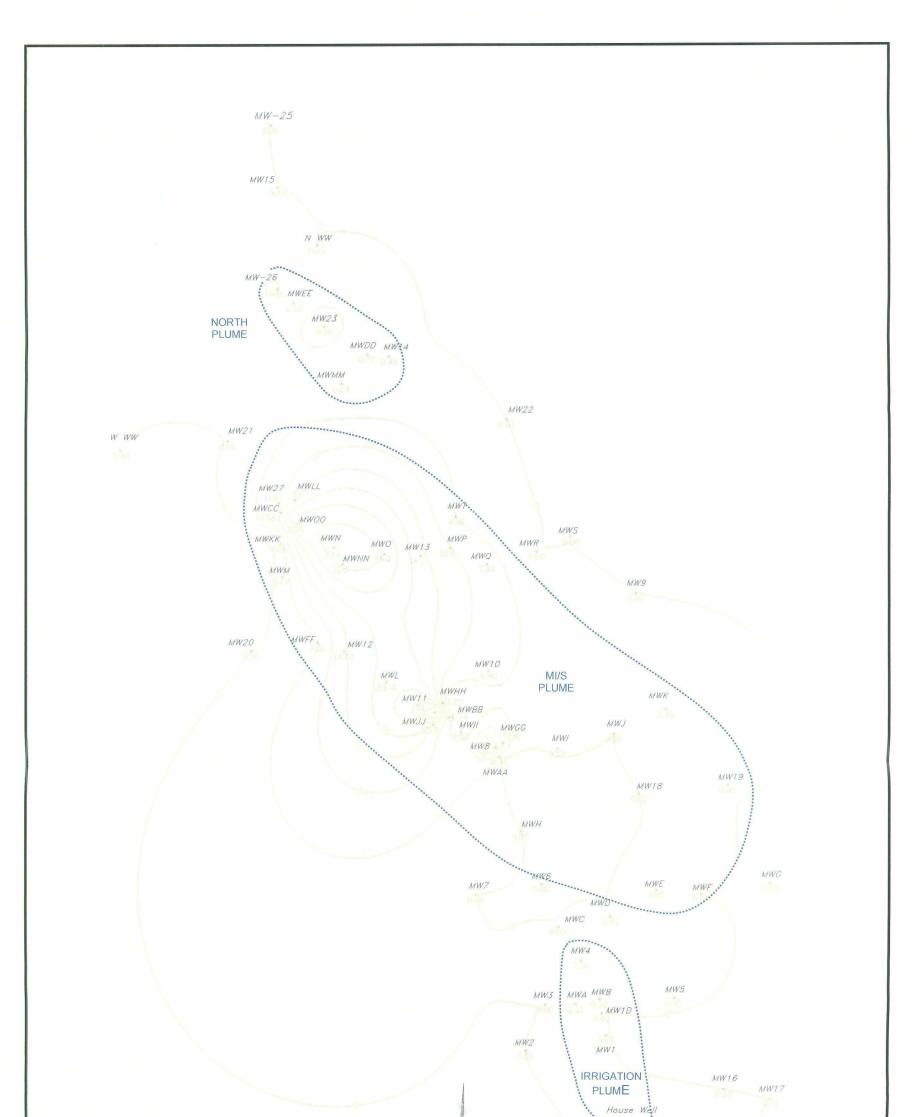
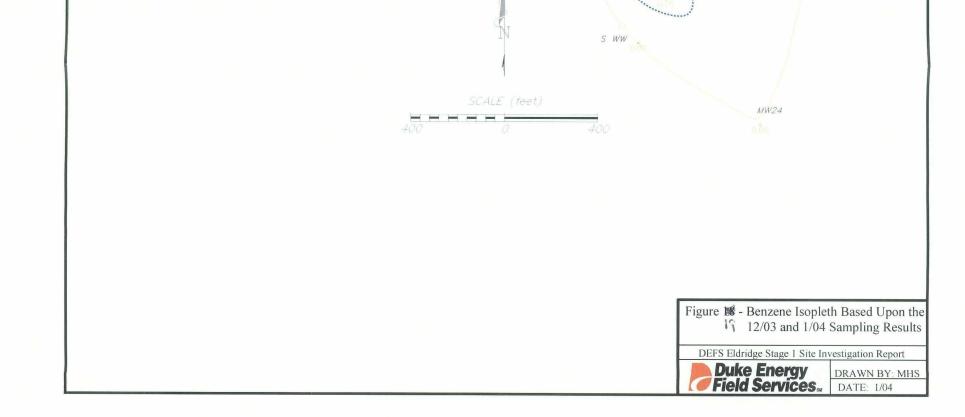

FPH: Free phase hydrocarbon Red dots are wells containing FPH Yellow dots are wells that contain greater than 1 mg/l benzene Pipeline names are color coded to their respective pipelines

Figure 14 - Potential Hydro Locations	ocarbon Source
DEFS Eldridge Stage 1 Site In	vestigation Report
Duke Energy Field Services	DRAWN BY: MHS



 $\frac{2}{3} \frac{1}{4} \frac{1}{3} \frac{1}$





APPENDIX 1

Boring Logs and Completion Diagrams for November 2003 Wells

			1	MON	NITORI	IG WEL	L LITH	OLOGIC	LOG	
			1		MONIT	ORING W	ELL NO:	MW-A		TOTAL DEPTH: 26 Feet
		- Ka						Eldridge F		
					SURF			3614		
	TT T							Prosonic		STATE: New Mexico
	\mathbf{K})H		1	DE			Rotosonic		LOCATION: Monument, NM
			T M		2.					FIELD REP.: J. Fergerson
A P	ENVIR	ONMEN	TAL		co					FILE NAME:
.		`_		<u> </u>	00					
·	•									
						SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN
			ЦТН.	USCS	FROM	TO	TYPE	PID	3614	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	ļ			мн					3014	Silty Clay (Top Soil). dk brown-black, w35% silt in matrix, no odor.
					0	1	Core	0 ppm		
										Caliche, It yellow tan-It gray brown, dense-weathered,
					1	2	Core	0 ppm	2	w/chert nods in matrix, no odor.
				CALICHE					3612	
					2	3	Core	0 ppm		
	要就					Ĵ		o pp		
					3	4	Core	0 ppm	4	
									3610	Caliche, it yellow tan-it gray brown, dense-weathered,
				CALICHE	4	5	Core	4 ppm		w/chert nods in matrix, no odor.
					-	J	Core	- ppm		
					5	6	Core	3 ppm	6	
									3608	Caliche, It yellow tan-tan-It gray brown, weathered-dense,
						_				w/chert nods in matrix, no odor.
					.6	7	Core	1 ppm		
				CALICHE	7	8	Core	1 ppm	8	
				CALICITE					3606	
							0			
					8	9	Core	1 ppm		
					9	10	Core	1 ppm	10	
									3604	Caliche, It yellow tan-tan-It gray brown, weathered-dense,
							-			w chert nods in matrix, no odor.
					10	11	Core	1 ppm	. <u> </u>	
					11	12	Core	4 ppm	12	
				CALICHE					3602	
					12	13	Core	9 ppm		
					13	14	Core	16 ppm	14	
									3600	Chert, white-It yellow tan, dense, no odor.
				CHERT						
					14	15	Core	5 ppm		
					15	16	Core	10 ppm	16	Sandy Clay, orange brown, w/30% vf grain sand in matrix,
									3598	interbedded w/dense sandstone, moist, no odor.
And the second s				CL	16	17	Core	4 ppm		
					17	18	Core	83 ppm	18	
					-			*****	3596	Encountered Groundwater!
	1111							1		
								. I		Clayey Sand, it orange brown, vf grain, w/35% clay in matrix,
				SC	18	19	Core	136 ppm		interbedded w/dense sandstone, wet, mod HC odor.

100 m

18 A.

			MON	ITORING V	WELL NO:		MW-A	TOTAL DEPTH: 26 Feet
	LITH		1	SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN
		USCS	FROM	то	TYPE	PID	3594	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Clayey Sand, It orange brown, vf grain, w/35% clay in matrix,
			20	21	Core	168 ppm		interbedded w/dense sandstone, wet, mod HC odor.
		sc	21	22	Core	135 ppm	22	
							3592	
		<u></u>	22	23	Core	145 ppm		
		SW	23	24	Core	234 ppm		Sand, tan-It gray orange brown, vf grain, interbedded w/dense sandstone, wet, mod HC odor.
		SW					3590	Sand, gray-gray black, vf grain, interbedded w/dense sandstone & mod-well cmnted vf grain sand, wet, md-str HC od
		sw	24	25	Core	225 ppm		Sand, tan-orange brown, vf grain, interbedded w/dense sandstone, wet, mod-str HC odor.
			25	26	Core	276 ppm	26 3588	TD Boring at 26 Feet!
							3000	
							28	
							30	
	· · ·							
							32	
							34	
-			(
							36	
								· · · · · · · · · · · · · · · · · · ·
							38	
							40	
							42	· · · ·
]
	• •							
	·						44	

.

			MON	ITORIN	G WEL	LLITHO	DLOGIC	LOG	
		,		MONIT	ORING WI	ELL NO:	MW-B		TOTAL DEPTH: 30.5 Feet
									CLIENT: Duke Energy Field Service
	<u>N</u>			SURF	ACE ELE				COUNTY: Lea
							Prosonic		STATE: New Mexico
l	TRIDEN ENVIRONMENTA	J'		DR			Rotosonia		
		•							FIELD REP.: J. Fergerson
l	ENVIRONMENTA	L		CO					FILE NAME:
	-				COM	MENTS:			
					SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
L		LITH.	USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
								3614	Silt (Top Soil), dk brown, w/15% clay in matrix, no odor.
l			мн	0	1	Core	7 ppm		· · ·
				1	2	Core	7 ppm	2	Caliche, It yellow tan-It gray, weathered-dense, w/chert nods in matrix, no odor.
					_	_		3612	-
l			CALICHE	2	3	Core	7 ppm		
				3	4	Core	7 ppm	4 3610	
				4	5	Core	10 ppm		
				5	6	Core	15 ppm	6 3608	Caliche, It yellow gray-It gray, weathered-dense, w/chert nods in matrix, no odor.
				6	7	Core	11 ppm		
			CALICHE	7	8	Core	11 ppm	8 3606	
				8	9	Core	15 ppm		
				9	10	Core	15 ppm	10 3604	Caliche, It orange tan, weathered-dense, w/chert nods in
				10	11	Core	15 ppm		matrix, no odor.
			CALICHE	11	12	Core	10 ppm	12 · 3602	
				12	13	Core	19 ppm		
				13	.14	Core	21 ppm	14 3600	Caliche, tan-It brown, weathered-dense, w/chert nods in matrix no odor.
			CALICHE	14	15	. Core	25 ppm		
				15	16	Core	64 ppm	16 3598	
			CALICHE	16	17	Core	145 ppm	3080	Caliche, It yellow tan-It gray brown, weathered-dense, w/chert nods in matrix, no odor.
				17	18	Core	94 ppm	18	Caliche, it yellow tan-tan, weathered-dense, w/chert nods in matrix, interbedded w/dense sandstone, si HC odor.
			CALICHE	18	19	Core	52 ppm	3096	Encountered Groundwater!
		~~~~~~	8 1		1	1	1		1

A. 2.	
1 200	
196	-

			MON		VELL NO:		MW-B	TOTAL DEPTH: 30.5 Feet
	LITH.			SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAI
		USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURE
							3594	Clayey Sand, it yellow tan-It gray, w/45% clay in matrix,
								interbedded w/dense sandstone, wet, sl-mod HC odor.
			20	21	Core	201 ppm		
			20	21	COIC	201 ppm		4
					•	400		4
		SC	21	22	Core	168 ppm		
				1			3592	
			22	23	Core	215 ppm		· · ·
								1
			23	24	Core	63 ppm	24	
			20	27	0018		3590	
	÷.					· ·	3090	Sand, It gray tan, w/20% clay in matrix, interbedded
	`*``							w/dense sandstone, wet, no odor.
	10 y 1		24	25	Core	37 ppm		
		SW						
			25	26	Core	28 ppm	26	
	5		20	20	0010	Lo ppin	3588	
	ં કે વર્ત્ય					l		4
							<u> </u>	
			26	27	Core	32 ppm	L	Sand, It gray tan-orange brown, vf grain, w/10% clay in
				}		ļ		matrix, interbedded w/dense sandstone, wet no odor.
			27	28	Core	47 ppm	28	
				_	25.0		3586	,
		SW		1 1				
			28	29	Core	34 ppm		
			29	30	Core	34 ppm	30	
							3584	1
								TD Paring @ 20 5 East
	in an			l				TD Boring @ 30.5 Feet
							32	
							34	
•								
							36	
						•		
							<u> </u>	
							20	
							38	
							40	· ·
							<u> </u>	
							42	
•							44	



•

	4	MON	IITORIN	IG WELI	LITHO	DLOGIC	LOG	
			MONIT	ORING WI	ELL NO:	MW-C		TOTAL DEPTH: 26.5 Feet
						Eldridge I		
			SURF	ACE ELEV				COUNTY: Lea
				CONTR	ACTOR:			STATE: New Mexico
	TRIDEN ENVIRONMENTAL		DR	ULLING M				LOCATION: Monument, NM
				STAR	T DATE:	11/22/200	03	FIELD REP.: J. Fergerson
	ENVIRONMENTAL		CO	MPLETIO	N DATE:	11/22/200	03	FILE NAME:
1	LITH	USCS	FROM	SAMPLE TO	TYPE	PID		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
ľ								Silt (Top Soil), dk brown, w/10% clay in matrix, no odor.
		мн	0	1	Core	3 ppm		
				2	Core	16	2	Colision It valley top, dones weathered, webert pade in
			1	2	Core	16 ppm		Caliche, It yellow tan, dense-weathered, w/chert nods in matrix, interbedded w/dense sandstone, no odor.
		CALICHE						
			2	3	Core	16 ppm		
			3	4	Core	5 ppm	4	Caliche, It yellow tan-gray, dense-weathered, w/chert nods in matrix, interbedded w/dense sandstone, no odor.
		CALICHE					3612	
				5	Core	13		Calicha It vallow tan weathered dense w/short node in
		CALICHE	4	5	COIE	13 ppm		Caliche, It yellow tan, weathered-dense, w/chert nods in matrix, interbedded w/dense sandstone, no odor.
			5	6	Core	17 ppm	6	
								Caliche, It yellow tan-gray, weathered-dense, w/chert nods in
			6	7	Core	11 ppm		matrix, interbedded w/dense sandstone, no odor.
		CALICHE	-					
			7	8	Core	60 ppm	8 3608	
			8	9	Core	32 ppm		
			Ċ	10	Com	26	10	Caliche, It yellow tan, weathered-dense, w/chert nods in
			9	10	Core	26 ppm	10 3606	matrix, interbedded w/dense sandstone, no odor.
		CALICHE						
			10	11	Core	46 ppm		
			11	12	Core	20 ppm	12	Caliche, yellow tan, weathered, interbedded w/dense
		CALICHE				· · · · ·		sandstone, no odor.
		161 OT 16	40	40	0	15		
			12	13	Core	15 ppm		Sandy Clay, It yellow tan-It gray, w/25% vf grain sand in matrix,
		CL	13	14	Core	15 ppm	14	interbedded w/dense sandstone, no odor.
<u> </u>		Ű-					3602	
			14	15	Core	15 ppm		Sandy Clay, tan-red brown, w/35% vf grain sand in matrix,
					0010			interbedded w/dense sandstone, moist, no odor
			15	16	Core	15 ppm	16 3600	
		CL	16	17	Core	145 ppm		
			17	18	Coro	112 ppm	18	Encountered Groundwater!
			17	18	Core	ri∠ ppm	18 3598	Encountered Groundwater!
			18	19	Core	106 ppm		
		sc	10	20	Corre	106	20	Clayey Sand, tan, w/35% clay in matrix, interbedded
l			19	20	Core	106 ppm	20	w/dense sandstone, wet, sl HC odor.

G.

r fi jet

1.5	
13.00	
100	_

			MON	ITORING \	WELL NO:		MW-C	TOTAL DEPTH:26. 5 Feet
-	 LITH.		.h	SAMPLE		. **	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	то	TYPE	PID	3596	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Clayey Sand, tan-brown, w/35% clay in matrix,
ĺ			20	21	Core	106 ppm		interbedded w/dense sandstone, wet, sl HC odor.
			21	22	Core	91 ppm	22 3594	
		SC	22	23	Core	77 ppm`		
			23	24	Core	7 ppm	24	
			24	25	0	7	3592	
			24 25	25 26	Core Core	7 ppm 2 ppm	26	Sand, tan-red brown, vf grain, w/10% clay in matrix, interbedded w/dense sandstone, wet, no odor.
		sw	23	20	COLE	2 ppm	3590	TD Boring @ 26.5 Feet!
						1		To boing @ 20.3 reet:
							28	
					ч <b>х</b> .			
							30	
ł								
							32	
							34	
				•			36	
							38	
							40	
							42	
							44	

.

	Å		MON	ITORIN	IG WELI	LLITHO		LOG	
	<b></b> .	1		MONIT	ORING W	ELL NO:	MW-D		TOTAL DEPTH: <u>31 Feet</u>
						SITE ID:	Eldridge I	Ranch	CLIENT: Duke Energy Field Service
				SURF	ACE ELEV	/ATION:	3620		COUNTY: Lea
	IDE] ronmen				CONTR	ACTOR:	Prosonic		STATE: New Mexico
		N		DR			-		LOCATION: Monument, NM
ENIX7		- 、 ГАТ							FIELD REP.: J. Fergerson
 ENVI	KUNMEN			co					FILE NAME:
					СОМ	MENTS:			
					SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		LITH,	USCS	FROM	TO	TYPE	PID	3620	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt (Top Soi), brown, w/5% clay in matrix, no odor.
			∴мн					5020	
				0	1	Core	3 ppm		
				1	2	Core	3 ppm	2	Caliche, It yellow tan-It tan, dense-weathered, w/chert nods in matrix, no odor.
				•	_			3618	
				•		0	7		
				2	3	Core	7 ppm		-
			CALICHE	3	4 ·	Core	7 ppm	4	
								3616	-
				4	5	Core	7 ppm		
				-		0	40		
				5	6	Core	12 ppm	6 3614	Caliche, It yellow tan, weathered-dense, w/chert nods in matri
									no odor.
Sec.			CALICHE	6	7	Core	19 ppm		
				7	8	Core	33 ppm	8	
								3612	Caliche, white-It gray, dense-weathered, w/chert nods in matri
				.8	9	Core	37 ppm		no odor.
				0	3	Core	57 ppm		
				9	10	Core	15 ppm	10	
								3610	· · · ·
				10	11	Core	30 ppm		
a de la construir de la constru de la construir de la construir de la construir de la construir de la construir de la construir de la construir de la construir de la construir de la construir				·	40	0		40	
			CALICHE	11	12	Core	30 ppm	12 3608	
				12	13	Core	16 ppm		
				13	14	Core	24 ppm	14	
								3606	
				14	15	Core	24 ppm		
				14	15	Core	24 ppm		
			<b></b>	15	16	Core	87 ppm	16	
								3604	Silty Clay, tan-It brown, w/25% silt in matrix, interbedded w/mod-well cemented vf grain sand, moist, sl-mod HC odor.
				16	17	Core	44 ppm		· · · · · · · · · · · · · · · · · · ·
				17	18	Core	99 ppm	18	4
			CL	.,	,0			3602	1
						0	240		4
				18	19	Core	319 ppm		1.
PERSONAL PROPERTY AND A PROPERTY AND		13363866	3	19	20	Core	176 ppm	20	1

X.

		MON	IITORING V	WELL NO:		MW-D	TOTAL DEPTH:31 Feet
LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
						3600	
	CL	20	21	Core	176 ppm		
		21	22	Core	396 ppm	22 . 3598	Encountered Groundwater! Clay, It yellow tan-It gray, w/10% silt in matrix, interbedded
		22	23	Core	483 ppm		w/mod-well cemented vf grain sand, wet, mod-str HC odor.
	CL	23	24	Core	483 ppm	24 3596	
		24	25	Core	404 ppm		
		25	26	Core	444 ppm	26 3594	
	sw	26	27	Core	444 ppm		Sand, tan-dk orange brown, vf grain, w/5% clay in matrix, interbdded w/md-well cemnted vf grain sand, wet, md HC odc
		27	28	Core	5 ppm	28 3592	Clay, tan-It orange brown, w/15% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odo
	CL	28	29	Core	21 ppm		
		29	30	Core	17 ppm	30 3590	
		30	31	Core	17 ppm		TD Boring @ 31 Feet!
						32 3588	
						34	- -
						36	
						38	
						40	
						42	
						44	

N. ...

			MON	ITORIN	IG WEL	L LITHO	DLOGIC	LOG	
		A		MONIT	ORING W	ELL NO:	MW-E		TOTAL DEPTH: <u>31 Feet</u>
						SITE ID:	Eldridge F	Ranch	CLIENT: Duke Energy Field Service
	l de la companya de la compan			SURF	ACE ELE				COUNTY: Lea
	RIDE						Prosonic		STATE: New Mexico
	$\mathbf{K}$ $\mathbf{I}$ $\mathbf{I}$	<b>\  '</b>		DF			Rotosonia		LOCATION: Monument, NM
							11/24/200		FIELD REP.: J. Fergerson
H I	<b>NVIRONMEN</b>	ГAL –		<u> </u>					FILE NAME:
				00					
					SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
1		LITH.	USCS	FROM	TO	TYPE	PID	2640	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			мн	0	· 1	Core	5 0000	3618	Silt (Top Soil), brown-dk brown, w/15% clay in matrix, no odor
				0		Core	5 ppm		Silt, It yellow tan-It brown, w/10% clay in matrix, no odor.
				1	2	Core	9 ppm	2	
								3616	
			ML	2	3	Core	18 ppm		· ·
				3	4	Core	18 ppm	4	
								3614	
				4	5	Core	18 ppm		
			CALICHE	5	6	Core	48 ppm	6	Caliche, It gray brown, weathered, no odor.
				5		0010			Clay, It tan-It gray brown, w/20% silt in matrix, no odor.
			CL	6	7	Core	9 ppm		
				_			_		
			CL	7	8	Core	5 ppm	8 3610	Silty Clay, It gray brown-red brown, w/40% silt in matrix no odor.
		<u>anaanaa</u> a							Silt, tan-gray brown, w/20% clay in matrix, no odor.
		er e bit		8	9	Core	7 ppm		
		1.12		•					
			ML	9	10	Core	9 ppm	10	
								3608	х. Х
				10	11	Core	32 ppm		
									Caliche, It yellow tan-It gray, dense-weathered, w/chert
				11	12	Core	22 ppm	12	nods in matrix, no odor.
								3606	· ·
				12	13	Core	50 ppm		
			CALICHE						
			CALICITE	13	14	Core	39 ppm	14 3604	
				14	15	Core	17 ppm		·
			·						
				15	16	Core	31 ppm	16	
								3602	Clay, It gray tan, w/10% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, sl-mod HC odor.
				16	17	Core	277 ppm		
			CL						1
			UL	17	18	Core	356 ppm	18 3600	
				18	19	Core	356 ppm		Encountered Groundwater!
			CL						Clay, It gray brown, w/15% vf grain sand in matrix, wet
				19	20	Core	410 ppm	20	interbedded w/mod-well cemented vf grain sand, mod HC odo

2.44 M

			MON	ITORING	WELL NO:		MW-E	TOTAL DEPTH: 31 Feet
	LITH.			SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE	PID .		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
							3598	Clay, tan-It orange brown, w/15% vf grain sand in matrix,
								interbedded w/mod-well cemented vf grain sand, wet, mod-
	833333		20	21	Core	410 ppm		str HC odor.
	10000000							
		~	21	22	Core	457 ppm	22	
		CL					3596	
								· · · · · · · · · · · · · · · · · · ·
			22	23	Core	37 ppm		
				20		o. pp		
			23	24	Core	23 ppm	24	
							3594	Clay, It tan, w/5% vf grain sand in matrix, interbedded w/mod-
		CL						well cemented vf grain sand, wet, no odor.
			24	25	Core	17 ppm		Sandy Clay, It tan w/25% vf grain sain in matrix, interbedded
		CL	24	25	Cole	i i ppin		
			25	26	Coro	12		w/mod-well cemented vf grain sand, wet, no odor. Sand, dk red brown, vf grain, w/10% clay in matrix, wet, no
		SW	25	26	Core	13 ppm	26	
	0000000						3592	odor.
			1		· _			Clay, It gray tan-tan, w/5% vf grain sand in matrix,
			26	27	Core	8 ppm	ļ	interbedded w/mod-well cemented vf grain sand, wet, no odor
					_		L	
	KEESSEN	CL	27	28	Core	22 ppm	28	
							3590	4
			28	29	Core	28 ppm		
								Sand, tan-brown, vf grain, w/10% clay in matrix, interbedded
			29	30	Core	32 ppm	30	w/mod-well cemented vf grain sand, wet, no odor.
		sw					3588	
			30	31	Core	32 ppm		TD Boring @ 31 Feet!
							32	
							3586	
							34	
1								1
							36	
							36	
							36	
							36	
							36	
							36	
							38	
							38	
							38	
							38	
							38	
							38	
							38	
							38	
							38	
							38	

.. •

1.5

				MONITO	DRING W	ELL NO:	MW-F		TOTAL DEPTH: 26 Feet
						SITE ID:	Eldridge I	Ranch	CLIENT: Duke Energy Field Servi
					ACE ELE	VATION:	3614		COUNTY: Lea
		DEN ^C					Prosonic		STATE: New Mexico
	KIL	<b>I</b> EIN		DR					LOCATION: Monument, NM
									FIELD REP.: J. Fergerson
	ENVIKON			CO					FILE NAME:
					COM	IMENTS:			······
								· · · · ·	
					SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			USCS	FROM	TO	TYPE	PID	3614	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Clayey Silt (Top Soil), brown-dk brown, w/25% clay in matrix,
									no odor.
			н мн	0	1	Core	10 ppm		4
				1	2	Core	18 ppm	2	4
								3612	
				2	3	Core	18 ppm	·	Caliche, It yellow tan-It gray white, weathered, no odor.
				2	J	Oore	10 ppin		
			. I	3	4	Core	18 ppm	4	4
			CALICHE					3610	4
				4	5	Соге	18 ppm		
				5	6	Core	18 ppm	6	4
8				5	0	0010			Caliche, It yellow tan-gray, weathered-dense, w/chert nods in
									matrix, no odor.
			CALICHE	6	7	Core	4 ppm		
				7	8	Core	15 ppm	8	
								3606	
				8	9	Core	15 ppm		Clay, gray, w/15% vf grain sand in matrix, interbedded w/mod well cemented vf grain sand, moist, no odor.
		· 2.	CL	9	10	Core	20 ppm	10 3604	4
									1
		3.85	· · · · · ·	10	11	Core	7 ppm		
				11	12	Core	7 ppm	12	Clay, It yellow tan-It gray, w/5% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, moist, no
									odor.
				42	40	0	7		4
			CL	12	13	Core	7 ppm		Sand, gray-dk orange brown, w/15% clay in matrix, interbdde
				13	14	Core	5 ppm		w/mod-well cemented vf grain sand, moist, no odor.
			sw						-
				14	15	Core	5 ppm		Encountered Groundwater!
				15	16	Coro	5 ppm	16	Sandy Clay, It yellow tan-gray, w/25% vf grain sand in matrix interbedded w/mod-well cemented vf grain sand, wet, no odc
			CL	13	10	Core		3598	Interpedueu wimou-wei cemented vi grain sanu, wet, no odc
			· · ·						
				16	17	Core	5 ppm		Clay, It yellow tan-gray, w/5% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odd
		<i></i>		17	18	Core	5 ppm	18	
			CL					3596	4
				18	19	Core	12 ppm		1
								0-	
				19	20	Core	12 ppm	20	L

			MON		WELL NO:		MW-F	TOTAL DEPTH: 26 Feet
y and	L11	H. USCS	FROM	SAMPLE TO	TYPE	. PID .		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		CL					3594	-
			20	21	Core	12 ppm		Clay, orange tan-red brown, w/5% sand in matrix,
			21	22	Core	12 ppm	22	interbedded w/mod-well cemented vf grain sand, wet, no odor.
							3592	· ·
		CL	22	23	Core	12 ppm		
			23	24	Core	12 ppm	24	
							3590	
			24	25	Core	12 ppm		
		sw	25	26	Core	12 ppm	26	Sand, orange brown, vf grain, w/5% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor.
			<b>_</b>				3588	TD Boring @ 26 Feet!
	· ·							
							28	
								- -
								· · ·
							30	
					•			-
							32	
								-
								-
							34	
3								
	· ·			÷			36	· · · · · ·
•								
							38	
								-
							· 40	
								4
								1
	<b>.</b>						42	<u> </u>
								4
	L						44	

			٨		MON	ITORIN	IG WEL	LLITHO	OLOGIC	LOG	
				N		MONIT	ORING W	ELL NO:	MW-G		TOTAL DEPTH: 26 Feet
			- 4	1 million and the second secon					Eldridge		CLIENT: Duke Energy Field Service:
						SURF	ACE ELE	VATION:	3614		COUNTY: Lea
17		דד ו							Prosonic		STATE: New Mexico
1.		< 11	JE	N .	•	DR	ULLING M	ETHOD:	Rotosoni	с	LOCATION: Monument, NM
	<u> </u>						STAR	T DATE:	11/24/20	03	FIELD REP.: J. Fergerson
	EN EN	VIRC	DE]	TAL		CO	MPLETIO	N DATE:	11/24/20	03	FILE NAME:
	- /	7					CON	IMENTS:	<u> </u>		
	•										
							SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
				LITH.	USCS	FROM	TO	TYPE	PID	0014	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
										3614	Silt (Top Soil), brown, w/10% clay in matrix, no odor.
1.					мн	0	1	Core	0 ppm		]
		•						Cara	1.000		
						1	2	Core	1 ppm	2 3612	Caliche, It yellow tan-It gray, weathered-dense, w/chert in
											matrix, no odor.
1						2	3	Core	1 ppm	<u> </u>	· · · · ·
					CALICHE	3	4	Core	2 ppm	4	
										3610	· · · · · · · · · · · · · · · · · · ·
						4	5	Core	12 ppm		
						-	Ũ	0010	12 pp://		
						5	6	Core .	9 ppm	6	Caliche, It yellow tan-gray brown, dense-weathered, w/chert
										3608	in matrix, interbedded w/dense sandstone, no odor.
						6	7	Core	3 ppm	:	
					CALICHE	-		<b>A</b>			
						7	8	Core	8 ppm	8 3606	-
						8	9	Core	14 ppm		
1						9	10	Core	6 ppm	10	Silty Clay, tan-lt brown, w/30% silt in matrix, moist, no odor.
					CL					3604	
ŀ						10	11	Core	8 ppm	· .	Sandy Clay, tan-orange brown, w/35% vf grain sand in matrix,
					CL	ŧΟ	11		o ppm		wet, no odor.
1						11	12	Core	8 ppm	12	
							•			3602	Sandy Clay, tan-It gray brown, w/35% vf grain sand in matrix, interbedded w/dense sandstone, wet, no odor.
					CL	12	13	Core	8 ppm		ninerbeugeu w/dense sandstone, wet, no odor.
					UL	40		:		4.4	
						13	14	Core	8 ppm	14 3600	
								-			Clayey Sand, tan-orange brown, w/30% clay in matrix,
					SC	14	15	Core	8 ppm		interbedded w/dense sandstone, wet, no odor. Encountered Groundwater!
				3 <u>1</u> , 1		15	16	Core	8 ppm	16	Sandy Clay, tan-It gray brown, w/35% vf grain sand in matrix,
				a star sin			•			3598	interbedded w/dense sandstone, wet, no odor.
				ار میں اور میں اور میں اور میں	CL	16	17	Core	8 ppm		1
				5 # 5 ¥ @ .			4.2	0			
						17	18	Core	11 ppm	18 3596	4
					SC	18	19	Core	11 ppm		Clayey Sand, It yellow tan-It gray, w/30% clay in matrix, wet, no odor.
1						19	20	Core	11 ppm	20	

. .

				MON	ITORING	WELL NO:		MW-G	TOTAL DEPTH: 26 Feet
	LIT		·		SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			SCS	FROM	TO	TYPE	эс PID, /	3594	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			SC ·	20	21	Core	15 ppm		Sandy Clay, It yellow tan-It gray, w/25% vf grain sand in
									matrix, wet, no odor.
			CL	21	22	Core	15 ppm	22 3592	
								3592	
				22	23	Core	10 ppm		· · · · ·
•				. 23	24	Core	10 ppm	24 3590	Sandy Clay, tan-orange brown, w/40% vf grain sand in matrix wet, no odor.
			CL	24	25	Core	10 ppm		
				25	26	Coro	10 ppm	26	TD Paring at 26 East
	I 122222	888		25	26	Core	10 ppm	20 3588	TD Boring at 26 Feet!
	X								
								28	
					• .				
								30	
								32	
	· · ·								
								34	
-									
								36.	
						*			
								38	
								40	
							ł		
:							ŀ	42	
								44	
	L			<u>.</u>				-+4	

		A	MON	IITORIN	IG WEL	LLITH	OLOGIC	LOG	
		JA -		MONIT	ÓRING W	ELL NO:	MW-H		TOTAL DEPTH: 30.5 Feet
	*					SITE ID:	Eldridge	Ranch	CLIENT: Duke Energy Field Service
		IN S		SURF	ACE ELE	VATION:	3621		COUNTY: Lea
	) TT \ T				CONTR	ACTOR:	Prosonic		STATE: New Mexico
	ミリノ			DF		ETHOD:	Rotosoni	с	LOCATION: Monument, NM
					STAF	T DATE:	11/21/20	03	FIELD REP.: J. Fergerson
EN	VIRONM	ENTAL		со	MPLETIO	N DATE:	11/21/20	03	FILE NAME:
		_			CON	IMENTS:			· · · ·
				50.011	SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
 1			USCS	FROM	то	TYPE	PID	3621	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt (Top Soil), dk grayish brown, w/15% clay in matrix, no
			мн						odor.
			<b></b>	0	1	Core	11 ppm	<u> </u>	Ösliska kuslusiskas dara etter
				1	2	Core	11 ppm	2	Caliche, It yellowish tan, dense-weathered, w/chert nods in matrix, no odor.
			CALICHE					3619	
				2	3	Core	11 ppm		
				2	5	Cole	i i ppin		Caliche, It yellowish tan-tan, weathered-dense, w/chert nods
				3	4	Core	11 ppm	4	in matrix, no odor.
			CALICHE					3617	
				4	5	Core	30 ppm		
				_	_				
				5	6	Core	23 ppm	6 3615	Caliche, It yellowish tan-It grayish brown, weathered-dense,
							:		w/chert nods in matrix, no odor.
				6	7	Core	6 ppm	[	
			CALICHE	7	8	Core	21 ppm	8	
	£352.5							3613	
				•		0	04		
				8	9	Core	21 ppm		Caliche, It yellowish tan, dense-weathered, w/chert nods in
				9	10	Core	25 ppm	10	matrix, interbedded w/dense sandstone, no odor.
								3611	
				10	11	Core	10 ppm		
			CALICHE						
				11	12	Core	26 ppm	12 3609	
				12	13	Core	26 ppm		
				13	14	Core	15 ppm	14	Sandy Clay, yellow tan, w/25% vf grain sand in matrix,
									interbedded w/dense sandstone, no odor.
			CL		45	0			
				14	15	Core	12 ppm		
				15	16	Core	18 ppm	16	
								3605	Clayey Sand, tan-orange brown, vf grain, w/40% clay & chert nods in matrix, interbdded w/dense sandstone, moist, sl HC
E				16	17	Core	61 ppm		odor.
				17		0		40	
			sc	17	18	Core	84 ppm	18 3603	
ШЦ									
				18	19	Core	38 ppm		
E			3 I						

1. S. S.

					<u></u>	·		
			MON	ITORING V	VELL NO:		MW-H	TOTAL DEPTH: 30.5 Feet
_	LITH.			SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE .	PID	3601	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		SC	20	21	Core	25 ppm	3001	
			21	22	Core	25 ppm		Clayey Sand, tan-orange brown, vf grain, w/35% clay in matrix interbedded w/dense sandstone, wet, no odor.
			22	23	Core	25 ppm		
			23	24	Core	15 ppm	24 3597	
		SC	24	25	Core	15 ppm		
			25	26	Core	6 ppm	26 3595	
			26 27	27 	-		28	
							3593	Sand, orange brown, vf grain w/20% clay in matrix, interbdded
		sw	28 29	29 30	-		30	wet, no odor.
							3591	TD Boring @ 30.5 Feet
							32 34 36 36 38 40 40 42	
							44	

ł

		Á		MON	ITORIN	IG WEL	L LITH	OLOGIC	LOG	
			1		MONIT	ORING W	ELL NO:	MW-I		TOTAL DEPTH: 36.5 Feet
		Sector Se	and the second s							CLIENT: Duke Energy Field Services
					SURF					COUNTY: Lea
		<b>DEN</b> RONMENT	T			CONTR	ACTOR:	Prosonic		STATE: New Mexico
1.		IIJH(P	N'		DF			Rotosonia		LOCATION: Monument, NM
			•							FIELD REP.: J. Fergerson
	ENVII	RONMENT	AL		00			11/26/200	3	FILE NAME:
			_	<b>.</b>						
						SAMPLE			'DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			LITH.	USCS	FROM	то	TYPE	PID	3635	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
				мн					3625	Silt (Top Soil), brown, w/15% clay in matrix, no odor.
					0	1	Core	5 ppm		Caliche, It yellowish tan-tan, weathered-dense, w/chert nods in matrix, no odor.
					1	2	Core	5 ppm	2 3623	-
				CALICHE	2	3	Core	15 ppm		
					3	4	Core	24 ppm	4 3621	
				CALICHE	4	5	, Core	24 ppm		Caliche, tan-It grayish brown, dense-weathered, w chert nods in matrix, no odor.
					5	6	Core	-	6 3619	Caliche, yellowish tan, weathered-dense, w/chert nods in
				CALICHE	6	7	Core	8 ppm		matrix, no odor.
					7	8	Core	8 ppm	8 3617	
					8	9	Core	8 ppm		Caliche, it yellowish tan-tan-It grayish brown, weathered-dense w/chert nods in matrix, no odor.
					9	10	Core	8 ppm	10 3615	
					10	11	Core	8 ppm		
				CALICHE	11	12	Core	20 ppm	12 3613	
					12	13	Core	20 ppm		•
					13	14	Core	20 ppm	14 3611	
					14	15	Core	10 ppm		
					15	16	Core	10 ppm	16 3609	Silty Clay, tan-It yellowish brown, w/35% silt and weathered
				sc	16	17	Core	271 ppm		caliche in matrix, mod sl HC odor.
					17	18	Core	109 ppm	18 3607	Silty Clay, tan-It grayish brown, w/35% silt in matrix,
				sc	18	19	Core	413 ppm		Sing Clay, tariet grayish brown, wiss % sin in matrix, interbedded w/mod-well cemented vf grain sand, mod-str HC odor.
			<i>.</i>		19	20	Core	476 ppm	. 20	

.

.

			MON	ITORING \	WELL NO:		MW-I	TOTAL DEPTH: 36.5 Feet
-	LITH.			SAMPLE		-	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE	PID	3605	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		SC	20 21	21 22	Core Core	263 ppm 346 ppm		
							3603	
		SC	22 ⁻	23	Core	294 ppm		Encountered Groundwater! Silty Clay, It yellowish white-It gray, w/35% silt in matrix, interbedded w/mod-well cemented vf grain sand, wet, mod-str
			23	<b>24</b>	Core	255 ppm	24 3601	HC odor. Silty Clay, It yellowish tan-orange tan, w/35% silt in matrix,
		SC	24	25	Core	204 ppm		wet, mod HC odor.
			25	26	Core	16 ppm	26 3599	Silty Clay, It yellowish tan, w/40% silt in matix, interbedded
			26	<b>27</b> ·	Core	0 ppm		w/mod-well cemented vf grain sand, wet, no odor.
		SC	27	28	Core	0 ppm	28 3597	
			28	29	Core	0 ppm		Sand, tan-orange brown, vf grain, w/20% silt in matrix,
		sw	29	30	Core	0 ppm	30 3595	interbedded w/mod-well cemented vf grain sand, wet, no odor
		300	30	31	Core	0 ppm		
			31	32	Core	0 ppm	32 3593	Sand, It yellow tan, vf grain, w/20% silt in matrix, interbedded
		SW	32	33	Core	0 ppm		w/mod-well cemented vf grain sand, wet, no odor.
		sw	33	34	Core	0 ppm	34 3591	Sand, It yellowish tan-It gray, vf grain, w/chert in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odo
		sw	34	35	Core	0 ppm		Sand, It tan-It orange brown, vf grain, interbedded w/mod-well cemented vf grain sand, wet, no odor.
		300	35	36	Core	0 ppm	36 3589	TD Boring @ 36.5 Feet!
					a.		38	
							· 40	
							42	
							44	

ſ									
	Á		MON	IITORIN	IG WEL	L LITHO	OLOGIC	LOG	
	L.A.	1		MONIT	ORING W	ELL NO:	MW-J		TOTAL DEPTH: 27 Feet
						SITE ID:	Eldridge	Ranch	CLIENT: Duke Energy Field Service
				SURF	ACE ELE	VATION:	3622		COUNTY: Lea
					CONTR	ACTOR:	Prosonic		STATE: New Mexico
	TRIDEN	N I		DF		ETHOD:	Rotosoni	c	LOCATION: Monument, NM
					STAR	T DATE:	11/25/20	03	FIELD REP. J. Fergerson
1	<b>ENVIRONMENT</b>	AL ]		co	MPLETIO	N DATE:	11/25/20	03	FILE NAME:
	—				CON	MENTS:			
	<b>*</b>								
		[						1	
		LITH.	USCS	FROM	SAMPLE TO	TYPE	PID		THOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN IZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
ľ									ilt (Top Soil), It tan-dk brown, w/10% clay in matrix, no odor.
				•		0	0		
			мн	0	1	Core	0 ppm		
1				1	2	Core	0 ppm	2	
I								3620	
l				2	3	Core	13 ppm	С	aliche, It yellow tan-It gray, weathered-dnse, w/chert nods in
									atrix, interbedded w/tan-it orange brown silty clays, no odor.
				3	4	Core	37 ppm	4 3618	
			CALICHE					3010	
I				4	5	Core	37 ppm		
l				5	6	Core	74 ppm	6	
I				5		Core	/4 ppm		aliche, white-It yellow tan, dense-weathered, w/chert nods
I									matrix, interbdded w/tan-lt orange brown silty clays, no odor.
ļ				6	7	Core	24 ppm		
1				7	8	Core	15 ppm .	8	
								3614	
			CALICHE	8	9	Core	9 ppm		
I									
I				9	10	Core	12 ppm	10 3612	· · · ·
I							1	3012	
I				10	11	Core	45 ppm		
I				11	12	Core	17 ppm	12	
				11	12	COIE			layey Silt, tan-orange-gray, w/30% clay , caliche, & chert
I									ods in matrix, no odor.
				12	13	Core	7 ppm		
			ML	13	14	Core	12 ppm	14	
			IVI L					3608	
I				14	15	Core	12 ppm		
I					10	0010			
				15	16	Core	9 ppm	16	
									layey Silt, It tan gray-dk orange brown, w/25% clay & chert ods in matrix, wet, no odor.
		in the second	MĻ	16	17	Core	15 ppm		· ·· ··
				17	18	. Core	16 ppm	18	· · · · ·
				17	10		io ppin	3604	
I			Lost Core						Lost Core Interval
				18	19	Core	-		
1				19	20	Core	-	20	Encountered Groundwater!

atter.

				MOM		WELL NO:		MW-J	TOTAL DEPTH: 27 Feet
		LITH.	r		SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
								3602	
1. S.									
				20	21	Core	-		1
			Lost Core	20	L'	0010		<u> </u>	Lost Core Interval
				21	22	Core	-	22	1
				21		0010	-	3600	4 [·]
								3000	Clay, gray-dk orange brown, w/15% silt in matrix, wet,
			sc	22	23	Coro	_ ·		no odor.
				22	23	Core	-	<u> </u>	
				23	24	Coro	10	24	Clay, tan-gray brown, w/20% silt in matrix, wet, no odor.
			SC	23	24	Core	10 ppm		Johay, tan-gray brown, w/20% sitt in matrix, wet, no odor.
		3 5						3598	
		. (P	SC			•		L	Clay, tan-gray-dk orange brown, w/15% silt in matrix, wet, no
		1993 S		24	25	Core	10 ppm		odor.
									Clay, It tan-gray-It orange brown, w/15% silt in matrix, wet, no
				25	26	Core	8 ppm	26	odor.
			SC					3596	4
:									4
			I	26	27	Core	-	<u> </u>	TD Boring @ 27 Feet!
									4
								28	
								3594	
					•				
								30	
									]
									1
								32	
									·
									-
								34	
								- 34	•
									-
									4
								<u> </u>	•
								ļ	
								36	4
								L	
								L	· · ·
								L	,
								38	
									]
									1
								40	1
									1
									1
									1
								<b>├</b> ──	4
								<u> </u>	1
								42	
								42	
								42	
								42	
								42	

	4		MON	IITORI	NG WEL	L LITHO	OLOGIC	LOG	
		MONITORING WELL NO:			MW-K		TOTAL DEPTH: <u>26 Feet</u>		
				SITE ID:	Eldridge Ranch				
					ACE ELE	VATION:	3616		COUNTY: Lea
	TRIDE				CONTR	ACTOR:	Prosonic		STATE: New Mexico
		N		DF	RILLING M	IETHOD:	Rotosonia	3	LOCATION: Monument, NM
		ч • • т			STAR	T DATE:	11/25/200	03	FIELD REP.: J. Fergerson
	ENVIRONMENT	AL		cc	MPLETIO	N DATE:	11/25/200	03	FILE NAME:
					CON	IMENTS:			· · · ·
					SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
ŀ		LITH.	USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			мн					3616	Silt (Top Soil), brown-dk brown, w/10% clay in matrix, no odor.
			1411.3	0	1	Core	7 ppm		
									Caliche, It yellowish tan, weathered-dense, w/chert nods in
				1	2	Core	21 ppm	2	matrix, no odor.
l								3614	-
l				2	3	Core	35 ppm		
l									
l			CALICHE	3	4	Core	15 ppm	4	
l								3612	
l				4	5	Core	15 ppm		
l				5	6	Core	21 ppm	6	
								3610	
				6	7	Core	10 ppm		Caliche, It yellowish tan-It gray, dense-weathered, w/chert
ŀ									nods in matrix, no odor.
				7	8	Core	26 ppm	8	
			CALICHE					3608	
				8	9	Core	26 ppm		
ł				_		_			-
				9	10	Core	15 ppm	10 3606	Caliche, tan-It grayish brown, dense-weathered, w/chert nods
ł									in matrix, no odor.
l			CALICHE	10	11	Core	29 ppm		
									•
				11	12	Core	18 ppm	12 3604	Caliche, It yellowish tan-It gray, dense-weathered, w/chert
l		* * \$	CALICHE					5004	nods in matrix, no odor.
l				12	13	Core	27 ppm		
I				40		0	10		Clay, It tan-It gray, w/15% silt in matrix, interbedded w/mod-
l		67 A.		13	14	Core	19 ppm	14 3602	well cemented vf grain sand; moist, no odor Encountered Groundwater!
l			CL					0002	Lincoline eu Groundwaler:
l				14	15	Core	40 ppm		
l				15	16	Core	40 ppm	16	
		(1) (1)		15	10	COLE	40 ppm	3600	Clay, It gray, w/15% vf grain sand in matrix, interbedded
I		and se	CL						w/mod-well cemented vf grain sand, wet, no odor.
I			~-	16	· 17	Core	11 ppm		
				17	18	Core	11 ppm	18	Sandy Clay, gray, w/25% vf grain sand in matrix, interbedded
		1. 8 . 4 . 4 . 5 . 6 . 4		.,		0010	, ppm	3598	w/mod-well cemented vf grain sand, wet no odor.
		3.	CL						· · · · · · · · · · · · · · · · · · ·
1				18	19	Core	20 ppm		
ł									

•

A Second

			MW-K TOTAL DEPTH: 26 Feet						
		LITH.		······································	SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			USCS	FROM	• TO	TYPE	. PID⊾.	3596	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Clay, gray, w/15% vf grain sand in matrix, interbedded w/mod
									well cemented vf grain sand, wet, no odor.
				20	21	Core	20 ppm		
		موجوع ا	CL	21	22	Core	32 ppm	22	
				23	22	COLE	S2 ppm	3594	
			•						
		, e		22	23	Core	12 ppm		
				23	24	Core	40 ppm	24	Clay, It gray-brown, w/20% vf grain sand in matrix, interbedded
									w/mod-well cemented vf grain sand, wet, no odor.
			CL	24	25	Coro	22.000		· · ·
				24	25	Core	33 ppm		
				25	26	Core	-	26	TD Boring @ 26 Feet!
								3590	
								28	
								30	
								32	
									· · ·
								34	
-									
ê.									
-								36	
								38	
					•			40	
								42	
							ł		
							ł		
								44	
	· · · ·								

		٨		MON	ITORIN	IG WEL	L'LITH(	DLOGIC	LOG			
		<u> </u>	1		MONIT	ORING W	ELL NO:	MW-L		TOTAL DEPTH:	33.5 Feet	
							SITE ID:	Eldridge			Duke Energy Field Service	
			-	*	SURF		ATION:	3628		COUNTY:	Lea	
r		<b>DEN</b> RONMENT				CONTR	ACTOR:	Prosonic		STATE:	New Mexico	
-	K		N	·	DF	RILLING M	ETHOD:	Rotosoni	c	LOCATION:	Monument, NM	
			• • •			STAR	T DATE:	11/20/20	03	FIELD REP.:	J. Fergerson	
	ENVII	RONMENI	AL		co	MPLETIO	N DATE:	11/20/20	03	FILE NAME:		
	- /					СОМ	MENTS:					
	[		r			CAMPLE		·	DEDTU			
			LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION L SIZE, SORTING, ROUNDING,		
		·		мн					3628	Silty Clay, dk brown, w/25% silt		
					0		0				-Normal codebration do to	
					U	1	Core	14 ppm		Caliche, tan-it brown, dense-we matrix, no odor.	athered, w/chert hods in	
				CALICHE	1	2	Core	19 ppm	2		•	
		·		0/12/07/12					3626			
					2	3	Core	14 ppm				
					-	Ŭ	00.0			Caliche, tan-It yellow brown, we	athered-dense, w/chert	
					3	4	Core	14 ppm	4	nods in matrix, no odor.		
									3624			
					4	5	Core	39 ppm				
					5	6	Core	26 ppm	6			
									3622			
					6	7	Core	6 ppm				
					-	,						
				CALICHE	7	8	Core	7 ppm	8			
									3620			
					8	9	Core	13 ppm				
							_					
					9	10	Core	10 ppm	10 3618			
									3010			
					10	11	Core	1 ppm				
							•					
					11	12	Core	1 ppm	12 3616	•		
									3010			
					12	13	Core	9 ppm				
				CHERT	13	14	0000	5	14	Chert, tan-It brown, dense, no o		
					13	14	Core	5 ppm		Caliche, tan-lt yellow brown, we in matrix, no odor.	amered-dense, w/chert hods	
				CALICHE								
					14	15	Core	23 ppm		-		
				CALICHE	15	16	Core	11 ppm	16	Caliche, tan-It brown, weathered matrix, no odor.	I-dense, w/chert nods in	
							0010		3612	Caliche, tan-It brown, weathered	l, w/chert nods in matrix,	
										interbedded w/mod-dense vf gra		
					16	17	Core	14 ppm				
				CALICHE	17	18	Core	80 ppm	18			
					· ·				3610	ч		
								<u>_</u> ,				
					18	19	Core	74 ppm		Sand, tan-It brown, vf grain, inte	thoddöd w/donce sendster-	
				SW								

in the second

			MON		VELL NO:		MW-L	TOTAL DEPTH: 33.5 Feet
	LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		0000			1116	110	3608	Sand, tan-brown, vf grain, wet, no odor.
-		sw	20	21	Core	-		
			21	22	Core	63 ppm	22	
								Clayey Sand, It brown vf grain, w/25% clay in matrix,
		SC	22	23	Core	56 ppm		interbedded w/dense sandstone, wet, no odor.
			23	24	Core	77 ppm	24	Encountered Groundwater, Sand, tan-brown, vf grain, wet, no odor.
						•	3604	
			24	25	Core	67 ppm		·
		CINI	25	26	Core	76 ppm	26	-
		sw					3602	
			26	27	Core	31 ppm		
			27	28	Core	67 ppm	28	
							3600	Clayey Sand, tan-It brown, vf grain, w/25% clay in matrix,
			28	29	Core	48 ppm		interbedded w/dense sandstone, wet, no odor.
		sc	29	30	Core	42 ppm	30	
							3598	
			30	31	Core	34 ppm		
			31	32	Core	56 ppm	32	Sand, tan-brown, vf grain, interbedded, w/dense sandstone, wet, no odor.
		sw					3696	· ·
			32	33	Core	14 ppm		TD Boring @ 33.5 Feet!
		1					34	TD Boiling @ 33.5 Feet:
							3694	
-							36	
							38	
							40	
								1
							42	
								1
	 						44	1

P. S. S.

		1		MONIT	ORING W	ELL NO:	MW-M		TOTAL DEPTH: 38 Feet
	- X	and the second s					Eldridge	Ranch	
				SURF	ACE ELE				COUNTY: Lea
	INEI						Prosonic		
				DR			Rotosoni		LOCATION: Monument, NM
FNVI	RONMEN	ТАТ.					11/20/200		FIELD REP.: J. Fergerson
				00					FILE NAME:
					001	INENTO.			
[									
		LITH.			SAMPLE		T	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	<u> </u>		USCS	FROM	TO	TYPE	PID	3631	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt (Top Soil), brown, w/15% clay in matrix, no odor.
			MH	0	1	Core	6 ppm		
				1	2	Core	1 ppm	2	
								3629	Silty Clay, brown, w/30% silt in matrix, no odor.
				2	3	Core	0 ppm		
			мн						
				3	4	Core	0 ppm	4 3627	
				4	5	Core	0 ppm		
			мн	5	6	Core	0 ppm	6	Clay, tan-brown, w/20% silt in matrix, no odor.
				Ŭ	Ű	0010	o ppin		Sandy Clay, orange brown-black, w/40% vf grain sand in martrix.
			200	_	_	_			no odor.
			sc	6	7	Core	0 ppm		
			222	7	8	Core	0 ppm	8	
									Sandy Clay, It tan-brown, w/25% vf grain sand & weathered caliche in matrix, no odor.
			SC	8	9	Core	0 pmm		
			30						
				9	10	Core	0 ppm	10 3621	Sandy Clay, It tan-brown, w/45% vf grain sand & weathered
									caliche in matrix, no odor.
			57557	10	11	Core	0 ppm		
	10.220 8 4		sc	11	12	Core	0 ppm	12	
							-	3619	
			200	12	13	Core	0 ppm		
			5000		10		o ppin		-
				13	14	Core	0 ppm	14 3617	Caliche, It yellow tan, weathered, no odor.
			CALICHE					3017	
				14	15	Core	0 ppm		
				15	16	Core	0 ppm	16	
									Caliche, It yellow tan-It brown, weathered-dense, w/chert
				16	17	Core	184 ppm		nods in matrix, interbedded w/dense sandstone, sl HC odor.
				OI	1/	Core			1
			CALICHE	17	18	Core	307 ppm	18	•
								3613	•
A REAL PROPERTY AND A REAL		N 0 0 0 0 0 0	N		1	1	1		1
				18	19	Core	116 ppm		

ani.

		MOM	NITORING	Well No:		MW-M	TOTAL DEPTH: 38 Feet
LIT			SAMPLE		· · · · ·	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	USCS	FROM	TO	TYPE	PID.	0044	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		20	01	Coro	207	3611	
	CALICHI	20	21	Core	297 ppm		
		21	22	Core	250 ppm	22 3609	
		22	23	Core	151 ppm		
	sw	23	24	Core	257 ppm	24	Sand, tan-It brown, vf grain, w/5% clay in matrix, sI-mod HC odor.
	CALICHE	=				3607	Caliche, white-It tan brown, weathered-dense, w/chert nods in matrix, interbedded w/dense sandstone, mod HC odor.
	1 (s) 1 (s) 2 (s)	24	25	Core	309 ppm		Caliche, It gray -It tan brown, weathered-dense, w/chert nods in matrix, interbedded w/dense sandstone, mod-str HC odor.
	1	25	26	Core	337 ppm	26 3605	
		0.00	07	Care	240		
	eff	26	27	Core	316 ppm		
	en fe File	27	28	Core	321 ppm	28 3603	
	*	28	29	Core	201 ppm		
	sw	29	30	Core	149 ppm	30	Sand, It yellow tan-brown, vf grain, w/5% clay in matrix, interbedded w/dense sandstone, wet, sI HC odor.
		ł				3601	Sand, It tan-It brown, vf grain, w/5% clay in matrix, interbedded
		30	31	Core	54 ppm		w/dense sandstone, wet, no odor.
	SW	31	32	Core	20 ppm	32 3599	
		32	33	Core	17 ppm	0000	Sand, orange brown, vf grain, w/5% clay in matrix, interbedded w/dense sandstone, wet, no odor,
		33	34	Core	17 ppm	34	nicibedded widense sandsione, wei, no odor,
			- 34	Core	т ррш	3597	
	sw	34	35	Core	18 ppm		
		35	36	Core	18 ppm	36	
						3595	
		36	37	Core	-		
	<u> </u>					38 3593	TD Boring @ 38 Feet!
						3093	
						40	
1							
						42	
							1
						4.	
L						44	

		A			ORING W		MALN		TOTAL DEPTH: 36.5 Feet
		~		MONT					CLIENT: Duke Energy Field Service
	$\sim$			SURF	ACE ELE				COUNTY: Lea
							Prosonic		STATE: New Mexico
I 'K	[DE] RONMEN	$\mathbf{N}'$	1	DF					LOCATION: Monument, NM
									FIELD REP.: J. Fergerson
ENVI	RONMEN	TAL ]		со					FILE NAME:
•									
					SAMPLE		- ·	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		LITH.	USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
								3633	Silt (Top Soil), brown, w/10% clay in matrix, no odor.
				0	1	Core	10 ppm		
						0			Caliche, It yellowish tan-It gray, weathered-dense, w/chert
				1	2	Core	9 ppm	2 3631	nods in matrix, no odor.
									1
				2	3	Core	11 ppm		
				3	4	Core ·	11 ppm	4	-
								3629	1
					_	Com	0		-
				4	5	Core	9 ppm		4
				5	6	Core	13 ppm	6	]
								3627	4
				6	7	Core	6 ppm	ļ ,	
				7	8	Core	2 ppm	8 3625	4
								3025	
				8	9	Core	5 ppm		
				9	10	Core	14 ppm	10 .	-
					, ič	0010	ri ppin	3623	1
									-
				10	11	Core	8 ppm		1
				11	12	Core	2 ppm		Clay, It yellowish tan-It gray, w/20% sand, & chert nods in
								3621	matrix interbedded w/mod-well cemented vf grain sand, sI HC
				12	13	Core	7 ppm		odor.
	<b>13</b> 121								
				13	14	Core	13 ppm	14 3619	
								3019	
				14	15	Core	5 ppm		
				15	16	Core	8 ppm	16	
				10	10	0010	o ppin	3617	
						, Q.			4
				16	17	Core	91 ppm		4
				17	18	Core	120 ppm	18	1
						•		3615	4
				18	19	Core	116 ppm		Sandy Clay, orange brown, w/40% vf grain sand in matrix,
	21.4280.4281.4281.8282.8282	10000000							

-

Image: Solution of the				MON	IITORING \	WELL NO:		MW-N	TOTAL DEPTH: 36.5 Feet
20         21         Core         233         Saved Cask, it components of grain and in matrix, iterational in matrix, iteratinal in matrix, iterational in matrix, iterational in matrix, itera		LITH.						DEPTH	
20         21         Core         25 prm			USCS	FROM	TO	TYPE	PID		
Image: Second				20	21	Core	253 ppm	3613	
Image: Second				21	. 22	Core	246 ppm		
23         24         Core         304 ppm         24         350           24         25         Core         305 ppn         20         307 ppn         307				22	23	Core	299 nnm	3611	
24         25         Core         365 ppm         Clayey Sand, tan-orange brown, vf grain, w40% clay in matrix, interbadded whold-well commended vf grain sand, well, mod HC           28         27         Core         355 ppm         Core         365 ppm           28         27         Core         138 ppm         Core         365 ppm           305         Interbadded whold-well commended vf grain sand, well, mod HC         Core         138 ppm         26           28         29         Core         138 ppm         26         Core         138 ppm           305         Interbadded whold-well commended vf grain sand, well, mod HC         28         29         Core         138 ppm         28         Core         139 ppm           305         Interbadded whold-well commended vf grain sand, well, mod HC         28         29         Core         200 ppm         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20									
28         28         Core         300 ppm         20         200 r         200 r </td <td></td> <td></td> <td></td> <td>24</td> <td>25</td> <td>Coro</td> <td>205 ppm</td> <td>3609</td> <td>Clavery Condition orange brown of grain w/40% clav in matrix</td>				24	25	Coro	205 ppm	3609	Clavery Condition orange brown of grain w/40% clav in matrix
28         27         Core         125 pm								26	interbedded w/mod-well cemented vf grain sand, wet, mod HC
Image: Construct of Construction of Constructing Construction of Construction of Construction of Constr						_		3607	interbedded w/mod-well cemented vf grain sand, wet, mod HC
28         29         Core         200 ppm         HC door.           29         30         Core         460 ppm         300 300 00 pm           30         31         Core         300 ppm         HC door.           11         32         Core         460 ppm         300 00 pm           12         33         31         Core         300 ppm           14C door.         14C door.         HC door.         HC door.           30         31         Core         300 ppm         HC door.           13         32         Core         319 ppm         320 300 ppm           14C door.         14C door.         HC door.         HC door.           33         34         Core         716 ppm         34 360 1           359         380         Core         685 ppm         3597           14C door.         14C door.         HC door.         HC door.           14C door.         14C door.         14C door.		4 ²						28	Encountered Groundwater!
29         30         Core         460 ppm         30         300         300         300         300         Core         460 ppm         300         Cayey Sand, gray-dk gray, vi grain, w25% clay in matrix, interbedded wimod-well cemented vi grain sand, wet, mod-str           30         31         32         Core         319 ppm         32         3801         He dotr.         He dotr.           31         32         Core         319 ppm         32         3801         He dotr.		6.4							interbedded w/mod-well cemented vf grain sand, wet, mod-str
30         31         32         31         32         30         31         32         30         31         32         30         31         32         30         31         32         30         31         32         30         31         32         30         31         32         32         33         30         31         32         300         30         31         32         300         30         30         31         32         300         30         30         31         32         32         33         300         30         30         30         30         30         30         30         30         30         31         32         30         Core         319 pm         32         33         34         Core         475 ppm         40         399         399         399         399         30         31         35         Core         711 pm         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10								30 ·	
31         32         Core         319 ppm         32 3801           32         33         Core         475 ppm         34 3599         3601           33         34         Core         716 ppm         34 3599         3597           34         35         Core         685 ppm         367           35         36         Core         685 ppm         3597           TD Boring @ 36.5 Feet!         3599         3699         3699				20		0010	100 ppm		
32       33       Core       475 ppm         33       34       Core       716 ppm       34         35       36       Core       711 ppm       Interbedded w/mod-well cemented vf grain sand, wet, str         HC odor.       685 ppm       36       Core       685 ppm       36         36       0       0       0       0       0       0         40       40       40       40       40       40       40		1.40 CM	:						
33       34       Core       716 ppm       34 3599       3599         34       35       Core       711 ppm       Interbedded w/mod-well cemented vf grain sand, wet, str         35       36       Core       685 ppm       36 3597       TD Boring @ 36.5 Feet!         38       3595       3595       3595       1000       1000         40       40       40       40       40					02	Cole			
34       35       Core       711 pm       3599       3ad, tan-orange brown, vf grain, w/20% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, str         HC odor.       35       36       Core       685 pm       36         3599       36       Core       685 pm       36         3599       36       Core       685 pm       36         3597       TD Boring @ 36.5 Feet!       38         3595       36       3595       36         40       40       40         42       42								24	
35       36       Core       685 ppm       36       3597       TD Boring @ 36.5 Feet!         38       38       38       3595       40       40         40       40       40       40       40         42       42       42       42       42				33	34	Cole	7 to ppri		Sand, tan-orange brown, vf grain, w/20% clay in matrix,
3597 TD Boning @ 36.5 Feet									
		1 		. 35	30	Cole	000 ppm		TD Boring @ 36.5 Feet!
								40	
44								42	
44									
								44	

4	I	MONI	TORIN	IG WELL	LITHO	DLOGIC	LOG	
			MONITO	ORING WE	ELL NO:	MW-0		TOTAL DEPTH: 36.5 Feet
	>			5	SITE ID:	Eldridge I	Ranch	CLIENT: Duke Energy Field Services
			SURF	ACE ELEV	ATION:	3632		COUNTY: Lea
TRIDEN				CONTR	ACTOR:	Prosonic		STATE: New Mexico
		-	DR	ILLING MI	ethod:	Rotosonia	c	LOCATION: Monument, NM
	`			STAR	T DATE:	12/3/2003	3	FIELD REP.: J. Fergerson
ENVIRONMENTA	L		CO	MPLETION	I DATE:	12/3/2003	3	FILE NAME:
		-		COM	MENTS:			· · · · · · · · · · · · · · · · · · ·
	LITH. US	SCS	FROM	SAMPLE	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		лн					3632	Silt (Top Soil), brown, w/5% clay in matrix, no odor.
	<u>-</u>		0	1	Core	8 ppm		Caliche; It yellowish tan-It grayish brown, dense-weathered,
		ICHE	1	2	Core	60 ppm	2 3630	w/chert nods in matrix, sl HC odor.
			2	3	Core	162 ppm		
			3	4	Core	86 ppm	4 3628	Caliche, yellow tan, weathered-dense, w/chert nods in matrix,
	ກຸ່ມ 		4	5	Core	126 ppm		sl HC odor.
	CAL	ICHE	5	6	Core	63 ppm	6 3626	
	ૡૡૺૻૻ૽ૻ૱ૻૢ૽ૺૢૺૺૺૢ ૱ૺૡૢૻૡૢૻૢૢૡૢૻૻૻ૱ૻ ૼ૱ૢૺૢૢૢૢૢૢૢ		6	7	Core	174 ppm		
			7.	8	Core	178 ppm	8 3624	
	CAL	ICHE	8	9	Core	72 ppm		Caliche, It grayish yellow, weathered-dense, w/chert nods in matrix, sl HC odor.
	n a Chairte an Anna Anna Anna Anna Anna Anna Anna		9	10	Core	78 ppm		Caliche, It yellowish tan-It gray, weathered-dense, w/chert
	CAL	ICHE	10	11	Core	122 ppm		nods in matrix, sl HC odor.
			11	12	Core	143 ppm	12 3620	
	CAL	ICHE	12	13		110 ppm		Caliche, It yellowish gray, dense, w/chert nods in matrix, sl HC odor.
		CL	13 [/]	14	Core	102 ppm	14 3618	Silty Clay, tan-It brown, w/30% silt in matrix, sI HC odor.
	CAL	JCHE	14	15	Core	101 ppm		Caliche, It yellowish tan-It gray, weathered-dense, w/chert in nods in matrix, sl odor.
			15	16	Core	62 ppm	16 3616	Sandy Clay, tan-It brown, w/25% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, si-mod HC
		CL	16	17	Core	142 ppm		odor.
	si po		17	18	Core	253 ppm		Sandy Clay, It tan-It gray brown, w/25% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, sl-mod HC odor.
		CL	18	19	Core	231 ppm		
			19	20	Core	306 ppm	20	

	· · · · · · · · · · · · · · · · · · ·		MÖN	ITORING	Well No:		MW-0	TOTAL DEPTH: 36.5 Feet
				SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
							3612	Sandy Clay, tan-It orange brown, w/30% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, str
			20	21	Core	422 ppm		HC odor.
								· ·
		CL	21	22	Core	355 ppm	22	
							3610	-
			22	23	Core	256 ppm		
1				20	0010	200 ppm		
			23	24	Core	321 ppm	24	
							3608	Clayey Sand, It tan-It grayish brown, vf grain, w/25% clay in
		SC						matrix, interbedded w/mod-well cemented vf grain sand, mod-
		5 0	24	25	Core	212 ppm		str HC odor. Clayey Sand, It yellowish gray, vf grain, w/25% clay in matrix,
		sc sc	25	26	Core	230 ppm	26	interbedded w/mod-well cemented vf grain sand, moist, mod-
		e * ∙ 1					3606	mod-str HC odor. Encountered Groundwater!
		÷	ſ					Clayey Sand, It yellowish tan-It gray, vf grain, w25% clay in
			26	27	Core	245 ppm	ļ	matrix, interbedded w/mod-well cemented vf grain sand, wet
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27	28	Core	246 ppm	28	mod-str HC odor.
		n an	2	20	Cole	240 ppm	3604	
		a, A w						j
		f-	28	29	Core	222 ppm		
		SC						
			29	30	Core	298 ppm	30 3602	
		and a second	·				3002	
			30	31	Core	347 ppm		
		5. e						
		21	31	32	Core	272 ppm	32	
		•					3600	Clayey Sand, It yellowish tan-It gray, vf grain, w/25% clay in
			32	33	Core	256 ppm		matrix, interbedded w/dense sandstone, wet, mod HC odor.
		SC						
		<u>, *</u>	33	34	Core	121 ppm	34	
		SW					3598	Sand, It grayish tan-gray, vf grain w/15% clay in matrix, wet,
4		· · · · · · · · · · · · · · · · · · ·	34	35	Core	176 ppm		sl-mod HC odor. Sand, tan-lt grayish brown, w/20% clay in matrix, interbedded
		54			0010	no ppin		w/mod-well cemented vf grain sand, wet, sl-mod HC odor.
		SW	35 ·	36	Core	191 ppm	36	
							3596	
						l		
							38	· · · · · ·
							3694	
							40	
							42	
							, <u>, r</u>	
							44	
								I

-		Å		MON	ITORIN	G WEL	LLITHO	DLOGIC	LOG	
			1		MONITO	ORING W		MW-P		TOTAL DEPTH: 36 Feet
		- 4	and the second s							CLIENT: Duke Energy Field Services
					SURF				•	COUNTY: Lea
		NEN	T			CONTR	ACTOR:	Prosonic		STATE: New Mexico
	· KI	リヒト	N'	•	DR			Rotosonia		LOCATION: Monument, NM
			•			STAR	T DATE:	12/3/2003	3	FIELD REP .: J. Fergerson
	ENVIR	DEN	AL		cor	MPLETIO	N DATE:	12/3/2003		FILE NAME:
						COM	MENTS:			
	•	1								
						SAMPLE				LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			LITH.	USCS	FROM	TO	TYPE	PID	DEPTH	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
									3630	Silt (Top Soil), brown, w/5% clay in matrix, no odor.
				MH	0	1	Core	48 ppm		
				_	Ū,		0010	ie ppin	_	Caliche, It tan, dense-weathered, w/chert nods in matrix, no
				CALICHE	1	2	Core	88 ppm	2	odor.
					ļ				3628	Caliche, it yellow tan-It brown, dense-weathered, w/chert nods
					2	3	Core	120 ppm		in matrix, interbedded w/mod-well cemented vf grain sand,
					3	4	Core	204 ppm	4	sl-mod odor.
				CALICHE	3	7	COLE	204 ppm	3626	
					4	5	Core	153 ppm		
•					5	6	Core	71 ppm	6	
									3624	Caliche, It yellow tan-It brown, weathered-dense, w/chert nods
					6	7	Core	29 ppm		& vf grain sand in matrix, sl HC odor.
					[	[				
				`	7	8	Core	38 ppm	8 3622	
				CALICHE					3022	
					8	9	Core	90 ppm		
					9	10	Core	56 ppm	10	· · · · · · · · · · · · · · · · · · ·
								pp	3620	
					10	11	Cara	50 anna		
				CALICHE	10	11	Core	50 ppm		Caliche, white-It yellow, dense, w/chert nods in matrix, sI HC odor.
					11	12	Core	58 ppm	12	
				CALICHE						Caliche, It yellow tan, weathered-dense, w/chert nods in matrix interbedded w/mod-well cemented vf grain sand, sl HC odor.
					12	13	Core	110 ppm		
		a second		CL	13	14	Core	02	14	Clay, It tan, w/10% vf grain sand in matrix, sl HC odor.
				~ ·	15	14	COIE	83 ppm		Caliche, it yellow tan, weathered-dense, w/chert nods in
										matrix, interbedded w/mod-well cemented vf grain sand, mod
					14	15	Core	206 ppm		HC odor.
		<b>h</b> (1) +			15	16	Core	226 ppm	16	
						ļ			3614	
				CALICHE	16	17	Core	245 ppm		
					17	18	Core	287 ppm	18 3612	
								ľ	0012	
					18	19	Core	140 ppm		·
					19	20	Core	131 ppm	20	

Г

	·		MON	NITORING	Well No:		MW-P	TOTAL DEPTH: 36 Feet
_				SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE	PID	0040	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			20	21	Core	76 ppm	3610	
			20	22	Core	102 ppm	22	
		CALICHE				, and press	3608	
			22	23	Core	266 ppm		
			23	24	Core	97 ppm	24 3606	Encountered Groundwater!
		CL	24	25	Core	712 ppm		Sandy Clay, tan-brown, w/35% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, str HC
			25	26	Core	505 ppm	26	odor.
			26		Cara	165	3604	Sandy Clay, tan, w/35% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, sl-mod HC odor.
		CL	26 27	27 28	Core Core	165 ppm 143 ppm	28	•
			21	20	0010	1.10 PPIII	3602	
			¹ 28	29	Core	198 ppm		
			29	30	Core	374 ppm	30 3600	Sandy Clay, It gray tan, w/35% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, mod-
			30	31	Core	307 ppm		str HC odor.
		CL	31	32	Core	372 ppm	32 3598	
			32	33	Core	255 ppm		
			33	34	Core	102 ppm	34 3596	
		sw	34	35	Core	331 ppm		Sand, It yellow tan-It brown, vf grain, w/15% clay & chert in matrix, interbedded w/dense sandstone, wet, mod HC odor.
			25	36	Core	91 ppm	36 3594	TD Boring @ 36 Feet!
							38	· · · · · · · · · · · · · · · · · · ·
							3592	
		. *					40	
							42	
							44	

•

								LLITH				
				1		MONIT	ORING W		MW-O		TOTAL DEPTH:	36 Feet
'			Le a constante de la constante			Mortin				Ranch		Duke Energy Field Services
			- A			SURF					COUNTY:	
						0074						New Mexico
	*	' K I	II)HIN	$\mathbf{N}^{T}$		DF						Monument, NM
				N		2,			12/1/200		FIELD REP.:	
		ENVII	[DEN RONMENT	AL		co						
				_								
		4										
				UTH	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LI	
ŀ		וו		LITH		FROM	10	TTPE	PIU	3628	SIZE, SORTING, ROUNDING, C Silt (Top Soil), brown, w/20% cla	
					MH							-
						0	1	Core	2 ppm		Caliche, It yellowish tan-It gray, o	ense-weathered, w/chert
						1	2	Core	8 ppm	2	nods in matrix, no odor.	
										3626		
		建物理器器器器			CALICHE	2	3	Core	89 ppm			
						2		Core	09 ppin			
						3	4	Core	251 ppm	4		
										3624	Caliche, It yellowish tan, dense-v	vesthered witchest nods in
					CALICHE	4	5	Core	162 ppm		matrix, mod HC odor.	weathered, wichert hous in
					UALION L	_		-	•		1 A.	
						5	6	Core	281 ppm	6 3622	Caliche, It tan-It grayish brown, c	tense weathered w/chart
									e .		nods in matrix, sl-mod odor.	iense-weathered, wichert
						6	7	Core	281 ppm			
						7	. 8	Core	35 ppm	8		
					CALICHE			00.0	co pp	3620		
								-				
						8	.9	Core	70 ppm			
- 1						9	10	Core	70 ppm	10		
										.3618	Clay, tan-orange brown, w/15%	
						10	11	Core	70 ppm		w/mod-well cemented vf grain sa	and, moist, si HC odor.
					CL							
·						11	12	Core	38 ppm	12 3616		
										0010		
						12	13	Core	78 ppm		Clay, It yellowish tan-It grayish b	
			10.411			13	14	Core	127 ppm	14	interbedded w/mod-well cemente	ed vf grain sand, sl HC odor.
										3614		
							45	0	101			
					CL	14	15	Core	194 ppm		*	
						15	16	Core	216 ppm	16		
										3612		
						16	17	Core	98 ppm			
						47	18	0	160	40	Clevery Canad Marries and	in
				39 57		17	10	Core	162 ppm	18 3610	Clayey Sand, It gray-gray, vf gra interbedded w/mod-well cemente	
				్ కి.జి. కర్య	sc						sl-mod HC odor.	
				and the second	-	18	19	Core	170 ppm	<b></b>		
				يەتە يۇر يەتە يۇر		19	20	Core	170 ppm	20		

				MON		WELL NO:		MW-Q	TOTAL DEPTH: 36 Feet
		LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
								3608	Sandy Clay, wht-lt gray, w/35% vf grain sand in matrix, moist
			CL	20 21	21 22	Core Core	170 ppm 170 ppm	22	si-mod HC odor. Encountered Groundwater!
			01	21	, <i>L</i> L	0010		3606	
				22	23	Core	170 ppm		Clay, It yellowish tan-It gray, w/20% silt in matrix, interbedde
			CL	23	. 24	Core	80 ppm	24 3604	mod-well cemented vf grain sand, moist, sl-mod HC odor.
			ŰĽ	24	25	Core	80 ppm		
				25	26	Core	138 ppm	26 3602	Clay, It tan-It orange brown, w/10% vf grain sand in matrix,
				26	27	Core	50 ppm		interbedded w/mod-well cemented vf grain sand, wet, sl HC odor.
			CL	27	28	Core	50 ppm	28 3600	
				28	29	Core	50 ppm		
				29	30	Core	50 ppm	30 3598	Clay, tan-orange brown, w/10 vf grain sand in matrix,
				30	31	Core	13 ppm		interbedded w/mod-well cemented vf grain sand, wet, sl HC odor.
			CL	31	32	Core	60 ppm	32	
				32	33	Core	60 ppm	3596	
				33	34	Core	60 ppm	34	Sandy Clay, It tan-It grayish brown, w/25% vf grain sand in r
			CL	34	35	Core	74 ppm	3594	interbedded w/mod-well cemented vf grain sand, wet, sl HC odor.
				35	36	Core	95 ppm	36	TD Boring @ 36 Feet!
								3592	
								38	
	· ·							3590	
								40	
								42	
								+2	
					.`				
l								44	

Section 1

ø

		4		MON	ITORIN	IG WEL	L LITHO	DLOGIC	LOG	
			1		MONIT	ORING W	ELL NO:	MW-R		TOTAL DEPTH: 31 Feet
								Eldridge I		
					SURF	ACE ELEV	ATION:	3623		COUNTY: Lea
		וידרו				CONTR	ACTOR:	Prosonic		STATE: New Mexico
	I KI	I JE/	N.		DF	RILLING M	ETHOD:	Rotosonia	5	LOCATION: Monument, NM
1						STAR	T DATE:	12/1/2003	3	FIELD REP.: J. Fergerson
	<b>ENVIR</b>	DE]	TAL		co	MPLETIO	N DATE:	12/1/2003	3	FILE NAME:
				_		СОМ	MENTS:			
		]				SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	- I		LITH.	USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
									3623	Silt (Top Soil), It brown-brown, w/10% clay in matrix, no odor.
				мн	0	1	Core	5 ppm		]
										]
					1	2	Core	5 ppm	2	Caliaba, It vallow tan waatharad, na adar
									3621	Caliche, it yellow tan, weathered, no odor.
					2	3	Core	5 ppm		]
									<u> </u>	-
				CALICHE	3	4	Core	15 ppm	4 3619	<b>4</b>
									- 5019	
					4	5	Core	15 ppm		
					F		0	15		4
					5	6	Core	15 ppm	6 3617	Caliche, It yellow tan-It brown, weathered-dense, w/chert nod
									3017	in matrix, no odor.
					6	7	Core	51 ppm		
					-		0			4
					7	8	Core	30 ppm ⁻	8 3615	4
										]
					8	9	Core	30 ppm		
					9	10	Core	30 ppm	10	
					5		COIE	30 ppm	3613	1
				CALICHE						1
					10	11	Core	21 ppm		4
					11	12	Core	8 ppm	12	4
					.,		<b>Ç</b> 010	5 ppin	3611	1
					12	13	Core	8 ppm		4
					13	14	Core	8 ppm	14	1
					.0		2010	o ppin	3609	1
										]
					14	15	Core	27 ppm		
				CALICHE	15	16	Core	64 ppm	16	Caliche, It yellow tan-It gray, weathered, no odor.
						. =		,. <b>.</b>	3607	Clay, tan-It gray, w/35% vf grain sand in matrix, interbedded
										w/mod-well cemented vf grain sand, moist, sl HC odor.
				CL	16	17	Core	126 ppm		4
			8 - P		17	18	Core	94 ppm	18	Encountered Groundwater!
									3605	Sandy Clay, It gray tan-It brown, w/15% vf grain sand in matrix
				CL	40		0.	74.		interbedded w/mod-well cemented vf grain sand, moist, sl HC
		70000			18	19	Core	71 ppm		odor.

and a

			MON	IITORING	WELL NO:		MW-R	TOTAL DEPTH: 31 Feet
	LIT			SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE	PID 🔬		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
							3603	Clayey Sand, tan-It orange brown, vf grain, w/35% clay in
								matrix, interbedded w/mod-well cemented vf grain sand, wet,
			20	21	Core	17 ppm		no odor.
		sc 🕺						
			21	22	Core	5 ppm	22	
						• • • •	3601	
		te en la compañía de	22	23	Core	5 ppm		Sandy Clay, It gray tan, w/35% vf grain sand in matrix,
					0	· · · · · ·		interbedded w/mod-well cemented vf grain sand, wet, no odd
		CL CL	23	24	Core	5 ppm	24	
							3599	
		- 5.44	24	25	Core	5 ppm		
		CL						Sandy Clay, It gray tan w/25% vf grain sand in matrix,
		<i></i>	25	26	Core	5 ppm	26	interbedded w/mod-well cemented vf grain sand, wet, no odd
		e -					3597	Sand, white-It gray tan, w/20% clay in matrix, interbedded
								w/mod-well cemented vf grain sand, wet, no odor.
			26	27	Core	20 ppm		
				-'				
			27	28	Core	20 ppm	28	
			l - 1	1 20		To bhill	3595	4
		sw					3095	4
								4
		5. C	28	29	Core	5 ppm		· · · · ·
						_		
		1.	29	30	Core	5 ppm	30	
							3593	
1			30	31	Core	5 ppm		TD Boring @ 31 Feet
							32	
							3591	
							34	
-								
							36	
	•							
							38	
·								
1							··· ····	1
							40	· ·
							40	
							42	
						1		
·							44	

			MON	ITORIN	IG WEL	L LITHO	DLOGIC	LOG	
		1		MONIT	ORING W	ELL NO:	MW-Ś		TOTAL DEPTH: 28.5 Feet
		and the second s							CLIENT: Duke Energy Field Services
1				SURF	ACE ELE			(unon	COUNTY: Lea
		T -		001.1			Prosonic		STATE: New Mexico
	' <b>   ' {        </b>	N ' -	1	DE	RILLING M				LOCATION: Monument, NM
		Ņ		0.			12/1/200		FIELD REP.: J. Fergerson
		<b>FAL</b>		co					FILE NAME:
		_		00					
					••••				
									· · · · · · · · · · · · · · · · · · ·
					SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		LITH.	USCS	FROM	то	TYPE	PID	3620	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt (Top Soil), dk brown, w/10% clay in matrix, no odor.
			MH	0	1	Core	0 ppm		
				1	2	Core	- I	2	
					_			3618	Caliche, It yellowish tan-It gray, weathered-dense, w/chert
									nods in matrix, no odor.
			CALICHE	2	3	Core	2 ppm	·····	
				3	4	Core	5 ppm	4	
								3616	
				4	5	Core	<u>-</u>		Caliche, It yellow tan, dense-weathered, w/chert nods in matrix, no odor.
		P							
			CALICHE	5	6	Core	-	6	
		1. A.						3614	
				6	7	Core	2 ppm		
				7	8	Core	0 ppm	8	Colision It vellowish too it grow weathered dense water
				'	°	COIB	0 ppm	3612	Caliche, It yellowish tan-It gray, weathered-dense, w/chert nods in matrix, no odor.
		8		8	- 9	Core	4 ppm		
				9	10	Core	3 ppm	10	
			CALICHE					3610	
				10	11	Core	8 ppm		
				10		0010			
				11	12	Core	- ·	12	
								3608	
				12	13	Core	3 ppm		
				12	14	Core	75 ppm	14	Sandy Clay, It tan-It gray, w/30% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, moist, no
		3 N 10		10	14	- Ule		3606	interdedded wimod-well cemented yr grain sand, moist, no odor.
1		e ne Vianji Be	CL						Encountered Groundwater!
		AR		14	15	Core	93 ppm		
				15	16	Core	78 ppm	16	
		and the second						3604	Clay, It grayish tan, w/10% vf grain sand in matrix, interbedded
		e d'an an a		16	17	Core	51 ppm		w/mod-welll cemented vf grain sand, wet, no odor.
			CL						
		1517		17	18	Core	28 ppm	18	
								3602	
		اليغ المرجع الماني. المرجع والعالي ال		18	19	Core	14 ppm		
			SC	19	20	Core	11 ppm	20	Clayey Sand, grayish tan, w/40% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor.
						2310		LV	



and the second



LITH         USC         SAMULE         DDP7N         INDEC SORTHON LITH/OLDOY COLOR (GAM)           900         20         21         22         Core         10 ppm         300           21         22         Core         10 ppm         320         320         320           21         22         Core         10 ppm         320         326         Clurge Sam, tanreddsh brewn, vf gran, w40% day in make, in odor, and in web, web, no odor, and				MON	ITORING	WELL NO:		MW-S	TOTAL DEPTH: 28.5 Feet
Sec         20         21         22         Core         10 prm         300           9C         21         22         Core         0 prm         320         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300	-	LITH.						DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
SC         20         21         Cov         10 ppm         250           SC         22         23         Cov         6 ppm         250           SV         24         25         Cov         -         20           SW         24         25         Cov         -         20           SW         24         25         Cov         -         20           SW         24         25         Cov         -         20           SC         20         Cov         1 ppm         20         20           SC         20         Cov         1 ppm         20         200         1 ppm           SC         27         Cov         1 ppm         20         1 ppm         20           SC         27         Cov         1 ppm         20         1 ppm         20           300         300         300         300         300 <td< td=""><td></td><td></td><td>USCS</td><td>FROM</td><td>то</td><td>TYPE</td><td>PID</td><td>2600</td><td>SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES</td></td<>			USCS	FROM	то	TYPE	PID	2600	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
Provide Comparison         Provide								3600	
Soc         22         23         Core         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<			SC	20	21	Core	10 ppm		
Soc         22         23         Core         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<									
Sec       22       23       Core       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<				21	22	Core	6 ppm		Clavey Sand tan-reddict brown of grain w/40% clav in matrix
SC         22         23         Core         3 ppm           SW         24         25         Core         3 ppm         356           SW         24         25         Core         -         20           SW         24         25         Core         -         20           SW         24         25         Core         -         20           SW         26         26         Core         -         20           SW         26         27         Core         1 ppm         -           SC         28         Core         0 ppm         23         -           SC         28         Core         0 ppm         23         -           SC         28         Core         0 ppm         23         -           3900         -         -         -         -         -           3900         -         -         -         -         -           3900         -         -         -         -         -           3900         -         -         -         -         -           3900         -         -         - <td< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>3330</td><td></td></td<>				1				3330	
Image: Structure         Image: Structure<			SC	22	23	Core	-		
SW         24         25         Core         1         308         3ard, tar-brown, vf grain, wr15% cizy in matrix, interbedded wimod-well cemented vf grain and, wet, no odor.           35         26         27         28         Core         1         304         308         304         308         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         304         305         3060         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10									
SW         24         25         26         Core         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<				23	24	Core	3 ppm		
SW         24         25         26         Core         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<				1				3330	Sand, tan-brown, vf grain, w/15% clay in matrix, interbedded
25         26         Core         -         28         27         Core         1 ppn           1         55         27         28         Core         1 ppn         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td></td> <td>sw</td> <td>24</td> <td>25</td> <td>Core</td> <td>-</td> <td></td> <td></td>			sw	24	25	Core	-		
Sc         28         27         Core         1 ppr         3284         Charge Sand, It graysh Itan, vi grain, wi0% day in matrix, interbedded wimod-well comented if grain sand, well, no oddr.           27         28         Core         0 ppr         28         TD Boring (g) 28.5 Feet!           300         3890         1         3292         TD Boring (g) 28.5 Feet!         329           389         1         329         3290         1         329           389         1         32         329         1         329           389         1         32         329         1         329           389         1         32         329         1         329           389         1         32         329         1         329           389         1         32         1         32         1           38         38         38         38         1         1           38         1         1         1         1         1           38         1         1         1         1         1			0			-			
SC       28       27       Core       1 ppm       Image: Core       Image: Core       1 ppm       Image: Core       Image: Core       1 ppm       Image: Core       Image: Co			····· ·	25	26	Core	-		Clavey Send It provide too of grain w/2004 alou in matrix
SC       28       27       28       Core       1 ppm         23       25       27       28       Core       0 ppm       28         30       3990       3990       3990       3990       3990       3990         32       34       34       34       34       34       34         40       40       40       40       40       40       40								3094	
27       28       Core       0 ppm       39         30       30       30       30         32       32       32       32         33       32       32         34       34       36         39       39       39         30       30       30         31       32       32         32       32       32         33       32       32         34       34       36         36       36       36         37       40       40         40       40       40         41       42       42		<b>3</b> 4		26	27	Core	1 ppm		,,
			SC						
TD Boring @ 28.5 Feet           30           3690           362           4           5           5		1000 1000		27	28	Core	0 ppm		
								3592	TD Boring @ 28.5 Feet
								3690	
								32	
								34	
	変」)								
								36	
								· · · ·	1
								38	
								40	
								<u> </u>	
								42	
		 						44	

A Real

		MON	IITORIN	IG WEL		OLOGIC	LOG	
	1 1		MONIT			NAVA/T		
	1		MONIT	ORING W				TOTAL DEPTH: <u>37 Feet</u> CLIENT: Duke Energy Field Services
7			0.000				Ranch	COUNTY: Lea
			SURF					
TRIDE	i NI 🥵	<b>1</b>				Prosonic		STATE: New Mexico
	ZIN .		DF			Rotosoni		LOCATION: Monument, NM
FNVIRONME	NTAT					12//2/03		FIELD REP.: J. Fergerson
			co			12/2/200		FILE NAME:
				COM	MENTS:			· · · · · · · · · · · · · · · · · · ·
•								
	<b></b>						DEDTU	
	LITH.	USCS	FROM	SAMPLE TO	TYPE	PID		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
							3629	Silt (Top Soil), brown w/10% clay in matrix, no odor
		мн						
			0	1	Core	28 ppm		Caliche, It yellow tan, dense-weathered, w/chert nods in
			1	2	Core	. 49 ppm	2	matrix, no odor.
							3627	
		CALICHE						
			2	3	Core	45 ppm		
			3	4	Core	86 ppm	4	
			Ŭ		00.0	be ppin	3625	Caliche, It yellow tan-It brown, dense-weathered, w/chert in
								matrix, no odor.
			4	5	Core	39 ppm		
			5	6	Core	7 ppm	6	
			Ŭ	Ŭ	0010	/ pp	3623	•
			6	7	Core	10 ppm		
			7	8	Core	30 ppm	8	
		o	'		COLE	ou ppin	3621	
		CALICHE						
			8	9	Core	136 ppm		
			9	10	Core	57 ppm	10	
				,0	COLE	or ppm	3619	
			10	11	Core	49 ppm		
			11	12	Core	167 ppm	12	
			11	12	COIE	107 ppm	3617	
		CHERT	12	13	Core	202 ppm		Chert, wht-It tan brown, dense, no odor.
			13	- 14	Core	177 ppm		Caliche, It yellow tan, weathered-dense, w/chert in matrix, sl HC odor.
setta 1181			15	- 14	Core	i in ppin	14 3615	
		CALICHE						
			14	15	Core	152 ppm		· · ·
			15	16	Core	90 ppm	16	
			15	10	0018	ao phin	3613	Caliche, It yellow tan-It brown, weathered-dense, w/chert in
								matrix, sl HC odor.
			16	17	Core	82 ppm		
		CALICHE	17	18	Core	169 ppm	18	
			.,		0016	100 ppm	3611	
			18	19	Core	119 ppm		
	KXXXXXXXX	CALICHE		1 1		1	I	Caliche, It tan-It gray brown, dense-weathered, w/chert in

Sec. 2

			MON		Well No:		MW-T	TOTAL DEPTH: 37 Feet
 · · · · · · · · · · · · · · · · · · ·	LITH.	SAMPLE					DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	то	TYPE	<u>,</u> PID	3609	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES mod HC odor.
		CALICHE	20	21	Core	273 ppm		
			21	22	Core	99 ppm	22 3607	
			22	23	Core	229 ppm		Clayey Sand, tan-It brown, vf grain, w/30% in matrix, interbedded w/mod-well cemented vf grain sand, moist, mod
		SC	23	24	Core	283 ppm	24 3605	HC odor.
			24	25	Core	136 ppm		Encountered Groundwater! Sandy Clay, It yellow-It tan brown, w/30% vf grain sand in matrix interbedded w/mod-well cemented vf grain sand, wet, no
			25	26	Core	27 ppm	26 3603	odor.
	and a second sec	CL	26	27	Core	33 ppm		
			27	28	Core	8 ppm	28 3601	
	9.84 1.1		28	29	Core	17 ppm		Clay, wht-lt gray, w/5% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor.
		CL	29	30	Core	14 ppm	30 3599	
			30	31	Core	16 ppm		Clay, It yellow gray, w/15% vf grain sand in matrix, interbedded
		CL	31	32	Core	104 ppm		w/mod-well cemented vf grain sand & dense sandstone, wet, sl HC odor.
	94 - 19 94 - 19		32	33	Core	110 ppm		
			33	34	Core	102 ppm		Sand, It gray-gray, vf grain, w/20% clay in matrix, interbedded w/mod-well cemented vf grain sand & dense sandstone, wet, no odor.
	7.4° a.2. .44	sw	34	35	Core	160 ppm		
			35	36	Core	114 ppm	36 3593	
	* ⁻ ***		36	37	Core			TD Boring @ 37 Feet!
							38	
							3591	
							40	
							42	
							72	
							44	

			1		MONIT	FORING W	ELL NO:	MW-AÀ		TOTAL DEPTH: <u>32 Feet</u>
		<u> </u>					SITE ID:	Eldridge I	Ranch	CLIENT: Duke Energy Field Service
			¥		SURF	ACE ELE				COUNTY: Lea
	<b>D</b> D	IDE.	NTM							STATE: New Mexico
		IDE.	LN		DI	RILLING M				LOCATION: Monument, NM
	ENVI	RONMEN			0.0			11/21/200		FIELD REP.: J. Fergerson
					CC					FILE NAME:
	4					001	IVILIATO.			
										·
			LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
·	ין ר			0303	FROM		ITPE		3624	Silt (Top Soil), brown-dk brown, w/15% clay in matrix, no odo
				мн	•		0			
					0	1	Core	22 ppm		Caliche, It yellow tan-tan, dense-weathered, w/chert nods in
					1	2	Core	31 ppm	2	matrix, no odor.
				CALICHE					3622	
		》在19世纪			2	3	Core	98 ppm		
					3	4	Core	88 ppm	4	Caliche, It yelliow tan-tan, weathered-dense, w.chert nods in matrix, no odor.
					5		Core	oo ppin	3620	
				CALICHE						
					4	5	Core	83 ppm		-
					5	6	Core	75 ppm	6	
									3618	Caliche, yellow tan, weathered-dense, w chert nods in matri. sl HC odor.
		461			6	7	Core	91 ppm		
	a an			CALICHE	7	8	Core	119 ppm	8	
					'	Ů	Core	r i s ppin	3616	-
					8	9	Core	106 ppm		Caliche, It yellow tan-It gray, weathered-dense, w/chert nods
					9	10	Core	97 ppm	10	matrix, sl HC odor.
									3614	-
					10	11	Core	69 ppm		
						10	Care	26	40	
					11	12	Core	36 ppm	12 3612	1
										}
		國務設			12	13	Core	76 ppm		4
				CALICHE	13	14	Core	4 ppm	14	
				·					3610	
					14	15	Core	17 ppm		
					15	16	Core	9 ppm	16	
					15		Çüle	эррп	3608	
					4-		~			· · ·
					16	17	Core	244 ppm		1
					17	18	Core	84 ppm	18	
				CHERT					3606	Chert, white-It yellow tan, dense, no odor.
								1		1
					18	19	Core	281 ppm		Sandy Clay, It yellow tan-It gray tan, w/25% vf grain sand in

		MON	ITORING W	ÆLL NO:		MW-AA	TOTAL DEPTH: 32 Feet
 LITH.	USCS	FROM	SAMPLE TO	TYPE	PID .	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRA SIZE, SORTING, ROUNDING, CONSOL, DIST. FEATURE
	CL	20 21	21 22	Core	228 ppm 174 ppm	3604 22	Encountered Groundwater!
	sc	22 23	23 24	Core Core	107 ppm 85 ppm	24	Sandy Clay, It gray tan, w/40% vf grain sand in matrix, interbedded w/dense sandstone, wet, sl HC odor.
		[.] 24	25	Core	85 ppm		Clayey Sand, yellow tan-It brown, vf grain, w/30% clay in matrix, interbedded w/dense sandstone, wet, sl HC odor.
		25	26	Core	63 ppm	26 3598	
	sc	26 27	27 28	Core Core	65 ppm 48 ppm	28 3596	
		28	29	Core	48 ppm		
		29 30	30 31	Core Core	21 ppm 14 ppm	30 3594	
	sw	31	32	Core	7 ppm	32	Sand, orange-red brown, vf grain, wet, no odor. TD Boring @ 32 Feet!
						3592 34 36	
						38	
		•				40	
						42	

SUFFACE ELEVATION:         325         COUNTY:         Les           STATE:         New Mark         STATE:         New Mark         STATE:         New Mark           COMPLETION DATE:         STATE:         STATE:         New Mark         STATE:         New Mark           COMPLETION DATE:         STATE:         STATE:         New Mark         STATE:         New Mark           COMPLETION DATE:         STATE:         STATE:         New Mark         STATE:         New Mark           COMPLETION DATE:         STATE:         STATE:         New Mark         State:         New Mark           COMPLETION DATE:         STATE:         New Mark         State:         New Mark         State:         New Mark           New Mark         1         2         Core         3 ppm         State:         New Mark         New Mark         New Mark           New Mark         1         2         Core         3 ppm         State:         New Mark		· · · · ·		MON	IITORIN	IG WEL	L LITHO	DLOGIC	LOG	
STE ID. Ekitige Ranch. CULCHE C. ELICATION: 3255 CONTRACTOR: Prosente DRILLINA METHOD: Roteconic DRILLINA METHOD: Roteconic DRILLINA METHOD: Roteconic COMPLETION DATE: 11/21/2003 FILE NAME: COMPLETION DATE: 11/21/2003 FILE NAME: COMPLETION DATE: 11/21/2003 FILE NAME: COMPLETION DATE: 11/21/2003 FILE NAME: COMPLETION DATE: 11/21/2003 COMPLETION DAT		la la	1		MONIT	ORING W	ELL NO:	MW-BB		TOTAL DEPTH: 29 Feet
TRUDENT         CONTRACTOR         Prosent         START NOT         S							SITE ID:	Eldridge I		
DRILLING METHOD:       BOSSONIC       LOCATION:       Memory Manual Ma					SURF	ACE ELE	VATION:	3625		COUNTY: Lea
MIDEINS         DRILLING NETHOD:         Boossite Instant DATE:         LOCATION:         Monument, NM           START DATE:         11/21/2003         FIELD REP:         J. Fergerson           COMPLETION DATE:         Completion Date:         FIELD REP:         J. Fergerson           COMPLETION DATE:         Completion Date:         FIEL RAME:         FIEL RAME:           UTH:         USC:         FROM TO:         TYPE         FID 300; db born-black, w35 still in marks, no           MH         0         1         Core         8 ppm         Calidhi, tun-librow, dense-weathered, w35 still in marks, no           MH         0         1         Core         8 ppm         Calidhi, tun-librow, dense-weathered, w35 still in marks, no           CALICHE         2         3         Core         53 ppm         -           3         4         Core         53 ppm         -         -           CALICHE         2         3         Core         59 ppm         -           0         10         Core         7 ppm         -         -           0         10         Core         7 ppm         -         -           0         10         Core         7 ppm         -         -         -			T			CONTR	ACTOR:	Prosonic		STATE: New Mexico
COMMENTS:           LITH         USCS         FROM         10         TYPE         PID         DEPTH         LITH/QLOBIC DESCRPTION LITH/QLOBY, COLOR / GLOBY, COLOR	Ι'	' 📕 ' 🔣 I I ) H. N			DF					
COMMENTS:           LITH         USCS         FROM         10         TYPE         PID         DEPTH         LITH/QLOBIC DESCRPTION LITH/QLOBY, COLOR / GLOBY, COLOR			Y							
COMMENTS:           LITH         ISCS         FROM         10         TYPE         PID         SEXE_SORTING.         SEXEST.         FROM         10         TYPE         PID         SEXE_SORTING.         SEXEST.         FROM         10         TYPE         PID         SEXE_SORTING.         SEXE_SORTING.         SEXE_SORTING.         SEXE_SORTING.         SEXE_SORTING.         SEXEST.         FROM         10         11         22         Clay         Clay         TYPE         PID         SEXE_SORTING.         SEXEST.         FROM         SEXEST.         SEXEST.         FROM         SEXEST.         FROM         SEXEST.         SEXEST.         FROM         SEXEST.         SEXEST.         FROM		ENVIRONMENT	AL		00					
LITH         USCS         FROM         TO         TYPE         PID         SZE, SORTING, ROUNDING, CONSCL, DIST, FEAT           MH         0         1         Care         8 ppm         3222         Clay (Top Sol), dit brown-black, w5% all in matrix, no           1         2         Care         35 ppm         2         Claid the trank torown, dense-weathered, withert nods i           3         4         Care         53 ppm         2         Claid the trank torown, dense-weathered, withert nods i           3         4         Care         53 ppm         4         3221         Claid the trank torown, dense-weathered, withert nods in matrix, no odor.           CALICHE         4         5         Care         52 ppm         6           6         7         Care         52 ppm         6         3212           Caliche, tan-k torown, weathered-dense, withert nods in matrix         11         12         321         Claid the tan-k torown, weathered-dense, withert nods in matrix           6         7         Care         42 ppm         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11 <t< td=""><td></td><td></td><td></td><td></td><td>00</td><td></td><td></td><td></td><td></td><td></td></t<>					00					
LITH         USCS         FROM         TO         TYPE         PID         SIZE, SORTING, ROUNDING, CONSCL, DIST, FEAT           MH         0         1         Care         8 ppm         3222         Clay (Fop Sol), dit brown-black, w5% all in matrix, no           1         2         Care         35 ppm         2         Clay (Fop Sol), dit brown-black, w5% all in matrix, no           1         2         Care         35 ppm         2         Clay (Fop Sol), dit brown-black, w5% all in matrix, no           1         2         Care         35 ppm         2         Clay (Fop Sol), dit brown-black, w5% all in matrix, no           1         2         Care         35 ppm         2         Claiche, tan.it brown, dense-weathered, wichert nods in           0         1         2         Care         53 ppm         4         Care         59 ppm           0         CALICHE         4         5         Care         52 ppm         3017         niterbedded widense sandstone, no odar.           CALICHE         7         8         Care         11 ppm         8         3017           CALICHE         7         8         Care         14 ppm         3017         claiche, tan.it brown, weathered, wichert nods in matrix           10									000711	
MH         0         1         Core         8 ppm           1         2         Cree         35 ppm         200           2         3         Call CHE         2         3         Core         69 ppm           3         4         Core         69 ppm         300         200         300         200           CALICHE         2         3         Core         69 ppm         300         200         300         300           CALICHE         2         3         Core         59 ppm         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300	1		LITH.	USCS	FROM		TYPE	PID	DEPIH	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
0         1         Core         8 ppm         Callche, tan-l: brown, dense-weathered, widhert nods in no dor.           1         2         Core         35 ppm         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	F								3625	Clay (Top Soil), dk brown-black, w/5% silt in matrix, no odor.
Image: Called and the second			****	мн	0	1	Core	8 ppm		
2         3         Core         66 ppm           3         4         Core         53 ppm         3021         Caliche, yellow tan, weathered-dense, wichert nods in no odor.           CALICHE         4         5         Core         59 ppm         no odor.         6           6         7         Core         59 ppm         6         3012         Caliche, tan-It brown, weathered-dense, wichert nods in not odor.           6         7         Core         7 ppm         6         3012         Caliche, tan-It brown, weathered-dense, wichert nods in matri interbedded widense sandstone, no odor.           CALICHE         7         8         Core         11 ppm         8         3017           9         10         Core         44 ppm         10         niterbedded widense sandstone, si HC odor.           10         11         Core         50 ppm         10         niterbedded widense sandstone, si HC odor.           11         12         Core         155 ppm         12         3311           14         15         Core         181 ppm         182         3611           14         15         Core         181 ppm         11         3602         Caliche, tan-brown, weathered, wird grain sand in matrin interbedded widense sandstone, m					1	2	Core	35 ppm		Caliche, tan-It brown, dense-weathered, w/chert nods in matrix no odor.
CALICHE         4         5         Core         59 ppm         Galiche, yellow tan, weathered-dense, w/chert nods in no odor.           6         7         Core         52 ppm         6         Galiche, tan-It brown, weathered-dense, w/chert nods in network.           6         7         Core         7 ppm         Galiche, tan-It brown, weathered-dense, w/chert nods in network.           6         7         Core         11 ppm         8           9         10         Core         42 ppm         Galiche, tan-It brown, weathered, w/chert nods in matrix interbedided w/dense sandstone, no odor.           9         10         Core         42 ppm         Galiche, tan-It brown, weathered, w/chert nods in matrix interbedided w/dense sandstone, si HC odor.           10         11         Core         50 ppm         Galiche, tan-It brown, weathered, w/chert nods in matrix interbedided w/dense sandstone, si HC odor.           11         12         Core         50 ppm         Galiche, tan-brown, weathered, w/dright and in matrix interbedided w/dense sandstone, noist, al-mod HC odor.           13         14         Core         165 ppm         Galiche, tan-brown, weathered, w/dright and in matrix interbedided w/dense sandstone, moist, al-mod HC odor.           15         15         Core         181 ppm         Galiche, tan-brown, weathered, w/drigrain sand in matrix interbedided w/dense sandstone, mo				CALICHE	2	3	Core	69 ppm		
CALICHE       4       5       Core       59 ppm       Caliche, yellow tan, weathered-dense, wichert nods in no odor.         6       7       Core       52 ppm       Caliche, tan-It brown, weathered-dense, wichert nods in interbedded widense sandstone, no odor.         6       7       Core       7 ppm       Caliche, tan-It brown, weathered, wichert nods in interbedded widense sandstone, no odor.         8       9       Core       42 ppm       Caliche, tan-It brown, weathered, wichert nods in matri interbedded widense sandstone, si HC odor.         9       10       Core       50 ppm       Caliche, tan-It brown, weathered, wichert nods in matri interbedded widense sandstone, si HC odor.         11       12       Core       50 ppm       Caliche, tan-At brown, weathered, wichert nods in matri interbedded widense sandstone, si HC odor.         11       12       Core       50 ppm       Caliche, tan-brown, weathered, widense sandstone, si HC odor.         11       12       Core       16 ppm       14         13       14       Core       16 ppm         14       15       Core       181 ppm         15       16       Core       181 ppm         14       15       Core       181 ppm         15       16       Core       181 ppm         16 <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>4 .</td> <td>Core</td> <td>53 ppm</td> <td></td> <td>· · ·</td>					3	4 .	Core	53 ppm		· · ·
6       7       Core       7 ppr         6       7       Core       7 ppr         8       9       Core       11 ppr       8         9       10       Core       42 ppr       10         10       11       Core       50 ppr       11         11       12       3613       3613         11       12       Core       155 ppr       12         13       14       Core       106 ppr       14         14       15       Core       106 ppr       11         15       16       Core       181 ppr       16         16       17       Core       181 ppr       18         20       SW       17       18       Core       247 ppr       18         3613       Sand, tan-gray brown, vf grain, sand in matrix, 300       3615       114       3611         14       15       Core       16 ppr       16       3611       3613         17       18       Core       181 ppr       116       3600       214/tense sandstone, moist, si-mod HC odor.         360       360       361       361       361       361       361       361				CALICHE	4	5	Core	59 ppm ·		Caliche, yellow tan, weathered-dense, w/chert nods in matrix, no odor.
6       7       Core       7 ppm       Interbedded w/dense sandstone, no odor.         CALICHE       7       8       Core       11 ppm       8         9       10       Core       42 ppm       Caliche, tan-it brown, weathered, w/chert nods in matri         9       10       Core       44 ppm       10       Interbedded w/dense sandstone, si HC odor.         11       12       Core       50 ppm       11       Interbedded w/dense sandstone, si HC odor.         11       12       Core       74 ppm       12       3613         13       14       Core       106 ppm       14         14       15       Core       186 ppm       16         14       15       Core       181 ppm       3609       Caliche, tan-brown, weathered, w/rf grain sand in matri <interbedded dense="" hc="" moist,="" odor.<="" sandstone,="" si-mod="" td="" w="">         15       16       Core       181 ppm       3609       Caliche, tan-brown, weathered, w/rf grain sand in matrix         17       18       Core       247 ppm       18       Sand, tan-gray brown, wf grain, wi10% clay in matrix, interbedded w/dense sandstone, moist, mod HC odor.</interbedded>					5	6	Core	52 ppm		Caliche, tan-lt brown, weathered-dense, w/chert nods in matrix
7       8       Core       11 ppm       8         8       9       Core       42 ppm       Caliche, tan-It brown, weathered, w/chert nods in matrix interbedded w/dense sandstone, st HC odor.         9       10       Core       44 ppm       10         10       11       Core       50 ppm       11         11       12       Core       74 ppm       12         3613       11       12       Core       74 ppm       12         11       12       Core       74 ppm       12       3613         11       12       Core       155 ppm       14       3611         13       14       Core       106 ppm       14       3611         14       15       Core       106 ppm       14       3611         14       15       Core       106 ppm       16       16         15       16       Core       181 ppm       16       16       17       18       2609       Caliche, tan-brown, weathered, w/rf grain sand in matrix interbedded w/dense sandstone, moist, sI-mod HC odor         17       18       Core       181 ppm       18       3607       10%/60% of the matrix, with 0% of the matrix, interbedded w/dense sandstone, moist, mod HC odor					6	7	Core	7 ppm		<b>H</b>
A       9       Core       42 ppm       Caliche, tan-H brown, weathered, w/chert nods in matrix         9       10       Core       44 ppm       10         10       11       Core       50 ppm       10         11       12       Core       74 ppm       12         3613       3613       3613         11       12       Core       155 ppm         13       14       Core       106 ppm         14       15       Core       181 ppm         15       16       Core       181 ppm         16       17       Core       181 ppm         18       Swv       17       18       Core       247 ppm         18       Sand, tan-gray brown, vf grain, w/10% clay in matrix, 3607       interbedded w/dense sandstone, moist, sl-mod HC odor.				CALICHE	7	8.	Core	11 ppm		
9       10       Core       44 ppm       10       interbedded w/dense sandstone, sl HC odor.         10       11       Core       50 ppm       10       11       Core       50 ppm         11       12       Care       74 ppm       12       3613         11       12       Care       74 ppm       12         13       14       Core       106 ppm       14         13       14       Core       106 ppm       14         14       15       Core       106 ppm       16         14       15       Core       181 ppm       16         CALICHE       16       Core       181 ppm       16         15       16       Core       181 ppm       16         16       17       Core       181 ppm       181 ppm         18       Swv       17       18       Core       247 ppm       18         18       Swv       17       18       Core       247 ppm       18       Sand, tan-gray brown, vf grain, w/10% clay in matrix, 3607					8 ·	9	Core	42 ppm		
Image: CALICHE       11       12       Core       74 ppm       12         12       13       Core       155 ppm       14         13       14       Core       106 ppm       14         14       15       Core       181 ppm       16         15       16       Core       181 ppm       16         16       17       Core       181 ppm       11         18       SW       17       18       Core       247 ppm       18         3607       Interbedded w/dense sandstone, moist, sl-mod HC odor.       3607       Interbedded w/dense sandstone, moist, mod HC odor.					9	10	Core	44 ppm		
CALICHE 12 13 Core 155 ppm 14 13 14 Core 106 ppm 14 3611 14 15 Core 106 ppm 14 3611 14 3511 15 16 Core 181 ppm 16 3609 Caliche, tan-brown, weathered, w/vf grain sand in matrix interbedded w/dense sandstone, moist, sl-mod HC odor 3607 interbedded w/dense sandstone, moist, mod HC odor.					10	11	Core	50 ppm		
12       13       Core       155 ppm         13       14       Core       106 ppm         14       15       Core       106 ppm         14       15       Core       106 ppm         15       16       Core       181 ppm         16       CALICHE       16       17         17       18       Core       181 ppm         18       Sand, tan-gray brown, vf grain, w/10% clay in matrix, si-mod HC odor         SW       17       18       Core       247 ppm         18       Sand, tan-gray brown, vf grain, w/10% clay in matrix, si-mod HC odor.					11	12	Core	74 ppm		
Image: Stress of the stress					12	13	Core	155 ppm		
Image: Second state of the second s					13	14	Core	106 ppm		
CALICHE 16 17 Core 181 ppm 17 18 Core 247 ppm 18 Sand, tan-gray brown, vf grain, w/10% clay in matrix, 3609 Caliche, tan-brown, weathered, w/vf grain sand in matrix interbedded w/dense sandstone, moist, sl-mod HC odor 181 ppm 18 Sand, tan-gray brown, vf grain, w/10% clay in matrix, 3607 interbedded w/dense sandstone, moist, mod HC odor.					14	15	Core	106 ppm		
CALICHE       16       17       Core       181 ppm         17       18       Core       247 ppm       18       Sand, tan-gray brown, vf grain, w/10% clay in matrix, 3607         SW       SW       SW       SW       SW       SW       SW       SW					15	16	Core	181 ppm		Caliche, tan-brown, weathered, w/vf grain sand in matrix,
SW SW SW				CALICHE						
18 19 Core 297 ppm				sw	17	18	Core	247 ppm		
				sw	18	19	Core	297 ppm		Sand, tan-brown, vf grain, w/15% clay & chert nods in matrix,

· · · · · · · · · · · · · · · · · · ·	1.0001.0	0.000	MON	ITORING	WELĹ NO:		MW-BB	TOTAL DEPTH: 29 Feet
		SAMPLE USCS	FROM	TO	TYPE	PID		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		SW	20	21	Core	340 ppm	3605	Encountered Groundwater!
			21	22	Core	401 ppm	22	Sand, tan-It gray brown, vf grain, w/10% clay in matrix, interbedded w/dense sandstone, wet, mod-str HC odor.
			22	23	Core	478 ppm	3603	
		SW	23	• 24	Core	247 ppm	24 3601	
			24	25	Core	207 ppm		
			25	26	Core	340 ppm	26 3599	Sand, tan-It brown, vf grain, wet, mod HC odor.
		sw	26	27	Core	21 ppm		
			27	28	Core	165 ppm	28 3597	
			28	29	Core	-		TD Boring @ 29 Feet
							3595	
							32	
							34	
							36	
							38	· · · · · · · · · · · · · · · · · · ·
							40	
								- - -
							42	
							44	

_

and a second

		A		MONIT	ORING W	ELL NO:	MW-CC		TOTAL DEPTH: 36.5 Feet
						SITE ID:	Eldridge I	Ranch	CLIENT: Duke Energy Field Service
	- A S			SURF	ACE ELE	VATION:	3633		COUNTY: Lea
	DEI				CONTR	ACTOR:	Prosonic		STATE: New Mexico
		N'		DF		ETHOD:	Rotosonie	3	LOCATION: Monument, NM
					STAR	T DATE:	11/19/200	03	FIELD REP.: J. Fergerson
ENVIR	<b>ONMEN</b>	ГAL		со					
		_							
• [	T					·		·•· ··	
		LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
 <b></b>			0303	FROM			PID	3633	Silt (Top Soil), gray-It brown, w/30% clay in matrix, no
			мн						odor.
		~~~~~~		0	1	Core	0 ppm		
				1	2	Core	0 ppm	2	Caliche, It yellowish tan-tan, dense-weathered, w/chert nods in matrix, no odor.
				•	-		o ppm	3631	
			CALICHE	2	3	Core	2 ppm		
				3	4	Core	0 ppm	4	
								3629]
			LOST	4	5	Core	0 ppm		Lost Core Interval!
			CORE	5	6	Core	0 ppm	6	1
			CALICHE					3627	Caliche, It yellow tan-gray, weathered-dense, w/chert nods in
			0, 1210112	-					matrix, no odor.
				6	7.	Core	2 ppm		Caliche, It yellow tan-It gray, weathered-dense, w/chert nods in matrix, no odor.
				7	8	Core	2 ppm	8	
								3625	-
				8	9	Core	2 ppm		
				0	3	Cole	z ppm		
教育教育				9	10	Core	4 ppm	10	
								3623	
			CALICHE	10	11	Core	4 ppm		-
				10			- ppin		
				11	12	Core	4 ppm	12]
								3621	-
				12	13	Core	2 ppm		
				13	14	Core	9 ppm	14	
								3619	
	Sec. No.			14	15	Core	18 ppm		Caliche, tan-It gray, weathered-dense, w/chert nods in matrix,
法法律 法			CALICHE						no odor.
				15	16	Core	12 ppm	16	
								3617	Caliche, It gray, weathered-dense, w/chert nods in matrix, no odor.
			· ·	16	17	Core	135 ppm		1
							500		4
			CALICHE	17	18	Core	500 ppm	18 3615	4
								3010	1
				18	19	Core	379 ppm		
1.5x5x5xx5x5x5x5x5x5x5x5x5x5x5x5x5x5x5x5	Presidente de la constante de la	Nototototo	3		1				•

				MON	ITORING V	VELL NO:		MW-CC	TOTAL DEPTH: 36.5 Feet
dr.	Education Economica	LITH.	SAMPLE USCS	FROM	TO	TYPE	PID .		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			CALICHE	20	21	Core	-	3613	Caliche, It yellowish tan-It grayish brown, weathered-dense,
				20	22	Core	-	22 3611	w/chert nods in matrix, strong HC odor.
			CALICHE	22	23	Core	-		
				23	24	Core	299 ppm	24 3609	
				24	25	Core	195 ppm		
				25	26	Core	216 ppm	26 3607	Encountered Groundwater! Clay, gray-dk gray, w/20% silt in matrix, interbedded w/mod- well cemented vf grain sand, wet, mod HC odor.
			CL	26	27		200 ppm		
				27	28	Core	200 ppm	28 3605	Clay, It gray-gray, w/10% silt in matrix, interbedded w/mod- well cemented vf grain sand, wet, mod HC odor.
		ي م م	CL	28	29	Core	200 ppm		
			CL	29	30	Core	200 ppm	30 3603	Clay, orange brown-gray, w/15% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, sl-mod HC
				30 31	31 32	Core	158 ppm 108 ppm	32	odor. Sandy Clay, tan-dk orange brown, w/40% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, sl HC
			CL	32	33	Core	65 ppm		odor.
				33	34	Core	65 ppm	34	
				34	35	Core	65 ppm	3599	Sandy Clay, tan-It brown, w/30% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, wet, sl HC odor.
			CL	35	36	Core	14 ppm	36	
								3597	TD Boring @ 36.5 Feet!
								38	
								3595	
								40	
								3593	
								42	
ч								3591	
								44	

			7 .		MONIT	ORING W	ELL NO:	MW-DD		TOTAL DEPTH: <u>32 Feet</u>
		<u> </u>	and the second s				SITE ID:	Eldridge I	Ranch	CLIENT: Duke Energy Field Service
_						ACE ELE	VATION:	3629		COUNTY: Lea
		IDEN RONMENT				CONTR	ACTOR:	Prosonic		STATE: New Mexico
			N		DF			Rotosoni		LOCATION: Monument, NM
	ENIXI		• л т							FIELD REP.: J. Fergerson
_		KONWIENI			. co					FILE NAME:
						CON	IMENTS:	<u>a</u>		· · · · · · · · · · · · · · · · · · ·
	· ·									······································
				[SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			LITH.	USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
				мн					3629	Silt (Top Soil), dk gray brown, w15% clay in matrix, no odor
					0	1	Core	0 ppm		
				CL	1	2	Core	0 ppm	2 ·	Clay, dk brown, w/20% silt in matrix, no odor.
						۷	COLE	o ppm	3627	
	a san rasar	ST TOT MENDORMAN		ML			_			Silt, tan-lt brown, w/5% clay in matrix, no odor.
					2	3	Core	0 ppm		Silty Clay, tan-lt orange brown, w/30% silt in matrix, no odor.
					3	4	Core	0 ppm	4	
				CL					3625	
					. 4	5	Core	4 ppm		
				CALICHE	5	6	Core	6 ppm	6	Caliche, tan-brown, dense-weathered, w/chert nods in matrix,
				CALICHE			5		3623	no odor.
					6	7	Core	20 ppm		Caliche, It yellow tan-it brown, weathered, no odor.
				CALICHE	7	8	Core	28 ppm	. 8	
					,	U	0010	20 ppin	3621	Caliche, tan-brown, dense-weathered, w/chert nods in matrix,
										no odor.
				CALICHE	8	9	Core	36 ppm		
					9	10	Core	63 ppm	10	
				CALICHE					3619	Caliche, It yellow tan-It brown, dense, w/chert nods in matrix,
				CALICITE	10	11	Core	70 ppm		no odor.
										Caliche, It yellow tan, weathered, sl HC odor.
				CALICHE	11	12	Core	86 ppm	12 3617	
				CHERT					3017	Chert, it brown, dense, no odor.
				UNERT	12	13	Core	341 ppm		
				CALICHE	13	14	Core	342 ppm	14	Caliche, yellow tan, weathered, mod-HC odor.
				_					3615	
						45	0	242		Caliche, It yellow tan-It brown, weathered-dense, w/chert nods
				CALICHE	14	15	Core	343 ppm		in matrix, interbedded w/mod-well cemented vf grain sand, mor HC odor.
				SALIONE	15	16	Core	365 ppm	16	
								l .	3613	
					16	17	Core	382 ppm		Caliche, It yellow tan-It grayish brown, weathered-dense,
					17	18	Core	307 ppm	18	interbedded w/mod-well cemented vf grain sand, mod-str HC
				CALICUE	17	10	Core	SU/ ppm	18 3611	odor.
				CALICHE						
					18	19	Core	381 ppm		
	10000000000000000000000		NAMAAAAA			1				1

		MON	ITORING	WELL NO:		MW-DD	TOTAL DEPTH: 32 Feet
LITH.	SAMPLE		r	-		DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	USCS	FROM	то	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	CALICHE	20	21	Core	428 ppm	3609	
		21	22	Core	58 ppm	22	Sandy Clay, tan-It brown, w/25% vf grain sand in matrix,
	CL	22	23	Core	42 ppm	3607	interbedded w/mod-well cemented vf grain sand, sl HC odor, Encountered Groundwater!
	CL .	23	24	Core	65 pm		Sandy Clay, wht-It yellow tan, w/25% vf grain sand & chert nods in matrix, wet, si HC odor.
		24	25	Core	66 ppm ⁻		Clayey Sand, tan-dk orange brown, vf grain, w/25% clay in
	SC	25	26	Core	142 ppm	26	matrix, interbedded w/mod-well cemented vf grain sand, wet sl HC odor. Clayey Sand, tan-It brown, vf grain, w/25% silt in matrix,
	sc	26	27	Core	62 ppm		interbedded w/mod-well cemented vf grain sand, wet, sl HC odor.
		27	28	Core	23 ppm	28 3601	Clayey Sand, It tan-It brown, vf grain, w/25% clay in matrix,
	SC	28	29	Core	11 ppm		interbedded w/mod-well cemented vf grain sand, wet, no odor. Clayey Sand, tan-orange brown, vf grain, w/35% clay in matu
	sc	29	30	Core	40 ppm		interbedded w/mod-well cemented vf grain sand, wet, no od
		30	31	Core	31 ppm		
		31	32	Core	67 ppm	32 3597	TD Boring @ 32 Feet!
						34 3595	
						36	
						38	
						40	
						42	
						· · · ·	

	MONI	TORIN	G WELI	_ LITHO	DLOGIC	LOG	
		MONITO	ORING WE		MW-FF		TOTAL DEPTH: 36 Feet
						Ranch	
		SURF					COUNTY: Lea
					Prosonic		STATE: New Mexico
	1	DR	ILLING M				LOCATION: Monument, NM
							FIELD REP.: J. Fergerson
TRIDEN ENVIRONMENTAL		CO					FILE NAME:
	_						
						<u></u>	
	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	мн	11(01#				3630	Clayey Silt (Top Soil), dk brown, w/40% clay in matrix, no
				_			odor.
		0	1	Core	39 ppm		Caliche, tan-It brown, dense-weathered, w/chert nods in matrix sl HC odor.
	ALICHE	1	2	Core	123 ppm	2	
						3628	
		2	3	Core	220 ppm		
		-	Ū.				Caliche, tan-yellow brown, weathered-dense, w/chert nods in
		3	4	Core	313 ppm	4	matrix, sl-mod HC odor.
						3626	
		4	5	Core	198 ppm		
C.A	ALICHE	5	6	Core	200	6	х.
		5	0	Core	308 ppm	3624	
		. ^с .					
		6	7	Core	319 ppm		
		7	8	Core	324 ppm	8	
							Caliche, yellow tan-It brown, weathered-dense, w/chert nods
		8	9	Core	370 ppm		in matrix, mod-str HC odor.
	ALICHE	Ŭ	3	0010	575 pp//		
		9	10	Core	697 ppm	10	· · ·
						3620	
		10	11	Core	1014 ppm		
			10	0	004		Caliche, tan-It brown, weathered, w/dense sandstone in matrix
		11	12	Core	694 ppm	12 3618	str HC odor.
		12	13	Core	401 ppm		
	1	13	14	Core	400 ppm	14	· ·
						3616	
		14	15	Core	417 ppm		
		14	15	COLE	417 ppm		
		15	16	Core	806 ppm	× 16	
						3614	
		16	17	Core	661 ppm		
		17	18	Core	565 ppm	18	
			10	Core	202 bhu	3612	· · ·
				_		· · · · ·	· · · ·
		18	19	Core	397 ppm		
		19	20	Core	537 ppm	20	

F				¥,	•			
			MON	ITORING \	WELL NO:		MW-EE	TOTAL DEPTH: 36 Feet
-	LITH.	SAMPLE					DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	TO	TYPE	, PID · ₌	3610	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		CALICHE						
			20	21	Core	674 ppm		Caliche, tan-lt brown, weathered, str HC odor.
		CALICHE	04		0	157		
			21	22	Core	457 ppm	22 3608	Caliche, tan-It brown, weathered, w/vf grain sand in matrix,
		CALICHE						str HC odor.
			22	23	Core	826 ppm	•	Encountered Groundwater!
		CALICHE	23	24	Core	497 ppm	24	Caliche, tan-gray, weathered, w/vf grain sand in matrix, interbedded w/dense sandstone, wet, mod-str HC odor.
		0/ 12/01/12	20		0010	Hor ppm	3606	
		SC	24	25	Core	302 ppm		Clayey Sand, tan-It brown, vf grain, w/30% clay in matrix,
		8	25	26	Core	105 ppm	26	interbedded w/dense sandstone, wet, mod HC odor. Sand, tan-orange brown, vf grain, w/15% clay in matrix,
			20	20	00.0		3604	interbedded w/dense sandstone, wet, sl HC odor.
			26	27	Core	10 ppm		
			27	28	Core	18 ppm	28	
							3602	
				20	Corre	10		
			28	29	Core	10 ppm		
			29	30	Core	15 ppm	30	
							3600	
		sw	30	31	Core	22 ppm		
			50	51	COIC	22 ppm		· · · · · · · · · · · · · · · · · · ·
			31	32	Core	12 ppm	32	
							3598	
			32	33	Core	12 ppm		
			33	34	Core	12 ppm	34	
							3596	
			34	35	Core	12 ppm		
F		1	35	36	Core	12 ppm	36 3594	TD Boring @ 36 Feet!
							38	
							3590	
								· · · · · ·
							40	
							42	
	, ,							
L							44	

		1	1							
		- 1A	у. Это-		MONIT					TOTAL DEPTH: <u>36.5 Feet</u>
		X								CLIENT: Duke Energy Field Service
_			T 2	SURFACE ELEVATION: <u>36</u> CONTRACTOR: <u>P</u>						COUNTY: Lea
r	ו קי	DER		ſ						
			N		UH					LOCATION: Monument, NM
	ENVU	RONMENT	AT.							FIELD REP.: J. Fergerson
_					CO					FILE NAME:
						COM	MENIS:	········	•	
						SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	_		LITH.	USCS	FROM	TO	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
				MH					3630	Clayey Silt (Top Soil), dk brown, w/30% clay in matrix, no odo Caliche, tan-It gray brown, weathered-dense, no odor.
				CALICHE	o	1	Core	7 ppm		Calche, land gray brown, weathered-dense, no odor.
						<i>i</i>				Caliche, tan-It yellow brown, weathered-dense, no odor.
				CALICHE	1	2	Core	26 ppm	2 3628	
				ONLIONE					3020	
					2	3	Core	26 ppm		
					3	4	Core	55 nom	4	Caliche, tan-It brown, weathered, w/chert nods in matrix, no
					3	4	Core	55 ppm	4 3626	odor.
				CALICHE						
				CALICITE	4	5	Core	16 ppm		
					5	6	Core	23 ppm	6	· · · · · · · · · · · · · · · · · · ·
					5	Ŭ	0016	20 ppm	3624	
										Caliche, tan-it yellow brown, weathered, w/chert nods in
					6	7	Core	0 ppm		matrix, no odor.
				CALICHE	7	8	Core	0 ppm		
							-		3622	
					-					
					8	9	Core	6 ppm		Caliche, tan-It yellow brown, weathered-dense, w/chert nods in matrix, no odor.
					9	10	Core	21 ppm	10	
									3620	
				CALICHE	10	11	Coro	16 0000		
					10	11	Core	16 ppm		
					11	12	Core	11 ppm	12	
									3618	
					12	13	Core	8 ppm		Caliche, tan-lt yellow brown, weathered-dense, w/chert nods in matrix, interbedded w/dense sandstone, no odor,
								• pp		
				CALICHE	13	14	Core	8 ppm	14	
				CALICHE					3616	
					14	15	Core	8 ppm		
							•			
					15	16	Core	8 ppm	16 3614	Caliche, tan-gray brown, weathered, w/chert nods in matrix,
										interbedded w/dense sandstone, no odor.
					16	17	Core	31 ppm		•
				CALICHE	17	18	Core	5 ppm	18	4
				J	.,		0010	o ppin	3612	
							_			
					18	19	Core	5 ppm		
					19	20	Core	38 ppm	20	Caliche, tan-It brown, weathered-dense, interbedded w/dense

A SA

		MON	ITORING	WELL NO:		MW-FF	TOTAL DEPTH: 36.5 Feet
 LITH.	SAMPLE USCS	FROM	. TO	TYPE	. PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL, DIST. FEATURES
	0303	FROM	. 10	TIPE	. PIU . •	3610	sandstone, no odor.
	CALICHE	20	21	Core	53 ppm		
	CALICHE	21	22	Core	142 ppm	22	
						3608	Construction, there is because of series or (200), of areis acced 9
	CL	22	23	Core	142 ppm		Sandy Clay, It tan-It brown, vf grain, w/30% vf grain sand & weathered caliche in matrix, interbedded w/dense sandstone
		23	24	Core	356 ppm	24	moist, sl HC odor. Clayey Sand, It tan-It brown, vf grain, w/25% clay in matrix,
	SC					3606	interbedded w/dense sandstone, moist, sl-mod HC odor.
	30	24	25	Core	356 ppm		Encountered Groundwater!
		25	26	Core	49 ppm	26	
	SW					3604	Sand, It tan-It brown, vf grain, w/15% clay in matrix, interbedded w/dense sandstone, wet, sI HC odor.
		26	27	Core	65 ppm		
		27	28	Core	260 ppm	28 3602	Sand, It tan-brown, vf grain, w/20% clay in matrix, interbedde w/dense sandstone, wet, sl-mod HC odor.
	sw		20	Com	100 ppm		
		28	29	Core			
		29	30	Core	51 ppm	30 3600	Sand, tan-brown, vf grain, w/20% clay in matrix,
		30	31	Core	39 ppm		interbedded w/dense sandstone, wet, no odor.
		31	32	Core	19 ppm	32	
	sw				Pp	3598	
		32	33	Core	9 ppm		
		33	34	· Core	21 ppm	34	
						3596	Sand, tan-orange brown, vf grain, w/5% clay in matrix, wet, no odor.
	sw	34	35	Core	17 ppm		
		35	36	Core	6 ppm	36	
				!	· ·	3594	TD Boring @ 36.5 Feet!
						38 3592	
•							
						40	
						42	
						44	4

. .

		MON	ITORIN	IG WELI	LLITHO	DLOGIC	LOG	
	11		MONIT	ORING W	FLL NO	MW-GG		TOTAL DEPTH: 31.5 Feet
						Eldridge I		······
	and the second sec		SURF	ACE ELEV				COUNTY: Lea
				CONTR	ACTOR:	Prosonic		STATE: New Mexico
			DR	RILLING M	ETHOD:	Rotosonie	c	LOCATION: Monument, NM
				STAR	T DATE:	12/5/2003	3	FIELD REP. J. Fergerson
	TRIDEN	• <u> </u>	CO					FILE NAME:
				СОМ	MENTS:			
		TH. USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			PAON	10			3624	Silt (Top Soil), dk brown-blk, w/10% clay in matrix, no odor.
		MH			0	0		
			0	1	Core	2 ppm		Caliche, It yellowish tan-gray, dense-weathered, w/chert
		CALICHE	1	2	Core	39 ppm	2 3622	nods in matrix, no odor.
			2	3	Core	71 ppm		
			3	4	Core	114 ppm	4 3620	Caliche, tan-It gray, weathered-dense, w/chert nods in matrix, sl HC odor.
		CALICHE	4	5	Core	224 ppm		
			5	6	Core	197 ppm		Caliche, tan-gray, weathered-dense, w/chert nods in matrix,
			6	7	Core	50 ppm		mod HC odor.
		CALICHE	7	8	Core	211 ppm	8 3616	
		CALICHE	8	9	Core	170 ppm		
, 		a. 4	9 ⁽	10	Core	176 ppm	10 3614	
		<u>.</u>	10	11	Core	278 ppm		Callaba (kundustabana (kana)
		inter 1911 - State 1915 - State 1915 - State	11	12	Core	98 ppm		Caliche, It yellowish tan-It gray, weathered-dense, w/chert nods in matrix, sl HC odor.
			12	13	Core	42 ppm		
		CALICHE	13	14	Core	~80 ppm	14 3610	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	14	15	Core	152 ppm		
		араб 1. Дар	15	16	Core	159 ppm 1		Sandy Clay, grayish brown, w/25% vf grain sand in matrix,
		CL	16	17	Core	527 ppm		interbedded w/mod-well cemented vf grain sand, str HC odor.
		and and a second a	17	. 18	Core	488 ppm	18 3606	Sandy Clay, dk grayish brown, w/35% vf grain sand in matrix,
		CL	18	19	Core	484 ppm		interbedded w/mod-well cemented vf grain sand, str HC odor.
		CL	19	20	Core	599 ppm	20	Sandy Clay, gray-white, w/35% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, str

			MON	TORING	WELL NO:		MW-GG	TOTAL DEPTH: 31.5 Feet
	LITH.	SAMPLE					DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		USCS	FROM	то	TYPE	· PID · ·	0004	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		CL					3604	HC odor, wet.
		ÚL.	20	21	Core	585 ppm		Encountered Groundwater!
		CL			-			Sandy Clay, It tan-gray brown, w/40% vf grain sand in matrix
			21	22	Core	497 ppm	22	interbdded w/md-well cemnted vf grain sand, wet, md HC odor.
							3602	Sandy Clay, It grayish tan-It brown, w/30% vf grain sand in
			20	23	Corra	65 ppm		matrix, interbedded w/mod-well cemented vf grain sand, wet, sl-mod HC odor.
			22	23	Core	os ppin		
			23	24	Core	57 ppm	24	
							3600	
		CL	24	25	Core	55 ppm		
			25	26	Core	56 ppm	26	• · · · · · · · ·
			25	20	0010		3598	
			26	27	Core	57 ppm		
	annan an the state of the state		27	28	Core	107 ppm	28	
							3596	Sand, It gray, w/20% clay & chert in matrix, interbedded w/mod-well cemented vf grain sand, wet, sl -mod HC odor.
		sw	28	29	Core	152 ppm		
]
			29	30	Core	105 ppm	30	
							3594 .	Sandy Clay, grayish tan, w/25% vf grain sand & chert in matrix
		CL	30	24		141 0000		interbedded w/mod-well cemented vf grain sand, wet, sl HC odor.
			30	31	· Core	141 ppm		TD Boring @ 31.5 Feet!
					I		32	
							3592	
								· .
			•					
							34	
							3590	·
								4
							36	4
								-
							38	
								-
								-
								-
							40	
								· ·
								4
							42	4
							<u>~</u>	1
]
								4
							44	4

Å		MON	ITORIN	IG WELI	L LITHO	OLOGIC	LOG	
	1		MONIT	ORING WI	ELL NO:	MW-HH		TOTAL DEPTH: 31.5 Feet
						Eldridge l		
14			SURF	ACE ELE	/ATION:	3626		COUNTY: Lea
TNE				CONTR	ACTOR:	Prosonic		STATE: New Mexico
IDEI	N		DF	RILLING M				LOCATION: Monument, NM
IDE I	- ' FAT	-						FIELD REP.: J. Fergerson
IKONMEN			со					FILE NAME:
				00141	MENTO.			
	LITH.			SAMPLE			DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	_	USCS	FROM	TO	TYPE	PID	3626	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt (Top Soil), dk brown, w/10% clay in matrix, no odor.
		мн						
			0	1	Core	. 6 ppm	·····	Caliche, It yellow tan-It gray, weathered-dense, w/chert nods
			1	2	Core	11 ppm	2	in matrix, no odor.
		CALICHE					3624	
			2	3	Core	96 ppm		
			2	3	COLE	90 ppm		
			3	4	Core	134 ppm	4	
							3622	Caliche, It yellow tan-white, dense-weathered, w/chert nods in matrix, no odor.
		CALICHE	4	5	Core	85 ppm		
			-		. .			
			5	6	Core	57 ppm	6 3620	Caliche, It yellow tan-tan, dense-weathered, w/chert nods in
							0020	matrix, sl HC odor.
			6	7	Core	23 ppm		
		CALICHE	7	8	Core	33 ppm	8	
				Ŭ	00.0		3618	
			•		0	74		
			8	9	Core	71 ppm		
			9	10	Core	60 ppm	10	Caliche, It yellow tan-tan-It gray, weathered-dense, w/chert
							3616	nods in matrix, sl-mod HC odor.
			10	11	Core	156 ppm		
			11	12	Core	123 ppm	12 3614	
			40	42	Com	01		
			12	13	Core	91 ppm		
		CALICHE	13	14 `	Core	82 ppm	14	
		CALICHE					3612	
			14	15	Core	254 ppm		
			15	16	Core	239 ppm	16	
							3610	
			10	17	Com	422	·	
			16	17	Core	422 ppm		
			17	18	Core	341 ppm	18	
							3608	
		¥k	40	19	Coro	000 000		
		CL	18	19	Core	268 ppm		Sandy Clay, tan-orange brown, w/30% vf grain sand in matrix,

. .

				MON	ITORING \	WELL NO:		MW-HH	TOTAL DEPTH: 31.5 Feet
		LITH.	SAMPLE					DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			USCS	FROM ·	TO	TYPE .		3606	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			CL	20	21	Core	330 ppm		Encountered Groundwater!
		uannan	sw	21	22	Core	143 ppm	22	Sand, gray-orange brown, vf grain, w/15% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, mod HC
				2.		0010	140 ppm	3604	odor. Sand, It tan-It gray, vf grain, w/15% clay in matrix, interbedded
			ŚW	22	23	Core	127 ppm		w/mod-well cemented vf grain, wr 5% clay in matix, interbedded
				23	24	Core	299 ppm	24	
			SC					3602	Clayey Sand, It tan gray-orange brown, vf grain, w/25% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet,
			50	24	25	Core	319 ppm		sl-mod HC odor.
				25	26	Core	318 ppm	26 3600	Sand, orange brown, vf grain, w/5% clay in matrix, wet,
			sw	26	27	Core	70 ppm		sl-mod HC odor.
				27	28	Core	129 ppm	28	
		•	SW					3598	Sand, It yellow tan-It gray, w/20% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, sI HC odor
				28	29	Core	53 ppm		Sand, yellow tan, w/20% clay in matrix, interbedded w/mod- well cemented vf grain sand, no odor
			sw	29	30	Core	35 ppm	30 3596	
				30	31	Core	38 ppm		
					-			32	TD Boring @ 31.5 Feet
								35 <u>94</u>	
								34	
								3592	
								36 3590	
								38	
	· · ·							·	
								40	
			•				ļ	42	
l	l							44	

-

	- 1		MON	IITORIN	IG WEL	LLITH	DLOGIC	LOG	
	l l l	Ø		MONIT	ORING W	ELL NO:	мw-ii		TOTAL DEPTH: <u>31 Feet</u>
		and the second s				SITE ID:	Eldridge I		
	14			SURF	ACE ELE	ATION:	3625		COUNTY: Lea
r	TRIDEN ENVIRONMENT				CONTR	ACTOR:	Prosonic		STATE: New Mexico
		N		DF	RILLING M	ETHOD:	Rotosonia	C	LOCATION: Monument, NM
		• л т					12/4/2003		FIELD REP.: J. Fergerson
				co	MPLETIO	N DATE:	12/4/2003	3	FILE NAME:
					COM	MENTS:			
					SAMPLE	1		DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		LITH.	USCS	FROM	TO	TYPE	PID	3625	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt, dk brown-black, w/5% clay in matrix, no odor.
			мн						
				0	1	Core	15 ppm		Caliche, tan-It brown, dense-weathered, w/chert nods in matrix
				· 1	2	Core	75 ppm	2	sl HC odor.
					ļ			3623	
			CALICHE	2	3	Core	171 ppm		-
				2	Ŭ	00/0	in i ppin		1
				3	4	Core	277 ppm	4	-
								3621	Caliche, yellow tan, weathered-dense, w/chert nods in matrix,
			CALICHE	4	5	Core	270 ppm		sl-mod HC odor.
				5	6	Core	65 ppm	6	
				Ũ	Ŭ	0010	oo ppin	3619	Caliche, tan-It brown, weathered-dense, w/chert nods in matrix
									interbedded w/dense sandstone, sl-mod HC odor.
				6	7	Core	96 ppm		- ·
			CALICHE	7	8	Core	63 ppm	8]
								3617	-
				8	9	Core	165 ppm		4
									Caliche, tan-It brown, weathered, w/chert nods in matrix,
			CALICHE	9	10	Core	89 ppm	10 3615	interbedded w/dense sandstone, sl-mod HC odor.
			O/ LIGITL					3015	
				10	11	Core	146 ppm		
				11	12	Core	149 ppm	12	
								3613	1
				12	13	Core	_		4
			LOST						LOST CORE INTERVAL
			CORE	13	14	Core	-	14	
								3611	1
				14	15	Core	-]
				15	16	Core	_	16	1
								3609	Sandy Clay, It tan-orange brown, w/40% vf grain sand in matri
				10	17	0	222		interbedded w/dense sandstone, moist, sl-mod HC odor.
			C I	16	17	Core	223 ppm		1
			CL	17	18	Core	244 ppm	18 3607	
				18	19	Core	316 ppm		
			CL						Clay, dk brown, w/15% vf grain sand in matrix, mod-str HC
		MARAGAR		19	20	Core	578 ppm	20	odor.

			MON	IITORING	WELL NO:		MW-II	TOTAL DEPTH: 31 Feet
	LITH	SAMPLE USCS	FROM	то	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
		CL CL	20	21	Core	636 ppm	3605	Sandy Clay, It tan-It gray, w/20% vf grain sand in matrix, interbedded w/dense sandstone, wet, mod-str HC odor. Encountered Groundwater!
		sw	21 22	22 23	Core	722 ppm 392 ppm	22 3603	Sand, It-It gray brown, w/20% clay in matrix, interbedded w/dense sandstone, wet, mod HC odor.
			23	· 24	Core	333 ppm	24 3601	
		sw	24 25	25 26	Core Core	415 ppm 279 ppm	26	Sand, tan-orange brown, vf grain, w/10% clay in matrix, interbedded w/dense sandstone, wet, mod HC odor.
			26	27	Core	20 ppm	3599	
			27	28	Core	7 ppm	28 3597	Sand, white, vf grain, w/20% clay & chert nods in matrix, wet, no odor.
		sw	28 29	29 30	.Core Core	8 ppm . 13 ppm	30 3595	Sand, tan-It brown, vf grain, w/20 clay in matrix, interbedded w/dense sandstone, wet, no odor.
			30	31	Core	13 ppm		TD Boring @ 31 Feet!
						·	32 3593 	
							36	
							38	
							40	
							42	
-								
							44	

			ł	MON	ITORIN	IG WELI	LLITHO	OLOGIC	LOG	
			1		MONIT	ORING W	ELL NO:	WW-JJ		TOTAL DEPTH: 31 Feet
										CLIENT: Duke Energy Field Service
			and the second s		SURF	ACE ELEV				COUNTY: Lea
			NT			CONTR	ACTOR:	Prosonic		STATE: New Mexico
	K		\mathbf{N}	-	DF	RILLING M	ETHOD:	Rotosoni	c	LOCATION: Monument, NM
										FIELD REP.: J. Fergerson
	ENVI	IDE Ronmen	TAL		co	MPLETIO	N DATE:	12/4/2003	3	FILE NAME:
						СОМ	MENTS:			
			LITH.	USCS	FROM	SAMPLE	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	7			мн					3625	Silt, dk brown, w/5% clay in matrix, no odor.
					0	1	Core	5 ppm		Caliche, tan-It brown, dense-weathered, w/chert nods in matri
1					5		COLE	1 5 ppm		no odor.
					1	2	Core	12 ppm	2	
									3623	
					2	3	Core	126 ppm		
				CALICHE	3	4	Core	246 ppm	4	
					5		0010	2-to ppill	-4 3621	
					,		0	74		
					4	5	Core	71 ppm		
					5	6	Core	101 ppm	6	
									3619	Caliche, tan-It brown, weathered-dense, w/chert nods in matr
					6	7	Core	79 ppm -		interbedded w/dense sandstone, sl HC odor.
				CALICHE			-			
					7	8	Core	46 ppm	8 3617	
			*******		8	9	Core	240 ppm		Caliche, tan-It brown, weathered, w/chert nods in matrix,
					9.	10	Core	334 ppm	10	interbedded w/dense sandstone, mod HC odor.
									3615	
					10	11	Core	108 ppm		
					10		0010	ioo ppiii		
					11	12	Core	93 ppm	12	
									3613	
					12	13	Core	77 ppm		<u> </u>
					13	14	Core	62 ppm	14	
				CALICHE	10		00.0	or ppin	3611	·
					4.4	15	Com	90 ppm		
					14	15	Core	90 bbin		
					15	16	Core	181 ppm	16	
									3609	
:					16	17	Core	394 ppm		÷
					17	18	Core	445 ppm	18	
					17		0010		3607	
					4-			400		
[18	19	Core	423 ppm		Sand, tan-brown, vf grain, w/5% clay & chert nods in matrix,
				SW	19	20	Core	441 ppm	20	moist, mod-str HC odor.

	MW-JJ	TOTAL DEPTH: 31 Feet					
LITH.	SAMPLE					.DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
	USCS	. FROM	то	TYPE	PID: 1	2005	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	sw	20	21	Core	659 ppm	3605	Encountered Groundwater!
		21	22	Core	828 ppm	22 3603	Sand, It tan-It gray brown, vf grain, w/5% clay in matrix, interbedded w/dense sandstone, wet, mod-str HC odor.
		22	23	Core	745 ppm		
	SW	23	24	Core	376 ppm	24 3601	
		24	25	Core	538 ppm		
		25	26	Core	597 ppm	26 3599	Sand, brown, vf grain, wet, mod HC odor.
		26	27	Core	-		
	sw	27	28	Core	382 ppm	28 3597	
		28	29	Core	443 ppm		
		29	30	Core	532 ppm	30 3595	
		30	31	Core	279 ppm		TD Boring @ 31 Feet!
			· · ·			32 34 34 36 38 38 40	
						42	

	МО	NITORIN	IG WEL	L LITHO	OLOGIC	LOG	
		MONIT	ORING W	ELL NO:	MW-KK		TOTAL DEPTH: 36.5 Feet
					Eldridge		CLIENT: Duke Energy Field Services
		SURF	ACE ELE				COUNTY: Lea
					Prosonic		STATE: New Mexico
	' U 'KII)H/N' U '	DF					LOCATION: Monument, NM
					12/3/200		FIELD REP.: J. Fergerson
	RIDEN	со					
	LITH. USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			10	1176		3632	Silt (Top Soil), brown-dk brown, w/20% clay in matrix, no
							odor
	МН	0	1	Core	8 ppm		
		1	2	Core	11 ppm	2	
						3630	
		2	3	Core	28 ppm		Caliche, It yellow tan-tan, weathered-dense, w/chert nods in
		-	Ŭ,	00.0	20 pp		matrix, no odor.
		3	4	Core	18 ppm	4	•
	CALICHE	-	í í		1	3628	-
		4	5	Core	12 ppm		
		5	6	Cara	15		
			0	Core	15 ppm	6 3626	Caliche, yellowish tan, weathered-dense, w/chert nods in
		·					matrix, no odor.
		6	7	Core	10 ppm	<u> </u>	
	CALICHE	7	8	Core	18 ppm	8	
						3624	
		8	9	Core	22 ppm		
		ľ	Ť	0010			
		9	10	Core	14 ppm	10	
						3622	Caliche, yellow tan-orange brown, weathered-dense, w/chert nods in matrix, interbedded w/mod-well cemented vf grain
		10	11	Core	15 ppm		sand, no odor.
		11	12	Core	29 ppm	12	
			12	COIE	23 ppm	3620	
	CALICHE					-	
		12	13	Core	37 ppm		
		13	14	Core	38 ppm	14	
						3618	
		14	15	Core	57 ppm		
		1					Caliche, It yellow tan-It gray, w/chert nods in matrix,
		15	16	Core	88 ppm	16 3616	interbedded w/mod-well cemented vf grain sand, sl HC odor.
						- 5010	
		16	17	Core	29 ppm		
	CALICHE	17	18	Core	350 ppm	18	
						3614	
		18	19	Core	280 ppm		
L		19	20	Core	284 ppm	20	L

6 0 C

- Alton

	MW-KK	TOTAL DEPTH: 36.5 Feet								
	LITH.		5001	SAMPLE	-	DID	DEPTH LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, G			
		USCS	FROM	TO	TYPE	PID ·	3612	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silty Clay, yellow tan, w/40% silt in matrix, interbedded		
								w/mod-well cemented vf grain sand, moist, mod HC odor.		
			20	21	Core	310 ppm				
			. 21	22	Core	252 ppm	22	-		
							3610	· ·		
		ML	22	23	Core	790 ppm				
			23	24	Core	621 ppm	24			
							3608			
			24	25	Core	562 ppm				
			25	26	Core	291 ppm	26			
							3606	Sandy Clay, gray white-gray, w/30% vf grain sand in matrix,		
			26	27	Core	219 ppm		interbedded w/mod-well cemented vf grain sand, wet, mod-s HC odor.		
			20	21	0010	210 ppm				
	5 and 3	CL	27	28	Core	114 ppm	28	Encountered Groundwater!		
			•				3604			
	t the second				0					
			28	29	Core	443 ppm				
	2000000	CL	29	30	Core	440 ppm	30	Sandy Clay, tan-orange brown, w/45% vf grain sand in matrix		
							3602	interbedded w/mod-well cemented vf grain sand, wet, mod H		
	0000000							odor.		
			30	31	Core	57 ppm	· ·	Sand, tan-orange brown, vf grain, w/20% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, sl HC		
			31	32	Core	31 ppm	32	odor.		
							3600			
								· · ·		
			32	33	Core	25 ppm				
			33	34	Core	22 ppm	34			
				ů,	00.0		3598			
								· · · ·		
			34	35	Core	21 ppm				
			35	36	Core	23 ppm	36			
					00/0	20 ppm	3596			
								TD Boring @ 36.5 Feet!		
							38	4		
								1		
								1		
								4		
							40	4		
								1		
								4		
							42	4		
							72	1		
								4		
							44	4		
· · · · · · · · · · · · · · · · · · ·				_			L+++	L		

			DLOGIC	LOG					
		1		MONIT			KANAZI I		TOTAL DEPTH: 37 Feet
		<u>~</u>		WOND				Ranch	
				SURF	ACE ELE				COUNTY: Lea
		T		••••			Prosonic		STATE: New Mexico
	' II 'K)H/N			DF					
		•					12/6/2003		FIELD REP.: J. Fergerson
	TRIDEN	AL		со					
					SAMPLE				LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
		LITH,	USCS MH	FROM	то	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silt (Top Soil), brown, w/15% clay in matrix, no odor.
								0000	Caliche, It yellow tan-tan, dense-weathered, w/chert nods in
				0	1	Core	5 ppm		matrix, no odor.
				1	2	Core	23 ppm	2 3631	
			CALICHE	2	3	Core	70 ppm		
				3	4	Core	49 ppm	4 3629	
				4	5	Core	51 ppm		
				5	6	Core	117 ppm	6 3627	Caliche, It tan-tan brown, weathered-dense, w/chert nods in
				6	7	Core	20 ppm		matrix, sl HC odor.
			CALICHE	7	8	Core	113 ppm	8 3625	
				8	9	Core	57 ppm		Caliche, It yellow tan-tan, weathered-dense, w/chert in matrix sl HC odor.
			CALICHE	9	10	Core	130 ppm	10 3623	
				10	11	Core	18 ppm		
			CALICHE	11	12	Core	44 ppm		Caliche, It yellow tan, weathered-dense, w/chert nods in matrix no odor.
				12	13	Core	17 ppm		
		, ,	LOST	13	14	Core	31 ppm	14 3619	LOST CORE INTERVAL
			CORE	14	15	Core	-		
			CALICHE	15	16	Core	-	16 3617	Caliche, It yellow tan-tan, weathered-dense, w/chert in nods in matrix, no odor.
			sc	16	17	Core	322 ppm		Clayey Sand, tan-It orange brown, vf grain, w/30% clay in matrix, interbedded w/mod-well cemented vf grain sand in, sl-mod HC
				17	18	Core	373 ppm	18 3615	odor. Sandy Clay, It tan brown, vf grain, w/25% clay in matrix, interbedded w/mod-well cemented vf grain sand in, mod HC odor.
			CL	18	19	Core	449 ppm		
-		<u>nasaaaaa</u>	1	19	20	Core	387 ppm	20	

r

The states

				MON	ITORING	WELL NO:		MW-LL	TOTAL DEPTH: 37 Feet
		LITH.	SAMPLE USCS	. FROM	то	TYPE	. PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
£.			0000		10			3613	
			CL	20	21	· Core	518 ppm		
			UL	21	22	Core	320 ppm	22	
				~.			pp	3611	
			CL	22	23	Core	506 ppm		Clay, tan brown, vf grain, w/20% vf grain sand in matrix, interbed w/mod-well cemented vf grain sand, mod-str HC odor.
			UL.	23	24	Core	717 ppm	24	
						00.0	pp	,	Clay, tan brown, vf grain, w/15% vf grain sand in matrix,
			CL	24	25	Core	641 ppm		interbedded w/mod-well cemented vf grain sand, str HC odor.
				25	26	Core	693 ppm	26	
				20	10		ooo ppiii	3607	Silty Clay, It tan-It brown, w/20% silt in matrix, interbedded
				26	27	Core	316 ppm		mod-well cemented vf grain sand, moist, str HC odor.
				27	28	Core	332 ppm	28	Encountered Groundwater!
			CL				•• - pp	3605	
				28	29	Core	340 ppm		
				29	30	Core	412 ppm	30	
			ə	20	00		412 pp	3603	Clayey Sand, It gray brown-black, vf grain, w/40% clay in matrix
			sc	30	31	Core	348 ppm		interbedded w/mod-well cemented vf grain sand, wet, mod-str HC odor.
			30	31	32	Core	268 ppm	32	
		" _E	s	Ŭ.				3601	
			SC	32	33	Core	44 ppm		Clayey Sand, It tan brown, vf grain, w/30% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor
				33	34	Core	38 ppm	34	Sand, orange brown, vf grain, w/5% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor.
-								3599	
			sw	34	35	Core	26 ppm		Sand, It tan brown, vf grain, w/5% clay in matrix, interbedded
and a				35	36	Core	20 ppm	- 36	w/mod-well cemented vf grain sand, wet, no odor.
								3597	
			1	I		I	L		TD Boring @ 37 Feet!
								38	4
	· · ·							3595	
								40	
								42	
									4
									1
								44	4

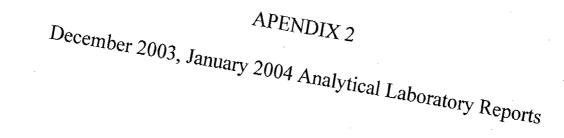
		Å		MON	ITORIN	IG WEL	LLITHO	DLOGIC	LOG		
			A		MONITO	ORING W	ELL NO:	MW-MM		TOTAL DEPTH:	36 Feet
							SITE ID:	Eldridge	Ranch	CLIENT:	Duke Energy Field Service
			r 		SURF	ACE ELE				COUNTY	
	וסר	[DE] RONMEN						Prosonic			New Mexico
					DR						Monument, NM
	FNIXTI	DONMEN	TAT					12/5/2003			J. Fergerson
		NUMBER			CO						
	a de la companya de l					CON	IMENTS:				
						CAMPLE			DEDTU	LITHOLOGIC DESCRIPTION L	
			LITH.	USCS	FROM	SAMPLE TO	TYPE	PID	DEPTH	SIZE, SORTING, ROUNDING,	
						-			3629	Silt (Top Soil), tan-brown, w/5%	
					0	1	Core	5 ppm			
					Ŭ	·	0010	o ppm		-	
				мн	1	2	Core	4 ppm	2	-	
									3627	ł	
					2	3	Core	5 ppm			
					3	4	Core	8 ppm	4	4	
					3	-	Core	o ppin	3625		
								_		Caliche, It yellow tan-tan weath	ered-dense, w/chert nods in
					4	5	Core	8 ppm		matrix, no odor.	
				CALICHE	5	6	Core	13 ppm	6		
									3623	-	
					6	7	Core	6 ppm		-	
					-	·					
					7	8	Core	8 ppm	8	Caliche, It yellow tan, weathere	d-dense, w/chert nods in
10,000									3621	matrix, no odor.	
					8	9	Core	7 ppm			
				CALICHE	9	10	Core	8 ppm	10	-	
				C) (LICITIE	3	10	0010	o ppm	3619		
										-	
					10	11	Core	11 ppm		-	
					11	12	Core	9 ppm	12		
				CALICHE					3617	Caliche, It yellow tan-tan, dense odor.	e, w/chert nods in matrix, no
				CALICITE	12	13	Core	60 ppm			
										Caliche, It yellow tan-It gray, we	
1000					13	14	Core	330 ppm	14 3615	in matrix, interbedded w/mod-w HC odor.	ell cemented vf grain sand, mo
Sector Sector					14	15	Core	293 ppm			
					15	16	Core	403 ppm	16		
			1.11				r		3613		
			1. Sec. 1	CALICHE	16	17	Core	449 ppm		-	
					10		0010			1	
					17	18	Core	561 ppm	18	4	
									3611	1	
E E					18	19	Core	440 ppm		1	
			Act		10		00.0	1.10 66.		4	

.

				MON	ITORING \	Well NO:		MW-MM	TOTAL DEPTH: 36 Feet
	L	LITH.	SAMPLE USCS	.FROM	то	TYPE	, PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			CL	20	21	Core	168 ppm	3609	Sandy Clay, It tan gray, w/25% vf grain sand in matrix, interbedded w/mod-well cemented vf grain sand, moist, mod HC odor.
				21	22	Core	140 ppm	22 3607	Encountered Groundwater!
			sc	22	23	Core	175 ppm		Clayey Sand, It tan gray, vf grain, w/35% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, mod HC odor.
				23	24	Core	152 ppm	24 3605	Sandy Clay, It gray, w/25% clay in matrix, interbedded
			SC	24	25	Core	109 ppm		w/mod-well cemented vf grain sand, wet, sl-mod HC odor.
		£ .,	sw	25	26	Core	129 ppm	26 3603	Sand, orange brown, vf grain, w/5% clay in matrix, wet, no
				26	27	Core	5 ppm		odor. Sand, It tan-It brown, vf grain, w/15% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor.
			SW	27	28	Core	7 ppm _.	28 3601	
				28	29	Core	9 ppm		Sand, orange brown, vf grain, w/5% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor.
				29	30	Core	5 ppm	30 3599	
			SW	30	31	Core	7 ppm		
				31	32	Core	12 ppm	32 3597	
				32	33	Core	9 ppm		•
-		-		33	34	Core	11 ppm	34 3595	Sand, tan-It brown, vf grain, w/5% clay in matrix, interbedded w/mod-well cemented vf grain sand, wet, no odor
			SW	34	35	Core	8 ppm		
				35	36	Core	13 ppm	36 3593	TD Boring @ 36 Feet!
								38 3591	
								40	
							-		
								42	
		•							
								44	i

•

	Å		MON	ITORIN	IG WEL	LITH	OLOGIC	LOG	
				MONIT	ORING W	ELL NO:	MW-NN		TOTAL DEPTH: 36.5 Feet
							Eldridge		CLIENT: Duke Energy Field Services
				SURF	ACE ELE	ATION:	3633		COUNTY: Lea
		T			CONTR	ACTOR:	Prosonic		STATE: New Mexico
		J .		DRILLING METHOD:			Rotosonic		LOCATION: Monument, NM
]		START DATE:					FIELD REP.: J. Fergerson
	TRIDEN	LJ		COMPLETION DATE:			12/5/2003	3	FILE NAME:
					СОМ	MENTS:			
					CAMPLE			DEDTU	
		LITH.	USCS	FROM	SAMPLE TO	TYPE	PID		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			мн					3633	Silt (Top Soil), dk brown, w/10% clay in matrix, no odor.
				0	1	Core	5 ppm		Caliche, It yellowish tan, dense-weathered, w/chert nods
				1	2	Core	5 ppm	2	in matrix, no odor.
				·	-			3631	
			CALICHE	2	3	Core	9 ppm		
				3	4	Core	17 ppm	4	
								3629	
				4	5	Core	7 ppm		
					Ĵ				Caliche, It yellowish tan-tan, weathered-dense, w/chert nods in
				5	6	Core	22 ppm	6 3627	matrix, no odor.
				0	-	Cara	16		
			CALICHE	6	7	Core	16 ppm		
			CALICITE	7	8	Core	17 ppm	8 3625	
								3625	
				8	9	Core	11 ppm		
				9	10	Core	30 ppm	10	
								3623	Caliche, tan-brown, weathered-dense, w/chert nods in matrix, no odor.
			CALICHE	10	11	Core	64 ppm		
				11	12	Core	7 ppm	12	
				• 1	12	0016	, phu	3621	Caliche, it yellowish tan-tan, dense-weathered, w/chert nods
				12	13	Core	8 000		in matrix, no odor.
			CALICHE				8 ppm		
				13	14	Core	10 ppm	14 3619	
				14	15	Core	6 ppm		Caliche, It yellowish tan, weathered-dense, w/chert nods in matrix, sl HC odor.
				15	16	Core	18 ppm	16 3617	
			CALICHE	16	17	Core	188 ppm		
								· · · · · · · · · · · · · · · · · · ·	
				17	18	Core	168 ppm	18 3615	
				18	19	Core	411 ppm		
			CL						Clay, orange brown, w/15% vf grain sand in matrix,
l		<u>equiqui</u>	_	19	20	Core	411 ppm	20	interbedded w/mod-well cemented vf grain sand, mod-str HC


				MON	ITORING \	WELL NO:		MW-NN	TOTAL DEPTH: 36.5 Feet
		LITH.	SAMPLE					DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
			USCS_	FROM	TO	TYPE	PID	3613	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES odor.
						_			
			CL	20	21	Core	1226 ppm		
				21	22	Core	1362 ppm	22	
								3611	
				22	23	Core	1128 ppm		Sandy Clay, It yellowish tan-tan, w/25% vf grain sand in matrix
				23	24	Core	1752 ppm	24	interbedded w/mod-well cemented vf grain sand, str HC odor.
[CL					3609	
				24	25	Core	1930 ppm		
				25	26	Core	986 ppm	26 3607	Sandy Clay, tan-grayish brown, w/35% vf grain sand in matrix,
									interbedded w/mod-well cemented vf grain sand, str HC odor.
				26	27	Core	691 ppm		
				27	28	Core	1053 ppm	28	Encountered Groundwater!
			CL					3605	
				28	29	Core	761 ppm		
ĺ				29	30	Core	500 ppm	30	
				20		0010	eee ppin	3603_	
				30	31	Core	582 ppm		Clay, It yellowish tan-It gray, w/20% vf grain sand in matrix,
				50	51				interbedded w/mod-well cemented vf grain sand, wet, str HC
		A A		31	32	Core	1670 ppm	32 3601	odor,
								3001	
			CL	32	33	Core	998 ppm		
		an nga sangan sanga Sangan sangan		33	34	Core	722 ppm	34	
								3599	
				34	35	Core	767 ppm		· .
				05					Sand, grayish brown, vf grain, w/10% clay in matrix, wet, str
			SW	35	36	Core	404 ppm	36 3597	HC odor.
			_						TD Boring @ 36.5 Feet!
								38	
								3595	
							`		
								40	
								3593	
								42 3591	
L	·····					*		44	

	M	ONITORI	NG WEL	L LITH	OLOGIC	LOG	
		MONIT	ORING W	ELL NO:	MW-00		TOTAL DEPTH: 37 Feet
					Eldridge I		
		SURF	ACE ELE	VATION:	3633		COUNTY: Lea
		6	CONTR	ACTOR:	Prosonic		STATE: New Mexico
		DI	RILLING M	ETHOD:	Rotosoni	c	LOCATION: Monument, NM
			START DATE:			3	FIELD REP.: J. Fergerson
	ENVIRONMENTAL	CC	MPLETIO	N DATE:	12/6/2003	3	FILE NAME:
			CON	IMENTS:			
	*		•				
			SAMPLE	•		DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN
1	LITH. USCS	FROM	то	TYPE	PID		SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	MH					3633	Silty Clay (Top Soil), brown, w/30% silt & dense caliche in matrix, no odor.
		0	1	Core	228 ppm		Caliche, It yellow tan-tan, weathered-dense, w/chert nods in
	CALICH	1E 1		Coro	155		matrix, mod HC odor.
		1	2	Core	155 ppm	2 3631	
		1					Caliche, It yellow tan-It brown, dense-weathered, w/chert nods
	CALICH	2	3	Core	62 ppm		in matrix, sl HC odor.
		3	4	Core	23 ppm	4	
						3629	
		4	5	Core	25 ppm		Caliche, It yellow tan-It brown, weathered-dense, w/chert nods in matrix, no odor.
				0010			
		5	6	Core	22 ppm	6	
						3627	
		6	7	Core	31 ppm		
	CALICH		8	Core	54 ppm	8	
		1		0010		3625	
		8	9	Core	31 ppm		
		9	10	Core	15 ppm	10	
		_				3623	Caliche, It yellow tan, weathered, no odor.
		10	11	Core	7 ppm		
					10		
	CALICH	1E 11	12	Core	13 ppm	12 3621	
		12	13	Core	22 ppm		Collipho. It yellow top top weathered dance, webert pade in
	CALICH	HE 13	14	Core	8 ppm	14	Caliche, It yellow tan-tan, weathered-dense, w/chert nods in matrix, interbedded w/mod-well cemented vf grain sand, no
						3619	odor
	LOST	14	15	Core	-		
	CORE	:					LOST CORE INTERVAL
		- 15	16	Core	-	16	Sandy Clay, white too brown, w/25% of arein cond in matrix
						3617	Sandy Clay, white-tan brown, w/25% vf grain sand in matrix, sl HC odor.
		16	17	Core	298 ppm		
	CL	17	18	Core	460 ppm	18	
					FF.//	3615	
			19	Core	405 0000		Sandy Clay, It tan-it orange brown, w/40% vf grain sand in
	CL	18	19	Core	405 ppm		sandy Clay, it tan-it orange brown, w/40% vi grain sand in matrix, interbedded w/mod-well cemented vf grain sand, mod-
		19	20	Core	384 ppm	20	str HC odor.

train the

in the second

	MONITORING WELL NO:								TOTAL DEPTH: 37 Feet
		LITH.	SAMPLE USCS	FROM	то	TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
			0505	FROM	10	ITPE		3613	SIZE, SURTING, ROUNDING, CONSOL., DIST. FEATURES
				20	21	Core	448 ppm		
				21	22	Core	385 ppm	22 3611	
				22	23	Core	310 ppm		
			CL	23	24	Core	408 ppm	24 3609	
				24	25	Core	299 ppm		
				25	26	Core	277 ppm	26 3607	
				26	27	Core	116 ppm		
			CL	27	28	Core	129 ppm		Sandy Clay, It yellow white-gray, w/20% vf grain sand & che in matrix, moist, mod HC odor.
			CHERT	28	29	Core	127 ppm		Encountered Groundwater! Chert, It yellow white, dense, no odor. Clayey Sand, It tan brown, vf grain, w/30% clay in matrix,
				29	30	Core	457 ppm		interbedded w/mod-weil cemented vf grain sand, wet, mod HC odor.
				30	31	Core	378 ppm		
i				31	32	Core	343 ppm	32 3601	
			sc	32	33	Core	260 ppm		
				33	34	Core	200 ppm	34 3599	
				34	35	Core	121 ppm		
				35	36	Core	81 ppm	36 3597	
									TD Boring @ 37 Feet!
	\checkmark							38 3595	
								40	
								·	
								42	
								44	

ANALYTICAL REPORT

Prepared for:

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Project: Duke Energy Field Services PO#: Order#: G0308160 **Report Date:** 12/17/2003

Certificates US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308160 Project: Project Name: Duke Energy Field Services Location: Eldridge

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

<u>Lab ID;</u>	<u>Sample :</u>	<u>Matrix:</u>		Date / Time <u>Collected</u>	Date / Time <u>Received</u>	Container	Preservative
0308160-01	W.WW	WATER		12/9/03 15:15	12/11/03 13:40	See COC	See COC
<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p 1 C		
0308160-02	MW-1	WATER		12/9/03 16:25	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>t<i>b Testing:</i></u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p 1 C		
0308160-03	N.WW	WATER		12/9/03 17:25	12/11/03 13:40	See COC	See COC
<u>La</u>	i <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p 1 C		
0308160-04	MW-3	WATER		12/10/03 8:10	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b <i>Testing:</i></u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem			
0308160-05	MW-4	WATER		. 12/10/03 8:30	12/11/03 13:40	See COC	See COC
<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem			
0308160-06	MW-5	WATER		12/10/03 8:50	12/11/03 13:40	See COC	See COC
<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p 1 C		
0308160-07	MW-6	WATER		12/10/03 9:20	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>ıb Testing:</u>	Rejected:	No	Tem			
EN	NVIRONMENTAL LAB O	F TEXAS I,	LTD.	1260	00 West I-20 Ea	st, Odessa, TX 79	765 Ph: 915-563-1800

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308160 Project: Project Name: Duke Energy Field Services Location: Eldridge

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Ī	Lab ID:	<u>Sample :</u> 8021B/5030 BTEX Chloride	<u>Matrix:</u>		Date / Time Collected	Date / Time <u>Received</u>	Container	<u>Preservative</u>
(308160-08	MW-9	WATER		12/10/03 9:50	12/11/03 13:40	See COC	See COC
	. <u>La</u>	<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Теп	np IC		
(0308160-09	MW-19	WATER		12/10/03 10:10	12/11/03 13:40	See COC	See COC
	<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Теп	ър 1 С		
(0308160-10	MW-18	WATER		12/10/03 11:20	12/11/03 13:40	See COC	See COC
	<u>La</u>	<u>ub Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Ten			
(0308160-11	MW-10	WATER		12/10/03 11:50	12/11/03 13:40	See COC	See COC
	<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Ten	ιρ 1 C		
(0308160-12	MW-12	WATER		12/10/03 12:40	12/11/03 13:40	See COC	See COC
	<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Теп	ιρ 1C		
(0308160-13	MW-20	WATER		12/10/03 13:35	12/11/03 13:40	See COC	See COC
	<u>La</u>	n <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Ten	ηρ IC		

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308160 Project: Project Name: Duke Energy Field Services Location: Eldridge

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample :	<u>Matrix:</u>		Date / Time <u>Collected</u>	Date / Time <u>Received</u>	Container	Preservative
0308160-14	MW-21	WATER		12/10/03 14:10	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Тетр	1 C		
0308160-15	MW-15	WATER		12/10/03 15:20	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Тетр	1 C		
0308160-16	MW-25	WATER		12/10/03 15:40	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Тетр	1 C		
0308160-17	MW-22	WATER		12/10/03 15:50	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Temp			
0308160-18	DMW-01	WATER		12/10/03 16:45	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Temp	1 C		
0308160-19	Duplicate "A"	WATER		12/10/03 20:00	12/11/03 13:40	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX	Rejected:	No	Temp	1 C		
0308160-20	Duplicate "B"	WATER		12/10/03 22:00	12/11/03 13:40	See COC	See COC
La	<u>b Testing:</u>	Rejected:	No	Temp	1 C		
	8021B/5030 BTEX ENVIRONMENTAL LA	B OF TEXA	S I, LTI	D. 12600 West I-	20 East, Odes	ssa, TX 79765	Ph: 915-563-1800

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308160 Project: Project Name: Duke Energy Field Services Location: Eldridge

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample :	Matrix:	Date / Time <u>Collected</u>	Date / Time <u>Received</u>	Container	<u>Preservative</u>
0308160-21	Trip Blank	WATER	12/10/03	12/11/03 13:40	See COC	See COC
<u>Lab Testing:</u> 8021B/5030 BTEX		Rejected: No	Tem	p 1C		

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

ANALYTICAL REPORT

MICHAEL STE			Order# Project		G0308160			
REMEDIACON P.O. BOX 302 EVERGREEN,			Project Project Locatio	Name:	Duke Energy Eldridge	Field Services		
Lab ID:	0308160-01							
Sample ID:	W.WW							
Test Paran Parameter	neters	Result	Units	Dilutio Facto		Method	Date Analyzed	Analyst
Chloride		106	mg/L	1	5.00	9253	12/15/03	SB
Lab ID:	0308160-02							
Sample ID:	MW-1							
Test Paran	neters			Dilutio			Date	
Parameter Chlorida		<u>Result</u>	<u>Units</u>	<u>Facto</u>		Method	Analyzed	<u>Analyst</u>
Chloride		64.2	mg/L	I	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-03 N.WW							
Test Paran	notors			Dilutio	n		Date	
Parameter		Result	<u>Units</u>	<u>Facto</u>		Method	Analyzed	Analyst
Chloride		106	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-04 MW-3							
Test Paran	neters			Dilutio	n		Date	
Parameter		Result	<u>Units</u>	Factor		Method	Analyzed	<u>Analyst</u>
Chloride		62.0	mg/L	1	5.00	9253	12/15/03	SB
Lab ID:	0308160-05							
Sample ID:	MW-4							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>		Method	Date <u>Analyzed</u>	Analyst
Chloride		73.8	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-06 MW-5	· · · ·						
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>		Method_	Date <u>Analyzed</u>	<u>Analyst</u>
Chloride		65.0	mg/L	1	5.00	9253	12/15/03	SB

RL = Reporting Limit N/A = Not Applicable

Page 1 of 4

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ANALYTICAL REPORT

MICHAEL STEV REMEDIACON P.O. BOX 302	WART		Order# Project Project		G0308160 Duke Energy	Field Services		
EVERGREEN, O	CO 80437		Locatio		Eldridge	Field Services		
Lab ID: Sample ID:	0308160-07 MW-6							
Test Param Parameter	neters	<u>Result</u>	<u>Units</u>	Dilutio <u>Facto</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride		88.6	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-08 MW-9							
Test Paran	neters			Dilutio			Date	
Parameter		<u>Result</u>	<u>Units</u>	<u>Facto</u>		Method	Analyzed	<u>Analyst</u>
Chloride		44.3	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-09 MW-19							
Test Paran	neters			Dilutio	n		Date	
Parameter		<u>Result</u>	<u>Units</u>	<u>Facto</u>	<u>r RL</u>	Method	Analyzed	<u>Analyst</u>
Chloride		65.0	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-10 MW-18							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilutio Facto		Method	Date Analyzed	Analyst
Chloride		<u>65.0</u>	mg/L	1	5.00	9253	12/15/03	SB
	· .							
Lab ID:	0308160-11 MW-10							
Sample ID:		· •						
Test Paran Parameter	neters	Result	Units	Dilutio <u>Facto</u>		Method	Date Analyzed_	<u>Analyst</u>
Chloride		68.0	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308160-12 MW-12							
<u>Test Paran</u> <u>Parameter</u>	neters	Result	Units	Dilutio <u>Facto</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride	·····	284	mg/L	1	5.00	9253	12/15/03	SB
								,

RL = Reporting Limit N/A = Not Applicable

Page 2 of 4

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEWART			Order#		G0308160				
REMEDIACON P.O. BOX 302 EVERGREEN,			Project: Project Locatio	Name:	Duke Energy Eldridge	Field Services			
Lab ID:	0308160-13								
Sample ID:	MW-20								
Test Paran	neters			Dilutio			Date		
Parameter		Result	<u>Units</u>	<u>Facto</u>		Method	Analyzed	<u>Analyst</u>	
Chloride		124	mg/L	1	5.00	9253	12/15/03	SB	
Lab ID:	0308160-14								
Sample ID:	MW-21								
Test Paran	neters			Dilutio			Date		
Parameter		<u>Result</u>	<u>Units</u>	Facto:		<u>Method</u>	Analyzed	<u>Analyst</u>	
Chloride		48.7	mg/L	1	5.00	9253	12/15/03	SB	
Lab ID:	0308160-15								
Sample ID:	MW-15								
<i>Test Paran</i> Parameter	neters	Result	<u>Units</u>	Dilutio Facto		Method	Date Analyzed	<u>Analyst</u>	
Chloride	· · · ·	44.3	mg/L	1	5.00	9253	12/15/03	SB	
Lab ID: Sample ID:	0308160-16 MW-25								
Test Paran	neters			Dilutio	n		Date		
Parameter		Result	<u>Units</u>	Facto	<u>r RL</u>	Method	Analyzed	<u>Analyst</u>	
Chloride		51.0	mg/L	1	5.00	9253	12/15/03	SB	
Lab ID: Sample ID:	0308160-17 MW-22								
Test Paran	neters			Dilutio			Date		
Parameter		_ <u>Result</u>	<u>Units</u>	<u>Facto</u>		<u>Method</u>	Analyzed	<u>Analyst</u>	
Chloride		44.3	mg/L	1	5.00	9253	12/15/03	SB	
Lab ID:	0308160-18					,			
Sample ID:	DMW-01								
Test Paran Parameter	neters	Result	<u>Units</u>	Dilutio <u>Facto</u>		<u>Method</u>	Date Analyzed	Analyst	
Chloride		44.3	mg/L	1	5.00	9253	12/15/03	SB	
			÷						

RL = Reporting Limit N/A = Not Applicable Page 3 of 4

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 Order#: G0308160 Project: Project Name: Location:

Duke Energy Field Services Eldridge

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

.

Date

RL = Reporting Limit N/A = Not Applicable 12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

Page 4 of 4

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

.....

MICHAEL STEWART REMEDIACON P.O. BOX 302 **EVERGREEN, CO 80437**

Lab ID: Sample ID:

0308160-01 w.ww

Order#: G0308160 **Project:** Project Name: **Duke Energy Field Services** Location: Eldridge

			80211	B/5030 BTEX			
	Method	Date	Date	Sample	Dil	ution	
	<u>Blank</u>	Prepared	Analyzed	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	Method
00	07722-02		12/12/03	1	1	СК	8021B
		Parameter		Resu mg/L	lt	RL	
	Be	enzene		<0.001		0.001	
		oluene		<0.001		0.001	
	Et	hylbenzene		<0.001		0.001	
		m-Xylene		<0.001		0.001	
	-	Xylene		<0.001		0.001	
		Surrog	ates	% Recovered	QC L	limits	
		aaa-Toluen Bromofluor		86% 80%	80 80	120 120	
0308160	-02						
MW 1							

Lab ID: Sample ID:

MW-1

8021B/5030 BTEX

Method	Date	Date	Sample	Di	lution	
Blank	Prepared	Analyzed	Amount	Factor		Method
0007722-02		12/12/03	1	1	СК	8021B
	Parameter		Resul	lt	RL	
В	enzene		0.034		0.001	
Т	oluene		0.039		0.001	
E	thylbenzene		0.003	0.003		
p/	/m-Xylene		0.009		0.001	
o-Xylene			0.003		0.001	
Surrogates aaa-Toluene			% Recovered	QC 1	Limits	
			120%	80	120	
	Bromofluor	obenzene	86%	80	120	

DL = Diluted

RL = Reporting Limit

Page 1 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

N/A = Not

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Lab ID: Sample ID:

0308160-03 N.WW Order#: G0308160 Project: Project Name: Duke Ener Location: Eldridge

ne: Duke Energy Field Services Eldridge

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

			8021E	3/5030 BTEX	-		
Ν	lethod	Date	Date	Sample	Dilu	tion	
B	<u>llank</u>	Prepared	Analyzed	<u>Amount</u>	Factor	<u>Analyst</u>	Method
000	7722-02		12/12/03	1	1	СК	8021B
	I	Parameter		Resu mg/L		RL	
	D.			•		0.001	
		nzene		0.210		0.001	
	То	luene		0.006		0.001	
	Eth	nylbenzene		<0.00	1	0.001	
	p/n	n-Xylene		0.003		0.001	
	o-2	Kylene		<0.00	1	0.001	
		Surrog	ates	% Recovered	QC Li	mits	

Surrogates	% Recovered	QC	Limits
aaa-Toluene	246%	80	120
Bromofluorobenzene	84%	80	120

Lab ID: Sample ID: 0308160-04 MW-3

8021B/5030 BTEX

Method	Date	Date	Sample	_Dih	ıtion	
<u>Blank</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	Method
0007722-02		12/12/03	1	1	CK	8021B
	Parameter		Resu	lt	RL	
			mg/L			
E	Benzene		<0.001		0.001	
Т	oluene		<0.001		0.001	
E	thylbenzene		< 0.001		0.001	
p	/m-Xylene		< 0.001		0.001	
0	-Xylene		<0.001		0.001	
	Surrog	ates	% Recovered	QC L	imits	
	aaa-Toluen	e	85%	80	120	
	Bromofluor	obenzene	90%	80	120	

DL = Diluted

N/A = Not

ENVIRONMENTAL LAB OF TEXAS I, LTD.

RL = Reporting Limit

ANALYTICAL REPORT

Order#:

Project:

Location:

Project Name:

G0308160

Eldridge

Duke Energy Field Services

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Lab ID: Sample ID:

0308160-05 MW-4

> 8021B/5030 BTEX Date Dilution Method Date Sample Method Blank Prepared Analyzed Amount Factor Analyst 0007722-02 12/12/03 1 5 CK. 8021B Parameter Result RL mg/L Benzene 3.36 0.005 Toluene 2.46 0.005 Ethylbenzene 0.142 0.005 p/m-Xylene 0.348 0.005 o-Xylene 0.091 0.005

Surrogates	% Recovered	QC Limits		
aaa-Toluene	161%	80	120	
Bromofluorobenzene	80%	80	120	

Lab ID: Sample ID: 0308160-06 MW-5

8021B/5030 BTEX

Method Blank	Date Prepared	Date <u>Analyzed</u>	Sample Amount	_Dilu Factor	ition <u>Analyst</u>	Method
0007722-02	<u>irepareu</u>	12/12/03	1	<u>1</u>	<u>Analyst</u> CK	8021B
	Parameter		Resul mg/L	lt	RL	
В	enzene		0.052		0.001	
Тс	oluene		0.010		0.001	
Et	hylbenzene		0.021		0.001	
p /:	m-Xylene		0.016		0.001	
0-	Xylene		0.019		0.001	
	Surroga aaa-Toluen Bromofluoro	e	% Recovered 278% 93%	QC Li 80 80	mits 120 120	

DL = Diluted N/A = Not

RL = Reporting Limit

Page 3 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 **EVERGREEN, CO 80437**

Lab ID: Sample ID:

0308160-07 MW-6

Order#: **Project:** Project Name: Location:

G0308160 **Duke Energy Field Services** Eldridge

		8021B	x/5030 BTEX			
Method	Date	Date	Sample	Dilu		
Blank	<u>Prepared</u>	Analyzed	Amount	Factor	<u>Analyst</u>	<u>Meth</u> 8021
0007722-02		12/12/03	1		СК	8021
	Parameter		Resu	lt	RL	
Be	enzene		0.004		0.001	
То	oluene		0.001		0.001	
Et	hylbenzene		0.006		0.001	
p/1	m-Xylene		0.007		0.001	
0-	Xylene		<0.001	l	0.001	

Surrogates	% Recovered	QC Limits	
aaa-Toluene	91%	80	120
Bromofluorobenzene	80%	80	120

Lab ID: Sample ID: 0308160-08 MW-9

8021B/5030 BTEX Data

		00212				
Method	Date	Date	Sample	_Dilı	ıtion	
<u>Blank</u>	<u>Prepared</u>	Analyzed	<u>Amount</u>	Factor	<u>Analyst</u>	Method
0007722-02		12/12/03	1	1	CK	8021B
	Parameter		Resu mg/L	lt	RL	
В	Benzene		<0.001		0.001	
Т	oluene		<0.001		0.001	
E	thylbenzene		<0.001		0.001	
р	/m-Xylene		0.002		0.001	
0	-Xylene		<0.001		0.001	
	Surroga aaa-Toluen Bromofluoro	e	% Recovered 88% 86%	QC L <u>8</u> 0 80	imits 120 120	

DL = Diluted

N/A = Not

RL = Reporting Limit

Page 4 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

8021B/5030 BTEX

Order#:

Project:

Location:

Project Name:

G0308160

Eldridge

Duke Energy Field Services

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

GREEN, CO 80437

Lab ID: Sample ID: 0308160-09 MW-19

Method <u>Blank</u> 0007722-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/12/03	Sample <u>Amount</u> 1	_Dilu <u>Factor</u> 1	ition <u>Analyst</u> CK	<u>Method</u> 8021B
	Parameter	·	Resu mg/L	lt	RL	
В	enzene		0.050		0.001	
	oluene		< 0.001		0.001	
	thylbenzene		<0.001		0.001	
p	/m-Xylene		<0.001		0.001	
0	-Xylene		<0.001		0.001	
	Surrog		% Recovered	QC Li		
	aaa-Toluen	e	86%	80	120	

Bromofluorobenzene

Lab ID: Sample ID:

D: 0308160-10 e ID: MW-18

8021B/5030 BTEX

84%

80

120

Method <u>Blank</u> 0007722-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/12/03	Sample <u>Amount</u> 1	_Dilu <u>Factor</u> 1	ition <u>Analyst</u> CK	<u>Method</u> 8021B
0007722-02		12/12/05	•		er	00210
	Parameter		Resul mg/L	t	RL	
Be	enzene	·	0.018		0.001	
To	luene		0.006		0.001	
Et	hylbenzene		0.002		0.001	
р/1	m-Xylene		0.009		0.001	
0-2	Xylene		0.002		0.001	
	Surroga aaa-Toluend Bromofluoro	е	% Recovered 253% 86%	QC Li 80 80	imits 120 120	

DL = Diluted N/A = Not

RL = Reporting Limit

Page 5 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON 37

P.O. BOX 302 EVERGREEN,	со	8043′

Lab ID:	
Sample ID:	

0308160-11 MW-10

Order#:	G0308160
Project:	
Project Name:	Duke Energy Field Services
Location:	Eldridge

		8021E	B/5030 BTEX			
Method	Date	Date	Sample	_Dilu	ition	
Blank	Prepared	<u>Analyzed</u>	Amount	Factor	Analyst	Method
0007722-02		12/12/03	1	10	СК	8021B
	Parameter		Resul	lt	RL	
			mg/L			
В	enzene		6.95		0.010	
Т	oluene		0.190		0.010	
E	thylbenzene		0.020		0.010	
p,	/m-Xylene		0.032		0.010	
0	-Xylene		0.012		0.010	
	Surrogates		% Recovered	QC Li	mits	
aaa-Toluene		101%	80	120		

91%

80

120

Lab ID:

Sample ID:


0308160-12 MW-12

8021B/5030 BTEX Method Date Date Dilution Sample Blank Factor <u>Analyst</u> Prepared Analyzed Amount <u>Method</u> 0007722-02 12/12/03 1 20 СК 8021B Parameter Result RL mg/L Benzene 14.7 0.020 Toluene 0.142 0.020 Ethylbenzene 0.102 0.020 p/m-Xylene 0.035 0.020 o-Xylene < 0.020 0.020 % Recovered QC Limits Surrogates 98% 80 120 aaa-Toluene Bromofluorobenzene 86% 80 120

DL = Diluted N/A = Not **RL** = Reporting Limit

Bromofluorobenzene

Page 6 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

VERGREEN, CO 804

Lab ID: Sample ID: 0308160-13 MW-20 Order#: Project: Project Name: Location:

G0308160 ne: Duke Energy Field Services Eldridge

			<i>80211</i>	3/5030 BTEX			
Ν	lethod	Date	Date	Sample	_Dilu	tion	
<u></u>	lank	Prepared	<u>Analyzed</u>	<u>Amount</u>	Factor	<u>Analyst</u>	Method
000	7722-02		12/12/03	1	1	СК	8021B
		~		-	•.		
		Parameter		Resu mg/L	lt	RL	
	Be	nzene		<0.001		0.001	
	То	luene		<0.001		0.001	
	Eth	nylbenzene		<0.001		0.001	
	p/r	n-Xylene		<0.001		0.001	
	0-2	Xylene		<0.001		0.001	
	Surrogates		% Recovered	QC Li	mits		

Surrogates	% Recovered	QC	Limits
aaa-Toluene	87%	80	120
Bromofluorobenzene	84%	80	120

Lab ID: Sample ID: 0308160-14 MW-21

8021B/5030 BTEX

Method	Date	Date	Sample	Dilu	ition	
<u>Blank</u>	Prepared	Analyzed	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	<u>Method</u>
0007722-02		12/12/03	1	1.	CK	8021B
	Parameter		Resul	t	RL	
Be	enzene		0.009		0.001	
То	oluene		0.006		0.001	
Et	hylbenzene		0.006		0.001	
p/:	m-Xylene		0.019		0.001	
0-	Xylene		0.003		0.001	
	Surrog	ates	% Recovered	QC L	imits	
	aaa-Toluen	e	180%	80	120	
	Bromofluor	obenzene	91%	80	120	

DL = Diluted

RL = Reporting Limit

 $\overline{}$

ENVIRONMENTAL LAB OF TEXAS I, LTD.

N/A = Not

ANALYTICAL REPORT

0001D COOD DTEX

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Lab ID:

Sample ID:

0308160-15

MW-15

Order#: G0308160 **Project:** Project Name: Location:

Duke Energy Field Services Eldridge

		80211	3/5030 BTEX			
Method	Date	Date	Sample	Dilu	tion	
<u>Blank</u>	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
0007722-02		12/12/03	1	1	СК	8021B
	Parameter		Resu mg/L		RL	
В	enzene		0.029		0.001	
Те	oluene		<0.001	l	0.001	
Et	hylbenzene		<0.001	l	0.001	
	m-Xylene		<0.001	l	0.001	
•	Xylene		<0.001	l	0.001	
	Surrog	ates	% Recovered	QC Li	mits	
	aaa-Toluen	е	142%	80	120	

Bromofluorobenzene

0308160-16 Sample ID: MW-25

Lab ID:

8021B/5030 BTEX

84%

80

120

Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/12/22	Sample <u>Amount</u>	Factor	ution <u>Analyst</u>	Method
0007722-02		12/12/03	1	1	СК	8021B
]	Parameter		Result mg/L	t	RL	
Be	nzene		0.002		0.001	
То	luene		<0.001		0.001	
Et	hylbenzene		<0.001		0.001	
р/т	n-Xylene		<0.001		0.001	
o-2	Xylene		<0.001		0.001	
	Surroga aaa-Toluen Bromofluoro	e	% Recovered 86% 84%	QC L 80 80	imits 120 120	

DL = Diluted

RL = Reporting Limit

Page 8 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

N/A = Not

ANALYTICAL REPORT

8021B/5030 BTEX

Sample

Date

MICHAEL STEWART REMEDIACON P.O. BOX 302 **EVERGREEN, CO 80437** Order#: G0308160 **Project:** Project Name: **Duke Energy Field Services** Location: Eldridge

Dilution

Lab ID: Sample ID:

0308160-17 MW-22

Method

Date

I I I C C I C C I	Date	Dutt	Sample			
<u>Blank</u>	Prepared	Analyzed	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	Method
0007722-02		12/15/03	1	1	СК	8021B
	Parameter		Result	t	RL	
			mg/L			
F	Benzene		0.014		0.001	
1	oluene		0.012		0.001	
E	thylbenzene		<0.001		0.001	
p	/m-Xylene		0.002		0.001	
с	-Xylene		<0.001		0.001	
	Surrog	ates	% Recovered	QC Li	imits	
	aaa-Toluen	е	83%	80	120	
	Bromofluor	obenzene	84%	80	120	
02001/0 10						
0308160-18						
DMW-01						
		8021E	B/5030 BTEX			
Method	Date	Date	Sample	Dilu		
Blank	<u>Prepared</u>	Analyzed	Amount	<u>Factor</u>	<u>Analyst</u>	Method
0007722-02		12/15/03	1	1	СК	8021B
	Parameter		Result	t	RL	

Lab ID: Sample ID:

nou	Date	Date	Sample		nion	
<u>nk</u>	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Met
22-02		12/15/03	1	1	СК	802
	Parameter		Result		RL	
]	Benzene		0.002		0.001	
,	Toluene		<0.001		0.001	
]	Ethylbenzene		<0.001		0.001	
1	p/m-Xylene		<0.001		0.001	
(o-Xylene		<0.001		0.001	
	Surrog	ates	% Recovered	QC L	imits	
	aaa-Toluen	e	89%	80	120	
	Bromofluor	benzene	87%	80	120	

•

DL = Diluted N/A = Not **RL** = Reporting Limit

Page 9 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

Order#:

Project:

Location:

Project Name:

G0308160

Eldridge

Duke Energy Field Services

MICHAEL STEWART REMEDIACON P.O. BOX 302 **EVERGREEN, CO 80437**

0308160-19

Sample ID:

Lab ID:

Duplicate "A"

8021B/5030 BTEX								
Method	Date	Date	Sample	Dilu				
Blank	<u>Prepared</u>	<u>Analyzed</u>	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	Method		
0007722-02		12/15/03	1	1	СК	8021B		
Parameter			Resu	ılt	RL			
			mg/L					
Be	enzene		0.054		0.001			
Toluene			0.010		0.001			
Ethylbenzene		0.020		0.001				
p/:	m-Xylene		0.015		0.001			
0-	Xylene		0.019		0.001			

Surrogates	% Recovered	QC	Limits
aaa-Toluene	282%	80	120
Bromofluorobenzene	95%	80	120

Lab ID: Sample ID: 0308160-20 Duplicate "B"

8021B/5030 BTEX

Method	Date	Date	Sample	-	ition	Madhad
<u>Blank</u> 0007746-02	<u>Prepared</u>	<u>Analyzed</u> 12/16/03	<u>Amount</u> 1	<u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8021B
	Parameter		Resul	lt	RL	
В	enzene		0.008		0.001	
Т	oluene		0.005		0.001	
Et	hylbenzene		0.006		0.001	
p/	m-Xylene		0.018		0.001	
0-	Xylene		0.003		0.001	
	Surrog	ates	% Recovered	QC L	imits	
	aaa-Toluen Bromofluoro		180% 100%	80 80	120 120	

DL = Diluted N/A = Not RL = Reporting Limit

Page 10 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Lab ID: 03 Sample ID: Tr

0308160-21 Trip Blank Order#: G0308160 Project: Project Name: Duke Energ Location: Eldridge

Duke Energy Field Services Eldridge

_Dilution

l

Date

Method

Blank Prepared **Analyzed** Amount Factor <u>Analyst</u> Method 0007746-02 12/16/03 1 1 СК 8021B Parameter Result RL mg/L Benzene < 0.001 0.001 Toluene <0.001 0.001 Ethylbenzene < 0.001 0.001 p/m-Xylene <0.001 0.001 o-Xylene < 0.001 0.001

8021B/5030 BTEX

Sample

Date

Surrogates% RecoveredQCLimitsaaa-Toluene97%80120Bromofluorobenzene94%80120

Approval: Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Date

11 of 11

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

N/A = Not

DL = Diluted

Page

RL = Reporting Limit

BLANK

WATER

LAB-ID #

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX Order#: G0308160

Sample

Concentr

Concentr.

OC Test

Spike

Result Recovery Pct (%) RPD WATER 0007722-02 < 0.001 Benzene-mg/L Benzene-mg/L 0007746-02 < 0.001 Toluene-mg/L 0007722-02 < 0.001 Toluene-mg/L 0007746-02 < 0.001 Ethylbenzene-mg/L 0007722-02 < 0.001 0007746-02 Ethylbenzene-mg/L < 0.001 p/m-Xylene-mg/L 0007722-02 < 0.001 0007746-02 p/m-Xylene-mg/I_ < 0.001 o-Xylene-mg/L 0007722-02 < 0.001 o-Xylene-mg/L 0007746-02 < 0.001 CONTROL WATER LAB-ID # QC Test Concentr. Sample Concentr Spike Result Recovery RPD Pct (%) WATER . 0007746-03 Benzene-mg/L 0.1 0.104 104.% Toluene-mg/L 0007746-03 0.1 0.094 94.% Ethylbenzene-mg/L 0007746-03 0.1 0.091 91.% p/m-Xylene-mg/L 0007746-03 0.2 0.181 90.5% o-Xylene-mg/L 0007746-03 0.1 0.090 90.% CONTROL DUPWATER LAB-ID # Concentr Concentr. QC Test Sample Spike Result Recovery RPD Pct (%) WATER . 0007746-04 Benzene-mg/L 0.1 0.093 93.% 11.2% Toluene-mg/L 0007746-04 0.1 0.087 87.% 7.7% Ethylbenzene-mg/L 0007746-04 0.083 0.1 83.% 9.2% 0007746-04 p/m-Xylene-mg/L 0.2 0.165 82.5% 9.2% o-Xylene-mg/L 0007746-04 0.083 0.1 83.% 8.1% MS WATER LAB-ID # Spike Concentr. Sample Concentr **OC** Test Result Recovery Pct (%) RPD WATER . Benzene-mg/L 0308160-01 0 0.1 0.091 91.% Toluene-mg/L 0308160-01 0 0.1 0.087 87.% Ethylbenzene-mg/L 0308160-01 0 0.1 0.086 86.% p/m-Xylene-mg/L 0308160-01 0 0.2 0.171 85.5% o-Xylene-mg/L 0308160-01 0 0.1 0.084 84.% **MSD** WATER LAB-ID # Concentr. Sample Concentr Spike QC Test Result Recovery Pct (%) RPD WATER . 0308160-01 Benzene-mg/L 0 0.1 0.091 91.% 0.% Toluene-mg/L 0308160-01 0 0.1 0.088 88.% 1.1% Ethylbenzene-mg/L 0308160-01 0.1 0 0.086 86.% 0.% p/m-Xylene-mg/L 0308160-01 0 0.2 0.171 85.5% 0.% 0308160-01 o-Xylene-mg/L 0 0.1 0.085 85.% 1.2%

SRM Result WATER	WATER Recovery	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Benzene-mg/L		0007722-05		0.1	0.091	91.%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

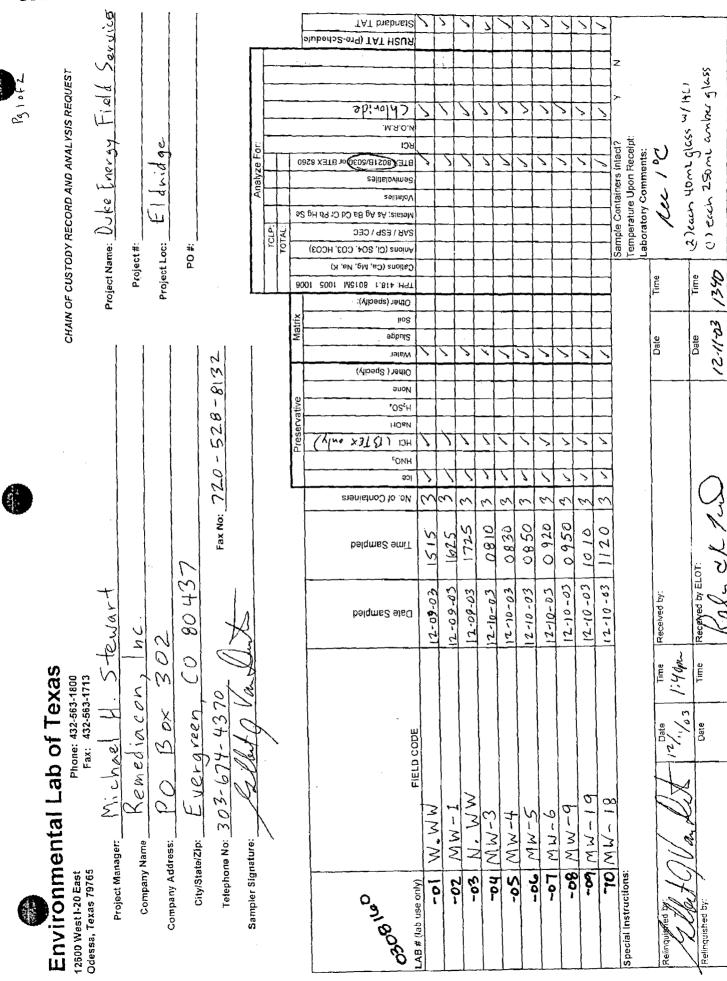
ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0308160

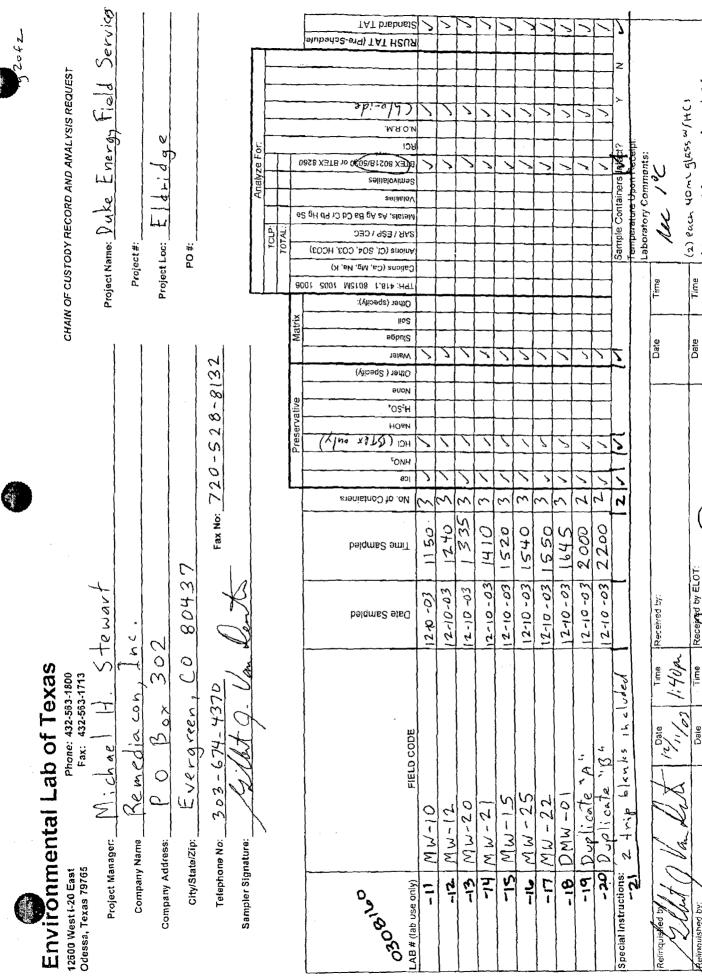
SRM Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Benzene-mg/L		0007746-05		0.1	0.105	105.%	
Toluene-mg/L		0007722-05		0.1	0.088	88.%	
Toluene-mg/L		0007746-05		0.1	0.099	99.%	
Ethylbenzene-mg/L		0007722-05		0.1	0.084	84.%	
Ethylbenzene-mg/L		0007746-05		0.1	0.094	94.%	
p/m-Xylene-mg/L		0007722-05		0.2	0.171	85.5%	
p/m-Xylene-mg/L		0007746-05		0.2	0.189	94.5%	
o-Xylene-mg/L		0007722-05		0.1	0.082	82.%	
o-Xylene-mg/L		0007746-05		0.1	0.094	94.%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800


ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Test Parameters

Order#: G0308160


BLANK Result	WATER Recovery	LAB-1D # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
	WATER	,(,,,)					
Chloride-mg/L		0007731-01			<5.00		
MS	WATER	LAB-ID #	Concentr.	Sample	Concentr	Spike	OC Test
Result	Recovery WATER	Pct (%)	RPD			·	
Chloride-mg/L		0308160-01	106	250	354	99.2%	
MSD	WATER	LAB-ID #	Concentr.	Sample	Concentr	Spike	QC Test
Result	Recovery WATER	Pct (%)	RPD				C
Chloride-mg/L		0308160-01	106	250	350	97.6%	1.1%
SRM	WATER	LAB-ID #	Concentr.	Sample	Concentr	Spike	OC Test
Result	Recovery WATER	Pct (%)	RPD			- - - - -	20 100
Chloride-mg/L		0007731-04		5000	4960	99.2%	

Dec 17 03 12:38p

p.21

p.22

(i) each 250m anter glass

1360

12-11-03

2. 53

1 me

elinquished by

Dec 17 03 12:38p

ANALYTICAL REPORT

Prepared for:

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Project:Duke Energy Field ServicesPO#:G0308190Report Date:12/23/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS

SAMPLE WORK LIST

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#:G0308190Project:Project Name:Duke Energy Field ServicesLocation:Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample :	Matrix:		Date / Time Collected	Date / Time 	_Container	Preservative
0308190-01	MW-GG (0312150940)	WATER		12/15/03 9:40	12/16/03 17:10	See COC	See COC
La	b Testing:	Rejected:	No	Tem			
	8021B/5030 BTEX	•			•		
	Chloride						
0308190-02	MW-AA (0312151010)	WATER		12/15/03	12/16/03	See COC	See COC
La	b Testing:	Rejected:	No	10:10 Tem	17:10 p 2.0 C		
Lu	8021B/5030 BTEX	Rejected.	NO	I Chi	p 2.0 C		
	Chloride						
	cillonido						
0308190-03	MW-II (0312151035)	WATER		12/15/03	12/16/03	See COC	See COC
	I 00 /*			10:35	17:10		
La	b Testing:	Rejected:	No	Tem	p 2.0 C		
	8021B/5030 BTEX Chloride						
	Chionae						
0308190-04	MW-HH (0312151200)	WATER		12/15/03	12/16/03	See COC	See COC
_	· _ ·			12:00	17:10		
La	<u>b Testing:</u>	Rejected:	No	Tem	p 2.0 C		
	8021B/5030 BTEX						
	Chloride						
0308190-05	MW-BB (0312151210)	WATER		12/15/03	12/16/03	See COC	See COC
				12:10	17:10		
La	<u>b Testing:</u>	Rejected:	No	Tem	p 2.0 C		
	8021B/5030 BTEX						
	Chloride						
0308190-06	MW-JJ (0312151240)	WATER		12/15/03	12/16/03	See COC	See COC
				12:40	17:10		
La	<u>b Testing:</u>	Rejected:	No	Tem	р 2.0 C		
	8021B/5030 BTEX						
	Chloride						
0308190-07	MW-EE (0312151535)	WATER		12/15/03	12/16/03	See COC	See COC
				15:35	17:10		
La	b Testing:	Rejected:	No	Tem	p 2.0 C		

ENVIRONMENTAL LAB OF TEXAS I, LTD.

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308190 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	<u>Sample :</u> 8021B/5030 BTEX Chloride	<u>Matrix:</u>		Date / Time _Collected_	Date / Time <u>Received</u>	Container	Preservative
0308190-08	MW-CC (0312151550)	WATER		12/15/03 15:50	12/16/03 17:10	See COC	See COC
<u>La</u>	<u>ıb Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Тетр	2.0 C		
0308190-09	MW-N (0312151605)	WATER		12/15/03 16:05	12/16/03 17:10	See COC	See COC
<u>La</u>	i <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Тетр	2.0 C		

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STE REMEDIACON P.O. BOX 302 EVERGREEN,	Ń		Order# Project Project Locatio	i: Name:]	50308190 Duke Energy Oldridge Ran	y Field Services ch		
Lab ID: Sample ID:	0308190-01 MW-GG (0312150940)							
<i>Test Paral</i> Parame <u>ter</u>	meters	<u>Result</u>	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		74.4	mg/L	. 1	5.00	9253	12/17/03	SB
Lab ID: Sample ID:	0308190-02 MW-AA (0312151010)							
<i>Test Para</i> Parameter	meters	Result	Units	Dilution Factor	<u>RL</u>	Method	Date Analyzed	Analyst
Chloride		88.6	mg/L	1	5.00	9253	12/17/03	SB
Lab ID: Sample ID:	0308190-03 MW-II (0312151035)							
<i>Test Para</i> Parameter	meters	Result	Units	Dilution <u>Factor</u>	RL	Method	Date Analyzed	Analyst
Chloride		81.5	mg/L	1	5.00	9253	12/17/03	SB
Lab ID: Sample ID:	0308190-04 MW-HH (0312151200)							
<i>Test Paral</i> Parameter	meters	Result	<u>Units</u>	Dilution Factor	RL	Method	Date <u>Analyzed</u>	Analyst
Chloride		88.6	mg/L	1	5.00	9253	12/17/03	SB
Lab ID: Sample ID:	0308190-05 MW-BB (0312151210)				•			
Test Paral Parame <u>ter</u>	meters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed_	<u>Analyst</u>
Chloride		97.5	mg/L	1	5.00	9253	12/17/03	SB
Lab ID: Sample 1D:	0308190-06 MW-JJ (0312151240)							
Test Paral Parameter	meters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date <u>Analyzed</u>	<u>Analyst</u>
Chloride		93.1	mg/L	<u>1 uctor</u> 1	5.00	9253	12/17/03	SB

RL = Reporting Limit N/A = Not Applicable

Page 1 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STI			Order#		G0308190			
REMEDIACON P.O. BOX 302 EVERGREEN,			Project Project Locatio	Name:	Duke Energy Eldridge Ran	Field Services ch		
Lab ID: Sample ID:	0308190-07 MW-EE (0312151535)		·					
Test Para	meters			Dilutio			Date	
Parameter		<u>Result</u>	<u>Units</u>	<u>Facto</u>	<u>r RL</u>	Method	Analyzed	<u>Analyst</u>
Chloride		93.1	mg/L	1	5.00	9253 ·	12/17/03	SB
Lab ID: Sample ID:	0308190-08 MW-CC (0312151550)							
Test Para	meters			Dilutio	n		Date	
Parameter		<u>Result</u>	<u>Units</u>	Facto	<u>r RL</u>	Method	Analyzed	<u>Analyst</u>
Chloride		97.5	· mg/L	1	5.00	9253	12/17/03	SB
Lab ID:	0308190-09							
Sample ID:	MW-N (0312151605)							
Test Para	meters			Dilutio	n		Date	
Parameter		Result	<u>Units</u>	Facto	<u>r RL</u>	Method	Analyzed	<u>Analyst</u>
Chloride		70.9	mg/L	1	5.00	9253	12/17/03	SB
				Approva Raland K		Pirector, QA Offic	er E	Date

Rałand K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech. RL = Reporting Limit N/A = Not Applicable

Page 2 of 2

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 **EVERGREEN, CO 80437**

0308190-01

MW-GG (0312150940)

Lab ID:

Sample ID:

Order#: G0308190 **Project:** Project Name: Location:

Duke Energy Field Services Eldridge Ranch

		<i>80211</i>	3/5030 BTEX			
Method	Date	Date	Sample	_Dilu	tion	
<u>Blank</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	Method
0007790-02		12/20/03	1	10	СК	8021B
	Parameter		Resu mg/L		RL	
B	enzene		5.96		0.010	
T	oluene		0.031		0.010	
Et	thylbenzene		< 0.01	0	0.010	
p/	m-Xylene		0.014		0.010	
	Xylene		< 0.01	n	0.010	

Surrogates	% Recovered	QC	Limits
aaa-Toluene	104%	80	120
Bromofluorobenzene	89%	80	120

Lab ID: Sample ID: 0308190-02 MW-AA (0312151010)

8021B/5030 BTEX Method Date Date Sample Dilution Blank Factor Prepared Analyzed <u>Amount</u> <u>Analyst</u> Method 0007790-02 12/20/03 1 1 СК 8021B Parameter Result RL mg/L Benzene 0.356 0.001 Toluene 0.030 0.001 Ethylbenzene 0.005 0.001 p/m-Xylene 0.005 0.001 o-Xylene 0.002 0.001 Surrogates % Recovered QC Limits aaa-Toluene 150% 80 120 Bromofluorobenzene 96% 80 120

DL = Diluted

RL = **Reporting Limit**

Page 1 of 5

ENVIRONMENTAL LAB OF TEXAS I, LTD.

N/A = Not

ANALYTICAL REPORT

8021B/5030 BTEX

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 Order#: G0308190 Project: Project Name: Duke Ene Location: Eldridge F

Duke Energy Field Services Eldridge Ranch

Lab ID: 0308190-03 Sample ID: MW-II (03

MW-II (0312151035)

Method	Date	Date	Sample	Dil	ution	
Blank	<u>Prepared</u>	Analyzed	<u>Amount</u>	Factor	<u>Analyst</u>	Method
0007790-02		12/20/03	1	1	СК	8021B
	Danamatan		Deeu	14	DI	
	Parameter		Resu mg/L	IT	RL	
B	enzene		0.518		0.001	
Te	oluene		0.167		0.001	
E	thylbenzene		0.010		0.001	
p/	m-Xylene		0.022		0.001	
0-	Xylene		0.006		0.001	
	Surrogates		% Recovered OC		imits	
	aaa-Toluen	е	235%	80	120	
	Bromofluor	obenzene	100%	80	120	

0308190-04 MW-HH (0312151200)

8021B/5030 BTEX

Method <u>Blank</u> 0007790-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/20/03	Sample <u>Amount</u> 1	_Dil <u>Factor</u> 10	ution <u>Analyst</u> CK	<u>Method</u> 8021B
000///0-02		12/20/03	1	10	CK .	00210
:	Parameter		Resul mg/L	t	RL	
Be	nzene		3.23		0.010	
To	luene		0.052		0.010	
Etl	hylbenzene		< 0.010		0.010	
р/1	n-Xylene		< 0.010		0.010	
o-2	Xylene		< 0.010		0.010	
	Surroga aaa-Toluene Bromofluoro	9	% Recovered 84% 80%	QC L 80 80	imits 120 120	

DL = Diluted

RL = Reporting Limit

Page 2 of 5

ENVIRONMENTAL LAB OF TEXAS I, LTD.

N/A = Not

ANALYTICAL REPORT

Order#:

Project:

Location:

Project Name:

G0308190

Eldridge Ranch

Duke Energy Field Services

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

SREEN, CO 80437

Lab ID: Sample ID: 0308190-05 MW-BB (0312151210)

8021B/5030 BTEX						
Method	Date	Date	Sample	Dilu	tion	
<u>Blank</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	<u>Method</u>
0007790-02		12/20/03	1	10	СК	8021B
	Parameter		Resu mg/L	lt	RL	
В	enzene		4.34		0.010	
Т	oluene		0.064		0.010	
E	thylbenzene		0.058		0.010	
р	/m-Xylene		0.011		0.010	
0	-Xylene		< 0.01)	0.010	

Surrogates	% Recovered	QC	Limits
aaa-Toluene	97%	80	120
Bromofluorobenzene	83%	80	120

Lab ID: Sample ID:

0308190-06 D: MW-JJ (0312151240)

8021B/5030 BTEX

Method <u>Blank</u> 0007790-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/20/03	Sample <u>Amount</u> 1	_Dil <u>Factor</u> 20	ution <u>Analyst</u> CK	<u>Method</u> 8021B
	Parameter		Resul mg/L	t	RL	
Be	nzene		15.9		0.020	
То	luene		0.071		0.020	
Et	hylbenzene		0.096		0.020	
p/r	n-Xylene		< 0.020		0.020	
o-2	Xylene		< 0.020		0.020	
	Surrog	ites	% Recovered	QC L	imits	
	aaa-Toluen	e	96%	80	120	
	Bromofluoro	benzene	90%	80	120	

DL = Diluted

RL = Reporting Limit

N/A = Not

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Order#:

Project:

Location:

Project Name:

G0308190

Eldridge Ranch

Duke Energy Field Services

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Lab ID:

Sample ID:

0308190-07 MW-EE (0312151535)

8021B/5030 BTEX Method Date Date Sample Dilution Blank Prepared Analyzed <u>Amount</u> <u>Factor</u> <u>Analyst</u> Method 0007790-02 12/20/03 1 10 СК 8021B Parameter Result RL mg/L Benzene 2.13 0.010 Toluene 1.53 0.010 Ethylbenzene 0.111 0.010 p/m-Xylene 0.263 0.010 o-Xylene 0.061 0.010

Surrogates	% Recovered	QC	Limits
aaa-Toluene	194%	80	120
Bromofluorobenzene	97%	80	120

Lab ID: Sample ID:

MW-CC (0312151550)

0308190-08

8021B/5030 BTEX Method Date Date Sample Dilution <u>Blank</u> Analyzed <u>Analyst</u> Method Prepared Amount (<u>Factor</u> 0007790-02 12/20/03 1 25 СК 8021B Parameter Result RL mg/L Benzene 17.6 0.025 Toluene 2.94 0.025 Ethylbenzene 0.168 0.025 p/m-Xylene 0.314 0.025 o-Xylene 0.063 0.025 QC Limits Surrogates % Recovered aaa-Toluene 150% 80 120 Bromofluorobenzene 97% 80 120

DL = Diluted

RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

N/A = Not

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 **EVERGREEN, CO 80437**

G0308190 Order#: **Project: Project Name:** Location:

Duke Energy Field Services Eldridge Ranch

Lab ID: 0308190-09 Sample ID: MW-N (0312151605)

> 8021B/5030 BTEX Date Method Date Sample Dilution <u>Blank</u> Prepared Analyzed Amount Factor Analyst Method 0007790-02 12/20/03 1 50 СК 8021B Parameter Result RL mg/L Benzene 33.2 0.050 2.85 Toluene 0.050 Ethylbenzene 0.229 0.050 0.352 p/m-Xylene 0.050 0.064 o-Xylene 0.050

Surrogates	% Recovered	QC I	Limits
aaa-Toluene	117%	80	120
Bromofluorobenzene	87%	80	120

Approval: Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

Date

DL = Diluted

N/A = Not

RL = Reporting Limit

Page 5 of 5

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX 0

Order#: G0308190

BLANK Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Benzene-mg/L		0007790-02			< 0.001		
Toluene-mg/L		0007790-02			< 0.001		
Ethylbenzene-mg/L		0007790-02			< 0.001		
p/m-Xylene-mg/L		0007790-02			< 0.001		
o-Xylene-mg/L		0007790-02			< 0.001		
MS Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Benzene-mg/L		0308191-01	0.002	0.1	0.091	89.%	
Toluene-mg/L		0308191-01	0	0.1	0.097	97.%	
Ethylbenzene-mg/L	-	0308191-01	0	0.1	0.096	96.%	
p/m-Xylene-mg/L		0308191-01	0	0.2	0.195	97.5%	
o-Xylene-mg/L		0308191-01	0	0.1	0.098	98.%	
MSD Result	WATER Recovery WATER	LAB-1D # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Benzene-mg/L		0308191-01	0.002	0.1	0.092	90.%	1.1%
Toluene-mg/L		0308191-01	0	0.1	0.099	99.%	2.%
Ethylbenzene-mg/L		0308191-01	·* 0	0.1	0.098	98.%	2.1%
p/m-Xylene-mg/L		0308191-01	0	0.2	0.201	100.5%	3.%
o-Xylene-mg/L		0308191-01	0	0.1	0.100	100.%	2.%
SRM Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Benzene-mg/L		0007790-05		0.1	0.104	104.%	
Toluene-mg/L		0007790-05		0.1	0.090	90.%	
Ethylbenzene-mg/L		0007790-05		0.1	0.086	86.%	
p/m-Xylene-mg/L		0007790-05		0.2	0.172	86.%	
o-Xylene-mg/L		0007790-05		0.1	0.085	85.%	

Eth

.

QUALITY CONTROL REPORT

Test Parameters

Order#: G0308190

BLANK Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Chloride-mg/L		0007757-01			<5.00		
MS Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Chloride-mg/L		0308190-01	74.4	200	273	99.3%	
MSD Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Chloride-mg/L		0308190-01	74.4	200	269	97.3%	1.5%
SRM Result	WATER Recovery WATER	LAB-ID # Pct (%)	Concentr. RPD	Sample	Concentr	Spike	QC Test
Chloride-mg/L		0007757-04		5000	4960	99.2%	

and in the

ENVIRONMENTAL LAB OF TEXAS I, LTD.

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

REMEDIACON P.O. BOX 302

Order#: G0308190

Project: Duke Energy Field Services

EVERGREEN, CO 80437

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
MW-GG	0308190-01	WATER	12/15/2003	12/16/2003
MW-AA	0308190-02	WATER	12/15/2003	12/16/2003
MW-II	0308190-03	WATER	12/15/2003	12/16/2003
MW-HH	0308190-04	WATER	12/15/2003	12/16/2003
MW-BB	0308190-05	WATER	12/15/2003	12/16/2003
MW-JJ	0308190-06	WATER	12/15/2003	12/16/2003
MW-EE	0308190-07	WATER	12/15/2003	12/16/2003
MW-CC	0308190-08	WATER	12/15/2003	12/16/2003
MW-N	0308190-09	WATER	12/15/2003	12/16/2003

Surrogate recoveries on the 8021B BTEX are outside control limits due to matrix interference. (G0308190-02,03,07,08)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

1

Date:

Environmental Lab of Texas I, Ltd.

Page

ANALYTICAL REPORT

Prepared for:

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Project: Duke Energy Field Services

PO#:

Order#: G0308176

Report Date: 12/22/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308176 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

<u>Lab ID:</u>	Sample :	<u>Matrix:</u>		Date / Time <u>Collected</u>		Date / Time <u>Received</u>	Container	Preservativ
0308176-01	MW-7 (032111010)	WATER		12/11/03 10:10		12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Te	mp:	-2.0 C		
0308176-02	MW-D (0312111020)	WATER		12/11/03 10:20		12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Te	ուն։	-2.0 C		
308176-03	MW-E (0312111050)	WATER		12/11/03 10:50		12/15/03 8:00	See COC	See COC
La	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No		որ։			
0308176-04	MW-F (0312111130)	WATER		12/11/03 11:30		12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Te	mp:	-2.0 C		
0308176-05	MW-G (0312111210)	WATER		12/11/03 12:10		12/15/03 8:00	See COC	See COC
<u>La</u> ,	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Te	mp:	-2.0 C		
0308176-06	MW-A (0312111315)	WATER		12/11/03 13:15		12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Te	mp:	-2.0 C		
0308176-07	MW-B (0312111300)	WATER		12/11/03 13:00		12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u>	Rejected:	No		աթ։			

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308176 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	<u>Sample :</u> 8021B/5030 BTEX Chloride	<u>Matrix:</u>		Date / Time Collected	Date / Time <u>Received</u>	Container	_Preservative
0308176-08 <u>La</u>	MW-C (0312111330) <u>ab Testing:</u> 8021B/5030 BTEX	WATER Rejected:	No	12/11/03 13:30 Tem	12/15/03 8:00 p: -2.0 C	See COC	See COC
0308176-09 <u>La</u>	Chloride MW-H (0312111400) <u>ab Testing:</u> 8021B/5030 BTEX Chloride	WATER Rejected:	No	12/11/03 14:00 Tem	12/15/03 8:00 p: -2.0 C	See COC	See COC
0308176-10 <u>La</u>	MW-I (0312111425) <u>ab Testing:</u> 8021B/5030 BTEX Chloride	WATER Rejected:	No	12/11/03 14:25 'Fem	12/15/03 8:00 p: -2.0 C	See COC	See COC
0308176-11 <u>La</u>	MW-J (0312111450) <u>ab Testing:</u> 8021B/5030 BTEX Chloride	WATER Rejected:	No	12/11/03 14:50 Tem	12/15/03 8:00 p: -2.0 C	See COC	See COC
0308176-12 <u>La</u>	MW-K (0312111535) <u>ab Testing:</u> 8021B/5030 BTEX Chloride	WATER Rejected:	No	12/11/03 15:35 Tem	12/15/03 8:00 p: -2.0 C	See COC	See COC
0308176-13 <u>L</u> a	MW-S (0312111610) <u>ab Testing:</u> 8021B/5030 BTEX Chloride	WATER Rejected:	No	12/11/03 16:10 Tem	12/15/03 8:00 p: -2.0 C	See COC	See COC

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308176 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample :	<u>Matrix:</u>		Date / Time <u>Collected</u>	Date / Time <u>Received</u>	Container	Preservative
0308176-14	MW-R (0312111630)	WATER		12/11/03 16:30	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	р: -2.0 C		
0308176-15	MW-Q (0312111700)	WATER		12/11/03 17:00	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p: -2.0 C		
0308176-16	Trip Blank	WATER		12/12/03	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX	Rejected:	No	Tem	p: -2.0 C		
0308176-17	MW-P (0312120745)	WATER		12/12/03 7:45	12/15/03 8:00	See COC	See COC
La	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p: -2.0 C		
0308176-18	MW-T (0312120820)	WATER		12/12/03 8:20	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Tem	p: -2.0 C		
0308176-19	MW-13 (0312120850)	WATER		12/12/03 8:50	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Теп	p: -2.0 C	•	
0308176-20	MW-O (0312120905)	WATER		12/12/03 9:05	12/15/03 8:00	See COC	See COC
La	<u>b Testing:</u> 8021B/5030 BTEX	Rejected:	No	Tem	p: -2.0 C		

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308176 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	<u>Sample :</u> Chloride	<u>Matrix:</u>		Date / Time <u>Collected</u>	Date / Time <u>Received</u>	Container	Preservativ
0308176-21	MW-MM (0312120945)	WATER		12/12/03 9:45	12/15/03 8:00	See COC	See COC
<u>Li</u>	ab Testing: 8021B/5030 BTEX Chloride	Rejected:	No	Te	np: -2.0 C		
0308176-22	MW-DD (0312121015)	WATER		12/12/03 10:15	12/15/03 8:00	See COC	See COC
<u>L</u>	<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No		np: -2.0 C		
0308176-23	MW-14 (0312121030)	WATER		12/12/03 10:30	12/15/03 8:00	See COC	See COC
<u>L(</u>	nb Testing: 8021B/5030 BTEX Chloride	Rejected:	No	Tei	np: -2.0 C		
0308176-24	MW-NN (0312121050)	WATER		12/12/03 10:50	12/15/03 8:00	See COC	See COC
<u>L</u> (<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Ter	np: -2.0 C		
0308176-25	MW-LL (0312121120)	WATER		12/12/03 11:20	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Ter	np: -2.0 C		
0308176-26	MW-OO (0312121155)	WATER		12/12/03 11:55	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejccted:	No	Ter	np: -2.0 C		

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132

Order#: G0308176 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

<u>Lab ID:</u> 0308176-27	<u>Sample : _</u> MW-KK (0312121235)	<u>Matrix:</u> water		Date / Time <u>Collected</u> 12/12/03 12:35	Date / Time <u>Received</u> 12/15/03 8:00	Container See COC	Preservative See COC
<u>La</u>	<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Temp			
0308176-28	MW-M (0312121350)	WATER		12/12/03 13:50	12/15/03 8:00	See COC	See COC
<u>La</u>	<u>ab Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Тетр	e: -2.0 C		
308176-29	MW-FF (0312121430)	WATER		12/12/03 14:30	12/15/03 8:00	See COC	See COC
<u>La</u>	t <u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Temp	»; -2.0 С		
0308176-30	MW-L (0312121455)	WATER		12/12/03 14:55	12/15/03 8:00	See COC	See COC
La	<u>b Testing:</u> 8021B/5030 BTEX Chloride	Rejected:	No	Temp	: -2.0 C		
0308176-31	Duplicate "C" (0312122000)	WATER		12/12/03 20:00	12/15/03 8:00	See COC	Sec COC
<u>La</u>	<i>b Testing:</i> 8021B/5030 BTEX	Rejected:	No	Temp	: -2.0 C		

ANALYTICAL REPORT

MICHAEL STEWART					
REMEDIACON					
P.O. BOX 302					
EVERGREEN, CO 80437					

Order#:

G0308176 **Project:** Project Name: **Duke Energy Field Services** Location: **Eldridge Ranch**

Lab ID:

0308176-01

Sample ID:

MW-7 (032111010)

		8021B	2/5030 BTE	X		
Method <u>Blank</u>	Date <u>Prepared</u>	Date Analyzed	Sample <u>Amount</u>	Dilution <u>Factor</u>	<u>Analyst</u>	Method
0007756-02		12/17/03	1	I	СК	8021B

Parameter	Result mg/L	RL
Benzene	<0.001	0.001
Toluene	<0.001	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylene	<0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	84%	80	120
Bromofluorobenzene	83%	80	120

0308176-02 Sample ID: MW-D (0312111020)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	<u>Analyzed</u>	Amount	Factor	Analyst	Method
0007756-02		12/17/03	1	1	СК	8021B

Parameter	Result mg/L	RL
Benzene	0.008	0.001
Toluene	0.002	0.001
Ethylbenzene	0.004	0.001
p/m-Xylene	0.003	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered		QC Limits (%)	
aaa-Toluene	169%	80	120	
Bromofluorobenzene	90%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176	
REMEDIACON	Project:		
P.O. BOX 302	Project Name:	Duke Energy Field Services	
EVERGREEN, CO 80437	Location:	Eldridge Ranch	

Lab ID:

Sample ID:

0308176-03 MW-E (0312111050)

Date	Date	Sample
<u>Prepared</u>	<u>Analyzed</u>	Amount
	12/17/03	1

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007756-02		12/17/03	1	1	СК	8021B

Parameter	Result mg/L	RL
Benzene	0.847	0.001
Toluene	0.012	0.001
Ethylbenzene	0.003	0.001
p/m-Xylene	0.005	0.001
o-Xylenc	0.002	0.001

Surrogates	% Recovered	QC Limits (%)	
aaa-Toluene	129%	80	120
Bromofluorobenzene	107%	80	120

Lab ID:	0308176-04	
Sample ID:	MW-F (0312111130)	

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	<u>Analyzed</u>	Amount	Factor	<u>Analyst</u>	Method
0007756-02		12/17/03	1	1	СК	8021B

Parameter	Result mg/L	RL
Benzene	<0.001	0.001
Toluene	<0.001	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylene	<0.001	0.001
o-Xylenc	<0.001	0.001

Surrogates	% Recovered		mits (%)
aaa-Toluene	93%	80	120
Bromofluorobenzene	92%	80	120

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

Order#:

Project:

Location:

Project Name:

G0308176

Eldridge Ranch

Duke Energy Field Services

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

0308176-05

Lab ID:

Sample ID:

MW-G (0312111210)

8021B/5030 BTEX						
Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
0007756-02		12/17/03	1	1	CK	8021B

Parameter	Result mg/L	RL
Benzene	< 0.001	0.001
Toluene	<0.001	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylene	<0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	96%	80	120	
Bromofluorobenzene	99%	80	120	

Lab ID:

Sample ID:

0308176-06 MW-A (0312111315)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
<u>Blank</u>	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007756-02		12/17/03	. 1	5	СК	8021B

Parameter	Result mg/L	RL
Benzene	2.11	0.005
Toluene	1.80	0.005
Ethylbenzene	0.218	0.005
p/m-Xylene	0.621	0.005
o-Xylene	0.141	0.005

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	555%	80	120
Bromofluorobenzene	107%	80	120

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ANALYTICAL REPORT

	MICHAEL STEWART REMEDIACON	Order#: Project:	G0308176
	P.O. BOX 302	Project Name:	Duke Energy Field Services
•	EVERGREEN, CO 80437	Location:	Eldridge Ranch

0308176-07

Lab ID: Sample ID:

MW-B (0312111300)

8021B/5030 BTEX

	Method	Date	Date	Sample	Dilution		
	<u>Blank</u>	Prepared	Analyzed	Amount	Factor	Analyst	Method
0	007756-02		12/17/03	1	1	CK	8021B

Parameter	Result mg/L	RL
Benzene	0.321	0.001
Toluene	0.221	0.001
Ethylbenzene	0.099	0.001
p/m-Xylene	0.221	0.001
o-Xylene	0.050	0.001

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	728%	80	120	
Bromofluorobenzene	106%	80	120	

Lab ID:		0308176-08
Sample ID:	·	MW-C (0312111330)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
<u>Blank</u>	Prepared	<u>Analyzed</u>	Amount	Factor	Analyst	Method
0007756-02		12/17/03	1	1	СК	8021B

Parameter	Result mg/L	RL.
Benzene	0.027	0.001
Toluene	0.019	0.001
Ethylbenzene	0.004	0.001
p/m-Xylene	0.005	0.001
o-Xylene	0.001	0.001

Surrogates	% Recovered	QC Limits (%)	
aaa-Toluene	120%	80	120
Bromofluorobenzene	94%	80	120

ANALYTICAL REPORT

MICHAEL STEWART			
REMEDIACON			
P.O. BOX 302			
EVERGREEN, CO 80437			

G0308176 Order#: Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

0308176-09

Lab ID: Sample ID:

MW-H (0312111400)

8021B/5030 BTEX Comoto

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
0007756-02		12/17/03	1	· 1	СК	8021B

Parameter	Result mg/L	RL
Benzene	0.066	0.001
Toluene	<0.001	0.001
Ethylhenzene	<0.001	0.001
p/m-Xylene	<0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Limits (%)	
aaa-Toluene	95%	80	120
Bromofluorobenzene	88%	80	120

Lab ID:	0308176-10
Sample ID:	MW-I (0312111425)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007756-02		12/17/03	1	1	СК	8021B

Parameter	Result mg/L	RL
Benzenc	0.522	0.001
Toluene	0.004	0.001
Ethylbenzene	0.001	0.001
p/m-Xylenc	0.003	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	107%	80	120	
Bromofluorobenzene	99%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON	Order#: Project:	G0308176
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location;	Eldridge Ranch

Lab ID: 0308176-11 Sample ID: MW-J (0312111450)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007756-02		12/17/03	1	1	СK	8021B

Parameter	Result mg/L	RL
Benzene	< 0.001	0.001
Toluene	<0.001	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylcne	<0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	97%	80	120
Bromofluorobenzene	99%	80	120

Lab ID:	0308176-12
Sample ID:	MW-K (0312111535)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor .	Analyst	Method
0007756-02		12/17/03	1	5	СК	8021 B

Parameter	Result mg/L	RL
Benzene	2.33	0.005
Toluene	<0.005	0.005
Ethylbenzene	<0.005	0.005
p/m-Xylene	< 0.005	0.005
o-Xylene	<0.005	0.005

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	110%	80	120
Bromofluorobenzene	89%	80	120

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Method

8021B

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch
		· · · · · · · · · · · · · · · · · · ·

Lab ID:

Sample ID:

0308176-13

Method Blank

0007756-02

MW-S (0312111610)

8021B/5030 BTEX				
Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst
	12/17/03	1	1	СК

Parameter	Result mg/L	RL
Benzene	0.002	0.001
Toluene	<0.001	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylene	0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	116%	80	120
Bromofluorobenzene	91%	80	120

Lab ID:	0308176-14
Sample ID:	MW-R (0312111630)

Method

	8021B	2/5030 BTE	X	
Date	Date	Sample	Dilution	
Prepared	Analyzed	Amount	Factor	Ana

Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007756-02		12/17/03	1	1	CK	8021B

Parameter	Result mg/L	RL
Benzene	0.004	0.001
Toluene	0.003	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylene	0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	98%	80	120
Bromofluorobenzene	93%	80	120

Lab ID:

Sample ID:

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

		8021B	/5030 BTE.	X		
Method Blank	Date <u>Prepared</u>	Date Analyzed	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
0007756-02		12/17/03	1	10	СК	8021B

Parameter	Result mg/L	RL
Benzene	7.44	0.010
Toluenc	0.045	0.010
Ethylbenzene	0.015	0.010
p/m-Xylene	0.019	0.010
o-Xylene	<0.010	0.010

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	117%	80	120
Bromofluorobenzene	96%	80	120

Lab ID:	0308176-16
Sample ID:	Trip Blank

ink

0308176-15

MW-Q (0312111700)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007783-02		12/18/03	1	1	СК	8021B

Parameter	Result mg/L	RL.
Benzene	<0.001	0.001
Toluene	<0.001	0.001
Ethylbenzene	< 0.001	0.001
p/m-Xylene	<0.001	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	94%	80	120
Bromofluorobenzene	91%	80	120

Lab ID:

Sample ID:

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

0308176-17 MW-P (0312120745)

> 8021B/5030 BTEX Method Date Date Sample Dilution Prepared Analyzed Amount <u>Factor</u> Analyst Method Blank 12/18/03 1 10 СК 8021B 0007783-02

Parameter	Result mg/L	RL
Benzene	10.2	0.010
Toluene	0.023	0.010
Ethylbenzene	0.036	0.010
p/m-Xylene	0.018	0.010
o-Xylene	< 0.010	0.010

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	103%	80	120	
Bromofluorobenzene	106%	80	120	

Lab ID:	0308176-18
Sample ID:	MW-T (0312120820)

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007783-02		12/18/03	1 .	10	СК	8021B

Parameter	Result mg/L	RL
Benzene	4.30	0.010
Toluene	0,026	0.010
Ethylbenzene	0.011	0.010
p/m-Xylene	0.023	0.010
o-Xylene	< 0.010	0.010

Surrogates	% Recovered	QC Limits (%)		
aaa-Toiuene	118%	80	120	
Bromofluorobenzene	92%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Lab ID:

Sample ID:

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

MW-13 (0312120850)

0308176-19

8021B/5030 BTEX Date Sample Method Date Dilution Prepared Analyzed Amount Factor Analyst Method <u>Blank</u> 12/18/03 20 8021B 1 СК 0007783-02

Parameter	Result mg/L	RL
Benzene	16.1	0.020
Toluene	0,582	0.020
Ethylbenzenc	0.139	0.020
p/m-Xylene	0.185	0.020
o-Xylene	0.041	0.020

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	133%	80	120	
Bromofluorobenzene	98%	80	120	

Lab ID:	0308176-20
Sample ID:	MW-O (0312120905)

		8021B	8/5030 BTE2	X		
Method	Date	Date	Sample	Dilution		
Blank	<u>Prepared</u>	Analyzed	Amount	Factor	Analyst	Method
0007783-02		12/18/03	1	50	СК	8021B

Parameter	Result mg/L	RL	
Benzene	30.4	0.050	
Toluene	0.129	0.050	
Ethylbenzene	0.062	0.050	
p/m-Xylene	< 0.050	0.050	
o-Xylene	< 0.050	0.050	

Surrogates	% Recovered	QC Limits (
aaa-Toluene	98%	80	120
Bromofluorobenzene	86%	80	120

Page 10 of 16

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

1

ANALYTICAL REPORT

MICHAEL STEWART O	rder#: G0308176
REMEDIACON Pr	roject:
P.O. BOX 302 Pr	roject Name: Duke Energy Field Services
EVERGREEN, CO 80437 Lo	ocation: Eldridge Ranch

0308176-21

Lab ID:

Sample 1D:

MW-MM (0312120945)

8021B/5030 BTEX						
Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
0007783-02		12/18/03	1	1	СК	8021B

Parameter	Result mg/L	RL
Benzene	0.237	0.001
Tolucne	0.006	0.001
Ethylbenzene	0.007	0.001
p/m-Xylene	0.009	0.001
o-Xylene	<0.001	0.001

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	145%	80	120	
Bromofluorobenzene	85%	80	120	

Lab ID:	0308176-22		
Sample ID:	MW-DD (0312121015)		

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007783-02		12/18/03	1	5	СК	8021B

Parameter	Result mg/L	RL
Benzene	0.772	0.005
Toluene	0.007	0.005
Ethylbenzene	0.037	0.005
p/m-Xylene	0.059	0.005
o-Xylene	< 0.005	0.005

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	131%	80	120	
Bromofluorobenzene	89%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

: MW-14 (0312121030)

Lab ID: Sample ID: 0308176-23

Method

Date

11111-14 (0.

8021B/5030 BTEX Date Sample

Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
0007783-02		12/18/03	1	1	СК	8021B

Dilution

Parameter	Result mg/L	RL
Benzene	0.398	0.001
Toluene	0.002	0.001
Ethylbenzene	<0.001	0.001
p/m-Xylene	0.001	0.001
o-Xylene	< 0.001	0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	118%	80	120
Bromofluorobenzene	98%	80	120

Lab ID:	0308176-24	
Sample ID:	MW-NN (0312121050)	

8021B/5030 BTEX Sample Method Date Date Dilution Factor Blank Prepared Analyzed Amount Analyst Method 12/18/03 1 25 CK 8021B 0007783-02

Parameter	Result mg/L	RL
Benzene	31.5	0.025
Toluene	0.043	0.025
Ethylbenzene	0.121	0:025
p/m-Xylene	0.028	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	95%	80	120
Bromofluorobenzene	89%	80	120

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON	Order#: Proiect:	G0308176
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

0308176-25 D: MW-LL (0312121120)

Lab ID: Sample ID:

120)

8021B/5030 BTEX						
Metbod Blank	Date Prepared	Date Analyzed	Sample Amount	Dilution Factor	Analyst	Method
DIARK	Trepared	<u>Anny bea</u>	<u>Anno ann</u>	<u>Actor</u>	111111.00	
0007783-02		12/18/03	1	20	CK	8021B

Parameter	Result mg/L	RL
Benzene	13.7	0.020
Toluene	0.216	0.020
Ethylbenzene	0.124	0.020
p/m-Xylene	0.172	0.020
o-Xylene	< 0.020	0.020

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	110%	80	120
Bromofluorobenzene	91%	80	120

Lab ID:	0308176-26	
Sample ID:	MW-00 (03	

MW-00 (0312121155)

8021B/5030 BTEX						
Method	Date	Date	Sample	Dilution		
<u>Blank</u>	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
0007783-02		12/18/03	I	50	СК	8021B

Parameter	Result mg/L	RL
Benzene	31.5	0.050
Toluene	5.41	0.050
Ethylbenzene	0.209	0.050
p/m-Xylene	0.368	0.050
o-Xylene	0.087	0.050

Surrogates	% Recovered	QC Limits (%)		
aaa-Toluene	120%	80	120	
Bromofluorobenzene	95%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

MW-KK (0312121235)

0308176-27

8021B/5030 BTEX						
Method <u>Blank</u> 0007783-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/18/03	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8021B

Parameter	Result mg/L	RL
Benzene	0.263	0.001
Toluene	0.115	0.001
Ethylbenzene	0.006	0.001
p/m-Xylene	0,010	0.001
o-Xylene	0.003	0.001

Surrogates	% Recovered	QC Limits (%		
aaa-Toluene	158%	80	.120	
Bromofluorobenzene	97%	80	120	

Lab ID:
Sample ID:

Lab ID:

Sample ID:

0308176-28 MW-M (0312121350)

	8021B/5030 BTEX					
Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007783-02		12/18/03	1	5	СК	8021B

Parameter	Result mg/L	RL
Benzene	1.67	0.005
Toluene	0.108	0.005
Ethylbenzene	0.030	0.005
p/m-Xylene	0.019	0.005
o-Xylene	0.006	0.005

Surrogates	% Recovered	QC Li	mits (%
aaa-Toluene	132%	80	120
Bromofluorobenzene	94%	80	120

ANALYTICAL REPORT

	ICHAEL STEWART EMEDIACON	Order#: Project:	G0308176
P.	O. BOX 302	Project Name:	Duke Energy Field Services
E	VERGREEN, CO 80437	Location:	Eldridge Ranch

0308176-29 MIN EE (031313

Lab ID: Sample ID:

MW-FF (0312121430)

8021B/5030 BTEX

		**==+				
Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0007783-02		12/18/03	1	10	CK	8021B

Parameter	Result mg/L	RL
Benzene	3.22	0.010
Toluene	< 0.010	0.010
Ethylbenzene	< 0.010	0.010
p/m-Xylene	< 0.010	0.010
o-Xylene	< 0.010	0.010

Surrogates	% Recovered	QC Limits (%)	
aaa-Toluene	93%	80	120
Bromofluorobenzene	88%	80	120

Lab ID:	0308176-30
Sample ID:	MW-L (0312121455)

(r_{1}, \ldots, r_{n})		8021B	/5030 BTE.	X		
Method <u>Blank</u> 0007783-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/18/03	Sampl e <u>Amount</u> 1	Dilution <u>Factor</u> 20	<u>Analyst</u> CK	<u>Method</u> 8021B

Parameter	Result mg/L	RL.	
Benzene	21.4	0.020	
Toluene	< 0.020	0.020	
Ethylbenzene	0.130	0.020	
p/m-Xylene	< 0.020	0.020	
o-Xylene	< 0.020	0.020	

Surrogates	% Recovered	QC Limits (
aaa-Toluene	113%	80	120
Bromofluorobenzene	94%	80	120

ENVIRONMENTAL LAB OF TEXAS I, LTD.

_...

ANALYTICAL REPORT

MICHAEL STEWART	Order#:	G0308176
REMEDIACON	Project:	
P.O. BOX 302	Project Name:	Duke Energy Field Services
EVERGREEN, CO 80437	Location:	Eldridge Ranch

0308176-31

00001/0-01

D: Duplicate "C" (0312122000)

		8021B	/5030 BTE	X		
Method Blank	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution Factor	Analyst	Method
0007783-02		12/18/03	1	25	СК	8021B

Parameter	Result mg/L	RL
Benzene	25.4	0.025
Toluene	<0.025	0.025
Ethylbenzene	0.166	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	113%	80	120
Bromofluorobenzene	95%	80	120

al andk 1, 12-22-03 Approval: Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ANALYTICAL REPORT

MICHAEL STI REMEDIACON P.O. BOX 302 EVERGREEN,	N		Order# Project Project Locatio	: Name:	G0308176 Duke Energ Eldridge Ran	y Field Services Ich		
Lab ID: Sampl e ID;	0308176-01 MW-7 (032111010)							
Test Paran Parameter		Result	Units	Dilutio Facto		Method	Date Analyzed	Analyst
Chloride		93.1	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-02 MW-D (0312111020)							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilutio <u>Facto</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride		68.0	mg/I,	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-03 MW-E (0312111050)							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilutio <u>Facto</u>	_	Method	Date Analyzed	Analyst
Chloride		70.9	mg/L	I	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-04 MW-F (0312111130)							
Test Paran Parameter	neters	Result	Units	Dilutio Facto		Method	Date Analyzed	Analyst
Chloride		46.5	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-05 MW-G (0312111210)					- <u></u> , - <u></u> , "		
Test Paran Parameter	neters	Result	Units	Dilutio <u>Factor</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride		46.5	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-06 MW-A (0312111315)							
Test Paran	neters	n !·	11 **	Dilutio			Date	
Parameter Chloride		<u>Result</u> 73.8	<u>Units</u> mg/L	Factor 1	<u>r RL</u> 5.00	<u>Method</u> 9253	Analyzed 12/15/03	<u>Analyst</u> SB

RL = Reporting Limit N/A = Not Applicable

ANALYTICAL REPORT

MICHAEL STI REMEDIACON P.O. BOX 302 EVERGREEN,	Ŷ		Order Projec Projec Locati	t: t Name:	G0308176 Duke Energ Eldridge Ra	y Field Services ncb		
Lab ID: Sample ID:	0308176-07 MW-B (0312111300)							
Test Paran Parameter	neters	Result	Units	Dilutior <u>Factor</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride		70.9	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-08 MW-C (0312111330)							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>		Method	Date <u>Analyzed</u>	<u>Analyst</u>
Chloride		82.7	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-09 MW-H (0312111400)							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Chloride		60.9	mg/L	l 	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-10 MW-1 (0312111425)							
Test Param Parameter	neters	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analyst
Chloride		59.1	mg/L	l	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-11 MW-J (0312111450)							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>	RL	Method	Date Analyzed	<u>Analyst</u>
Chloride		62.0	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID;	0308176-12 MW-K (0312111535)							
Test Paran Parameter	ieters	Result	Units_	Dilution <u>Factor</u>	RL	Method	Date Analyzed	Analyst
Chloride		59.1	mg/L	1	5.00	9253	12/15/03	SB
· <u> </u>								

RL = Reporting Limit N/A = Not Applicable Page 2 of 5

		ONMEN Analyt				LIAAD		
MICHAEL ST REMEDIACO P.O. BOX 302 EVERGREEN	N		Order/ Projec Projec Locatio	t: t Name:	G0308176 Duke Energ Eldridge Rat	y Field Services 1ch		
Lab ID: Sample ID:	0308176-13 MW-S (0312111610)							
Test Parai Parameter	meters	Result	Units	Dilution Factor		Method	Date <u>Analyzed</u>	Analyst
Chloride		59.1	mg/L	ſ	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-14 MW-R (0312111630)	a) haar nameen akkeen (1999) ja 1999 (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (19						
Test Paran Parameter	meters	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride		46.5	mg/L]	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-15 MW-Q (0312111700)			ar in				
Test Paran Parameter	meters	Result	Units	Dilution <u>Factor</u>	RL	Method	Date Analyzed	Analyst
Chloride		65.0	mg/L	I	5.00	9253	12/15/03	ŞB
Lab ID: Sample ID:	0308176-17 MW-P (0312120745)					II II		
Test Paran Parameter	neters	Result 68.0	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u> 5.00	Method	Date Analyzed	Analyst
Chloride		08.0	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-18 MW-T (0312120820)							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		65.0	mg/L	1	5.00	9253	12/15/03	\$B
Lab ID: Sample ID:	0308176-19 MW-13 (0312120850)					••		
Test Paran Parameter	neters	Result	<u>Units</u>	Dilution <u>Factor</u>	ТQI	Mathad	Date Analyzed	Anabust
Chloride		73.8	mg/L	<u>ractor</u> 1	<u>RL</u> 5.00	<u>Method</u> 9253	<u>Analyzed</u> 12/15/03	<u>Analyst</u> SB

RL = Reporting Limit N/A = Not Applicable Page 3 of 5

	EIN VIRU					BAAD	ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT									
MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437		Order#: G(Project: Project Name: D		G0308176	y Field Services ach											
Lab ID: Sample ID:	0308176-20 MW-O (0312120905)															
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analys								
Chloride		68.0	mg/L	1	5.00	9253	12/15/03	SB								
Lab ID: Sample ID:	0308176-21 MW-MM (0312120945)															
Test Paran Parameter		Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date <u>Analyzed</u>	Analys								
Chloride		51.0	mg/L	1	5.00	9253	12/15/03	SB								
Lab ID: Sample ID:	0308176-22 MW-DD (0312121015)															
Test Paran Parameter	neters	Result	Units	Dilution Factor		Method	Date Analyzed	Analys								
Chloride		48.7	mg/L	1	5.00	9253	12/15/03	SB								
Lab ID: Sample ID:	0308176-23 MW-14 (0312121030)															
Test Paran Parameter	neters	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analys								
Chloride		46.5	mg/L	1	5.00	9253	12/15/03	SB								
Lab ID: Sample ID:	0308176-24 MW-NN (0312121050)	•					······································									
Test Paran _Parameter	neters	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analysi								
Chloride		70.9	mg/L	1	<u>KL</u> 5.00	<u>9253</u>	12/15/03	<u>Analyst</u> SB								
Lab ID: Sample ID:	0308176-25 MW-LL (0312121120)															
Test Paran Parameter	neters	Result	Units	Dilution Factor	<u>RL</u>	Method	Date Analyzed	Analyst								
Chloride		76.8	mg/L	l	5.00	9253	12/15/03	SB								

Page 4 of 5

ANALYTICAL REPORT

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437			Order Projec Projec Locati	t: t Name:	G0308176 Duke Enorgy Field Services Eldridge Ranch			
Lab ID: Sample ID;	0308176-26 MW-OO (0312121155)							
Test Paral Parameter	meters	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	<u>Analyst</u>
Chloride		68.0	mg/L	I	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-27 MW-KK (0312121235)	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
Test Para	meters	13 14	11-14-	Dilution		Mathad	Date	A na bust
Parameter Chloride		<u>Result</u> 111	Units mg/L	<u>Factor</u> l	<u>RL</u> 5.00	<u>Method</u> 9253	Analyzed_ 12/15/03	<u>Analyst</u> SB
Lab ID: Sample ID:	0308176-28 MW-M (0312121350)							
Test Parar Parameter	meters	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analyst
Chloride		186	mg/L	1	5.00	9253	12/15/03	SB
Lab ID: Sample ID:	0308176-29 MW-FF (0312121430)					<u></u>		
Test Paran	meters	Deculd	Taite	Dilution		B <i>T</i> = 41 = -3	Date	A
Parameter Chloride		<u>Result</u> 257	<u>Units</u> mg/L	Factor 1	<u>RL</u> 5.00	<u>Method</u> 9253	Analyzed 12/15/03	<u>Analyst</u> SB
Lab ID: Sample ID:	0308176-30 MW-L (0312121455)		\					·
<i>Test Paran</i> 	neters	Result	Linite	Dilution		B/lathad	Date	Auglant
Chloride		<u>Result</u> 102	<u>Units</u> mg/L	Factor 1	<u>RL</u> 5.00	<u>Method</u> 9253	Analyzed 12/15/03	<u>Analyst</u> SB
				Approval Raland K. Celey D. 1	. Tuttle, Lab I	and LJ Director, QA Offic Tech. Director		- <u>22-03</u> Pate

Raland K. Tuttle, Lab Director, QA Officer Celey D. Kcene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Page 5 of 5

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0308176

BLANK	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0007756-02			<0.001		
Benzene-mg/L		0007783-02			<0.001		
Toluene-mg/L		0007756-02			<0.001	<u>+</u>	·· ··-
Toluene-mg/L		0007783-02			<0.001		· · · · · · · · · · · · · · · · · · ·
Ethylbenzene-mg/L		0007756-02			<0.001		- <u></u>
Ethylbenzene-mg/L		0007783-02			<0.001		
p/m-Xylene-mg/L		0007756-02			<0.001		
p/m-Xylene-mg/L	<u> </u>	0007783-02			<0.001		
o-Xylenc-mg/L	·······	0007756-02			<0.001	· · ·	
o-Xylene-mg/L		0007783-02		[<0.001		
CONTROL	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Rccovery	RPD
Benzene-mg/L		0007756-03		0.1	0.098	98.%	
Foluene-mg/L		0007756-03	·····	0.1	0.094	94.%	
Ethylbenzene-mg/L		0007756-03		0.1	0.093	93.%	
p/m-Xylene-mg/L		0007756-03		0.2	0.188	94.%	
o-Xylene-mg/L	······	0007756-03		0.1	0.093	93.%	
CONTROL D	UP WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Benzene-mg/L		0007756-04	······	0.1	0.098	98.%	0.%
Foluene-mg/L		0007756-04	<u></u>	0.1	0.094	94.%	0.%
Ethylbenzene-mg/L		0007756-04	· · · · · · · · · · · · · · · · · · ·	0.1	0.090	90.%	3.3%
/m-Xylene-mg/L		0007756-04		0.2	0.181	90.5%	3,8%
-Xylene-mg/L		0007756-04		0.1	0.089	89.%	4.4%
MS	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0308176-16	0	0.1	0.114	114.%	
foluene-mg/L		0308176-16	0	0.1	0.091	91.%	
Ethylbenzene-mg/L		0308176-16	0	0.1	0.087	87.%	
/m-Xylene-mg/L		0308176-16	0	0.2	0.165	82.5%	
-Xylene-mg/L		0308176-16	0	0,1	0.083	83.%	
MSD	WATER	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0308176-16	0	0.1	0.106	106.%	7.3%
oluene-mg/L	··· ··································	0308176-16	0	0.1	0.096	96.%	5.3%
Ethylbenzene-mg/L		0308176-16	0	0.1	0.091	91.%	4.5%
/m-Xylene-mg/L	······································	0308176-16	0	0.2	0.181	90.5%	9.2%
-Xylene-mg/L		0308176-16	0	0.1	0.086	86.%	3.6%
SRM	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0007756-05		0.1	0.102	102.%	

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0308176

SRM WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0007783-05		0.1	0.112	112.%	
Tolucne-mg/L	0007756-05		0.1	0.095	95.%	
Toluene-mg/L	0007783-05		0.1	0.097	97.%	
Ethylbenzene-mg/L	0007756-05		0.1	0.091	91.%	
Ethylbenzene-mg/L	0007783-05	·····	0.1	0.089	89.%	
p/m-Xylcne-mg/L	0007756-05		0.2	0.182	91.%	· · · · · · · · · · · · · · · · · · ·
p/m-Xylene-mg/L	0007783-05	-	0.2	0.177	88.5%	·····
o-Xylene-mg/L	0007756-05		0.1	0.090	90.%	
o-Xylene-mg/L	0007783-05		0.1	0.087	87.%	

QUALITY CONTROL REPORT

Test Parameters

Order#: G0308176

BLANK	WATER	LAB-1D#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L		0007731-01			<5.00		
Chloride-mg/L		0007732-01			<5.00		
Chloride-mg/L		0007733-01			<5.00		
MS	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L		0308160-01	106	250	354	99.2%	
Chloride-mg/L		0308176-03	70.9	200	266	97.5%	
Chloride-mg/L		0308176-24	70.9	200	269	99.%	
MSD	WATER	LAB-ID #	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L		0308160-01	106	250	350	97.6%	1.1%
Chloride-mg/L		0308176-03	70.9	200	269	99.%	1.1%
Chloride-mg/L		0308176-24	70.9	200	266	97.5%	1.1%
SRM	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L		0007731-04		5000	4960	99.2%	
Chloride-mg/L		0007732-04		5000	4960	99.2%	
Chloride-mg/L	,,	0007733-04	· ·	5000	4960	99.2%	

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Order#: G0308176

Project:

Duke Energy Field Services

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
MW-7 (032111010)	0308176-01	WATER	12/11/2003	12/15/2003
MW-D (0312111020	0308176-02	WATER	12/11/2003	12/15/2003
MW-E (0312111050	0308176-03	WATER	12/11/2003	12/15/2003
MW-F (0312111130	0308176-04	WATER	12/11/2003	12/15/2003
MW-G (0312111210	0308176-05	WATER	12/11/2003	12/15/2003
MW-A (0312111315	0308176-06	WATER	12/11/2003	12/15/2003
MW-B (0312111300	0308176-07	WATER	12/11/2003	12/15/2003
MW-C (0312111330	0308176-08	WATER	12/11/2003	12/15/2003
MW-H (0312111400	0308176-09	WATER	12/11/2003	12/15/2003
MW-I (0312111425)	0308176-10	WATER	12/11/2003	12/15/2003
MW-J (0312111450)	0308176-11	WATER	12/11/2003	12/15/2003
MW-K (0312111535	0308176-12	WATER	12/11/2003	12/15/2003
MW-S (0312111610	0308176-13	WATER	12/11/2003	12/15/2003
MW-R (0312111630	0308176-14	WATER	12/11/2003	12/15/2003
MW-Q (0312111700	0308176-15	WATER	12/11/2003	12/15/2003
Trip Blank	0308176-16	WATER	12/12/2003	12/15/2003
MW-P (0312120745	0308176-17	WATER	12/12/2003	12/15/2003
MW-T (0312120820	0308176-18	WATER	12/12/2003	12/15/2003
MW-13 (031212085	0308176-19	WATER	12/12/2003	12/15/2003
MW-O (0312120905	0308176-20	WATER	12/12/2003	12/15/2003
MW-MM (0312120	0308176-21	WATER	12/12/2003	12/15/2003
MW-DD (03121210	0308176-22	WATER	12/12/2003	12/15/2003
MW-14 (031212103	0308176-23	WATER	12/12/2003	12/15/2003
MW-NN (03121210	0308176-24	WATER	12/12/2003	12/15/2003
MW-LL (031212112	0308176-25	WATER	12/12/2003	12/15/2003
MW-OO (03121211	0308176-26	WATER	12/12/2003	12/15/2003
MW-KK (03121212	0308176-27	WATER	12/12/2003	12/15/2003
MW-M (031212135	0308176-28	WATER	12/12/2003	12/15/2003

p.31

1

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Order#: G0308176

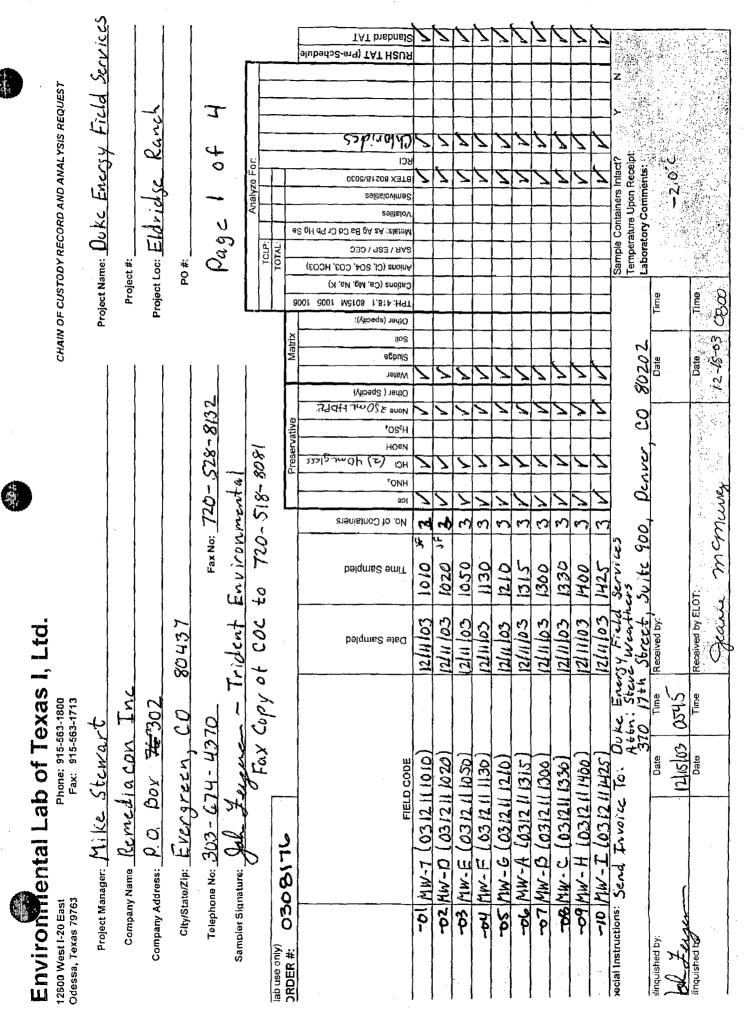
REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Project:

Duke Energy Field Services

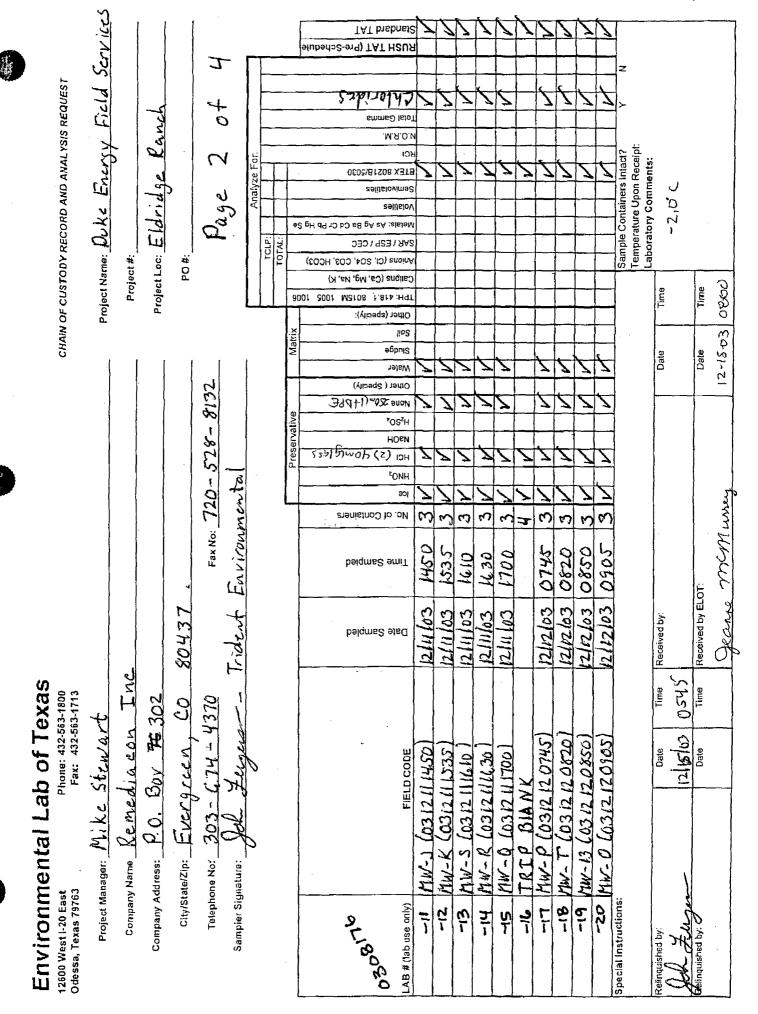
The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

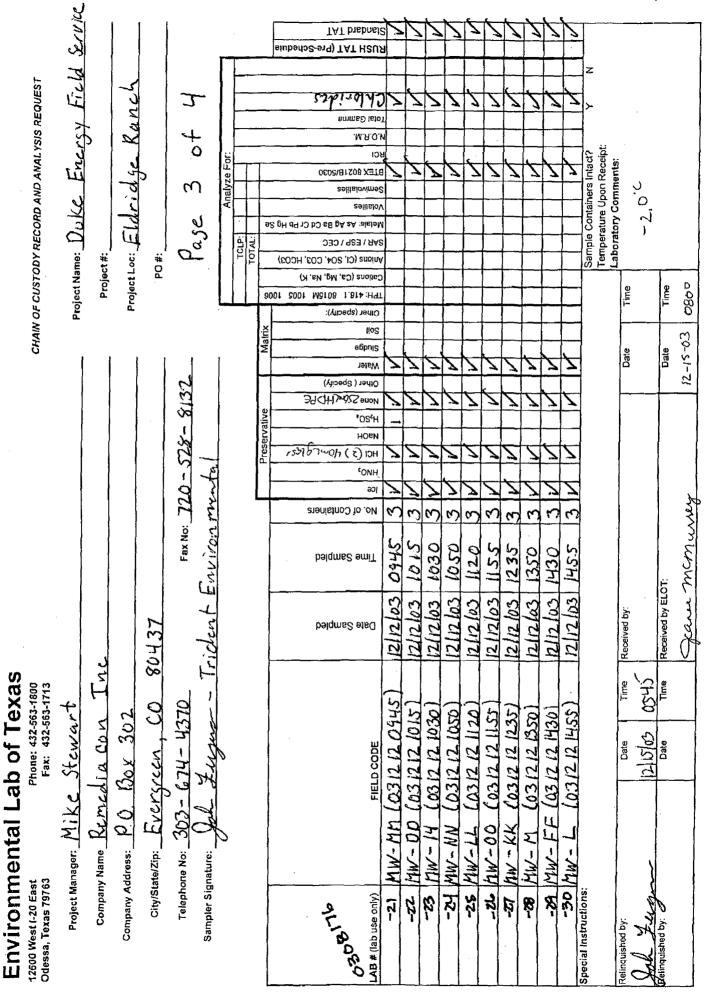
MW-FF (031212143	0308176-29	WATER	12/12/2003	12/15/2003
MW-L (0312121455	0308176-30	WATER	12/12/2003	12/15/2003
Duplicate "C" (0312	0308176-31	WATER	12/12/2003	12/15/2003

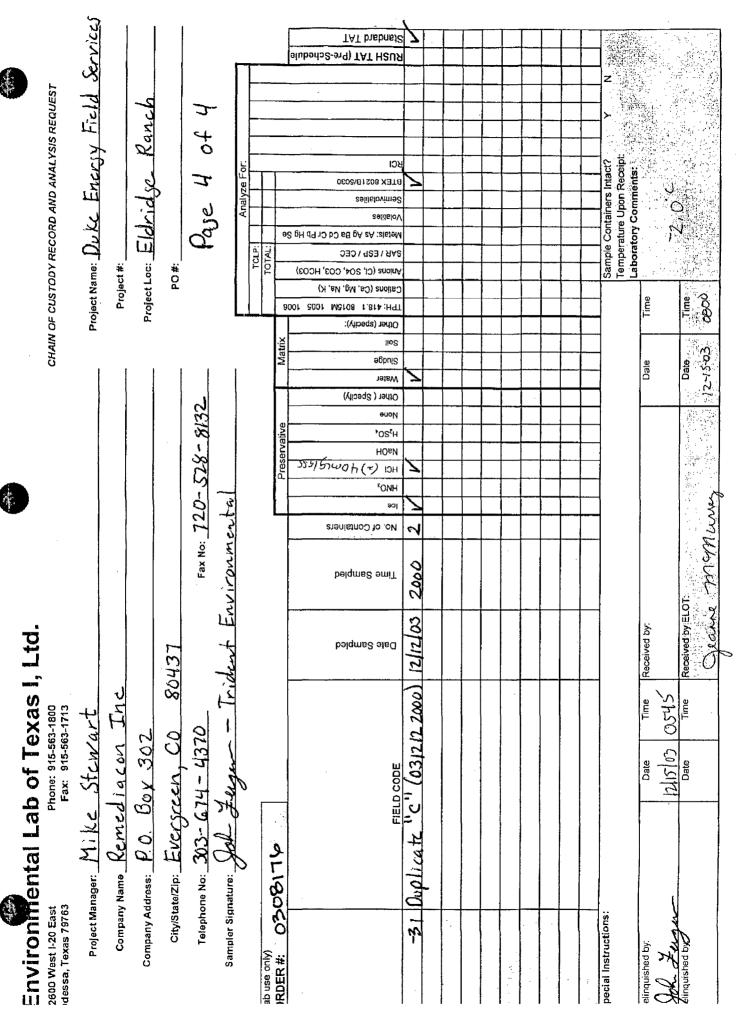

Surrogate recoveries on the 8021B BTEX is outside control limits due to matrix interference. (G0308176-02,03,06,07,19,21,22,27,28)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:


landka Environmental Lab of Texas I, Ltd.


Date: 12-22-03


Dec 22 03 06:23p

Dec 22 03 06:24p

Dec 22 03 06:25p

Analytical Report

Prepared for:

Michael Stewart REMEDIACON P.O. Box 302 Evergreen, CO 80437

Project: Duke Energy Field Services Project Number: None Given Lab Order Number: 4A15005

Report Date: 01/16/04

REMEDIACONProject: Duke Energy Field Services720-528-8132P.O. Box 302Project Number: None GivenReported:REMEDIACONProject Manager: Michael Stewart01/16/04 14:16

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
House Well (0401130917)	4A15005-01	Water	01/13/04 09:17	01/15/04 09:28
MW-16 (0401131020)	4A15005-02	Water	01/13/04 10:20	01/15/04 09:28
MW-17 (0401131110)	4A15005-03	Water	01/13/04 11:10	01/15/04 09:28
MW-24 (0401131155)	4A15005-04	Water	01/13/04 11:55	01/15/04 09:28
South Well (0401131325)	4A15005-05	Water	01/13/04 13:25	01/15/04 09:28
MW-2 (0401131440)	4A15005-06	Water	01/13/04 14:40	01/15/04 09:28
Duplicate (0401132000)	4A15005-07	Water	01/13/04 20:00	01/15/04 09:28
Trip Blank	4A15005-08	Water	01/13/04 00:00	01/15/04 09:28

Environmental Lab of Texas

1.25

Raland Tuttle, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

p.2

Page 1 of 8

Xylene (o)

REMEDIACON	Project: Duke Energy Field Services	720-528-8132
P.O. Box 302	Project Number: None Given	Reported:
REMEDIACON	Project Manager: Michael Stewart	01/16/04 10:36

Halogenated and Volatile Organics by EPA Method 8021B

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
House Well (0401130917) (4A15005	-01) Water Samp	pled: 01/13/04	09:17 F	leceived:	01/15/04 0	9:28			
Surrogate: a,a,a-Trifluorotoluene		114%	80-1	120	EA41608	01/15/04	01/15/04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	120	н	"	"	"	
Benzene	0.147	0.00100	mg/l,	w	n	n		×	
Toluene	ND	0.00100	"	н	"	81	н	U	
Ethylbenzene	J [0.000798]	0.00100	ħ	11	н	13		π	J
Xylene (p/m)	J [0.000680]	0.00100	D	Ħ	n	ю	+	••	J

ND MW-16 (0401131020) (4A15005-02) Water Sampled: 01/13/04 10:20 Received: 01/15/04 09:28

Surrogate: a, a, a-Trifluorotoluene	· (<u></u>	120 %	80-1.	20	EA41608	01/15/04	01/15/04	EPA 8021B	
		95.0 %	95.0 % 80-120		"	11		n	
Benzene	ND	0.00100	mg/L	v	n	U ·	u	"	
Toluene	ND	0.00100		н	11	۳	۳.	"	
Ethylbenzene	ND	0.00100	4	н	n	н	¥1	π	
Xylene (p/m)	ND	0.00100	ır .	п	11	n	n	N	
Xylene (o)	ND	0.00100	41	4	п	n	n	н	

0.00100

MW-17 (0401131110) (4A15005-03) Water Sampled: 01/13/04 11:10 Received: 01/15/04 09:28

Surrogate: a,a,a-Trifluorotoluene		113%	80-1	20	EA41608	01/15/04	01/15/04	EPA 8021B
Surrogate: 4-Bromofluorobenzene		92.5 %	80-1	20	<i>n</i>	"	"	"
Benzene	ND	0.00100	mg/L	н	Ħ		u	'n
Toluene	ND	0.00100	U	N.	и	Ð	R.	u
Ethylbenzene	ND	0.00100		14	t)	n	11	n
Xylene (p/m)	ND	0.00100	n	P	'n	u	n	*
Xylene (o)	ND	0.00100	Þ	11	u	17	n	v

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

· · · ·

1

REMEDIACON		Pro	oject: Du	ke Energy	Field Servi	ces		720-528-8132		
P.O. Box 302		Project Nur						Rep	orted:	
REMEDIACON		Project Man	ager: Mi	chael Stew	art			01/16/	04 10:36	
Haloger	nated an	d Volatile	Organ	nics by l	EPA Me	thod 802	21B			
Environmental Lab of Texas										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW-24 (0401131155) (4A15005-04) Water	Sampled:	: 01/13/04 11:	55 Rece	eived: 01/1	5/04 09:28					
Surrogate: a,a,a-Trifluorotoluene		112 %	80-	120	EA41608	01/15/04	01/15/04	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		86.5 %	80-	120	н.	11	n	и		
Benzene	ND	0.00100	mg/L	u	n	Ħ	14			
Toluene	ND	0.00100		"	u.	#	n	в		
Ethylbenzene	ND	0.00100	н	n	U	n	۳	U		
Xylene (p/m)	ND	0.00100	n	н	11	11	н	"		
Xylene (o)	ND	0.00100	u	47	n	II	D	n		
Xylene (0) South Well (0401131325) (4A15005-05) Wat		0.00100 led: 01/13/04		" Received: (la 	n		
,							01/15/04	EPA 8021B		
South Well (0401131325) (4A15005-05) Wat		led: 01/13/04	13:25 F	120	01/15/04 09	;28		" EPA 8021B "		
South Well (0401131325) (4A15005-05) Wat		led: 01/13/04	13:25 F	120	01/15/04 09 EA41608	:28	01/15/04			
South Well (0401131325) (4A15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene	ter Samp	led: 01/13/04 109 % 96.0 %	13:25 F 80- 80-	120	01/15/04 09 EA4/608 "	;28 01/15/04 "	01/15/04 "			
South Well (0401131325) (4A15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene	ter Samp	led: 01/13/04 109 % 96.0 % 0.00100	13:25 F 80- 80- mg/L	120 120 #	01/15/04 09 EA41608	;28 01/15/04 "	01/15/04 "			
South Well (0401131325) (4A15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene Ethylbenzene	ter Samp ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100	13:25 F 80- 80- mg/L	120 120 #	01/15/04 09 EA41608	:28 01/15/04	01/15/04 " "			
South Well (0401131325) (4A15005-05) Wat Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Foluene	ter Samp ND ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100	13:25 F 80- 80- mg/L	120 120 "	01/15/04 09 EA41608 " "	:28 01/15/04	01/15/04 " "			
South Well (0401131325) (4A 15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene Ethylbenzene Xylene (p/m) Xylene (o)	ter Samp ND ND ND ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100	13:25 F 80- mg/L	120 120 "	01/15/04 09 EA41608	:28 01/15/04	01/15/04 " "	17 11 19 11		
South Well (0401131325) (4A 15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene Ethylbenzene Xylene (p/m) Xylene (o) MW-2 (0401131440) (4A15005-06) Water	ter Samp ND ND ND ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100 0.00100	13:25 F 80- mg/L	120 120 " " " " " ved: 01/15	01/15/04 09 EA41608	:28 01/15/04	01/15/04 " "	17 11 19 11		
South Well (0401131325) (4A 15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene Ethylbenzene Xylene (p/m) Xylene (o) MW-2 (0401131440) (4A15005-06) Water Surrogate: a.a.a-Trifluorotoluene	ter Samp ND ND ND ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100 0.00100 01/13/04 14:4	13:25 F 80- 80- mg/L " " " 0 Receiv	120 120 " " " ved: 01/15	01/15/04 09 EA41608 " " " " " " " " " " " " "	;28 01/15/04 " " " "	01/15/04 "" " " "	7 11 11 11 12 11 11		
South Well (0401131325) (4A 15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene Ethylbenzene Xylene (p/m) Xylene (o) MW-2 (0401131440) (4A15005-06) Water	ter Samp ND ND ND ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100 0.00100 01/13/04 14:4 118 %	13:25 F 80- mg/L " " 0 Receiv 80-	120 120 " " " ved: 01/15	EA41608	;28 01/15/04 " " " " " " " "	01/15/04 "" " " " " " " " " "	7 11 11 11 12 11 11		
South Well (0401131325) (4A15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Foluene Ethylbenzene Xylene (p/m) Xylene (o) MW-2 (0401131440) (4A15005-06) Water Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene	ter Samp ND ND ND ND Sampled: (led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 01/13/04 14:4 118 % 102 %	13:25 F 80- mg/L " " 0 Receiv 80- 80- 80-	120 120 " " " ved: 01/15	EA41608	;28 01/15/04 " " " " " " " " " "	01/15/04 "" " " " " " " " " " " "	7 11 11 11 12 11 11		
South Well (0401131325) (4A15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Foluene Ethylbenzene Xylene (p/m) Xylene (o) MW-2 (0401131440) (4A15005-06) Water Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene	ter Samp ND ND ND ND Sampled: (led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100 0.00100 01/13/04 14:4 118 % 102 % 0.00100	13:25 F 80- mg/L " " 0 Receiv 80- 80- mg/L	120 120 " " " ved: 01/15	D1/15/04 09 EA41608 " " " " " " " " " " " " "	;28 01/15/04 " " " " " " " " " " " " "	01/15/04 "" " " " " " " " " "	7 11 11 11 12 11 11		
South Well (0401131325) (4A15005-05) Wat Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene Ethylbenzene Xylene (p/m) Xylene (o) MW-2 (0401131440) (4A15005-06) Water Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene Benzene Toluene	ter Samp ND ND ND ND Sampled: (ND ND	led: 01/13/04 109 % 96.0 % 0.00100 0.00100 0.00100 0.00100 0.00100 01/13/04 14:4 118 % 102 % 0.00100 0.00100 0.00100	13:25 F 80- mg/L " " 0 Receiv 80- mg/L "	120 120 " " " ved: 01/15 120 120 "	D1/15/04 09 EA41608 " " " " " " " " " " " " "	;28 01/15/04 " " " " " " " " " " " " " " " " "	01/15/04 "" " " " " " " " " "	7 11 11 11 12 11 11		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

.

Raland Tuttle, Laboratory Director

REMEDIACON	Project: Duke Energy Field Services	720-528-8132
P.O. Box 302	Project Number: None Given	Reported:
REMEDIACON	Project Manager: Michael Stewart	01/16/04 14:16

Halogenated and Volatile Organics by EPA Method 8021B

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Duplicate (0401132000) (4A15005-07) Water Sampled: 01/13/04 20:00 Received: 01/15/04 09:28										
Surrogate: a,a,a-Trifluorotoluene		116%	80-	120	EA41608	01/15/04	01/15/04	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		93.5 %	80-	120	"	"	"	r		
Benzene	ND	0.00100	mg/L	μ	Ħ	ų	u	μ		
Toluene	ND	0.00100	Ħ		*		it .			
Ethylbenzene	ND	0.00100	*	*	Ħ	н	н	u		
Xylene (p/m)	ND	0.00100	Ħ	u	U	Ħ	н	v		
Xylene (o)	ND	0.00100	н	R	"	"	11	"		

Trip Blank (4A15005-08) Water Sampled: 01/13/04 00:00 Received: 01/15/04 09:28

Surrogate: a,a,a-Trifluorotoluene		110 %	80-12	20	EA41608	01/15/04	01/15/04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.0 %	80-12	20	"		11	"	
Benzene	ND	0.00100	mg/L		"	ų.	v	16	
Toluene	ND	0.00100	11	4	17	7	*	в	
Ethylbenzene	ND	0.00100	U	•	u	h:	H	u	
Xylene (p/m)	ND	0.00100	"	'n	я	n '	9	11	
Xylene (0)	ND	0.00100	n	"		Ħ	*	0	

Environmental Lab of Texas

Raland Tuttle, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

REMEDIACON		Project:	Duke Energy	Field Serv	ices		720-528-8132	
P.O. Box 302	F	roject Number:	None Given				Reported:	
REMEDIACON	. P i	roject Manager:	Michael Stew	art			01/16/04 10:36	
	Miscellaneous Phy	sical/Conve	ntional Cl	nemistry	Parame	eters		
	En	vironmenta	l Lab of T	'exas				
		Reporting					· · · · · · · · · · · · · · · · · · ·	
Analyte	Result	Limit Uni	ts Dilution	Batch	Prepared	Analyzed	Method	Notes
House Well (0401130917) (4A15	6005-01) Water Sampled	1: 01/13/04 09:1	7 Received:	01/15/04 0	9:28	<u></u>	······································	
Chloride	78.0	5.00 mg/	ι <u> </u>	EA41504	01/15/04	01/15/04	EPA 325.3	
4A15005 (0401131020)	-02) Water Sampled: 01	/13/04 10:20	teceived: 01/1	5/04 09:28	1			
Chloride	51.0	5.00 mg/	L 1	EA41504	01/15/04	01/15/04	EPA 325.3	
AW-17 (0401131110) (4A15005	-03) Water Sampled: 01	/13/04 11:10 F	leceived: 01/1	5/04 09:28	B .			
Chloride	42.5	5.00 mg/	L I	EA41504	01/15/04	01/15/04	EPA 325.3	
/IW-24 (0401131155) (4A15005	-04) Water Sampled: 01	/13/04 11:55 ¥	leceived: 01/1	5/04 09:28	5			
Chloride	62.0	5.00 mg/	L 1	EA41504	01/15/04	01/15/04	EPA 325.3	
South Well (0401131325) (4A15	005-05) Water Sampled	: 01/13/04 13:25	5 Received: (01/15/04 09	2:28			
Chloride	88.6	5.00 mg/	L 1	EA41504	01/15/04	01/15/04	EPA 325.3	
WW-2 (0401131440) (4A15005-0	06) Water Sampled: 01/	13/04 14:40 Re	ceived: 01/15	/04 09:28				
Chloride	31.9	5.00 mg/	L 1	EA41504	01/15/04	01/15/04	EPA 325.3	-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kaland KJW Raland Tuttle, Laboratory Director

Page 5 of 8

REMEDIACON	Project: Duke Energy Field Services	720-528-8132
P.O. Box 302	Project Number: None Given	Reported:
REMEDIACON	Project Manager: Michael Stewart	01/16/04 10:36

Halogenated and Volatile Organics by EPA Method 8021B - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
		Linn	Ouns	1/5461	Kesuit	7011.00	Limits	KrD	Limit	INOUCS
Batch EA41608 - EPA 5030C (GC)										
Blank (EA41608-BLK1)				Prepared	& Analyze	ed: 01/15/	04			
Surrogate: a,a,a-Trifluorotoluene	23.6	,	ug/l	20.0		118	80-120			
Surrogate: 4-Bromofluorobenzene	18.7		"	20.0		93.5	80-120			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	۳							
Ethylbenzene	ND	0.00100	19							
Xylene (p/m)	ND	0.00100	8							
Xylene (0)	ND	0.00100								
LCS (EA41608-BS1)				Prepared	& Analyze	ed: 01/15/0	04			
Surrogate: a,a,a-Trifluorotoluene	18.9		ug/l	20.0		94.5	80-120			
Surrogate: 4-Bromofluorobenzene	19.7		17	20.0		98.5	80-120			
Benzene	100		н	100		100	80-120			
Toluene	107		м	100		107	80-120			
Ethylbenzene	105			100		105	80-120			
Xylene (p/m)	219		"	200		110	80-120			
Xylene (o)	109		н	100		109	80-120			
Calibration Check (EA41608-CCV1)				Prepared:	01/15/04	Analyzed	: 01/16/04			
Surrogate: a,a,a-Trifluorotoluene	18.5		ug/l	20.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	21,4		"	20.0		107	80-120			
Benzene	104			100		104	80-120			
Toluene	112		n	100	,	112	80-120			
Ethylbenzene	110			100		110	80-120			
Xylene (p/m)	228			200		114	80-120			
Xylene (o)	112		14	100		112	80-120			
Duplicate (EA41608-DUP1)	So	urce: 4A1500	5-01	Prepared	& Analyze	:d: 01/15/0	04			
Surrogate: a,a,a-Trifluorotoluene	17.7		ug/l	20.0		88.5	80-120			
Surrogate: 4-Bromofluorobenzene	17.4		"	20.0		87.0	80-120			
Benzene	0.135	0.00100	mg/L		0.147			8.51	20	
Toluene	ND	0.00100	Ħ		ND				20	
Ethylbenzene	J [0.000607]	0.00100	м		0.000798			27.2	20	
Xylene (p/m)	ND	0.00100	н		0.000680				20	
Xylene (0)	ND	0.00100	ti.		ND				20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Raland Tuttle, Laboratory Director

Page 6 of 8

REMEDIACON		Pr	oject: D	uke Energy	Field Serv	vices			720-5	528-8132	
P.O. Box 302		Project Nu	mber: N	one Given					Re	ported:	
REMEDIACON		Project Mar	iager: M	lichael Stew	art				01/16/04 10:36		
Miscellaneous I	Physical/C	onventior	ial Ch	emistry	Parame	eters - (Quality	Contro)]		
]	E <mark>nviro</mark> nm	ental]	Lab of T	exas						
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EA41504 - General Preparatio	n (GC)									-	
Blank (EA41504-BLK1)				Propared	& Analyz	ed: 01/15/	04				
Chloride	ND	5.00	mg/L			· •					
Calibration Check (EA41504-CCV1)				Prepared	& Analyza	ed: 01/15/	04				
Chloride	4960		mg/L	5000		99.2	80-120				
Matrix Spike (EA41504-MS1)	So	urce: 4A150()5-01	Prepared	& Analyze						
Chloride	276	5.00	mg/L	200	78.0	99.0	80-120				
Matrix Spike Dup (EA41504-MSD1)	So	urce: 4A150()5-01	Prepared	& Analyza	ed: 01/15/	04				
Chloride	280	5.00	mg/L	200	78.0	101	80-120	1.44	20		

.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

C Raland Tuttle, Laboratory Director

Page 7 of 8

P.O. Bo	DIACON x 302 DIACON	Project: Duke Energy Field Services Project Number: None Given Project Manager: Michael Stewart	720-528-8132 Reported: 01/16/04 10:36					
		Notes and Definitions						
J	Detected but below the Rep	orting Limit; therefore, result is an estimated concentration (CLP J-Flag).						
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at	or above the reporting limit						
NR	Not Reported							
dry	Sample results reported on a dry weight basis							
RPD	Relative Percent Difference	·						

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Raland Tuttle, Laboratory Director

.

	اردمج					!	[slubedo2-or9) TAT H2UЯ TAT bisbrist	>	2	2	7	2	2	7		-+	Z		
REQUEST	Enersy Field Services		Ranch						17	7	<u> </u>	2	2	2	2						
CHAIN OF CUSTODY RÉCORD AND ANALYSIS REQUEST	Enersy F		V				Analyze For:		Semivolaties BTEX 80216/5 030 or BTEX 826 RCI	>	>	7	7	7	7	2	2		ors Intact?	2	
record an			Eldvids				Ana TCLP:		Seft / ESP / CEC Meiais: As Ag Ba Cd Cr Pb Hg 3 Volatiles										Sample Containers Intact?	Re - 1 CC	
CUS TODY	Project Name: DxxKe	Project #:	Project Loc:	₩Od			Ŭ		TPH: 418.1 8015M 1005 100 Callons (Ca. Mg, Na. K) Anions (Cl. SO4, CO3, HCO3)											Time	Time
CHAIN OF	ů.			1		1	1	Matrix	Olihet (zbecięk): Zoli Zlindĝe Mariet		2	2	- - -	2	7	2	>		Co.	Date	Date -/5-04 C
					8 (32			live	None Other (Specify)					-					Deuver		
					528-			Preservative	изон HCI HNO ²	>	2	7	2	7	2	2			EFS, D.		
					-027- ioi			L	No. of Containers	1	1 1	1+ 1	<u>、</u> ナ	۲ ۲	4 1	N Z	ц 7				9
					Fax No:				Time Sampled	61190	1020	1110	1155	1325	1440	2000	l		Wrathevs		or ak k
		, J		80437		thetw			bəlqms2 ə)sQ	1-13-04	11		11	3 6	11	i t	2			Received by.	Received by ELOT
CXG 63-1800 63-1713	ナンひつ	M. Huc	~	~	0	Love,				30917)	(020	(011	(55)	51325)	(0++1	৫০০০১			to Steve		Time
DOL 10100 Phone: 432-563-1800 Fax: 432-563-1713	e Stewart	Remediacon	P.O. Box 302	VEEN C	4-4370	Jal 7			Lierb code	Well (0401130917)	(0401131020	0401131110)	(0401131155)	(0401131325)	(0401131440)	(040113	Ł		i y voice	Date Time 1-(らんてのえる	Date
CITVICULIUCIUM LAU UL ICXAS 12600 West 1-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713	mike				lo: 303-E1	j				House We	0) 91-MW	0) L1-MW	murit (c	South Well) と-のと	Duplicate	rin Blaul		and	it when	
ONINE 1-20 East as 79765	Project Manager:	Company Name	Company Address:	City/State/Zip:	Telephone No: 303 -	Sampler Signature:			king starting startin				Ē	Ś	Σ	Ō	1-1	A.	uctions:	EX.	
CIVICONI 12600 West I-20 East Odessa, Texas 79765	ų.	C	Com			Sam			HA ISDOS LAB # (lab use only)	0	20	03	Ъđ	Sa	06	20	08	Ł	Special Instructions:	12.1	Relin quished by

14.22 S

and an

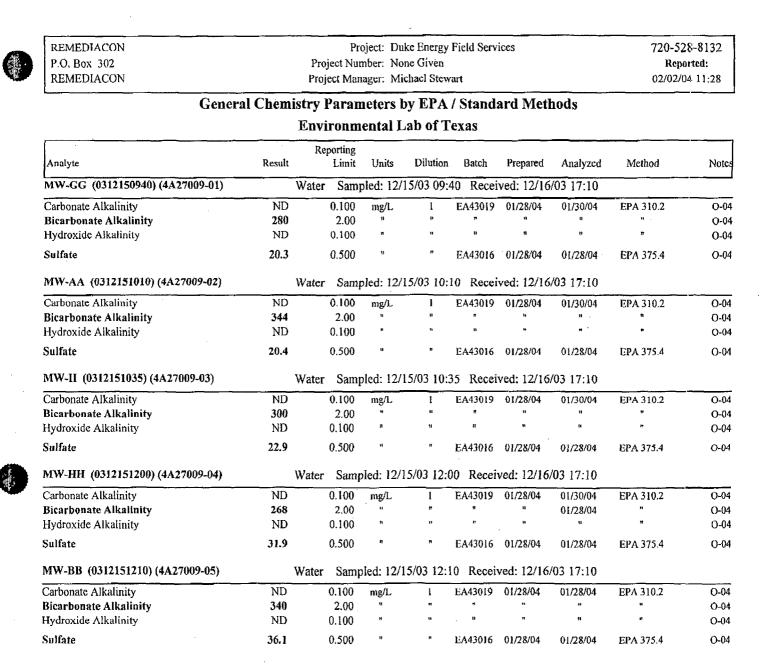
5 1 3 K

Analytical Report

Prepared for: Michael Stewart REMEDIACON P.O. Box 302 Evergreen, CO 80437

Project: Duke Energy Field Services Project Number: None Given Location: Eldridge Ranch

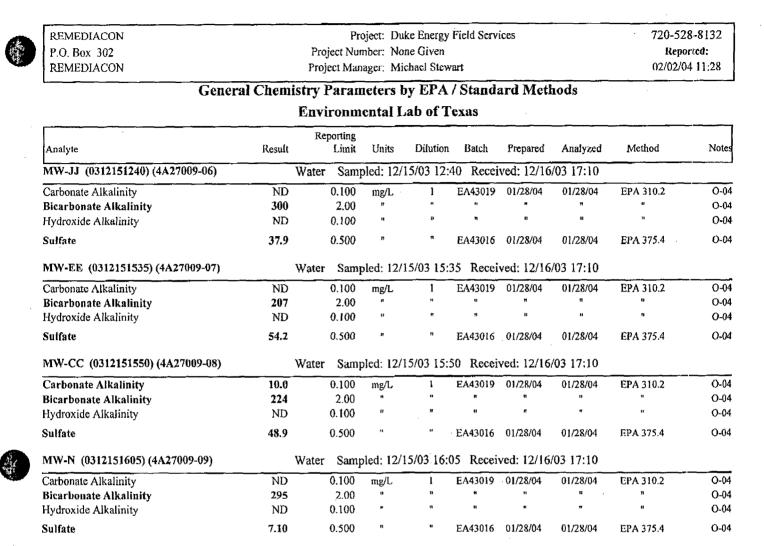
Lab Order Number: 4A27009


Report Date: 01/31/04

REMEDIACONProject:Duke Energy Field Services720-528-8132P.O. Box 302Project Number:None GivenReported:REMEDIACONProject Manager:Michael Stewart01/31/04 06:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-GG (0312150940)	4A27009-01	Water	12/15/03 09:40	12/16/03 17:10
MW-AA (0312151010)	4A27009-02	Water	12/15/03 10:10	12/16/03 17:10
MW-II (0312151035)	4A27009-03	Water	12/15/03 10:35	12/16/03 17:10
MW-HH (0312151200)	4A27009-04	Water	12/15/03 12:00	12/16/03 17:10
MW-BB (0312151210)	4A27009-05	Water	12/15/03 12:10	12/16/03 17:10
MW-JJ (0312151240)	4A27009-06	Water	12/15/03 12:40	12/16/03 17:10
MW-EE (0312151535)	4A27009-07	Water	12/15/03 15:35	12/16/03 17:10
MW-CC (0312151550)	4A27009-08	Water	12/15/03 15:50	12/16/03 17:10
MW-N (0312151605)	4A27009-09	Water	12/15/03 16:05	12/16/03 17:10


Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document, This analytical report must be reproduced in its entirety.

Quality Assurance Review

Page 2 of 8

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quality Assurance Review

Page 3 of 8

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

	D 14	Reporting	11-14	Dilasta -	Detak	D		Madaal	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-GG (0312150940) (4A27009-01) Water	Sample	ed: 12/15/03 0	19:40 R	eceived: 12	/16/03 17:	10			
Calcium	60.8	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B	
Magnesium	20.6	0.0100	u			n	41	н	
Potassium	3.57	0.0500	۳	1			01/30/04		
Sodium	53.4	0.100	4	10	u .	n	01/30/04	37	
MW-AA (0312151010) (4A27009-02) Water	Sample	ed: 12/15/03 1	0:10 Re	ceived: 12/	/16/03 17:1	LO			
Calcium	74.0	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B	
Magnesium	22.0	0.0100	я	11	Ħ	0 ·	n		
Potassium	4.88	0.0500		1	9	Ħ	01/30/04	•	
Sodium	63.2	0.100	*	10	n		01/30/04	16	
MW-II (0312151035) (4A27009-03) Water	Sampled	: 12/15/03 10:	35 Reco	eived: 12/1	6/03 17:10	1			
Calcium	129	1.00	mg/L	100	EA43012	01/30/04	01/30/04	EPA 6010B	
Magnesium	16.4	0.0100	н	10	Ŧ	n	01/30/04	11	
Potassium	4.65	0.0500	u	1	11	n	01/30/04	n	
Sodium	59.5	0.100	•	10	H	u	01/30/04	Ħ	
MW-HH (0312151200) (4A27009-04) Water	Sample	ed: 12/15/03 1	2:00 Re	ceived: 12	/16/03 17:1	10			
Calcium	74.7	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B	
Magnesium	19.9	0.0100	ч	N	N	Ħ	**	n	
Potassium	4.10	0.0500		1	۳	ų	01/30/04	u	
Sodium	58.6	0.100	13	10	v	H	01/30/04	H	
MW-BB (0312151210) (4A27009-05) Water	Sample	d: 12/15/03 12	2:10 Re	ceived: 12/	16/03 17:1	0			
Calcium	83.2	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B	
Magnesium	24.2	0.0100	11		n	10	17	n	
Potassium	6.66	0.0500	"	1	U	ŋ	01/30/04	n	
Sodium	79.4	0.100	*	10	n	n	01/30/04	u	

Environmental Lab of Texas

Quality Assurance Review

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

p.5

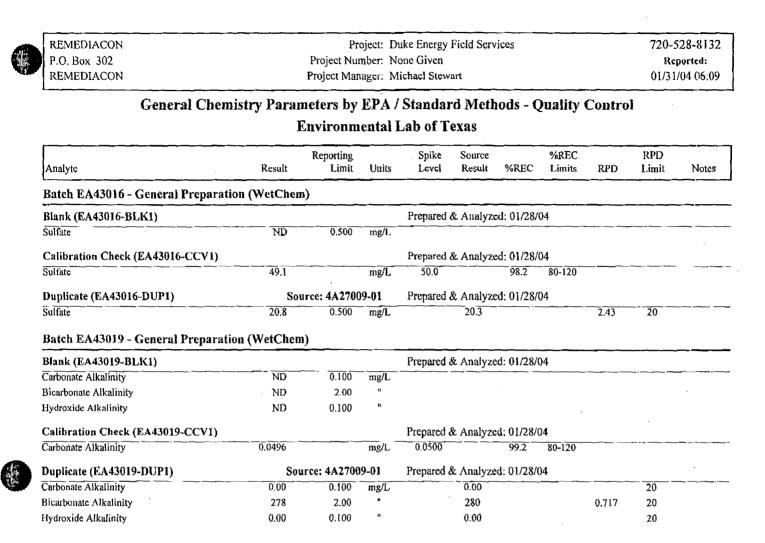
REMEDIACON				ike Energy	Field Serv	ices		720-528-8132 Reported: 01/31/04 06:09		
P.O. Box 302		Project Nur								
REMEDIACON		Project Man	ager: Mi	ichael Stew	art					
	Total I	Metals by	EPA/	Standar	d Meth	ods				
		Environm	ental I	ab of T	exas					
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW-JJ (0312151240) (4A27009-06) Water	Sample	d: 12/15/03 12	:40 Rec	eived: 12/1	6/03 17:1	0				
Calcium	81.3	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B		
Magnesium	18.9	0.0100	11	**	-	n	*	υ		
Potassium	4.47	0.0500	и	1	0	n	01/30/04	ri T		
Sodium	54.1	0.100	7	10	Ħ	D	01/30/04	n		
MW-EE (0312151535) (4A27009-07) Water	Sample	d: 12/15/03 1	5:35 Re	ceived: 12/	16/03 17:1	0				
Calcium	105	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B		
Magnesium	18.1	0.0100	n	"	łł	u	u	n	•	
Potassium	4.55	0.0500	11	1	11	n	01/30/04	N		
Sodium	51.5	0.100	v	10	**	ħ	01/30/04	r		
MW-CC (0312151550) (4A27009-08) Water	Sample	ed: 12/15/03 1	5:50 Re	ceived: 12/	/16/03 17:1	10				
Calcium	77.0	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B		
Viagnesium	18.9	0.0100	13	ħ	u	n	м	u		
Potassium	5.93	0.0500	n	1	0	ų	01/30/04	"		
Sodium	79 .5	0.100	11	10	n	t	01/30/04	n		
WW-N (0312151605) (4A27009-09) Water	Sampled	: 12/15/03 16:	05 Rece	eived: 12/1	6/03 17:10					
Calcium	70.4	0.100	mg/L	10	EA43012	01/30/04	01/30/04	EPA 6010B		
Magnesium	17.4	0.0100	n	n	*	9	n	n		
Potassium	4.02	0.0500	18	1	-	n	01/30/04	н		

Environmental Lab of Texas

Sodium

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

01/30/04


Quality Assurance Review

58.6

0.100

10

Page 5 of 8

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Raland L Joan Quality Assurance Review

Page 6 of 8

Sodium

720-528-8132 Reported: 01/31/04 06:09

20

Page 7 of 8

0.187

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

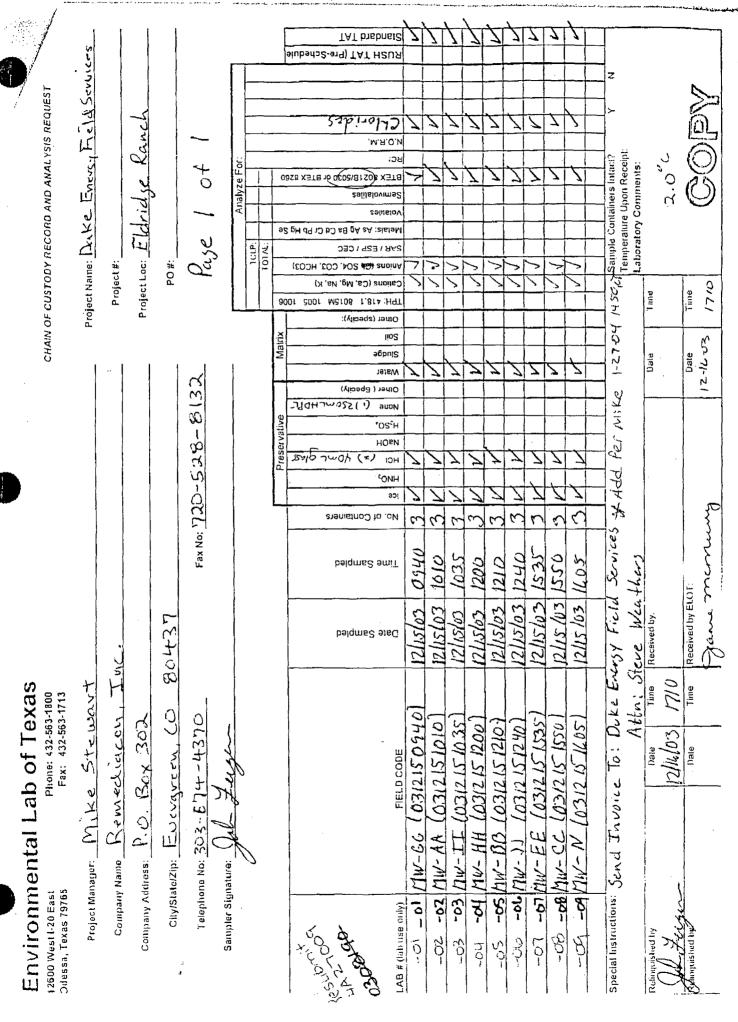
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA43012 - General Preparation	(Metals)									
Blank (EA43012-BLK1)				Prepared	& Analyze	ed: 01/30/	04			
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	ħ							
Potassium	ND	0.0500	п							,
Sodium	ND	0.0100	19							
Calibration Check (EA43012-CCV1)				Prepared	& Analyze	ed: 01/30/	04			
Calcium	2.24		mg/L	2.00		112	85-115			
Magnesium	2.10		n	2.00		105	85-115			
Potassium	1.97		,	2.00		98.5	85-115			
Sodium	2.08		n	2.00		104	85-115			
Duplicate (EA43012-DUP1)	So	urce: 4A2700	99-01	Prepared	& Analyze	:d: 01/30/)4			
Calcium	60.5	0.100	mg/L		60.8	·····		0.495	20	
Magnesium	20.4	0.0100	n		20.6			0.976	20	
Potassium	3.55	0.0500	n		3.57			0.562	20	

53.4

53.3

0.100

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Quality Assurance Review

		Notes and Definitions	
	REMEDIACON	Project Manager: Michael Stewart	02/02/04 11:28
	P.O. Box 302	Project Number: None Given	Reported:
幸.	REMEDIACON	Project: Duke Energy Field Services	720-528-8132

- O-04 This sample was analyzed outside the EPA recommended holding time.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 8 of 8

Feb 02 04 01:55p

ANALYTICAL REPORT

Prepared for:

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Project: Duke Energy Field Services

PO#:

Order#: G0308102

Report Date: 12/05/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308102 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Tim	ie I	Date / Time		
<u>Lab ID:_</u>	Sample :	<u>Matrix:</u>		Collected	<u> </u>	Received	Container	Preservative
0308102-01	SB-BB (18-19')	SOIL		11/21/03 9:10		12/4/03 9:36	4 oz glass	Ice
La	<u>b Testing:</u>	Rejected:	No		Temp:	4.0 C		
	8015M							
	8021B/5030 BTEX							
0308102-02	SB-AA (18-19')	SOIL		11/21/03 12:15		12/4/03 9:36	4 oz glass	lce
La	b Testing:	Rejected:	No		Temp:	4.0 C		
	8015M							
	8021B/5030 BTEX							
0308102-03	SB-EE (22-23')	SOIL		11/23/03		12/4/03	4 oz glass	lce
_				9:40	_	9:36		
La	b Testing:	Rejected:	NO		Тетр:	4.0 C		
	8015M							
	8021B/5030 BTEX							
0308102-04	SB-Q (5-6')	SOIL		12/1/03		12/4/03	4 oz glass	Ice
0506102-04				8:30		9:36	U	
La	b Testing:	Rejected:	No		Temp:	4,0 C		
	8015M							
	8021B/5030 BTEX							
0308102-05	SB-Q (14-15')	SOIL		12/1/03 8:33		12/4/03 9:36	4 oz glass	Ice
La	b Testing:	Rejected:	No		Temp:	4.0 C		
	8015M							
	8021B/5030 BTEX							
0308102-06	SB-Q (19-20')	SOIL		12/1/03 9:50		12/4/03 9:36	4 oz glass	lce
La	b Testing:	Rejected:	No		Temp:	4.0 C		
	8015M							
	8021B/5030 BTEX							

ANALYTICAL REPORT

MICHAEL STEW REMEDIACON P.O. BOX 302 EVERGREEN, CO				Order#: Project: Project Name Location:	: Duk	8102 e Energy Field idge Ranch	Services	
Lab ID: Sample ID:	0308102-01 SB-BB (18-19')							
				8015M				
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method	
			12/4/03	1	t	СК	8015M	
		Parameter		Result mg/kg		RL		
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35		<10.0		10.0		
		Surroga	ites	% Recovered	QC Lim	its (%)		
		1-Chlorooct	ane	75%	70	130		
		1-Chlorooct	adecane	70%	70	130		
			8021E	5030 BTEX				
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample Amount	Dilution <u>Factor</u>	Analyst	Method	
	0007643-02	;	12/4/03	1	25	СК	8021B	
		Parameter		Result mg/kg		RL		
		Benzene		<0.025		0.025		
		Toluene		<0.025		0.025		
		Ethylbenzene		<0.025		0.025		
		p/m-Xylene	·····	<0.025		0.025		
		o-Xylene		<0.025		0.025		
		Surroga	ites	% Recovered	QC Lim	its (%)		
,		aaa-Toluen	e	88%	80	120		
		Bromofluor	benzene	80%	80	120		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ANALYTICAL REPORT

REMEDIACON P.O. BOX 302 EVERGREEN, CO	/ART O 80437			Order#: Project: Project Name Location;	: Du	608102 ke Energy Field ridge Ranch	Services
Lab ID: Sample ID:	0308102-02 SB-AA (18-19')						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 12/4/03	Sample <u>Amount</u> 1	Dilutio <u>Factor</u> 1	Analyst	Method
			12/4/03	1	L	СК	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		<10.0		10.0	
		TOTAL, C6-C35		<10.0		10.0	
		Surroga 1-Chlorooct 1-Chlorooct	ane	% Recovered 125% 85%	QC Lin 70 70	nits (%) 130 130	
			8021B	8/5030 BTEX			
	Method	Date	Date	Sample	Dilutio		
	Blank	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	Factor	<u>Analyst</u>	Method
·		Date Prepared	Date	Sample			<u>Method</u> 8021B
·	Blank	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	<u>Factor</u> 25	<u>Analyst</u>	
	Blank	Datc <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u> 1 Result mg/kg <0.025	<u>Factor</u> 25	Analyst CK RL 0.025	
	Blank	Datc <u>Prepared</u> Parameter Benzene Toluene	Date <u>Analyzed</u>	Sample <u>Amount</u> 1 Result mg/kg <0.025 <0.025	<u>Factor</u> 25	<u>Analyst</u> CK RL 0.025 0.025	
·	<u>Blank</u> 0007643-02	Date <u>Prepared</u> Parameter Benzene Toluene Ethylbenzene	Date <u>Analyzed</u>	Sample <u>Amount</u> 1 Result mg/kg <0.025 <0.025 <0.025	<u>Factor</u> 25	Analyst CK RL 0.025 0.025 0.025	
	<u>Blank</u> 0007643-02	Datc <u>Prepared</u> Parameter Benzene Toluenc Ethylbenzene p/m-Xylenc	Date <u>Analyzed</u>	Sample <u>Amount</u> 1 Result mg/kg <0.025 <0.025 <0.025 <0.025	<u>Factor</u> 25	Analyst CK RL 0.025 0.025 0.025 0.025	
	<u>Blank</u> 0007643-02	Date <u>Prepared</u> Parameter Benzene Toluene Ethylbenzene	Date <u>Analyzed</u>	Sample <u>Amount</u> 1 Result mg/kg <0.025 <0.025 <0.025	<u>Factor</u> 25	Analyst CK RL 0.025 0.025 0.025	
	<u>Blank</u> 0007643-02	Datc <u>Prepared</u> Parameter Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene	Date <u>Aualyzcd</u> 12/4/03	Sample <u>Amount</u> 1 Result mg/kg <0.025 <0.025 <0.025 <0.025 <0.025	<u>Factor</u> 25	Analyst CK RL 0.025 0.025 0.025 0.025 0.025	
	<u>Blank</u> 0007643-02	Datc <u>Prepared</u> Parameter Benzene Toluenc Ethylbenzene p/m-Xylenc	Date <u>Aualyzed</u> 12/4/03	Sample <u>Amount</u> 1 Result mg/kg <0.025 <0.025 <0.025 <0.025 <0.025	<u>Factor</u> 25	Analyst CK RL 0.025 0.025 0.025 0.025	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEW	ART			Order#: Project:	G030		· ·	
P.O. BOX 302 Evergreen, co	5 80437			Project Name: Location:		: Energy Field dge Ranch	Services	
		·····						
Lab ID:	0308102-03							
Sample ID:	SB-EE (22-23')							
				8015M				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method	
			12/4/03	1	1	СК	8015M	
		D		Result				
		Parameter		mg/kg		RL		
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35		<10.0		10.0		
		Surroga			QC Lim			
		1-Chloroocta		126%	70	130		
		1-Chloroocta		85%	70	130		
				3/5030 BTEX				
	Method	Date Brong und	Date	Sample Amount	Dilution	Å – alsort	Method	
	Blank	Prepared	<u>Analyzed</u> 12/4/03	1	<u>Factor</u> 25	<u>Analyst</u> CK	8021B	
	0007643-02		12/4/03	L	43	CN	00210	
		Parameter		Result mg/kg		RL		
		Benzene		0.065		0.025		
		Toluene		0.073		0.025		
		Ethylbenzene		<0.025		0.025		
		p/m-Xylene	·	0.053		0.025		
	i	o-Xylene		<0.025		0.025		
		Surroga	tes	% Recovered	QC Limi	its (%)		
		aaa-Toluene	·	102%	80	120		
					80			

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MICHAEL STEW REMEDIACON	ART			Order#: Project:		08102	
P.O. BOX 302 EVERGREEN, CO	D 80437			Project Nam Location:		e Energy Field idge Ranch	Scrvices
Lab ID:	0308102-04						
Sample ID:	SB-Q (5-6')						
				8015M			
	Method	Date	Date	Sample	Dilution		
	Blank	Prepared	<u>Analyzed</u> 12/4/03	<u>Amount</u> 1	Factor 1	<u>Analyst</u> CK	Method
	·		12/4/03	1	I	UK (K	8015M
		Parameter		Resul		RL	
		GRO, C6-C12		mg/kg <10.0		10.0	
		DRO, >C12-C35		<10.0		10.0	
		TOTAL, C6-C35		<10.0		10.0	
		·		1	·		
×		Surrog	ates	% Recovered	QC Lin	iits (%)	
		1-Chlorooc		130%	70	130	
		1-Chlorooc	tadecane	90%	70	130	
			80211	3/5030 BTEX			
	Method	Date	Date	Sample	Dilution		
	Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
	0007643-02	2	12/4/03	1	25	СК	8021B
		Parameter		Resul		RL	
		Benzene		< 0.025	5	0.025	
		Toluene		<0.025		0.025	
		Ethylbenzene		< 0.025		0.025	
		p/m-Xylene		<0.025		0.025	
		o-Xylene		<0.025	5	0.025	
		Surroga		% Recovered	QC Lim	its (%)	
		aaa-Toluen		89%	80	120	
			~	0010		· - • 1	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ANALYTICAL REPORT

MICHAEL STEWA REMEDIACON P.O. BOX 302 EVERGREEN, CO				Order#: Project: Project Name Location:	e: Dı	308102 ukc Energy Field Iridge Ranch	Services	
Lab ID:	0308102-05							
Sample ID:	SB-Q (14-15')							
				8015M				
	Method	Date	Date	Sample	Diluti			
	Blank	Prepared	Analyzed	Amount	<u>Facto</u>		Method	
			12/4/03	1	1	СК	8015M	
		Parameter		Resul mg/kg		RL		
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35	5	<10.0		10.0		
		Surrog	ates	% Recovered	QC L	imits (%)		
		1-Chiorooc		129%	70	130		
		1-Chlorooc	tadecane	90%	70	130		
			8021E	8/5030 BTEX				
	Method	Date	Date	Sample	Diluti		Mathod	
	<u>Blank</u>	Prepared	<u>Analyzed</u> 12/4/03	<u>Amount</u> 1	<u>Facto</u> 25	e <u>r Analyst</u> CK	<u>Method</u> 8021B	
	0007643-02	2	12/4/03	1	23	UK.	00210	
		Parameter	· <u>·</u>	Resul mg/kg		RL		
		Benzene	· · · · · · · · · · · · · · · · · · ·	<0.025	;	0.025		
		Toluene		<0.025		0.025		
		Ethylbenzene		< 0.025		0.025		
		p/m-Xylene		<0.025	1	0.025		
		o-Xylene		<0.025	5	0.025		
		Surrog	ates	% Recovered	OC L	imits (%)		
		aaa-Toluer		94%	80	120		
		Bromofluor		92%	80	120		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 5 of 6

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STEW/ REMEDIACON P.O. BOX 302 EVERGREEN, CO				Order#: Project: Project Nam Location:	e: Duk	98102 e Energy Field idge Ranch	Services	
Lab ID:	0308102-06							
Sample ID:	SB-Q (19-20')							
				8015M				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	Analyzed	Amount	<u>Factor</u>	<u>Analyst</u>	Method	
			12/4/03	1	1	СК	8015M	
		Parameter		Resul	t	RL		
				mg/kg				
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35		<10.0		10.0		
		Surrogat		% Recovered	QC Lim			
·		1-Chloroocta		123%	70	130		
		1-Chloroocta	, ,	85%	70	130		
				3/5030 BTEX				
	Method	Date Prepared	Date Analyzed	Sample Amount	Dilution Factor	Analyst	Method	
	<u>Blank</u>		12/4/03	1	25	<u>CK</u>	8021B	
	0007643-02		124100	L			00213	
		Parameter		Resul mg/kg		RL		
		Benzene		<0.02	5	0.025		
		Toluene		<0.02	5	0.025		
		Ethylbenzene		<0.02	5	0.025		
		p/m-Xylene		<0.02		0.025		
		o-Xylene		<0.02	5	0.025		
		Surrogat		% Recovered	QC Lim	nits (%)		
		aaa-Toluene		94%	80	120		
		Bromofluorol		96%	80	120		

Approval: Ralandk Just	12-05-03
Raland K. Tuttle, Lab Director, QA Officer	Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 6 of 6

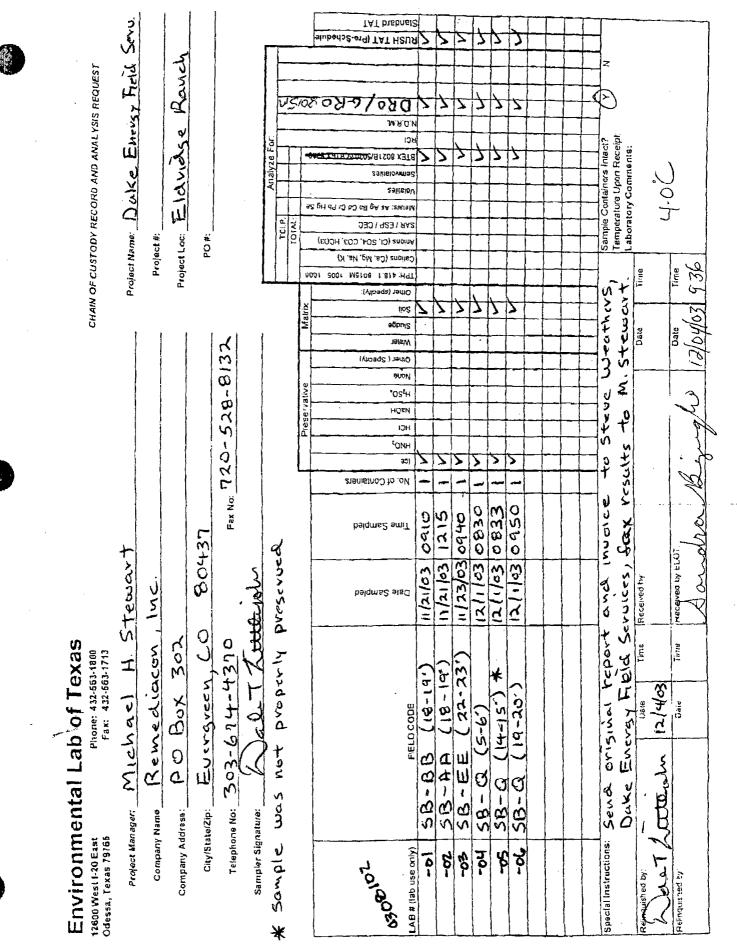
ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8015M

Order#: G0308102


BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007638-02			<10.0		
CONTROL SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007638-03		952	727	76.4%	
CONTROL DUP	1.AB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007638-04		952	747	78.5%	2.7%
SRM SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007638-05		1000	841	84.1%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0308102

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0007643-02			< 0.025		
Toluene-mg/kg		0007643-02			< 0.025		
Ethylbenzene-mg/kg		0007643-02			< 0.025		·····
p/m-Xylene-mg/kg		0007643-02			< 0.025		· · ·
o-Xylene-mg/kg		0007643-02	· · · · · · · · · · · · · · · · · · ·		< 0.025		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0308102-03	0.065	2.5	2.58	100.6%	
Toluene-mg/kg	<u> </u>	0308102-03	0.073	2.5	2.56	99.5%	
Ethylbenzene-mg/kg		0308102-03	0	2.5	2.48	99.2%	
p/m-Xylene-mg/kg		0308102-03	0.053	5	4.97	98.3%	
o-Xylene-mg/kg		0308102-03	0	2.5	2.38	95.2%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0308102-03	0.065	2.5	2.56	99.8%	0.8%
Toluene-mg/kg		0308102-03	0.073	2.5	2.61	101.5%	1.9%
Ethylbenzene-mg/kg		0308102-03	0	2.5	2.51	100.4%	1.2%
p/m-Xylene-mg/kg		0308102-03	0.053	5	5.00	98.9%	0.6%
o-Xylene-mg/kg		0308102-03	0	2.5	2.42	96.8%	1.7%
SRM	SOIL	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0007643-05		0.1	0,100	100.%	
Toluene-mg/kg		0007643-05		0.1	0.096	96.%	·
Ethylbenzene-mg/kg	· · "·	0007643-05	·	0.1	0.093	93.%	
p/m-Xylene-mg/kg		0007643-05		0.2	0.186	93.%	
o-Xylene-mg/kg		0007643-05		0.1	0.091	91.%	

p.11

ANALYTICAL REPORT

Prepared for:

MICHAEL STEWART REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

Project:Duke Energy Field ServicesPO#:G0308175Report Date:12/16/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

,

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437 720-528-8132 Order#: G0308175 Project: Project Name: Duke Energy Field Services Location: Eldridge Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Tin	ıe I) ate / Time		
<u>Lab ID:</u>	Sample :	Matrix:		Collected	<u>1 </u>	Received	Container	Preservative
0308175-01	SB-T (23-24) 0312021500	SOIL		12/2/03 15:00		12/15/03 8:00	4 oz glass	Ice
La	b Testing:	Rejected:	No		Temp:	-2.0 C		
~	8015M 8021B/5030 BTEX	<u></u>						
0308175-02	SB-II (19-20) 0312021610	SOIL		12/4/03 16:10		12/15/03 8:00	4 oz glass	Ice
La	<u>b Testing:</u>	Rejected:	No		Тетр:	-2.0 C		
	8015M							
· · · · · · · · · · · · · · · · · · ·	8021B/5030 BTEX		-					
0308175-03	SB-GG (19-21) 0312050920	SOIL		12/5/03 9:20		12/15/03 8:00	4 oz glass	lce
La	<u>b Testing:</u>	Rejected:	No		Temp:	-2.0 C		
	8015M							
<u> </u>	8021B/5030 BTEX							
0308175-04	SB-NN (24-25) 0312021600	SOIL		12/5/03 16:00		12/15/03 8:00	4 oz glass	Ice
La	<u>b Testing:</u>	Rejected:	No		Temp:	-2.0 C		
	8015M							
<u> </u>	8021B/5030 BTEX							
0308175-05	SB-OO (26-28) 0312021315	SOIL		12/6/03 13:15		12/15/03 8:00	4 oz glass	lce
La	<u>b Testing:</u>	Rejected:	No		Temp:	-2.0 C		
	8015M 8021B/5030 BTEX							

ANALYTICAL REPORT

MICHAEL STEW REMEDIACON P.O. BOX 302 EVERGREEN, CO				Order#: Project: Project Name: Location:		175 Energy Field S ge Ranch	Services	
Lab ID:	0308175-01							
Sample ID:	SB-T (23-24) 03	12021500						i.
				8015M				
	Method Blank	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method	
			12/15/03	1	1	JLH	8015M	
		Parameter		Result mg/kg	-	RL		
		GRO, C6-C12		51.8		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35		51.8		10.0		
		Surrog			QC Limi			
		1-Chlorooct		95% 79%	i	130 130		
		1-Chlorooci			/0	130		
		-		8/5030 BTEX				
	Method Blank	Date Prepared	Date Analyzed	Sample Amount	Dilution Fact <u>or</u>	Analyst	Method	
	0007724-02		12/15/03	1	25	СК	8021B	
		Parameter		Result mg/kg		RL		
		Benzene		1.54		0.025		
		Toluene		1.60		0.025		
		Ethylbenzene		0.456		0.025		
		p/m-Xylene		1.02	:	0.025		
		o-Xylene		0.191	· <u>·</u>	0.025		•
		Surrog	ates	% Recovered	QC Limi	ts (%)		
		aaa-Toluen		607%		120		
		Bromofluor		101%		120		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STEW REMEDIACON P.O. BON 302 EVERGREEN, CO				Order#: Project; Project Name Location:		Energy Field S ge Ranch	Services	
Lab ID:	0308175-02							
Sample ID:	SB-II (19-20) 03	312021610						
			8	8015M				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	<u>Analyzed</u>	Amount	Factor	Analyst	Method	
			12/15/03	1	L	JLH	8015M	
							,	
		Parameter		Result mg/kg		RL		
		GRO, C6-C12		71.7	I	10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35		. 71.7		10.0		
		Surroga	utes	% Recovered	QC Limi	ts (%)		
		1-Chlorooct		93%		130		
		1-Chlorooct	adecane	79%	70	130		
			8021B	<i>/5030 BTEX</i>				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method	
	0007724-02	2	12/15/03	1	25	СК	8021B	
				· .				
		Parameter		Result mg/kg		RL		
		Benzene		0.690		0.025 j		
		Toluene		0.499	i	0.025		
		Ethylbenzene		0.198		0.025		
		p/m-Xylene		0.529	:	0.025		
		o-Xylene		0.095	· · · · · · · · · · · · · · · · · · ·	0.025		
		Surroga			QC Limit			
		aaa-Toluen	e	444%	80	120		

- i oluent 80 120 104% Bromofluorobenzene

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ą

ANALYTICAL REPORT

MICHAEL STEW REMEDIACON P.O. BOX 302 EVERGREEN, C				Order#: Project: Project N Location:	ame: Di	0308175 uke Energy Fi Idridge Ranch	
Lab ID:	0308175-03						
Sample ID:	SB-GG (19-21) (1312050920					
				8015M			
	Method	Date	Date	Sample	Dilut		
	Blank	Prepared	<u>Analyzed</u> 12/15/03	<u>Amount</u>	<u>Fact</u>		
			14/15/03	1	ſ	JLH	8015M
				Re	sult		
		Parameter			/kg	RL	
		GRO, C6-C12		<1	0.0	10.0	
		DRO, >C12-C35	,		0.0	10.0	
		TOTAL, C6-C35		<1	0.0	10.0	
		1					
		Surrogat		% Recovere		.imits (%)	
		1-Chloroocta		101%	70	130	
		1-Chloroocta		84%	70	130	
				8/5030 BTE			
	Method	Date <u>Prepared</u>	Date Analyzed	Sample <u>Amount</u>	Diluti Facto		st <u>Method</u>
	<u>Blank</u> 0007724-02		12/15/03	1	25		
	. 0007724-02			-		0.1	00011
			<u></u>	Re	sult	DI	
		Parameter			/kg	RL	
		Benzene			025	0.025	
		Toluene			025	0.025	
		Ethylbenzene			025	0.025	
		p/m-Xylene	<u> </u>		025	0.025	
		o-Xylene		<0.	025	0.025	i
		Surrogat	es	% Recover	d QC L	.imits (%)	
		aaa-Toluene	W	90%	80	120	
					80	120	

 $DL \approx Diluted out N/A = Not Applicable RL = Reporting Limit$

x

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MICHAEL STEW. REMEDIACON P.O. BOX 302 EVERGREEN, CO				Order#: Project: Project Name Location:	: Duk	08175 e Energy Field : ridge Ranch	Services
Lab ID:	0308175-04				-		
Sample ID:	SB-NN (24-25) (0312021600					
				8015M			
	Method	Date Prepared	Date Analyzed	Sample <u>Amount</u>	Dilutio Factor		Method
	Blank	riepareu	12/15/03	1	1	JLH	8015M
		r				·	
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		<10.0		10.0	
		TOTAL, C6-C35		<10.0	<u> </u>	10.0	
		Surrog	ates	% Recovered	QC Lit	nits (%)	
		1-Chiorooc	tane	91%	70	130	
		1-Chlorooc	tadecane	74%	70	130	
			8021E	8/5030 BTEX			
	Method	Date	Date	Sample	Dilution		Mathad
	Blank	Prepared	<u>Analyzed</u> 12/15/03	<u>Amount</u> 1	<u>Factor</u> 25	<u>Analyst</u> CK	Method 8021B
	0007724-02		12/15/05	•	20	CA	002115
		Parameter		Result mg/kg		RL	
		Benzene		<0.025	5	0.025	
		Toluene		< 0.025		0.025	
		Ethylbenzene		< 0.025		0.025	
		p/m-Xylene	····	<0.025		0.025	
		o-Xylene		<0.025		0.023	
		Surrog	ates	% Recovered	QC Li	nits (%)	
		aaa-Toluen	e	90%	80	120	
•		Bromofluor	obenzene	102%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

MICHAEL STEWA REMEDIACON P.O. BOX 302 EVERGREEN, CO				Order#: Project: Project Name Location:		175 Energy Field S ge Ranch	Services	
Lab ID:	0308175-05							
Sample ID:	SB-OO (26-28) (312021315						
				8015M				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	<u>Analyzed</u>	Amount	Factor	<u>Analyst</u>	Method	
			(2/15/03	ľ	1	JLH	8015M	
		Parameter		Result mg/kg		RL		
		GRO, C6-C12		483		10.0		
		DRO, >C12-C35	<u></u>	<10.0		10.0		
		TOTAL, C6-C35		483		10.0		
			<u> </u>	i				
		Surroga	ites	% Recovered	QC Limit	is (%)		
		1-Chloroocl		94%		130		
		1-Chlorooct	adecane	79%	70	130		
			<u>8021E</u>	B/5030 BTEX				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method	
	0007724-02		12/15/03	l	25	СК	8021B	
		Parameter		Result mg/kg		RL		
		Benzene		12.6		0.025		
		Toluene		20.0		0.025		
		Ethylbenzene		2.34		0.025		
		p/m-Xylene		5.50		0.025		
		o-Xylene		1.26		0.025		
		Surrog	ates	% Recovered	QC Limit	ts (%)		
		aaa-Toluen		1930%		120		
		Bromofluor	obenzene	106%	80	120	1	
				Appro		lund.	Hune	12/16/03

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina. Lab Tech.

Date

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD. .9

12600 West I-20 East. Odessa, TX 79765 Ph: 915-563-1800

Page 5 of 5

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8015M

Order#: G0308175

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0007736-02			<10.0		
CONTROL	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0007736-03	· · · · · · · · · · · · · · · · · · ·	952	795	83.5%	
MS	SOIL	LAB-1D#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	<u></u>	0308170-06	0	952	1023	107.5%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL. C6-C35-mg/kg		0308170-06	0	952	1034	108.6%	1,1%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL. C6-C35-mg/kg		0007736-05	······································	1000	1006	100.6%	

Ą

Order#: G0308175

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0007724-02		:	< 0.025		
Foluene-mg/kg		0007724-02		· · · · · · · · · · · · · · · · · · ·	< 0.025		
Ethylbenzene-mg/kg		0007724-02			< 0.025	· · · · · · · · · · · · · · · · · · ·	
o/m-Xylene-mg/kg		0007724-02	······································	· · · · · · · · · · · · · · · · · · ·	< 0.025		
J-Xylene-mg/kg		0007724-02	·······		< 0.025		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0308171-01	0	0.1	0.096	96.%	
Yoluene-mg/kg	,	0308171-01	0	0.1	0.093	93.%	
Ethylbenzene-mg/kg		0308171-01	0	0.1	0.093	93.%	
o/m-Xylene-mg/kg		0308171-01	0	0.2	0.186	93.%	
o-Xylene-mg/kg		0308171-01	0	0.1	0.090	90.%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0308171-01	0	0.1	0.092	92.%	4.3%
Foluene-mg/kg		0308171-01	0	0.1	0.089	89.%	4.4%
Ethylbenzene-mg/kg		0308171-01	0	0.1	0.089	89.%	4.4%
/m-Xylene-mg/kg		0308171-01	0	0.2	0.180	90.%	3.3%
o-Xylene-mg/kg		0308171-01	0	0.1	0.087	87.%	3.4%
SRM	SOIL	LAB-ID #	Sample Concentr:	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0007724-05		0.1	0.090	90.%	
Toluene-mg/kg		0007724-05		0.1	0.084	84.%	
Ethylbenzene-mg/kg		0007724-05		0.1	0.082	82.%	
o/m-Xylene-mg/kg		0007724-05		0.2	0.163	81.5%	
o-Xylene-mg/kg		0007724-05		0.1	0.081	81.%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. A

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Order#: G0308175

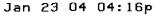
Project: Duke Energy Field Services

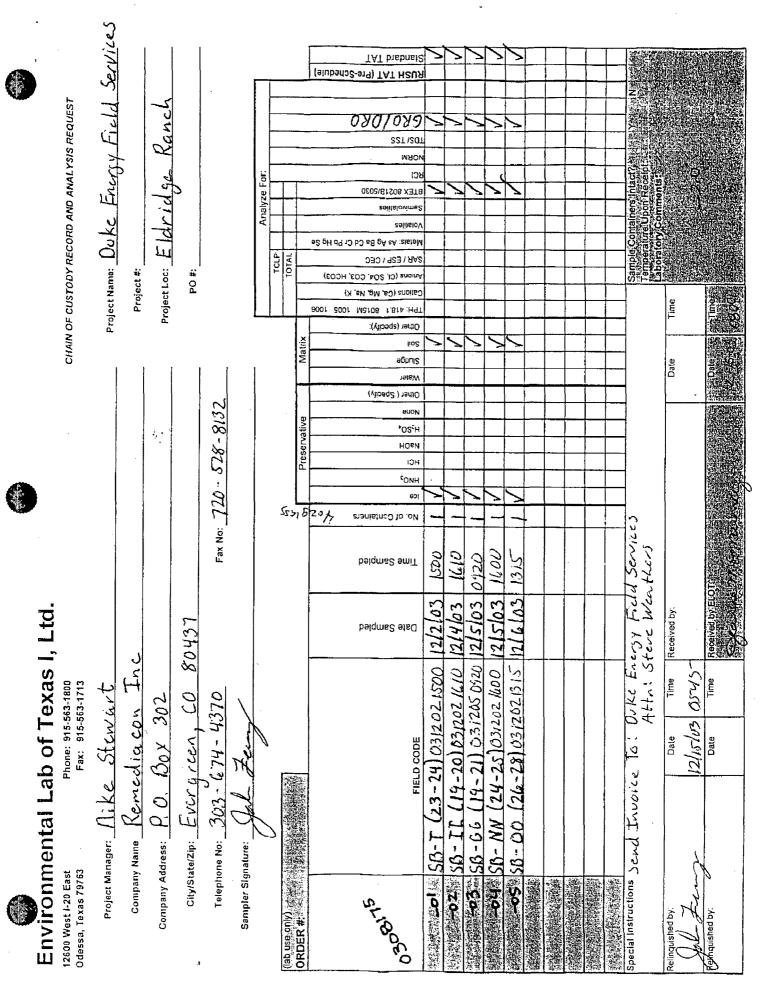
REMEDIACON P.O. BOX 302 EVERGREEN, CO 80437

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SB-T (23-24) 03120	0308175-01	SOIL	12/02/2003	12/15/2003
SB-II (19-20) 03120	0308175-02	SOIL	12/04/2003	12/15/2003
SB-GG (19-21) 031	0308175-03	SOIL	12/05/2003	12/15/2003
SB-NN (24-25) 031	0308175-04	SOIL	12/05/2003	12/15/2003
SB-OO (26-28) 031	0308175-05	SOIL	12/06/2003	12/15/2003

Surrogate recoveries on the 8021B BTEX are outside control limits due to matrix interference. (G0308175-01,02,05)


Environmental Lab of Texas I, Ltd.


The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

Date:

p.11

		DUKE ENER	GY		
/eathers			_12 _	13	11
S	ample Inform	ation	δ ¹³ C per mil	δ ¹³ C _{per mil}	δ ¹³ C per mi
Sample Id	Operator	Location	Saturate	Aromatic	Resin
MW-23	Trident Envir.	Eldridge Ranch	-29.8	-29.6	-29.1
MW-26	Trident Envir.	Eldridge Ranch	-29.9	-29.2	-28.1
MW-27	Trident Envir.	Eldridge Ranch	-29.9	-29.4	-28.2
MW-II	Trident Envir.	Eldridge Ranch	-28.3	-28.5	-27.9
MW-18	Trident Envir.	Eldridge Ranch	-29.4	-29.0	-28.0
MW-8	Trident Envir	Eldridge Ranch	-28.6	-28.3	-27.4
	Si Sample Id MW-23 MW-26 MW-27 MW-11 MW-18	Sample Informa Sample Id Operator MW-23 Trident Envir. MW-26 Trident Envir. MW-27 Trident Envir. MW-11 Trident Envir. MW-18 Trident Envir.	Veathers Sample Information Sample Information Sample Id Operator Location MW-23 Trident Envir. Eldridge Ranch MW-26 Trident Envir. Eldridge Ranch MW-27 Trident Envir. Eldridge Ranch MW-11 Trident Envir. Eldridge Ranch MW-18 Trident Envir. Eldridge Ranch	Sample Information δ ¹³ C per mill Sample Id Operator Location Saturate MW-23 Trident Envir. Eldridge Ranch -29.8 MW-26 Trident Envir. Eldridge Ranch -29.9 MW-27 Trident Envir. Eldridge Ranch -29.9 MW-11 Trident Envir. Eldridge Ranch -29.9 MW-18 Trident Envir. Eldridge Ranch -29.9	VeathersSample Information $\delta^{13}C_{per mil}$ $\delta^{13}C_{per mil}$ Sample Id Operator LocationSaturate $\delta^{13}C_{per mil}$ MW-23Trident Envir.Eldridge Ranch-29.8-29.6MW-26Trident Envir.Eldridge Ranch-29.9-29.2MW-27Trident Envir.Eldridge Ranch-29.9-29.4MW-11Trident Envir.Eldridge Ranch-28.3-28.5MW-18Trident Envir.Eldridge Ranch-29.4-29.0

Table 3. Stable Carbon Isotope Report

Humble Geochemical Services

Oil Topping and Liquid Chromatography Report

						RE	REMEDIACON INC. ELDRIDGE RANCH	CON INC	r; म							
ATTN: Mike Stewart	ke Stewart	_														
HGS	HGS CUST	SPL	OIL	TOPPED	%C15+	ГС	SATUR	RATES	TOPPED %CI5+ LC SATURATES AROMATICS RESINS ASPHALTENES RECOV	TICS	RESI	NS	ASPHAL	TENES	RECOVI	
ID.	ID 1	D	WT. (g)	OIL WT. (mg)(residual)WT. (mg) WT. (mg) % WT. (mg) % WT. (mg) % WT. (mg) %	(residual)	WT. (mg)	WT. (mg)	%	WT. (mg)	%	WT. (mg)	%	WT. (mg)	%	in %	
76260	MW-EE	312151310	9.0136	22.1	0.245	22.1	6.6	44.8%	L'L	34.8%	3.5	15.8%	0.5	2.3%	61.79	_
76261	N-WM	MW-N 312151330 12.0849	12.0849	13.9	0.115	13.9	7.4	53.2%	4.1	29.5%	1.8	12.9%	0.2	1.4%	97.19	
76262	MW-CC	312151355	12.9557	17.2	0.133	17.2	8.1	47.1%	4.9	28.5%	3.5 20.3%	20.3%	0.2	1.2%	97.1%	
																-

HGS project no: 04-2285

Humble Geochemical Services Division

2/19/2004

Analysis Summary

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Client Address	Duke Energy Fie PO Box 302	ld Svcs.	Contact(s):	Mike Stewart	
Suite / Department City Phone Fax	Evergreen (303) 674-4370 (720) 528-8132	State Ext	со	Zip	80437
Work Order No.	2004010030	Hydrocarbon (Hy	/persys)		

			Sample ID	
	04010030-001A	-04010030-002A	204010030-003A	
Compound	0312151310	0312151310	0312151355	A CHARLES
Paraffin, wt%	22.741	28.618	29.075	· · · · ·
Isoparaffin, wt%	28.135	31.822	31.466	
Naphthenics, wt%	43.303	33.490	33.632	
Aromatics, wt%	3.331	4,562	4.321	
Olefins, wt%	2.483	1.507	1.506	
Unknowns, wt%	0.007	ND	ND	
2,2,4-Trimethylpentane, wt%	ND	ND	ND	
Calculated Research Octane	61.75	66.24	66.31	
Lead ppm	N/A	N/A	N/A	
Oxygnates	N/A	N/A	N/A	
N-Hexane, wt%	9.307	11.422	11.438	
Benzene, wt%	0.846	2.111	1.749	
Ethyl Benzene, wt%	0.014	ND	0.007	
Toluene, wt%	1,804	2.301	2.300	
Meta-Xylene, wt%	0.325	0.064	0.146	
Para-Xylene, wt%	0.189	0.086	0.092	
Ortho-Xylene, wt%	0.119	ND	0.027	
Total Xylenes, wt%	0.633	0.15	0.265	
EDB	N/A	N/A	N/A	
EDC	N/A	N/A	N/A	
Ethanol	N/A	N/A	N/A	
Specific Gravity @ 60°F.	0.7234	0.7054	0.7035	
API Gravity @ 60°F.	63.90	68.88	69.42	····
Color	Straw	Straw	Light Straw	
Odor	Sour NGL	Sour NGL	Sour NGL	
Carbon Range	C4 -C11	C4 - C10	C4 - C10	
Major Range	C6 - C8	C5 - C7	C5 - C7	
Naphthalene, wt%	ND	ND	ND	
2-Methyl Naphthalene, wt%	0	ND	ND	
1-Methyl Naphthalene, wt%	0.005	ND	ND	

Remarks:

See Individual Certificate of Analysis

Bob Rannals Hydrocarbon Lab Manager

Certificate of Analysis

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

3/ 26

#

Analysis	Number:
----------	---------

04010030-001A

Sample ID: Project Location: Project Name:	0312151310 MW-EE		Date of Sample: Time Sampled: Date Sample Analyzed:	12/15/03 13:10 01/06/04		
Client Address Suite / Department	Duke Energy Field S PO Box 302 0	vcs.	Contact(s):	Mike Stew	rart	
City Phone Fax	Evergreen (303) 674-4370 (720) 528-8132	Ext	State	со	Zip	80437
Color: Specific Gravity @ 60° F.	Straw 0.7234		Odor: API @ 60° F.	Sour NGL 63.90		
Carbon Range	C ₄ -C ₁₁		Major Range	C ₆ - C ₈		
Paraffin Isoparaffins Naphthenics Aromatics Olefins Unknowns 2,2,4-Tri Methylpentane Calculated Research Octane Lead/Manganese Oxygnates C ₁₇ Pristane Naphthalene 1-Methyl Naphthalene	22.741 28.135 43.303 3.331 2.483 0.007 ND 61.75 N/A N/A N/A N/A ND ND ND ND	wt% wt% wt% wt% wt% wt% wt% wt% wt%	N-Hexane Benzene Ethyl Benzene Toluene Meta-Xylene Para-Xylene Ortho-Xylene Xylenes EDB EDC Ethanol C ₁₈ Phytane 2-Methyl Naphthalene	9.307 0.846 0.014 1.804 0.325 0.189 0.119 0.633 N/A N/A N/A N/A N/A N/D	wt% wt% wt% wt% wt% wt% ppm wt% wt% wt%	
Commenter	Gasoline Range: Diesel Range:	C_4 - C_{13} Indicators: C_7 - C_{22} Indicators:	2,2,4-TMP; MTBE; Olefins, No Olefins, Pristane, Phyta No Olefins, Light & Heavies	ne		

Comments:

Bob Rannals Hydrocarbon Lab Manager

P.I.A.N.O. ANALYSIS SOUTHERN PETROLEUM LABORATORIES, INC.

Sample: 010030-001A MW-EE . File: CAPJF2 Calibration File: MW-EE_LI Analyzed on: 01-06-2004 Normalized to 100.00% Processed 116 Peaks

Composite Report

Hydrocarbon Totals by Group Type

-	Type	 Wt %	Vol ·%	Mol %
Total	Paraffins:	22.741	24.379	23.468
Total	Iso-paraffins:	28.135	29.844	27,624
Total	Naphthenes:	43,303	40.592	43.129
Total	'Aromatics:	3.331	2,744	3.465
Total	Olefins:	2.483	2.435	2.309
Total	C26 FLUS	0.000	0.000	0.000
Total	Unknowns:	0.007	0.005	0,005
	Total:	100.000	100.000	100.000

Totals by Carbon Number

Group	Wt %	Vol %	Mol %	Ave. Mw.	Ave. Sp Gr.
				·	
Methane	0.000.	0.000	0.000	0.000	0 . 000
Ethane	. 0.000	0,000	0.000	0.000	0.000
Fropane	0.000	0.000	0.000	0,000	0.000
Butanes:	0.123	0.153	0.199	58.124	0.576
Pentanes:	4.157	4.662	5.453	71.854	0.639
Hexanes:	34.729	35.343	38.458	85.108	0.704
Heptanes:	43,951	43.336	41.893	98.878	0.727
Octanes:	14.692	14.219	12.278	112.779	0.741
Nonanes:	2.155	2.105	1.590	127.679	0.734
Decanes:	0.175	0.168	0.117	141.307	0.747
C11's:	0.013	0.010	0.008	150.076	0.868
C12's:	0.000	0.000	· 0.000	0.000	0.000
C13's:	0.000	0.000	0.000	0.000	0.000
C14's:	0.000	0.000	0.000	0.000	0.000
C15's:	0.000	0.000	0.000	0.000	0.000
C16's:	0.000	0.000	0.000	0.000	0.000
C17's:	0.000	0.000	0.000	0.000	0.000
C18's:	0.000	0.000	0.000	0.000	0.000
C197s:	0.000	0.000	0.000	0.000	0.000
C20's:	0.000	0.000	0.000	0.000	0.000
C21's:	0.000	0.000	0.000	0.000	0.000
C22's:	0.000	0.000	0.000	0.000	0.000
C23's:	0.000	0.000	0.000	0.000	0,000
C24's:	0.000	0.000	0.000	0.000	0.000
C25's:	0.000	0.000	0.000	0.000	0.000
C26's:	0.000	0.000	0.000	0.000	0.000
C26 PLUS	0.000	0.000	0.000	*****	
Unknowns:	0.007	0.005	0.005	t.	
Total:	100.000	100.000	100.000	95.659	0.717

Sample: 010030-001A MW-EE CAPJF2 File: Calibration File: MW-EE_LI

Analyzed on: 01-06-2004 Normalized to 100.00% Processed 116 Peaks

Types by Carbon Number

	1.1 2"r		<u>1942 m c 42 m</u>	<u>r</u>
Paraffins:	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C24 C25 C26	0.000 0.000 0.106 2.459 9.307 8.375 2.194 0.272 0.028 0.000 0	0.000 0.000 0.132 2.814 10.116 3.780 2.238 0.272 0.028 0.000	0.000 0.000 0.172 3.212 10.178 7.877 1.810 0.200 0.019 0.000
Iso-paraffins:	C4 C5 C7 C8 C9 C10 C11 C12 C14 C15 C16 C17 C16 C17 C19 C12 C14 C16 C12 C12 C14 C15 C16 C12 C12 C14 C15 C12 C12 C14 C15 C12 C14 C15 C15 C12 C12 C14 C15 C12 C12 C14 C15 C15 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	$\begin{array}{c} 0.016\\ 1.100\\ 10.001\\ 11.428\\ 4.167\\ 1.295\\ 0.126\\ 0.000\\ $	$\begin{array}{c} 0.021\\ 1.272\\ 10.897\\ 11.969\\ 4.273\\ 1.289\\ 0.124\\ 0.000\\ $	$\begin{array}{c} 0.026\\ 1.437\\ 10.939\\ 10.749\\ 3.438\\ 0.952\\ 0.084\\ 0.000\\ $
Aromatics:	C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C16 C17 C18	0.846 1.804 0.647 0.008 0.020 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.690 \\ 1.492 \\ 0.535 \\ 0.007 \\ 0.016 \\ 0.003 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	1.021 1.846 0.575 0.006 0.014 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1-15-04;10:38 ;SPL HOUSTON	C20 C21 C22 C23 C24 C25 C26	0.000 0.000 0.000 0.000 0.000 0.000 0.000	;7 0:000 0.000 0.000 0.000 0.000 0.000 0.000	136606035 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Naphthenes:	C5 C6 C7 C8 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C21 C22 C23 C22 C23 C24 C25 C26	0.599 14.574 20.285 7.259 0.579 0.000	$\begin{array}{c} 0.576\\ 13.640\\ 19.077\\ 6.756\\ 0.537\\ 0.000\\ 0.007\\ 0.000\\ $	0.804 16.321 19.471 6.096 0.432 0.000
Olefins:	C4 C5 C6 C7 C8 C9	0.000 0.000 2.058 0.425 0.000	0.000 0.000 2.019 0.417 0.000	0.000 0.000 1.950 0.359 0.000

1-15-04;10:38 ;SPL HOUSTON

F.I.A.N.U. ANALYSIS SOUTHERN PETROLEUM LABORATORIES, INC.

Sample:010030-001A MW-EEAnalyzed on: 01-06-2004File:CAPJF2Normalized to 100.00%Calibration File:MW-EE_LIProcessed 116 Peaks

Boiling Point Distribution Data

<u>Wt.</u>	<u>Percent Off</u>	deq.C.	 <u>Vol.</u>	Percent Of	<u>f deq.C.</u>
IBP	(0.5%)	27.84	IBP	(0.5%)	27.84
	10.0	60.26		10.0	60.26
	20.0	68.73		20.0	68.73
	30.0	80.09		30.0	71.80
	40.0	86.06		40.0	80.72
	50.0	91.72		50.0	91.72
	60.0	98.42		60.0	98.42
-a .	70.0	100.93		70.0	100.93
	80.0	106.84		80.0	103.47
	90.0	119.36		90.0	117.71
FBP	(99.5%)	150.82	FBP	(99,5%)	148.50

<u>Research Octane Number = 61.75</u>

(Calculated from Individual Component Values)

Contribution to Total by:

Paraffins:	3.26
Iso-paraffins:	18.22
Aromatics:	4.01
Naphthenes:	34.33
Olefins:	1.92

WTZ Hydrogen = Not Calculated

1-15-04;10:38 ;SPL HOUSTON

P.I.A.N.U. ANALYSIS SOUTHERN PETROLEUM LABORATORIES, INC.

8/ 26

Sample: 010030-001A MW-EE File: CAPJF2 Calibration File: MW-EE_LI Analyzed on: 01-06-2004 Normalized to 100.00% Processed 116 Peaks

Components Listed in Chromatographic Order

5	<u>k</u> #	Min.	Index	Component	Area	Wt%			
	1	9.18	367.6	i-Butane	1482	0.016	0.021	0.026	0.43
	2	9.6Q	400.0	n-Butane	9682	0.106	0.132	0.172	0.00
	З	11.17	474.9	i-Pentane	99655	1.100	1.272	1.437	0.53
	4	12.02	500.0	n-Pentane	219297	2.459	2.814	3.212	0.00
. ·	5	13.63	536.8	2,2-Dimethylbutane	. 19770	0.211	0.233	0.231	0.45
	6	15.32	565.0	Cyclopentane	53818	0.599	0.576	0.804	0.18
	7	15.42	566.5	2,3-Dimethylbutane	66847	0.691	0.749	0.756	0.12
	8	15.68	570.3	2-Methylpentane	492428	5.286	5.801	5.781	0.06
	9	16.73	584.0	3-Methylpentane	349869	3.813	4.114	4:170	0.07
	10	18.15	600.0	n-Hexane	869306	9.307	10.116	10.173	0.00
									•
	11	20.50	626.9	2,2-Dimethylpentane	29502	0.312	0.332	0.294	0.22.
- 1	12	20.72	629.1	Methylcyclopentane	552634	6.029	5.772	6.751	0.06
	13	21.13	633.3		53215	0.558	0.594	0.525	0.30
	14	21.73	639.1	Cyclic Diolefin or Triolefin	8467	0.090	0.091	0.087	0.16
	15	23.33	653.3	Benzene	88193	0.846	0.690	1.021	0.25
1	16	24.00	658.7	3,3-Dimethylpentane	21862	0.233	0.241	0.219	0.17
	17	24.42	662.0	Cyclohexane	826129	8.546	7.868	9.570	0.37
	18	25,57	670.7	2-Methylhexane	376943	4.028	4.254	3.788	0.33
	1.9	25.78	672:3	2,3-Dimethylpentane	123370	1.275	1.314	1.199	
	20	26.13	674.8	1,1-Dimethylcyclopentane	93326	0.961	0.913	0.923	0.19
۲ ۲	21	26.68	678.7	3-Methylhexane	429895	4.616	4.815	4.342	0.25
- 2	22	27.52	684.3	1c,3-Dimethylcyclopentane	177844	1.809	1.741	1.737	0.05
. 2	33	27.90	686.7	1t,3-Dimethylcyclopentane	160150	1.730	1.656	1.661	0.24
	24	28.07	687.8	3-Ethylpentane	37259	0,407	0.418	0.383	0.21
2	25	28.27	689.1	1t,2-Dimethylcyclopentane	270855	2.793	2.664	2.681	0.21
	26	30.07	700.0	n-Heptane	785427	8.375	8.780	7.877	0.00
1	27	32.93	720.7	Methylcyclohexane	1226368	12.620	11.756	12.113	0.16
2	8.	33.40	723.9	2,2-Dimethylhexane	85716	0.905	0.933	0.747	0.29
2	9	34.70	732.4	035	59427	0:634	0.620	0.608	0.16
Э	0	34.87	733.4	Ethylcyclopentane	36246	0.372	0.348	0.357	0.29
								· .	
3	31	35.17	735.3	2,5-Dimethylhexane	45118	0.453	0.468	0.374	0.10
	2	36.05	740.7	1c,2t,4-Trimethylcyclopentane	74129	0.756	0.709	0.635	0.12
	3	36.28	742.1	038	12884	0.137	0.134	0.132	0.13
	}4	37.23	747.7	039	70435	0.751	0.735	0.721	0.27
	35	37.73	750.6	2,3,4-Trimethylpentane	2342	0.025	0.025	0.021	0.09
	6	38.37	754.2	Toluene	188015	1.804	1,492	1.846	0,48
	7	39.63	761.1	2,3-Dimethylhexane	25412	0.282	0.284	0.233	0.40
	8	39.75	761.7	1,1,2-Trimethylcyclopentane	31276	0.334	0.309	0.280	0.03
	39	40.33	764.8	046	739	0.008	0.008	0.008	0.11
4	0.	40.73	766.9	2-Methylheptane	171036	1.831	1.881	1.511	0.00
									· .

5

File: CAPJE2 (010030-001A MW-EE)

.....

p. 2

#

9/ 26

	<u>pk#</u>	Min:	Index	Component	Area	WtZ	Vol%	Mol%	Shift	
δų.	41	41.02	768.4	4-Methylheptane	56269	0.600	0.610	0.495	0.26	
	42	41.23	769.5	1c,2c,3-Trimethylcyclopentane	6617	0.071	0.066	0.059	0.04	
	43	41.87	772,7		6658	0.071	0.072	0.059	0.44	
	44	42.17	774.2	1t,3-Dimethylcyclohexane	106032	1.131	1.063	0,950	0.04	
	45	42.45	775.5	1c,2t,4-Trimethylcyclopentane	187966	2.004	1.865	1.683	0.25	
	46	42.83	777.4	1t,4-Dimethylcyclohexane	63912	0.682	0.641	0.572	0.03	
	47	43.95	782.8		27293	0.291		0.279	0.13	
	48	44.37	784.7		1573	0.017	0.017	0.012	0,48	
	49	44.70	786.3		12619	0.135	0.126	0.113	0.17	
	50		788.3	1,4-Octadiene	10788	0.115	0.108	0.098	0.44	
	51	45.40	789.5	2,3,5-Trimethylhexane	25213	0.269	0.267	0.198	0.07	
	52	45.87	791.6	Octene-1	3856	0.041	0.041	0.035	0.47	
	53	46.45	794.2	1t,2-Dimethylcyclohexane	60894	0.649	0.600	0,545	0.05	
	54	47.80	800.0	n-Octane	209478	2.194	2.238	1.810	0.00	
•	55	48.07	801.5	049	29089	0.310	0.309	0.261	0.41	
	56	49.80	811.0	N1	4591	0,049	0.045	0.041	0.11	
	57	51,22	818.5	c-Octene-2	2214	0.024	0.023	0.020	0.36	
	58	51.75	821.2	2,2,4-Trimethylhexane	1810	0.019	0.019	0.014	0.50	
	59	52.25	823.8	N2	2024	0.022	0,020	0.018	0.05	
	60	52.67	825.8	2,2-Dimethylheptane	2865	0.031	0.031	0.022	0.05	
	61	53.75	831.2	lc,2-Dimethylcyclohexane	12627	0.135	0.121	0.113	0.02 ·	
	62	55.12	837.8	n-Propylcyclopentane	75746	0.808	0:746	0.678	0.11	
	63	55.43	839.3	2,4-Dimethylheptane	21709	0.231	0.232	0,170	0.19	
	64	55.95	841.7	N4	1273	0:014	0.012	0.011	0.06	
	65	56.47	844.1		23373	0.249	0.228	0.209	0.46	
	66 .	57.07	846.9	3,3-Dimethylheptane	17643	0.188	0.186	0.138	0.00	
	67	57.45	848.6	1c,3c,5-Trimethylcyclohexane	3377	0.036	0.034	0.027	0.04	
	68	57.70	849.8	2,6-Dimethylheptane	1973	0.021	0.021	0.015	0.03	
	69	58.00	851.1	NS	3600	0.038	0.035	0.032	0.02	
	70	58.37	852.8	NG	1468	0.016	0.014	0,013	0.05	
•	71	59.28	856.8	Ethylbenzene	1419	0.014	0.012	0.013	0.61	
	72	59.58	858.1	1,1,4-Trimethylcyclohexane	17392	0.185	0.172	0,138	0.50	1
	73	60.02	860.0		15832	0.169	0.155		0.43	
		60.50	862.0	13	2404	0.026	0.025	0.019	0.26	
		60.87	863.6	N8	828	0.009	0.008	0.007	0.20	
	76	61.40	865.8		32070	0.325	0.269	0.288	0.15	
•		61,73	867.2		18624	0.189	0.157	0.167	0.06	
	78	62.52	870.5	N10	2174	0.023	0.021	0.017	0.42	
		62.77	871.5	14	2120	0.023	0.022	0.017	0.29	
	80	63.42	874.2	4-Methyloctane	9968	0.106	0.106	0.078	0.05	
	81	63.63	875.0	2-Methyloctane	12731	0.136	0.136	0.100	0.08	
	82		877.4	Ni1	1297	0.014	0.013	0.010	0.08	
	83	64.77	879.5	3-Ethylheptane	4951	0.053	0.052	0.039	0.24	
	84	64.95	880.3	3-Methyloctane	15418	0.164	0.164	0.121	0.04	
	85	65.68	883.1	3,3-Diethylpentane	483	0.005	0.005	0.004	0.08	
		66.03	884.5	o-Xylene	11661	0.119	0.097	0.106	0.38	
	87	67.10	888.5	N12	3630	0.039	0.036	0.029	0.25	
	88	67.32	889.4	N13	10406	0.111	0.102	0.083	0.47	
	89	67.75	891.0	1-Nonene	5623	0.060	0.059	0.045	0.00	
in .	90	68.53	833.3	i-Butylcyclopentane	349	0.004	0.003	0.043		
Ers F	r 29	చాడు బాయా	ਅਤੇ ਕੀ ਅਤੇ ਸ਼ਾਜੀ	a wavyaaysasysiivallu	942	V# V9"f	^" <u>^</u> 00	v.vv3	0.02	

,

File: CAPJF2 (010030-001A MW-EE)

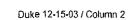
10/ 26

· · · · · ·	<u>p</u> k绯	Min.	Index	Component		Area	WtZ	Vol%	Mol%	Shift
	91		897.7	N16	· · · · · · · · · · · · · · · · · · ·	814	0.009	0.008	0.006	0.20
	92	70.03	899.4	IÐ		620	0.007	0.006	0.005	0.09
	93	70.20	900.0	n-Nonane .	4	26182	0.272	0.272	0.200	0.00
	94	70.72	903.8	1,1-Methylethylcyclohexane		6469	0.069	0.067	'ð.051	0.47
	95	71.17	907.2	t-Nonene-2		2030	0.022	0.021	0.016	0.05
	96	72.53	917.1	N19		3016	0.032	0.029	0.024	0.52
	97	72.88	919.6	N20		1673	0.018	0.016	0.013	0.21
	98	73.45	923.6	i-Propylcyclohexane		348	0.004	0.003	0,003	0.02
	99	74.33	929.8	2,6-Dimethyloctane		816	0.009	0.009	0.006	0.46
· .	100	74.65	932.0	2,5-Dimethyloctane	· .	4633	0.049	0.048	0.033	0.25
	101	75.30	936.5	112		794	0.008	0.009	0.006	0.35
	102	76.00	941.3	n-Butylcyclopentane		2514	0.027	0.024	0.020	0.15
	103	77.10	948.8	n-Propylbenzene		863	0.008	0.007	0.006	0.09
	104	78.80	960.1	2,3-Dimethyloctane		880	0.009	0.009	0.006	0.13
	105	79.22	962.8	115		323	0.003	0.003	0.002	0.19
	106	80.08	968.4	4-Methylnonane .		1248	0.013	0.013	0.009	0.30
	107	80.47	970.9	2-Methylnonane		851	0.009	0.009	0.006	0.24
	108	81.37	976.6	3-Methylnonane		1204	0.013	0.013	0.009	0.32
	109	82.73	985.1	120		633	0.007	0.007	0.004	0.16
	110	83,10	987.4	121		464	0.005	0.005	0.003	0.49
	111	85.17	1000.0	n-Decane		2742	0.028	0.028	0.019	0.00
	112	85.87	1006.6	N31		754	0.008	0.007	0.005	0.04
	113		1027.4	1-Methyl-2-i-propylbenzene		837	0.008	0.006	0.005	0.05
	114	97.18	1108.7	1,2,3,5-Tetramethylbenzene		1319	0.012	0.010	0.009	0.00
Sec. 1	115		1208.2	?		631	0.007	0.005	0.005	UNK
	116	112.22	1277.5	1-Methylnaphthalene		427	0,005	0.003	0.003	0.18

04010030-002A

Analysis Number:

Certificate of Analysis


HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Sample ID:	0312151310		Date of Sample:	12/15/03		
Project #:			Time Sampled:	13:30		
Project Name:	MW-N		Date Sample Analyzed:	01/06/04		
Client Address Suite / Department	Duke Energy Field PO Box 302 0	Svcs.	Contact(s):	Mike Stew	art	
City	Evergreen		State	со	Zip	80437
Phone	(303) 674-4370	Ext	Otate	00	Σih	00437
Fax	(720) 528-8132			•		
Color:	Straw		Odor:	Sour NGL		
*Specific Gravity @ 60° F.	0.7054		*API @ 60° F.	68.88		
Carbon Range	C ₄ - C ₁₀		Major Range	Ċ ₅ - C ₇		
Paraffin	28.618	wt%	N-Hexane	11.422	wt%	
Isoparaffins	31.822	wt%	Benzene	2.111	wt%	
Naphthenics	33.490	wt%	Ethyl Benzene	ND	wt%	
Aromatics	4.562	wt%	Toluene	2.301	wt%	
Olefins	1.507	wt%	Meta-Xylene	0.064	wt%	
Unknowns	ND	wt%	Para-Xylene	0.086	wt%	
2,2,4-Tri Methylpentane	ND	wt%	Ortho-Xylene	ND	wt%	
			Xylenes	0.15	wt%	
Calculated Research Octane	66.24		EDB	N/A	ppm	
Lead/Manganese	N/A	ppm	EDC	N/A	ppm	
Oxygnates	N/A	wt%	Ethanol/Meoh	N/A	wt%	
C ₁₇	ND	wt%	C ₁₈	ND	wt%	
Pristane	ND	wt%	Phytane	ND	wt%	
Naphthalene	ND	wt%	2-Methyl Naphthalene	ND	wt%	
1-Methyl Naphthalene	ND	wt%				

Gasoline Range:	C ₄ -C ₁₃ Indicators:	2,2,4-TMP; MTBE; Olefins, Lead			
Diesel Range:	C7-C22 Indicators:	No Olefins, Pristane, Phytane			
Crude/Condensate Range: C2 - C25+: Indicators: No Olefins, Light & Heavies					
Heavy Oil:	C20+ waxy, strong n-	parrafins			

Comments:

Bob Rannals Hydrocarbon Lab Manager

.

12/ 26

P.I.A.N.D. ANALYSIS SOUTHERN PETROLEUM LABORATORIES, INC.

Sample: 010030-002A MW-N File: CAPJF3 Calibration File: MW-N_LIQ

Analyzed on: 01-06-2004 Normalized to 100.00% Processed 86 Peaks

Composite Report

<u>Hydrocarbon</u>	Totals b	<u>z Grou</u>	p Type
Туре		Vol %	Mol %
Total Paraffins: Total Iso-paraffins: Total Naphthenes: Total Aromatics: Total Olefins: Total C26 PLUS Total Unknowns: Total:	28.618 31.822 33.490 4.562 1.507 0.000 0.000 100.000	· · · · · · · · · · · · · · · · · · ·	30.431 31.457 32.123 4.623 1.305 0.000 0.000

Totals by Carbon Number

Group	Wt %	Vol %	Mol X	Ave. Mw.	Ave. Sp Gr.
Methane	0.000	0.000	0.000	0.000	0.000
Ethane	0.000	0.000	0.000	0.000	0.000
Propane	0,000	0.000	0.000	0.000	0.000
Butanes:	1.083	1.311	1.634	58.124	0.577
Pentanes:	16.670	18.411	20.304	71.985	0.632
Hexanes:	42.296	42.124	43.611	85.036	0.701
Heptanes:	31.315	29.949	27.837	98.633	0.730
Octanes:	7.696	7.309	5.969	113.051	0.735
Nonanes:	0.915	0.872	0.628	127.768	0.733
Decanes:	0.025	0.024	0.015	142.286	0.730
C11's:	0.000	0.000	0.000	0.000	0.000
C12's:	0.000	0.000	0.000	0.000	0.000
C13's:	0.000	0.000	0.000	0.000	0.000
C14's:	0.000	0.000	. 0.000	0.000	0,000
C15's:	0.000	0.000	0.000	0.000	0.000
C16's:	0.000	0.000	0.000	0.000	0.000
C17's:	0.000	0,000	0.000	0.000	0.000
C18's:	0.000	0.000	. 0.000	0.000	0.000
C19's:	0.000	0.000	0.000	0.000	0.000
C20's:	0.000	0.000	0.000	0.000	0.000
C21's:	0.000	0.000	0.000	0.000	0.000
C22's:	0.000	0.000	0.000	0.000	0.000
C23's:	0.000	0.000	0.000	0.000	0.000
C247s:	0.000	0.000	0.000	0.000	0.000
C25's:	0.000	0.000	0.000	0.000	0.000
C26's:	0.000	0.000	0.000	0.000	0.000
C26 PLUS	0.000	0.000	0.000		
Unknowns:	0.000	0.000	0.000		
Total:	100.000	100.000	100.000	89.388	0.698

1-15-04;10:38 ;SPL HOUSTON

P.I.A.N.U. ANALYSIS SOUTHERN PETROLEUM LABORATORIES, INC.

Sample: 010030-002A MW-N File: CAPJF3 Calibration File: MW-N_LIC

Analyzed on: 01-06-2004 Normalized to 100.00% Processed 86 Peaks

Types	by	Carbon	Mumber	
Paraffins:	$\begin{array}{c} C1\\ C2\\ C3\\ C4\\ C5\\ C6\\ C7\\ C8\\ C9\\ C10\\ C11\\ C12\\ C13\\ C14\\ C15\\ C16\\ C17\\ C18\\ C16\\ C17\\ C18\\ C19\\ C20\\ C21\\ C22\\ C23\\ C24\\ C25\\ C26\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.985\\ 9.588\\ 11.422\\ 5.552\\ 0.967\\ 0.104\\ 0.000\\ 0$	0.000 0.000 1.188 10.686 12.089 5.667 0.961 0.101 0.000	0.000 0.000 1.486 11.652 11.621 4.858 0.743 0.071 0.000
Iso-paraffins:	C4 C5 C6 C7 C10 C11 C12 C13 C14 C15 C14 C15 C17 C12 C14 C15 C17 C12 C12 C14 C15 C12 C12 C14 C15 C12 C14 C15 C12 C14 C15 C12 C14 C15 C15 C14 C15 C15 C14 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	$\begin{array}{c} 0.098\\ 5.746\\ 14.154\\ 8.408\\ 2.799\\ 0.591\\ 0.025\\ 0.000\\ 0$	$\begin{array}{c} 0.123\\ 6.474\\ 15.023\\ 8.576\\ 2.787\\ 0.573\\ 0.024\\ 0.000\\ 0$	$\begin{array}{c} 0.148\\ 6.983\\ 14.401\\ 7.357\\ 2.149\\ 0.404\\ 0.015\\ 0.000\\ 0$
Aromatics;	C6 C7 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18	$\begin{array}{c} 2.111\\ 2.301\\ 0.150\\ 0.000\\ 0.$	$ \begin{array}{c} 1.677\\ 1.853\\ 0.121\\ 0.000\\ 0$	2.370 2.190 0.123 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1-15-04;10:38 ;SPL HOUSTON		20 0.000 21 0.000 22 0.000 23 0.000 24 0.000 25 0.000 26 0.000	; 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000	136606035 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Naphthenes∷		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.245\\ 13.336\\ 12.705\\ 3.152\\ 0.198\\ 0.000\\ $	1.662 15.219 12.369 2.719 0.153 0.000 $0.$
Olefins:	• • • •	C4 0.000 C5 0.006 C6 0.000 C7 1.201 C8 0.300 C9 0.000	0.000 0.005 0.000 1.148 0.288 0.000	0.000 0.007 0.000 1.063 0.236 0.000

14/ 26

1-15-04;10:38 ;SPL HOUSTON

Sample: 010030-002A MW-N File: CAPJF3 Calibration File: MW-N_LIQ Analyzed on: 01-06-2004 Normalized to 100.00% Processed 86 Peaks

Boiling Point Distribution Data

<u>Wt, P</u>	'ercent Off	deq.C.		Vol.	Percent Off	deq.C.
IBP	(0.5%)	-0.50	·•• .	IBP	(0.5%)	-0.50
	10.0	36.06			10.0	36.06
	20.0	60.26			20.0	49.73
	30.0	63.27			30.0	63.27
	40.0	68.73			40.0	68.73
	50.0	71.80			50.0	71.80
	60.0	80.72			60.0	80.72
	70.0	91.85			70.0	91.72
· .	80.0	100.93			80.0	98.42
	90.0	110.63	١		90.0	109.11
FBP	(99.5%)	143.00		FBP	(99.5%)	142,44

Research Octane Number = 66.24

(Calculated from Individual Component Values)

Contribution to Total by:

Paraffins:	9.14
Iso-paraffins:	23.93
Aromatics:	5.14
Naphthenes:	26,86
Olefins:	1.17

WTZ Hydrogen = Not Calculated

1-15-04;10:38 ;SPL HOUSTON ;713 F.I.A.N.U. ANALYSIS

SOUTHERN PETROLEUM LABORATORIES, INC.

Sample: 010030-002A MW-N

File: CAPJF3 Calibration File: MW-N_LIQ Analyzed on: 01-06-2004 Normalized to 100.00% Processed 86 Peaks

;7136606035

Components Listed in Chromatographic Order

pk₿	Min.	Index	Component	Area	WtZ	Vol%	Mol%	Shift
· 1.	9.08	362.0	i-Butane	6673	0.098	0.123	0.148	0.01
2	9.50	400.0	n-Butane	67058	0.985	1.188	1.486	0.00
3	9.72	414.8	2,2-Dimethylpropane	1739	0.025	0.030	0.031	0.30
4	11.05		i-Pentane	387455	5,721	6.444	6.952	0.03
5	11.98	500.0	n-Pentane	639255	9.588	10.686	11.652	0.00
6	12.75	521.6	c-Pentene-2	387	0.006	0.006	0.007	0.63
7	13.48	536.9	2,2-Dimethylbutane	29271	0.419	0.450	0.426	0.52
· 8	15.17	565.2	Cyclopentane	89373	1.330	1.245	1.662	0.04
9	15.27	566.7	2,3-Dimethylbutane	75685	1.047	1.105	1.066	0.10
10	15.52	570.3	2-Methylpentane	531717	7.635	8.159	7,769	0.05
11	16.57	584.0	3-Methylpentane	346565	5.053	5.308	5.141	0.08
12	17.98	600.0	n-Hexane	797447	11.422	12.089	11.621	0.00
13	20.32	626.9	2,2-Dimethylpentane	19643	0.278	0.288	0.243	0.22
14	20.53	629.2	Methylcyclopentane	458814	6.696	6.242	6.976	0.04
15	20.95	633.3	2,4-Dimethylpentane	35329	0.495	0.514	0.433	0.34
16	21.53	639.0	Cyclic Diolefin or Triolefin	5432	0.077	0.076	0.069	0.07
17	23.13	653.2	Benzene	164458	2.111	1.677	2.370	0.26
18	23.80	658.7	3.3-Dimethylpentane	14772	0.211	0.212	0.194	0.16
. 19	24.22	662.0	Cyclohexane	571766	7.913	7.094	8.244	0.35
20	25.37	670.8	2-Methylhexane	202826	2.899	2.982	2.537	0.38
21	25.58	672.4	2,3-Dimethylpentane	70695	0.977	0.981	0.855	0.26
22	25.93	674.9	1,1-Dimethylcyclopentane	54734	0.754	0.698	0.674.	0.13
- 23	26,48	678.7	3-Methylhexane	227080	3-262	3.313	2.854	0.18
24	27,33	684.4	<pre>1c,3-Dimethylcyclopentane</pre>	99396	1.353	1.268	1.208	0.24
25	27.70	686.8	1t,3-Dimethylcyclopentane	. 87634	1.266	1.180	1.131	0.33
26	27.88	688.0	3-Ethylpentane	19542	0.285	0.285	0.250	0.41
27	28.07	689.2	<pre>1t,2-Dimethylcyclopentane</pre>	147969	2.041	1.896	1.823	0.13
. 28	29.85	700.0	n-Heptane	389189	5.552	5.667	4,858	0.00.
29	32.60	720.0	1c,2-Dimethylcyclopentane	14750	0.210	0.201	0.188	0.11
30	32.72	720.8	Methylcyclohexane	581601	8.007	7.263	7.150	0.11
31	33.20	724.1	2,2-Dimethylhexane	39774	0,562	0.564	0.431	0.46
32	34.50		035	26974	0.385	0.367	0.344	0.34
33	34.58	733.7	Ethylcyclopentane	16051	0.220	0.201	0.197	0.00
34	34.98	735.6	2,5-Dimethylhexane	18836	0.253	0.254	0.194	0.18
35	35.85	740.9	3,3-Dimethylhexane	32457	0.463	0.455	0.355	0.29
36	36.08	742.3	038	5559	0.079	0.076	0.071	0.31
37	37.03	747.9	039	30631	0.437	0.417	0.390	0.08
38	37.52	750.7	2,3,4-Trimethylpentane	.852	0.012	0.012	0.009	0.00
39	38.15	754.3	Toluene	179244	2.301	1.853	2.190	0.57
40	39.42	761.2	2,3-Dimethylhexane	11885	0.177	0.173	0.136	0.50

1~15-04;10:38 ;SPL HOUSTON

File: CAPJF3 (010030-002A MW-N)

;7136606035

p. 2

17/ 26

	pk#	<u>M</u> in.	Index	Component	Area	WtZ	Vol%	Mol%	Shift
	41	39.53	761.8		13451		0.173	0.150	0.12
	42	40.52	767.0		67217	0.963	0.963	0.739	0:09
	43	40.80	768.5		23334	0.333	0.330	0.256	0.35
	44	41.12	770.1	1c,2c,3-Trimethylcyclopentane	5910	0.084	0.077	0.066	
	45	41,62	772.6	3-Methylheptane	2597	0.037	0.037	0_028	0.51
	46	41.93	774.2	1t,3-Dimethylcyclohexane	40531		0.529	0.452	0.03
	47	42.23	775.7		77627	1.107	1.003	0.865	0.35
	48	42.62	777.5	1t.4-Dimethylcyclohexane	26237	0.374	0.343	0.292	0.12
	49	43.72	782.8	048.	11080	0.158	0.151	0.141	0.12
	50	44.47	786.3	3c-Ethylmethylcyclopentane	4956	0.071	0.064	0.055	0.18
	51	44.92	788.3	1,4-Octadiene	4212	0.060	0.055	0.048	0.36
	52	45.17	.789.5	2,3,5-Trimethylhexane	10260			0.100	0.07
	53	45.63		Octene-1	1525	0.022		0.017	0.47
	54	46.22	794.2	1t,2-Dimethylcyclohexane	24526	0.350	0,315	0.273	0.06
	55	47.57	800.0	n-Octane	69057	0.967	0.961	0.743	0.00
	56	47.83	801.5	049	16842	0.240	0.233	0,188	0.42
	57	49.55	810.8	N1	1684			0.019	0.26
s -	58	50.95	818.2	c-Octene-2	840	0.012	0.012	0.009	0.09
	59	51.50		2,2,4-Trimethylhexane	603	0.009	0.008	0.006	0.31
	60	52.42	825.6	2,2-Dimethylheptane	939	0.013	0.013	0.009	0.17
	ųγ,	02:572	020.0	Ly2 Dimetry ineptane		Λ ^ή ΛΤΟ	V*V10	Veyvo	V. * + 1
	61	53.50	8310	1c,2-Dimethylcyclohexane	4660	0.066	0.058	0.052	0.22
	62	54.88	837.6	n-Propylcyclopentane	29298	0.418	0.376	0.327	0.09
	63	55.22	839.2	2,5-Dimethylheptane	7921	0.113	0.110	0.077	0.28
	64	56.23	843.9	Ethylcyclohexane	9327	0.133	0.113	0.104	0.69
	65	56.85	846.7	3,3-Dimethylheptane	5775	0.082	0.079	0.056	0.18
	66	57.78	850.9	NS	674	0.010	0.009	0.008	0.19
	67	59,42	858.1	1,1,4-Trimethylcyclohexane	, 1753,	0.025	0.023	0.017	0.53
	68	59.82	859.8	N7	5044	0.072	0.064	0.056	0,62
	69	61.38	866.4	m-Xylene	4724	0.064	0.052	0.053	0.68
	70	61.55	867.1	p-Xylene	6310	0.086	0,069	0.071	0.23
	71	62.33	870.3	N9	. 880	0.013	0.011	0.009	0.39
	72	62.60	871.4	14	807	0.012	0.011	0,008	0.43
		63.27	874.1	4-Methyloctane	3347	0.048	0.046	0.033	0.14
	74	63.48	874.9	2-Methyloctane	4469	0.064	0.062	0.044	0.17
	75	64.60	879.3	3-Ethylheptane	1859	0.027	0.025	0.018	0.04
	76	64.82	880.2	3-Methyloctane	5478	0.078	0.076	0.053	0.11
		66.05	884.9	1,1,2-Trimethylcyclohexane	2053	0.029	0.026	0.020	0.04
		66.97	888.4	N12	1306	0.019	0.017	0.013	0.11
		67.17	889.2	N13	4055	0.058	0.052	0.040	0.26
		67.62		1-Nonene	2150	0.031	0.029	0.021	0.16
				- · - · · · · · · · · · · · · · · · · ·					
	81	70.13	900.0	n-Nonane	7451		0.101	0.071	0.00
	82	70.60	903.5	1,1-Methylethylcyclohexane	2639	0.038	0.036	0.026	0.05
	83	72.42	916.7	N19	1208	0.017	0.015	0.012	0.05
	84	72.77	919.2	N20	623	0.009	0.008	0.006	0.65
	85	74.55	931.7	2,5-Dimethyloctane	1739	0.025	0.024	0.015	0.61
	86	75.90	941.0	n-Butylcyclopentane	933	0.013	0.012	0.009	0.55

1-15-04;10:38 ;SPL HOUSTON

Certificate of Analysis

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Analysis Number:	04010030-003A					
Sample ID: Project #:	0312151355		Date of Sample: Time Sampled:	12/05/03 13:55		
Project Name:	MW-CC		Date Sample Analyzed:	01/07/04		
Client	Duke Energy Field S	Svcs.	Contact(s):	Mike Stew	art	
Address	PO Box 302					
Suite / Department	0					
City	Evergreen		State	CO	Zip	80437
Phone	(303) 674-4370	Ext				
Fax	(720) 528-8132					
Color:	Light Straw		Odor:	Sour NGL		
Specific Gravity @ 60° F.	0.7035		API @ 60° F.	69.42		
Carbon Range	C ₄ - C ₁₀		Major Range	C ₅ - C ₇		
Paraffin	29.075	wt%	N-Hexane	11.438	wt%	
Isoparaffins	31.466	wt%	Benzene	1.749	wt%	
Naphthenics	33.632	wt%	Ethyl Benzene	0.007	wt%	
Aromatics	4.321	wt%	Toluene	2.300	wt%	
Olefins	1.506	wt%	Meta-Xylene	0.146	wt%	
Unknowns	ND	wt%	Para-Xylene	0.092	wt%	
2,2,4-Tri Methylpentane	ND	wt%	Ortho-Xylene	0.027	wt%	
			Xylenes	0.265	wt%	
Calculated Research Octane	66.31		EDB	N/A	wt%	
Lead/Manganese	N/A	ppm	EDC	N/A	wt%	
Oxygnates	N/A	wt%	Ethanol	N/A	wt%	
C ₁₇	ND	wt%	C ₁₈	ND	wt%	
Pristane	ND	wt%	Phytane	ND	wt%	
Naphthalene	ND	wt%	2-Methyl Naphthalene	ND	wt%	
1-Methyl Naphthalene	ND	wt%				
	Gasoline Range:	C ₄ -C ₁₃ Indicators:	2,2,4-TMP; MTBE; Olefins,	Lead		
	Diesel Range:	C7-C22 Indicators:	No Olefins, Pristane, Phytar	e		
х	Condensate Range:		No Olefins, Light & Heavies			
	Heavy Oil:	C ₂₀₊				
Comments:						

Bob Rannals Hydrocarbon Lab Manager

İ

P.I.A.N.O. ANALYSIS SOUTHERN PETROLEUM LABORATORIES, INC.

Sample: 010030-003A MW-CC File: CAPJ61 Calibration File: MW-CC_LI Analyzed on: 01-07-2004 Normalized to 100.00% Processed 92 Peaks

<u>Composite Report</u>

Hydrocarbon Totals by Group Type

-	Туре	Wt %	<u>Vol %</u>	Mol %
T+-1	Paraffins:	29.075	31.168	
	Iso-paraffins:	31.466	33.215	30.968
Total	Naphthenes:	33.632	30.725	32.119
	Aromatics:	4.321	3.455	4.370
Total	Olefins:	1.506	1.438	1.312
	C26 FLUS		0.000	0.000
Total	Unknowns:	0.000	0.000	0., <u>0</u> .00
	Total;	100.000	100.000	100.000

<u>Totals by Carbon Number</u>

Group	Wt %	Vol %	Mol %	Ave. Mw.	Ave, Sp Gr.
·	0.000		A AAA		
Methane	0.000	0.000	0.000	. 0.000	0.000
Ethane	0,000	0.000	0,000	0.000	0,000
Propane	0.000	0.000	0.000	0.000	0.000
Butanes:	/ 1/, 311	1.585	1.975	58.124	0.577
Pentanes:	17.064	18.832	20.752	71.992	0.632
Hexanes:	41.776	41.632	42.976	85.104	0.699
Heptanes:	31.055		27.567	. 98.625	· 0.730
Octanes:	7.783	7.334	6.039	112.839	0.740
Nonanes:	0.980	0.934	0.672	127.758	0.732
Decanes:	0.031	0.029	0.019	142.286	0.731
C11's:	0.000	0.000	0.000	0.000	0.000
C12's:	0.000	0.000	0.000	0.000	0.000
C13's:	0.000	0.000	0.000	0.000	0.000
C14's:	0.000	0,000	0.000	0.000	0.000
·C157s:	0,000	0.000	0.000.	0.000	0.000
C16's;	0.000	0.000	0.000	0.000	0.000
C17's:	. 0.000	0.000	0.000	0.000	0.000
C187s:	0.000	0.000	0.000	0.000	0.000
C19's:	0.000	0.000	0.000	0.000	0.000
C20's:	0.000	0.000	0.000	0.000	0.000
C21's:	0,000	0.000	0.000	0.000	0.000
C22's:	0.000	0.000	0.000	0.000	0.000
C23's:	0.000	0.000	0.000	0.000	0.000
C247s:	0.000	0.000	0.000	0.000	0.000
C25's:	0.000	0.000	0.000	0.000	0.000
C26's:	0.000	0.000	.0.000	0.000	0.000
C26 PLUS	0.000	0.000	0.000	V N V V V	V # VVV ·
Unknowns:	0.000	0.000	0.000		
Total:	100.000	100.000	100.000	89.306	0.697

1-15-04;10:38 ;SPL HOUSTON P.I.A.N.C.

Sample: 010030-003A MW-CC		
	1: 010030-003A MW-CC	
File: CAPJG1	CAP 1G1	

Analyzed on: 01-07-2004 Normalized to 100.00% Processed 92 Peaks

.

•	<u>Types</u>	<u>by</u>	Carbon	Number	
Paraffi	ns:	$\begin{array}{c} C1\\ C2\\ C3\\ C4\\ C5\\ C6\\ C7\\ C8\\ C9\\ C10\\ C112\\ C13\\ C14\\ C15\\ C16\\ C17\\ C18\\ C16\\ C17\\ C18\\ C122\\ C20\\ C21\\ C22\\ C22\\ C22\\ C25\\ C26\\ C26\\ C26\\ C26\\ C26\\ C26\\ C26\\ C26$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 1.178\\ 9.803\\ 11.438\\ 5.470\\ 1.066\\ 0.120\\ 0.000\\ 0$	0.000 0.000 1.419 10.911 12.089 5.576 1.058 0.116 0.000	0.000 0.000 1.775 11.895 11.620 4.779 0.817 0.082 0.000
Iso-para	affins:	C4 C5 C7 C7 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C1123 C112 C112	14.117 8.302 2.310 0.620 0.031 0.000 0.000	8.457 2.303 0.600 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.200 7.223 4.342 7.254 1.771 0.423 0.019 0.000 0
Aromatic	: 5: 	C6 C7 C10 C11 C12 C12 C13 C13 C14 C15 C17 C18	1.749 2.300 0.272 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.219 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$1.960 \\ 2.185 \\ 0.224 \\ 0.000 \\ 0.00$

AL.	
)

.

1-15-04;10:38 ;SPL HOUSTON			:	7136606035
1 13 04,10.00 ,012 1012 10	C20	0.000	0.000	0.000
·	C21	0.000	0.000	0.000
	C22	0.000	0.000	0.000
	623	0.000	0,000	0.000
	C24	0.000	0.000	0.000
· · ·	C25	0.000	0.000	0.000
	C26	0.000	0,000	0.000
	020	V VVV	VIVV.	*****
Naphthenes:	C5	1.302	1.217	1.625
Napronencos	53	14.472	13,194	15.055
· · ·	C7	13.702	12,552	12,218
	čá	3.915	3,545	3.055
	C9	0.241	0.217	0.167
	. CIÓ	0.000	0,000	0.000
	C11	0.000	0.000	ŏ, ŎŎŎ
,	C12	0.000	0.000	0.000
•	C13	0.000	0.000	0.000
	C14	0.000	0.000	0.000
			0.000	0.000
	C15	0.000		0.000
	C16	0.000	0.000	
	C17	0.000	0.000	0.000
	C18	0.000	0.000	0.000
· ·	C19	0.000	0.000	0.000
·	C20	0.000	0.000	0.000
	C21	0.000	0.000	0.000
	C22	0.000	0.000	0.000
	C23	0.000	0.000	0.000
•	C24	0.000	0.000	0.000
	C25	0.000	0,000	0.000
	C26	0.000	0.000	0.000
		5 640	A 444	A 444
Olefins:	C4	0.000	0.000	0.000
· ·	. C5	0.006	0.007	0.008
	<u>C6</u>	0.000	0.000	0.000
	. C7	1.280	1.222	1.132
· .	C8	0.219	0.209	. 0.172
	C9	0.000	0.000	0.000
		•		

1-15-04;10:38 ;SPL HOUSTON

SOUTHERN PETROLEUM LABORATORIES, INC.

22/ 26

Sample:	010030-003	BA MW-CC	Analyzed on: 01-07-2004
File:	CAPJG1	· · ·	Normalized to 100.00%
Calibrat	ion File:	MW-CC_LI	Processed 92 Peaks

Boiling Point Distribution Data

<u>Wt.</u>	Percent Off	deq.C.	Vol. Percent Off	deq.C.
IBP	(0.5%)	-0.50	IBP (0.5%)	-0.50
•	10.0	36.06	10.0	36.06
•	20.0	60.26	20.0	49.25
	30.0	63:27		60.26
	40.0	68.73	40.0	68.73
÷	50.0	71.80	. 50.0	71.80
	60.0	80.72	60.0	80.72
· .	70.0	91.85	70.0	91.72
	80.0	100.93	.80.0	98.42
	90.0	110.63	90.0	110.41
FBP	(99.5%)	143.28	FBP (99.5%)	142.44

<u>Research Octane Number = 66.31</u>

(Calculated from Individual Component Values)

Contribution to Total by:

Paraffins:	9.49
Iso-paraffins:	23.78
Aromatics:	4.95
Naphthenes:	26.95
Olefins:	1.15

WTZ Hydrogen = Not Calculated

;7136606035

Sample: 010030-003A MW-CC File: CAPJG1 Calibration File: MW-CC_LI Analyzed on: 01-07-2004 Normalized to 100.00% Processed 92 Peaks

<u>Components Listed in Chromatographic Order</u>

								· .
pkĦ	Min.	Index	Component	Area	Wt%	Vol%	Mol%	<u>Shift</u>
1	9.17	366.1	i-Butane	11243	0.133	0.166	0.200	1.14
2	9.60	400.0	n-Butane	99739	1.178	1.419	1.775	0.00
З	9.82	414.3	2,2-Dimethylpropane	2532	0.030	0.035	0.036	0.76
4	11.17	474.9	i-Pentane	498938	5.923	6.663	7.188	0.53
5	12.02	500.0	n-Pentane	812871	9.803.	10.911	11.895	0.00
6	12.88	521.3	c-Pentene-2	533	0.006	0.007	0.008	0.35
. 7	13.63	536.8	2,2-Dimethylbutane	36205	0.417	0.447	0.423	0.45
8	15.32	565.0	Cyclopentane	108804	1.302	1.217	1.625	0,18
9	15.42	566.5	2,3-Dimethylbutane	94407	1.050	1.107	1.067	0,12
10	15.68	570.3	2-Methylpentane	658862	7,607	8.118	7.728	0.06
					•	•		
11	16.73	584.0	3-Methylpentane	430172	5.043	5.291	5.123	0.07
12	18.15	600.0	n-Hexane	993178	11.438	12.089	11.620	0.00
13	20.50	627.0	2,2-Dimethylpentane	24227	0.276	0.285	0.241	0.25
14	20,72	629.2	Methylcyclopentane	567032	6.654	6.194	6.922	0.03
15	21,13	633.3	2,4-Dimethylpentane	42629	0.481	0.498	0.420	0.33
	21.73	639.1	Cyclic Diolefin or Triolefin	6705	0.077	0.076	0.069	0.20
17	23.33	653.3	Benzene	169420	1.749	1.387	1.960	0.20
18	24.00	658.8	3,3-Dimethylpentane	16920	0.194	0.195	0.169	0.12
19	24.42	662.1	Cyclohexane	702626	7.819	6.999		0.31
20	25.57	670.8	2-Methylhexane	251758	2.894	2.972	2.528	0.40
		•	· · · · · · · · · · · · · · · · · · ·	• •				
21	25.78	672.4	2,3-Dimethylpentane	84760	0.942	0.945	0.823	0.28
22	26.13	674.9	1,1-Dimethylcyclopentane	66935	0.742	0.685	0.661	0.12
23	26.68	678.7	3-Methylhexane	279859	3,233	3.279	2.824	0.18
24	27.53	684.4	1c,3-Dimethylcyclopentane	122788	1.344	1.257		0.24
25	27.90	686.8	1t,3-Dimethylcyclopentane	108449	1.260	1.173	1.124	0.33
26	28.08	688.0	3-Ethylpentane	24155	0.284	0.283	0.248	0.40
27	28.27	689.2	1t,2-Dimethylcyclopentane	183188	2.032	1.885	1.812	0.13
28	30.05	700.0	n-Heptane	476849	5.470	5.576	4,779	0.00
29	32.82	720.0	1c.2-Dimethylcyclopentane	20144	0.231	0.220	0.206	0.08
30	32.93	720.8	Methylcyclohexane	712551	7.887	7.144	7.033	0.09
31	33,42	724.1.	2,2-Dimethylhexane	48007	0,545	0.546	0.418	0.46
32	34.70	732.4	035	34436	0.395	0.376	0.352	0.20
33	34.88	733.5	Ethylcyclopentane	18734	0.207	0.188	0,184	0.15
34	35.18	735.4	2,5-Dimethylhexane	23150	0.250	0.251	0.192	0.03
35	36.07	740.8	1c,2t,4-Trimethylcyclopentane	40056	0.439	0.401	0.343	0.24
36	36.30	742.2	038	6835	0.078	0.075	0.070	0,24
. 37	36.70	744.6	1t,2c,3-Trimethylcyclopentane	1727	0.019	0.017	0.015	0.02
38	37.25	747.8	039	44193	0.507	0.482	0.452	0.17
39	37.68	750.3	2,3,4-Trimethylpentane	1902	0.022	0.021	0.017	0:39
40	38.37	754.2	Toluene	222792	2.300	1,849	2.185	0.46
			·					

File: CAPJG1 (010030-003A MW-CC)

uu 4....

and the second

	pk#	Min.	Index	Component	Area	WtZ	VolZ	Mol%	Shift
5	41	39.65	761.2		14232	0.170	0.166	0.130	0.46
	42	39.77	761.8	1,1,2-Trimethylcyclopentane	15442	0.177	0.160	0.138	0.08
	43	40.75	766.9	2-Methylheptane	83886	0.966	0.965	0.740	0.03
	44	41.03	768.4		27821	0.319	0.316	0.245	0.29
	45	41.35	770.0	1c, 2c, 3-Trimethylcyclopentane	7404	0.085	0.078	0.066	0.50
	46	41.88	772.7	3-Methylheptane	3314	0.038	0.038	0.029	0.42
	47	42.18	774.2	1t,3-Dimethylcyclohexane	51185	0.587	0.537	0.458	0.03
	48	42.48	775.6	1c,2t,4-Trimethylcyclopentane	94325	1,082	0.979	0.844	0.34
	49	42.87	777.5	1t,4-Dimethylcyclohexane	32059	0.368	0.336	0.287	0.11
	50	43.98	782.8	048	13788	0.368			
	30	40±20	/0 <u>4</u> .0		10/00	0.100	0.151	0.141	0.07
	51	44.40	784.8	2,2,5-Trimethylhexane	685	0.008	0.008	0.005	0.42
	52	44.72	786.2	3c-Ethylmethylcyclopentane	6139	0.070	0.064	0.055	0.14
	53	45.18	788.4	1.4-Octadiene	5240	0.060	0.055	0.048	0.33
	54	45.43	789.5	2,3,5-Trimethylhexane	12613	0.145	0.140	0.099	0.10
	55	45.90	791.6	Octene-1	12013	0.021		0.016	0.50
	56	46.50	794.3		30306				
	ас 57	46.00	800.0	1t,2-Dimethylcyclohexane n-Octane		0.348	0.312	0.271	0.15
					94650	1.066	1.058	0.817	0.00
	58	48.12	801.6	049	13890	0.159	0.154		0.32
,		49.83	811.0	N1	2139	0.025	0.022 .	0.019	0.13
	60	51.27	818.5	c-Octene-2	1107	0.013 .	0.012	0.010	0.42
	61	51.78	921.2	2,2,4-Trimethylhexane	. 810	0.009	0.009	0.006	0.48
	62	52.30	823.8	N2	864	0.010	0.003	0.008	0.48
	63	52.70			1311			•	,
			825.8	2,2-Dimethylheptane		0.015	0.015	0.010	0.02
	64	53.82	831.3	1c,2-Dimethylcyclohexane	5886	0.068	0.059	0.053	0.14
2	65	55.17		n-Propylcyclopentane	36822	0.422	0.379	0.330	0.14
	66	55.50	839.4	2,4-Dimethylheptane	9949	0.114	0.111	0.078	0.08
	67	56.52	844.2	Ethylcyclohexane	11572		0.118	0.104	0,44
	68	57.12	846.9	3,3-Dimethylheptane	7321	0.084	0.081	0.057	
	69	57.75	849.8	2,6-Dimethylheptane	687.	0.008	0.008	0.005	0.02
	70	58.05	851.1	N5	801 ·	0.009	0.008	0.007	0.03
	71	59.33	856.8	Ethylbenzene	645	0:007	A AA#	0.006	A 74
	72		858.8				0.006		0.61
	73	59.68	860.0	1,1,4-Trimethylcyclohexane	- 7046	0.081	0.073	0.056	0.28
		60.07		N7	6430	0.074	0.066	0.058	0.43
	74	61.50	866.0	m-Xylene	13429	0.146	0.118	0.121	0.35
	75	61.78	867.2	p-Xylene	8437	0.092	0.074	0.076	0.07
	76	62.57	870.5	N10	1042	0.012	0.011	0.008	0.44
	77	62.82	871.5	14	972	0.011	0.011	0.008	0.31
	78	63.47	874.1	4-Methyloctane	4516	0.052	0.050	0.035	0.03
		63.68	875.0	2-Methyloctane	5851	0.067	0.066	0.046	0.10
	80	64.80	879.4	3-Ethylheptane	2383	0.027	0.026	0.019	0.14
	81	65.00	880.2	3-Methyloctane	6971	0 000	A A77	A A55	: • • • • •
	82	66.10	884.5	o-Xylene	2417	0.080	0.077	0.055	0.07
							0.021	0.022	0.40
	83	67.15	888.5 800 3	N12	1764	0.020	0.018	0.014	0.21
	84 05	67.35	889.3	N13	4843	0.056	0.050	0.039	0.36
	85	67.78		1-Nonene	- 2739	0.031	0.030	0.022	0.11
	86	70.27	900.0	n-Nonane	10686	0.120	0.116	0.082	0.00
	87	70.75	903.6	1,1-Methylethylcyclohexane	- 2857	0.033	0.031	0.023	0.00
	83	72.57	916.9	N19	1456	0.017	0.015	0.012	0.70
	89	72.92	919.4	N20	832	0.010	0.008	0.007	0.38
Č	90	74.68	931.9	2,5-Dimethyloctane	2208	0,025	0.024	0.016	0.36

24/ 26

-

р. З

	" after "beed" "faile	"to Test" after "het" "het" "h	and water that that the set	E E Drift that that
•				

	<u>pk#</u>	Min.	Index			·	 Area	⊎t%	Vol%	Mol%	
	91 92	76.02 78.83	941.2 960.1	n-Butylcyclopentane 2,3-Dimethyloctane	· .	• •	.1149 452	0.013 0.005	0.012 0.005	0.009 0.003	0.34 0.13
		· ·									
	•		. •								
	•							ż			:
								•			
						•					
				•							
							•				
		• .						~ ·			•
•											
			•								•
	. ,			•		•	•		· .		
											•••
								•			
		• •									
	·	* .				•					

¢							1		1	ULARIC	-+11	CK 5	•		
					¥ø	SPL	L, Inc.				SPL V	SPL Work Order No.:	r No.:	SPU-1. 2	2149
Lot the / .			Analysis	Rec	uest	8	hain of C	Analysis Request & Chain of Custody Record	ord					Page_	of
Company: Remediacon	con Inc	J				_0"	Special Instructions:	:suo						Reque	Requested TAT
Address: P. O. Box	0													□ 24hr	Ľ
Evergreen	en CO	80	80437											48hr	Ľ
	t u	720	720-528-8132	132		<u> </u>							·	72hr	<u>t.</u>
Field/Project: UUKC E Eldrid	Duke Energy Field Eldridse Ranch	Field Services anch												A Sta	Standard
Invoice to (company name): Dukc Energy Field	ě): Dukc	Eners		Services	ندحن	* *	erms: Cylinder 5/cyl. All cylinde	* Terms: Cylinders will be rented for \$15/cyl. All cylinders checked out are	2.4	Re	queste	Requested Analysis	lysis	Other	ler
Contact: Steve Weathers Phone/Fax: 303-605-1718	cathers 5-1718					\$ \$	be returned wit ey contain samp	to be returned within 21 days, whether they contain sample or not. Cylinders	ه م ق					[
Address: 370 17th Street Suite 900	Street	Suit	c 900			2 8 5	not returned after 30 days considered fost and will be	not returned atter 30 days will be considered fost and will be billed at	(,				
Denur	C.D RD	<07.07 KD2.02				<u> </u>			N						
} }	6	Sample	Sample	eoil	odu	to	Cylinder T	Cylinder Tracking Info *	I A			******		* Surcharge	Surcharges May Apply
Sample ID		Time	of	dna	Loon	ds	Cylinder # Da	Date Out Date In						Cor	Comments
0312151310 15	12/15/03 12	1310	0:1			$\overline{\}$			\mathbf{Z}					-MW-	EE
0312 15 1330 12	12/15/b3 13	13.30	0:1	·		$\overline{\}$			Ž					-MU	N
0312 15 1355 12	12/15/03 13	1355	0il			$\overline{\mathbf{A}}$			2	4				MW-C	して
				╡	-	╉			4						
			,						_		-+				
										\mp					
Sampled By-Print Name: John Fergerson	JOWN FO	r Ser	NOS				Cor	Company Name:							
Signature: Jol Zeraca	lance	,					н-Ч 	Trident E	- NV	2470	Environmenta				
Relinquished By-Print Na	Inte: John F	cree	son		Date:			By-Print	ame:	<				Date:	Time:
Signature: Joh Zerger	yan				115/04		1830 Sign	Signature:	W.	N.	シンシッショ	2		1-6-01	/
Relinquished By-Print Name:	He:			<u> </u>	Date:	<u> </u>	Lime: Rec	Received By-Print Name:	ame:					Date:	Time:
				l.			Sig	Signature:			i				
X 8880 Interchange Dr. Houston, TX 77054 (713) 660-0901	iston,TX 77054			33	21Highway 23 B (504) 391-1337	ay 23 E 11-1337	9221Highway 23 Belle Chasse, LA 70037 (504) 391-1337	10037			P.O. Box 3079 L (601) 428-0842	8079 Laurel 0842	P.O. Box 3079 Laurel, MS 39442 (601) 428-0842		
500 Ambassador Caffery Pkwy. Scott, LA 70583	Pkwy. Scott, LA 7	10583		□ ≋	5 US 75	South	1595 US 79 South Carthage, TX 75633	33			459 Hugh	es Dr. Trave	459 Hughes Dr. Traverse City,MI 49686	686	
(331) 23/-4112					(903) 693-6242	3-6242					(616) 947-5777	-5777			

1-15-04;10:38 ;SPL HOUSTON

;7136606035 # 26/ 26

APPENDIX 3

Well Development and Sampling Forms

١

	CLIENT:	Duke E	nergy Field Se	ervices		WELL ID:	MW-1
SI	TE NAME:	Eldi	idge Ranch S	Site		DATE:	12/9/2003
PRO	JECT NO.		<u>F</u> -104	·		SAMPLER:	Van Deventer/Littlejohn / Fergerson
						•••	
PURGING	METHOD:		🗌 Hand Bai	led 🗹 Pu	mp If Pui	mp, Type:	2-Stage Super Purger
SAMPLIN	G METHOD):	🗌 Disposab	le Bailer 🛛	Direct f	from Discha	arge Hose 🔲 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI	LING THE WELL:
Glove:	s 🗹 Alcono	x 🗹 Distill	ed Water Ri	nse 🗌 C	Other:		
				Curfa a a	Diashau		
					Dischar	je ⊡Dru	ms 🗹 Disposal Facility
TOTAL DE	EPTH OF V	VELL:	29.50	Feet Feet			
HEIGHT	JF WATER	COLUMN:	9.76	Feet		4.8	Minimum Gallons to
WELL DIA	METER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND REMARKS
15:37	PURGED	0°	<i>m</i> S/cm	-	mg\L		
					-	-	Began Pumping Well!
15:40	2	18.6	0.64	6.93	2.1		<u> </u>
15:42	4	18.9	0.65	7.36	1.4	-	
15:44	6	19.8	0.64	7.18	1.8	-	
15:47		19.3	0.66	7.08	1.4	-	
15:49	10	19.9	0.66	7.04	1.8	-	
15:51	12	19.5	0.66	6.99	1.9	-	
15:53	14	19.3	0.66	6.94	1.9	-	
15:55	16	19.5	0.65	6.87	1.5	-	
15:56	18 -	19.6	0.66	6.77	_ 2.4	-	
15:58	20	19.6	0.66	6.75	2.2	-	[
16:00	22	19.8	0.66	6.69	2.6	-	
16:02	24	19.9	0.66	6.65	1.9		
16:04	26	19.6	0.66	6.67	1.8	-	
0:27	:Total Time	e (hr:min)	26	:Total Vol ((gal)	0.96	:Flow Rate (gal/min)
SAMP	LE NO.:	Collected S	ample No.:	031209	1625		
ANAL	YSES:	BTEX (802	<u>1</u> -B), Chloric	les			
COMM	IENTS:		-				

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MVV-2
S	ITE NAME:	Eld	ridge Ranch S	Site	-	DATE:	1/13/2004
PRO	DJECT NO.		F-104		-		Van Deventer/Littlejohn / Fergerson
PURGING	G METHOD	:	✓ Hand Bai	iled 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN	IG METHO	D:	🗌 Disposab	le Bailer [Direct	from Discha	arge Hose Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL.
🖂 Glove	s 门 Alcond	ox 🗌 Distil	led Water Ri	nse 🗌 C	Other:		
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drur	ns 🗹 Disposal Facility
		VELL	29.00	Feet		-	
DEPTH T	O WATER:		22.88	Feet			
		COLUMN: 2.0	6.12 Inch	Feet		3.0	Minimum Gallons to purge 3 well volumes
			-	F			(Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
14:18	0	-	_	-	-	-	Begin Hand Bailing
14:22	2	68.0	0.65	6.99	6.3	-	
14:27	4	67.6	0.64	6.85	6.3		
14:34	6	66.7	0.64	6.98	6.2	-	
	<u> </u>						
	<u> </u>						
ļ	[
	· · ·						
							;
0.40	Total Time	(brimin)	E	·Totol \/s	(70)	0.07	
0:16	:Total Time		6	:Total Vol (0.37	:Flow Rate (gal/min)
	LE NO.:	Collected S		040113	1440		
			1-B), Chlorid		0404400		
COMM	AENTS:	Conected L	Suplicate Sar	пріе ію.:	0401132	000	

CLIE	NT: Dul	e Energy Field S	ervices		WELL ID:	MW-3
SITE NA	ME:	Eldridge Ranch S	Site		DATE:	12/10/2003
PROJECT	NO	F-104		-		Van Deventer/Littlejohn / Fergerson
PURGING METH	IOD:	⊡ Hand Ba	iled 🗌 Pu	mp If Pu	mp, Type:	
SAMPLING MET	HOD:	🖸 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:
DESCRIBE EQU	IPMENT DE	CONTAMINATI	ON METH	OD BEFC	RE SAMPI	LING THE WELL:
Gloves 🗌 Al	conox 🗌 D	istilled Water Ri	inse 🗌 C	Other:		······
DISPOSAL MET	HOD OF PU	RGE WATER:	Surface	e Dischar	ge 🗌 Drui	ms 🔽 Disposal Facility
TOTAL DEPTH			Feet			
DEPTH TO WAT HEIGHT OF WA		22.78	Feet		4.1	Minimum Gallons to
WELL DIAMETE						purge 3 well volumes
VOLU	MEL TEMP	COND.	J	DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
		<i>m</i> S/cm	рН	mg\L	Turb	REMARKS
7:31 0			-	-	-	Begin Hand Bailing
7:39 2	18.8	0.68	7.00	4.2		
7:53 4	18.3	0.64	7.10	4.9		
7:58 6	19.2	0.66	7.19	5.4		
8:02 8	19.5	0.66	7.19	6.1	-	
				·		
		···				
0:31 :Total	I Time (hr:min) 8	:Total Vol	L(gal)	0.26	:Flow Rate (gal/min)
SAMPLE NO		ed Sample No.:	031210			
ANALYSES		8021-B), Chlorid	des			
COMMENTS	- - -					······

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-4
S	ITE NAME:	Eld	ridge Ranch S	Site		DATE:	12/10/2003
PRO	DJECT NO.		F-104		-		Van Deventer/Littlejohn / Fergerson
PURGING	G METHOD	:	🗹 Hand Bai	ied 🗌 Pu	Imp If Pu	тр, Туре:	
SAMPLIN		D:	🗸 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	LING THE WELL:
🗹 Glove	es 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 (Other:		
DISPOSA	AL METHOD	OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drui	ms 🗹 Disposal Facility
		VELL:		Feet			
DEPTH T HEIGHT	O WATER: OF WATER	COLUMN:	22.26	Feet Feet		3.7	Minimum Gallons to
		2.0				p	purge 3 well volumes
TIME	VOLUME		COND.	pН	DO	Turb	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
<u></u>	PURGED	°C	<i>m</i> S/cm		mg\L		REMARKS
8:12	0	-			-		Begin Hand Bailing
8:16	2	18.6	0.86	6.88	1.8		
8:20	4	18.7	0.85	6.89	2.0		
8:25	6	18.9	0.87	6.91	2.1	-	
·							
	<u> </u>						
						·	
							<u> </u>
	†		· · · ·				
0:13	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.46	:Flow Rate (gal/min)
L		Collected S		031210			
			1-B), Chlorid			<u>-</u>	<u> </u>
	MENTS:	BTEX (002			·····		<u> </u>
COM							

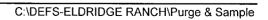
	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-5
SI		Eldr	idge Ranch S	Site		DATE:	12/10/2003
			F-104			SAMPLER:	Van Deventer/Littlejohn / Fergersor
PURGING	METHOD	:	✓ Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN	G METHOD	D:	🗹 Disposab	le Bailer	Direct 1	from Discha	arge Hose Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPL	ING THE WELL:
Gloves	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C)ther:		
DISPOSA		OF PURG	E WATER:	Surface	Discharg	ge 🗌 Drur	ns 🗹 Disposal Facility
TOTAL DE	EPTH OF V	VELL:	27.50	Feet			
DEPTH TO	D WATER:		<u>18.17</u> 9.33	Feet		4.6	Minimum Gallons to
		<u>2.0</u>		reel		4.0	purge 3 well volumes
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
TIME	PURGED		<i>m</i> S/cm	рН	mg\L	Turb	REMARKS
8:34	0		-	-	-	-	Begin Hand Bailing
8:37	2	18.3	0.75	6.90	1.4		· ·
8:40	4	18.8	0.77	6.95	1.4		·
8:44	6	19.0	0.76	6.97	1.6	-	
							· · · · · · · · · · · · · · · · · · ·
···							
							· · · · · · · · · · · · · · · · · · ·
0:10	:Total Time	e (hr:min)	6	:Total Vol ((aal)	0.60	I :Flow Rate (gal/min)
		Collected S		031210			
			1-B), Chloric				
			uplicate "A"		p.: 03121	02000 for E	BTEX

	CLIENT:	Duke E	nergy Field Se	ervices	-	WELL ID:	MW-6	
SI	TE NAME:	Eldr	idge Ranch S	Site	-	DATE	12/10/2003	
PRC	JECT NO.		F-104				: Van Deventer/Littlejohn / Fergerson	
					_			
PURGING	B METHOD:		🗹 Hand Bai	led 🗌 Pu	imp If Pur	mp, Type:		
SAMPLIN		D:	🗸 Disposab	le Bailer [Direct f	rom Disch	arge Hose 🗌 Other:	
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:	
Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:			
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ae 🗌 Dru	ms 🗹 Disposal Facility	
			30.20				·	
DEPTH T	O WATER:		22.00	Feet				
		COLUMN: 2.0	8.20	Feet		4.0	_Minimum Gallons to purge 3 well volumes	
							(Water Column Height x 0.49)	
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	pН	DO _mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
8:55	0	_			-	~	Begin Hand Bailing	
9:00	2	17.9	0.87	6.87	1.6			
9:06	4	18.4	0.86	6.89	1.4			
9:12	6	18.5	0.86	6.92	1.4	-		
9:18	8	18.4	0.85	6.92	1.5	-		
							· · · · · · · · · · · · · · · · · · ·	
							· · · ·	
		·						
0:23	:Total Time		8	:Total Vol	· · · · · ·	0.35	:Flow Rate (gal/min)	
		Collected S		0920		<u> </u>		
ANALYSES: BTEX (8021-B), Chlorides								
COMMENTS:								

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	MW-7					
S	ITE NAME:	Eld	ridge Ranch S	Site	_	DATE:	12/11/2003					
PRO	DJECT NO.		F-104		SAMPLER:	Van Deventer/Littlejohn / Fergerson						
PURGIN	PURGING METHOD: If Hand Bailed Pump If Pump, Type:											
SAMPLING METHOD: Image: Disposable Bailer in Direct from Discharge Hose in Other:												
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:												
Gloves Alconox Distilled Water Rinse Other:												
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility												
			36.20	Feet								
	O WATER: OF WATER		27.57 8.63	Feet Feet		4.2	Minimum Gallons to					
WELL DI	AMETER:	2.0	Inch	•		• • • • •	purge 3 well volumes					
TIME	VOLUME	TEMP.	COND.	nU	DO	Turb	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
	PURGED	°C	<i>m</i> S/cm	рН	_mg\L	Tub	REMARKS					
9:05	0	-	-	-	-	_	Began Hand Bailing!					
9:12	2	17.9	1.07	7.33	2.4	_						
9:19	2.5	17.7	1.06	7.65	5.6	_						
							Well Bailed Dry!					
9:48	3.5	18.5	1.06	7.55	4.9	-						
							Well Bailed Dry!					
10:02	4.5	19.2	1.05	7.51	5.0							
							Well Bailed Dry. Allowed Well					
							Time to Recover Before Collecting					
							Sample!					
0:57	:Total Time	(hr:min)	4.5	:Total Vol	(nal)	0.08	I :Flow Rate (gal/min)					
				031211		0.00						
SAMPLE NO.: Collected Sample No.: 031211 ANALYSES: BTEX (8021-B), Chlorides							······································					
				•								
<i>Q</i> Q (11)			COMMENTS:									

CLIEN	T: Duke E	nergy Field S	ervices	-	WELL ID:	MW-8			
SITE NAM	E:Eld	ridge Ranch S	Site	DATE: 10/8/2003					
PROJECT NO)	F-104		_	SAMPLER:	Van Deventer/Littlejohn / Fergerson			
PURGING METHO	D:	: 🗌 Hand Bailed 🔲 Pump If Pump, Type:							
SAMPLING METH	DD:	🗌 Disposab	arge Hose						
DESCRIBE EQUIP	MENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	-ING THE WELL:			
🗌 Gloves 🗌 Alco	nox 🗌 Distil	led Water Ri	inse 🗌 C	Other:					
DISPOSAL METHO	D OF PURG	E WATER:	Surface	e Dischar	ge 🗌 Drur	ms 🗌 Disposal Facility			
TOTAL DEPTH OF DEPTH TO WATE HEIGHT OF WATE WELL DIAMETER:	R: R COLUMN:	Feet	15.9 Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49						
TIME VOLUM	1	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
				IIIg\L					
					· · ·	· · · · ·			
,									
					· · ·				
						· · · · · · · · · · · · · · · · · · ·			
		[· · ·			
		[
0:00 :Total Ti	0:00 :Total Time (hr:min) 0 :Total Vol					:Flow Rate (gal/min)			
SAMPLE NO.:	Collected S	Sample No.:	031008						
ANALYSES:	BTEX (802	1-B), Chlorid	des						
COMMENTS:	FPH MEAS		ELL. DID		RGE & SAN	IPLE.			

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-9			
SI	ITE NAME:	Eld	ridge Ranch S	Site	_		12/10/2003			
PRC	JECT NO.		F-104		-	SAMPLER	Van Deventer/Littlejohn / Fergerson			
PURGING	G METHOD	:	🗹 Hand Bai	iled 🗌 Pu	mp If Pu	mp, Type:				
SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility										
TOTAL D	EPTH OF V	VELL:	29.80	Feet						
TOTAL DEPTH OF WELL:29.80 FeetDEPTH TO WATER:20.12 FeetHEIGHT OF WATER COLUMN:9.68 Feet4.7Minimum Gallons to										
		COLUMN: 2.0		Feet		4.7	_Minimum Gallons to purge 3 well volumes			
							(Water Column Height x 0.49)			
TIME	VOLUME PURGED		COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
10:22	0	-	-	-	-	-	Begin Hand Bailing			
10:27	2	18.0	0.61	7.16	2.1	-				
. 10:33	4	18.1	0.61	7.25	1.8	-				
10:40	6	18.3	0.60	7.23	2.0	-				
10:44	7	18.5	0.62	7.24	2.0					
0:22 :Total Time (hr:min) 7 :Total Vol (gal) 0.32 :Flow Rate (gal/mir										
SAMP	SAMPLE NO.: Collected Sample No.: 031210						· · · · · · · · · · · · · · · · · · ·			
ANALYSES: BTEX (8021-B), Chlorides										
COMMENTS:										


	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	MW-10		
SI		Eld	ridge Ranch S	Site		DATE:	12/10/2003		
PRC	JECT NO.		F-104		. :		Van Deventer/Littlejohn / Fergerson		
		•							
PURGING	B METHOD	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	• 		
SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Other:									
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
Gloves Alconox Distilled Water Rinse Other:									
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🔲 Drums 🗹 Disposal Facility									
	EPTH OF V	VELL:	33.10	Feet	·				
			23.88 9.22			4.5	Minimum Gallons to		
		2.0		reet		4.5	purge 3 well volumes		
r	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND		
TIME	PURGED	°C	<i>m</i> S/cm	рН	mg\L	Turb	REMARKS		
11:27	0	-	-	-	-	-	Begin Hand Bailing		
11:32	2	18.8	0.84	7.58	0.8	-			
11:36	4	18.8	0.83	7.48	1.6	-			
11:39	6	18.9	0.82	7.33	1.4	-			
11:43	8	19.0	0.82	7.32	1.2	-			
11:46	9	19.2	0.82	7.30	1.1	-			
<u> </u>									
· · · · ·									
0:19	:Total Time		9	:Total Vol		0.47	:Flow Rate (gal/min)		
		Collected S		031210	1150				
ANALYSES: BTEX (8021-B), Chlorides									
COMMENTS:									

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-11
S	ITE NAME:	Eldi	ridge Ranch S	Site		DATE:	10/8/2003
PRC	JECT NO.		<u>F-104</u>		-	SAMPLER:	Van Deventer/Littlejohn / Fergerson
PURGING	G METHOD		🗌 Hand Bai	iled 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN	G METHO	D:	🗌 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
🗌 Glove	s 🗌 Alconc	ox 🗌 Distill	ed Water Ri	nse 🗌 🤇	Other:		
DISPOSA			E WATER.		Dischar		ns 🗌 Disposal Facility
					Discharg		
	EPTH OF V O WATER:		32.70	Feet Feet			
HEIGHT (OF WATER	COLUMN:		Feet		0.0	Minimum Gallons to
WELL DIA	AMETER:	purge 3 well volumes (Water Column Height x 0.49)					
TIME	VOLUME		COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	TOROLD		<u>morem</u>	-	_ mg\L		Begin Hand Bailing
	-						
0:00	:Total Time	e (hr:min)	0	:Total Vol	(gal)	#DIV/0!	:Flow Rate (gal/min)
SAMP	LE NO.:	Collected S	Sample No.:	031008			
ANAL	YSES:	BTEX (802	1-B), Chlorid	les			
COMM	MENTS:	FPH MEAS	URED IN W	/ELL. DID	NOT PUF	RGE & SAM	IPLE

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-12					
S	ITE NAME:	Eldi	ridge Ranch S	Site		DATE:	12/10/2003					
PRC	JECT NO.		F-104				Van Deventer/Littlejohn / Fergerson					
PURGING	PURGING METHOD: If Hand Bailed Pump If Pump, Type:											
SAMPLIN		D :	🗹 Disposab	le Bailer	Direct	from Discha	arge Hose 🗌 Other:					
DESCRIE	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	OD BEFO	RE SAMPI	LING THE WELL:					
Glove	s 🗌 Alconc	ox 🗌 Distill	ed Water Ri	nse 🗌 C	Other:							
DISPOSA) of Purgi	E WATER:	Surface	e Discharo	ae 🗍 Drui	ms 🗵 Disposal Facility					
						,						
DEPTH T	O WATER:		26.82	Feet								
		COLUMN: 2.0	8.98	Feet		4.4	Minimum Gallons to purge 3 well volumes					
							(Water Column Height x 0.49)					
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS					
12:00	0	-	-	-	-	-	Begin Hand Bailing					
12:05	2	19.0	1.54	7.15	0.5	-						
12:10	4	18.9	1.54	7.41	0.4	-	· · · · · · · · · · · · · · · · · · ·					
12:16	6	18.1	1.50	7.25	0.5	-						
12:21	8	18.4	1.51	7.23	0.7	_						
12:24	9	18.4	1.51	7.16	0.8	-						
12:28	10	18.5	1.52	7.11	1.0	-						
12:35	11	18.4	1.51	7.10	0.6	-						
						·····	· · · · · · · · · · · · · · · · · · ·					
						-						
0:35	:Total Time		11	:Total Vol (0.31	:Flow Rate (gal/min)					
	LE NO.:	Collected S		031210	1240							
	ANALYSES: BTEX (8021-B), Chlorides											
COM	IENTS:											

	CLIENT:	Duke E	nergy Field S	ervices	WELL ID: MW-13					
S		Eld	ridge Ranch §	Site	_	DATE:	12/12/2003			
PRO	DJECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson			
PURGING	G METHOD:		Hand Ba	iled 🗌 Pu	imp If Pui	mp, Type:	<u> </u>			
SAMPLIN	IG METHOE	arge Hose 🔲 Other:								
DESCRIE	BE EQUIPMI	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:			
Glove	s 🗌 Alcono	x 🗌 Distill	led Water Ri	nse 🗌 (Other:	·	· · · · · · · · · · · · · · · · · · ·			
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drur	ms 🗹 Disposal Facility			
		/ELL:	37.40	Feet						
	O WATER:	COLUMN	28.50 8.90	Feet Feet		4.4	Minimum Gallons to			
	AMETER:				·		purge 3 well volumes			
	VOLUME	TEMP.	COND.	·	DO	-	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
TIME	PURGED	°C	<i>mS/</i> cm	рН	mg\L	Turb	REMARKS			
7:13	0		-	-	-	-	Begin Hand Bailing			
7:19	1.5	17.5	1.01	6.92	2.3	_				
							Well Bailed Dry!			
8:00	2.8	16.1	0.91	7.06	2.30	-				
							Well Bailed Dry!			
8:37	4	17.8	0.88	7.07	2.2	_				
							Well Bailed Dry. Allowed Well			
						·	Time to Recover Before Collecting			
				· · · ·		·	Sample!			
			. <u> </u>		1					
		_								
		_	· · · ·				· · · · · · · · · · · · · · · · · · ·			
=				<u> </u>						
1:24	:Total Time		4	:Total Vol		0.05	:Flow Rate (gal/min)			
	•		Sample No.:	0850		<u> </u>				
	ANALYSES: BTEX (8021-B), Chlorides									
COM	MENTS:									

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	MW-14						
s	ITE NAME:	Eld	ridge Ranch S	Site	_		12/12/2003						
PRO	DJECT NO.		F-104		_ :	SAMPLER:	Van Deventer/Littlejohn / Fergerson						
PURGIN	PURGING METHOD: If Hand Bailed Pump If Pump, Type:												
SAMPLIN		D:	Disposab	le Bailer	Direct 1	from Discha	arge Hose 🗌 Other:						
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL													
Glove	es 🗌 Alcond	ox 🗌 Distil	led Water Ri	nse 🗌 (Other:								
DISPOSA	AL METHOD	OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drur	ms 🗹 Disposal Facility						
			34.40										
DEPTH T HEIGHT	O WATER: OF WATER	COLUMN:	<u>24.89</u> 9.51			4.7	Minimum Gallons to						
WELL DI	AMETER:	2.0	Inch		·	•	purge 3 well volumes (Water Column Height x 0.49)						
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS						
9:15	0	-	-	-	-	-	Began Hand Bailing!						
9:18	1.8	17.3	0.86	6.96	1.6	_							
							Well Bailed Dry!						
9:49	3.5	17.2	0.84	7.02	2.5	-							
							Well Bailed Dry!						
10:23	5.4	18.0	0.84	7.02	2.2								
							Well Bailed Dry. Allowed Well						
						· · · · · · ·	Time to Recover Before Collecting						
	<u> </u>						Sample!						
			·		-								
						·	· · · ·						
1:08	:Total Time	e (hr:min)	5.4	:Total Vol	(gal)	0.08	:Flow Rate (gal/min)						
SAMF	LE NO.:	Collected S	Sample No.:	031212	1030		· · · · · · · · · · · · · · · · · · ·						
ANAI	ANALYSES: BTEX (8021-B), Chlorides												
COMI	MENTS:												

	CLIENT:	Duke Energy Field Services WELL ID: MW-15										
S	ITE NAME:	Eldi	ridge Ranch S	Site	_	DATE:	12/10/2003					
PRC	DJECT NO.		F-104		_ :		Van Deventer/Littlejohn / Fergerson					
PURGINO	G METHOD:	:	🗹 Hand Bai	led 🗌 Pu	imp If Pui	mp, Type:						
SAMPLIN	SAMPLING METHOD: I Disposable Bailer Direct from Discharge Hose Other:											
DESCRIE	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:												
DISPOSA	DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility											
			38.71									
DEPTH T	O WATER:		27.06	Feet								
	IEIGHT OF WATER COLUMN: 11.65 Feet 5.7 Minimum Gallons to purge 3 well volumes VELL DIAMETER: 2.0 Inch purge 3 well volumes											
							(Water Column Height x 0.49)					
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS					
14:50	0		-	-	-	_	Begin Hand Bailing					
14:55	2	18.3	0.54	7.11	4.8	-						
15:01	. 4	18.7	0.54	7.16	4.8							
15:07	6	17.5	0.53	7.17	5.1	-						
15:10	7	17.6	0.53	7.29	5.3	_						
15:14	8	18.4	0.54	7.10	4.8	-	· ·					
· · ·												
ļ												
·				. <u>.</u>								
0:24	:Total Time	(brimin)	8	·Totol V/ol		0.22	·Elow Poto (col/min)					
h		Collected S		:Total Vol: 031210		0.33	:Flow Rate (gal/min)					
			1-B), Chlorid		1020		· · · · · · · · · · · · · · · · · · ·					
	MENTS:	DTLA (002				· · · · · · · · · · · · · · · · · · ·						
COM												

	CLIENT:	Duke E	nergy Field Se	ervices		WELL ID:	MW-16					
SI		Eldı	ridge Ranch S	Site			1/13/2004					
PRO	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGING	PURGING METHOD: If Pump If Pump, Type:											
SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Differ:												
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:												
Gloves Alconox Distilled Water Rinse Other:												
DISPOSA		OF PURG	E WATER [.]	Surface	Discharo	ae 🗌 Drui	ms 🗹 Disposal Facility					
						,• _ • • •						
DEPTH T	O WATER:		18.72	Feet								
HEIGHT (OF WATER	COLUMN: 2.0	9.30	Feet		4.6	Minimum Gallons to purge 3 well volumes					
			·				(Water Column Height x 0.49)					
TIME	VOLUME PURGED	TEMP. °F	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS					
9:49	0	-	-	-	-	-	Begin Hand Bailing					
9:55	2	64.9	0.70	7.00	3.0							
10:07	4	64.3	0.73	6.98	2.5	-						
10:13	6	63.9	0.73	6.98	2.4	-						
				-								
					· ·							
	-											
		-										
		-										
							· · · · · · · · · · · · · · · · · · ·					
0:24	:Total Time	e (hr:min)	6	:Total Vol ((gal)	0.25	L :Flow Rate (gal/min)					
L		Collected S	· · · · · · · · · · · · · · · · · · ·	040113								
ANALYSES: BTEX (8021-B), Chlorides												
COMMENTS:												

	CLIENT:	Duke E	ervices	- -	WELL ID:	MW-17			
S	ITE NAME:	Eld	ridge Ranch S	Site	-	DATE:	1/13/2004		
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson		
PURGING	METHOD:	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	тр, Туре:			
SAMPLIN	G METHOD	D:	🗹 Disposab	le Bailer [Direct 1	from Discha	arge Hose 🔲 Other:		
DESCRIE	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	ING THE WELL:		
Glove	s 🗌 Alconc	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:				
DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🔲 Drums 🗹 Disposal Facility									
TOTAL D	EPTH OF V	VELL:	27.52	Feet					
DEPTH T	O WATER:	COLUMN	<u>15.94</u> 11.58	Feet Feet		5.7	Minimum Gallons to		
WELL DI	METER:	2.0	Inch	1 001		0.1	purge 3 well volumes		
· · · · ·	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND		
TIME	PURGED		<i>m</i> S/cm	pН	mg\L	Turb	REMARKS		
10:47	0	-	-	-	-		Begin Hand Bailing		
10:51	2	64.7	0.67	7.03	3.9		·		
10:56	4	62.1	0.65	7.02	4.2				
11:02	6	62.1	0.67	7.03	4.0				
ļ									
							·		
ļ									
							· · ·		
0:15	:Total Time	hr:min)	6	:Total Vol		0.40	:Flow Rate (gal/min)		
		Collected S		040113		0.40			
	•		1-B), Chlorid				<u> </u>		
	MENTS:		,, stillerid	·					
		· •							

CLIENT:		Duke Energy Field Services			-	WELL ID: MW-18			
SITE NAME:		Eldridge Ranch Site			-	DATE: 12/10/2003			
PROJECT NO.		F-104			_	SAMPLER:	Van Deventer/Littlejohn / Fergerson		
PURGING	S METHOD	:	🗸 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:			
SAMPLIN		D:	🗸 Disposab	le Bailer [Direct	arge Hose			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
☑ Gloves									
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility									
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Dischar	ge ∐Drur	ms 🔄 Disposal Facility		
TOTAL D	EPTH OF V	VELL:	34.87	Feet					
HEIGHT	O WATER: OF WATER	COLUMN:	23.49 11.38	Feet		5.6	Minimum Gallons to		
		2.0					purge 3 well volumes		
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND		
TIME	PURGED	°C	<i>m</i> S/cm	рН	mg\L	Turb	REMARKS		
10:53	0	-	-	-	-	-	Begin Hand Bailing		
10:58	2	18.7	0.80	7.35	0.4	-			
11:01	4	18.8	0.81	7.26	0.8	-			
11:05	6	19.0	0.80	7.15	0.7	-			
11:10	8	18.9	0.81	7.04	0.7	_	· · · ·		
11:14	10	19.0	0.80	7.06	0.7	-	· · · · · · · · · · · · · · · · · · ·		
11:16	11	19.0	0.80	7.06	0.9	-			
0:23	:Total Time	e (hr:min)	11	:Total Vol	(gal)	0.48	:Flow Rate (gal/min)		
SAMP			ample No.:	031210					
ANALYSES:			1-B), Chloric	les					
COMMENTS:									
00111									

麣

CLIENT:		Duke Energy Field Services			WELL ID:		MW-19				
SI	TE NAME:	Eld	dridge Ranch Site		DATE:		12/10/2003				
PRC	PROJECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGING	G METHOD:	:	mp, Type:								
SAMPLIN	SAMPLING METHOD: Image: Disposable Bailer in Direct from Discharge Hose in Other:										
DESCRIB	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Glove:	Gloves Alconox Distilled Water Rinse Other:										
DISPOSA		OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drui	ms 🗹 Disposal Facility				
TOTAL DI	EPTH OF V	VELL:	29.86	Feet							
			18.35 11.51			5.6	Minimum Gallons to				
		2.0	<u> </u>	Teet _		5.0	purge 3 well volumes				
r	VOLUME	TEMP.	COND.	[DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND				
TIME	PURGED	°C	<i>m</i> S/cm	pН	mg\L	Turb	REMARKS				
9:47	0	-	-	-	-		Begin Hand Bailing				
9:52	2	17.6	0.67	7.05	2.4	~					
9:56	4	18.0	0:70	6.98	1.6						
10:00	6	18.2	0.72	6.96	1.5	-					
10:06	8	17.9	0.72	6.96	1.2	-					
0:19 :Total Time (hr:min) 8 :Total Vol (gal) 0.42 :Flow Rate (gal/min)											
SAMPI	LE NO.:	Collected S	ample No.:	031210	1010						
ANAL	YSES:	BTEX (802	1-B), Chlorid	es							
COMM	IENTS:										

	CLIENT: Duke Energy Field S		ervices		WELL ID:	MW-20				
SI	SITE NAME: Eldridge Ranch Site				DATE:	12/10/2003				
PRC	PROJECT NO F-104						Van Deventer/Littlejohn / Fergerson			
			· · ·		•					
PURGING	METHOD:	:	mp, Type:							
SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	L METHOD) of Purgi	E WATER:	Surface	e Discharg	je 🗌 Drui	ms 🗹 Disposal Facility			
TOTAL D	EPTH OF V	VELL:	35.01	Feet						
DEPTH T	O WATER:		31.78	Feet		4.0	Minimum Onlines to			
		COLUMN: 2.0	3.23 Inch	Feet		1.6	Minimum Gallons to purge 3 well volumes			
		TEMP.	COND.				(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
TIME	VOLUME PURGED	°C	<i>m</i> S/cm	рН	DO mg\L_	Turb	REMARKS			
13:12	0	-	-	-		-	Begin Hand Bailing			
13:17	2	17.6	0.76	7.62	6.0					
13:24	. 4	17.9	0.77	7.67	5.9					
13:30	6	17.8	0.76	7.64	6.1					
ļ										
ļ										
				-						
					-					
·										
0:18	:Total Time	(hr:min)	6	:Total Vol	(gal)	0.33	I :Flow Rate (gal/min)			
		Collected S		031210	·• / ····	0.00				
ANALYSES:			1-B), Chloric			· · ·				
COMMENTS:							· · · · · · · · · · · · · · · · · · ·			

CLIENT		Duke Energy Field Services			<u>.</u>	WELL ID:	<u>MW-21</u>		
SI	TE NAME:	Eldridge Ranch Site			_	DATE:	12/10/2003		
PRC	JECT NO.	. F-104					Van Deventer/Littlejohn / Fergerson		
PURGING	METHOD	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	тр, Туре:			
SAMPLIN) :	🗸 Disposab	le Bailer [Direct	from Discha	arge Hose 🔲 Other:		
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
Gloves Alconox Distilled Water Rinse Other:									
DISPOSA		OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drur	ms 🗹 Disposal Facility		
TOTAL D	EPTH OF V	VELL:	37.89	Feet					
DEPTH T	O WATER:		27.23	Feet		5.2	Minimum Collong to		
		2.0		reel		5.2	Minimum Gallons to purge 3 well volumes		
·	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND		
TIME	PURGED			рН	mg\L	Turb	REMARKS		
13:43	0	-	-	-	-		Begin Hand Bailing		
13:47	2	18.8	0.70	7.36	0.3				
13:52	4	18.9	0.70	7.43	0.5	-			
13:57	6	18.4	0.67	7.23	0.5	-			
14:03	8	18.2	0.67	7.36	1.1	-			
14:07	9	18.5	0.68	7.30	1.0	· <u>-</u>			
<u> </u>									
	<u> </u>								
0:24	:Total Time	e (hr:min)	9	:Total Vol		0.37	:Flow Rate (gal/min)		
SAMP	LE NO.:	Collected S	ample No.:	031210	1410				
ANALYSES:		BTEX (8021-B), Chlorides							
COMMENTS:		Collected Duplicate "B" Sample No.: 0312102200 for BTEX							

	CLIENT: Duke Energy Field Services			WELL ID:	MW-22					
S	SITE NAME: Eldridge Ranch Site					12/10/2003				
PROJECT NO. F-104						SAMPLER:	Van Deventer/Littlejohn / Fergerson			
PURGING METHOD: Hand Bailed Pump If Pump, Type:										
SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	L METHOD		E WATER:	Surface	e Discharg	je 🗌 Dru	ms 🗹 Disposal Facility			
	EPTH OF V	VELL	34.92	Feet	-	-				
DEPTH T	O WATER:		23.24	Feet						
		COLUMN:	11.68 Inch	Feet		5.7	Minimum Gallons to purge 3 well volumes			
							(Water Column Height x 0.49)			
TIME	VOLUME PURGED	°C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
15:26	0	-	-	-	-		Begin Hand Bailing			
15:31	2	17.5	0.64	7.07	1.7	-				
15:36	4	17.9	0.63	7.12	1.9	· _				
15:42	6	17.7	0.62	7.13	1.9	-				
							· · · · · · · · · · · · · · · · · · ·			
						<u> </u>				
					: 					
0:16 :Total Time (hr:min) 6 :Total Vol (gal) 0.37 :Flow Rate (gal/min)										
		Collected S		031210						
	-		1-B), Chlorid							
COMM							· · · · · · · · · · · · · · · · · · ·			

.

CLIENT		Duke E	nergy Field S	ervices	-	WELL ID:	MW-23			
S	ITE NAME:	Eldridge Ranch Site			-	DATE:	10/8/2003			
PROJECT NO				SAMPLER:		Van Deventer/Littlejohn / Fergerson				
PURGING	G METHOD	:	🗌 Hand Bai	mp If Pu	mp, Type:					
SAMPLIN	IG METHO	D:	🗌 Disposab	le Bailer	Direct	from Discha	arge Hose 🗌 Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility									
TOTAL D	EPTH OF V	VELL:		Feet						
	O WATER:		0.00	Feet		0.0	Minimum Gallons to			
		2.0		1 661			purge 3 well volumes			
[VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
TIME	PURGED		m S/cm	рН	mg\L	Turb	REMARKS			
			· · · · ·				Begin Hand Bailing			
0:00	:Total Time	e (hr:min)	0	:Total Vol	(gal)	#DIV/0!	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	ample No.:	031008			· · · · · · · · · · · · · · · · · · ·			
ANALYSES:		BTEX (8021-B), Chlorides								
COMMENTS:		FPH DETECTED IN WELL. DID NOT PURGE & SAMPLE!								

1

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-24					
S		Eldi	ridge Ranch S	Site	-	DATE:	1/13/2004					
PRO	DJECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGINO	PURGING METHOD:											
SAMPLIN	SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Other:											
DESCRIE	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Glove	Gloves Alconox Distilled Water Rinse Other:											
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 📋 Drums 🗵 Disposal Facility												
τοται d												
DEPTH T	TOTAL DEPTH OF WELL: 26.40 Feet DEPTH TO WATER: 21.59 Feet											
	OF WATER AMETER:		4.81	Feet		2.4	_Minimum Gallons to purge 3 well volumes					
							(Water Column Height x 0.49)					
TIME	VOLUME PURGED	TEMP. °F	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS					
11:30	0	-	-	-	-	-	Begin Hand Bailing					
11:36	2	64.6	0.79	6.94	2.7	_						
11:43	4	64.3	0.78	6.94	2.7	-						
11:49	6	64.8	0.78	6.94	2.7	-						
[· · · · · · · · · · · · · · · · · · ·					
		····										
						· · · · · · · · · · · · · · · · · · ·						
0:19	I I Total Time:	(hr:min)	6	:Total Vol (0.31	I :Flow Rate (gal/min)					
		Collected S		040113		0.01						
	-		1-B), Chlorid									
	MENTS:											
001411												

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	MW-25
SITE NAME: Eldridge Ranch Site						DATE:	12/10/2003
PRC	DJECT NO.		F-104	-	SAMPLER:	Van Deventer/Littlejohn / Fergersc	
SAMPLIN DESCRIB Glove DISPOSA	IG METHOL E EQUIPM s [] Alcono L METHOL	D: ENT DECO x	⊡ Disposab NTAMINATI ed Water Ri	le Bailer ON METH nse	Direct	from Discha DRE SAMPL	rge Hose ☐Other: ING THE WELL: ns ☑ Disposal Facility
HEIGHT (O WATER: OF WATER AMETER:	COLUMN:	28.28 11.54 Inch	Feet Feet			Minimum Gallons to purge 3 well volumes
	VOLUME		• •	r <u></u>		r	(Water Column Height x 0.49)
TIME	PURGED		COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
14:20	0		-	-		-	Begin Hand Bailing
14:25	2	18.3	0.62	7.2	5.40		
14:32	4	18.6	0.61	7.16	5.50		
14:38	6	18.4	0.59	7.17	5.60	-	· · · · · · · · · · · · · · · · · · ·
					ļ		
) 							
0:18	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.33	:Flow Rate (gal/min)
SAMP	LE NO.:	Collected S	ample No.:	031210	1540		
ANAL	YSES:	BTEX (802	1-B), Chlorid	les			
COM	AENTS:						

.

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-26			
S	ITE NAME:	Eld	ridge Ranch S	Site	-	DATE:	10/8/2003			
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson			
PURGING	G METHOD	:	Hand Bai	iled 🗌 Pu	Imp If Pu	mp, Type:				
SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🗌 Drums 🔲 Disposal Facility										
TOTAL D	EPTH OF V	VELL:		Feet						
	O WATER:		0.00	Feet		0.0	Minimum Gallons to			
		2.0				0.0	purge 3 well volumes			
· · · ·	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
TIME	PURGED		<i>m</i> S/cm	рН	mg\L	Turb	REMARKS			
							Begin Hand Bailing			
			· · · · · · · · · · · · · · · · · · ·							
					-					
					<u> </u>		· .			
ļ					2					
ļ										
ļ										
ļ										
							· · · ·			
0:00	:Total Tim	e (hr:min)	0	:Total Vol	(gal)	#DIV/0!	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	Sample No.:	031008			·			
ANAI	_YSES:	BTEX (802	1-B), Chlorid	les			· · · · · · · · · · · · · · · · · · ·			
COMMENTS: FPH DETECTED IN WELL. DID N					NOT PUR	GE & SAMI	PLE!			

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-27			
S	ITE NAME:	Eld	ridge Ranch S	Site	_	DATE:	12/8/2003			
PRO	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson			
PURGINO	G METHOD	:	🗌 Hand Bai	iled 🗌 Pu	mp If Pu	mp, Type:				
SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🗌 Drums 🔲 Disposal Facility										
	EPTH OF V			Feet						
	O WATER: OF WATER		0.00	Feet Feet		0.0	Minimum Gallons to			
		2.0		•		<u></u>	purge 3 well volumes			
TIME	VOLUME	TEMP.	COND.		DO	Turb	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
	PURGED	°C	<i>m</i> S/cm	рН	mg\L_	Turb	REMARKS			
	<u> </u>						Begin Hand Bailing			
<u> </u>										
<u> </u>										
							······································			
	· · · ·									
— ——				:						
0:00	:Total Time	e (hr:min)	0	:Total Vol ((gal)	#DIV/0!	:Flow Rate (gal/mín)			
 SAMP	LE NO.:	Collected S	ample No.:	031208						
ANALYSES: BTEX (8021-B), Chlorides				les						
COMN	IENTS:	FPH DETE	CTED IN W	ELL. DID N		GE & SAMF				

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	DMW-1		
S		Eld	ridge Ranch S	Site	_	DATE:	12/10/2003		
PRC	JECT NO.	. <u></u>	F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson		
PURGING	G METHOD:	:	🗌 Hand Bai	led 🗹 Pu	imp If Pui	mp, Type:	2-Stage Super Purger		
SAMPLIN		D :	🗌 Disposab	le Bailer	Direct	from Discha	arge Hose 🗌 Other:		
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:		
Glove	s 🗹 Alcono	x 🗹 Distill	ed Water Ri	nse 🗌 (Other:		······································		
DISPOSA		OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drur	ms 🗵 Disposal Facility		
	EPTH OF V		48.15						
DEPTH T	O WATER: OF WATER	COLUMN:	21.28 26.87	Feet Feet		13.2	Minimum Gallons to		
	AMETER:						purge 3 well volumes		
TIME	VOLUME	TEMP.	COND.		DO	Turk	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND		
TIME	PURGED	°C	<i>m</i> S/cm	pН	mg\L	Turb	REMARKS		
16:22	0		-		-	-	Began Pumping Well!		
16:25	4	17.1	0.52	7.56	4.8				
16:27	8	18.2	0.53	7.48	6.8	-			
16:30	12	17.3	0.52	7.43	6.8	-			
16:33	16	18.1	0.53	7.42	6.6	-	· · · · · · · · · · · · · · · · · · ·		
16:36	20	18.4	0.53	7.40	6.6	-			
16:39	24	18.4	0.53	7.40	6.8	-			
							· · · · · · · · · · · · · · · · · · ·		
		·							
0:17 :Total Time (hr:min) 24 :Total Vol (gal) 1.41 :Flow Rate (gal/min)									
SAMP	LE NO.:	Collected S	ample No.:	031210	1645				
ANAL	YSES:	BTEX (802	1-B), Chloric	les					
COM	MENTS:								

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	N WATER WELL					
S	ITE NAME:	Eld	ridge Ranch S	Site	-	DATE:	12/9/2003					
PRC	JECT NO.		F-104		_ :	SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGINO	G METHOD:	:	Hand Bai	led 🗹 Pu	mp If Pu	mp, Type:	2-Stage Super Purger					
SAMPLIN		D:	🗹 Disposab	le Bailer [Direct 1	from Discha	arge Hose Other:					
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:					
✓ Glove	s 🗹 Alcono	ox 🗹 Distill	ed Water Ri	nse 🗹 🕻	Other:							
DISPOSA	DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🗍 Drums 🗹 Disposal Facility											
TOTAL DEPTH OF WELL: 40.08 Feet												
DEPTH T	O WATER:		30.61 9.47	Feet		45.3	Minimum Gallons to					
	WELL DIAMETER: 6.3 Inch purge 3 well volumes											
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 1.96) PHYSICAL APPEARANCE AND					
TIME	PURGED		m S/cm	рН	mg\L	Turb	REMARKS					
16:45	Ó	-	-	-	-	-	Began Pumping Well!					
16:52	4	17.0	0.71	6.47	1.3	-						
16:55	6	17.0	0.71	6.49	1.3	-	·					
·			·				Well Pumped Dry!					
17:00	12	17.2	0.72	6.39	1.5	_						
17:07	16	17.8	0.72	6.39	1.5	-						
17:12	20	18.2	0.73	6.38	1.2	-	· .					
17:17	24	17.9	0.72	6.36	1.8	_						
17:19	26	18.1	0.72	6.28	1.7	-	Well Pumped Dry! Allowed Well					
							Time to Recover Before Collecting					
							Sample!					
					· ·							
							· · · · · · · · · · · · · · · · · · ·					
0:34	:Total Time	e (hr:min)	26	:Total Vol	(gal)	0.76	:Flow Rate (gal/min)					
SAMP	LE NO.:	Collected S	ample No.:	031209	1725							
ANAL	YSES:	BTEX (802	1-B), Chloric	les								
COM	COMMENTS:											

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	S WATER WELL				
SI		Eld	ridge Ranch Site			DATE:	1/13/2004				
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGING	METHOD:		🗌 Hand Bai	led 🗹 Pu	mp If Pu	mp, Type:	2-Stage Super Purger				
SAMPLIN	G METHOD	arge Hose 🗌 Other:									
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Glove	Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility											
TOTAL DEPTH OF WELL:24.90 FeetDEPTH TO WATER:19.58 Feet											
HEIGHT OF WATER COLUMN: 5.32 Feet 47.0 Minimum Gallons to											
WELL DIA	METER:	8.5	Inch				purge 3 well volumes (Water Column Height x 1.96)				
TIME	VOLUME	TEMP. °F	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
12:30	0	-	-	-	-	_	Pump On!				
12:33	4	67.2	0.97	6.93	3.0	-					
12:36	8	66.9	0.97	6.91	2.9	-					
12:38	12	66.1	0.95	6.90	2.8	-					
12:41	16	66.4	0.96	6.90	2.8	-					
12:44	20	66.5	0.96	6.90	2.8	-					
12:46	24	66.5	0.96	6.74	3.0						
12:49	28	66.4	0.96	6.79	3.0	-					
12:52	32	66.5	0.96	6.84	3.0	-					
12:55	36	66.3	0.96	6.84	2.9						
12:57	40	66.2	0.96	6.83	2.9	_	· · · · · · · · · · · · · · · · · · ·				
13:00	44	66.2	0.95	6.83	2.9	-					
13:02	48	66.2	0.95	6.84	3.0						
13:07	56	66.2	0.95	3.0							
0:37	:Total Time	e (hr:min)	56	:Total Vol	(gal)	1.51	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	040113	1325						
ANAL	YSES:	BTEX (802	1-B), Chloric	les	-						
COMN	AENTS:										

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	W WATER WELL			
S		Eld	ridge Ranch S	Site	_	DATE:	12/9/2003			
PRO	DJECT NO.		F-104		_ :	SAMPLER:	Van Deventer/Littlejohn / Fergerson			
PURGIN	G METHOD	:	🗌 Hand Bai	led 🗹 Pu	Imp If Pu	mp, Type:	2-Stage Super Purger			
SAMPLIN		D :	🗌 Disposab	le Bailer [✓ Direct 1	from Discha	arge Hose 🔲 Other:			
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPL	ING THE WELL:			
Glove	s 🗹 Alconc	x 🗹 Distill	ed Water Ri	nse 🗌 🤇	Other:					
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility										
TOTAL D	EPTH OF V	VELL:	49.30	Feet						
DEPTH TO WATER: 27.28 Feet										
WELL DIAMETER: 6.0 Inch purge 3 well volumes										
	VOLUME	TEMP.	COND.				(Water Column Height x 1.96)			
TIME	PURGED	°C	m S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
13:51	0	-	-	•	-	***	Pump On!			
14:06	10	16.4	0.62	7.36	8.0	-				
14:22	20	17.4	0.75	7.40	5.1	_				
14:29	25	18.1	0.77	7.49	5.1	- '				
14:37	30	18.1	0.78	7.47	5.5	· -				
14:44	35	17.6	0.77	7.40	6.3	-				
14:51	40	18.0	0.77	7.37	5.7	-				
14:58	45	18.0	0.77	7.34	5.9	-				
15:06	50	17.9	0.78	7.34	6.1	-				
15:13	55	18.0	0.78	7.34	6.3					
		-								
1:22	:Total Time	e (hr:min)	55	:Total Vol	(gal)	0.67	:Flow Rate (gal/min)			
SAMP	ample No.:	031209	1515							
ANALYSES: BTEX (8021-B)										
COMMENTS:										

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	HOUSE WELL					
S	TE NAME:	Eldi	ridge Ranch S	Site	_	DATE:	1/13/2004					
PRC	JECT NO.		F-104		_ :	SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGING	METHOD:		🗌 Hand Bai	led 🗌 Pu	imp If Pu	mp, Type:	Submersible					
SAMPLIN	SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:											
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	ING THE WELL:					
Glove	Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharg	je 🗌 Drui	ms 🗹 Disposal Facility					
TOTAL D	EPTH OF V	VELL:		Feet								
DEPTH T	O WATER:			Feet								
	METER:	COLUMN:	Inch	Feet			Minimum Gallons to purge 3 well volumes					
				· · · · · · · · · · · · · · · · · · ·			(Water Column Height x 1.96)					
TIME	VOLUME PURGED	TEMP. °F	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS					
9:34	0	-	-	-	-		Pump On!					
9:44	-	59.8	0.88	6.90	0.9	-						
9:54	-	61.6	0.87	6.86	1.0	-						
10:04		62.5	0.82	6.84	1.00	-						
10:14		65.5	0.84	6.85	0.90	_						
10:17	190											
							·					
				,								
	l			L <u></u>								
0:43	:Total Time			:Total Vol		4.40	:Flow Rate (gal/min)					
	•	Collected S	•	040113	0917	-						
ANALYSES: BTEX (8021-B), Chlorides												
COM	IENTS:											

•	CLIENT:	Duke E	nergy Field Se	ervices		WELL ID:	MW-A					
S	ITE NAME:	Eldi	ridge Ranch S	iite		DATE:	12/11/2003					
PRC	JECT NO.		F-104		_		Van Deventer/Littlejohn / Fergerson					
PURGINO	G METHOD:		🗸 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:						
SAMPLIN	SAMPLING METHOD: I Disposable Bailer Direct from Discharge Hose Other:											
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:												
Gloves Alconox Distilled Water Rinse Other:												
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility												
			28.93									
			21.3			3.7	Minimum Gallons to					
	WELL DIAMETER: 2.0 Inch purge 3 well volumes											
TIME	VOLUME	TEMP.	COND.		DO	Turk	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
TIME	PURGED	°C	<i>m</i> S/cm	pH	_mg\L	Turb	REMARKS					
12:40	0		-			-	Began Hand Bailing Well!					
12:43	2	19.8	0.90	7.10	0.0	-						
12:50	4	19.9	0.90	7.09	0.3	-						
12:55	6	19.7	0.90	7.09	0.0	-						
							· · · · · · · · · · · · · · · · · · ·					
	<u>├</u> ───┤											
0:15	 Total Time:	e (hr:min)	6	:Total Vol	(gal)	0.40	Flow Rate (gal/min)					
SAMPLE NO.: Collected Sample No.: 031211 1315												
			· · · · · ·									
ANALYSES: BTEX (8021-B), Chlorides COMMENTS:												

	CLIENT:	Duke E	nergy Field S	ervices	_ .	WELL ID:	MW-B					
S		Eldi	ridge Ranch S	Site	-	DATE:	12/11/2003					
PRC	JECT NO.		F-104		_ :		Van Deventer/Littlejohn / Fergerson					
PURGINO	PURGING METHOD: If Pump If Pump, Type:											
SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:												
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:												
Gloves Alconox Distilled Water Rinse Other:												
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility												
TOTAL DEPTH OF WELL: 32.83 Feet												
DEPTH T	O WATER:		21.96 10.87	Feet		5.3	Minimum Gallons to					
	AMETER:			1 000			purge 3 well volumes					
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
TIME	PURGED		<i>m</i> S/cm	рН	mg\L	Turb	REMARKS					
12:40	0	-		_	-	-	Began Hand Bailing Well!					
12:46	2	20.1	0.90	7.18	0.0	· _						
12:53	4	19.9	0.89	7.18	0.3	<u> </u>						
12:59	6	19.7	0.89	7,17	0.3							
	·											
							· · · · · · · · · · · · · · · · · · ·					
				-								
					-							
	Í						l					
0:19	:Total Time		6	(gal)	0.31	Flow Rate (gal/min)						
SAMPLE NO.: Collected Sample No.: 031211 1300												
ANALYSES: BTEX (8021-B), Chlorides												
COMN	MENTS:		· · · · · · · · · · · · · · · · · · ·		- <u> </u>							

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-C
S	ITE NAME:	Eldi	ridge Ranch S	Site	_	DATE:	12/11/2003
PRC	JECT NO.		F-104		_	SAMPLER:	Van Deventer/Littlejohn / Fergerson
					,		
PURGINO	METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN	G METHOD	D:	🗸 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:
DESCRIE	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	LING THE WELL:
Glove	s 🗌 Alcono	x 🗌 Distill	led Water Ri	nse 🗌 (Other:		
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drui	ms 🖂 Disposal Facility
TOTAL D	EPTH OF V	VELL:	29.01	Feet			
DEPTH T	O WATER:		20.94	Feet			
	AMETER:		8.07 Inch	Feet		4.0	Minimum Gallons to purge 3 well volumes
·			•				(Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
13:09	0	-	-	-	_	-	Began Hand Bailing Well!
13:12	2	20.0	0.99	7.07	0.5	-	·
13:17	4	20.1	1.01	7.01	0.5		
13:22	6	20.3	1.01	6.99	0.4	-	
13:26	7	20.0	1.01	6.98	0.8	-	
				· · · ·			· · ·
0:47	:Total Time	(brimin)	7	·Totol V/cl	(gol)	0.41	Elow Poto (gol/min)
0:17		Collected S		:Total Vol 031211		<u> </u>	:Flow Rate (gal/min)
			1-B), Chlorid		1000		·····
	/IENTS:	DILA (002					

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-D					
SI		Eldı	ridge Ranch S	Site	_	DATE:	12/11/2003					
PRO	JECT NO.		F-104	_		SAMPLER:	Van Deventer/Littlejohn / Fergerson					
							• •					
PURGING	B METHOD:		🗸 Hand Bai	led 🗌 Pu	mp If Pu	тр, Туре:						
SAMPLIN	SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:											
DESCRIB	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:												
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility												
	EPTH OF V		33.54									
DEPTH TO	O WATER:		24.30	Feet Feet		4.5	Minimum Gallons to					
	WELL DIAMETER: 2.0 Inch purge 3 well volumes											
TIME	VOLUME	TEMP.	COND.		DO	Turala	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
TIME	PURGED	°C	<i>m</i> S/cm	рН	_mg\L_	Turb	REMARKS					
9:29	0	-	-	-	-	-	Began Hand Bailing Well!					
9:33	2	18.3	0.88	7.21	0.1	-						
9:39	4	19.0	0.86	7.32	0.2							
							Well Bailed Dry!					
10:01	5	18.7	0.85	7.30	2.4	-						
10:13	6	18.7	0.85	7.27	2.6		••					
·							Well Bails Down, but Recovers					
							Fairly Quick!					
ļ												
						-						
0:44	:Total Time		6	:Total Vol	(gal)	0.14	:Flow Rate (gal/min)					
SAMP	LE NO.:	Collected S	Sample No.:	031211	1020							
ANAL	YSES:	BTEX (802	1-B), Chloric	les								
COMM	MENTS:				<u>, </u>							

	CLIENT:	Duke E	nergy Field Se	ervices	-	WELL ID:	MW-E				
S	ITE NAME:	Eldi	ridge Ranch S	Site	-	DATE:	12/11/2003				
PRO	DJECT NO.		F-104		-	SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGING	G METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pur	np, Type:					
SAMPLIN	IG METHOD) :	🗹 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🗌 Other:				
DESCRIE		ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL.				
✓ Glove	Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility											
TOTAL D	EPTH OF V	VELL:	32.24	Feet							
DEPTH T	O WATER:		32.24 21.61 10.63	Feet							
	OF WATER AMETER:			Feet		5.2	Minimum Gallons to purge 3 well volumes				
							(Water Column Height x 0.49)				
TIME	VOLUME	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
10:05	0	-	-	-	-	-	Began Hand Bailing Well!				
10:09	2	19.3	0.92	7.19	0.0						
10:35	4	19.1	0.91	7.16	0.3						
10:41	6	19.7	0.91	7.17	0.1	_					
						-					
						·····					
0:36	II :Total Time	(hrimin)	6	:Total Vol	(nal)	0.17	:Flow Rate (gal/min)				
L		Collected S		031211							
	-		1-B), Chlorid				······································				
	MENTS:						· · · · · · · · · · · · · · · · · · ·				
					· · ·						

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-F			
SI	TE NAME:	Eldı	ridge Ranch S	Site		DATE:	12/11/2003			
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson			
					- ,					
PURGING			🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	· · · · · · · · · · · · · · · · · · ·			
SAMPLIN		D :	🗹 Disposab	le Bailer	Direct	from Discha	arge Hose Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility										
TOTAL DEPTH OF WELL: 27.29 Feet										
DEPTH T	O WATER:		17.48	Feet						
		COLUMN: 2.0	9.81	Feet		4.8	Minimum Gallons to purge 3 well volumes			
	•						(Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
11:06	0	-	-		-	-	Began Hand Bailing Well!			
11:11	2	19.0	0.81	7.27	0.0	-				
11:16	4	19.1	0,81	7.29	0.3	-				
11:23	6	19.1	0.81	7.27	0.2	-				
				·			- -			
							· · · · · · · · · · · · · · · · · · ·			
ļ										
0:17	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.35	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	ample No.:	031211	1130					
ANAL	ANALYSES: BTEX (8021-B), Chlorides					·····				
COMM	IENTS:									

. .

	CLIENT:	Duke E	nergy Field S		WELL ID:	MW-G	
SI		Eldi	ridge Ranch S			12/11/2003	
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergersor
							arge Hose Other:
						RE SAMPL	ING THE WELL:
✓ Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:		
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drur	ms 🗹 Disposal Facility
TOTAL D	EPTH OF W	VELL:	28.48	Feet			
DEPTH T	O WATER:		<u>17.82</u> 10.66	Feet Feet		5.2	Minimum Gallons to
	METER:						purge 3 well volumes
		TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
TIME	PURGED		<i>m</i> S/cm	pН	mg\L	Turb	REMARKS
11:48	0	-	-	-	-	· _	Began Hand Bailing Well!
11:51	2	19.5	0.67	7.54	2.3	-	
11:56	4	19.7	0.67	7.51	2.1	-	
12:02	6	19.7	0.66	7.50	1.8		
		·····					
					·		
0:14	:Total Time	e (hr:min)	6	:Total Vol ((qal)	0.43	:Flow Rate (gal/min)
			ample No.:	031211			
	-		1-B), Chloric				
	AENTS:						······································

	CLIENT: Duke Energy Field Services						MW-H
S	ITE NAME:	Eld	ridge Ranch S	Site		DATE:	12/11/2003
PRC	DJECT NO.		F-104		. :	SAMPLER:	Van Deventer/Littlejohn / Fergerson
PURGINO	G METHOD	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	тр, Туре:	
SAMPLIN	IG METHO	D:	🗹 Disposab	le Bailer	Direct 1	from Discha	arge Hose 🗌 Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
✓ Glove	s 🗌 Alcono	ox 🗌 Distill	ed Water Ri	nse 🗌 C	Other:		·
DISPOSA			E WATER:	Surface	Dischar	ge 🗌 Drur	ms 🗹 Disposal Facility
τοται d	EPTH OF V	VELL	33.37	Feet	-	-	
DEPTH T	O WATER:		22.73	Feet			
	OF WATER AMETER:		10.64 Inch	Feet		5.2	Minimum Gallons to purge 3 well volumes
							(Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
13:39	0		-		-	4	Began Hand Bailing Well!
13:43	2	19.2	1.10	7.19	0.9	-	
13:47	4	19.2	1.07	7.22	0.6		
13:50	6	19.2	1.05	7.20	0.7		
13:53	7	19.2	1.04	7.18	1.5		
							· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·
					· · · ·		
0:14	:Total Time		7	:Total Vol (0.50	:Flow Rate (gal/min)
		Collected S		031211	1400		
		BIEX (802	1-B), Chlorid	es		<u> </u>	
COW	MENTS:						

Sales -

PROJEC PURGING MI SAMPLING M DESCRIBE E Gloves	CT NO ETHOD: METHOD: EQUIPMEN Alconox METHOD O TH OF WEI WATER: WATER CO	IT DECON	 ✓ Hand Bail ✓ Disposab NTAMINATION ed Water Rine E WATER: 36.74 25.48 11.26 	led Pu le Bailer [ON METH(nse C Surface Feet	mp If Pur] Direct f DD BEFO Dther:	SAMPLER: np, Type: rom Discha RE SAMPL	12/11/2003 Van Deventer/Littlejohn / Fergerso arge Hose Other: ING THE WELL: ms ✓ Disposal Facility
PURGING MI SAMPLING M DESCRIBE E SISPOSAL M DISPOSAL M TOTAL DEPT DEPTH TO V HEIGHT OF V	ETHOD: METHOD: QUIPMEN Alconox METHOD O TH OF WEI VATER: WATER CO ETER:	IT DECON	 ✓ Hand Bail ✓ Disposab NTAMINATION ed Water Rine E WATER: 36.74 25.48 11.26 	le Bailer [ON METH(nse □ C □ Surface Feet	mp If Pur] Direct f DD BEFO Dther:	SAMPLER: np, Type: rom Discha RE SAMPL	Van Deventer/Littlejohn / Fergerso
SAMPLING M DESCRIBE E DISPOSAL M TOTAL DEPT DEPTH TO V HEIGHT OF V	METHOD: EQUIPMEN Alconox METHOD O TH OF WEI VATER: WATER CO ETER:	IT DECON	 Disposab NTAMINATIO ed Water Rin E WATER: <u>36.74</u> <u>25.48</u> <u>11.26</u> 	le Bailer [ON METH(nse □ C □ Surface Feet	Direct f DD BEFO Dther:	rom Discha RE SAMPL	arge Hose
DESCRIBE E Gloves DISPOSAL M TOTAL DEPT DEPTH TO V HEIGHT OF V	EQUIPMEN Alconox ETHOD O TH OF WEI VATER: WATER CO ETER: DLUME	IT DECON	NTAMINATIO ed Water Rin E WATER: <u>36.74</u> 25.48 11.26	ON METHO nse	OD BEFO Other:	RE SAMPL	LING THE WELL:
Gloves C DISPOSAL M OTAL DEPT DEPTH TO V HEIGHT OF V] Alconox IETHOD O TH OF WEI VATER: WATER CO ETER:	Distille DF PURGE LL: OLUMN: 2.0	ed Water Rin E WATER: <u>36.74</u> 25.48 11.26	nse 🗌 C 🗋 Surface Feet	Other:		
DISPOSAL M TOTAL DEPT DEPTH TO V HEIGHT OF V	IETHOD O TH OF WEI VATER: WATER CO ETER:	DF PURGE	E WATER: 36.74 25.48 11.26	Surface	-		
TOTAL DEPT DEPTH TO V HEIGHT OF V	TH OF WEI VATER: WATER CO ETER: DLUME	LL: OLUMN:	36.74 25.48 11.26	Feet	e Discharg	je 🗌 Drur	ns 🗹 Disposal Facility
TOTAL DEPT DEPTH TO V HEIGHT OF V	TH OF WEI VATER: WATER CO ETER: DLUME	LL: OLUMN:	36.74 25.48 11.26	Feet			
DEPTH TO V HEIGHT OF V	VATER: WATER CO ETER: OLUME	OLUMN:	<u>25.48</u> 11.26	Feet Feet			
HEIGHT OF ' VELL DIAME	ETER:	2.0	11.26 Inch	Feet			
					-	5.5	Minimum Gallons to purge 3 well volumes
							(Water Column Height x 0.49)
		°C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
14:07	0	-	-		-		Began Hand Bailing Well!
14:12	2	19.2	0.89	7.30	0.2	-	
14:16	4	19.4	0.90	7.21	0.6		
14:19	6	19.3	0.90	7.18	0.4		
14:23	8	19.3	0.89	7.18	0.8		
0:16 :To		hr:min)	8	:Total Vol	(gal)	0.50	Flow Rate (gal/min)
SAMPLE			ample No.:	031211			
ANALYS			1-B), Chlorid				,, _,
COMMEN			. 57, 011010				

	CLIENT:	Duke E	nergy Field S	ervices	-		MW-J
S	ITE NAME:	Eldi	ridge Ranch S	Site	_	DATE	12/11/2003
PRO	DJECT NO.		F-104		- 8	SAMPLER	Van Deventer/Littlejohn / Fergerson
							· · ·
PURGINO	G METHOD	:	🗹 Hand Bai	led 🗌 Pu	imp If Pur	mp, Type:	
SAMPLIN		D:	🗹 Disposab	le Bailer [Direct f	rom Disch	arge Hose Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:
Glove	es 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:		<u></u>
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	je 🗌 Dru	ms 🖸 Disposal Facility
TOTAL D	EPTH OF V	VELL:	29.36	Feet			
DEPTH T	O WATER:		23.18	Feet		• •	
	OF WATER AMETER:		6.18 Inch	Feet		3.0	_Minimum Gallons to purge 3 well volumes
	VOLUME		COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
TIME	PURGED		m S/cm	pH	mg\L	Turb	REMARKS
14:30	0	-		_		_	Began Hand Bailing Well!
14:35	2	19.2	0.99	7.15	0.9		
14:40	4	19.3	0.99	7.15	0.9	-	
14:44	6	19.3	0.98	7.15	0.9	-	
							<u></u>
							· · · · · · · · · · · · · · · · · · ·
						. <u> </u>	
]					·······	
0:14	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.43	:Flow Rate (gal/min)
		Collected S	·····	031211			
			1-B), Chlorid				
	MENTS:						
						<u> </u>	

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	MW-K		
S	ITE NAME:	Eldı	idge Ranch S	Site	_		12/11/2003		
PRC	JECT NO.	- · <u></u>	F-104		_ :	SAMPLER:	Van Deventer/Littlejohn / Fergerson		
PURGING	G METHOD	:	🗸 Hand Bai	led 🗌 Pu	imp If Pu	mp, Type:			
SAMPLIN		D :	🗸 Disposab	le Bailer [Direct 1	from Discha	arge Hose 🔲 Other:		
DESCRIE	BE EQUIPM	ENT DECO	ΝΤΑΜΙΝΑΤΙ	ON METH	OD BEFC	RE SAMPL	ING THE WELL:		
Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 (Other:	_ <u></u>			
DISPOSA			E WATER:		e Dischar	ae 🗍 Drur	ns 🗹 Disposal Facility		
					o Dioonaly				
DEPTH T	O WATER:		28.31	Feet					
			16.60 11.71	Feet		5.7	Minimum Gallons to purge 3 well volumes		
(Water Column Height x 0.49)									
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
15:05	0	-	-	-	-	-	Began Hand Bailing Well!		
15:09	2	19.3	0.84	7.21	1.0	-			
15:15	4	19.3	0.82	7.26	3.0	-			
15:20	6	19.0	0.83	7.19	1.5	-	· · · · · · · · · · · · · · · · · · ·		
15:25	8	19.0	0.82	7.23	1.8		·		
						i			
						· · ·			
						· 			
							· · · · · · · · · · · · · · · · · · ·		
L									
	L	<i>"</i>							
0:20	:Total Time		8	:Total Vol		0.40	:Flow Rate (gal/min)		
		Collected S		031211	1535	··	·		
	ANALYSES: <u>BTEX (8021-B), Chlorides</u>								
COM	MENTS:		<u> </u>		. ,				

	CLIENT:	Duke E	nergy Field Se	ervices	_	WELL ID:	MW-L					
SI		Eldi	ridge Ranch S	Site	-	DATE:	12/12/2003					
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGING	METHOD:	:	🗸 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:						
SAMPLIN	G METHO	D:	🗹 Disposab	le Bailer [Direct 1	from Discha	arge Hose 🗌 Other:					
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	LING THE WELL:					
Glove	Gloves Alconox Distilled Water Rinse Other:											
DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🗌 Drums 🗹 Disposal Facility												
TOTAL D	EPTH OF V	VELL:	33.60	Feet								
			25.82 7.78			3.8	Minimum Gallons to					
	WELL DIAMETER: 2.0 Inch purge 3 well volumes											
TIME	VOLUME		COND.	pН	DO	Turb	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
	PURGED		<i>m</i> S/cm		mg\L		REMARKS					
14:32	0	-		-	-	-	Began Hand Bailing Well!					
14:37	2	19.4	1.09	7.01	0.0	-						
14:42	4	19.4	1.05	6.96	0.2	-						
14:48	6	19.1	1.05	6.96	0.3	-						
14:51	7	19.2	1.03	6.96	0.2							
							·····					
0:19	:Total Time	hr:min)	7	:Total Vol	(nal)	0.37	L :Flow Rate (gal/min)					
		Collected S		031212		0.07						
ANALYSES: <u>BTEX (8021-B), Chlorides</u> COMMENTS:												

.

	CLIENT:	Duke E	nergy Field S	ervices		WELL ID:	MW-M				
SI		Eldr	ridge Ranch S	Site		DATE:	12/12/2003				
PRC	JECT NO.		F-104		. (SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGING	METHOD:		🗸 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:					
SAMPLIN	G METHOD) :	🗹 Disposab	le Bailer [Direct 1	from Discha	arge Hose Other:				
DESCRIB		ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:				
Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:						
					Dischar		ns 🛛 Disposal Facility				
					Dischar						
	EPTH OF W O WATER:		40.42	Feet							
HEIGHT OF WATER COLUMN: <u>11.50</u> Feet <u>5.6</u> Minimum Gallons to											
WELL DIAMETER: 2.0 Inch purge 3 well volumes (Water Column Height x 0.49)											
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
12:56	0	-	-	-	-	-	Began Hand Bailing Well!				
13:03	2	18.9	1.60	7.32	0.0						
13:10	4	19.0	1.67	7.26	0.3	-					
		•					Well Bailed Dry!				
13:15	5	19.0	1.62	7.25	1.5	-					
							Well Bailed Dry!				
13:30	6	19.3	1.34	7.28	1.4						
13:33	7	19.2	1.46	7.30	1.1		· · · · · · · · · · · · · · · · · · ·				
13:37	8	18.9	1.50	7.31	1.4						
13:41	9	19.1	1.54	7.39	2.1						
13:47	10	19.4	1.48	7.37	2.0						
							Well Bails Down, but Recovers				
			-				Quickly!				
0:51	:Total Time	e (hr:min)	10	:Total Vol	(gal)	0.20	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	Sample No.:	031212	1350						
ANAL	YSES:	BTEX (802	1-B), Chlorid	les							
COM											

	CLIENT:	Duke E	nergy Field Se	ervices		WELL ID:	MW-N	
SI	TE NAME:	Eldı	ridge Ranch S	Site		DATE:	12/8/2003	
PRC	JECT NO.		F-104		. :	SAMPLER:	Van Deventer/Littlejohn / Fergerson	
PURGING	METHOD	•	🗌 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:		
SAMPLIN	G METHO	D:	🗌 Disposab	le Bailer [Direct	from Discha	rge Hose	
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:	
Glove:	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:			
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drun	ns 🔲 Disposal Facility	
DEPTH T HEIGHT (0.00	Feet Feet Feet		0.0	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)	
TIME	VOLUME		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
							Begin Hand Bailing	
						<u> </u>		
0:00 :Total Time (hr:min) 0 :Total Vol (gal) #DIV/0! :Flow Rate (gal/min)								
SAMP	LE NO.:	Collected S	Sample No.:	031208				
ANAL	YSES:	BTEX (802	1-B), Chlorid	des			·	
COM	MENTS:	FPH DETE	CTED IN W	ELL. DID I	NOT PUR	GE & SAM	PLE!	

	CLIENT:	Duke E	nergy Field Se		WELL ID:	MW-O	
s	ITE NAME:	Eldi	ridge Ranch S	Site		DATE:	12/12/2003
PRO	DJECT NO.		F-104		. :		Van Deventer/Littlejohn / Fergerson
	G METHOD						
SAMPLIN	IG METHO	D:	🗹 Disposab	le Bailer	Direct	from Discha	arge Hose Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
Glove	s 🗌 Alconc	ox 🖸 Distill	ed Water Ri	nse 🗌 C	Other:		
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drur	ns 🔽 Disposal Facility
TOTAL D	EPTH OF V	VELL:	38.55	Feet			
DEPTH T	O WATER:		28.95 9.60	Feet		4.7	Minimum Gallons to
	AMETER:			1 001			purge 3 well volumes
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND
TIME	PURGED		<i>m</i> S/cm	pН	mg\L_	Turb	REMARKS
8:46	0	-	-	-		-	Began Hand Bailing Well!
8:52	2	18.5	0.80	7.20	0.1	-	
8:57	4	18.5	0.81	7.16	0.4	-	
9:03	6	18.6	0.82	7.18	0.6	-	
	ļ						·
				,			
0:17	I :Total Time	e (hr:min)	6	:Total Vol	ı (gal)	0.35	I :Flow Rate (gal/min)
SAMF		Collected S	ample No.:	031212			
ANAI	YSES:	BTEX (802	1-B), Chloric	les			
COM	MENTS:						

CLIENT: Duke Energy Field Services						WELL ID:	MW-P			
SI		Eldi	ridge Ranch S	Site		DATE:	12/12/2003			
PRC	JECT NO.		F-104		. :		Van Deventer/Littlejohn / Fergerson			
PURGING	METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:				
SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility										
TOTAL D	EPTH OF V	VELL:	37.70	Feet						
DEPTH TO HEIGHT (O WATER: OF WATER	COLUMN:	27.17 10.53	Feet Feet		5.2	Minimum Gallons to			
WELL DIA	METER:	2.0	Inch				purge 3 well volumes			
TIME	VOLUME	TEMP.	COND.		DO	Turk	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
TIME	PURGED	°C	<i>m</i> S/cm	pН	mg\L	Turb	REMARKS			
7:26	0	-	-	-	-	-	Began Hand Bailing Well!			
7:33	2	17.0	0.82	7.19	0.2	-				
7:37	4	18.0	0.81	7.18	0.3	-				
7:42	6	18.0	0.81	7.17	0.4					
L						-				
							· · · · · · · · · · · · · · · · · · ·			
							·			
0:16	:Total Time	e (hr:min)	6	(gal)	0.37	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	0745						
ANALYSES: BTEX (8021-B), Chlorides										
COMN	IENTS:									

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-Q
SITE NAME:E			ridge Ranch Site		DATE:	12/11/2003	
PRO	DJECT NO.	<u> </u>	F-104		_ :	SAMPLER:	Van Deventer/Littlejohn / Fergerson
						• .	· · · · ·
PURGIN	G METHOD	:	🗹 Hand Bai	mp If Pu	mp, Type:		
SAMPLIN		D:	🗹 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	LING THE WELL:
Glove	es 🗌 Alcono	ox 🗌 Distill	ed Water Ri	nse 🗌 (Other:	•••••	· · · · · · · · · · · · · · · · · · ·
DISPOSA	AL METHO) of Purg	E WATER:	Surface	e Dischar	ge 🗌 Drui	ms 🗹 Disposal Facility
TOTAL D		VELL:	<u>36.90</u> 25.56	Feet			
	O WATER: OF WATER		11.34	Feet		5.6	Minimum Gallons to
WELL DI	AMETER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
16:37	0		-		-	-	Began Hand Bailing Well!
16:43	2	19.0	0.80	7.26	0.1	_	1
16:49	4	19.1	0.80	7.23	0.0	-	
16:52	6	19.3	0.82	7.20	0,4	-	
16:56	8	19.2	0.82	7.19	0.6	-	
	ļ						
		···					
· · · ·							· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·				
	<u> </u>						
	<u> </u>						······································
0:19	 :Total Time	(hr:min)	8	:Total Vol	(gal)	0.42	:Flow Rate (gal/min)
	PLE NO.:		· · · · · · · · · · · · · · · · · · ·	031211		<u>, 76</u>	
	SAMPLE NO.: Collected Sample No.: 031211 ANALYSES: BTEX (8021-B), Chlorides						
	MENTS:						· · ·
00.00							

	CLIENT: Duke Energy Field Services					WELL ID:	MW-R			
SI	SITE NAME: Eldridge Ranch Site						12/11/2003			
PRC	JECT NO.		F-104				Van Deventer/Littlejohn / Fergerson			
							· · · ·			
PURGING	METHOD:	:	🗸 Hand Bai	led 🗌 Pu	mp If Pur	np, Type:				
SAMPLIN	G METHO	D:	🗹 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🔲 Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility										
						,	,			
DEPTH T	O WATER:	·	32.87 20.66 12.21	Feet			· · · · ·			
HEIGHT (COLUMN:	12.21	Feet		6.0	_Minimum Gallons to purge 3 well volumes			
		2.0	IIICII				(Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP. ° C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
16:15	0	-	-	-	-		Began Hand Bailing Well!			
16:21	2	18.9	0.74	7.30	0.2					
16:24	4	19.3	0.75	7.27	0.6					
16:27	6	19.2	0.75	7.26	0.7	-				
						-				
							·			
ļ										
			2444 				·			
						<u> </u>				
			·							
0:12	Total Time	e (hr:min)	6	:Total Vol ((gal)	0.50	:Flow Rate (gal/min)			
SAMP	SAMPLE NO.: Collected Sample No.: 031211									
ANAL			1-B), Chlorid							
COM	IENTS:									

	CLIENT:	Duke E	nergy Field Se	-	WELL ID:	MW-S						
SI		Eldi	ridge Ranch S	Site	_	DATE:	12/11/2003					
PRO	JECT NO.		F-104		-	SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGING	METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:						
SAMPLIN	G METHOE) :	🗹 Disposab	le Bailer	Direct	from Discha	irge Hose Other:					
DESCRIB	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:												
DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🗌 Drums 🗹 Disposal Facility												
TOTAL DI	EPTH OF V	VELL:	30.32	Feet			• •					
DEPTH T	O WATER:		17.28 13.04	Feet		6.4	Minimum Gallons to					
		2.0		1 661		0.4	purge 3 well volumes					
	VOLUME	TEMP.	COND.		DO	r	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
TIME	PURGED	°C	<i>m</i> S/cm	рН	mg\L	Turb	REMARKS					
15:50	. 0	-	-			-	Began Hand Bailing Well!					
15:55	_2	18.4	0.66	7.60	0.7	-						
15:58	4	18.7	0.67	7.56	1.7	-						
16:01	6	18.8	0.65	7.60	1.4							
16:05	8	18.8	0.65	7.60	1.7	-	·					
			·				: 					
							· · · · · · · · · · · · · · · · · · ·					
							· · · · · · · · · · · · · · · · · · ·					
0:15	:Total Time	e (hr:min)	8	:Total Vol	(gal)	0.53	:Flow Rate (gal/min)					
SAMPI	LE NO.:	Collected S	ample No.:	1610								
ANAL	YSES:	BTEX (802	1-B), Chloric	les		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						
COMMENTS:												

	CLIENT:	Duke E	nergy Field Se	ervices		WELL ID:	MW-T			
SI		Eldı	ridge Ranch S	Site		DATE:	12/12/2003			
PRC	JECT NO.		F-104	,	. :		Van Deventer/Littlejohn / Fergerson			
PURGING	METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:				
SAMPLIN	G METHOE	D :	🗹 Disposab	Direct	from Discha	arge Hose 🗌 Other:				
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 🤇	Other:					
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums I Disposal Facility										
DEPTH T HEIGHT (O WATER: OF WATER AMETER:	COLUMN: 2.0		Feet Feet Feet		5.4	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
8:06	0	-	-	-	-	2	Began Hand Bailing Well!			
8:12	2	18.4	0.86	7.10	0.1	-				
8:15	4	18.7	0.86	7.09	0.3	-				
8:18	6	18.6	0.83	7.12	0.2	-				
-						-				
							·			
							· · · · · · · · · · · · · · · · · · ·			
					I		L			
0:12	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.50	:Flow Rate (gal/min)			
SAMP	SAMPLE NO.: Collected Sample No.: 031212									
ANALYSES: BTEX (8021-B), Chlorides							·····			
COM	MENTS:									

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-AA			
SI		Eldi	ridge Ranch S	Site	-	DATE:	12/15/2003			
PRC	JECT NO.		F-104		_	SAMPLER:	Van Deventer/Littlejohn / Fergerson			
					-		· · · · ·			
PURGING METHOD: If Pump If Pump, Type:										
SAMPLIN	G METHO	D:	🗹 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗍 Drums 🗹 Disposal Facility										
TOTAL D	EPTH OF V	VELL:	34.62	Feet						
DEPTH T HEIGHT (O WATER:	COLUMN	34.62 24.08 10.54	Feet Feet		5.2	Minimum Gallons to			
WELL DIA	METER:	2.0	Inch				purge 3 well volumes			
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND			
TIME	PURGED			pН	mg\L	Turb	REMARKS			
9:54	0	-	-	-	-	*	Began Hand Bailing Well!			
9:58	2	18.8	1.00	7.06	0.3	-				
10:01	4	19.1	1.00	7.06	0.2	-				
10:04	6	19.0	0.98	7.04	0.2	-				
	· ·									
	-									
							· · · · · · · · · · · · · · · · · · ·			
0:10 :Total Time (hr:min) 6 :Total Vol (0.60	:Flow Rate (gal/min)			
SAMPLE NO.: Collected Sample No.: 031215					1010					
ANALYSES: BTEX (8021-B), Chlorides					·····		· · · · · · · · · · · · · · · · · · ·			
COMM	IENTS:									

	CLIENT: Duke Energy Field Services					_	WELL ID:	MW-BB				
	SI	TE NAME:	Eldi	ridge Ranch S	Site	_	DATE:	12/15/2003				
	PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson				
I	PURGING	METHOD:		🗸 Hand Bai	ied 🗌 Pu	Imp If Pu	mp, Type:					
:	SAMPLIN	G METHOD) :	🗸 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:				
1	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
	Gloves Alconox Distilled Water Rinse Other:											
1												
	DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🗌 Drums 🗹 Disposal Facility											
	TOTAL D	EPTH OF V O WATER:	VELL:	31.55 24.42 7.13	Feet Feet			,				
l	HEIGHT	OF WATER	COLUMN:	7.13	Feet		3.5	Minimum Gallons to				
,	WELL DIA	METER:	2.0	Inch	•			purge 3 well volumes (Water Column Height x 0.49)				
ſ	TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND REMARKS				
┟	10.46	PURGED 0		m S/cm		mg\L -						
┟	10:46 10:50	2	- 18.7	- 1.14	6.92	0.0	-	Began Hand Bailing Well!				
╞	10.50	2	10.7	1.14	0.92	0.0	-	Well Railed Dryl				
f	11:10	3.5	19.5	1.10	6.95	0.1		Well Bailed Dry!				
ŀ	11.10	5.5	19.0	1.10	0.35			Well Bailed Dry!				
ŀ	12:00	4.8	16.1	1.06	6.91	2.1						
ŀ	12.00	4.0	10.1	1.00	0.01	2.1		Well Bailed Dry. Allowed Well				
							· · · · · · · · · · · · · · · · · · ·	Time to Recover Before Collecting				
ŀ								Sample!				
ł			-		·							
f												
ľ								· · · ·				
ľ												
ľ												
ľ	1:14 :Total Time (hr:min) 4.8 :Total Vol (gal) 0.06 :Flow Rate (gal/min)											
	SAMP		Collected S		031215							
	ANAL	•		1-B), Chloric								
	COM	IENTS:	,				·····					
		-			· · · · ·							

	CLIENT		Duke Energy Field Services			,	WELL ID:	MW-CC	
	S	ITE NAME:	Eld	ridge Ranch S	Site		DATE:	12/8/2003	
	PRC	PROJECT NO. F-104					SAMPLER:	Van Deventer/Littlejohn / Fergerson	
	PURGING	G METHOD		🗌 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:		
	SAMPLIN	IG METHO	D:	🗌 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:	
	DESCRIE	BE EQUIPM	IENT DECO	NTAMINATI	RE SAMPI	LING THE WELL:			
Gloves Alconox Distilled Water Rinse Other:									
	DISPOSA		O OF PURG	E WATER:	Surface	Dischar	ge 🗌 Drui	ms 🗌 Disposal Facility	
	τοται d	EPTH OF \	WELL.		Feet		-		
	DEPTH T	O WATER:			Feet				
			COLUMN: 2.0		Feet		0.0	Minimum Gallons to purge 3 well volumes	
								(Water Column Height x 0.49)	
	TIME	VOLUME PURGED	TEMP. ° C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
								Begin Hand Bailing	
								·	
								· · · · · · · · · · · · · · · · · · ·	
					: : :	-			
								·	
	0:00	Total Tim		0	·Totol Val	(aol)	#DIV//01	·Elou Poto (gol/min)	
		:Total Tim LE NO.:	Collected S		:Total Vol 031208	(yai)	#DIV/0!	:Flow Rate (gal/min)	
		LE NO							
		MENTS:	BTEX (8021-B), Chlorides FPH DETECTED IN WELL. DID NOT PURGE & SAMPLE!						
	001411		· · · · · · · · · · · · · · · · · · ·				CE A OFTIVI	I factor -	

	CLIENT:	Duke Er	nergy Field S		WELL ID:	MW-DD						
SI	TE NAME:	Eldr	idge Ranch S	Site		DATE:	12/12/2003					
PRC	JECT NO.		F-104				Van Deventer/Littlejohn / Fergerson					
	0											
PURGING	PURGING METHOD: Hand Bailed Pump If Pump, Type:											
SAMPLIN	SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:											
DESCRIB	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Glove	Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	DISPOSAL METHOD OF PURGE WATER: 🗌 Surface Discharge 🔲 Drums 🗹 Disposal Facility											
TOTAL D	EPTH OF V	VELL:	34.41	Feet								
	O WATER:		24.46 9.95	Feet		4.9	Minimum Gallons to					
		2.0		1 661		4.3	purge 3 well volumes					
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
TIME	PURGED		<i>m</i> S/cm	pH	mg\L	Turb	REMARKS					
9:59	0	-		-	-		Began Hand Bailing Well!					
10:03	2	18.6	0.82	7.10	0.2							
10:06	4	18.9	0.80	7.13	0.0	-						
10:09	6	18.8	0.80	7.13	0.4							
10:11	7	18.8	0.81	7.13	0.7							
			_	· .								
						· · · · · · · · · · · · · · · · · · ·						
			.									
0:12	:Total Time	e (hr:min)	7	(gal)	0.58	:Flow Rate (gal/min)						
SAMP	LE NO.:	Collected S	ample No.:	031212	1015							
ANAL	YSES:	BTEX (802	1-B), Chloric	les			•					
COM	IENTS:	i,										

	CLIENT:	Duke E	nergy Field S	ervices	-	WELL ID:	MW-EE				
S	ITE NAME:	Eld	ridge Ranch S	Site	-	DATE:	12/8/2003				
PRO	DJECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGIN	G METHOD):	🗌 Hand Bai	mp If Pu	mp, Type:						
SAMPLIN	IG METHO	D:	🗌 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:				
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:											
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility											
	O WATER:			Feet Feet							
			0.00	Feet		0.0	Minimum Gallons to				
		2.0					purge 3 well volumes (Water Column Height x 0.49)				
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
					- ingitz		Begin Hand Bailing				
-											
							· · · · · · · · · · · · · · · · · · ·				
							· · · · · · · · · · · · · · · · · · ·				
0:00	:Total Tim		0	:Total Vol		#DIV/0!	:Flow Rate (gal/min)				
	SAMPLE NO.: Collected Sample No.: 031208										
	YSES:		TEX (8021-B), Chlorides PH DETECTED IN WELL. DID NOT PURGE & SAMPLE!								
COM	MENTS:	FPH DETE	CIED IN W	ELL. DID N	NUT PUR	GE & SAM	PLE!				

CLIENT: Duke Energy Field Services						WELL ID:	MW-FF				
S	ITE NAME:	Eldi	ridge Ranch S	Site	-	DATE:	12/12/2003				
PRC	DJECT NO.		F-104		_	SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGING	G METHOD:	:	🗸 Hand Bai	imp If Pu	mp, Type:						
SAMPLIN		D:	🗹 Disposab	le Bailer [Direct	from Discha	arge Hose 🔲 Other:				
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility										
TOTAL D	EPTH OF V	VELL:	32.91	Feet							
DEPTH T HEIGHT (WELL DI/	O WATER: OF WATER AMETER:	COLUMN: 2.0	27.5 5.41 Inch	Feet Feet		2.7	Minimum Gallons to purge 3 well volumes				
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND				
TIME	PURGED			рН	mg\L	Turb	REMARKS				
14:00	0		-	_	_		Began Hand Bailing Well!				
14:05	2	19.4	1.36	7.27	0.4	-	Well Bailing Down, But Recovering				
14:10	3.5	19.1	1.45	7.27	0.8		Quickly!				
14:19	5	18.8	1.52	7.22	2.0	-	n				
14:23	6	18.9	1.53	7.19	2.6	-	U				
		· 									
							· · · · · · · · · · · · · · · · · · ·				
<u> </u>											
0:23	:Total Time		6	:Total Vol		0.26	:Flow Rate (gal/min)				
		Collected S		031212	1430						
ANALYSES: BTEX (8021-B), Chlorides											
COM	MENTS:		·								

	CLIENT:	Duke E	nergy Field S	_	WELL ID:	MW-GG						
S	ITE NAME:	Eld	ridge Ranch S	Site	-	DATE:	12/15/2003					
PRO	JECT NO.		F-104		_	SAMPLER:	Van Deventer/Littlejohn / Fergerson					
PURGING	PURGING METHOD: If Pump If Pump, Type:											
SAMPLIN	SAMPLING METHOD: Isposable Bailer Direct from Discharge Hose Other:											
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:												
⊡ Glove	Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility											
	EPTH OF V		33.41	Feet								
	O WATER:		24.24	Feet Feet	·	4.5	Minimum Gallons to					
		2.0					purge 3 well volumes					
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND					
TIME	PURGED	°C	<i>m</i> S/cm	pH	mg\L	Turb	REMARKS					
9:29	0		_		-	-	Began Hand Bailing Well!					
9:31	2	18.5	0.92	7.09	0.3	-						
9:35	4	18.9	0.92	7.07	0.0	-						
9:38	6	18.9	0.92	7.08	0.4	-						
				-								
····												
							·					
[· · · · · · · · · · · · · · · · · · ·					
ļ												
ļ							L					
0:09	:Total Time	e (hr:min)	6	:Total Vol ((gal)	0.66	:Flow Rate (gal/min)					
SAMP	LE NO.:	Collected S	ample No.:	031215	0940							
ANAL	YSES:	BTEX (802	1-B), Chlorid	es								
COMN	IENTS:	, 1 1 = 1										

	CLIENT:	Duke E	Duke Energy Field Services			WELL ID:	MW-HH
S	SITE NAME:			Eldridge Ranch Site			12/15/2003
PRC	JECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson
PURGING	G METHOD	:	🗸 Hand Bai	led 🗌 Pu	mp If Pui	mp, Type:	
SAMPLIN		D:	🗹 Disposab	le Bailer	Direct f	from Discha	arge Hose 🗌 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
Glove	s 🗌 Alconc	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:		
DISPOSA			E WATER:	Surface	Dischar	ae 🗌 Drur	ns 🗹 Disposal Facility
			33.85			-	
DEPTH T	O WATER:	* L . L	24.60 9.25	Feet			
		COLUMN: 2.0		Feet		4.5	Minimum Gallons to purge 3 well volumes
							(Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
11:18	0	-	-	-	-	-	Began Hand Bailing Well!
11:21	2	19.6	1.00	7.00	0.1	-	
11:26	4	19.9	1.00	6.99	0.2	_	
11:50	6	15.8	1.01	6.98	0,5	-	Possible Probe Malfunction!
11:54	8	16.3	1.00	6.93	0.3		
		-					
					-		
					(
0:36	:Total Time	/	8	:Total Vol		0.22	:Flow Rate (gal/min)
	LE NO.:	Collected S		031215	1200	·	
	YSES:	BIEX (802	1-B), Chlorid	ies			
COMMENTS:							

CLIENT: Duke Energy Field Services						WELL ID: MW-II					
SI	TE NAME:	Eldr	idge Ranch S	ite	_	DATE:	12/15/2003				
PRO	JECT NO.		F-104				Van Deventer/Littlejohn / Fergerson				
PURGING	G METHOD:		Hand Bai	led 🗌 Pu	mp If Pui	np, Type:					
SAMPLIN	G METHOD	D:	🗹 Disposab	le Bailer [Direct f	rom Discha	arge Hose 🗌 Other:				
DESCRIB	DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility										
			34.20								
DEPTH TO WATER: 24.11 Feet HEIGHT OF WATER COLUMN: 10.09 Feet 4.9 Minimum Gallons to											
		2.0		i cet			purge 3 well volumes				
r	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND				
TIME	PURGED		<i>m</i> S/cm	pН	mg\L	Turb	REMARKS				
10:19	0	-	-	-	-	_	Began Hand Bailing Well!				
10:23	2	18.9	0.99	7.04	0.01	-					
10:26	4	18.9	0.98	7.02	0.03	-					
10:29	6	19.1	1.00	6.95	0.02	-					
10:31	7	19.1	0.99	6.99	0.01	-					
						-					
0:12	:Total Time	e (hr:min)	7	:Total Vol	(gal)	0.58	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	031215	1035		· · ·				
ANAL	YSES:	BTEX (802	1-B), Chloric	les							
COMN	MENTS:										

C:\DEFS-ELDRIDGE RANCH\Purge & Sample

CLIENT: Duke Energy Field Services					_	WELL ID:	MW-JJ				
S	ITE NAME:	Eldi	ridge Ranch S	_	DATE:	12/15/2003					
PRO	JECT NO.		<u>F-</u> 104				Van Deventer/Littlejohn / Fergerson				
PURGING	PURGING METHOD: If Pump If Pump, Type:										
SAMPLIN	SAMPLING METHOD: Uisposable Bailer Direct from Discharge Hose Other:										
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	LING THE WELL:				
Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 (Other:						
DISPOSA		OF PURG	E WATER:	Surface	e Discharç	ge 🗍 Drur	ms 🖸 Disposal Facility				
TOTAL D	EPTH OF V	VELL:	34.90	Feet							
	O WATER:	COLUMN	24.93 9.97	Feet Feet		4.9	Minimum Gallons to				
	AMETER:						purge 3 well volumes				
TIME	VOLUME	TEMP.	COND.	~~~	DO	Turb	(Water Column Height x 0.49) PHYSICAL APPEARANCE AND				
	PURGED	<u>°C</u>	<i>m</i> S/cm	pH	_mg\L		REMARKS				
12:18	0	-			-		Began Hand Bailing Well!				
12:22	2	18.4	0.96	6.93	0.3						
12:28	4	18.5	1.02	6.85	0.2						
12:34	6	18.2	-	6.85	0.7		Conductivity Probe Malfunction!				
12:36	7	18.6	-	6.86	1.1	-	n 				
<u>.</u>											
· · · · · · · · · · · · · · · · · · ·											
ļ											
						<u> </u>					
0:18	:Total Time	(hrimin)	7	:Total Vol	(gal)	0.39	I :Flow Rate (gal/min)				
		Collected S	·	031215		0.33					
			1-B), Chlorid		1270	.					
	MENTS:						<u> </u>				
COM		· · · · · · · · · · · · · · · · · · ·		<u> </u>							

	CLIENT: Duke Energy Field Services		WELL ID:		MW-KK		
S		E Eldridge Ranch Site				DATE:	12/12/2003
PRO	PROJECT NO. F-104					SAMPLER:	Van Deventer/Littlejohn / Fergerson
PURGING	G METHOD:	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN		D:	🔽 Disposab	le Bailer	Direct	from Discha	arge Hose Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METHO	OD BEFC	RE SAMPL	ING THE WELL:
Glove	es 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:		
DISPOSA	AL METHOD	OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drur	ms 🛛 Disposal Facility
	EPTH OF V	VELL	38 90	Feet			
DEPTH T	O WATER:		29.61	Feet			
	OF WATER AMETER:			Feet		4.6	Minimum Gallons to purge 3 well volumes
							(Water Column Height x 0.49)
ТІМЕ	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
12:05	0	-	_	-	_	_	Began Hand Bailing Well!
12:10	2	18.0	1.09	7.44	1.1	_	Well Bails Down!
12:15	4	18.0		7.43		-	"
12:22	6	17.9	1.45	7.34	1.7	-	11
12:27	7	18.1	1.49	7.29	2.1	- '	11
12:31	8	18.5	1.52	7.28	1.8	-	11
							Well Bails Down, but Recovers
			•				Quickly!
	1						
		·					
0:26	:Total Time		8	:Total Vol		0.31	:Flow Rate (gal/min)
		Collected S		031212	1235		
		BTEX (802	<u>1-B), Chloric</u>	les			
COM	MENTS:						·····

CLIENT: Duk			nergy Field S	ervices	WELL ID:		MW-LL
S	ITE NAME:	Eldridge Ranch Site			_	DATE:	12/12/2003
PRO	DJECT NO.		F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson
PURGING	G METHOD	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN		D:	🗸 Disposab	le Bailer [Direct	from Discha	arge Hose 🗌 Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
🗹 Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 🕻	Other:		
DISPOSA) of purgi	E WATER:		e Discharo	ae 🗍 Drur	ns 🗹 Disposal Facility
						,- <u> </u>	
DEPTH T	O WATER		39.53 30.31	Feet			
			9.22	Feet		4.5	Minimum Gallons to
WELL DI		2.0	INCH				purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
11:02	0	-	-	_	-		Began Hand Bailing Well!
11:08	2	18.5	0.82	7.13	0.0	-	•.
11:13	4	18.5	0.82	7.10	0.0		·
11:16	6	18.8	0.83	7.09	0.0	_	
							· · · · · · · · · · · · · · · · · · ·
				· · · · · ·			· ·
							· · · · · · · · · · · · · · · · · · ·
						0.40	
0:14	:Total Time		6 omnle Ne i	:Total Vol		0.43	:Flow Rate (gal/min)
	LE NO.:	Collected S	•	031212	1120		, <u>,</u>
	YSES:	DIEX (802	1-B), Chlorid				
COMMENTS:							

	CLIENT:	Duke E	nergy Field S	ervices	. .	WELL ID:	MW-MM				
S	TE NAME:	Eld	ridge Ranch S	Site		DATE:	12/12/2003				
			F-104				Van Deventer/Littlejohn / Fergerson				
PURGING	PURGING METHOD: If Pump If Pump, Type:										
SAMPLIN	SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🗌 Drums 🗹 Disposal Facility										
TOTAL D	EPTH OF V	VELL:	35.70	Feet							
DEPTH T	DEPTH TO WATER:24.96FeetHEIGHT OF WATER COLUMN:10.74Feet5.3Minimum Gallons to										
		2.0		1 661			purge 3 well volumes				
	VOLUME	TEMP.	COND.		DO		(Water Column Height x 0.49) PHYSICAL APPEARANCE AND				
TIME	PURGED		<i>m</i> S/cm	рН	mg\L	Turb	REMARKS				
9:25	0		-	_		-	Began Hand Bailing Well!				
9:30	2	18.4	0.68	7.47	0.4						
9:33	4	18.5	0.68	7.47	1.0	<u> </u>					
9:39	6	18.3	0.65	7.47	1.7	-	· · · · · · · · · · · · · · · · · · ·				
			-			, w. w					
				_							
ļ											
				•							
							I				
0:14	:Total Time	e (hr:min)	6	:Total Vol		0.43	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	031212	0945						
ANAL	YSES:	BTEX (802	1-B), Chloric	les							
COM	IENTS:	····									

CLIENT: Duke Energy Field Services						WELL ID:	MW-NN				
S		Eldr	idge Ranch S	ite		DATE:	12/12/2003				
PRC	JECT NO.	•	F-104			SAMPLER:	Van Deventer/Littlejohn / Fergerson				
PURGING	G METHOD:	:	🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	·				
SAMPLIN	SAMPLING METHOD: Image: Disposable Bailer Direct from Discharge Hose Other:										
DESCRIB		ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:				
Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 🤇	Other:						
DISPOSA) of Purgi	E WATER:		e Discharo	ae 🗍 Drur	ns 🗹 Disposal Facility				
						,- <u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	O WATER:		39.10 30.61	Feet							
		COLUMN:	8.49	Feet		4.2	Minimum Gallons to				
WELL DI	AMETER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)				
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND				
	PURGED 0		<i>m</i> S/cm	-	mg\L -		REMARKS Began Hand Bailing Well!				
10:34	2	- 18.7	- 0.85	-	0.4	-					
10:39 10:45	4	18.7	0.85	7.11 7.10	0.4						
10:45	6	18.9	0.85	7.10	1.0	-					
10.40	0	10.9	0.00		1.0	_	····				
		· · · · · · · · · · · · · · · · · · ·									
						·					
				1			·				
0:14	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.43	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	031212	1050						
ANAL	_YSES:	BTEX (802	1-B), Chloric	les							
COM	MENTS:		·			-					

	CLIENT:	Duke E	nergy Field S	ervices	_	WELL ID:	MW-00
SITE NAME:Eldrid			idge Ranch S	Site	_	DATE:	12/12/2003
PRC	DJECT NO.	.	F-104		_ ·	SAMPLER:	Van Deventer/Littlejohn / Fergersor
					-		· · · ·
PURGING	G METHOD:	:	🗹 Hand Bai	led. 🗌 Pu	imp If Pu	mp, Type:	
SAMPLIN):	🗸 Disposab	le Bailer	Direct	from Discha	arge Hose 🗌 Other:
DESCRIE		ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMP	LING THE WELL:
☑ Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🔲 (Other:		
DISPOSA) of purgi		Surfac	e Discharç	ge 🗌 Drui	ms 🗹 Disposal Facility
DEPTH T	O WATER:		<u>39.47</u> 30.01	Feet			
HEIGHT (OF WATER	COLUMN:	9.46	Feet	· ·	4.6	Minimum Gallons to
WELL DI	AMETER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME		COND.	рН	DO	Turb	PHYSICAL APPEARANCE AND
	PURGED	0	<i>m</i> S/cm		mg\L		REMARKS
11:35	0	-	<u> </u>	-	-	-	Began Hand Bailing Well!
11:41	2	18.9	0.78	7.21	0.2	-	
11:45	4	19.1	0.78	7.17	0.3	-	· · · · · · · · · · · · · · · · · · ·
11:49	6	19.0	0.78	7.17	0.7		
				<u></u>			
<u> </u>	· · · · · ·		· .		<u> </u>	<u></u>	
		· .					
					·		
·	·		·				· · · · · · · · · · · · · · · · · · ·
· ·		99 - Sec.					
	and the second second						
	19 m.			, ,			
0:14	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.43	:Flow Rate (gal/min)
SAMP	LE NO.	Collected S	ample No.:	031212	1155		
ANAL	YSES:	BTEX (802	1-B), Chlorid	les			
COM	MENTS:		**				
		• • • •					· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		our and a Manager			C:\DEF	S-ELDRIDGE RANCH\Purge & Samp

1

-