NM2 - ____10____

MONITORING REPORTS YEAR(S):

2007-2010

LOGISTICS

RECEIVED OCD

June 3, 2010

Mr. Brad Jones New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Certified Mail: 7006 0100 0002 9205 1416

RE: Annual Sampling at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

Dear Mr. Jones,

Please find enclosed the 2010 Annual Sampling Report for Western Refining Southwest, Incorporated's Bisti Landfarm, permit number NM-02-0010. I would like to request a meeting to discuss elevated chloride concentrations reported in the vadose zone, as well as initial results of a separate delineation investigation. I will contact you next week to schedule an appointment.

If you have any questions or require additional information, please do not hesitate to contact me at (505) 632-4077 or at Bill.Robertson@wnr.com.

Sincerely, Western Refining

Bill Robertson

Safety, Environmental & Regulatory Manager

LT Environmental Inc.

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970.385.1873

June 3, 2010

Mr. Bill Robertson Western Refining Southwest, Incorporated 111 CR 4990 Bloomfield, NM 87413

RE: Annual Sampling at Western Refining's Centralized Surface Waste Management Facility NM-02-0010 Bisti Landfarm San Juan County, New Mexico

Dear Mr. Robertson:

On March 4, 2010, LT Environmental (LTE) collected annual samples from Western Refining Southwest, Incorporated's (Western's) Bisti Landfarm, permit number NM-02-0010, located in the northwest quarter of the southeast quarter of Section 16, Township 25 North, Range 12 West in San Juan County, NM. The Bisti Landfarm was permitted in February 1998 under 711 Permit NM-02-0010 t o G iant Industries, A rizona (Giant). G iant di sposed o f i mpacted s oils a t t he landfarm resulting in three cells: the API Cell, the Crude Cell (containing material originating from Pettigrew, East Line, Bisti and West Line) and Cell 1, which was operational from 1998 until 2004 a nd is currently inactive (Figure 1). Western procured the landfarm from Giant in June of 2007.

Annual s ampling c onsisted of va dose a nd t reatment z one m onitoring. Discrete va dose z one samples were taken from each of the two active cells (API and Crude Cells) to be analyzed for heavy m etals, general c hemistry, benzene, t oluene, e thyl-benzene and t otal x ylenes (BTEX), chlorides a nd t otal pe troleum h ydrocarbons (TPH). Three vadose zone samples w ere al so collected from inactive Cell 1 and analyzed for chlorides. Vadose zone samples were collected from 3 to 4 feet below the original ground surface. The number of vadose zone samples taken within each cell was dependent on the size of the cell. See Figure 1 for sampling locations.

Treatment zones in the API and Crude Cells were composite sampled by placing four discrete samples into a one-gallon plastic bag. The soil within the bag was thoroughly mixed be fore filling glass sampling jars provided by the laboratory. Treatment zone samples were analyzed for TPH and chlorides.

All samples were placed on ice and sent to a laboratory for analysis. Samples were labeled with the date and time of collection, sample name, collector's name and parameters to be analyzed. The samples will be shipped to a laboratory in a sealed cooler via bus before designated holding times expired. Proper chain-of-custody (COC) procedures were followed, with logs documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used, analyses required and sampler's signatures.

Mr. Bill Robertson Page 2

Results of laboratory analysis from vadose zone samples are presented in Table 1 and compared to ba ckground s ampling. Complete 1 aboratory r eports ar e al so at tached. The ma jority o f analytes were low in concentration or not detected. However, chloride was detected in elevated concentrations in the vadose z one from be neath the P ettigrew portion of the API Cell. The chloride concentration in that sample was 2300 mg/kg. Sample 3 (S3) from Cell 1 c ontained a chloride concentration of 51 m g/Kg, which is higher than the practical quantitation limit of the original Baseline Sample (50).

The presence of elevated chloride concentrations has already been identified as problematic at the landfarm. A Release Response Plan was approved by the New Mexico Oil Conservation Division (NMOCD) and has been initiated. Results are being evaluated in a written report to be submitted to the NMOCD, and a proposal for remedial action is forthcoming.

The treatment zone sampling results are shown in Table 2. The API Cell sample contained 82 mg/Kg TPH and 170 mg/Kg of chloride. The Crude Cell sample contained 200 mg/Kg TPH and 11 m g/Kg of c hloride. T hese c oncentrations can be expected in impacted s oil undergoing treatment at the landfarm.

Please contact me at (970) 946-1093 with any questions that may arise.

Sincerely,

LT ENVIRONMENTAL, INC.

Ushlay Z Agn

Ashley L. Ager Senior Geologist/Office Manager

FIGURES

Figure 1 – Site Map

TABLES

Table 1 – Vadose Zone Soil Analytical ResultsTable 2 – Treatment Zone Soil Analytical Results

ATTACHMENT

Laboratory Reports

FIGURE

. . . .

TABLES

· · ·

TABLE 1										
ANNUAL VADOSE ZONE SOIL ANALYTICAL RESULTS										
BISTI LANDFARM										
WESTERN REFINING SOUTHWEST, INC.										

- -

٤

						SAMPLE ID				: -
•	UNITS	BASELINE	Westline AVS	Bisti AVS	Eastline AVS	Pettigrew AVS	API AVS	Cell 1 AVS S1	Cell 1 AVS S2	Cell 1 AVS S3
DATE	mg/Kg	3/27/1998	3/4/2010	3/4/2010	3/4/2010	3/4/2010	3/4/2010	3/4/2010	3/4/2010	3/4/2010
SAMPLE DEPTH	mg/Kg	NA	3' 8"	3' 5"	3' 7"	3' 6"	3' 8"	3' 5"	3' 4"	3'
DRO	mg/Kg	<50	< 10	< 10	< 10	< 10	< 10	NA	ч NA	NA [*]
MRO	mg/Kg	NA	< 50	< 50	< 50	< 50	< 50	NA	NA	NA
GRO	mg/Kg	NA	< 5	< 5	< 5	< 5	< 5	NA	NA	NA
BENZENE	mg/Kg	<0 05	< 0.050	< 0 050	< 0 050	< 0.050	< 0.050	• NA	NA	NA
TOLUENE	mg/Kg	<0 05	< 0.050	< 0 050	< 0 050	< 0.050	< 0 050	NA	NA	NA
ETHYLBENZENE	mg/Kg	<0 05	< 0.050	< 0 050	< 0.050	< 0.050	< 0.050	NA	NA	NA
XYLENES	mg/Kg	<0 05	< 0.10	< 0 10	< 0.10	< 0.10	< 0 10	NA	NA	NA
CHLORIDE	mg/Kg	< 50	13	94	< 7 5	2300	4.7	23	37	51
SULFATE	mg/Kg	140	30	14	22	29	83	NA	NA	NA
MERCURY	mg/Kg	< 0.50	< 0 033	< 0 033	< 0.033	< 0 033	< 0 033	NA	NA	NA
ARSENIC	mg/Kg	28	< 13	< 13	< 13	< 13	< 13	NA	NA	NA
BARIUM ·	mg/Kg	180	87	44	78	130	44	NA	NA	NA
CADMIUM	mg/Kg	< 1.3	< 0 5	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA
CHROMIUM	mg/Kg	< 5 0	25	2.2	2.1	1.9	15	NA	NA	NA
LEAD	mg/Kg	68	2 5	2.5	2.5	2.1	2.1	NA	NA	NA
SELENIUM	mg/Kg	< 2 5	< 13	< 13	< 13	< 13	< 13	NA	NA	NA
SILVER	mg/Kg	< 1.3 ′	< 1 3	< 1.3	< 1.3	< 1 3	< 1 3	NA	NA	NA
ALKALINITY	mg/Kg	NA	87	70	76	31	65	NA	NA	NA
BICARBONATE	mg/Kg	110	107	86	93	38	80	NA	NA	NA
CARBONATE	mg/Kg	26	< 5	< 5	< 5	< 5 ·	< 5	NA	NA	NA

Notes

~

.

DRO - Diesel Range Organics

MRO - Motor Oil Range Organics

,

GRO - Gasoline Range Organics

NA - Not Analyzed -

TABLE 2 ANNUAL TREATMENT ZONE SOIL ANALYTICAL RESULTS BISTI LANDFARM WESTERN REFINING SOUTHWEST, INC.

SAMPLE ID	DATE	DRO (mg/Kg)	TPH MRO (mg/Kg)	GRO (mg/Kg)	CHLORIDE (mg/Kg)
API Treatment Zone Composite	3/4/2010	29	53	< 5.0	170
Crude Treatment Zone Composite	3/4/2010	120	. 80	< 5.0	11

Notes:

TPH - Total Produced Hydrocarbons

DRO - Diesel Range Organics

MRO - Motor Oil Range Organics

GRO - Gasoline Range Organics

All units in milligams per kılogram (mg/kg)

ATTACHMENT

1

	TABLE 1											
,		VAD	OSE Z	ONE C	ELL D	ELINEATIO	N ANALYTIC	CAL RESULTS				
BISTI LANDFARM												
WESTERN REFINING												
SAMPLE ID	DATE	SAMPLE TPH BTEX								CHLORIDE		
		DEPTH	DRO	MRO	GRO	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES			
Baseline	3/27/1998	6"	< 50	NA	NA	< 0.05	< 0.05	< 0.05	< 0.05	< 50		
Westline S1	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	16		
Westline S2	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	12		
Westline S3	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	< 1.5		
Westline S4	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	2.6		
Eastline S1	3/4/2010	3' 4"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	< 1.5		
Eastline S2	3/4/2010	3' 7"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	2.5		
Eastline S3	3/4/2010	3' 5"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	50		
Eastline S4	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	6.3		
Eastline S5	3/4/2010	3' 8"	< 10	< 50	< 5	, < 0.05	< 0.05	< 0.05	< 0.1	2.4		
• Bisti S1	3/4/2010	3' 5"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	8.6		
Bisti S2	3/4/2010	3' 8"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	< 7.5		
Bisti S3	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	5.9		
Bisti S4	3/4/2010	3' 6"	35	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	9.1		
Pettigrew S1	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	2500		
API S1	3/4/2010	3' 8"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1 -	6.5		
API S2	3/4/2010	3' 8"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	10		
API S3	3/4/2010	4'	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	150		
API S4	3/4/2010	3' 6"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	1200		
API S5	3/4/2010	3' 4"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	63		
API S6	3/4/2010	3' 7"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	42		
API S7	3/4/2010	3' 5"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	370		
API S8	3/4/2010	`3'5"	< 10	< 50	< 5	< 0.05	< 0.05	< 0.05	< 0.1	4.1		

Notes

TPH - Total Petroleum Hydrocarbons

DRO - Diesel Range Organics

MRO - Motor Oil Range Organics

GRO - Gasoline Range Organics

BTEX - benzene, toluene, ethylbenzene, xylenes

All units in milligams per kilogram (mg/kg)

Bisti Landfarm Proposed Sampling Schedule

	Month	Sample Type	Sample Number	Analysis
Vadose Zone				
Annual Sampling (711 Rules)	March			
API Cell		Discrete	1	BTEX, TPH, Cl, anions, cations, metals
Crude Cell		Discrete	4	BTEX, TPH, Cl, anions, cations, metals
Quarterly Sampling (711 Rules)	June, Sept, Dec			
Cell 1				
API Cell		Discrete	1	BTEX, TPH
Crude Cell		Discrete	4	ВТЕХ, ТРН
Bi-annual Sampling (19.15.36 Rules)	March, Sept			
Cell 1		Discrete	3	chloride
API Celi		Discrete	1	chloride
Crude Cell		Discrete	4	chloride
Treatment Zone (19.15.36 Rules)				
Bi-annual Sampling	March, Sept			
API Cell	· •	Composite	1	TPH, Chloride
Crude Cell		Composite	1	TPH, Chloride

COVER LETTER

Monday, March 22, 2010

Bill Robertson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Annual Vadose Bisti Landfarm

Dear Bill Robertson:

Order No.: 1003168

Hall Environmental Analysis Laboratory, Inc. received 8 sample(s) on 3/6/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining So	outhwest, Inc.	,	Client Sample ID	: Westline	AVS
Lab Order:	1003168			Collection Date	: 3/4/2010	1:25:00 PM
Project:	Annual Vadose Bist	i Landfarm		Date Received	: 3/6/2010	
Lab ID:	1003168-01			Matrix	: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANG	E ORGANICS				Analyst: JB
Diesel Range C	Organics (DRO)	ND	10	mg/Kg	1	3/12/2010 7:09:48 AM
Motor Oil Range	e Organics (MRO)	ND	50	mg/Kg	1	3/12/2010 7:09:48 AM
Surr: DNOP		84.0	61.7-135	%REC	1	3/12/2010 7:09:48 AM
EPA METHOD	8015B: GASOLINE RA	NGE				Analyst: DAM
Gasoline Range	e Organics (GRO)	ŃD	5.0	mg/Kg	1	3/12/2010 12:20:10 AM
Surr: BFB		97.2	65.9-118	%REC	1	3/12/2010 12:20:10 AM
EPA METHOD	8021B: VOLATILES					Analyst: DAM
Benzene		ND	0.050	mg/Kg	1	3/12/2010 12:20:10 AM
Toluene		ND	0.050	mg/Kg	1	3/12/2010 12:20:10 AM
Ethylbenzene		ND	0.050	mg/Kg	1	3/12/2010 12:20:10 AM
Xylenes, Total		ND	0.10	mg/Kg	1	3/12/2010 12:20:10 AM
Surr: 4-Brome	ofluorobenzene	104	64.7-120	%REC	1	3/12/2010 12:20:10 AM
EPA METHOD	300.0: ANIONS					Analyst: LJB
Chloride	4	13	7.5	🔪 mg/Kg	5	3/15/2010 3:27:19 AM
Sulfate		- 30	7.5	mg/Kg	5	3/15/2010 3:27:19 AM
EPA METHOD	7471: MERCURY					Analyst: RAGS
Mercury		ND	0.033	mg/Kg	1	3/10/2010 2:05:48 PM
EPA METHOD	6010B: SOIL METALS					Analyst: SNV
Arsenic		ND	13	mg/Kg	5	3/16/2010 11:32:04 AM
Barium		87	0.50	mg/Kg	5	3/19/2010 6:15:53 PM
Cadmium		ND	0.50	mg/Kg	5	3/16/2010 11:32:04 AM
Chromium	,	2.5	1.5	mg/Kg	5	3/16/2010 11:32:04 AM
Lead		2.5	1.3	mg/Kg	5	3/16/2010 11:32:04 AM
Selenium		ND	13	mg/Kg	5	3/16/2010 11:32:04 AM
Silver		ND	1.3	mg/Kg	5	3/16/2010 11:32:04 AM

•---

Date: 22-Mar-10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 8

CLIENT:	Western Refining S	outhwest, Inc.		Client Sample ID:	Bisti AVS	5
Lab Order:	1003168			Collection Date:	3/4/2010	2:50:00 PM
Project:	Annual Vadose Bist	ti Landfarm		Date Received:	3/6/2010	·
Lab ID:	1003168-02			Matrix:	SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANG	E ORGANICS	· · · · · · · · · · · · · · · · · · ·			Analyst: JB
Diesel Range C	Organics (DRO)	ND	10	mg/Kg	1	3/12/2010 8:59:00 AM
Motor Oil Range	e Organics (MRO)	ND	50	mg/Kg	1	3/12/2010 8:59:00 AM
Surr: DNOP		98.7	61.7-135	%REC	1	3/12/2010 8:59:00 AM
EPA METHOD	8015B: GASOLINE RA	NGE				Analyst: DAM
Gasoline Range	e Organics (GRO)	ND	5.0	mg/Kg	1	3/12/2010 12:50:29 AM
Surr: BFB		102	65.9-118	%REC	1	3/12/2010 12:50:29 AM
EPA METHOD	8021B: VOLATILES					Analyst: DAM
Benzene		ND	0.050	ˈmg/Kg	1	3/12/2010 12:50.29 AM
Toluene		ND	0.050	mg/Kg	1.	3/12/2010 12:50:29 AM
Ethylbenzene		ND	0.050	mg/Kg	1	3/12/2010 12:50:29 AM
Xylenes, Total		ND	0.10	mg/Kg	1	3/12/2010 12:50:29 AM
Surr: 4-Brome	ofluorobenzene	107	64.7-120	%REC	1	3/12/2010 12:50:29 AM
EPA METHOD	300.0: ANIONS					Analyst: LJB
Chloride		9.4	7.5	mg/Kg	5	3/15/2010 4:19:32 AM
Sulfate		14	7.5	mg/Kg	5	3/15/2010 4:19:32 AM
EPA METHOD	7471: MERCURY					Analyst: RAGS
Mercury	·	ND	0.033	mg/Kg	1	3/10/2010 2:07:39 PM
EPA METHOD	6010B: SOIL METALS			·		Analyst: SNV
Arsenic	• •	ND	13	mg/Kg	5	3/16/2010 11:48:37 AM
Barium		44	0.50	mg/Kg	5	3/16/2010 11:48:37 AM
Cadmium		ND,	0.50	mg/Kg	5	3/16/2010 11:48:37 AM
Chromium		2.2	1.5	mg/Kg	5	3/16/2010 11:48:37 AM
Lead		2.5	1.3	mg/Kg	5	3/16/2010 11:48 [.] 37 AM
Selenium		ND	13	mg/Kg	5	3/16/2010 11:48:37 AM
Silver		ND	1.3	mg/Kg	5	3/16/2010 11:48:37 AM

Date: 22-Mar-10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value

•••••••

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

B Analyte detected in the associated Method Blank

Page 2 of 8

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

CLIENT:	Western Refining Sc	outhwest, Inc.		Clien	t Sample ID:	East Line AVS		
Lab Order:	1003168			Col	lection Date:	3/4/2010 2	2:12:00 PM	
Project:	Annual Vadose Bisti	Landfarm		D:	ate Received:	3/6/2010		
Lab ID:	1003168-03				Matrix:	SOIL		
Analyses	;,	Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGI	ORGANICS	····				Analyst: JB	
Diesel Range C	Organics (DRO)	ND	10		mg/Kg	1	3/12/2010 9:34:58 AM	
Motor Oil Rang	e Organics (MRO)	' ND	50		mg/Kg	1	3/12/2010 9:34:58 AM	
Surr: DNOP	-, , , , , , , , , , , , , , , , , , ,	93.6	61.7-135		%REC	1	3/12/2010 9:34:58 AM	
EPA METHOD	8015B: GASOLINE RAI	NGE					Analyst: DAM	
Gasoline Range	e Organics (GRO)	ND	5.0		mg/Kg	1	3/12/2010 1:20:42 AM	
Surr: BFB		98.5	65.9-118		%REC	1	3/12/2010 1:20:42 AM	
EPA METHOD	8021B: VOLATILES						Analyst: DAM	
Benzene		ND	0.050		mg/Kg	1	3/12/2010 1:20:42 AM	
Toluene		ND	0.050		mg/Kg	1	3/12/2010 1:20:42 AM	
Ethylbenzene		ND	0.050		mg/Kg	1	3/12/2010 1:20:42 AM	
Xvienes, Total		ND	0.10		mg/Kg	1	3/12/2010 1:20:42 AM	
Surr: 4-Brom	ofluorobenzene	105	64.7-120		%REC	1	3/12/2010 1:20:42 AM	
EPA METHOD	300.0: ANIONS						Analyst: LJB	
Chloride		ND	7.5		mg/Kg	5	3/15/2010 4:36:56 AM	
Sulfate		22	7.5		mg/Kg	5	3/15/2010 4:36:56 AM	
EPA METHOD	7471: MERCURY	·					Analyst: RAGS	
Mercury		ND	0.033		mg/Kg	1	3/10/2010 2:09:30 PM	
	6010B: SOIL METALS						Analyst: SNV	
Arsenic		ND	13		mg/Kg	5	3/16/2010 11:53:20 AM	
Barium		78	0.50		mg/Kg	5	3/16/2010 11:53:20 AM	
Cadmium		ND	0.50		mg/Kg	5	3/16/2010 11:53:20 AM	
Chromium		2.1	1.5		mg/Kg	5	3/16/2010 11:53:20 AM	
Lead		2.5	1.3		mg/Kg	5	3/16/2010 11:53:20 AM	
Selenium		ND	13		mg/Kg	5	3/16/2010 11:53:20 AM	
Silver		ND	1.3		mg/Kg	5	3/16/2010 11:53:20 AM	

Date: 22-Mar-10

- - -Qualifiers:

Value exceeds Maximum Contaminant Level *

١

- Estimated value Е
- Analyte detected below quantitation limits J

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

· --

- - -

,.... . .. **.**

MCL. Maximum Contaminant Level

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

·· -- -- · -- --

Page 3 of 8

Date: 22-Mar-10

CLIENT: Client Sample ID: Pettigrew AVS Western Refining Southwest, Inc. Lab Order: 1003168 Collection Date: 3/4/2010 3:19:00 PM **Project:** Annual Vadose Bisti Landfarm Date Received: 3/6/2010 Matrix: SOIL Lab ID: 1003168-04 PQL Qual Units DF Analyses Result **Date Analyzed** Analyst: JB **EPA METHOD 8015B: DIESEL RANGE ORGANICS** ND 1 3/12/2010 10:10:56 AM **Diesel Range Organics (DRO)** 10 mg/Kg 3/12/2010 10:10:56 AM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 Surr: DNOP 86.2 %REC 1 3/12/2010 10:10:56 AM 61.7-135 Analyst: DAM **EPA METHOD 8015B: GASOLINE RANGE** Gasoline Range Organics (GRO) ND ma/Ka 1 3/12/2010 1:50:57 AM 5.0 Surr: BFB 93.8 65.9-118 %REC 1 3/12/2010 1:50:57 AM **EPA METHOD 8021B: VOLATILES** Analyst: DAM Benzene ND 0.050 ma/Ka 1 3/12/2010 1:50:57 AM Toluene ND 0.050 mg/Kg 1 3/12/2010 1:50:57 AM 3/12/2010 1:50:57 AM Ethylbenzene ND 0.050 mg/Kg 1 Xylenes, Total ND 0.10 mg/Kg 1 3/12/2010 1:50:57 AM Surr: 4-Bromofluorobenzene 97.4 64.7-120 %REC 1 3/12/2010 1:50.57 AM EPA METHOD 300.0: ANIONS Analyst: LJB 100 3/19/2010 7:58:46 PM Chloride 2300 150 mg/Kg 3/15/2010 4:54:20 AM Sulfate 29 1.5 mg/Kg 1 Analyst: RAGS **EPA METHOD 7471: MERCURY** 3/10/2010 2:11:13 PM Mercury ND. 0.033 mg/Kg 1 EPA METHOD 6010B: SOIL METALS Analyst: SNV ND mg/Kg 5 3/16/2010 11:58:06 AM Arsenic 13

130

ND

1.9

2.1

ND

ND

0.50

0.50

1.5

1.3

13

1.3

Qualifiers:

Barium

Lead

Silver

Cadmium

Chromium

Selenium

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

5

5

5

5

5

5

3/16/2010 11:58:06 AM

Page 4 of 8

S Spike recovery outside accepted recovery limits

CLIENT:	Western Refining So	outhwest, Inc.		Client	Sample ID:	API AVS	
Lab Order:	1003168			Colle	ction Date:	3/4/2010	3:27:00 PM
Project:	Annual Vadose Bist	i Landfarm		Dat	e Received:	3/6/2010	
Lab ID:	1003168-05				Matrix:	SOIL	
Analyses		Result	PQL	Qual U	Jnits	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANG	E ORGANICS			·		Analyst: JB
Diesel Range O	rganics (DRO)	ND	10	n	ng/Kg	1	3/12/2010 10:46:54 AM
Motor Oil Range	Organics (MRO)	ND	50	n	ng/Kg	1	3/12/2010 10:46:54 AM
Surr: DNOP		89.4	61.7-135	%	REC	1	3/12/2010 10:46:54 AM
EPA METHOD	8015B: GASOLINE RA	NGE					Analyst: DAM
Gasoline Range	Organics (GRO)	ND	5.0	n	ig/Kg	1	3/12/2010 2:21:07 AM
Surr: BFB		98.4	65.9-118	%	REC	1 .	3/12/2010 2:21:07 AM
EPA METHOD	021B: VOLATILES						Analyst: DAM
Benzene		ND	0.050	m	g/Kg	1	3/12/2010 2:21:07 AM
Toluene		ND	0.050	m	g/Kg	1	3/12/2010 2:21:07 AM
Ethylbenzene		ND	0.050	m	g/Kg	1	3/12/2010 2:21:07 AM
Xylenes, Total		ND	0.10	m	g/Kg	1 ·	3/12/2010 2:21:07 AM
Surr: 4-Bromo	ofluorobenzene	102	64.7-120	%	REC	1	3/12/2010 2:21:07 AM
EPA METHOD 3	00.0: ANIONS						Analyst: LJB
Chloride		47	1.5	m	g/Kg	1	3/15/2010 5.46:34 AM
Sulfate		83	1.5	m	g/Kg	1	3/15/2010 5:46:34 AM
EPA METHOD 7	471: MERCURY						Analyst: RAGS
Mercury		ND	0.033	m	g/Kg	1	3/10/2010 2:12:57 PM
	010B: SOIL METALS						Analyst: SNV
Arsenic		ND	13	m	g/Kg	5	3/16/2010 12:05:31 PM
Barium		44	0.50	m	g/Kg	5	3/16/2010 12:05:31 PM
Cadmium		ND	0.50	m	g/Kg	5	3/16/2010 12:05:31 PM
Chromium		1.5	1.5	. m	g/Kg	5	3/16/2010 12:05:31 PM
Lead		2.1	1.3	m	g/Kg	5	3/16/2010 12:05:31 PM
Selenium		ND	13	m	g/Kg	5	3/16/2010 12:05:31 PM
Silver		ND	1.3	m	g/Kg	5	3/16/2010 12:05:31 PM

Date: 22-Mar-10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits J

NC Non-Chlorinated

PQL Practical Quantitation Limit

B Analyte detected in the associated Method Blank

· · ·· · ····· · ···· ··

· ·

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

· -

Page 5 of 8

CLIENT:	Western Refining Southv	vest, Inc.		Clier	t Sample ID:	: Cell 1 AVS S1			
Lab Order:	1003168			Co	llection Date:	3/4/2010 4	3/4/2010 4:35:00 PM		
Project:	Annual Vadose Bisti Lan	Date Received:			3/6/2010				
Lab ID:	1003168-06				Matrix:	SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD 300.0: ANIONS		·	,				Analyst: LJB		
Chloride	•	23	1.5		mg/Kg	1	3/15/2010 8:03:58 AM		

Date: 22-Mar-10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 6 of 8

CLIENT:	Western Refining So	uthwest, Inc.		Client	Sample I	D: Cell 1 AV	Cell 1 AVS S2 3/4/2010 4:42:00 PM		
Lab Order:	1003168			Coll	ection Dat	e: 3/4/2010			
Project:	Project:Annual Vadose Bisti LandfarmLab ID:1003168-07			Dat	te Receive	d: 3/6/2010	3/6/2010 SOIL		
Lab ID:					Matri	x: SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	300.0: ANIONS						Analyst: LJB		
Chloride		.37	1.5	r	ng/Kg	[•] 1	3/15/2010 6:21:23 AM		

Date: 22-Mar-10

Qualifiers:

. .-.--

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 7 of 8

CLIENT:	Western Refining So	uthwest, Inc.		Clien	t Sample I	D: Ceil 1 AV	/S S3		
Lab Order:	1003168			Col	lection Da	te: 3/4/2010	2010 4:55:00 PM		
Project:	Annual Vadose Bisti								
Lab ID:	ID: 1003168-08			Matrix: SOIL					
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	300.0: ANIONS				فسلمسا المرجوع ومستقي		Analyst: LJB		
Chloride		51	1.5		mg/Kg	1	3/15/2010 6:38:47 AM		

Date: 22-Mar-10

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

Page 8 of 8

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 8

.

LABORATORY ANALYTICAL REPORT

Client: Site Name:	Hall Environmental			Report Date: 03/15/10					
Lab ID: Client Sample ID: Matrix:	C10030312-001 Westline AVS Soil					(Collection I DateRecel	Date: 03/04/10 13:25 ved: 03/09/10	
Analyses	·	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By	
NON-METALS									
Alkalinity, 1:1		87	mg/kg-dry		5		ASA10-3	03/12/10 16:03 / dvg	
Bicarbonate, 1:1		107	mg/kg-dry		5		ASA10-3	03/12/10 16:03 / dvg	
Carbonate, 1:1		ND	mg/kg-dry		5		ASA10-3	03/12/10 16:03 / dvg	
Lab ID: Client Sample ID: Matrix:	C10030312-002 Bisti AVS Soli	,	<u></u>	<u></u>	······	(Collection D DateRecei	vate: 03/04/10 14:50 ved: 03/09/10	
		····				MOL			
Analyses		Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
NON-METALS								,	
Alkalinity, 1:1		70	mg/kg-dry		5		ASA10-3	03/12/10 16:11 / dvg	
Bicarbonate, 1:1		86	mg/kg-dry		5		ASA10-3	03/12/10 16:11 / dvg	
Carbonate, 1:1		ND	mg/kg-dry		5		ASA10-3	03/12/10 16:11 / dvg	
Lab ID: Client Sample ID: Matrix:	C10030312-003 East Line AVS Soil		. <u> </u>	- <u></u>		Ċ	Collection D DateReceiv	ate: 03/04/10 14:12 /ed: 03/09/10	
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By	
NON-METALS						· .			
Alkalinity, 1:1		76	mg/ka-drv		5		ASA10-3	03/12/10 16:18 / dvg	
Bicarbonate, 1:1		93	mg/kg-dry		5		ASA10-3	03/12/10 16:18 / dvg	
Carbonate, 1:1		ND	mg/kg-dry		5		ASA10-3	03/12/10 16:18 / dvg	
								-	

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.
RL - Analyte reporting limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

LABORATORY ANALYTICAL REPORT

Client: Site Name:	Hall Environmental 1003168						Report D	Date: 03/15/10
Lab ID: Client Sample ID: Matrix:	C10030312-004 Pettigrew AVS Soll					. (Collection D DateRecei	Nate: 03/04/10 15:19 ved: 03/09/10
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
NON-METALS	· ·							
Alkalinity, 1:1		31	mg/kg-dry		5		ASA10-3	03/12/10 16:26 / dvg
Bicarbonate, 1:1		38	mg/kg-dry		5		ASA10-3	03/12/10 16:26 / dvg
Carbonate, 1:1	,	ND	mg/kg-dry		5		ASA10-3	03/12/10 16:26 / dvg
Lab ID:	C10030312-005						Collection D	ate: 03/04/10 15:27
Client Sample ID:	API AVS						DateReceiv	/ed: 03/09/10
Matrix:	Soil							
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
NON-METALS	, s							<u></u>
Alkalinity, 1:1		65	mg/kg-dry		5		ASA10-3	03/12/10 16:33 / dvg
Bicarbonate, 1:1		80	mg/kg-dry		5		ASA10-3	03/12/10 16:33 / dvg
Carbonate, 1:1		NĎ	mg/kg-dry		5		ASA10-3	03/12/10 16:33 / dvg

Report

RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

¢

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

Client: Hall Environmental

Project: 1003168

Report Date: 03/15/10

÷

Work Order: C10030312

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: ASA10-3								Bat	ch: 25515
Sample ID: LCS1	Laboratory Co	ontrol Sample			Run: MAN	TECH_100312B		03/12	/10 15:42
Alkalinity, 1:1	210	mg/kg	5.0	103	80	120			
Sample ID: LCS	Laboratory Co	introl Sample			Run: MAN	TECH_100312B		03/12	v10 15:51
Alkalinity, 1:1	54.3	mg/kg	5.0	100	, 80	120			
Sample ID: MB-26515	Method Blank				Run: MAN	TECH_100312B		03/12	/10 15:56
Alkalinity, 1:1	1.0	mg/kg	0.3						
Bicarbonate, 1:1	1	mg/kg							
Carbonate, 1:1	ND	mg/kg							
Sample ID: C10030312-005ADUP	Sample Dupli	cate			Run: MANT	FECH_100312B		03/12	/10 16:40
Alkalinity, 1:1	65.4	mg/kg-dry	5.0				0.3	30	

Qualifiers:

.

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

QA/QC SUMMARY REPORT

Client:	Western Re	fining South	hwest, Inc.									
Project:	Annual Vad	lose Biști L	andfarm							Work	Order:	1003168
Analyte		Result	Units	PQL	SPK Va	SPK ref	%Rec L	.owLimit H	ighLimit 9	%RPD	RPDLimit	Qual
Method: El	PA Method 300.0: A	nions	·						•			
Sample ID: 1	1003168-01BMSD		MSD				Batch ID:	21651	Analysis I	Date:	3/15/2010	4:02:07 AM
Chloride		25 38	mg/Kg	7.5	15	12.71	84.5	53.9	1 46	17.9	20	
Sulfate		52.19	mg/Kg	7.5	30	30.2	73.3	66.7	119	24 9	20	R
Sample ID: 1	WB-21651		MBLK				Batch ID:	21651	Analysis I	Date:	3/15/2010 1	2:33:13 AM
Chloride		ND	ma/Ka	1.5					-			
Sulfate	,	ND	mo/Ka	1.5				•				
Sample ID: L	CS-21651		LCS				Batch ID:	21651	Analysis I	Date:	3/15/2010 1	2:50:38 AM
Chloride		15.06	ma/Ka	15	15	0	100	90	110			
Sulfate		30.57	ma/Ka	1.5	30	õ	102	90	110			
Sample ID: 1	003168-01BMS		MS	1.0		•	Batch ID:	21651	Analysis [Date:	3/15/2010	3:44:43 AM
Chlorida		20.39	malka	7 5	15	42 71	119	52 Q	146			
Sulfate		67.03	mg/Kg	7.5	30	30.2	123	55.9 66.7	140		*	6
Gallate		07.00	mg/rtg	7.5		JU.2	120		113			
Method: EP	A Method 8015B: D	lesel Range	Organics									
Sample ID: M	IB-21601		MBLK				Batch ID:	2160 1	Analysis E	Date:	3/11/2010	5:52:24 AM
Diesel Range C	Organics (DRO)	ND	mg/Kg	10								
Motor Oil Rang	e Organics (MRO)	ND	mg/Kg	50								
Sample ID: L	CS-21601		LCS				Batch ID.	21601	Analysis [)ate [.]	3/11/2010	6:28:38 AM
Diesel Range (Drganics (DRO)	44.57	ma/Ka	10	. 50	o	89.1	64.6	116			
Sample ID: L	CSD-21601		LČSD				Batch ID:	21601	Analysis D	Date:	3/11/2010 7	7·04:50 AM
Diesel Range C	Organics (DRO)	45.37	mg/Kg	10	50	0	90.7	64.6	116	1.79	17.4	
Method: EP	A Method 8015B. G	asoline Ran	000									
Sample ID: M	B-21591		MBI K				Batch ID:	21591	Analysis D)ate:	3/11/2010	4:53:25 AM
Ganalina Bana		ND	maille	5.0					,			
Sample IB: 1 (CS 21604	NL/	IIIy/Ny	5.0			Roton ID:	24504	Analysis F	ato:	3/11/2010 1	2.52.04 AM
Sample ID. E.	00-21091		LU3				Daten ju.	21551	Analysis L	ale.	5/11/2010/	
Gasoline Range	e Organics (GRO)	24.65	mg/Kg	5.0	25	1./1	91.8	11.1	135			
Method: EP.	A Method 8021B: V	olatiles										
Sample ID: M	B-21591		MBLK				Batch ID:	21591	Analysis D	ate:	3/11/2010 4	1:53:25 AM
Benzene		ND	mg/Kg	0.050								
Toluene		ND	mg/Kg	0.050								
Ethylbenzene		ND	mg/Kg	0.050								
Xylenes, Total		ND	mg/Kg	0.10								
Sample ID: LC	ÇS-21591		LCS				Batch ID:	21591	Analysis D	ate:	3/13/2010 5	5:07:36 AM
Benzene		0.9411	mg/Kg	0.050	1	0	94.1	78.8	132			
Toluene		0 9154	ma/Ka	0.050	1	0	91.5	78.9	112			
		0.0.0.1			•	-						
Ethylbenzene		0.9505	mg/Kg	0.050	1	., 0	95.1	69.3	125			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc. Annual Vadose Bisti Landfarm

Project: Work Order: 1003168 Result Units PQL SPK Va SPK ref %Rec LowLimit HighLimit %RPD RPDLimit Qual Analyte EPA Method 7471: Mercury Method: Sample ID: 1003168-05BMSD Batch ID: 21594 Analysis Date: 3/10/2010 2:16:26 PM MSD 0.166 0.0046 88.4 75 125 3.85 0.1512 mg/Kg 0.033 20 Mercury 3/10/2010 1:38:50 PM Sample (D: MB-21594 MBLK Batch ID: 21594 Analysis Date: ND mg/Kg Mercury 0.033 Sample ID: LCS-21594 LCS Batch ID: 21594 Analysis Date: 3/10/2010 1:40:35 PM Mercury 0.1586 mg/Kg 0.033 0.167 0 95.2 80 120 3/10/2010 2:14:41 PM Sample ID: 1003168-05BMS MS Batch ID: 21594 Analysis Date: 0.1455 0.164 0.0046 85.9 75 125 Mercury mg/Kg 0.033

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

1003168

Work Order:

QA/QC SUMMARY REPORT

Western Refining Southwest, Inc.

Project: Annual Vadose Bisti Landfarm

Analyte		Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method:	EPA Method 6010B:	Soil Metals										
Sample ID:	1003168-01BMSD		MSD				Batch ID:	21658	Analys	is Date:	3/16/2010 1	1:36:48 AN
Arsenic		29.41	mg/Kg	13	24.41	0	120	75	125	0.355	20	
Cadmium		26.97	mg/Kg	0.50	24.41	0	110	75	125	1.58	20	
Chromium		29.72	mg/Kg	1.5	24.41	2.503	111	75 ·	125	1.83	20	
Lead		29.99	mg/Kg	1.3	24.41	2.504	113	75	125	3:62	20	
Selenium		28.70	mg/Kg	13	24.41	0	118	75	125	5.42	20	
Silver		25.29	mg/Kg	1.3	24.41	0	104	75	125	0.221	20	
Sample ID:	1003168-018MSD		MSD				Batch ID:	21658	Analys	is Date:	3/19/2010	6:20:59 PN
Barium		114.9	mg/Kg	0.50	24,41	87.08	114	75	125	0.552	20	
Sample ID:	MB-21658		MBLK				Batch ID:	21658	Analys	is Date:	3/16/2010 1	0:04:51 AN
Arsenic		ND	ma/Ka	2.5								
Barium		ND	ma/Ka	0.10		1		•				
Cadmium		ND	ma/Ka	0.10								
Chromium		ND	mg/Ka	0.30								
Lead		ND	ma/Ka	0.25								
Selenium		ND	ma/Ka	2.5								
Silver		ND	mg/Ka	0.25								
Sample ID:	MB-21658		MBLK				Batch ID:	21658	Analysi	is Date:	3/19/2010 (5:02:37 PN
Arsenic		ND	mg/Kg	2.5								
Barlum		ND	mg/Kg	0.10								
Cadmium		ND	mg/Kg	0.10						-		
Chromium		ND	mg/Kg	0.30								
Lead		ND	mg/Kg	0.25								
Selenium		ND	mg/Kg	2.5								
Silver		ND	mg/Kg	0.25								
Sample ID:	LCS-21658		LCS				Batch ID:	21658	Analysi	is Date	3/16/2010 10):07:17 AM
Arsenic		25.46	mg/Kg	2.5	25	0	. 102	80	120			
Barium		25.35	mg/Kg	0.10	25	0	101	80	120			
Cadmium		25.17	mg/Kg	0.10	25	0	101	80	120			
Chromium		25.40	· mg/Kg	0.30	25	0	102	80	120			
Lead		25.56	mg/Kg	0.25	25	0	102	80	120			
Selenium		25.63	mg/Kg	2.5	25	0	103	80	120			
Silver		24.64	mg/Kg	0.25	25	0	98.6	80	120			
Sample ID:	LCS-21658		LCS			,	Batch ID:	· 21658	Analysi	s Date:	3/19/2010 6	:05:23 PM
Arsenic		24.74	mg/Kg	2.5	25	0	98.9	80	120			
Barium		24.8 1	mg/Kg	0.10	25	0	99.2	80	120			
Cadmium		24.45	mg/Kg	0.10	25	0	97 8	80	120			
Chromium		24 92	mg/Kg	0.30	25	0	99.7	80	120			
Lead		24.70	mg/Kg	0.25	25	0	98.8	80	120			
Selenium		24.76	mg/Kg	2.5	25	0	99.0	80	120			
Silver		24.67	mg/Kg	0.25	25	0	98.7	80	120			
Sample ID:	1003168-01BMS		MS				Batch ID:	21658	Analysi	s Date:	3/16/2010 11	·34:27 AM
Arsenic		29.31	mg/Kg	13	24.1	0	122	75	125			
Cadmium		26.55	mg/Kg	0.50	24 .1	0	110	75	125			

Quanners.

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

,

QA/QC SUMMARY REPORT

Client:	Western Refining Southwest, Inc.
Project:	Annual Vadose Bisti Landfarm

Project:	Annual Va	dose Bisti La	andfarm							Work	Order:	1003168
Analyte	·	Result	Units	PQL	SPK Va	SPK ref	%Rec L	ow Limit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EP	A Method 6010B:	Soil Metals					Detek ID:	1	A	- Data:	2/46/2040	
Sample ID: 10	003168-01805		MS				Batch ID:	21658	Analysi	s Date:	3/16/2010 1	11:34:27 AM
Chromium		29.18	mg/Kg	1.5	24.1	2.503	111	75	125			
Lead		28.92	mg/Kg	1.3	24.1	2.504	110	75	125			
Selenium		30.30	mg/Kg	13	24.1	0	126	75	125			S
Silver		25.24	mg/Kg	1.3	24.1	0	105	75	125			
Sample ID: 10	003168-01BMS	•	MS				Batch ID:	21658	Analysi	s Date:	3/19/2010	6:18:25 PM
Barium		114.3	mo/Ka	0.50	24 1	87.08	113	75	125			

Qualifiers:

- E Estimated value -
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

Page 4

	Sample	Rec	eipt Cl	necklist				
Client Name WESTERN REFINING SOUT				Date Receive	d:		3/6/2010	
Work Order Number 1003168				Received by	: AMF		1611	
Checklist completed by:	In		3/ Date	Sample ID I	abels checked	by:	Initiat	
Matrix:	Carrier name	<u>Grey</u>	<u>/hound</u>					,
Shipping container/cooler in good condition?		Yes		No 🗖	Not Present			
Custody seals intact on shipping container/coole	ar?	Yes		No 🗔	Not Present		Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗔	N/A			
Chain of custody present?		Yes		No 🗌				
Chain of custody signed when relinquished and	received?	Yes		No 🗔				
Chain of custody agrees with sample labels?		Yes		No 🗖				
Samples in proper container/bottle?		Yes		No 🗆				
Sample containers intact?		Yes		No 🗔				
Sufficient sample volume for indicated test?		Yes		No 🗔				
All samples received within holding time?		Yes		No 🗔			Number of	preserved
Water - VOA vials have zero headspace?	No VOA vials subm	itted		Yes 🗋	No 🗔		bottles che pH:	ecked for
Water - Preservation labels on bottle and cap ma	atch?	Yes		No 🗔	N/A 🗹			
Water - pH acceptable upon receipt?		Yes		No 🗍	N/A 🗹		<2 >12 unle	ess noted
Container/Temp Blank temperature?		4.	2°	<6° C Acceptab	le		Delow.	
COMMENTS:				If given sufficient	time to cool.			
	,							
· · ·			`	,				
Client contacted	Date contacted:			Pers	on contacted			
Contacted by:	Regarding:							
Comments								
					· · · · · · · · · · · · · · · · · · ·			
·····		· <u>·</u> ••						
								·····
	······						······································	
Corrective Action	·····		<i></i> .		····· · ···· ···			
			· -	• • • • •	• • •• • · ·			
··· ···· · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · ·	• • • • • •	· ·	···· ·· ·· ··· ·	

С	hain	-of-Cu	stody Record	Turn-Arou	ind Time:															
Client:	Wpc	stern	Refining	Standa	ard 🗆 Rush_						MA An	LL A1`	EN VG	141 12	.KC	NI RO	ME Da	NI. NTC	AL IRV	,
Bil	TK	ONPX.	tson	Project Na	ame: Annual	Vadose														
Mailing	Address	ⁱ ill (R 4990	Bist	ilandfi	irm			4901	Haw	kins N	JF -	Albu	quero	nue l	NM 87	7109			
Bloc	m_{n}	12	NM 87413	Project #:		<u></u>			Tel.	505-3	345-3	975	Fa	ax 50	5-34	5-410	7.			
Phone #	#: 505	632	4035									A	nalys	sis Re	eque	st	• 			
email or	r Fax#:			Project Ma	anager:			<u> </u>	nty)	sei				01)						Π
	Package:			٨٠١		~		802	as o						20					
🗙 Stan	dard		□ Level 4 (Full Validation)	ASh	ley Ager			- R	Ü	292					й Х		1.4	<u>ک</u>		
	tation AP	🗆 Othe	r	Sampler:	Devin He	<u>ncma</u>	nn	Ĭ.	[] []		(-	Ŧ					(i,	100		Î
				Samale I	emperature (a	2 2 3		н. Щ	<u></u> щ	410	1 50	r PA	sle	ő	10S /) Q	Å	e l		∠ o
		·						Ħ	MTB		thoc	IA o	Met	<u></u>			A	اچ َ		es (
Date	Time	Matrix	Sample Request ID	Containe	er Preservative		- No	+ + ×	+		(Me	ď.	A 8	s (F	ມ 4	S S		읭		lqq
				i ype and	I# Iype	1003	N 2 1	Ш Ш	Ш Ш Ш Ш Ц Ц Ц Ц Ц Ц			3310	SCR.	Anio	2081 2081	3270	\mathcal{S}	5		lir B
3.4.10	13:25	sail	Westline AVS	402/?	3 NONE			Ā		<u> </u>	+		$\overline{\mathbf{X}}$	ХГ	~ _ ~		X		\top	
3.4.10	4:50	SDi)	Bisti Avs	402 / E	3 NONE	Ş		X		<u> </u>			X	X			X			
3.4.10	14:12	soil	FostLine AVS	40213	3 NONE	ځ		X		Ř			X	X	١.		X	,		
3.4.10	15:19	5011	Petharew AVS	462/2	3 NONE	¥		χ		7			X	X			X			\square
3.4.10	15:27	Soil	API AVS	402/2	5 NONE	5		Х		$\langle $	T		X	X			X			\square
3.4.10	10:35	soi1	Cell 1 AVSSI	402 2	51 NONE	Q			ľ									X		\square
3.4.10	10:42	Soil	(ell I AVS SZ	402/1	1 NONE	7												X		Π
5:4.10	10:55	soil	Cell I AVS S3	402/1	NONE	7										·		X		
	-																			
	المجرين																			
																				\square
Date:	Time:	Relinquish	ed by:	Received by		Date	Time	Ren	narks:						. 11.	, , <u>,</u>		200	2	110
2510	17.00	J -	h	Ma	//	<i>44/0</i>	10:00	P	Hag	SC.	COF		m	si		5 7		ug	101	TY
Date:	1 me:	reinquish	ea oy:	Keceived by	y .	Uate	lime					0								

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

COVER LETTER

Wednesday, March 17, 2010

Bill Robertson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Bisti Landfarm Annual Treatment Zone Sampling

ł

Dear Bill Robertson:

Order No.: 1003167

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 3/8/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining South	west, Inc.		Client Sample ID	: API Trea	API Treatment Zone Composite					
Lab Order:	1003167			Collection Date	: 3/4/2010	4:20:00 PM					
Project:	Bisti Landfarm Annual 1	Freatment Z	Zone Samplin	Date Received	I: 3/8/2010	· .					
Lab I D:	1003167-01			Matrix	: SOIL						
Analyses		Result	PQL	Qual Units	DF	Date Analyzed					
EPA METHOD	8015B: DIESEL RANGE OI	RGANICS				Analyst: JB					
Diesel Range C	Drganics (DRO)	29	10	mg/Kg	1	3/12/2010 10:52:07 PM					
Motor Oil Rang	e Organics (MRO)	53	50	mg/Kg	1	3/12/2010 10:52:07 PM					
Surr: DNOP		112	61.7-135	%REC	1	3/12/2010 10:52:07 PM					
EPA METHOD	8015B: GASOLINE RANGE	E				Analýst: DAM					
Gasoline Range	e Organics (GRO)	ND	5.0	mg/Kg	1	3/11/2010 11:19:22 PM					

Date: 17-Mar-10

•					
EPA METHOD 8015B: GASOLINE RA	NGE				Analýst: DAM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	3/11/2010 11:19:22 PM
Surr: BFB	94. 9	65.9-118	%REC	1	3/11/2010 11:19:22 PM
EPA METHOD 300.0: ANIONS					Analyst: LJB
Chloride	170	7.5	mg/Kg	5	3/15/2010 2:17:40 AM

Qualifiers:

.....

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 1 of 2

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

1

Hall Environmental Analysis Laboratory, II	nc.	
--	-----	--

Date: 17-Mar-10

CLIENT:	IENT: Western Refining Southwest, Inc.		Client Sample ID:	Crude Treatment Zone Composit		
Lab Order:	1003167		Collection Date:	3/4/2010 4:24:00 PM		
Project: Bisti Landfarm Annual Treatment Zone			Samplin Date Received: 3/8/2010			
Lab ID:	1003167-02		Matrix:	SOIL		
Analyses	Resu	E PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGE ORGANICS					Analyst: JB	

Diesel Range Organics (DRO)	120	10	mg/Kg	1	3/12/2010 11:28:23 PM
Motor Oil Range Organics (MRO)	80	50	mg/Kg	1	3/12/2010 11:28:23 PM
Surr: DNOP	105	61.7-135	%REC	1	3/12/2010 11:28:23 PM
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: DAM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	3/11/2010 11:49:46 PM
Surr: BFB	94.1	65.9-118	%REC	1	3/11/2010 11:49:46 PM
EPA METHOD 300.0: ANIONS					Analyst: LJB
Chloride	11	1.5	mg/Kg	1	3/15/2010 3:09:54 AM

Qualifiers:

{

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 2

- - ---

QA/QC SUMMARY REPORT

Client: Western Refining Southwest, Inc. **Project:** Bisti Landfarm Annual Treatment Zone Samplin Work Order: 1003167 %Rec LowLimit HighLimit Units SPK Va SPK ref %RPD **RPDLimit** Qual Analyte Result PQL Method: EPA Method 300.0: Anions Sample ID: 1003167-01AMSD Batch ID: 21661 Analysis Date: 3/15/2010 2:52:29 AM MSD -47.1 53.9 146 1.01 Chloride 167.1 mg/Kg 7:5 15 174.2 20 S Batch ID: 21651 Analysis Date: 3/15/2010 12:33:13 AM Sample ID: MB-21651 MBLK Chloride ND mg/Kg 1.5 Sample ID: LCS-21651 LCS Batch ID: 21651 Analysis Date: 3/15/2010 12:50:38 AM Chloride 15.06 mg/Kg 1.5 15 0 100 90 110 Batch ID: Analysis Date: 3/15/2010 2:35:05 AM 21651 Sample ID: 1003167-01AMS MS Chloride 168.8 mg/Kg 7.5 15 174.2 -35.8 53.9 146 S Method: EPA Method 8015B: Diesel Range Organics Batch ID: 21601 Analysis Date: 3/11/2010 5:52·24 AM Sample ID: MB-21601 MBLK **Diesel Range Organics (DRO)** ND mg/Kg 10 ND Motor Oil Range Organics (MRO) mg/Kg 、 50 Sample ID: LCS-21601 LCS Batch ID: 21601 Analysis Date⁻ 3/11/2010 6:28:38 AM mg/Kg 10 50 0 89.1 64.6 116 **Diesel Range Organics (DRO)** 44.57 Batch ID: 3/11/2010 7:04:50 AM Sample ID: LCSD-21601 LCSD 21601 Analysis Date: 0 90.7 116 1.79 45.37 mg/Kg 10 50 64.6 17.4 **Diesel Range Organics (DRO)** EPA Method 8015B: Gasoline Range Method: Batch ID. Analysis Date: 3/11/2010 4:53:25 AM Sample ID: MB-21591 MBLK 21591 ND mg/Kg Gasoline Range Organics (GRO) 5.0 Sample ID: LCS-21591 LCS Batch ID: 21591 Analysis Date: 3/11/2010 2:52:04 AM 1.71 91.8 Gasoline Range Organics (GRO) mg/Kg 5.0 25 77.7 135 24.65

Qualifiers: E Estimate

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1.

.

,

•

San	n <mark>pie Recei</mark> pt C	Checklist		
Client Name WESTERN REFINING SOUT		Date Receiv	/ed:	3/8/2010
Work Order Number 1003167		Received I	by: AMF	r_{c}
Checklist completed by:	38 Date	Sample ID	labels checked by: 	Initiale
Matrix: Carrier na	ame: <u>Greyhound</u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗔	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗔	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗹	No 🗌	N/A	
Chain of custody present?	Yes 🗹	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗍		
Samples in proper container/bottle?	Yes 🗹	No 🗌		•
Sample containers intact?	Yes 🗹	No 🗀		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗔		
All samples received within holding time?	Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace? No VOA vials	submitted 🗹	Yes 🗌	No 🗔	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes 🗌	No 🗌	N/A 🗹	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	N/A 🗹	<2 >12 unless noted
Container/Temp Blank temperature?	4.2°	<6° C Accepta	ble	delow.
COMMENTS:		If given sufficien	nt time to cool.	
, = =				
Client contacted Date contacted:	· · ·	Per	son contacted	
Contacted by: Regarding:	· · · · · · · · · · · · · · · · · · ·	·		······
Comments:			•	
· ·	•	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			_	
				<u> </u>
Corrective Action	· · ·	,		
Corrective Action			·····	
Corrective Action	•			

.

4
С	hain	of-Cu	istody Record	Tum-Around Time:							,			-						817		
Client:	West	ern	Refining	Standard	🗆 Rush				_			1A N	LL 81'		N V Sts	'16 :	ζΟ Δ F	ΝГ 30	7E	NI NT	AL R	, Y
Bi	1 1	RUDE	rtsin	Project Name	andfurn								/ hall	env	iron	nent	alco	h			<i>7</i> 1X	•
Mailing	Address		R4990	Annual	Treatme	nt Tone	Samilia		490	01 H	awki	ns N	E -	Alb	uque	erau	e. NI	M 87	'109	•		
BI	DOM	fiel	2 NM 87413	Project #:						el. 50	5-34	5-39	975	2 F	ax :	505-	345-	4107	7			1
Phone	#: 500	5 - 63	32. 4035	· · · · · · · · · · · · · · · · · · ·									A	naly	/sis	Req	uest					
email o	r Fax#:		· · · · · · · · · · · · · · · · · · ·	Project Manager:					(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)									Τ				
QA/QC-I	Package:			Deiner Auss					as ol	/Die					04,S(CB's			D			
Stan	dard		Level 4 (Full Validation)	Monkey Ager					Ű	Gas					2, PC	N P	-		<u>S</u>			
	tation AP	□ Othe	۰. ۲	Sampler: 🌔	rin f	fenemo	inn	TME	Ē	5B (3.1)	[-	Ŧ		N N	808			30		.	î
	(Type)			Sample Tem		7-1		E +	+ Ш	801	418	1 20	PA	als	Ő	des /		Ŋ				
								MTE	MTE	thod	ethoo	atho	¥	Met	П, Г	sticio	٩Ŏ	emi-	١٤			les (
Date	Time	Matrix	Sample Request ID	Container	Preservative	a sa BEA	LNo	+ ×	+	Me	Ň	Ň,	E)	8 A 8) su	1 Pe	DB () (S	6			qqng
					1,200	I COBI	pJ	BTE	BTE	H	H		831	RCF	Anio	808	826(827(J.			Air
314/10	1620	5011	API Treatmont zone Composit	1/402)				X									$^{`} \chi$		-	
3/4/10	1624	50:1	Crube confosit Treatment cone	- 1140Z	-	2			, i	X									X			
			· · · ·																			
							····													\neg		
						-		<u> </u>	·		. •											+1
· ·			· · · · · · · · · · · · · · · · · · ·					<u> </u>														
			· · · · · · · · · · · · · · · · · · ·								-										-	
								<u> </u>											†			
<u> </u>													-1						+		-+	+
	,					· · · ·																<u> </u>
	· · · ·																		+	\neg		
					· · · · ·			<u> </u>												\neg	-+-	
Date:	Time:	Relinquish	ed by:	Received by:	//	Date	Time	Rer	narks	s: ρ _ί	ense		 	al.	4	res	· 1+	 `	To			
3/5/10	1700	5-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Allalla	K	3[6[/8	10:00	agereiltenv.com														
Date:	Time:	Relinquish	ed by:	Received by: Date Time																		
·								ľ													-	1

- - - -

.

0

.

RECEIVED

2010 JAN 7 AM 11 55

January 4, 2010

Mr. Brad Jones New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

CERTIFIED MAIL: 7009 0820 0000 0482 9368

RE: Updated Facility Map Western Refining's Centralized Surface Waste Management Facility Bisti Landfarm: NM-02-0010

Dear Mr. Jones,

Western Refining (Western) submits an updated facility map for the Bisti Landfarm (NM-02-0010) located in Unit I of Section 16 of Township 25N, Range 12W in San Juan County, New Mexico following transfer of the facility from Giant Industries, Arizona to Western Refining Terminals, Incorporated. The current landfarm comprises 27.5 acres, including a 14.9-acre southernmost cell that is not currently operational (Cell 1). Within 12.6 acres directly north of Cell 1, there are two active cells (API and Crude Cells) and an open area. An updated map is enclosed.

Cell 1 was last sampled in 2004, and the results were used to request discontinued maintenance (disking) and permission to add possible subsequent lifts (see attached letter and NMOCD approval). Western understands that this area is required to be closed under NMOCD standards in effect at the time of a closure request. Additionally, if Western chooses to reactivate Cell 1, Western will comply with the revised rules set forth in 19.15.36 NMAC.

Please contact me at (505) 632-4044 or at ron.copple@wnr.com with any questions that may arise.

Sincerely, Western Refining

Ron Copple

- CC: Bill Robertson, Western Refining Allen Hains, Western Refining Ashley Ager, Lodestar Services File
- Attachments: Updated Map of Bisti Landfarm Letter concerning sampling of Cell 1.

NEW 1 TXICO ENERGY, MIDERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary

March 8, 2004

Lori Wrotenbery Director Oil Conservation Division

Mr. Timothy Kinney Giant Industries Arizona, Inc. 111 County Road 4990 Bloomfield, NM 87413

RE: Approval for Discontinued Maintenance Status Giant Industries Arizona, Inc., Permit NM-02-0010 NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, New Mexico.

Dear Mr. Kinney:

The New Mexico Oil Conservation Division (OCD) has received Loadstar Services, Inc. letter dated March 1, 2004 on behalf of Giant Industries Arizona, Inc. and has reviewed the analytical data concerning remediated soils within Cells 1. Based on the information provided, Cell 1 is hereby approved for discontinued maintenance status and the addition of another lift of contaminated soil. Note that with the addition of successive lifts Giant must resume maintenance and treatment zone monitoring. The treatment zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface. If Giant wants to move the soils from the facility, separate OCD authorization must be granted.

Please be advised that OCD approval does not relieve Giant of liability should their operation result in pollution of the ground water, surface water or the environment. In addition, OCD approval does not relieve Giant of the responsibility for compliance with other federal, state, local laws and/or regulations.

If you have any further questions please do not hesitate to contact me at (505) 476-3488.

Sincerely,

Martyne J. Kieling Environmental Geologist

xc: Aztec OCD Office Martin Nee, Loadstar Services, Inc., P.O. Box 3861 Farmington, NM 87499-3861

> Oil Conservation Division * 1220 South St. Francis Drive * Santa Fe, New Mexico 87505 Phone: (505) 476-3440 * Fax (505) 476-3462 * <u>http://www.emnrd.state.nm.us</u>

RECFT MAR 05 2004

PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

March 1, 2004

Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe. NM 87505

Ms. Martyne Kieling New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico, 87505

Lodestar Services, Incorporated

RE: Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Ms. Kieling,

On February 9, 2004, Lodestar Services, Inc. collected a 5 point composite sample from Giant Industries Arizona, Inc.'s (Giant) landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. The sample was from material previously landfarmed within the original fifteen-acre cell. The intent of sample collection was to determine if the material within the original cell was of acceptable concentrations of hydrocarbons to discontinue disking and to add a subsequent lift in accordance with the New Mexico Oil Conservation Division (OCD) Rule 711.

Approximately 24 ounces of soil was collected at each of the locations shown on the attached Landfarm Cell Diagram. Soil was collected from approximately three inches beneath the top of the six inch thick lift. Each sample was immediately placed in a 1 gallon plastic bag and sealed. Once each of the five samples had been collected the material was thoroughly mixed and an eight ounce laboratory sample jar filled and sealed. The sample was then labeled with the sampler's initials, time, date and location, and placed on ice. The sample was then delivered to Envirotech Inc.'s laboratory in Farmington, NM following strict chain of custody procedures. The sample was analyzed for benzene, toluene, ethylbenzene, xylenes, (BTEX) and total petroleum hydrocarbons, by USEPA methods, 8021 and 8015, respectively.

The laboratory report is attached. The following laboratory results have been converted from micrograms per kilogram and milligrams per kilogram for comparison to NMOCD standards.

Analyte	Result	NMOCD Standard
Benzene	Not detected	10 ppm
Toluene	0.030 ppm	
Ethylbenzene	0.019 ppm	
Xylenes	0.332 ppm	
Total BTEX	0.381 ppm	50 ppm
Total Petroleum Hydrocarbons	8.1 ppm	100 ppm

Ms. Martyne Kieling March 1, 2004 Page 2 of 2

Based on the results of sampling presented above, Giant herein requests permission to discontinue disking the existing material and approval for the addition of future lifts. In the event that future lifts are added disking will resume.

We look forward to your approval of this proposed work. Should you have any questions or require additional information please do not hesitate to call me at (505) 334-2791 or Gary Winn (505) 632-4077.

Sincerely,

Martin Nee

Cc:

Mr. Gary Winn, Giant Industries Arizona, Inc Mr. Tim Kinney, Giant Industries Arizona, Inc. File

^LOdestar Services, Incorporated PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

February 13, 2004

Mr. Martin Nee Lodestar Service #26 CR 3500 Flora Vista, New Mexico 87415

Phone: (505) 334-2791 Cell: (505) 320-9675

Client No.: 97059-007

Dear Mr. Nee,

Enclosed are the analytical results for the sample collected from the location designated as "Bisti Land Farm". One soil sample was collected by Giant designated personnel on 2/09/04, and delivered to the Envirotech laboratory on 2/09/04 for Total Petroleum Hydrocarbons (TPH) per USEPA Method 8015 and BTEX per USEPA Method 8021.

The sample was documented on Envirotech Chain of Custody No. 11723 and assigned Laboratory Nos. 27817 (5 Pt. Composite) for tracking purposes.

The sample was analyzed on 2/12/04 using USEPA or equivalent methods.

Should you have any questions or require additional information, please do not hesitate to contact us at (505) 632-0615.

Respectfully submitted, **Envirotech, Inc.**

Christine M. Walters Lab Coordinator / Environmental Scientist

enclosure

CMW/cmw

C:/files/labreports/giant/.wpd

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Giant	Project #:	97059-007
Sample ID:	5 pt Composite	Date Reported:	02-12-04
Laboratory Number:	27817	Date Sampled:	02-09-04
Chain of Custody:	11723	Date Received:	02-09-04
Sample Matrix:	Soil	Date Analyzed:	02-12-04
Preservative:	Cool	Date Extracted:	02-09-04
Condition:	Cool & Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	. 1.8	
Toluene	30.5	1.7	
Ethylbenzene	18.7	1.5	
p,m-Xylene	287	2.2	
o-Xylene	45.1	1.0	
Total BTEX	381		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	95 %
	1,4-difluorobenzene	95 %
	Bromochlorobenzene	95 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

Bisti Land Farm.

Analyst

Review

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

_aboratory Number:	″ 02 27	-12-BTEX QA/QC		Date Reported: 3 Date Sampled:	5	02-12-04 N/A
Sample Matrix:	Sc	oil i		Date Received:		N/A
Preservative:	N/	A		Date Analyzed:		02-12-04
Condition:	N/	A		Analysis:		BTEX
allbration and Detection Limits	(ug/L)		C-CallRF	%Din ووز0ي 15%	Blank Cônc	Dercery Limit
Benzene		4.2776E-002	4.2905E-002	0.3%	ND	0.2
oluene		4.8966E-002	4.9064E-002	0.2%	ND	0.2
Ethylbenzene		7.4036E-002	7.4259E-002	0.3%	ND	0.2
o,m-Xylene		6.8275E-002	6.8480E-002	0.3%	ND	0.2
o-Xylene		5.5866E-002	5.5978E-002	0.2%	ND	0.1
Duplicate Conc. (u	o//X(a))	Sample	Duplicate 2	z ZDines Z	Necepti Range	salan Deleni almiti
Benzene		41.2	40.7	1.2%	0 - 30%	1.8
Toluene		787	772	2.0%	0 - 30%	1.7
Ethylbenzene		418	409	2.0%	0 - 30%	1.5
o,m-Xylene	,	2,600	2,570	1.2%	0 - 30%	2.2
o-Xylene		927	• 911	1.7%	0 - 30%	1.0
Benzene	CARACTERISTICS IN CONTRACTION OF THE ACCURATE AND A DESCRIPTION OF THE ACCURA	· 41.2	50.0	91.1	99.9%	39 - 150
Toluene		787	50.0	836	99.8%	46 - 148
Ethylbenzene		418	50.0	467	99.8%	32 - 160
p,m-Xylene	ı	2,600	100	2,690	99.6%	46 - 148
o-Xylene		927	50.0	975	99.8%	46 - 148
ND - Parameter not de	itected at the stated d	etection limit.				
ND - Parameter not de References:	tected at the stated d Method 5030B, Purge December 1996. Method 8021B, Aroma Photoionization and/o	etection limit. -and-Trap, Test Meth Nic and Halogenated r Electrolytic Conduc	nods for Evaluating Volatiles by Gas tivity Detectors, St	g Solid Waste, SW-840 Chromatography Usin N-846, USEPA Decen	6, USEPA, g 1ber 1996.	
ND - Parameter not de References: Comments:	Method 5030B, Purge December 1996. Method 8021B, Aroma Photoionization and/o QA/QC for sai	etection limit. -and-Trap, Test Meth atic and Halogenated r Electrolytic Conduc nples 27816 -	nods for Evaluating Volatiles by Gas tivity Detectors, St - 27817, 278	g Solid Waste, SW-840 Chromatography Usin N-846, USEPA Decen 24 - 27825, 27	6, USEPA, g nber 1996. 829 - 27830).
ND - Parameter not de References: Comments:	Method 5030B, Purge December 1996. Method 8021B, Aroma Photoionization and/o QA/QC for san	etection limit. and-Trap, Test Meth atic and Halogenated r Electrolytic Conduc mples 27816 -	nods for Evaluating Volatiles by Gas tivity Detectors, St - 27817, 278	g Solid Waste, SW-840 Chromatography Usin W-846, USEPA Decen 24 - 27825, 27 <i>MALATEM</i>	6, USEPA, g nber 1996. 829 - 27830). Retes

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

.

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Giant	Project #:	97059-007
Sample ID:	5 pt Composite	Date Reported:	02-12-04
Laboratory Number:	27817	Date Sampled:	02-09-04
Chain of Custody No:	11723	Date Received:	02-09-04
Sample Matrix:	Soil	Date Extracted:	02-09-04
Preservative:	Cool	Date Analyzed:	02-12-04
Condition:	Cool and Intact	Analysis Requested:	8015 TPH

Parameter Gasoline Range (C5 - C10) Diesel Range (C10 - C28)	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	1.1	0.2
Diesel Range (C10 - C28)	7.0	0.1
Total Petroleum Hydrocarbons	8.1	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

Bisti Land Farm.

Analyst

Review

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

·· Quality Assurance Report

			4		
Client:	QA/QC		Project #:		N/A
Sample ID:	02-12-TPH QA		Date Reported:		02-12-04
Laboratory Number:	27815		Date Sampled:		N/A
Sample Matrix:	Methylene Chlori	de	Date Received:	N/A	
Preservative:	N/A		Date Analyzed:		02-12-04
Condition:	N/A		Analysis Reques	ted:	ТРН
oonalion					
	Cal Date	Coll Rise	C CaliRP	% Difference	Accept, Rance
Gasoline Range C5 - C10	04-29-03	1.8591E-002	1.8572E-002	0.10%	0 - 15%
Diesel Range C10 - C28	04-29-03	1.5507E-002	1.5492E-002	0.10%	0 - 15%
-					
Blank Conc. (mg/Lc mg/Kg)		Concentration	e de la constanción d	DelectionsLin	
Gasoline Range C5 - C10		ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
	ϕ				
Duplicate@one!(img//kg)	Sample,	0. Duplicate	%i Difference	AcceptsRang	
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	,
Diesel Range C10 - C28	6.5	6.4	1.5%	0 - 30%	
					. `
Spike Cons (mg/Kg)	Sample	Spike Added		% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	250	100%	75 - 125%
Diesel Range C10 - C28	6.5	250	256	99.8%	75 - 125%
·					, .

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

QA/QC for samples 27815 - 27817, 27824 - 27825, 27829 - 27830.

Ånalyst

alter \sim

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

CHAIN OF CUSTODY RECORD

Client / Project Name	dFa	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Project Location Bist	T	-		ANALYSIS / PARAMETERS										
Sampler: MJN		<u></u>	Client No.	, d1	059-00	רכ). of ainers	X	Th				Re	marks			
Sample No./ Identification	Sample Date	Sample Time	Lab Number Sample Matrix			Cont Cont	878	1 10 10									
5pt composite	z-9.04	1151	DISIT	50	11		1	\bigvee									
			· .	· .										,			
· · · · · · · · · · · · · · · · · · ·																	
					-		· · · · · · · · · · · · · · · · · · ·					<u>·</u>		<u> </u>	·		
	·																
			·							·		`					
			· · · · · · · · · · · · · · · · · · ·														
	<u> </u>												-	<u></u>			
Relinquished by Bignatu	lire)	Ļ		Date 2904	Time 1350	Receiv	ved by: (Signatur	re) alto					ate	Tir	ne SO	
Relinquisted by (Signatu	re)				. (Receiv	/ed by: (Signatur	re)		١			<u></u>	10		
Relinquished by: (Signatu	re)					Receiv	ved by: (Signatu	re)								
		ENV	VIROTECHIOC							Sample R	eceipt	1					
	Ĩ											Y	N	N/A			
	_	5 Farmi	. High ew M	iway 6 exico	i4 87401				Re	ceived Intact	4	_					
					(505)	632-0	0615					Cool	Cool - Ice/Blue Ice				

LOGISTICS

RECEIVED OCD 2010 JAN -6 A 11: 31

January 4, 2010

Mr. Brad Jones Solid Waste Management Facilities New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

CERTIFIED MAIL: 7009 0820 0000 0482 8675

RE: 4th Quarter 2009, Sampling at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

Dear Mr. Jones:

Please find enclosed the 4th Quarter 2009, sampling results at Western_____ Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

If you have any questions or require additional information, please do not hesitate to contact me at (505) 632-4077 or at Bill.Robertson@wnr.com.

Sincerely, Western Refining

Bill Robertson Safety, Environmental & Regulatory Manager

Attachments Analytical Report

Cc: Allen Hains, Western Refining File Lodestar Services, Incorporated

PO Box 4465, Durango, CO 81302 Office (970) 946-1093

December 28, 2009

Mr. Bill Robertson Western Refining, Southwest 111 CR 4990 Bloomfield, NM 87413

RE: Fourth Quarter Sampling at Western Refining's Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Mr. Robertson,

On December 4, 2009, Lodestar Services, Inc. collected fourth quarter samples from Western Refining's (Western's) Bisti Landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One crude cell sample and one API cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from three feet beneath native ground surface. Samples were placed in eight-ounce glass jars and stored on ice during shipping to Hall Environmental Analysis Laboratories (HEAL) in Albuquerque, NM. Strict chain-of-custody procedures were followed during shipping. HEAL analyzed the samples for the following constituents: chlorides, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and xylenes (BTEX).

Concentrations of BTEX and TPH were not detected in either sample. Chloride concentrations were 20 mg/kg in the API Cell sample and 18 mg/kg in the Crude Cell sample. The complete laboratory report is included for your review. Analytical results are shown on the attached table and can be compared to the original baseline data collected on March 27, 1998.

Should you have any questions or require additional information please do not hesitate to call me at (970) 946-1093.

Respectfully Submitted, Lodestar Services, Inc.

Ashley Ager

Cc. File

.

.

. 2 . Ar	007 2007 2 nual Quar	2nd 2007 3rd ter Quarter	2007 4th Quarter	2008 Annual	2008 2nd Quarter	2008 3rd Quarter	2008 4th Quarter	2009 Annual	2009 2nd Quarter	2009 3rd Quarter	2009 4th Quarter
TPH (ma/ka)	nd nd	nd	nd	31	nd	nd	nd ¹	, nd	nd	nd	nd
GRO	nd nd	, nd nd	• nd	31	. nd	nd	nd	nd	nd	nd	nd
	nd nd	, ud	nd	ba	nd	nd	nd	nd	nd	nd	nd
MRO	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	nd nd	nd	nd	0.686	nd	nd	nd	nd	nd	nd	nd
Benzene	nd nd	· nd	nd	0.000 nd	nd	nd	nd	nd	nd	nd	nd
	nd nd	nd	nd	0.064	nd	nd	nd	nd	nd	nd	nd
Ethyl-Benzene	nd nd	nd	nd	0.004	nd	nd	nd	nd	nd .	nd	nd
Xylenes	nd nd	nd	nd	0.54	. nd	nd	nd	nd	nd	nd	nd
Metals (mg/kg)	407	2				•					
Arsenic U.	.187	-		2.5			-	nd			
Barium 4	17.1			130				81	•		
Cadmium	nd			nd				nd			
Calcium 2	690			7300				740			
Chromium 0.	.305			4.4				2.9			
Lead 0.	.477	-		4.1				3.5			
Magnesium 8	363			1800	•			830		•	
Potassium	/29			1300				680			
Selenium	nd	-		nd				nd			•
Silver	nd ·			nd				nd			
Sodium 6	6.2			150				3600			
Mercury	nd			nd				nd			
Gen Chem					•						
Alkalinity (meg/l) 5	54.4			3500	•			1.9	•		
Bicarbonate (meg/l) 4	9.4			2900				1.9			
Carbonate (meg/l) 4	.52		,	540	•			nd			
Sulfate (mg/kg) 8								1000			
	31.7			nd				1600	-		

÷.,

API Cell

														-				
														-		•		•
	•														•			0
																		•
																		*
																		- •
	•						1 '								•			
					2													ι
	Crude Cell																	•
		2007	2007 2nd	2007 3rd	2007 4th	2008	2008 2nd	2008 3rd	2008 4th	2009	2009 2nd	2009 3rd	2009 4th	-	-			
		Annual	Quarter	Quarter	Quarter	Annual	Quarter	Quarter	Quarter	Annual	Quarter	Quarter	Quarter				•	
			nd		nd	nd		ام مد		500		mal	امم					. •
		nu	nd	na	na	nu	na	na	na	52U	na	na	nu					
	GRU,	nd	nd	nu	nu	- nu nd	nu	na	no	250	nu	nu	nu					
	MRO	nu	nd	nu	nu	nu	nu	na	na	250	na	nu	nu					
		inu . nd	nu	nu	nu	nu	nu	na	na	270	nu	nu	nu					
•		nd	nd	nu nd i	nd	nu	nu	nd	nu	nd	nu	nu	nu					
	Toluene	nd	nd	nd	nd	nu	nu	nu	nu	nd	nu	nd	nu					
	Ethyl Benzene	nd	nd	nd	nd	nd	nu	nd	nd	nd	nd	nd	nd					
·.	· Yvlenes	nd	nd	nd	nd	nd	nd	nu ind	nd	nd	nd	nd	nd	-				
	, Ayieriea	nu	na	na	10		na	na	na	na	nu -		nu	-				
	Metals (mg/kg)												-					
	Arsenic	0.173	•			1.9				nd		~						
	Barium	14.8				140				96								
	Cadmium	nd				nd				nd								
	Calcium	3530				2800				4500								
	Chromium	0.248				3.7				4								
•	Lead	0.479				3.8				5.3								
	Magnesium	957				1200				1100								
	Potassium	806				1100				640								
	Selenium	nd				nd				nd								
	Silver	nd				nd				nd								
	Sodium	69.7				nd				nd					•			
	Mercury (mg/kg)	nd	•			nd				nd								
	Gen Chem																	
4	Alkalinity (meg/l)	701				1200				18								
	Bicarbonate (meg/l)	731	•			880				1.8			*		•			
	Carbonate (meg/l)	56.3				280				nd					•			
	Sulfate (mg/kg)	68			1	690				860								
	Chloride (ma/ka)`	nd			•	110	540	2.1	35	4.3	5.4	14	18					
							2.0				2. 1	••						
	•																	

COVER LETTER

Thursday, December 17, 2009

Bill Robertson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Western Bisti Landfarm

Dear Bill Robertson:

Order No.: 0912220

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 12/10/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining South	west, Inc.	•	Client Sample II	D: Crude Ce	11 ·
Lab Order:	0912220	•		Collection Dat	te: 12/4/2009) 12:40:00 PM
Project:	Western Bisti Landfarm			Date Réceive	d: 12/10/200)9
Lab ID:	0912220-01		· .	Matri	x: SOIL	
Алајузез		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS				Analyst: SCC
Diesel Range Or	ganics (DRO)	ND	10	mg/Kg	1	12/14/2009 2:34:53 PM
Motor Oil Range	Organics (MRO)	ND	50	mg/Kg	1	12/14/2009 2:34:53 PM
Surr: DNOP	,	96.7	61.7-135	%REC	1	12/14/2009 2:34:53 PM
EPA METHOD 8	015B: GASOLINE RANGE					Analyst: NSB
Gasoline Range	Organics (GRO)	ND	5.0	mg/Kg	1	12/12/2009 3:37:12 AM
Surr: BFB		87.0	65.9-118	%REC	1	12/12/2009 3:37:12 AM
EPA METHOD 8	021B: VOLATILES				ı	Analyst: NSB
Benzene		ND	0.050	. mg/Kg	1	12/12/2009 3:37:12 AM
Toluene		ND	0.050	mg/Kg	1	12/12/2009 3:37:12 AM
Ethylbenzene		ND	0.050	mg/Kg	1	12/12/2009 3:37:12 AM
Xylenes, Total		ND	0.10	mg/Kg	1	12/12/2009 3:37:12 AM
Surr: 4-Bromo	fluorobenzene	92.4	64.7-120	%REC	1	12/12/2009 3:37:12 AM
EPA METHOD 3	00.0: ANIONS					Analyst: TAF
Chloride		18	3.0	mg/Kg	10	12/17/2009 8:06:57 AM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

*

Value exceeds Maximum Contaminant Level Е Estimated value

- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank

Date: 17-Dec-09

- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 2

CLIENT:	Western Refining South	west, Inc.		Client Sample	e ID: API Cell	
Lab Order:	0912220			Collection I	Date: 12/4/2009	12:23:00 PM
Project:	Western Bisti Landfarm	. د		Date Recei	ived: 12/10/200)9
Lab ID:	0912220-02			Ma	trix: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	BO15B: DIESEL RANGE OF	RGANICS				Analyst: SCC
Diesel Range O	rganics (DRO)	ND	.10	mg/Kg	1	12/14/2009 3:11:07 PM
Motor Oil Range	Organics (MRO)	ND	50	mg/Kg	1	12/14/2009 3:11:07 PM
Surr: DNOP		94.3	61.7-135	%REC	1	12/14/2009 3:11:07 PM
EPA METHOD	8015B: GASOLINE RANGE		•.			Analyst: NSB
Gasoline Range	Organics (GRO)	ND	5.0	mg/Kg	· 1 .	12/12/2009 4:07:25 AM
Surr: BFB	,	98.8	65.9-118	%REC	1	.12/12/2009 4:07:25 AM
EPA METHOD 8	8021B: VOLATILES					Analyst: NSB
Benzene	• .	NĎ	0.050	mg/Kg	1	12/12/2009 4:07:25 AM
Toluene		ND	0.050	mg/Kg	· 1	12/12/2009 4:07:25 AM
Ethylbenzene		ND	0.050	mg/Kg	1 *	12/12/2009 4:07:25 AM
Xylenes, Total		ND	0.10	mg/Kg	1	12/12/2009 4:07:25 AM
Surr: 4-Bromo	fluorobenzene	109	64.7-120	· %REC	, 1	12/12/2009 4:07:25 AM
EPA METHOD 3				1	,	Analyst: TAF
Chloride	• - • • •	20	3.0	mg/Kg	, 10	12/17/2009 8:24:21 AM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

- * Value exceeds Maximum Contaminant Level E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Date: 17-Dec-09

- MCL Maximum Contaminant Level
- RL Reporting Limit

. 4

Page 2 of 2

.

QA/QC SUMMARY REPORT

Client: Western Re	fining South	nwest, Inc.									
Project: Western Bis	ști Landfarn	1							Work	« Order:	0912220
Analyte	Result	Units	PQL	SPK V	a SPK ref	%Rec L	.owLimit H	ighLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: A	nions										
Sample ID: MB-20874		MBLK				Batch ID:	20874	Analysi	s Date:	12/17/2009	7:32:08 AM
Chloride	ND	mg/Kg	0.30	•							
Sample ID: LCS-20874		LCS				Batch ID:	20874	Analysi	s Date:	12/17/2009	7:49:32 AM
Chloride	14.89	mg/Kg	0.30	15	0	99.3	90	110			
Method: EPA Method 8015B: I	Diesel Range	Organics		;			•				
Sample ID: MB-20846	•••	MBĿK				Batch ID:	20846	Analysis	s Date:	12/14/2009	9:43:41 AM
Diesel Range Organics (DRO)	ND	mg/Kg	10		,						
Motor Oil Range Organics (MRO)	ND	mg/Kg	50								
Sample ID: LCS-20846		LCS			·	Batch ID:	20846	Analysis	s Date:	12/14/2009 1	0:19:55 AM
Diesel Range Organics (DRO)	44.87	mg/Kg	10	50	0	89.7	64.6	116			
Method: EPA Method 8015B: (Gasoline Ran	ge					•				
Sample ID: MB-20842		MBLK				Batch ID:	20842	Analysis	B Date:	12/12/2009	5:38:38 AM
Gasoline Range Organics (GRO)	ND	mg/Kg	5.0							•	
Sample ID: LCS-20842		LCS				Batch ID:	20842	Analysis	Date:	12/12/2009	4:37:50 AM
Gasoline Range Organics (GRO)	25.94	mg/Kg	5.0	25	1.33	98.4	77.7	135			
Method: EPA Method 8021B: V	/olatiles										
Sample ID: MB-20842		MBLK	•'			Batch ID:	20842	Analysis	Date:	12/12/2009	5:38:38 AM
Benzene	ND	mg/Kg	0.050								
Toluene	ND	mg/Kg	0.050								`
Ethylbenzene	ND	mg/Kg	0.050								
Xylenes, Total	ND	mg/Kg	0.10				•	•			,
Sample ID: LCS-20842		LCS				Batch ID:	20842	Analysis	Date:	12/12/2009	5:08:17 AM
Benzene	0.9175	mg/Kg	0.050	1	0.0165	90.1	78.8	132			
Toluene	0.9181	mg/Kg	0 050	1	0.0062	91.2	78.9	112			
Ethylbenzene	0.9758	mg/Kg	0.050	1	0	97.6	69.3	125			
Xylenes, Total	2.951	mg/Kg	0.10	3	0	98.4	73	128			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

Hall	Environmental	Analysis	Laboratory,	Inc
------	---------------	----------	-------------	-----

Hall Environmental Analysis Laboratory, Inc.				۰.
Sampl	e Receipt Ch	necklist		
Client Name WESTERN REFINING SOUT		Date Receive	ed:	12/10/2009
Work Order, Number 0912220	•	Received by	y: ARS	
		Sample ID	abels checked by:	[M
Checklist completed by:		202	.	Initials .
K			•	•
Matrix: Carrier name	e: <u>Greyhound</u>			1
Shipping container/cooler in good condition?	Yes 🗹	No 🗔	Not Present	
Custody seals intact on shipping container/cooler?	. Yes 🗹	No 🗍	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗌	No 🗔	N∕A 🗹	
Chain of custody present?	Yes 🗹	No 🗔		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗖		, , , , , , , , , , , , , , , , , , ,
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		• •
Samples in proper container/bottle?	Yes 🗹	No 🗌		•
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗔		,
All samples received within holding time?	Yes 🗹	No 🗍		Number of preserved bottles checked for
Water - VOA vials have zero headspace? Ko VOA vials sub	mitted 🗹	Yes 🗌	No 🗋	pH:
Water - Preservation labels on bottle and cap match?	Yes 🛄		N/A 🗹	·
Water - pH acceptable upon receipt?	Yes L	No 🛄	N/A I⊻I	<2 >12 unless noted below.
Container/Temp Blank temperature?	0.2°	<6° C Acceptab	ole t time to cool.	·
COMMENTS:	· .			· · ·
		، - ــــ سب حب م	·· 	
		, ,		
:				
Client contacted Date contacted:		Pers	on contacted	
Contacted by: Regarding:				
	•			
· · · · · · · · · · · · · · · · · · ·				······
			<u></u>	
· · ·				
Corrective Action		•		· · · · · · · · · · · · · · · · · · ·
		/****		
· ·				
		· · · · · · · · · · · · · · · · · · ·		

Client:	hain- Nést	of-Cu	Istody Record Refinina	Turn-Around	Time:					H			EN (S1	VI S	RO	NI BO	4E RA	NT/	۹۲ RY	r
Bill	Rc	hert	Son	Project Name	e: .	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 🖿					halle	nviro	nme	ntal.c	:om			• • •	
Mailing	Address	111 (R 4990	Westerr	n Bishil	andform		49(01 H	awkii	ns NE	Ξ-/	Albua	uera	ue. N	IM 87	'10 9			*
R	loon	nfield	J. NM	Project #:			1	Te	el. 50	5-34	5-397	75	Fax	50	5-345	-410	7			
Phone #	t: (50	5)6	32-8000] 	,							An	alysi	s Re	ques	st				
email or	Fax#:			Project Mana	ger:		1)	nly)	sel)					Ì,						
QA/QC F	^p ackage: da r d		Level 4 (Full Validation)	Bill	lobertsc	n	5 (802	(Gas o	sas/Die					PCR's			Ŋ.			
Accredit	tation AP	Othe	۲	Sampler: D	vin He	<u>ncmann</u>		HdT +	15B (G	18.1)	04.1)	(HA)	UN C	ADR.		A)	30			or N
	(Type)		· · ·	Sample Tem	perature	02		ВË	d 80	4 b	od 5	ъ Г	etals	ida	F	-V -	<u>ب</u>			Σ
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO 0910000	BTEX + ME	BTEX + MT	TPH Metho	TPH (Metho	EDB (Meth	8310 (PNA	Apione (F.C	RDR1 Pactic	8260B (VO	8270 (Sem	Chlori			Air Bubbles
17/1/09	1240	Soil	Crude Cell	402/2	NONE	(X		X							T	X			
2/1/09	1223	Soil	API Cell	407/2	NONE	2	X		X			·					Х		1	П
<u> </u>	<u></u>						 					_				ļ				
					 	· · · · · · · · · · · · · · · · · · ·				-+	-+	-	4-	+					+	+
			· · ·				<u> </u>							+	+	┼—			+-	+
	· · · · · · · · · · · · · · · · · · ·			······.	· .		· · ·			-+		_		+					+-	+
		<u> </u>		<u> </u>							_				+	+			+	┼┤
					-	· · · · · · · · · · · · · · · · · · ·					-+			+	·	+	┝─┤		+	+
· · ·			· .			· .	1						+				$\left \right $			\mathbf{H}
											\rightarrow			\uparrow	-		╞──┤		+-	+
		-			1	• • • • • • • • • • • • • • • • • • •						-†		\top	\uparrow	\uparrow		- -	+-	\mathbf{T}
Date: 12/9/09 Date:	Time: 9:00 Time:	Relinquish Relinquish	ed by: ed by:	Received by: Received by:	10:0	Date Time D5 21000 Date Time	Rer	nark Per	s: 230 10	2	cc cde	st	y I urs	-65 321	ul vic	ts es	tc .cc	> >m		

1

.ч

1 15

ï

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

...

LOGISTICS

RECEIVED OCD

October 15, 2009

Mr. Brad Jones New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Certified Mail # 7009 0820 0000 0482 8590

RE: Notice to Rescind Revised Sampling and Analysis Plan Western Refining's Centralized Surface Waste Management Facility Bisti Landfarm: NM-02-0010

Dear Mr. Jones,

Western Refining (Western) rescinds the Revised Sampling and Analysis Plan dated September 26, 2009 for the Bisti Landfarm (NM-02-0010) located in Unit I of Section 16 of Township 25N, Range 12W in San Juan County, New Mexico. As discussed with you during a conference call on October 14, 2009, Western will instead submit a response plan addressing migration of contaminants.

Please contact me at (505) 632-4044 or at ron.copple@wnr.com with any questions that may arise.

Sincerely, Western Refining Ron Copple

CC: Bill Robertson, Western Refining Allen Hains, Western Refining Ashley Ager, Lodestar Services File

LOGISTICS

JEIVED OCD

September 21, 2009

Mr. Brad Jones New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: **Revised Sampling and Analysis Plan** Western Refining's Centralized Surface Waste Management Facility Bisti Landfarm: NM-02-0010

Dear Mr. Jones,

INA SEP 23 A II: Western Refining (Western) proposes the following Revised Sampling and Analysis Plan in response to recent concerns from the New Mexico Oil Conservation Division (NMOCD) regarding monitoring compliance and potential downward migration of contaminants at Western's Bisti Landfarm (NM-02-0010). The Bisti Landfarm was originally permitted in 1998 and is located in Unit I of Section 16 of Township 25N. Range 12W in San Juan County, New Mexico. This plan discusses how Western intends to bring the monitoring and operational procedures for the facility into compliance with revised rules set forth in 19.15.36 NMAC. Immediate implementation of the new procedures will allow Western to identify and delineate possible areas of concern, as well as address migration of contaminants, if necessary. Once the sampling procedures are refined, results may indicate migration has not occurred. Should migration be confirmed, Western will initiate corrective actions as required. The attached sampling plan also clarifies issues concerning background conditions, cell delineation and previous sampling methods.

Western_strives_towards_industry_and_government_cooperation_and_is_committed_to achieving full compliance as required by NMOCD. Your consideration in this matter is greatly appreciated. Western wishes to resolve this issue as quickly as possible and requests a conference call to discuss this proposal once NMOCD has reviewed the plan in detail.

Please contact me at (505) 632-4044 or at ron.copple@wnr.com with any questions that may arise and to schedule a conference call at your earliest convenience.

111 County Road 4990, Bloomfield, New Mexico 87413 • 505 632-8006 • www.wnr.com

Sincerely. Western Refining

on Copple

CC: Bill Robertson, Western Refining Allen Hains, Western Refining Ashley Ager, Lodestar Services File

Attachments: Revised Sampling and Analysis Plan

Revised Sampling and Analysis Plan:

For Western Refining's Centralized Surface Waste Management Facility: Bisti Landfarm, NM-02-0010

September 21, 2009

Table of Contents

Background Information	4
Revised Sampling and Analysis Plan	5
Establish Sampling Regime and Operation Parameters for Compliance with 19.15	.36 _
NMAC	5
Initial Sampling Event	6
Sample Analysis	7
Continued Monitoring	7
Conclusions	7

List of Tables

TABLE 1: Proposed Sampling Methods for Delineation

List of Figures

FIGURE 1: Site Map FIGURE 2: Proposed Sampling Locations for Vadose Zone Delineation

List of Appendices

APPENDIX A: Original Landfarm Permit/Permit Application APPENDIX B: Historical Sampling Results APPENDIX C: Letter Concerning Sampling of Inactive Cell

Background Information

The New Mexico Oil Conservation Division (NMOCD) requested that Western Refining (Western) work to bring all monitoring and operational procedures at their Surface Waste Management Facility, referred to as the Bisti Landfarm, into compliance with revised New Mexico Administrative Code Title 19, Chapter 15, Part 36 (19.15.36 NMAC). Additionally, NMOCD recommended that Western address concerns of potential downward migration of soil contaminants.

The Bisti Landfarm was permitted in February 1998 under 711 Permit NM-02-0010 to Giant Industries, Arizona (Giant). It is located in Unit I of Section 16 of Township 25N, Range 12W in San Juan County, New Mexico. The application and NMOCD permit are attached as Appendix A. One background sample was collected in the middle of the proposed landfarm from two feet below ground surface as part of the application requirements (see results in Appendix B). Giant disposed of impacted soils at the landfarm from its opening in April 1998 through July 2003, resulting in three cells: the API Cell (containing material originating from API and Pettigrew), the Crude Cell (containing material originating from East Line, Bisti and West Line) and a currently Inactive Cell (Figure 1). No new cells or lifts have been added to the landfarm since 2003. Western procured the landfarm from Giant in the first quarter of 2008.

The original permit outlines landfarm construction, operation and monitoring parameters. The approved monitoring plan of the treatment zone states the following:

"A treatment zone not to exceed three (3) feet beneath the landfarm native ground surface will be monitored. A minimum of one random soil sample from each individual cell, with no cell being larger than five (5) acres, six (6) months after the first contaminated soils were received in the cell and then quarterly thereafter. The samples will be taken two (2) to three (3) feet below native ground surface.

The soil samples will be analyzed using EPA methods for TPH and BTEX quarterly and major cations/anions and heavy metals annually..."

Vadose and treatment zone monitoring, as defined in the revised (2008) regulations, 19.15.36 NMAC, have not been applied. Instead, Giant and Western used the guidelines quoted above to monitor soils at the landfarm. Most recently, Western's sampling procedures consisted of sampling from beneath the two active cells (Crude and API cells) on a quarterly basis. Samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and total petroleum hydrocarbons (TPH) using EPA-approved methods (8021B and 8015). Beginning in 2008, chlorides were also analyzed quarterly. Results from 2004 to present are shown in Appendix B. Records of sampling events prior to 2004 are available upon request. The Inactive Cell was last sampled in 2004, and the results were used to request discontinued maintenance (disking) and permission to add possible subsequent lifts (see letter and NMOCD approval in Appendix C).

In December 2008, two samples were collected from within the actual treatment zone of each section to monitor natural degradation. Samples were analyzed for BTEX, TPH (USEPA Method 418.1) and chlorides (USEPA Method 300.0). These results are also shown in Appendix B.

The NMOCD has concerns with the compliance deficiencies described above and has noted that recent sampling results may suggest downward migration of soil contaminants. Specifically, elevated chloride concentrations were measured in API and Crude cell samples over the last two years. Traces of TPH and BTEX were detected in the 2008 annual sample from the API Cell, and TPH was detected in the 2009 annual sample from the Crude Cell (Appendix B).

Revised Sampling and Analysis Plan

Western has developed this Revised Sampling and Analysis Plan to establish compliant sampling and operational procedures according to 19.15.36 NMAC. Immediate implementation of the new procedures will allow Western to identify and delineate potential impacts to subsurface soil and address migration of contaminants, if necessary.

Establish Sampling Regime and Operation Parameters for Compliance with 19.15.36 NMAC

Western will update the sampling protocol and operational parameters based on requirements set forth in 19.15.36 NMAC. Monitoring will consist of the following:

- 1) Biannual sampling of the treatment zone of each of the two (2) active cells (API and Crude cells): One (1) composite sample, consisting of four (4) discrete samples from each cell will be collected and analyzed. All samples will be analyzed for TPH using USEPA method 8015M, and chlorides using USEPA method 300.1.
- 2) Biannual sampling of the vadose zone: At least four (4) random discrete samples taken from 3-4 feet below the ground surface from each active cell. All samples will be analyzed for BTEX using USEPA method 8021B, TPH using USEPA method 8015M, and chlorides using USEPA method 300.1. Results will be compared with the higher of the Practical PQL and the background soil concentrations to determine if a release has occurred.
- 3) Five-year monitoring of the vadose zone: In addition to the biannual vadose zone sampling, at least four (4) discrete samples from beneath each active cell will be collected and analyzed for constituents listed in Subsections A and B of 20.6.2.3103 NMAC using EPA-approved methods. Results will be compared with the higher of the Practical Quantitation Limit (PQL) or the background soil concentrations to determine if a release has occurred.

Composite sampling will include placing a predetermined number of aliquots of soil into a one-gallon plastic bag. The soil within the bag will be thoroughly mixed before filling glass sampling jars provided by the laboratory. All samples will be placed on ice and sent to a laboratory for analysis. Samples will be labeled with the date and time of collection, sample name, collector's name and parameters to be analyzed. The samples will be shipped to a laboratory in a sealed cooler via bus before designated holding times expired. Proper chain-of-custody (COC) procedures will be followed, with logs documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used, analyses required and sampler's signatures.

Western will prepare a report after each sampling event to document sampling locations, methods used and results. Reports will be submitted to the NMOCD.

Treatment will consist of disking soils within active cells bi-weekly. Western will add moisture, as necessary to enhance bioremediation and to control blowing dust. Western understands pooling liquids are prohibited and shall remove freestanding water within 24 hours of observation. Western will continue to maintain records of remediation activites that are readily accessible for inspection. Any additional treatment will be submitted for approval by the NMOCD before application.

Initial Sampling Event

An initial sampling event will be conducted immediately upon approval of this plan by the NMOCD. Results of this event will not only bring Western's procedures into compliance with revised regulations, but also allow Western and the NMOCD to determine if downward migration is, in fact, an issue.

Western will begin by updating the current site map used for reporting. There is some concern about the current map's accuracy, and a detailed map is needed to fully delineate problems should any be identified. The mapping project will include marking the boundaries of the different cells in the field so that future samples are gathered from appropriate locations.

Composite samples will be collected from the treatment zone of each active cell (Crude and API). The composite samples will be comprised of four (4) discrete samples within the cells. The composite samples will be analyzed for TPH and chlorides. Since the purpose of the initial sampling event is not only to comply with revised regulations, but to also identify potential areas of concern, Western will also test the treatment zone composite samples for BTEX concentrations. Future monitoring events will test for TPH and chlorides only within the treatment zone.

A minimum of four (4) discrete vadose zone samples will be taken from each of the two (2) active cells. The number of vadose zone samples taken within each cell will be dependent on the size of the cell. See Figure 2 for proposed sampling locations. A list of samples to be collected and their associated analyses are shown in Table 1.

Treatment Zone Samplin	<u>g:</u>	
2 composite same the treatment zon	bles (one from each cell), ea e.	ach composed of 4 each discrete samples from
Sample #	Location API Cell	Analyses (for each Sample)
2	Crude Cell	BTEX: EPA Method 8021B Chlorides: EPA Method 300.1

TABLE 1: Proposed Sampling Methods for Delineation

dose Zone Sampling	<u>.</u>	
Discrete sample	s from each cell. Sampl	es to be taken 3-4' below original ground surface
Sample #	Location	Analyses (for each Sample)
4-12	API Cell	TPH: EPA Method 8015M
13-27	Crude Cell	BTEX: EPA Method 8021B
		Chlorides: EPA Method 300.1

Sample Analysis

Western will review the sample data and submit a comprehensive report of activities and results to the NMOCD. The report will include characterization of treatment zone soil concentrations and impacts to the vadose zone, if any. Results will be compared with the higher of the PQL and the background soil concentrations to determine if downward migration has occurred. Once sampling procedures are refined, results may indicate otherwise. The report will include, but not be limited to, vicinity and site diagrams, summary tables of analytical results, laboratory analytical reports, data interpretation with associated maps and diagrams and recommendations for further action based on reported results.

Any urgent issues will be reported to the NMOCD immediately. If downward migration is discovered, further vadose zone sampling will be initiated as necessary. Western will work with the NMOCD to change the landfarm's operation to prevent further contamination, and Western will develop a plan for appropriate remediation of targeted soils.

Continued Monitoring

The sampling and operational procedures described above will be in place during continued operation of the landfarm. If delineation sampling of treatment zones indicate closure of cells is immediately possible, Western will consider initiating closure procedures.

Giant accurately estimated depth to groundwater to be greater than 100' in the original permit application. A hydrogeologic assessment can be found on page 5 of the original application (Appendix A). It identifies nearby surface water features and characterizes groundwater based on well-know references. Local aquifers and groundwater quality are referenced to Stone and others (1983) and Thorn and others (1990). The application cites two water wells on record with the State Engineer's Office that are nearest the Bisti Landfarm. Water depths are 92' and 210' in the wells. A current review of the State Engineer's records indicates there is no new water well information to add to these findings. Based on the estimated depth to groundwater, closure standards for treatment zones are as follows:

Benzene	0.2 mg/kg
Total BTEX	50 mg/kg
GRO + DRO	500 mg/kg
ТРН	2500 mg/kg
Chlorides	1000 mg/kg

Constituents listed in A and B of 20.6 2.3103 NMAC < PQL or background concentrations

Conclusions

This Revised Sampling and Analysis Plan will allow Western to bring the Bisti Landfarm into compliance with the December 2008 19.15.36 NMAC regulations and allow for sufficient monitoring in the future. The plan will also allow Western to define site conditions at the Bisti Landfarm and address any problem of downward migration.

Western Refining Bisti Landfarm

•

Appendix A: Original Landfarm Permit and Landfarm Application

Western Refining Bisti Landfarm

Revised Sampling and Analysis Plan San Juan County, NM

RECEIVED

OCT 9 1997

Environmental Bureau Oil Conservation Division

APPLICATION

for_

WASTE MANAGEMENT FACILITY

T25N, R12W, Sec. 16

Giant Industries Arizona, Inc. 5764 Highway 64 Farmington, New Mexico 87401

October 8, 1997

4000 Monroe Road Farmington, New Mexico 87401 (800) 326-2262
District I - P. O. Box 19 Hobbs, NM District II - 811 S. First Artesia, NM District III 1000 Rio Bi Aztec, NM 2 District IV	(505) 393-6161 80 88241-1980 (505) 748-1283New MexicoForm C-137 Originated 8/8/95 Revised 6/25/9788210 (505) 334-6178 azos Road (7410 (505) 827-7131District OfficeSome C-137 Originated 8/8/95 Revised 6/25/9788210 (505) 334-6178 azos Road (7410 (505) 827-7131District OfficeSome C-137 Originated 8/8/95 Revised 6/25/9788210 (505) 334-6178 azos Road (7410 (505) 827-7131District OfficeSome C-137 Originated 8/8/95 Revised 6/25/9788210 (505) 827-71312040 South Pacheco Street (505) 827-7131NOV 04 1997Submit Original Plus 1 Copy to Santa Fe
	APPLICATION FOR WASTE MANAGEMENT FACILITY
	Commercial X Centralized
1.	Type: Evaporation Injection Other
	X Solids/Landfarm Treating Plant
2.	Operator:Giant Industries Arizona, Inc.
	Address: 5764 Hwy. 64, Farmington, NM 87401
	Contact Person: <u>Timothy Kinney</u> Phone: <u>505/632-4001</u>
З.	Location: <u>NW 14</u> <u>SE 1</u> /4 Section <u>16</u> Township <u>25N</u> Range <u>12W</u> Submit large scale topographic map showing exact location
4.	Is this a modification of an existing facility?
5.	Attach the name and address of the landowner of the facility site and landowners of record within one mile of the site.
6.	Attach description of the facility with a diagram indicating location of fences, pits, dikes, and tanks on the facility.
7.	See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attach designs prepared in accordance with Division guidelines for the construction/installation of the following: pits or ponds, leak-detection systems, aerations systems, enhanced evaporation (spray) systems, waste treating systems, security systems, and landfarm facilities.
8.	See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attach a contingency plan for reporting and clean-up for spills or releases. See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997
9.	Attach a routine inspection and maintenance plan to ensure permit compliance.
10.	See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attachaclosureplan
11.	See "Application for Waste_Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attach geological/hydrological evidence demonstrating that disposal of oil field wastes will not adversely impact groundwater. Depth to and quality of ground water must be included.
12.	See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attach proof that the notice requirements of OCD Rule 711 have been met.
13.	See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attach a contingency plan in the event of a release of H_S.
14.	See "Application for Waste Management Facility T25N, R12W, Sec. 16" dated October 8, 1997 Attach such other information as necessary to demonstrate compliance with any other OCD rules, regulations and orders. NONE ATTACHED
15.	CERTIFICATION
	I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	Name: Timothy Kinney Title: General Manager
	Signature: Jacobe Kimin Date: 11/3/97

Name:	TIMOCHY	KIIIIey		
Signatu	re:_fin	Stra	Kuma	

ł

.-

L.

i.

l L

;

APPLICATION

for

WASTE MANAGEMENT FACILITY

T25N, R12W, Sec. 16

Giant Industries Arizona, Inc. 5764 Highway 64 Farmington, New Mexico 87401

October 8, 1997

4000 Monroe Road Farmington, New Mexico 87401 (800) 326-2262

Page 1

TABLE OF CONTENTS

• APPLICATION FOR WASTE MANAGEMENT FACILITY, FORM C-137

LIST OF ATTACHMENTS

• ATTACHMENT A - LARGE SCALE TOPOGRAPHIC MAP

LIST OF FIGURES

- FIGURE 1A GIANT LAND FARM, 15 ACRE FENCED PORTION
- FIGURE 1B LAND FARM LOCATION
- FIGURE 1C BERM DETAILS

LIST OF APPENDICES

- APPENDIX A: LANDOWNERS WITHIN ONE MILE
- APPENDIX B: FACILITY CONSTRUCTION/OPERATION & WASTE CLASSIFICATION
- APPENDIX C: STATE ENGINEER'S WELL RECORDS

APPLICATION FOR WASTE MANAGEMENT FACILITY

	APPLICATION I	FOR WASTE MAN	AGEMENT	FACILITY							
. <u></u>	Commercial	🛛 Central	ized								
1.	Type: DEvaporation	 Injection Treating Plant 	Other								
	This facility will be used Giant Industries Arizona	for the landfarming of 's San Juan Basin Oper	hydrocarbon i •ations.	mpacted soil produced by							
2.	Operator: <u>Giant Indus</u> Address: <u>5764 Highy</u> Contact Person: <u>Tin</u>	stries Arizona, Inc. way 64, Farmington, Nev nothy Kinney	/ Mexico 8740	505-632-4001							
	3. Location: NW 1/4, A large scale topographi attachment A.	, SE 1/4, Section 16, To ic map showing the exa	wnship 25 Nort act location of	th, Range 12 West. the facility is included as							
	4. Is this a modification	on of an existing facility?	🗌 Yes	🛛 No							
	5. Attach the name and address of the landowner of the facility site and landowners of record within one mile of the site.										
	Giant Industries Arizona Inc. owns all 640 acres of Section 16. The 40-acre land farm is located in the center of the Section. Giant's address is as follows:										
	Giant Industries Ariz 5764 Highway 64 Farmington, New Me	zona, Inc. exico 87401									
	The following are the ov according to the San Jua included in Appendix A.	wners of record of the an County Assessor. 7	sections of la he landowner	nd adjacent to Section 16 names and addresses are							
	Section 8: Section 9:	Indian Allotments Indian Allotments									

- Section 10: Federal
- Section 15: Federal
- Section 17: Private
- Section 20: Trust for Navajo Indians (BIA)
- Section 21: Federal
- Section 22: Federal

6. Attach description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility.

The proposed 40 acre facility is located in the center of section 16 owned by Giant. Of the 40 acres included herein, 15 acres will be fenced and active. The facility will be used for landfarming hydrocarbon impacted soil from releases associated with Giant's San Juan Basin Operations. The facility will not receive liquid wastes, therefore pits or tanks are not proposed at this time. The entire facility will be bermed to prevent precipitation run-off and run-on. In addition, the entire facility will be fenced with three-strand barbed wire to prevent the ingress of livestock. There will be two access gates as shown on Figure 1a.

7. Attach designs prepared in accordance with Division guidelines for the construction/installation of the following: pits or ponds, leak-detection systems, aeration systems, enhanced evaporation (spray) systems, waste treating systems, security systems, and land farm facilities.

See Figures 1a, b, and c. In addition, the facility will be constructed and operated in accordance with the New Mexico Oil Conservation Division's (NMOCD) "Guidelines for Permit Application, Design and Operation of Centralized & Commercial Land Farms," Section VII Facility Construction/Operation & Waste Classification, as appropriate, Appendix B.

8. Attach a contingency plan for reporting and clean-up for spills or releases.

Because liquids will not be brought to the facility, Giant does not anticipate spills or releases. It is possible that a catastrophic precipitation event (500 yr. frequency or greater) could cause a release. If such an event occurs, Giant will within 24 hours from discovery, initiate an oral report and initiate assessment of the impact to the environment.

9. Attach a routine inspection and maintenance plan to ensure permit compliance.

Routine inspection and maintenance will be conducted on a monthly basis to the extent that soils above 100 parts per million (PPM), total petroleum hydrocarbons (TPH) remain on-site or following consequential rainstorms or windstorms. Routine maintenance and inspection will consist of inspection of the integrity of the berms, fences and gates. In the event that damage or degradation of the facility is evident, the facility manager will be notified and arrangements will be made to repair or replace damaged structures. Sampled For o

Routine inspection and maintenance will include annual sampling of the soils beneath the land farm to ensure that contaminant migration has not occurred.

- questing

/Quarterly

A letter report will be submitted to the NMOCD annually. The letter report will transmit analytical results, NMOCD forms and a summary of the previous year's operations.

10. Attach a closure plan.

To close the facility, Giant will notify the NMOCD of the anticipated closure date, cease acceptance of materials and complete the following within one year of closure:

- Collect representative soil samples of materials that have been landfarmed to verify TPH concentrations are less than 100 PPM
- Collect final representative samples of the natural soil beneath the land farm to demonstrate lack of impact
- **Remove all fencing and structures**
- Grade the location to approximate pre-land farm conditions
- Complete reseeding with natural grasses
- Submit final closure report to the NMOCD for approval of closure

Estimated costs for closure are as follows:

Remove Fencing and Building	\$ 2,500
Grade and Reseed Location	\$ 5,500
Soil Sampling and Analysis	\$ 1,200
Closure Report	\$ 850

APPLICATION FOR WASTE MANAGEMENT FACILITY

11. Attach geological / hydrological evidence demonstrating that disposal of oil field wastes will not adversely impact groundwater. Depth to and quality of ground water must be included.

Hydrologic Features

- A. A tributary arm to the ephemeral West Fork of the Gallegos Canyon is located approximately 2,000 horizontal feet to the northeast of the proposed facility. The land farm location is approximately 160 vertical feet above the flowline of the West Fork of Gallegos Canyon. No other watercourses or groundwater discharge sites have been found within one mile of the facility.
- B. Based on Stone et al. in "Hydrogeology and Water Resources of San Juan Basin, New Mexico" (1983); the aquifer most likely to be impacted by vertical migration of hydrocarbons is contained within the Ojo Alamo Sandstone. Comparing the elevation of the potentiometric surface (Stone et al., Figure 28, sheet 5) to the site elevation as indicated on the United States Geological Survey Quadrangle Carson Trading Post, New Mexico, the depth to groundwater is estimated at approximately 200 feet beneath land surface.

According to Thorn et al. in "Hydrogeology of the Ojo Alamo Sandstone" in the San Juan Structural Basin, New Mexico, Colorado, Arizona, and Utah" (1990), of water sample analyses from 32 locations, the high total dissolved solids (TDS) concentration was 7,300 milligrams per liter (mg/L); the low was 56 mg/L, with a median value of 640 mg/L.

- C. Based on Stone, et al. (Figure 28, sheet 5), groundwater in the Ojo Alamo flows to the north in the vicinity of the proposed site.
- D. At this time no wells exist within one mile of the facility and no chemical analysis is available. New Mexico State Engineers Office records were searched and two well permits were on record in T25N, R12W Sections 1 and 13. Copies of these records are included in Appendix C.

Geologic Description of the Land farm Site

A. According to "Soil Survey of San Juan County New Mexico, Eastern Part", United States Soil Conservation Service, the surficial soils at the site are identified as the Shiprock-Sheppard-Doak soils; deep, nearly level to moderately steep, well drained to somewhat excessively drained soils that formed in alluvial and eolian material on uplands. Stone, et al.'s hydrogeologic map indicates the Tertiary Nacimiento Formation immediately beneath the soil throughout section 16 where the land farm is to be located. Stone. et al. describe the lower part of the Nacimiento formation as being characterized by interbedded black, carbonaceous mudstones and white, coarse-grained sandstones; and the upper part of the Formation as somber beds of mudstone and sandstone. Immediately beneath the Nacimiento Formation, less than 200 feet, is the Tertiary Ojo Alamo Sandstone. Stone et al. describe the Ojo Alamo sandstone as a sequence of sandstone, conglomeratic sandstone and shale.

- B. The Ojo Alamo is the first aquifer located beneath the site. The top of the Ojo Alamo may be less than 200 feet beneath ground surface at the facility. According to Stone, et al., the Ojo Alamo ranges in thickness from 72 to 313 feet.
- 12. Attach proof that the notice requirements of NMOCD Rule 711 have been met.

Once the receipts from the certified mailings have been received they will be forwarded to the NMOCD

13. Attach a contingency plan in the event of a release of H2S.

Because no liquids will be stored at the facility, Giant does not anticipate the release of hydrogen sulfide (H₂S). There are no enclosures that would serve to collect and concentrate H₂S produced from materials being landfarmed. During unloading and landfarming operations, a H₂S alarm will be used to ensure personnel protection. A site health and safety plan will be prepared in compliance with Occupational Health and Safety Act (OSHA) to protect site workers.

- 14. Attach such other information as necessary to demonstrate compliance with any other NMOCD rules, regulations and orders. *NONE ATTACHED*.
- 15. CERTIFICATION: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

inner Name: . 19 97 Date:

_____ Title: General Manager

J.\16958\GLAAPP.DOC

ATTACHMENT A: LARGE SCALE TOPOGRAPHIC MAP

ATTACHMENT A: LARGE SCALE TOPOGRAPHIC MAP

ATTACHMENT A: LARGE SCALE TOPOGRAPHIC MAP

.

FIGURE 1A: GIANT LAND FARM

D FARM

FIGURE 1B: PROPOSED LAND FARM LOCATION

FIGURE

FIGURE 1C: BERM DETAILS

BERM DETAILS

- -

÷

-

APPENDIX A: LANDOWNERS WITHIN ONE MILE

Landowners of Record within One Mile of Landfarm Site

Indian Allotted Land

Gleason, Allen 4715 Gila Farmington NM 87401

George, Sam General Delivery Bloomfield NM 87413

Begay, Imogene P. O. Box 981 Kirtland NM 87417

Begay, Lavena P. O. Box 981 Kirtland NM 87417

Begay, Alroy Roger C/o Minnie Low Begay P. O. Box 981 Kirtland NM 87417

Begay, Evelyn C/o Minnie Low Begay P. O. Box 981 Kirtland NM 87417

Begay, Melissa C/o Minnie Low Begay P. O. Box 981 Kirtland NM 87417

George, Melvin P. O. Box 1262 Cuba NM 8701 I Ni Pah, Joan Box 2154 Bloomfield NM 87413

Jackson, Anthony Dal-Roy C/o Frank Jackson (guardian) 817 Nicklaus Dr. Rio Rancho NM 87124

Jackson, Everett Michael C/o Frank Jackson (guardian) 817 Nicklaus Dr. Rio Rancho NM 87124

Charley, Dorothy Ann 2435 19th Ave. San Francisco CA 94116

Charley, Dorothy Anna 2435 19th Ave. San Francisco CA 94116

Valdez, Dorothy Ann 2435 19th Ave. San Francisco CA 94116

Charley, Kenneth B. 2435 19th Ave. San Francisco CA 94116

Charley, Kenneth 2435 19th Ave. San Francisco CA 94116 Federal Land Bureau of Land Management 1235 La Plata Highway Farmington, New Mexico 87401

Bureau of Indian Affairs Trust Land Bureau of Indian Affairs

Shiprock Agency PO Box 966 Shiprock, New Mexico 87420

Private Land

C.L. Crowder Investment Co. 508 Wellesley SE Albuquerque, NM 87106

APPENDIX B:

FACILITY CONSTRUCTION/OPERATION & WASTE CLASSIFICATION

ICATION

ndfarm/Landfill

coordinates or latitude/longitude on unsurveyed land. Submit a large scale topographic map, site plan, or detailed aerial photograph for use in conjunction with the written material. Include on the map the appropriate highways or roads giving access to the facility.

IV. EXPANSION REQUEST

If the application is for an expansion of an existing facility, include the original OCD order or approval authorization for the facility.

V. LAND & OWNERSHIP

List the name and address of the landowner of the landfarm and all landowners of record within one-half mile of the site. Include a topographic map, plot map or aerial photograph delineating ownership boundaries. Include on the map all private residences within one mile of the proposed facility.

Note: see Part XII. of application for Proof of Notice.

VI. FACILITY DESCRIPTION

Attach a description of the facility with a diagram indicating the location of the following: 1. Roads, fences, gates, berms, ditches, and proposed cells.

2. All pipelines crossing the facility, including owner, contents, depth and size of the pipeline(s).

3. Actual or proposed offices and/or storage buildings.

4. Chemical storage areas indicating the type of storage containers (ie. drums, sacks, tanks, etc.).

5. All tanks indicating whether they are above ground or below ground and saddle or vertical.

6. Any on-site storage/disposal facilities for wastes other than contaminated soils to be landfarmed (ie. waste oil, washbay sumps, etc.).

VII. FACILITY CONSTRUCTION/OPERATION & WASTE CLASSIFICATION

A. Facility Construction - The following items should be addressed when designing the facility:

1. Location: A landfarm facility shall not be located in any watercourse, lakebed, sink-hole, or other depression. Facilities located adjacent to any such watercourses or depression shall be located safely above the high water level of such watercourse or depression. In addition, facilities located adjacent to any watercourses shall include a storm water runoff plan.

2. Fences & Signs: The facility shall be fenced and have a sign at the entrance. The sign shall be legible from at least fifty (50) feet and contain the following information: a) name of the facility, b) location by section, township and range, and c) emergency phone number.

3. Facility Buffer Zone: No contaminated soils should be placed within one hundred (100) feet of the boundary of the facility unless it can be demonstrated that a smaller buffer zone will not adversely impact the adjacent properties.

4. Pipeline Buffer Zone: No contaminated soils should be placed within twenty (20) feet of any pipelines crossing the landfarm. In addition, no ndfarm/Landfill

equipment should be operated within ten (10) feet of a pipeline. All pipelines crossing the facility should have surface markers identifying the location of the pipelines.

5. Facility Berming: The portion of the facility containing contaminated soils shall be bermed to prevent runoff and runon. A berm should be constructed and maintained such that it capable of containing precipitation from a one-hundred year flood for that specific region.
6. Treatment Zone Monitoring: Because a landfarm is designed to remediate contaminated soils and not transfer contaminants into the underlying native soil and/or groundwater, the applicant shall submit a plan to detect leaching of contaminants. If the native ground surface has a minimum of three feet of uncemented material (ic. soil) then a treatment zone monitoring program may be incorporated into the facility design to ensure contaminants are not leaching into the native soil/groundwater. The following procedures should be used to monitor a treatment zone not to exceed three (3) feet beneath the landfarm:

a. One (1) background soil sample should be taken from the center portion of the landfarm two (2) feet below the native ground surface prior to operation. The sample should be analyzed for total petroleum hydrocarbons (TPH), major cations/anions, volatile aromatic organics (BTEX), and heavy metals using approved EPA methods.

b. A treatment zone not to exceed three (3) feet beneath the land farm should be monitored. A minimum of one random soil sample should be taken from each individual cell, with no cell being larger than five (5) acres, six (6) months after the first contaminated soils are received in the cell and then quarterly thereafter. The sample should be taken at two to three (2-3) feet below the native ground surface.

c. The soil samples should be analyzed using approved EPA methods for TPH and BTEX quarterly, and for major cations/auions and heavy metals annually.

d. After obtaining the soil samples the boreholes should be filled with an impermeable material such as cement.

c. Analytical results from the treatment zone monitoring should be submitted to the OCD Santa Fe Office for review on a regular schedule to be proposed by the applicant.

7. Double-Lined System: If the native ground surface is composed of resistant cemented materials which make it infeasible to sample a treatment zone then another method shall be proposed to guarantee that contaminants do not leach into the underlying soils and/or groundwater. This may be accomplished by installing a double-lined system with leak detection in accordance with the OCD "Engineering Design Guidelines for Construction of Waste Storage/Disposal Ponds (10/90)H. In addition, the facility shall be constructed so that the primary liner will not be ripped or punctured when the contaminated soils are disked.

B. Facility Operation - The Director shall consider, but is not limited to, the following operating procedures for commercial and centralized landfarms. The purpose of specific operating requirements is so that operation of a landfarm will not adversely impact ground water, surface water, public health or the environment.

andfarm/Landfill

1. Disposal shall only occur when an attendant is on duty. The facility shall be secured when no attendant is present.

2. All contaminated soils received at the facility should be spread and disked within 72 hours of receipt.

3. Soils should be spread on the surface in six inch lifts or less unless the applicant can demonstrate that the equipment will adequately disk a thicker lift.

4. Soils should be disked a minimum of one time every two weeks (biweekly) to enhance biodegradation of contaminants.

5. Exempt contaminated soils should be placed in the landfarm so that they are physically separate (ie. bermed) from nonexempt contaminated soils. There should be no mixing of exempt and nonexempt soils.

6. Successive lifts of contaminated soils should not be spread until a laboratory measurement of Total Petroleum Hydrocarbons (TPH) in the previous lift is less than 100 parts per million (ppm), and the sum of all aromatic hydrocarbons (BTEX) is less than 50 ppm, and the benzene is less than 10 ppm. Comprehensive records of the laboratory analyses and the sampling locations shall be maintained at the facility. Authorization from the OCD shall be obtained prior to application of successive lifts.

7. Moisture should be added as necessary to enhance bioremediation and to control blowing dust. There shall be no ponding, pooling or run-off of water allowed. Any ponding of precipitation should be removed within seventy-two (72) hours of discovery.

8. Enhanced bio-remediation through the application of microbes (bugs) and/or fertilizers shall only be permitted after prior approval from the OCD. Request for application of microbes should include the location of the area designated for the bio-remediation program, composition of additives, and the method, amount and frequency of application.

9. No free liquids or soils with free liquids shall be accepted at the facility.

10. Comprehensive records of all material disposed of at the facility shall be maintained at the facility. The records for each load will include: 1) the generator, 2) the origin, 3) date received, 4) quantity, 5) Certification of exempt status or analysis for hazardous constituents if non-exempt, 6) transporter, and 7) exact cell location and any addition of microbes, moisture, t'ertilizers, etc.

C. Characterization & Tracking of Wastes - The operator of a landfarm must be able to distinguish between those oilfield contaminated solids which are exempt from RCRA Subtitle C (hazardous waste) regulations and those which are subject to the RCRA Subtitle C regulations. To aid the landfarm applicant in making those determinations and therefore prohibiting hazardous waste from entering the facility, all OCD permitted landfarms should operate under the following conditions:

1: The facility should be authorized to accept only:

a. Oilfield contaminated solids which are exempt from RCRA Subtitle C regulations. These wastes should be accompanied by a "Certification of Waste Status" from the generator.

http://www.emnrd.state.nm.us/landfarm.htm

b. "Non-hazardous" non-exempt oilfield contaminated solids from OCD permitted facilities on a case-by-case basis after conducting an analysis tor hazardous characteristics and receiving OCD approval. The test for hazardous characteristics for a particular waste may be effective for one year from the date of analysis, if, the subsequent wastes from the same waste stream are accompanied by a statement from the generator that there has been no change in the processes employed or the chemicals stored/used at the facility generating the waste.

C. Other non-oilfield contaminated solids which are RCRA Subtitle C exempt or non-hazardous by characteristic testing, if requested by another regulatory agency on an emergency basis as the waste poses an eminent danger to public health. The wastes should be accompanied by a "Verification of Waste Status" demonstrating the exempt or non-hazardous classification of the solids and signed by the appropriate regulatory agency. OCD approval shall be obtained prior to accepting the wastes.

2. At no time will any OCD permitted landfarms accept wastes which are hazardous by either testing or listing.

3. All loads received at the facility will be accompanied by the following:

a. A "Certification of Waste Status" signed by the waste generator or a "Verification of Waste Status" issued by the New Mexico Environment Department (NMED) or the appropriate agency from antoher state tor wastes regulated by that agency. The state agency verification is based on specific information on the subject waste submitted by the generator and demonstrating the exempt or non-hazardous classification of the waste.

b. The analytical results of Hazardous Waste Characterization for non-exempt waste including corrosivity, reactivity, ignitability, and toxic constituents and a certification that no listed hazardous wastes are contained within the wastes. The samples for these analyses and results will be obtained from the wastes prior to removal from the generator's facility and without dilution in accordance with EPA SW-846 sampling procedures.

4. The transporter of all wastes to the facility will supply a certification that wastes delivered are those wastes received from the generator and that no additional materials have been added.

VIII. SPILL/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)

A. The disposal application shall contain a contingency plan that anticipates where any leaks/spill might occur. It should describe how the applicant proposes to guard against such accidents and detect them when they have occurred.

B. The contingency plan shall describe the steps proposed to contain and remove the spilled substance or mitigate the damage caused by the discharge such that ground water is protected, or movement into surface waters is prevented.

C. The disposal application shall describe how any ponding, pooling or runon of precipitation will be removed from the landfarm and where its final disposition will be.

APPENDIX C: STATE ENGINEER'S WELL RECORDS

ATTEMPIAC. STATE ENGINEER 5 WELL REC

	Date received	7/18/	57
		being first duit	sworn upon my oath.
depose and say that the following is a full and on the reverse side of this form and submitted that I have carefully read each and all of the i my knowledge and belief.	complete statement print in evidence of owners teme contained therein M.M.	pared in accordance hip of a valid und and that the same	with the instructions erground water right, are true to the best of
•	-1010	abren	 , declarant,
R. R. Robison, Division Production	on Manager, Shel	L OLL Company	F
Subscribed and sworn to before me this	day of	Jul Int	∠, A.D. 19↓_ ∕
My commission expires $\frac{B-12-60}{B-12-60}$		- NE LA ZO	Notary Public
,			
Name of writer since Shell Oil C	STATEMENT		
or 1008 W. 6th St., Los Angeles.	California		
County of Los Angeles	State of Cal	ifornia	
Source of water supply Shallow water	basin		
(state whether a cliff House and Allison	rtesian or shallow water - lienefee - San	Juan Basin	
(name of undergroun)	d stream, valley, artesian	basin, etc.)	
The well is located in the	¼·	4	<u> </u>
of section, Townshi	p27N	_, Range(<u>.</u> , N.M.P.M.
on land owned by Over maent	Nov Dr	illing Co	
Description of well: date drifted $3-2/-3/$	driner <u>New Di</u>		
pump : 30	iches: original how		gat. per min.;
present xuy gal. per	min.; maximum pump	ing lift	feet;
make and type of pump	14_08~/4-14	<u> </u>	·
	Le Roi A 288 S	ingle evided	42 6-HD
make, type, horsepower, etc., of power plant	De NOI, A 200, D	The cystade:	
Prational expansions interast claimed in a			אר ב-
Quality of water appropriated and happfield			
the last 2 days on a rest to	y used(fe	et depth or acre feet	Remácre) J
for the drilling and production o	perations of oil	wells	purposes.
Acreage actually irrigated and with water right	it		acres,
located and described as follows (describe only	r lands actually irrigat	ed): ·	
		res	Owner
Hand a described as follows (describe out)	Ac Twp. Range Irriga	ited	
Image: State and a substrated as follows (used into oblication) Image: State and a substrated as follows (used into oblication) Image: State and a substrated as follows (used into oblication) Image: State and a substrated as follows (used into oblication) Image: State and a substrated as follows (used into oblication) Image: State and a substrated as follows (used into oblication) Image: State and a substrate as follows (used into oblication) Image: State and a substrate as follows (used into oblication) Image: State as foll	Ac Twp. Range Irriga		
Hauberber as follows (describe of)	Ac Twp. Range Irriga		
Bubdivision Sec.	Ac Twp. Range Irrig: 		
Bubdivision Sec.	Ac Twp. Range Irrig:		
Bubdivision Sec.	Ac Twp. Range Irrig:		atano, ar vour n ; \V LÊ []] L ∵ 1957
Bubdivision Sec.	Ac Twp. Range Irrig:		асана) стария и а 2 ₩ 2 1 : 1957 Р м
Bubdivision Sec.	Ac Twp. Range Irrig:		асаложнори н. н. ; \V [: []]] L : 1957 Р м [-1] [2] [3] [4] 5] (9
Bubdivision Sec.	Ac Twp. Range Irrig:		адаарда ирог на т <u>5 V </u> [<u>7</u>] 1 <u>1</u> 1957 Р м Г-1] 1 <u>2</u> 13 9 5 Ю

.

0

T

.

					-		!		
	SCHLU	NBERGER	WELL SURVE	YING (CORPORA'	FION			
			NOUSTON, TEXAS						
	TAULIN	DED CED	Gleett	ica	l jo	q .			
		COMPANY	SHELL OIL C	OMPANY	Other S NON	Surveys E			
	N.M. LUP ER WEL	 WELL	BISTI WATER	WELL	Location	of Well & 660'			
	JUAN, I GAL I WAT	FIELD	#I BISTI GALLU	P	W of SE SEC.13-1	CORNER 25N-12W			-
	SAN B I ST B I ST B I ST Y SHEL		SEC. 13-25N	-12W	Elevation: [D.F. <u>64</u> 12'			
	UNTY LD or CATIO LL MPAN	COUNTY	SAN JUAN		k or ((.B.: 5.L.: <u>640</u> 0'			
5		STATE	NEW MEXICO		FILING No	<u>, 520-</u> 020	D HERE		
, I	RUN No. Date First Reading	ONE 3-31-57 2542					FOL		
ŧ	Last Reading Feet Measured	<u>92</u> 2450							
	Csg. Driller Depth Reached	56 2543					LINE	921	
1	Depth Datum Mud Nat.	KB GEL					MOT	LAT	
ł	Mud Resist. "Res. BHT	9.7.37 3.0@70''f 2.2@96^F		•`F	@F 	@ ''F @ ^F	ROM F	LEVE	
I	<u>Rmc</u> <u>''</u> pH	@ [•] F @ [•] F	@ °F @ @ °F @ @ °F @	0F	@ °F @ ''F @ ''F	@ "F @ "F @°F	AUD F		
ŀ	Bit Size Spcgs.—AM A M	10 5/8'' 16'' 64''							
ŀ	AO Opr. Rig Time Truck No.	18'8" HR 1786FADA					ARKS		
ľ	Recorded By Witness	AUBERT					REM.		

.

ł

1

1

- -

, -

Form 4-1209 (August 1963)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

_SJ-1716 25N,12W.1.320

PROJECT COMPLETION REPORT

CODE	NAME	CODE	NAME
1-2	State	7-8	County
30	Rev Mexico		San Juan
3-4	District	9-10	Sub-basin
07	Farmington	64	San Juan River
5-6	Fiscal Year	11-12	Community Watershed
64	1964	03	West San Juan

								Pro	jec	tΕx	pen	ditu	res					
16 Project No.	17 CTI RM	19 Pro- gram	23 Practice	·Un	29 its	Sol	1 & N	loisture	36	Wee	d C	ont	41 70 1	ſm	Ren	eme	46 nts]
324	1	3 3	4100				T	5	0			T	1		8	1	4 (

Proj	ect Expenditures		Seeding	Water	Development	Fluod Control	Dam		
50 Other BLM Wa	itersheil Co otection	n0 Patribution C.	nil 62 63 ant Appn Spp.	65 Gully Stocky Conti Keser	67 69 Water New Water	72- 75 Permanent Sediment Storage Storage	74 Flood Storage		
					3112				
					i uut				
Project Name				Permittee Nam	e _	-	١		
Carson No	. l Vell			N.A.		<u>ب</u>			
Program		Plant Control	Method	SEF.D	DING 🚠	Unit of Medsurement	L .		
Range Impro-	venent			APPLICATION	SPECIES	-			
A. P. W.		N.A.		N.A.	N.A.	Each			
	DAT	E	,	Name of Owner	r		•		
PERMIT ISSUED	STARTED	COMPLETED	OF FASEMENT				•		
<u></u>	6-20-63	2-5-64	li.à.	N.A.					
Land Status	X BLM	Other Fed	eral Stat	e Coun	ty Pri	ivate			
Cooperative Agr	eement	Date	Maintenance Re-	ponsibility of		Date sent t recording	o W.O. for		
i Yes X	No	N	Bureau of	Land Manage	ement	8-6-64	8-6-64		
State Water		.	······	DATE					
Certificate No.	RECORDED	PROJECT	MARKER PLACED	ABANDO	ONED AL	ANDONYUNT HEFOR	<u></u>		
N.A.	N.A.	2-7-6	4,			STATUS 8-	12-64		
Completed Proje	ct Descriptio	n _				3-1			
a. Drilled	depth - 40	3 ft.				4-1210	<u> </u>		
b. Normal static water level - 210 ft. $\frac{9-8-24}{10}$									
c. Casing 1	engtli - 40	5 ft. diam	eter of casi	ng 6-5/8 in	nch o.d.				
1. Flow during baling - 40 g.p.m., drawdown 165 ft.									
2. Pump - plunger type, power - 14 ft. aermotor, discharge 110 g.p.h.; diam. of									
cylinder - 1-7/8 ", depth to cylinder - 273 ft.									
E Champan	Storage - round galvanized steel, open top tank, with a concrete base, height								

- f. Storage round, galvanized steel, open top tank, with a concrete base, height 8 ft., diameter 12'4", capacity 6,838 gal.
- g. Troughs 3 round, painted steel rim, with concrete base, 6 ft. diameter, 15 inches high, capacity 69 gal. each.

'orm 9-147	5			-			
(Aug. 1961) 			DEPA	RTMENT OF THE INTERIOR		State New Mexico County San Juan
	Some Some	er s log			GEOLOGICAL SUIRVEN WATER RESOUNCES UNISHING	7	Location JE 128 4 sec. J. 1. 2 1 R. Jak.
<u>W. R.</u>	West	Drill	ing Compan	y 1.0	OG OF WELL san Ju	<u>an Co. Uni</u>	t #4 14-11-0008-1279
Depth	(leet)	Cuttings		Description	I materials drilled		Remarks
From-	To-	sample number	Type of rock	Calar	Other characteristics (Grain size, hardness, etc.)	yield (gpm)	(Quality of woter, case of drilling, caving, loss of drilling fluid, etc.)
0	52	0	verburdèn	Brown			
	100		Shale	Gray			
100	105		11	Gray-Broy	m		· · · · · · · · · · · · · · · · · · ·
105	110		3dy Shale	Dark Gray			Jumped box odd stem //ed. 6-27-63
110	115		11	11			recovered bit Thurs. 6-2 -63
115	125	ļ	11	Light gra	y Bent, Type		
125	170_	<u> </u>	Shale	Gray			
170	175		Shale	Light gra	y Bantonite		Mon. 7-1-63 lost bit
175	200	<u> </u>	Shale	Gray			Tues. 7-2-63 recovered bit
200	225	ļ	Shale	Light Gra	y Bantonite		Jaka ingles and all ST.
2^5	250		Sand	White	coarse grained		50 6. P. M. 4. 7 27 11
250	260		11	H	thin grained		
260	280 777		11	11	coarse grained	XTH W TROP	110008.1A
230	300		11	11	Sandy shale		
300	310		Shale	Dark			62 MAR B
3 10	339		Shale	Blue			· ····································
330	340		Shale	White			
340	350		Shale	Blue			
350	360		Shale	Dark			
 	1			ຊາ	l		We want the second s

STATE OF NEW MEXICO

February 23, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-400

JFRG'

Mr. Timothy Kinney Giant Industries Arizona, Inc. 5764 Highway 64 Farmington, NM 87401

RE: Giant Industries Arizona, Inc.
 OCD Rule 711 Permit Approval NM-02-0010
 NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, New Mexico.

Dear Mr. Kinney:

The permit application for the Giant Industries Arizona, Inc. (Giant) centralized surface waste management landfarm facility located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, New Mexico, is hereby approved in accordance with the New Mexico Qil Conservation Division (OCD) Rule 711 under the conditions contained in the enclosed attachment. This permit approval is conditional upon the receipt and approval of a \$25,000 bond. Construction of the facility and/or receipt of contaminated soil shall not commence until the \$25,000 bond has been approved by the Director. The application consists of the original application dated October 8, 1997, and the materials dated November 3, 1997, December 10, 1997, January 8, 1998, and February 11, 1998, submitted as supplements to the application.

The operation, monitoring and reporting shall be as specified in the enclosed attachment. All modifications and alternatives to the approved landfarming methods must receive prior OCD approval. Giant is required to notify the Director of any facility expansion or process modification and to file the appropriate materials with the Division.

Please be advised approval of this facility does not relieve Giant Industries Arizona, Inc. of liability should your operation result in actual pollution of surface water, ground water, or the environment. In addition, OCD approval does not relieve Giant Industries Arizona, Inc of responsibility for compliance with other federal, state or local laws and/or regulations.

Mr. Timothy Kinney February 23, 1998 Page 2

Please be advised that all tanks exceeding 16 feet in diameter and exposed pits, ponds or lagoons must be screened, netted or otherwise rendered nonhazardous to migratory birds. In addition, OCD Rule 310 prohibits oil from being stored or retained in earthen reservoirs, or open receptacles.

The facility is subject to periodic inspections by the OCD. The conditions of this permit and the facility will be inspected and reviewed by the OCD no later than five (5) years from the date of this approval.

Enclosed are two copies of the conditions of approval. Please sign and return one copy to the OCD Santa Fe Office with in five working days of receipt of this letter.

If you have any questions please do not hesitate to contact Martyne J. Kieling at (505) 827-7153.

Sincerely,

Wrotenbern

Lori Wrótenbery Director

LR/mjk

xc with attachments: Aztec OCD Office

ATTACHMENT TO OCD 711 PERMIT APPROVAL PERMIT NM-02-0010 GIANT INDUSTRIES ARIZONA, INC. (February 23, 1998)

LANDFARM CONSTRUCTION

1

2.

3.

5.

1.

2

3.

4.

5.

The facility will be fenced and have a sign at the entrance. The sign will be legible from at least fifty (50) feet and contain the following information: a) name of the facility, b) location by section, township and range, and c) emergency phone number.

Contaminated soils will not be placed within twenty-five (25) feet of the boundary of the facility and the landfarm facility will not be constructed within one hundred (100) feet of adjacent landowners property.

Contaminated soils will not be placed within twenty (20) feet of any pipelines crossing the landfarm. In addition, no equipment will be operated within ten (10) feet of a pipeline. All pipelines crossing the facility will have sufface markers identifying the location of the pipelines.

The portion of the facility containing contaminated soils will be bermed to prevent runoff and runon. A berm will be constructed and maintained such that it is capable of containing precipitation from a one-hundred year flood for that specific region.

All above ground tanks located at the facility and containing materials other than fresh water will be bermed to contain one and one-third the volume of the largest tank or all interconnected tanks.

LANDFARM OPERATION

Disposal will only occur when an attendant is on duty. The facility will be secured when no attendant is present.

All contaminated soils received at the facility will be spread and disked within 72 hours of receipt.

Soils will be spread on the surface in six inch lifts or less.

Soils will be disked a minimum of one time every two weeks (biweekly) to enhance biodegradation of contaminants.

Exempt contaminated soils will be placed in the landfarm so that they are physically

Giant Industries Arizona, Inc. 711 Permit NM-02-0010 February 23, 1998 Page 2

6.

7. .

8.

9.

а.

separate (i.e. bermed) from non-exempt contaminated soils. There will be no mixing of exempt and nonexempt soils.

Successive lifts of contaminated soils will not be spread until a laboratory measurement of Total Petroleum Hydrocarbons (TPH) in the previous lift is less than 100 parts per million (ppm), and the sum of all aromatic hydrocarbons (BTEX) is less than 50 ppm, and the benzene is less than 10 ppm. Comprehensive records of the laboratory analyses and the sampling locations will be maintained at the facility. Authorization from the OCD will be obtained prior to application of successive lifts and/or removal of the remediated soils.

The facility is authorized to accept only:

Oilfield contaminated solids which are exempt from RCRA Subtitle C regulations. These wastes should be accompanied by a OCD Form C-144 "Generator Certificate of Waste Status" from the generator.

"Non-hazardous" non-exempt oilfield contaminated solids from OCD permitted facilities on a case-by-case basis after conducting an analysis for hazardous characteristics and receiving OCD approval. The test for hazardous characteristics for a particular waste may be effective for one year from the date of analysis, if the subsequent wastes from the same waste stream are accompanied by a statement from the generator that there has been no change in the processes employed or the chemicals stored/used at the facility generating the waste.

Other non-oilfield contaminated solids which are RCRA Subtitle C exempt or non-hazardous by characteristic testing, if ordered by the Department of Public Safety on an emergency basis as the waste poses an eminent danger to public health. The wastes should be accompanied by a "Verification of Waste Status" demonstrating the exempt or non-hazardous classification of the solids and signed by the appropriate regulatory agency. OCD approval will be obtained prior to accepting the wastes.

At no time will any OCD permitted landfarms accept wastes which are hazardous by either testing or listing

All loads received at the facility will be accompanied by the following:

学校にある

A OCD Form C-144 "Generator Certificate of Waste Status" signed by the waste generator or "Verification of Waste Status" issued by the New Mexico Environment Department (NMED) or the appropriate agency from another state for wastes regulated by that agency. The state agency verification is based on specific information on the subject waste submitted by the generator and Giant Industries Arizona, Inc. 711 Permit NM-02-0010 February 23, 1998 Page 3

b.

12.

demonstrating the exempt or non-hazardous classification of the waste.

The analytical results of Hazardous Waste Characterization for non-exempt waste including corrosivity, reactivity, ignitability, and toxic constituents and a certification that no listed hazardous wastes are contained within the wastes. The samples for these analyses and results will be obtained from the wastes prior to removal from the generator's facility and without dilution in accordance with EPA SW-846 sampling procedures.

All generators submitting waste to a OCD Permitted 711 Waste Management Facility must include a Naturally Occurring Radioactive Material (NORM) status declaration which is included in the OCD Form C-144 "Generator Certificate of Waste Status". The generator must declare that the waste if not exempted pursuant to 20 NMAC 3.1 subpart 1403, was surveyed for NORM and does not contain a maximum radiation exposure reading or NORM concentrations do not exceed that listed in 20 NMAC 3.1 Subpart 1403.C and D.

The transporter of all wastes to the facility will supply a certification that wastes delivered are those wastes received from the generator and that no additional materials have been added.

Moisture will be added as necessary to enhance bioremediation and to control blowing dust. There will be no ponding, pooling or run-off of water allowed. Any ponding of precipitation will be removed within seventy-two (72) hours of discovery.

Enhanced bio-remediation through the application of microbes (bugs) and/or fertilizers will only be permitted after prior approval from the OCD. Request for application of microbes will include the location of the area designated for the bio-remediation program, composition of additives, and the method, amount and frequency of application.

13. No free liquids or soils with free liquids will be accepted at the facility.

14. Comprehensive records of all material disposed of at the facility will be maintained at the facility. The records for each load will include: 1) the generator, 2) the origin, 3) date received, 4) quantity, 5) certification of exempt status or analysis for hazardous constituents if non-exempt, 6) transporter, and 7) exact cell location and any addition of microbes, moisture, fertilizers, etc.

TREATMENT ZONE MONITORING

1. One (1) background soil sample will be taken from the center portion of the landfarm two
Giant Industries Arizona, Inc. 711 Permit NM-02-0010 February 23, 1998 Page 4

(2) feet below the native ground surface prior to operation. The sample will be analyzed for total petroleum hydrocarbons (TPH), major cations/anions, volatile aromatic organics (BTEX), and heavy metals using approved EPA methods.

A treatment zone not to exceed three (3) feet beneath the landfarm native ground surface will be monitored. A minimum of one random soil sample will be taken from each individual cell, with no cell being larger than five (5) acres, six (6) months after the first contaminated soils are received in the cell and then quarterly thereafter. The sample will be taken at two (2) to three (3) feet below the native ground surface.

The soil samples will be analyzed using approved EPA methods for TPH and BTEX quarterly, and for major cations/anions and heavy metals annually.

After obtaining the soil samples the boreholes will be filled with an impermeable material such as cement or bentonite.

REPORTING

- 1. Analytical results from the treatment zone monitoring will be submitted to the OCD Santa Fe office for annual review by February 23, of each year:
- 2. The applicant will notify the OCD Aztec District office within 24 hours of any break, spill, blow out, or fire or any other circumstance that could constitute a hazard or contamination in accordance with OCD Rule 116.

3. Authorization from the OCD Santa Fe office will be obtained prior to application of successive lifts and/or removal of the remediated soils.

- The OCD will be notified prior to the installation of any pipelines or wells within the boundaries of the facility.
- 5. The OCD Santa Fe and Aztec District office will be notified when operation of the facility is discontinued for a period in excess of six (6) months or when the facility is to be dismantled. A closure plan for the facility will be provided.

BOND

4.

1. Pursuant to OCD Rule 711 a surety or cash bond in the amount of \$25,000, in a form approved by the Division, is required prior to commencing construction of the centralized surface waste management facility.

A CARLES AND A CARLE

2.

Giant Industries Arizona, Inc. 711 Permit NM-02-0010 February 23, 1998 Page 5

CLOSURE

1.1

2.

The OCD Santa Fe and Aztec District office will be notified when operation of the facility is discontinued for a period in excess of six (6) months or when the facility is to be dismantled. Upon cessation of landfarming operations for six (6) consecutive months, the operator shall complete cleanup of constructed facilities and restoration of the facility site within the following six (6) months, unless an extension of time is granted by the Director.

A closure plan for the facility will be provided including the following OCD closure procedures:

. When the facility is to be closed no new material will be accepted;

b. Existing landfarm soils will be remediated until they meet the OCD standards in effect at the time of closure;

:. The area will be reseeded with natural grasses and allowed to return to its natural state;

Closure will be pursuant to all OCD requirements in effect at the time of closure, and any other applicable local, state and/or federal regulations.

CERTIFICATION

d.

Giant Industries Arizona. Inc., by the officer whose signature appears below, accepts this permit and agrees to comply with all terms and conditions contained herein. Giant Industries Arizona, Inc. further acknowledges that these conditions and requirements of this permit may be changed administratively by the Division for good cause shown as necessary to protect fresh water, human health and the environment

The second s

Accepted:

Title

by_

GIANT INDUSTRIES ARIZONA, INC.

Appendix B: Historical Sampling Results

Western Refining Bisti Landfarm Revised Sampling and Analysis Plan San Juan County, NM

·

٢

API Cell

	Baseline	2004	2004	2004	2004
,	Sample		2nd	3rd	4th
	Campie	Annual	Quarter	Quarter	Quarter
•	27-Mar-98	_30-Mar-04	15-Jun-04	30-Sep-04	14-Dec-04
TPH (mg/kg)				47	
GRO		<10	<10	<10	4
DRO	<50	<10 .	<10	23	
MRO		<10	<10	24	
BTEX (mg/kg)					
Benzene	<0.05	<0.025	<0.050	<0.025	<0.025
Toluene	<0.05	<0.025	< 0.050	<0.025	<0.025
Ethyl-Benzene	<0.05	<0.025	< 0.050	<0.025	<0.025
Xylenes	<0.05	<0.050	<0.10	< 0.050	< 0.050
Metals (mg/kg)					
Arsenic	2.8				
Barium	180				
Cadmium	<1.3				
Calcium	2500				
Chromium	<5.0				
Lead	6.8				
Magnesium	1300				
Potassium	810				
Selenium	<2.5				
Silver	<1.3				
Sodium	90				
Mercury	<0.50				
Gen Chem					
Alkalinity (meq/l)		1900			
Bicarbonate (meq/l)	110	<21			
Carbonate (meq/l)	26	100			
Sulfate (mg/kg)	140	830			
Chloride (mg/kg)	<50	570			

API Cell

.

	Baseline	2005	2005	2005	2005	2006	2006	2006	2006
	Sample	Annual	2nd Ouerter	3rd	4th Overter	Annual	2nd Ouerter	3rd Quarter	4th Quarter
	27-Mar-98	29-Mar-05	27-Jun-05	30-Sep-05	20-Dec-05		18-Jul-06	29-Sep-06	21-Dec-06
TPH (mg/kg)		20 11101 00	Er our oo		20 200 00			13	
GRO		· <10	<10	<10	· · · · · · · · · · · · · · · · · · ·	<10		<10	<10
DRO	<50	<10	<10	<10		<10		13	<10
MRO		<10	<10	<10		<10		<20	<10
BTEX (mg/kg)									
Benzene	< 0.05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Toluene	< 0.05	<0.025	<0.025	<0.025	<0.025	<0.050	<0.025	<0.025	<0.025
Ethyl-Benzene	<0.05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Xylenes	<0.05	<0.050	<0.050	<0.050	<0.050	<0.10	<0.010	<0.010	< 0.10
Metals (mg/kg)									
Arsenic	2.8	1.8				0.956			
Barium	180	90				63.9			
Cadmium	<1.3	<0.50				0.100U			
Calcium	2500	4300				731			
Chromium	<5.0	2.6				1.98			
Lead	6.8	3.4				3.51	•		
Magnesium	1300	1000				734			
Potassium	810	630				460			
Selenium	<2.5	<1.0	l			0.200U			
Silver	<1.3	<0.50				0.0500U			
Sodium	90	<100				207			
Mercury	<0.50	<0.0084				0.0391			
Gen Chem									
Alkalinity (meq/l)		600				451			
Bicarbonate (meq/l)	· 110	580				441	1		
Carbonate (meq/l)	26	23				299			
Sulfate (mg/kg)	140	<110			·	20.81			
Chloride (mg/kg)	<50	120				143			

.

.

API Cell

	Baseline	2007	2007 2nd	2007 3rd	2007 4th	2008	2008 2nd	2008 3rd	2008 4th
	Sample	Annual	Quarter	Quarter	Quarter	Annual	Quarter	Quarter	Quarter
	27-Mar-98	30-Mar-07	28-Jun-07	28-Sep-07	29-Dec-07	11-Mar-08	16-Jun-08	29-Sep-08	30-Dec-08
TPH (mg/kg)		nd				31			
GRO		nd	<10	<10	<10	31	<2.5	<5.0	<5.0
DRO	<50	nd	<10	<10		<10		<10	<10
MRO		nd	<10	<10		<10		<50	<50
BTEX (mg/kg)		nd				0.686			
Benzene	<0.05	nd	<0.025	<0.025	<0.025	<0.025	<0.025	<0.050	<0.050
Toluene	<0.05	nd	<0.025	<0.025	<0.025	0.064	<0.025	<0.050	<0.050
Ethyl-Benzene	<0.05	nd	<0.025	<0.025	<0.025	0.082	<0.025	<0.050	<0.050
Xylenes	<0.05	nd	<0.10	<0.10	<0.10	0.54	<0.10	<0.10	<0.10
					1				
Metals (mg/kg)									
Arsenic	2.8	0.187				2.5			
Barium	180	47.1				130			
Cadmium	<1.3	nd				<0.44		•	
Calcium	2500	2690				7300			
Chromium	<5.0	0.305				4.4			
Lead	6.8	0.477			·	4.1			
Magnesium	1300	863				1800			
Potassium	810	729				1300			
Selenium	<2.5	nd				<0.88			
Silver	<1.3	nd				<0.44			
Sodium	90	66.2				150			
Mercury	<0.50	nd				<0.0083			
		L							
Gen Chem									
Alkalinity (meq/l)		54.4				3500			
Bicarbonate (meq/l)	110	49.4				2900			`
Carbonate (meq/l)	26	4.52		ļ		540	1		
Sulfate (mg/kg)	140	81.7				<100			
Chloride (mg/kg)	<50	nd				660	180	37	68

-

•

API Cell

	Baseline	2009	2009 2nd
	Sample	Annual	2nu Quarter
	27-Mar-98	6-Mar-09	17-Jun-09
ŤPH (mg/kg)	*		
GRO		<5.0	<5.0
DRO	<50	<10	<10
MRO		<50	<50
BTEX (mg/kg)			
Benzene	<0.05	<0.050	<0.050
Toluene	<0.05	<0.050	<0.050
Ethyl-Benzene	<0.05	<0.050	<0.050
Xylenes	<0.05	<0.10	<0.10
Metals (mg/kg)			
Arsenic	2.8	<13	
Barium	180	81	
Cadmium	<1.3	<0.50	
Calcium	2500	740	
Chromium	<5.0	2.9	-
Lead	6.8	3.5	-
Magnesium	1300	830	
Potassium	810	680	
Selenium	<2.5	<13	
Silver	<1.3	<1.3	
Sodium	90	3600	
Mercury	<0.50	< 0.033	
Gen Chem			
Alkalinity (meq/l)		1.9	
Bicarbonate (meq/l)	110	1.9	
Carbonate (meq/l)	26	<0.10	
Sulfate (mg/kg)	140	1600	
Chloride (mg/kg)	<50	4100	67

.

Crude Cell

٩,

	Baseline	2004	2004 2md	2004 2nd	2004	2005	2005 2md	2005 3rd	2005
	Sample	Annual	Quarter	Quarter	4un Quarter	Annual	Quarter	Quarter	Quarter
	27-Mar-98	30-Mar-04	15-Jun-04	30-Sep-04	14-Dec-04	29-Mar-05	27-Jun-05	30-Sep-05	20-Dec-05
	-	West Line	West Line	West Line	West Line	West Line	West Line	West Line	West Line
TPH (mg/kg)									
GRO		<10	<10	<10		<10	<10	<10	
. DRO	<50	<10	<10	. <10		<10	<10	<10	
MRO		<10	<10	<10		<10	<10	<10	
BTEX (mg/kg)									
Benzene	< 0.05	<0.025	<0.050	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Toluene	<0.05	<0.025	<0.050	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Ethyl-Benzene	<0.05	<0.025	<0.050	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Xylenes	<0.05	<0.050	<0.10	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Metals (mg/kg)									
Arsenic	2.8	2.6				1.8			
Barium	180	78				200			
Cadmium	<1.3	<0.51				<.034			
Calcium	2500	2500				5100			
Chromium	<5.0	3.5				2.5			
Lead	. 6.8	4.3				3.3			
Magnesium	1300	1100				1100			
Potassium	810	690				630			
Selenium	<2.5	<1.0				<0.69			
Silver	<1.3	<0.51				<0.34			
Sodium	90	180				<69			
Mercury (mg/kg)	<0.50	<0.0085				<0.0080			
								`	
Gen Chem									
Alkalinity (mg/kg)		870				620			
Bicarbonate (meq/l)	110	820				600			
Carbonate (meq/l)	26	48				<20			
Sulfate (mg/kg)	140	860				<100			
Chloride (mg/kg)	<50	310				<41			

n.

.

.

Crude Cell

	Baseline			2006	2006	2006	2007	2007	2007	2007
	Sample	2006 /	Annual	2nd	3rd	4th	Annual	2nd	_ 3rd	4th
•				Quarter	Quarter	Quarter	,	Quarter	Quarter	Quarter
	27-Mar-98	31-Mar-06	31-Mar-06	18-Jul-06	29-Sep-06	29-Dec-06	30-Mar-07	28-Jun-07	28-Sep-07	29-Dec-07
		West Line	Pettigrew	West Line	Crude	West Line		West Line	West Line	West Line
TPH (mg/kg)							nd			
GRO		<10	<10		<10	<10	nd	<10	<10	<10
DRO	<50	<10	<10		<10	<10	nd	<10	. <10	
MRO		<10	<10		<20	<10	nd	<10	<10	
BTEX (mg/kg)							nd			
Benzene	<0.05	<0.025	<0.025	<0.025	<0.025	<0.025	nd	<0.025	<0.025	<0.025
Toluene	< 0.05	0.1	<0.05	<0.025	<0.025	<0.025	nd	<0.025	<0.025	<0.025
Ethyl-Benzene	<0.05	0.062	<0.025	<0.025	<0.025	<0.025	nd	<0.025	<0.025	<0.025
Xylenes	<0.05	0.35	<0.10	<0.010	<0.010	<0.10	nd	<0.10	<0.10	<0.10
Metals (mg/kg)										
Arsenic	2.8	1.71	1.57				0.173		÷	
Barium	180	78.1	105				14.8			
Cadmium	<1.3	0.100U	0.100U	,			nd			
Calcium	2500	2330	3240				3530			
Chromium	<5.0	2.12	1.75				0.248			
Lead	6.8	3.05	3.37				0.479			
Magnesium	1300	721	762				957			
Potassium	810	348	480				806			
Selenium	<2.5	0.200U	0.200U				nd			
Silver	<1.3	0.0500U	0.0500U				nd	•		
Sodium	90	50.0U	430				69.7			
Mercury (mg/kg)	<0.50	0.0528	0.0388				nd			
Gen Chem										
Alkalinity (mg/kg)		821	1500				791			
Bicarbonate (meq/l)	110	771	1430				731			
Carbonate (meq/l)	26	1860	2920				56.3			
Sulfate (mg/kg)	140	20.0U	163				68			
Chloride (mg/kg)	<50	43.4	2700				nd			

Crude Cell

	Baseline Sample	2008 Annual	2008 2nd Quarter	2008 3rd Quarter	2008 4th Quarter	2009 Annual	2009 2nd Quarter
	27-Mar-98	11-Mar-08	16-Jun-08	29-Sep-08	30-Dec-08	6-Mar-09	17-Jun-09
		Crude	Crude	Crude	Crude	Crude	Crude
TPH (mg/kg)						520	
GRO		<10	<2.5	<5.0	<5.0	<5.0	<5.0
DRO	<50	<10		<10	<10	250	<10
MRO		<10		<50	<50	270	<50
BTEX (mg/kg)							
Benzene	<0.05	<0.025	<0.025	<0.050	< 0.050	<0.050	<0.050
Toluene	<0.05	<0.025	<0.025	<0.050	< 0.050	<0.050	<0.050
Ethyl-Benzene	<0.05	<0.025	<0.025	< 0.050	<0.050	<0.050	<0.050
Xylenes	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Metals (mg/kg)							
Arsenic	2.8	1.9				<12	
Barium	180	140				96	
Cadmium	<1.3	<0.48				<0.50	
Calcium	2500	2800				4500	
Chromium	<5.0	3.7				4	
Lead	6.8	3.8				5.3	
Magnesium	1300	1200				1100	
Potassium	810	1100				640	
Selenium	<2.5	<0.96				<12	
Silver	<1.3	<0.48				<1.2	
Sodium	90	<96				<120	·
Mercury (mg/kg)	<0.50	<0.0085				< 0.033	
Gen Chem							
Alkalinity (mg/kg)		1200				1.8	
Bicarbonate (meq/l)	110	880				1.8	
Carbonate (meq/l)	· 26	280				<0.10	
Sulfate (mg/kg)	140	690				860	
Chloride (mg/kg)	<50	110	540	2.1	35	4.3	5.4

Inactive Cell

Sampled 9 Feb 04 - a 5 pt composite sample in the current "inactive area" in order to discontinue disking and possibly add subsequent lifts.

- 1	9-Feb-04
TPH (mg/kg)	
GRO	1.1
DRO	7
MRO	8.1
BTEX (mg/kg)	
Benzene	<.0018
Toluene	0.0305
Ethyl-Benzene	0.0187
Xylenes	0.287

- 1

1

¥

Treatment Zone Sampling 10-Dec-08, Discrete samples from API and Crude Cells

	API Cell	Crude Cell (East Line)	Crude Cell (Bisti)	Crude Cell (West Line)
TPH (mg/kg)	59	700	4200	69
GRO		•		
DRO				
MRO			•	
BTEX (mg/kg)				
Benzene	<0.05	<0.05	<0.05	<0.05
Toluene	<0.05	<0.05	<0.05	<0.05
Ethyl-Benzene	<0.05	<0.05	<0.05	<0.05
Xylenes	<0.1	<0.1	<0.1	<0.1
Chloride (mg/kg)	820	7.9	15	3.4

Appendix C: Letter Concerning Sampling of Inactive Cell

Western Refining Bisti Landfarm

Revised Sampling and Analysis Plan San Juan County, NM

NEW MEXICO ENERGY, MIMERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary

March 8, 2004

Lori Wrotenbery Director Oil Conservation Division

Mr. Timothy Kinney Giant Industries Arizona, Inc. 111 County Road 4990 Bloomfield, NM 87413

RE: Approval for Discontinued Maintenance Status Giant Industries Arizona, Inc., Permit NM-02-0010 NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, New Mexico.

Dear Mr. Kinney:

The New Mexico Oil Conservation Division (OCD) has received Loadstar Services, Inc. letter dated March 1, 2004 on behalf of Giant Industries Arizona, Inc. and has reviewed the analytical data concerning remediated soils within Cells 1. Based on the information provided, Cell 1 is hereby approved for discontinued maintenance status and the addition of another lift of contaminated soil. Note that with the addition of successive lifts Giant must resume maintenance and treatment zone monitoring. The treatment zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface. If Giant wants to move the soils from the facility, separate OCD authorization must be granted.

Please be advised that OCD approval does not relieve Giant of liability should their operation result in pollution of the ground water, surface water or the environment. In addition, OCD approval does not relieve Giant of the responsibility for compliance with other federal, state, local laws and/or regulations.

If you have any further questions please do not hesitate to contact me at (505) 476-3488.

Sincerely,

Martyne J. Kieling Environmental Geologist

xc: Aztec OCD Office Martin Nee, Loadstar Services, Inc., P.O. Box 3861 Farmington, NM 87499-3861

> Oil Conservation Division * 1220 South St. Francis Drive * Santa Fe, New Mexico 87505 Phone: (505) 476-3440 * Fax (505) 476-3462 * <u>http://www.emnrd.state.nm.us</u>

RECEI MAR 05 2004

Lodestar Services, Incorporated PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

March 1, 2004

Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe. NM 87505

Ms. Martyne Kieling New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico, 87505

RE: Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Ms. Kieling,

ke=

On February 9, 2004, Lodestar Services, Inc. collected a 5 point composite sample from Giant Industries Arizona, Inc.'s (Giant) landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. The sample was from material previously landfarmed within the original fifteen-acre cell. The intent of sample collection was to determine if the material within the original cell was of acceptable concentrations of hydrocarbons to discontinue disking and to add a subsequent lift in accordance with the New Mexico Oil Conservation Division (OCD) Rule 711.

Approximately 24 ounces of soil was collected at each of the locations shown on the attached Landfarm Cell Diagram. Soil was collected from approximately three inches beneath the top of the six inch thick lift. Each sample was immediately placed in a 1 gallon plastic bag and sealed. Once each of the five samples had been collected the material was thoroughly mixed and an eight ounce laboratory sample jar filled and sealed. The sample was then labeled with the sampler's initials, time, date and location, and placed on ice. The sample was then delivered to Envirotech Inc.'s laboratory in Farmington, NM following strict chain of custody procedures. The sample was analyzed for benzene, toluene, ethylbenzene, xylenes, (BTEX) and total petroleum hydrocarbons, by USEPA methods, 8021 and 8015, respectively.

The laboratory report is attached. The following laboratory results have been converted from micrograms per kilogram and milligrams per kilogram for comparison to NMOCD standards.

Analyte	Result	NMOCD Standard
Benzene	Not detected	10 ppm
Toluene	0.030 ppm	
Ethylbenzene	0.019 ppm	
Xylenes	0.332 ppm	
Total BTEX	0.381 ppm	50 ppm
Total Petroleum Hydrocarbons	8.1 ppm	100 ppm

Ms. Martyne Kieling March 1, 2004 Page 2 of 2

Based on the results of sampling presented above, Giant herein requests permission to discontinue disking the existing material and approval for the addition of future lifts. In the event that future lifts are added disking will resume.

We look forward to your approval of this proposed work. Should you have any questions or require additional information please do not hesitate to call me at (505) 334-2791 or Gary Winn (505) 632-4077.

Sincerely,

Martin Nee

• 1

Cc: Mr. Gary Winn, Giant Industries Arizona, Inc Mr. Tim Kinney, Giant Industries Arizona, Inc. File

PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

February 13, 2004

Mr. Martin Nee Lodestar Service #26 CR 3500 Flora Vista, New Mexico 87415

Phone: (505) 334-2791 Cell: (505) 320-9675

Client No.: 97059-007

Dear Mr. Nee,

Enclosed are the analytical results for the sample collected from the location designated as "Bisti Land Farm". One soil sample was collected by Giant designated personnel on 2/09/04, and delivered to the Envirotech laboratory on 2/09/04 for Total Petroleum Hydrocarbons (TPH) per USEPA Method 8015 and BTEX per USEPA Method 8021.

The sample was documented on Envirotech Chain of Custody No. 11723 and assigned Laboratory Nos. 27817 (5 Pt. Composite) for tracking purposes.

The sample was analyzed on 2/12/04 using USEPA or equivalent methods.

Should you have any questions or require additional information, please do not hesitate to contact us at (505) 632-0615.

Respectfully submitted, **Envirotech, Inc.**

Christine M. Walters Lab Coordinator / Environmental Scientist

enclosure

CMW/cmw

C:/files/labreports/giant/.wpd

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Giant	Project #:	97059-007
Sample ID:	5 pt Composite	Date Reported:	02-12-04
Laboratory Number:	27817	Date Sampled:	02-09-04
Chain of Custody:	11723	Date Received:	02-09-04
Sample Matrix:	Soil	Date Analyzed:	02-12-04
Preservative:	Cool	Date Extracted:	02-09-04
Condition:	Cool & Intact	Analysis Requested:	BTEX

	Concentration	Det.	
Parameter	(ug/Kg)	(ug/Kg)	
Benzene	ND	1.8	
Toluene	30.5	1.7	
Ethylbenzene	18.7	1.5	
p,m-Xylene	287	2.2	
o-Xylene	45.1	1.0	
Total BTEX	381		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	95 %
	1,4-difluorobenzene	95 %
	Bromochlorobenzene	95 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: Bisti Land Farm.

Analyst

Salters \mathcal{M}

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

. .

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

lient: ample ID:		N/A 02-12-BTEX 04/00	2	Project #: Date Reported		N/A 02-12-04
aboratory Number:		27816	, ,	Date Sampled:		N/A
ample Matrix:		Soil		Date Received:		N/A
reservative:		N/A		Date Analyzed:		02-12-04
Condition:		N/A		Analysis:		BTEX
alibration and Detection Limit	s (ug/L)	≪ vi-calitti	Accept Ran	%Diff. (6)0∠-15%	Blank Conclus	Deteoj Lucio
		4 2776E-002	4,2905E-002	0.3%	ND	0.2
oluene		4.8966E-002	4.9064E-002	0.2%	ND	0.2
thylbenzene		7.4036E-002	7.4259E-002	0.3%	ND	0.2
,m-Xylene		6.8275E-002	6.8480E-002	0.3%	ND	0.2
-Xylene		5.5866E-002	5.5978E-002	0.2%	ND	0.1
ງທາງເອງເອງເອງ	uc//Xc)			•£1+%Diic 7	Accessoi (Reinora)	assi Deteci sumiti
senzene		41.2	40.7	1.2%	0 - 30%	1.8
oluene		787	772	2.0%	0 - 30%	1.7
Ethylbenzene	•	418	409	2.0%	0 - 30%	1.5
,m-Xylene		2,600	2,570	1.2%	0 - 30%	2.2
				4 80/	a	4.0
p-Xylene		927	911 AmountSalkeet	1.7% Spiked Sampler	0 - 30%	T.U
o-Xylene Spike(Conc- (ug/i Benzene	(0) 4 - 1	927	911 Amount Spiked: 50.0	1.7% SpikedSampler 91.1	0 - 30% %Recovery 99.9%	1.0 AcceptiRange: 39 - 150
p-Xylene pikeConc (ug/) Benzene foluene		927 927 927 41.2 787	911 AmountSfikeer 50.0 50.0	1.7% Spiked Samaery 91.1 836	0 - 30% WAREECOVERY 99.9% 99.8%	39 - 150 46 - 148
p-Xylene pike!Conce (ug/) Benzene foluene Ethylbenzene	(g)	927 ••• • Sample ••• ••• ••• ••• ••• ••• ••• ••• ••• •	911 AmountsSakedt 50.0 50.0 50.0	1.7% Salked Samaers 91.1 836 467	0 - 30% WiRebovery 99.9% 99.8% 99.8%	39 - 150 46 - 148 32 - 160
p-Xylene pike@once.(ug/i Benzene foluene Ethylbenzene p.m-Xylene		927 41.2 787 418 2,600	911 Amount Salked: 50.0 50.0 50.0 100	1.7% Spiked Santae 91.1 836 467 2,690	0 - 30% 99.9% 99.8% 99.8% 99.6%	39 - 150 46 - 148 32 - 160 46 - 148
p-Xylene pikeConc-(ug/ Benzene foluene Ethylbenzene p.m-Xylene p-Xylene	(1):4	927 41.2 787 418 2,600 927	911 Amount Spikes: 50.0 50.0 50.0 100 50.0	1.7% Spiked Samae 91.1 836 467 2,690 975	0 - 30% 99.9% 99.8% 99.8% 99.6% 99.8%	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148 46 - 148
Senzene Foluene Sthylbenzene Sym-Xylene S-Xylene	(g)	927 41.2 787 418 2,600 927 d detection limit.	911 AmountsSalkedi 50.0 50.0 50.0 100 50.0	1.7% Saiked Santaler 91.1 836 467 2,690 975	0 - 30% 99.9% 99.8% 99.8% 99.6% 99.8%	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148 46 - 148
SpiketConce (ug) Senzene Foluene Sthylbenzene Sym-Xylene S-Xylene	detected at the state Method 5030B, Pt December 1996. Method 8021B, Ar Photoionization ar	927 41.2 787 418 2,600 927 d detection limit. urge-and-Trap, Test Me omatic and Halogenate od/or Electrolytic Condu	911 Amount Solkect 50.0 50.0 50.0 100 50.0 100 50.0	1.7% Solid CSS 11 as 1 91.1 836 467 2,690 975 Solid Waste, SW-84 Chromatography Usin /-846, USEPA Decem	0 - 30% 99.9% 99.8% 99.8% 99.6% 99.8% 6, USEPA, 9 9.8%	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148
D-Xylene SpikeConc. (ug) Benzene Foluene Ethylbenzene D,m-Xylene D-Xylene ND - Parameter not References:	detected at the state Method 5030B, Pt December 1996. Method 8021B, Ar Photoionization ar QA/QC for s	927 41.2 787 418 2,600 927 d detection limit. urge-and-Trap, Test Me omatic and Halogenate d/or Electrolytic Condu	911 Amount Saked 50.0 50.0 50.0 100 50.0 100 50.0 4 Volatiles by Gas C ctivity Detectors, SV - 27817, 2782	1.7% Spiked Santaue? 91.1 836 467 2,690 975 Solid Waste, SW-844 Chromatography Usin V-846, USEPA Decem	0 - 30% 99.9% 99.8% 99.8% 99.6% 99.8% 99.8% 6, USEPA, 9 nber 1996. 829 - 27830	Accept Range: 39 - 150 46 - 148 32 - 160 46 - 148 46 - 148
D-Xylene SpiketConc. (ug/ Benzene Foluene Ethylbenzene D,m-Xylene D-Xylene ND - Parameter not References:	detected at the state Method 5030B, Pt December 1996. Method 8021B, Ar Photoionization ar QA/QC for s	927 41.2 787 418 2,600 927 d detection limit. urge-and-Trap, Test Me omatic and Halogenate ad/or Electrolytic Condu samples 27816	911 Amount Salked 50.0 50.0 50.0 100 50.0 100 50.0 4 Volatiles by Gas C cuvity Detectors, SV - 27817, 2782	1.7% Spike: Sanaer 91.1 836 467 2,690 975 Solid Waste, SW-84 Chromatography Usin V-846, USEPA Decen 24 - 27825, 27	0 - 30% 99.9% 99.8% 99.8% 99.6% 99.6% 99.8% 6, USEPA, 9 nber 1996. 829 - 27830	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148 46 - 148
SpikelConc. (ug) Benzene Foluene Ethylbenzene o,m-Xylene o-Xylene ND - Parameter not References: Comments:	detected at the state Method 5030B, Pt December 1996. Method 8021B, Ar Photoionization ar QA/QC for s	927 41.2 787 418 2,600 927 d detection limit. urge-and-Trap, Test Me omatic and Halogenate nd/or Electrolytic Condu samples 27816	911 Amount Shkeet 50.0 50.0 50.0 100 50.0 100 50.0 4 Volatiles by Gas C ctivity Detectors, SV - 27817, 278	1.7% Spike: Samaer 91.1 836 467 2,690 975 Solid Waste, SW-844 Chromatography Usin V-846, USEPA Decen 24 - 27825, 27 Mistim	99.9% 99.9% 99.8% 99.8% 99.6% 99.8% 99.8% 6, USEPA, 9 nber 1996. 829 - 27830	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148 46 - 148
Senzene Foluene Ethylbenzene o,m-Xylene o-Xylene VD - Parameter not References: Comments:	detected at the state Method 5030B, Pt December 1996. Method 8021B, Ar Photoionization ar QA/QC for s C	927 41.2 787 418 2,600 927 d detection limit. urge-and-Trap, Test Me omatic and Halogenate d/or Electrolytic Condu samples 27816	911 Amount Spikect 50.0 50.0 50.0 100 50.0 100 50.0 4 Volatiles by Gas C cluvity Detectors, SV - 27817, 2782	1.7% Solid Waste, SW-844 Chromatography Usin V-846, USEPA Decem 24 - 27825, 27 Minton Review	99.9% 99.8% 99.8% 99.6% 99.8% 99.6% 99.8% 6, USEPA, 9 nber 1996. 829 - 27830. U Will	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148 46 - 148

÷

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Giant	Project #:	97059-007
Sample ID:	5 pt Composite	Date Reported:	02-12-04
Laboratory Number:	27817	Date Sampled:	02-09-04
Chain of Custody No:	11723	Date Received:	02-09-04
Sample Matrix:	Soil	Date Extracted:	02-09-04
Preservative:	Cool	Date Analyzed:	02-12-04
Condition:	Cool and Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	1.1	0.2
Diesel Range (C10 - C28)	7.0	0.1
Total Petroleum Hydrocarbons	8.1	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: Bisti Land Farm.

Analyst

"hrustine of

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition:	QA/QC 02-12-TPH QA 27815 Methylene Chlori N/A N/A	/QC ide	Project #: Date Reported: Date Sampled: Date Received: Date Analyzed: Analysis Request	ted:	N/A 02-12-04 N/A N/A 02-12-04 TPH
		. A HEGAN REAL	G Cal RD	%Difference	AGEODIC READER
Gasoline Range C5 - C10	04-29-03	1.8591E-002	1.8572E-002	0.10%	0 - 15%
Diesel Range C10 - C28	04-29-03	1.5507E-002	1.5492E-002	0.10%	0 - 15%
Blank Conc. (mg/L-mg/Kg) Gasoline Range C5 - C10 Diesel Range C10 - C28 Total Petroleum Hydrocarbons		Concentration ND ND ND		Defection Limi 0.2 0.1 0.2	
Duplicate Conc. (img/Kg)		Duplicate	· Willimerence	Acceptivilikanoa	
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	
Diesel Range C10 - C28	6.5	6.4	1.5%	0 - 30%	
Spike Conc. (mg/Kg) Gasoline Range C5 - C10 Diesel Range C10 - C28	Sample ND 6.5	SpikerAdded 250 250	4SpikeiResult 250 256	<u>% Recovery</u> 100% 99.8%	75 - 125% 75 - 125%

ND - Parameter not detected at the stated detection limit.

References: ·

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

QA/QC for samples 27815 - 27817, 27824 - 27825, 27829 - 27830.

Ánályst

Mistine Maeters Review

CHAIN OF CUSTODY RECORD

11723

Client / Project Name	dFr	3	Project Lo	ocation St	Ţ						AI	NALYSI	S / PAR	AMETER	RS						
Sampler: MJN		·	Client No,	tour tou	· 97	059-01	 ס ר כ	of tiners	X							Remarl	(S				
Sample No./ Identification	Sample Date	Sample Time	Lab N	umber	T	Sample Matrix		Sample Matrix		No. Conte	878	T Dt									
5pt composite	z-9.04	1151	378	17	50	»/ l		1	\checkmark	~											
								<u> </u>				,									
			<u> </u>	- <u></u>	+										·						
		<u> </u>						 				. <u> </u>									
					+																
	<u> </u> '							<u> </u>											<u> </u>		
Relinquished by: Signatu	l ire)		·		Date 2904	Time 1350	Recei	ved by: (MUA	(Signatu	re)	1		L	·		Date 2/9/0	4]	Tin /3/1	10 50		
Relinquished by Signatu	ire)			•	ſ	(Recei	ved by: ((Signatu	re)							T				
Relinquished by: (Signatu	ire)						Recei	ved by: ((Signatu	ire)						·····			``		
]	EUA	IRO	TE(CH		C .		;			Sample	ə Receir	! >t 		<u> </u>		
		•			Ę	5796 U.S	3. Higł	hway E	5 4					Bec	eived Intact		+	N	N/A		
					Farmi	lew M 632-(lexico 0615	87401	l 	_			Cool -	Ice/Blue Ic	;e V	\uparrow	+				

2008 AUG 25 PM 1 38

RECEIVED

August 11, 2008

Mr. Wayne Price, New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico, 87505

Certified Mail # 7006 0810 0003 7020 8145

RE: 2nd Quarter Sampling of the Centralized Surface Waste Management Landfarm Facility Western Refining Southwest Inc.'s NM -02-0010

Dear Mr. Price,

Please find enclosed the August 5, 2008 report from Lodestar Services, Inc. concerning the results from the 2nd quarter 2008 sampling event of Western Refining Southwest Inc.'s landfarm, (permit number NM-02-010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM).

Samples were collected according to established NMOCD procedures and analyzed for the following constituents:

- Total Petroleum Hydrocarbons;
- Benzene, Toluene, Ethyl benzene, and Xylenes;
- Major lons (Na, Ca, Mg, K, Cl-, SO4, CO3, and HCO3); and
- RCRA Metals (As, Ba, Cd, Cr, Pb, Se, Ag, and Hg).

Please also find enclosed, the analytical results, which can be compared to the original baseline data collected on March 27, 1998.

Thank you and should you require additional information please do not hesitate to call me at (505) 632-4035

Respectfully Submitted

Bruce Cauthen Environmental Engineer Western Refining Southwest Inc: Logistics / HSER 111 County Road 4990 Bloomfield, NM 87413 Main: 505-632-4035 Cc. Ms. Ann Allen, Western Refining Southwest Inc Mr. Carlos Guerra, Western Refining Southwest Inc Mr. Bill Robertson, Western Refining Southwest Inc Mr. Dave Richards, Western Refining Southwest Inc File

.

٠

ι

Lodestar Services, Incorporated PO Box 4465, Durango, CO 81302 Office (970) 946-1093

August 5, 2008

Mr. Bill Robertson Western Refining, LLC 111 CR 4990 Bloomfield, NM 87413

RE: Second Quarter Sampling at Western Refining's Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Mr. Robertson,

On June 16, 2008, Lodestar Services, Inc. collected second quarter samples from Western Refining's landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One crude cell sample and one API cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from three feet beneath native ground surface. Each sample was placed in an eight-ounce glass jar and stored on ice during shipping to Pinnacle Laboratories in Albuquerque, NM. Strict chain-of-custody procedures were followed during shipping. Pinnacle laboratories analyzed the samples for the following constituents: chlorides, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and xylenes (BTEX).

Concentrations of BTEX and TPH were not detected in either sample. Chloride concentrations were 180 mg/kg in the API Cell sample and 540 mg/kg in the Crude Cell sample. The complete laboratory report is included for your review.

Should you have any questions or require additional information please do not hesitate to call me at (970) 946-1093.

Respectfully Submitted, Lodestar Services, Inc.

Ashley Ager

Cc. Mr. Dave Richards, Western Refining Mr. Bruce Cauthen, Western Refining File

Pinnacle Lab ID number 806050 July 28, 2008

LODESTAR SERVICES P.O. BOX 4465 DURANGO CO 81302

Project Name LANDFARM Project Number (NONE)

Attention: ASHLEY AGER/BILL ROBERTSON

On 06/18/2008 Pinnacle Laboratories Inc., (ADHS License No. AZ0643), received a request to analyze non-aq samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

EPA Method 8015 GRO/8021B were performed by Pinnacle Laboratories, Inc., Albuquerque, NM.

All other analyses were performed by Test America, Inc. Pensacola, FL.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

H. Mitchell Rubenstein, Ph.D. General Manager, Pinnacle Laboratories, Inc.

MR: jt

Enclosure

2709-D Pan American Fwy, NE Albuquerque; NM 87107 505-344.3777 505-344.4413 FAX 877.PIN.1998 TotuFREE www.pinnaclelabs.org www.pinnaclelabsonline.com

LODESTAR SERVICES CLIENT PINNACLE ID 806050 PROJECT# DATE RECEIVED REPORT DATE (NONE) 06/18/2008 PROJECT NAME LANDFARM 07/24/2008 PINNACLE DATE CLIENT DESCRIPTION MATRIX COLLECTED 806050 - 01 API CELL NON-AQ 06/16/2008 806050 - 02 CRUDE CELL NON-AQ 06/16/2008

2709-D Pan American Fwy, NE Albuquerque, NM:87107 505:344.3777 505:344.4413.6AX 877/PIN.1998 Tolling www.pinnaclelabs.org www.pinnaclelabsonline.com

PINNACLE Environmental Testing

	80.1990.2015.2020	100000	· · · · · · · · · · · · · · · · · · ·	Sam and	000
A	ALIMARA	ATOOL	The ASSOCIATION AND A STATE AN	SOC 6	NERTO
MGAD:		ALUG	KAPHI	ren a	SUH 3
		Allen Contractor	a manifester	1 11 11400	adametra di di su d

TEST EPA 8021B / 80	15D BTEX/G	RO			
CLIENT : LODESTAR SE	RVICES			PINNACLE I.D.	806050
PROJECT # (NONE)				ANALYST :	DRK
PROJECT NAME LANDFARM				<u> </u>	
SAMPLE		DATE	DATE	DATE	DIL.
ID.# CLIENTI.D	MATRIX	SAMPLED	EXTRACTED) ANALYZED	FACTOR
01 API CELL	NON-AQ	06/16/2008	06/23/2008	06/25/2008	1
02 CRUDE CELL	NON-AQ	06/16/2008	06/23/2008	06/25/2008	1
PARAMETER DET. LIMIT		UNITS	APICELL	CRUDE CELL	<u> </u>
BENZENE 0025		MG/KG	< 0.025	< 0.025	
TOLUENE 0.025		MG/KG	< 0.025	< 0.025	
ETHYLBENZENE 0.025		MG/KG	< 0.025	< 0.025	
TOTAL XYLENES 0.10		MG/KG	< 0.10	< 0.10	
METHYL-t-BUTYL ETHER 0.25		MG/KG	< 0.25	< 0.25	
GASOLINE RANGE (GRO) 2.5		MG/KG	< 2.5	< 2.5	
SURROGATE:					
TRIFLUOROTOLUENE (%)	en stadio de la com		93	95	
SURROGATE LIMITS (65 - 120)					

CHEMIST NOTES: N/A

2709-D.Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877 PIN.1998 TOLL F www.pinnaclelabs.org www.pinnaclelabsonline.com

PINNACLES Environmental Testing

1	A DEMAND	1.	A. A. BRANCE AND	
	010 01000		A DUNZ DO	CULTOW
`	GAS CRKU	VIALUGR	AFRIK	SULIS
ŝ	commune	1017 634 640	and the second	CONTRACTOR OF CARDING
3		CTUANT	DI ANIL	
3	State of the second	H(*))))		
2	······································	Second a state of the second state of the seco		

2	rest			: EPA 80	21B / 8015	D BTEX/G	₹ 0	PINNACLE	EI.D.	: 80605	0
E	3LANK I. D			: 062508	B1			DATE EX	RACTED	: 06/23/:	2008
(CLIENT			LODES	TAR SERV	/ICES		DATE AN/	ALYZED	: 08/25/	08
F	PROJECT	#		(NONE).			SAMPLE	MATRIX	: NON-A	٩Q
<u> </u>	PROJECT	NAME		LANDF	ARM			ANALYST	<u> </u>	<u>: DRK</u>	<u>. Sinka</u>
F	PARAMETE	<u>ER</u>			<u> </u>	<u>NITS</u>				<u></u>	
E	3ENZENE				M	G/KG		<0.025			
7	OLUENE				M	G/KG		<0.025			
2 C	STUVI DEN		the second second		A.		- X 89	<0.025		gi Maria de Cert	- 29

	IHY	1 86	1112	-101-			1. M. C. K.		97 . M		1V.	5. D/ P		990000 (1. 1. 2%	(J. 1	~ \	J.UZO	37	`	1 m. 19		
<u></u>	1 4/ 1 1	A	- 5 4 Ginn 24				ふくさき	1 . C.M.M.						· · · · · · · · · · · · · · · · · · ·	A SHELLAR	263	111		60	- X. Marine (M. 1997)	all in a		
36B	And	Assan C		\$	82 V.	aller .	all gr		. <u></u>	9 i 🕤	" so in the co	and a st		2 - 2 - 2 - 2 - 2	. 11 A M		- X8				14 mar	1 35 12	
÷.	~	100.00	وسنتو دوه			and the second	C. Same	·	Noiros (1988)	x.ma	22 . 1. 4	~ JL	(A b	ann Station	:		tta di 1 🖌	A 4 A	66.CL		San Mark	and the second	1.196.
à:1'{	<). KA	1 30° X 4	Y/1@(-)	VES.	- ', Ha ras	7X (398.69)	Station .	Station N	2235444000	the second second	SEX IVI	57/2	いしつじ	· · · · · · · · · · · · · · · · · · ·	3.c 73			U SIU	Sec. Carl			Contract de	
8. J.		· L	States and the second s	Annan	Contraction of the second	(· · > = 2 = C = 2	C 19	GS GRAAD AR & .		177 222 200	2500.000	<u></u>	Carry S	-CIM0697	98666iiiiiiiiiiiiiiiiiii	28 a		No. of Summer of	200227	E. A COMPLETE			~~ ~~
	See.		<		X / X & X & X & X & X & X & X & X & X &	3. H T M	4W/ (X)	X*** 783400000		Condition of the second	No Cont	1. go y 3	\$7 <u>8</u> 256+	S. Massa . e.		ace en e	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. or 1000	2010 M Y C	4.1.1.12.200	AZ 444 1000	and the second second	
22 R A		44. 46		-	· · · · · · · · · · · · · · · · · · ·				883.00.298	Ben and a second se		Oa.	1 ~ 2	Dec. 2 3 . 2 4		MN 1987 -	· . / -	A AE	82 Y Y Y	3644668	860 W	10000	
SRЛ.	- 1 -	YI -	1-HU	H YE	- 1 - 1	- H	S	1.100			- KA	G/P	0	22 Mar 10 C		8. N.	્યું જ	UZD	58.			1000000000	
S	5 F . w	1.1.9	(°Dų		<u>∦ana II,81</u>			5597 2000 065		GAL			• • • ÷	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. ` 300066		- N	A summer task					(77) 1910
	Sec. 1. 1. 10	and the	STAN Calles	120	₩ `()##	1944 mar 7 - 4	Sec. 8		S S & 1996	S	C. W. W. W.	1 × 1609	1.80	sin statu	>		1. Same	856 m (* ****		(40).00000			
9 <u>- 10 - 10</u>	11 J. T. May	S 10 1		0			6 C. Cartanin		^~^;<	Million or a	600 in a	200	`		and Sil		V65007	50×6	1 U K S				
12	$\Delta S C$	31310	₩ % ₩ ′	A Mr -	i 🛏 . 🕻 (🛶 k	20 N SP	even av					(4/8			88		-X.38	11/1 3 888	S. Same	S 1999	~~~~~	600 000 00'''	
e Luis			terms of the ball	2	Same 5, 5, 5 - 6,	1 V 1 199	69-637 AV TO 60000	· · · · · · · · · · · · · · · · · · ·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	. / · · 204088	anaras) 🖣 🗮 🕅	-		*	8 9 2		್ ವಿಷೇ		2007 W. 6940		aa		tere Alberta

(65 - 120)

SURROGATE: TRIFLUOROTOLUENE (%) SURROGATE LIMITS:

CHEMIST'NOTES: N/A

2709-D Pan American Ewy, NE Albuquerque, NM 87107 505-344-3777 505-344-4413 (AX 877-PIN 1998) of the www.pinnaclelabs.org www.pinnaclelabsonline.com

103

PINNACLEE Environmental Testing

GAS CHROMATOGRAPHY QUALITY CONTROL

	EPA 8021B			PINNACLE I.I.). CTED	806050
CLIENT	LODESTAR SE	RVICES		DATE ANALY	ZED :	06/25/2008
PROJECT # PROJECT NAME	(NONE)			SAMPLE MAT	RIX :	NON-AQ MG/KG
	SAMPLE	CONC	D %	REC	•	licitic
BENZENE	RESULT <0.025	<u>SPIKE SAMP</u> 1.00 1.15	<u>LE REC</u> 115	LIMITS		
TOLUENE	<0.025	1.00 1.12	112	(64 - 120)		a de concepción
ETHYLBENZENE	<0.025	1.00 1.19	119	(49 - 127)		
IOTAL XYLENES	<0.10	3.00 3.52	117	(58 - 120)		and the second

CHEMIST NOTES

L=LCS/LCSD spike recovery does not meet criteria, high. Associated samples were BDL.

82		20 Bick Gara		the is a serie to a serie t		200.00 000 0000		THE REAL PLAN		80. MA	3888 S. C. / /
146		MAX 23	16 S. C. S. M.	100 M. Land & 1990	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	anan'		1.1.10000000000000000000000000000000000		100.000	00000 V.Z. dd
×3	*	ST 0.27	will the second	1	6	(,))/ - ()//	1997 - A. A.		- CONTRACT, 199	0738	0.0000
		- 132700		- / Shika	Namr	101000	11116	300000	DACINES	79 A 199	a rani
	2- 6888 202			- I Opino	- Qaini	11011/03	unst or		1/69/11/	52.13	S
1.4	\$7000707 . ``	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Same in the	- 1 Mar 1		een an 's e	2:38.111		~~ ~	1.22 6 2
n	18 m			· 200000000	18 19 19 19 19 19	2003	<i>(dialatic</i>)		? SSMM66/3/ ' / ''	51	1. 18 18 Sale
- 24	m Kecy	werv	a 🛶 2000 - 1	100				the second state of the se		₩Х.	1()()
×.		S	annan an a'	V MARRIES SAL	where while	Statistic Charles and	20000.00447774	3483689991111	A 169622.10	- C.N.	Sam diliti

Spike Concentration (Sample Result - Duplicate Result)

 RPD (Relative:Percent Difference) =
 X 100

 Average:Result
 X 100

 Average:Result
 X 100

 X 100
 X 100

 X 100

2709-D Pan American Fwy, NE - Albuquerque, NM 87107 505,344,3777 505,344,4413 FAX 877,PIN,1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

X 100

PINNACLE I.D. 806050 : EPA 8015B GRO TEST DATE EXTRACTED NA BATCH ID 06250881 LODESTAR SERVICES DATE ANALYZED 06/25/2008 CLIENT NON-AQ PROJECT # (NONE) SAMPLE MATRIX MG/KG UNITS **PROJECT NAME** LANDFARM RPD DÙP REC DUP BLANK SPIKED % CONC % REC RPD LIMITS LIMITS RESULT SPIKE SAMPLE REC SPIKE PARAMETER (70 - 130) 20 <10 52.7 105 FUEL HYDROCARBONS 50.0 54.2 108 3 HYDROCARBON RANGE C6-C10 HYDROCARBONS QUANTITATED USING GASOLINE

CHEMIST NOTES:

% Recovery = Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) =

Average Result

709-D Pan American Fwy, NE Albuquerque, NM 87107 505-344.3777 505-344.4413 FAX 877 PIN 1998 roll FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

PINNACLES Environmental Testing

7.385			8 	*****	
	1.		149 31111 19	1 7	- ~ Manager
000	ALIDARA	TOODAOL	11/2/31/18	I ITV M	NITON
GAO	UMRUMA	I OGRAPT	າກາວພວກ		שחותט
20100	California a	S. S.S. S. COMPREMENT	11 · · · · · · · · · · · · · · · · · ·	Sale of the second second	5 55 6 50

``.										Sector Sector		- 19
Ż	TEST	EPA 8021B				PINNACLE	l. D .		806050			
Ø.,	SAMPLE ID	806050 01 [1	X]			DATE EXTR	ACTED	24	06/23/20	08		e ing
	CLIENT :	LODESTAR S	SERVICES			DATE ANAL	YZED	1	06/25/20	800		3
	PROJECT #	(NONE)				SAMPLE MA	ATRIX		NON AG)		- <i>4</i> 9
	PROJECT NAME	LANDFARM				UNITS	1. N. S.		MG/KG	Careros -	him di talin .	
		SAMPLE	CONC	SPIKED	%	DUP	DÚP		REC		RPD	
(74) 2035	PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMIT	S. L	MITS	80 C
					the state of the s	and the second se						
	BENZENE	<0.025	1.00	1.07	107	1.10	110		(68 - 12	20)	20	ù.
	BENZENE	<0:025 <0.025	1.00	1.07 1.03	107 103	1.10 1.07	110 107	4 3	(68 - 12 (64 - 12	20) 20)	20. 20	
	BENZENE TOLUENE	<0:025 <0.025	1:00 1.00	1.07 1.03	107 103 107	1.10 1.07 1.12	110 107 112	4 3 5	(68 - 12 (64 - 12 (49 - 12	20)) 20) 27))	20 20 20	
	BENZENE TOLUENE ETHYLBENZENE	<0.025 <0.025 <0.025	1:00 1.00 1:00	1.07 1.03 1.07	107 103 107	1.10 1.07 1.12	110 107 112	4 3 5	(68 - 12 (64 - 12 (49 - 12	20) 20) 27)	20 20 20	
	BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0/025 <0.025 <0.025 <0.10	1:00 1.00 1.00 3:00	1.07 1.03 1.07 3.28	107 103 107 109	1.10 1.07 1.12 3.33	110 107 112 111	4 3 5 2	(68 - 12 (64 - 12 (49 - 12 (58 - 12	20) 20) 27) 20)	20 20 20 20 20	
	BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-1-BUTYL ETHER	<0.025 <0.025 <0.025 <0.10 <0.25	1:00 1.00 1:00 3:00 1.00	1.07 1.03 1.07 3.28 1.21	107 103 107 109 121. M	1:10 1.07 1:12 3:33 1:22	110 107 112 111 122 M	4 3 5 2 1	(68 - 12 (64 - 12 (49 - 12 (58 - 12 (66 - 12	20)) 20) 27) 20) 20)	20 20 20 20 20 20	

X 100

CHEMIST NOTES:

% Recovery =

M = MS/MSD spike recovery does not meet PLI criteria - high. Associated samples were BDL.

(Spike Sample Result - Sample Result)

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) = Average Result

2709-D.Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN:1998 ro www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY RESULTS METHOD BLANK

GASOLINE

97

<u> </u>								
n i Ke	TEST		EPA 8015D GR	0	P	INNACLE I.D		806050
	BLANK I.D.	terret in	052908VS		E	ATE EXTRA	STED	05/29/08
	CLIENT	S	LODESTAR SE	RVICES	D	ATE ANALYZ	ED	: 06/06/08
	PROJECT#		(NONE)		S	AMPLE MAT	RIX SIX	NON-AQ
2	PROJECT NAME	E i	LANDFARM		A	NALYST		DRK
	PARAMETER				UNITS			
Ŵ.	FUEL HYDROCA	ARBONS			MG/KG		<10	
	HYDROCARBON						C5-C10	
- 2			Carl Carl Star		SAL PARAL		and that the second state of the	

HYDROCARBONS QUANTITATED USING SURROGATE: BROMOFLUOROBENZENE (%)

SURROGATE LIMITS (80 - 120)

CHEMIST NOTES:

NA ----

2709=D Pan American Fwy, NE Albuquerque, NM 87107 505:344:3777 505:344:4413 FAX 877.PIN 1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL

(.100²

g

	TECT			2PO		DIN			806050		Ì
Ň	BATCH ID		052908VS	580		DA	TE EXTRACTE	D	05/29/2	800	į
à	CLIENT		LODESTAR	SERVICES		DA	TE ANALYZED		06/06/0	8. Š	
	PROJECT #	<u>ME</u>	LANDFARM		<u>enne en</u>	UN	ITS		MG/KG		Ń
Ŕ.	DADAMETER		BLANK	CONC	SPIKED	% PEC			REC	29	
Ű	FUEL HYDRO	CARBONS	<10	20	20:8	104			(70 - 1	30.)	
	HYDROCARBO	ON RANGE	TATER	C6-C10				an San			
ટેર્સ્	HYURUCARBO	UNS QUANTI	TATED USING	GASOLINE	an States States				an a		e. J

CHEMIST NOTES.

N/A

(Spike Sample Result - Sample Result)

% Recovery = Spike Concentration

(Sample Result - Duplicate Result)
RPD (Relative Percent Difference) =

Average Result

2709 D Pan American Fwy, NE - Albuquerque, NM 87107 505,344,3777 505,344,4413 FAX 877,PIN.1998 Toll FREE www.pinnaclelabs.org www.pinnaclelabsonline.com
PINNACLEE Environmental Testing

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

e	TEST		EPA 80	015D GRC)		and the second second	PINNACLE	1.D.		806050	
D.	SAMPLE ID		: 805090).12				DATE EXT	RACTED	1.199 6.199 6.199	05/29/08	
Ľ,	CLIENT		LODES	STAR SER	VICES		5.	DATE ANA	LYZED	100 C	06/06/08	1922
27 - S	PROJECT #		(NONE	3				SAMPLE N	ATRIX		NON-AQ	
C	PROJECT NA	ME	LANDE	ARM				UNITS	S. Maria	hall the second	MG/KG	
			SAM	PLE C	ONC	SPIKED	%	DUP	DUP		REC	RPD
Se.			RES		PIKE	SAMPLE	REC	SPIKE	% RE(RPD	LIMITS	LIMITS
ò						47.0	05	47.0	05	0	(70 420.)	20
	FUELHYDRO	CARBONS	<]	U.	0.0	17.0	65.	17.0	60	U	(10-130)	20
ø	HYDROCARB	UN KANGE		Ct	-C10					194 S. 197		

HYDROCARBONS QUANTITATED USING GASOLINE

CHEMIST NOTES:

- 23	0.767	er	- K - K			. a 100000			0.33636				× •	· · · · · ·	· 100.0	2684 V V	×	2.00	· · ·	1.55	1000000	280 P 9	883 C - 1	
12	280 Y			×		< < 333332	SEC 342	1.2.	NAMES &					· · · ·	1	/ i.amea		6.68.	· ·		with the second	A 1980 (17	Sec. 1	
- 22	1 100			s		> y 1000	aan 100 - 1		YALLIZER	214 L.				- 55	- X Y0009		- C.A	*****		- 225	> 292	1002222	920	
622	1999 B			~	< .	- ```@@	********	1.14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WY 14.		141		- <u>```````</u>	S. W. Spragers	2000 C	·			×		\$\$3682		Υ.
	かんじ						1000 C 102 A .	· ~ -	-	90		4 M (H	~ ~ `			^		2 Y 1 1		12143		Station	0.00	
	200.5	244	- WK.	A. Co	5		100.000		פצור	2 . S	IT I	NI 1	2 9 - 2	as:	1112-	- SH	mni	<u>e e</u>	' C		10001-6-2	1000000	887	
	CX -	87.W	1.0482	20236	2.00.00.0		100000000000000000000000000000000000000		, in ()	0.00		210	Z		200.06	200	1,101	~					******	-12
70	S	224	: / 82	243.	12.20	*******				Mar . 2	2.20	1868 C. V		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	aan 10000	300.222	1. 2. 1. 1890	× 56,000	- X.S	948 °	< 124000 C			200
m	101		^35:SE	S. F.				2. S. L. L. S.			Kathall.	distant.	2~	- 1960	95600 P. P. C	3773 88 0300			. CA 33	2. 199 199 199 19	~ ~ ~ ~	100 mar 17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200
2831	G/ .	. ന	-		تستحد لأ						1914	75.AM	5 4	1950	14 1120 11	 - Arresta 	239.46.0993	******	3483	0000000	«ν`	4710	1.° '	` 2
23	~~~~	tr.	6 H C	211	16-1	v		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	·····										- A -	лця	,	
283		81.	~~			1 023	88 Sz / S -		×5.00848	Sec. rates	236212-	6.00000	× .4	8.111 1.1	MY . MA	~ ?\	~		112596	- N8024	al an a	1.1.1		
° 2.	20	····/·	S. 5	N. 4	3.5.49	•	00000006.56		N 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. 10H.2	(. <i>10</i> %	N 1996 -	NG	1.24.41.5	1.	6.12.1.	· · · · ·	- N. 2000	So	1 1 1 2 4 9	~~~~~	:0032232	ac	
58	2000-227		76	25.5	10000	XX			- S & 1000000	NAMES OF Y		· • / \			1.5 2009	10000000 · `	8 8 Z	1.464.5			- Vol 2000	1" 86.00	2222	

Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NEX Albuquerque, NM 87107 505 344 3777 505 344 4413 FAX 877 PIN 1998 foll FRFE. www.pinnaclelabs.org www.pinnaclelabsonline.com

X 100

<u>TestAmerica</u>

THE LEADER IN ENVIRORMENTAL TESTING

ANALYTICAL REPORT

Job Number: 400-31888-1 Job Description: 806050

For: Anasazi NM Holdings, Inc 2709-D Pan American Freeway, NE Albuquerque, NM 87107

Attention: Mitch Rubenstein

Mark wablard

Designee for Marty Edwards Project Manager 1 marty edwards@testamericainc.com 07/23/2008

The test results in this report meet all NELAP requirements for accredited parameters and relate only to the referenced samples. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (A20710), Arkansas (88-0689), California (2510), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912); New Hampshire (250507), New Jersey (FL006) New York (11503), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soll Permit (P330-08-00006).

TestAmerica Laboratorias, Inc. TestAmerica Pensacola: 3355 McLemore Drive, Pensacola, FL 32514 Tel (850) 474-1001: Fax (850) 478-2671: www.testamericalnc.com

Page 1 of 12

nel

METHOD SUMMARY

Client: Anasazi NM Holdings, Inc.

Job Number: 400-31888-1

Description Preparation Method Preparation Method

Matrix: Solid

Chloride (Colormetric, Automated Ferricyanide) TAL PEN SW846 9251 Deionized Water Leaching Procedure (Routine) TAL PEN ASTM DI Leach

Lab References:

TAL PEN = TestAmerica Pensacola

Method References:

ASTM = ASTM International

SW846 = Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates

TestAmerica Pensacola

Page 2 of 12

METHOD / ANALYST SUMMARY

Job Number: 400-31888-1

Client: Anasazi NM Holdings, Inc.

Analyst ID Method Analyst Gimlin, Wendy SW846 9251 WG EPA PercentMoisture Chea, Vanda VC TestAmerica Pensacola Page 3 of 12

SAMPLE SUMMARY

Client: Anasazi NM Holdings, Inc.

Job Number: 400-31888-1

	Lab Sample ID	Client Sample ID	Client Matrix		Date/Time Sampled	Date/Time Received	
	400-31888-1 400-31888-2	API CELL/ 806050-01 CRUDE CELL/ 806050-02	Solid Solid	((06/16/2008 1247 06/16/2008 1258	06/19/2008 1005 06/19/2008 1005	
				inter de			
4							
	TestAmerica Pensaco	ola					
			Page 4 of	12			
4							1

SAMPLE RESULTS

TestAmerica Pensacola

Page 5 of 12

Client: Anasazi NM Holdings, Inc

Analytical Data Job Number: 400-31888-1

General Chemistry
Client Sample ID: API CELL/ 806050-01

Date Sampled: 06/16/2008 1247 Lab Sample ID. 400-31888-1 Date Received: 06/19/2008 1005 % Moisture: 3.7 Client Matrix: Solid Dil Method Qual Units RL Analyte Result 1.0 9251 180 mg/Kg 42 Chloride

 Anly Batch: 400-71807
 Date Analyzed:
 06/25/2008 1149
 DryWt Corrected: Y

 Percent Solids
 96
 %
 0.10
 1.0
 PercentMoisture

 Anly Batch: 400-71629
 Date Analyzed
 06/21/2008 0000
 0.10
 1.0
 PercentMoisture

Client Sample ID: CRUDE CELL/ 806050-02

 Lab Sample ID:
 400-31888-2
 Date Sampled:
 06/16/2008
 1258

 Client Matrix:
 Solid
 % Moisture:
 7.5
 Date Received:
 06/19/2008
 1005

Qual Units RL Dil Method Analyte Result 1.0 9251 Chloride 540 mg/Kg 43 Date Analyzed 06/25/2008 1149 DryWt Corrected: Y Anly Batch: 400-71807 0.10 1.0 PercentMoisture **Percent Solids** Anly Batch: 400-71629 Date Analyzed 06/21/2008 0000

Page 6 of 12

TestAmerica Pensacola

QUALITY CONTROL RESULTS

TestAmerica Pensacola.

Page 7 of 12

Quality Control Results

Client: Anasazi NM Holdings, Inc

Job Number: 400-31888-1

QC Association Summary

General Chemistry					
Analysis Batch:400-7162	9				
400-31888-1	API/CELL/ 806050-01	Ţ	Solid	PercentMoisture	
400-31888-2	CRUDE CELL/ 806050-02	T	Solid	PercentMoisture	9
Prep Batch: 400-71794					
VB 400-71794/1-A	Method Blank	S S	Solid	DI Leach	
400-31772-B-1-A MS	Matrix Spike	S	Solid	DI Leach	
400-31772-B-1-A MSD	Matrix Spike Duplicate	S	Solid	DI Leach	
400-31888-1	API CELL/ 806050-01	T	Solid	DI Leach	
400-31888-2	CRUDE CELU 806050-02	Т	Solid	DI Leach	
Analysis Batch:400-7180	7				
MB 400-71794/1-A	Method Blank	S	Solid	9251	
LCS 400-71807/2	Lab Control Spike	T	Water	9251	
100-31772-B-1-A MS	Matrix Spike	S	Solid	9251	
100-31772-B-1-A MSD	Matrix Spike Duplicate	S	Solid	9251	
400-31888-1	API CELL/ 806050-01	Т	Solid	9251	
100-31888-2	CRUDE CELL/ 806050-02	Ŧ	Solid	9251	
Report Basis					
S = Soluble					
T = Total			en en service de la servic		

TestAmerica Pensacola

Page 8 of 12

Client: Anasazi NM Holdings, Inc

Method Blank - Batch: 400-71807

Lab Sample ID: MB 400-71794/1-A Client Matrix: Solid Dilution: 1/0 Date Analyzed: 06/25/2008 1146 Date Prepared: N/A Date Leached: 06/23/2008 0900

Analysis Batch: 400-71807 Prep Batch: N/A Units: mg/Kg

Spike Amount

50 0 🔬

% Rec

MSD

MS

Result

45.1

Leachate Batch: 400-71794

Qua

% Rec.

90

Result

<40

Chloride

Lab Control Spike - Batch: 400-71807

Lab Sample ID: LCS 400-71807/2 Analysis Batch: 400-71807 Glient Matrix: Water Prep Batch: N/A Dilution: 1.0 Units: mg/Kg Date Analyzed: 06/25/2008 1146 Date Prepared: N/A

Analyte

Analyte

Chloride

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 400-71807

MS Lab Sample ID: 400-31772-8-1-A MS Analysis Batch: 400-71807 Client Matrix: Solid Prep Batch: N/A Dilution: 50 06/25/2008 1325 Date Analyzed: Date Prepared: N/A

Date Leached: Leachate Batch: 400-71794 06/23/2008 0900 MSD Lab Sample ID: 400-31772-B-1-A MSD Analysis Batch: 400-71807 Client Matrix. Solid Prep Batch: N/A Dilution: 5.0

06/25/2008 1325 Date Analyzed: Date Prepared: N/A Date Leached: 06/23/2008 0900 Leachate Batch: 400-71794

Analyte

Chloride 28 28 Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Pensacola

Page 9 of 12

Limit

75 - 125

Quality Control Results

Job Number: 400-31888-1

RI 40

Method: 9251 **Preparation: N/A**

Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 1.0 mL

Method: 9251 Preparation: N/A

Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

90 - 110 Method: 9251 Preparation: N/A

Limit

Instrument ID: Konelab 1 Lab File ID: N/A 1.0 mL Initial Weight/Volume: Final Weight/Volume: 10 mL

Instrument ID: Konelab 1: Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

RPD Limit MS Qual MSD Qual RPD

20

0

Qual

DATA REPORTING QUALIFIERS

Client: Anasazi NM Holdings, Inc.

Job Number: 400-31888-1

20

Lab Section Qualifier Description

General Chemistry

MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

TestAmerica Pensacola

Page 10 of 12

Pinnacle Laboratories, Inc. 400-3(88	8	ln	terla	b Cl	hain	of C	usta	ody			Da	to:[/	118/0	18 p	age:	<u> </u>	<u>, </u>	
ALCONTRIS Network Project Manager: Jacinta Tenorio			alan Mari		<u>, se ana</u>			ANAL	YSIS	REQL	EST		<u>.</u>			- 562. Albert		<u> </u>
Pinnacle Laboratories, Inc.	Ki Zani				122				N				Sec. 3	T				विषे
2709-D Pan American Freeway NE								Q		1	7			NS.				
Albuquerque, NM 87107				_ ©		9		82			<pre> § </pre>			<u>SCI</u>			57 297 - 2	
(505) 344-3777. Fax (505) 344-4413		<u>دم</u>		(20)		ŀŝ		ୁ ହ		200	5			Sp				
		eta	atats	PP		Alla V	1 1	្តទ្រ		0/0/	<u>3</u>	Ĩ.	ZH	R		- 23		RS.
	∣≴	N (ist M	ç		<u> </u>		0				0.0]]	5	<u>ડ</u>	e B	E)	Į.
	ų Š	A (f	a S	6		عاري		a ju			10	/82	9	3	P-A	₽ ₽	8	1 INC
	(8)	ő	13 F	۲, E		- Inde		ß			Se	6	망		୍ରା ତ	22	pha	U U
	als (ين م		Ì	С.,	์ 5		8		1	ici l	(83	E	Neil	82 E	ξ	S AI	4 ER C
SAMPLE ID DATE TIME MATRIX LAB	D	<u>1</u>	Met	SI SI	Second	Sen 10		<u>ola</u>	ğ	<u>S</u>	말	1¥	260	986	17an	adi	S	C-O-H
API Cell 806050-01 6/1608 1247 NAO		<u>.</u>	-24				2						2 0 . 8 		<u>=</u>			<u> </u>
Coude Cell Sillers -02 11 1255 11				1000 1000		$\overline{\mathbf{x}}$												ěļ-
	<u></u> 201									228 7 15 SE		2960 2000			1			
					Lations (1	20			<u> </u>			
		S.	<u> 19</u>															
									18		ŝŚ						14.4	
		1252 10			26			K.									2. 3 Ý	
												1.8						
				1002	200									+				
				<u>: 860</u> 3328										4				
		1. SUS 1. SUS		-					\downarrow	_		N.						
		×.													े । - के			
PROJECT INFORMATION SAMPLE RECEIPT	8 0 2 1680 - 688	te di sa Katalar	SAMPI	= <u></u>	ENIT TO	<u>2</u>	IDEI	NOUR	CA D	<u>.</u>		2 (1) 	No. 20			300	. L	
PROJECT #: 80(00'50 Total Number of Container	s I	E.	APEXL	ABS	-107 14		RI A			1.		213) 28/	RELI		SEU E	<u>γ</u> τ:		2.
PRCJ. NAME: LODE Chain of Custody Seals			ARS		-720		191	ime	ma	Hu	70 1	HO	aigrain	1 :			inna;	
QC LEVEL: STD IV Received Intact?			BIOVIR			<u>e</u> 1	Forter	I Name:	<u> </u>	Da	ie []	Ι.,	Printed I	Name:	the second		Date:	
CALCREDURED MS MSD BLANK Received Good Cond/Cold	<u>1 </u>		BSKAN	VALYT	ICAL		17M	rent	<u>۱۷ ر</u>	MO	418	M.			Laž <u>,</u>			<u>t 3</u>
	R 775 - 78 2 - 5 - 78		GEL MWHI	ABS			REC	EIVED	oratori BY	es, inc.		<u>.</u> 	Compar	y m/er	10.41	<u></u>		
DUEDATE: 7/2 COMMENTS:		1.100	TEST A	MERI	CA-FL	<u> </u>	Sloont			H	10:	<u>a vite.</u> N	Sinnari	AVED	01:			2.
			WCAS			e (*	1	<u>Z</u> -		1[10	<u>ک</u> رچ		AD4 HD[U]				11 11 6	
CLIENT DISCOUNT:	9		WOHL			En Re	Printer	i Name:	Ľ	9.9	le:	X	Printed	vame:			Oate:	.
			<u> an </u>							170	<u>X_</u>			<u>n a Sila</u>		<u>. (2</u>	10.00 // 100	
						<u>en tañ</u>	loub	ariy 🦾		andre († 1939) 1943 - S	 	35 	Compar	<u>v)/2/9%</u> 55				<u> Develêlê</u> F

14 × 2

Login Sample Receipt Check List

Client: TestAmerica Pensacola

List Source: TestAmerica Pensacola

Job Number: 400-31888-1

22

Login Number: 31888		List Source:
Creator: Hor, Koma		
List Number: 1		
Question	TIFINA Co	mment.
Radioactivity either was not measured or, if measured, is at or below	N/A	
background The coder's custody seal if present is intact	N/A	
The cooler or samples do not appear to have been compromised or	True	
tampered with.		
Samples were received on ice.	Inue	
Cooler Temperature is acceptable.	Irue	••
Cooler Temperature is recorded.	True 0.7	• C
COC is present.	Irue T-	
COC is filled out in ink and legible.	True	
There is a light an entitient information.	True M True	
the COC	iu nue	
Samples are received within Holding Time:	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used:	True	
Sample bottles are completely filled.	True	
 There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs 	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in	N/A	
Grameter.	T True	
needs		
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing	True	
	and a second	N 2010

TestAmerica Pensacola

Page 12 of 12

	PLEASE	FILL T	HIS F	ORM	IN (00	ИPL	ET	ĒĿì	1.	St	IAD)ED	AR	REAS ARE FOR LAB USE ONLY.
	EN AR	8	ST PO	H H		WEE									
	ENER	Solar (0	NO:	NWN D	PRO	KEND		973. 83						? <u>7</u>	
		ANER	5	<u>п</u>	UECT	ANALI							HQ.		
and and a	9 19	ERB		nd fa	INFO	SES N							F	(e)	
siones; in	No a			(Trm	AMAT	IAY RE							1		The set of
C.2/08		**			<u>N</u>	TINS	*** ** ***	a Catalogo							
d ran A	<u> </u>					Ë AN							<u>k-1</u> 4	a)1-a)	the second second
mencan			AETHA XOMM	PUSH) NOTAV XERTIF	PA	À C			2.2 2.2			6:26 iii 2:27 20	202	-08	
Indensa,			NOL PF		N HO	ONA							252	F+2	
a S			TESER	N REO	OHLO	SURC	k stany * saysta Nation						X	8	
ndneutra			VATION	D48hr ANALY UIRED	RIZAT	HARG							1	-	
), New M			Ō	0 9								, i.	0	0	
atho 87				M	REO										
07 • (SQ			ETALS	S C C C C C C C C C C C C C C C C C C C											(MOD.8015) Diesel/Direct Inject
5)344-37				≥ Ř	F S			s die Siebber	inini Baile a					5	
2.F3			OTAL	D X	RS				<u>, (</u>				<u> </u>	N	8021 (BTEX)/8015 (Gasoline) MTBE
(508) 34			B	J S	B								12	S	
- 43			JOSSI	FIMAL)	E C										8021 (EDX)
E-mai: f			Ð		б М		inti Sinta Mara								8021 (HALO)
en Nu	Printa Oraș	See A			R	889 1990 - 1990 1990 - 1 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		tinit vi s Vitari	778						
ØATT.N	d Nam	CEN		ha	ZZ Z								2.03 (7.93		8260 (TCL) Volatile Organics
् <u>म</u>		N N N		K X			2 Z 3 6 						<u>\</u>		8260 (Full) Volatile Organics EIFBMS
			No B	00								s 23			8260 (CUST) Volatile Organics
	ate		er a			<u> <u>j</u></u>									Peslicides/PCB (608/8081/8082)
		X	244	500											Herbicides (615/8151)
			2 P1	Sg										1999 (See	Polynuclear Aromatics (610/8310/8270-SIMS)
DISTAI	WWW		ted Na	nature:		ini R				+			\sum		General Chemistry:
UTION			, [₿]			i Maria		<u>6</u> 657						<u> (</u>)	Priority Pollutant Metals (13)
White-F	Sa A	K)											l filters : Se fi		Target Analyte List Metals (23)
Ĕ		AB	Date	Vinė.											RCRA Melals by TCLP (Method1311)
<u> २</u> २	のない			N									ĠĴ		Metals:
<u>F</u>	816	9 M		<u> </u> R									8	2	NUMBER OF CONTAINERS
	aling a				Suge										

÷

. · ·

000 53

File : C:\HPCHEM\1\DATA\062508B1\06250803.D Operator : DRK Acquired : 25 Jun 2008 10:08 using AcgMethod GCB80429.M Instrument : GC-2 PID/ Sample Name: 062508.15, GRO CCV 1000UG/L Misc Info : R0625, P0625, PLI-NM 1000UG/L Vial Number: 15

0.00 1100 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14:00

0.00

1.00

2.00

3.00

4.00

O6250805.DIFID2A

5.00

6.00

7.00

8.00 9.00 10.00 11.00 12.00 13.00 14.00

HPCHEM\1\DATA\062508B1\06250808.D File C Operator DRK Acquired 25 Jun 2008 12:50 using AcqMethod GCB80429.M 1 Instrument : GC-2 PID/ Sample Name: 062408.10, API C806050.01, API CELL Misc Info : R0618, P0623, LANDFARM Vial Number: 4

> 40000 20000

06250808.D\FID2A

M. Wind Willing 12.00 13.00 4.00 5.00 3.00 6.00 8.00 9.00 10.00 11.00 0.00 1.00 2.00 7.00---

14.00

File : C:\HPCHEM\1\DATA\062508B1\06250811.D Operator : DRK Acquired : 25.000 2008 14:18 using AcqMethod GCB80429.M Instrument : CC-2.PID/ Sample Name: 806050.02; CRUDE CELL Misc Info : R0618, P0623; LANDFARM Vial Number: 7

÷.C

0.00

062508111 DVFID2A

1.00 2.00 3.00 4.00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00

14:00

RECEIVED 2009 NOV 12 PM 2 38

November 9, 2009

Mr. Brad Jones Solid Waste Management Facilities New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

CERTIFIED MAIL: 7009 0820 0000 0482 8620

RE: 3rd Quarter 2009, Sampling at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

Dear Mr. Jones:

Please find enclosed the 3rd Quarter 2009, sampling results at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

If you have any questions or require additional information, please do not hesitate to contact me at (505) 632-4077 or at Bill.Robertson@wnr.com.

Sincerely, Western Refining

Bill Robertson Safety, Environmental & Regulatory Manager But Rute

Attachments Analytical Report

Cc: Allen Hains, Western Refining File

Lodestar Services, Incorporated PO Box 4465, Durango, CO 81302 Office (970) 946-1093

October 22, 2009

1

Mr. Bill Robertson Western Refining, Southwest 111 CR 4990 Bloomfield, NM 87413

RE: Third Quarter Sampling at Western Refining's Centralized Surface Waste Management Landfarm Facility NM-02-0010

Dear Mr. Robertson,

On September 29, 2009, Lodestar Services, Inc. collected third quarter samples from Western Refining's Bisti landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One Crude Cell sample and one API Cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from four feet beneath native ground surface. Each sample was placed in an eight-ounce glass jar and stored on ice during shipping to Hall Environmental Analysis Laboratory in Albuquerque, NM. Strict chain-of-custody procedures were followed during shipping. Hall Environmental Analysis Laboratory analyzed the samples for the following constituents: chlorides, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and xylenes (BTEX).

Concentrations of BTEX and TPH were not detected in either sample. Chloride concentrations were 95 mg/kg in the API Cell sample and 14 mg/kg in the Crude Cell sample. The complete laboratory report is included for your review.

Should you have any questions or require additional information please do not hesitate to call me at (970) 946-1093.

Respectfully Submitted, Lodestar Services, Inc.

Ashley Ager

Cc. Mr. Bruce Cauthen, Western Refining File

COVER LETTER

Monday, October 19, 2009

Bill Robertson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Western Bisti Landfarm

Dear Bill Robertson:

Order No.: 0910123

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 10/7/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE = Suite D = Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining Sou	ithwest, Inc.		Clien	t Sample I	D: Crude Cel	1
Lab Order:	0910123			Col	lection Da	te: 9/29/2009	2:50:00 PM
Project:	Western Bisti Landfa	rm		Da	te Receive	d: 10/7/2009	
Lab ID:	0910123-01				Matr	ix: SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS			1		Analyst: SCC
Diesel Range C	Irganics (DRO)	ND	10		mg/Kg	1	10/17/2009 3:56:32 PM
Motor Oil Rang	e Organics (MRO)	ND	50		mg/Kg	1	10/17/2009 3:56:32 PM
Surr: DNOP		91.6	61.7-135		%REC	1	10/17/2009 3:56:32 PM
EPA METHOD	8015B: GASOLINE RAN	GE					Analyst: NSB
Gasoline Range	e Organics (GRO)	ND	5.0		mg/Kg	1	10/13/2009 2:38:04 AM
Surr: BFB		105	65.9-118		%REC	1	10/13/2009 2:38:04 AM
EPA METHOD	8021B: VOLATILES						Analyst: NSB
Benzene		ND	0.050		mg/Kg	1	10/13/2009 2:38:04 AM
Toluene		ND	0.050		mg/Kg	1	10/13/2009 2:38:04 AM
Ethylbenzene		ND	0.050		mg/Kg	1	10/13/2009 2:38:04 AM
Xylenes, Total		ND	0.10		mg/Kg	1	10/13/2009 2:38:04 AM
Surr: 4-Brom	ofluorobenzene	110	64.7-120		%REC	1	10/13/2009 2:38:04 AM
EPA METHOD	300.0: ANIONS						Analyst: TAF
Chloride		14	1.5		mg/Kg	5	10/14/2009 10:22:59 AM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

٠

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 2

1

Date: 19-Oct-09

CLIENT:	Western Refining Sou	thwest, Inc.		Clien	it Sample ID:	API Cell	
Lab Order:	0910123			Col	lection Date:	9/29/200	9 2:18:00 PM
Project:	Western Bisti Landfar	m		Da	ate Received:	10/7/2009	9
Lab ID:	0910123-02				Matrix:	SOIL	
Analyses	· ·	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS					Analyst: SCC
Diesel Range O	Irganics (DRO)	ND	10		mg/Kg	1	10/17/2009 4:31:37 PM
Motor Oil Range	e Organics (MRO)	ND	50		mg/Kg	1	10/17/2009 4:31:37 PM
Surr: DNOP		84.0	61.7-135		%REC	1	10/17/2009 4:31:37 PM
EPA METHOD	8015B: GASOLINE RAN	GE					Analyst: NSB
Gasoline Range	Organics (GRO)	ND	5.0		mg/Kg	1	10/13/2009 3:08:30 AM
Surr: BFB		101	65.9-118		%REC	1	10/13/2009 3:08:30 AM
EPA METHOD	8021B: VOLATILES						Analyst: NSB
Benzene		ND	0.050		mg/Kg	1	10/13/2009 3:08:30 AM
Toluene		ND	0.050		mg/Kg	1	10/13/2009 3:08:30 AM
Ethylbenzene		ND	0.050		mg/Kg	1	10/13/2009 3:08:30 AM
Xylenes, Total	•	ND	0.10		mg/Kg	1	10/13/2009 3:08:30 AM
Surr: 4-Bromo	ofluorobenzene	105	64.7-120		%REC	1	10/13/2009 3:08:30 AM
EPA METHOD	300.0: ANIONS						Analyst: TAF
Chloride		95	1.5		mg/Kg	5	10/14/2009 10:57:48 AM

Hall Environmental Analysis Laboratory, Inc.

Date: 19-Oct-09

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 2 of 2

.

ł

QA/QC SUMMARY REPORT

Client: Western Re Project: Western Bi	efining Sout sti Landfarn	hwest, Inc. n							Ň	Vork	Order:	0910123
Analyte	Result	Units	PQL	SPK V	a SPK	ref	%Rec L	.owLimit H	ighLimit %	RPD	RPDLimit	Qual
Method: EPA Method 300.0: A	nions							. <u></u>				<i>_</i> J
Sample ID: MB-20302		MBLK					Batch ID:	20302	Analysis Da	ate:	10/14/2009	9:48:10 AM
Chloride	ND	mg/Kg	0.30									
Sample ID: LCS-20302		LCS					Batch ID:	20302	Analysis Da	ate:	10/14/2009 1	0:05:34 AM
Chloride	14.67	mg/Kg	0.30	15	5	0	97.8	90	110			
Method: EPA Method 8015B:	Diesel Range	organics										
Sample ID: MB-20277	•	MBLK					Batch ID:	20277	Analysis Da	ate:	10/17/2009	5:31:02 AM
Diesel Range Organics (DRO)	ND	mg/Kg	10									
Motor Oil Range Organics (MRO)	ND	mg/Kg	50									
Sample ID: LCS-20277		LCS					Batch ID:	20277	Analysis Da	ate:	10/17/2009	6:06:23 AM
Diesel Range Organics (DRO)	47.11	mg/Kg	10	50) (0	94.2	64.6	116			
Method: EPA Method 8015B: (Gasoline Rai	nge										
Sample ID: MB-20284		MBLK					Batch ID:	20284	Analysis Da	ate:	10/13/2009	6:40:15 AM
Gasoline Range Organics (GRO)	ND	mg/Kg	5.0									
Sample ID: LCS-20284		LCS					Batch 1D:	20284	Analysis Da	ite:	10/13/2009	4:39:04 AM
Gasoline Range Organics (GRO)	28.70	mg/Kg	5.0	25	1.27	7	110	64.4	133			
Method: EPA Method 8021B: \	/olatiles											
Sample ID: MB-20284		MBLK					Batch ID:	20284	Analysis Da	ite:	10/13/2009 (3:40:15 AM
Benzene	ND	mg/Kg	0.050									
Toluene	ND	mg/Kg	0.050									
Ethylbenzene	ND	mg/Kg	0.050									
Xylenes, Total	ND	mg/Kg	0.10									
Sample ID: LCS-20284		LCS					Batch ID:	20284	Analysis Da	ite:	10/13/2009 6	6:09:47 AM
Benzene	0.9996	mg/Kg	0.050	1	0.0167	7	98.3	78.8	132			
Toluene	1.049	mg/Kg	0.050	1	C)	105	78.9	112			
Ethylbenzene	1.133	mg/Kg	0.050	1	C)	1 13	69.3	125			
Xylenes, Total	3.413	mg/Kg	0.10	3	0)	114	73	128			

Qualifiers:

Е Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1

Hall Environmental Analysis Laboratory, Inc.

	Sample	Rec	eipl	t Checklist			
Client Name WESTERN REFINING SOUT	\sim			Date Recei	ved:	10/7/2009	
Work Order Number 0910123				Received	by: TLS	$\langle \cdot \rangle$	
Checklist completed by:	X		10	File II Sample II) labels checked by:	Initials	
Matrix:	Carrier name:		<u>.</u>	Cheyhound	ሉ	• •	
Shipping container/cooler in good condition?		Yes		No 🗔	Not Present	ן	
Custody seals intact on shipping container/coo	ler?	Yes	V	No 🗔	Not Present] Not Shipped	
Custody seals intact on sample bottles?		Yes	V	No 🗖	N/A]	
Chain of custody present?		Yes		No 🗌			
Chain of custody signed when relinquished and	i received?	Yes		No 🗔			
Chain of custody agrees with sample labels?		Yes	V	No 🗌			
Samples in proper container/bottle?		Yes		No 🗔			
Sample containers intact?		Yes	V	No 🗔			
Sufficient sample volume for indicated test?		Yes		No 🗔			
All samples received within holding time?		Yes		No 🗋		Number of	preserved
Water - VOA vials have zero headspace?	No VOA vials subr	nitted		Yes 🗌	No 🗔	potiles che pH:	CKED TOP
Water - Preservation labels on bottle and cap n	natch?	Yes		No 🗔	N/A 🗹		
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🗹	<2 >12 unle	ss noted
Container/Temp Blank temperature?		8.9	° "	<6° C Accept	able	Delow.	
COMMENTS:				If given sufficie	ent time to cool.		
Client contacted	Date contacted:			Pe	rson contacted		<u></u>
Contacted by:	Regarding:					<u></u>	
Comments:							
······································	······································				<u> </u>		
	<u></u>						
						······································	····
					······································		
Corrective Action	······				<u></u>		
· · · · · · · · · · · · · · · · · · ·					<u> </u>		<u> </u>
				· · · · · · · · · · · · · · · · · · ·			

1								(N -	ю Л)	səlddu8 1iA]
		5	60)	00.	Ş	5°T.'JOIM-7	X			 								ž	Later Later
l),	u 1871	107			·!	 (\	- <u>C</u> /0/	-im92) 0728		12)	5	000
(NZ NZ	45-4	lest				()	40V) 80928				 						·+·	•	ž	2
l	Ľ -		Idne	05-3	sequ		PCB's	2808 \	səp	iolitee9 1808	<u>}</u>			 					<u>}</u>		\ -	25	- toto
	<u>></u> ;		anbn	ax -	sis F	(¢C	PO4,5C	³ 'NO ⁵	ON'	IO, I) snoinA				 	 	 			<u> </u>	100	•	20	-teap
	ΞŠ		alb	щ	naly				slei	9M 8 АЯЭЯ							_			ف		दु	d liw
1	╡┛		ч Ч	975	A			(нъ	l TC	o ANG) 0168										T	-	5-1-5-1	t tata
			uns h	45-3				(1.4()g p	EDB (Metho										á e		po	tractor
•			Hawk	05-3				(1.8	14 b	ortheM) H9T					 	 _				J	(3)	10-41
			901	el. 5		(ləs		12B (G	08 1	TPH Method	×	Х		 	 	 				S: Se	<	H.	Anve
			4	Ţ		(/lu	io seĐ)	HGT -	9E +	BTEX + MTI			<u> </u>	 		 				lea		1	sihilih.
		1				(BTEX + NE	\times	\boldsymbol{X}		 	 	 				P Re		L ,	is pos
Turn-Around Time:	🛱 Standard 🛛 Rush	Project Name:	Western Bist, Land Paim	Project #:		Project Manager:	Bill Robertson	Sampler: DENI HENEMAIN		Container Preservative Type and # Type	50il/2 1	70il/2 2								Received by:	Received by: W I I Date Time		ntracted to other accredited laboratories This serves as notice of th
in-of-Custody Record	stern Refining	Deb. dec.	ess: M CR 4990	OOMPield, NM	505-632-8006	#: ^	ige: □ Lèvel 4 (Full Validation)	D Other)e)	ne Matrix Sample Request ID	50 Soil Crude Cell	B Soit API Cell								F Section by:	Relinquished by:		sary, samples submitted to Hall Environmental may be subco
hai	Ne		Addr	2	#1 #1	r Fax	Packa dard	itatior AP	(Typ	Ц	14:11	1:4								Time:	Time:		f necess
S	Client:	5	Mailing		Phone	email o	QA/QC	Accred		Date	9-29-09	10-52-b				*				Date: 0509	Date:		

LOGISTICS

24

July 20, 2009

RECEIVED 2009 JUL 22 PM 1 47

Mr. Ed Hansen Hydrologist, Ground Water Remediations New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

CERTIFIED MAIL: 7006 0100 0002 9205 1676

RE: 2nd Quarter 2009, Sampling at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

Dear Mr. Hansen:

Please find enclosed the 2nd Quarter 2009, Sampling at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

Please contact Bruce Cauthen at (505) 632-4035 should you have any questions or need further information regarding this report.

Sincerely,

Druce Canth

Bruce Cauthen Environmental Engineer Western Refining, Logistics

Attachments Analytical Report

Cc: Allen Hains, Western Refining Bill Robertson, Western Refining File Lodestar Services, Incorporated PO Box 4465, Durango, CO 81302 Office (970) 946-1093

July 3, 2009

Mr. Bruce Cauthen Western Refining, Southwest 111 CR 4990 Bloomfield, NM 87413

RE: Second Quarter Sampling at Western Refining's Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Mr. Cauthen,

On June 17, 2009, Lodestar Services, Inc. collected second quarter samples from Western Refining's (Western's) Bisti Landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One crude cell sample and one API cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from three feet beneath native ground surface. Samples were placed in eight-ounce glass jars and stored on ice during shipping to Hall Environmental Analysis Laboratories (HEAL) in Albuquerque, NM. Strict chain-of-custody procedures were followed during shipping. HEAL analyzed the samples for the following constituents: chlorides, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and xylenes (BTEX).

Concentrations of BTEX and TPH were not detected in either sample. Chloride concentrations were 67 mg/kg in the API Cell sample and 5.4 mg/kg in the Crude Cell sample. The complete laboratory report is included for your review. Analytical results are shown on the attached table and can be compared to the original baseline data collected on March 27, 1998.

Should you have any questions or require additional information please do not hesitate to call me at (970) 946-1093.

Respectfully Submitted, Lodestar Services, Inc.

Ashley Ager

Cc. Mr. Bill Robertson, Western Refining File

	2007 Annual	2007 2nd Quarter	2007 3rd Quarter	2007 4th Quarter	2008 Annual	2008 2nd Quarter	2008 3rd Quarter	2008 4th Quarter	2009 Annual	2009 2nd Quarter
TPH (mg/kg)	nd	nd	nd	nd	31	nd	nd	nd	nd	nd
GRO	nd	nd	nd	nd	31	nd	nd	nd	nd	nd
DRO	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MRO	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BTEX (mg/kg)	nd	nd	nd	nd	0.686	nd	nd	nd	nd	nd
Benzene	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Toluene	nd	nd	nd	nd	0.064	nd	nd	nd	nd	nd
Ethyl-Benzene	nd	nd	nd	nd	0.082	nd	nd	nd	nd	nd
Xylenes	nd	nd	nd	nd	0.54	nd	nđ	nd	nd	nd
Metals (mg/kg)										
Arsenic	0.187				2.5				nd	
Barium	47.1				130				81	
Cadmium	nd				nd				nd	
Calcium	2690				7300				740	
Chromium	0.305				4.4				2.9	
Lead	0.477				4.1				3.5	
Magnesium	863				1800				830	
Potassium	729				1300				680	
Selenium	nd				nd				nd	
Silver	nd				nd				nd	
Sodium	66.2				150				3600	
Mercury	nd				nđ				nd	
Gen Chem										
Alkalinity (meq/l)	54.4				3500				1.9	
Bicarbonate (meq/l)	49.4				2900				1.9	
Carbonate (meq/l)	4.52				540				nd	
Sulfate (mg/kg)	81.7				nd				1600	
Chloride (mg/kg)	nd				660	180	37	68	4100	67

ι **/**

API Cell

Crude Cell	
------------	--

ι ι

	2007	2007	2007	2007	2008	2008	2008	2008	2000	2009	
	Annual	2nd	3rd	4th	Annual	2nd	3rd	4th	Annual	2nd	
	Annuar	Quarter	Quarter	Quarter	Annual	Quarter	Quarter	Quarter	Amuai	Quarter	
TPH (mg/kg)	nd	nd	nd	nd	nd	nd	nd	nd	520	nd	
GRO	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
DRO	nd	nd	nd	nd	nd	nd	nd	nd	250	nd	
MRO	nd	nd	nd	nd	nd	nd	nd	nd	270	nd	
BTEX (mg/kg)	nd	nd	nđ	nd	nd	nd	nd	nd	nd	nd	
Benzene	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Toluene	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Ethyl-Benzene	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Xylenes	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Metals (mg/kg)											
Arsenic	0.173				1.9				nd		
Barium	14.8				140				96		
Cadmium	nd		nd								
Calcium	3530				2800				4500		
Chromium	0.248				3.7				4		
Lead	0.479		3.8						5.3		
Magnesium	957		1200						1100		
Potassium	806		1100						640		
Selenium	nd				nd				nd		
Silver	nd				nd				nd		
Sodium	69.7				nd				nd		
Mercury (mg/kg)	nd				nd				nd		
Gen Chem											
Alkalinity (meq/l)	791				1200				1.8		
Bicarbonate (meq/l)	731				880				1.8		
Carbonate (meq/l)	56.3				280				nd		
Sulfate (mg/kg)	68				690				860		
Chloride (mg/kg)	nd				110	540	2.1	35	4.3	5.4	

COVER LETTER

Tuesday, June 30, 2009

Bruce Cauthen Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Bisti Landfarm

Dear Bruce Cauthen:

Order No.: 0906420

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 6/19/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

N N N N N N N N N N N N N N N N N N N	Hall	Envir	onmental	A	naly	sis .	La	bora	tory,	Inc.
---------------------------------------	------	-------	----------	---	------	-------	----	------	-------	------

Date: 30-Jun-09

CLIENT: Western Refining Southwest, Inc. Client Sample ID: API Cell Lab Order: 0906420 Collection Date: 6/17/2009 1:25:00 PM **Project:** Bisti Landfarm Date Received: 6/19/2009 Matrix: SOIL 0906420-01 Lab ID: ١. **D**O 1 . . .

Analyses	Result	PQL (lual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE ORGANICS		•		Analyst: SCC
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	6/27/2009
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	6/27/2009
Surr: DNOP	98.6	61.7-135	%REC	1	6/27/2009
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/26/2009 1:57:19 PM
Surr: BFB	78.9	58.8-123	%REC	1	6/26/2009 1:57:19 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	6/26/2009 1:57:19 PM
Toluene	ND	0.050	mg/Kg	1	6/26/2009 1:57:19 PM
Ethylbenzene -	ND	0.050	mg/Kg	1	6/26/2009 1:57:19 PM
Xylenes, Total	ND	0.10	mg/Kg	1	6/26/2009 1:57;19 PM
Surr: 4-Bromofluorobenzene	87.4	66.8-139	%REC	. 1	6/26/2009 1:57:19 PM
EPA METHOD 300.0: ANIONS					Analyst: RAGS
Chloride	67	3.0	mg/Kg	10	6/24/2009 3:52:22 AM
EPA METHOD 300.0: ANIONS Chloride	67	3.0	mg/Kg	10	Analyst: RA0 6/24/2009 3:52:22 AM

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

٠

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 2

CLIENT: Western Refining Southwest, Inc.		west, Inc.	Client Sample ID: Crude Cell					
Lab Order:	0906420			Collection Date	: 6/17/2009	1:38:00 PM		
Project:	Bisti Landfarm			Date Received.	6/19/2009			
Lab ID:	0906420-02			Matrix	SOIL			
Analyses		Result	PQL	Qual Units	DF	Date Analyzed		
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS				Analyst: SCC		
Diesel Range Or	ganics (DRO)	ND	10	mg/Kg	1	6/27/2009		
Motor Oil Range	Organics (MRO)	NÐ	50	mg/Kg	1	6/27/2009		
Surr: DNOP		98.8	61.7-135	%REC	1	6/27/2009		
EPA METHOD 8	015B: GASOLINE RANG	E				Analyst: NSB		
Gasoline Range	Organics (GRO)	ND	5.0	mg/Kg	1	6/26/2009 2:58:19 PM		
Surr: BFB		86.4	58.8-123	%REC	1	6/26/2009 2:58:19 PM		
EPA METHOD 8	021B: VOLATILES					Analyst: NSB		
Benzene		ND	0.050	mg/Kg	1	6/26/2009 2:58:19 PM		
Toluene		ND	0.050	mg/Kg	. 1.	6/26/2009 2:58:19 PM		
Ethylbenzene		ND	0.050	mg/Kg	1	6/26/2009 2:58:19 PM		
Xylenes, Total		ND	0.10	mg/Kg	1	6/26/2009 2:58:19 PM		
Surr: 4-Bromof	luorobenzene	99.1	66.8-139	%REC	1	6/26/2009 2:58:19 PM		
EPA METHOD 30	00.0: ANIONS					Analyst: RAGS		
Chloride		5.4	0.30	mg/Kg	1	6/25/2009 12:21:20 AM		

Hall Environmental Analysis Laboratory, Inc.

Date: 30-Jun-09

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

۰

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 2

i T .

QA/QC SUMMARY REPORT

Client:	Western Refi	ning South	west, Inc.							
Project:	Bisti Landfar	m .						W	ork Order	0906420
Analyte		Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: EPA Met	hod 300.0: Ani	ions	<u>-</u>	· ·						
Sample ID: MB-194	40		MBLK			Batch I	D: 19440	Analysis Da	ite: 6/23/	2009 5:08:13 PM
Chioride		ND	mg/Kg	0.30						
Sample ID: LCS-19	440		LCS			Batch II	D: 19440	Analysis Da	ite: 6/23/	2009 5:25:38 PM
Chloride		14.88	mg/Kg	0.30	99.2	90	110		· · · · · · · · · · · · · · · · · · ·	·
Method: EPA Met	hod 8015B: Di	esel Range	Organics							
Sample ID: MB-194	18		MBLK			Batch II	D: 19418	Analysis Da	ite:	6/23/2009
Diesel Range Organio	cs (DRO)	ND	mg/Kg	10						
Motor Oil Range Orga	anics (MRO)	ND	mg/Kg	50						
Sample ID: LCS-19	418		LCS	•		Batch II	D: 19418	Analysis Da	te:	6/23/2009
Diesel Range Organic	s (DRO)	45.81	mg/Kg	10	91.6	64.6	116			
Sample ID: LCSD-1	9418		LCSD			Batch II	D: 19418	Analysis Da	tė:	6/23/2009
Diesel Range Organic	cs (DRO)	41.27	mg/Kg	10	82.5	64.6	116	10.4	17.4	
Method: EPA Meti	hod 8015B: Ga	soline Ran	00							
Sample ID: MB-194	43		MBLK			Batch II): 19443	Analysis Da	te: 6/26/2	009 10:04:49 PM
Cenaline Bange Orga		ND	malka	50						•
Sample ID: 1 CS-19/		ND	LCS	5.0		Batch II)· 10443	Analysis Da	to: 6/28/	2009 8:02:57 PM
Sample ID. LOS-13-				r n	400	Daton IL	400	Analysis Da		2003 0.02.07 1 14
Gasoline Range Orga		26.39	mg/Kg	5.0	102	04.4	133	Amelysis De	6. 6.00 H	0000 8/99/00 DM
Sample ID: LUSD-1	8443		LCOD			Datch it	/ 18443	Analysis Da		2009 0.33.29 1911
Gasoline Range Orga	nics (GRO)	26.91	mg/Kg	5.0	104	69.5	120	1.95	11.6	······
Method: EPA Meti	nod 8021B: Vo	latiles								
Sample ID: MB-194	43		MBLK			Batch II): 19443	Analysis Da	te: 6/26/20	009 10:04:49 PM
Benzene		ND	mg/Kg	0.050						
Toluene		ND	mg/Kg	0.050						
Ethylbenzene		ND	mg/Kg	0.050						
Xylenes, Total		ND	mg/Kg	0.10						
Sample ID: LCS-194	43		LCS			Batch IE): 19443	Analysis Dai	te: 6/26/2	2009 9:03:56 PM
Benzene		1.146	mg/Kg	0.050	113	78.8	132			
Toluene		1.083	mg/Kg	0.050	107	78.9	112			
Ethylbenzene		1.044	mg/Kg	0.050	104	69.3	125			
Xylenes, Total		3.029	mg/Kg	0.10	101	73	128			
Sample ID: LCSD-19	9443		LCSD			Batch ID): 19443	Analysis Dat	te: 6/26/2	2009 9:34:23 PM
Benzene		1.140	mg/Kg	0.050	112	78.8	132	0.525	27	
Toluene		1.050	mg/Kg	0.050	103	78.9	112	3.04	19	
Ethylbenzene		1.020	mg/Kg	0.050	102	69.3	125	2.30	10	
Xylenes, Total		2.919	mg/Kg	0.10	97.3	73	128	3.72	13	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

Hall Environmental Analysis Laboratory, Inc.

	Sample Receipt Cl	necklist		
Client Name WESTERN REFINING SOUT		Date Recei	ved:	6/19/2009
Work Order Number 0906420		Received	by: TLS	57
Checklist completed by:	U C	Sample ID	labels checked by: 	Initials
Matrix: Carri	er name: <u>UPS</u>			
Shipping container/cooler in good condition?	Yes 🔽	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗆	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗋	No 🗔	N/A 🗹	
Chain of custody present?	Yes 🗹	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🖌	No 🗖		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗹	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌	•	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗔		
All samples received within holding time?	Yes 🗹	No 🗔		Number of preserved
Water - VOA vials have zero headspace? No VOA	vials submitted	Yes 🗍	No 🗔	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes 🗋	No 🗔	N/A 🗹	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	N/A 🔽	<2 >12 unless noted
Container/Temp Blank temperature?	2.4°	<6° C Accepta	ble	below.
COMMENTS:		If given sufficie	nt time to cool.	
Client contacted Date contac	ted:	Per	son contacted	
Contacted by: Regarding:			· · · · · · · · · · · · · · · · · · ·	
Comments:		·		
. · ·				
Corrective Action				
	· · · · · · · · · · · · · · · · · · ·			
 HALL ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 	BTEX <u>Lethics</u> (8021) BTEX <u>Lethics</u> (8021) BTEX <u>Lethics</u> (8021) BTEX + MTEE + TPH (Gas only) TPH (Method 8015B (Gas/Diesel) TPH (Method 504.1) BDB (Method 504.1) BCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) BS270 (PUH or PAH) BS270 (PUH or PAH) BS270 (Semi-VOA) CA OD (CA Iorides) BS270 (Semi-VOA) CA Iorides Anions (F Or N) BS270 (Semi-VOA)	V V V V V V V V V V V Remarks: S Please copy results to ALA® lodestar services.com	ce of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	
--	--	--	---	
Turn-Around Time: X Standard Rush Project Name: Bishi Landfarm Project #:	Project Manager: Ashley Ager Sampler: Ashley Ager Onto Sampt Finite and Sampt Preservative Type and # Type	4 br / 2 4 br / 2 2 de 2 2 de 2 Received brite Received b	intracted to other accredited laboratories. This serves as notice	
Client: Western Refining Bruce Cauthen Mailing Address: 111 CR 4990 Phone #: 505 632 8006	email or Fax#: QA/QC Package: X Standard	E-17-09 1325 Soil API Cell E-17-09 1338 Soil Crude Cell Date: Time: Relinquished by: Date: Time: Relinquished by: Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subox	

LOGISTICS

KECEIVED 2009 APR 23 AM 11 21

April 21, 2008

Ed Hansen Hydrologist, Ground Water Remediations New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Annual Sampling at Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010

Cert. Mail # 7006 0100 0002 9205 1294

Dear Mr. Hansen

Please find enclosed, Annual Sampling Report from Western Refining Southwest Inc. (Western's) Centralized Surface Waste Management Landfarm Facility NM-02-0010 (prepared by Lodestar Environmental Services).

Please call me if you should have any questions or require additional information.

Respectfully Submitted,

wice Com H

Bruce Cauthen Environmental Engineer Western Refining Southwest Inc. 111 County Road 4990 Bloomfield, NM 87413 Main: 505-632-4035

Attachments: Annual Sampling Report

CC: Brandon Powell NMOCD Ann Allen Allen Haines Bill Robertson WNR File Lodestar Services, Incorporated PO Box 4465, Durango, CO 81302 Office (970) 946-1093 RECEIVED

2009 APR 23 AM 11 21

and a second second

April 20, 2009

Mr. Bruce Cauthen Western Refining, Southwest 111 CR 4990 Bloomfield, NM 87413

RE: Annual Sampling at Western Refining's Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Mr. Cauthen,

On March 6, 2009, Lodestar Services, Inc. collected annual samples from Western Refining's (Western's) Bisti Landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One crude cell sample and one API cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from three feet beneath native ground surface. Samples were placed in eight-ounce glass jars and stored on ice during shipping to Hall Environmental Analysis Laboratories (HEAL) in Albuquerque, NM. Strict chain-of-custody procedures were followed during shipping. HEAL analyzed the samples for the following constituents:

- Total Petroleum Hydrorcarbons;
- Benzene, Toluene, Ethyl benzene, and Xylenes;
- Major Ions (Na, Ca, Mg, K, Cl-, SO₄, CO₃, and HCO₃); and
- RCRA Metals (As, Ba, Cd, Cr, Pb, Se, Ag, and Hg).

Analytical results are attached and can be compared to the original baseline data collected on March 27, 1998.

Should you have any questions or require additional information please do not hesitate to call me at (970) 946-1093.

Respectfully Submitted, Lodestar Services, Inc.

Ashley Ager

Cc. Mr. Bill Robertson, Western Refining File

API Cell									
	2007	2007 2nd	2007 3rd	2007 4th	2008	2008 2nd	2008 3rd	2008 4th	2009
	Annual	Quarter	Quarter	Quarter	Annual	Quarter	Quarter	Quarter	Annual
TPH (mg/kg)	nd	nd	nd	nd	31	nd	nd	nd	nd
GRO	nd	nd	nd	nd	31	nd	nd	nd	nd
DRO	nd	nd	nd	nd	nd	nd	nđ	nd	nd
MRO	nd	nd	nd	nd	nd	nd	nd	nd	nd
BTEX (mg/kg)	nd	nd	nd	nd	0.686	nd	nd	nd	nd
Benzene	nd	nd	nd	nd	nd	nd	nd	nd	nd
Toluene	nd	nd	nd	nd	0.064	nd	nd	nd	nd
Ethyl-Benzene	nd	nd	nd	nd	0.082	nd	nd	nd	nd
Xylenes	nd	nd	nd	nd	0.54	nd	nd	nd	nd
Metals (mg/kg)									
Arsenic	0.187				2.5				nd
Barium	47.1				130				81
Cadmium	nd				nd				nd
Calcium	2690				7300				740
Chromium	0.305				4.4				2.9
Lead	0.477				4.1				3.5
Magnesium	863				1800				830
Potassium	729				1300				680
Selenium	nd				nd				nd
Silver	nd				nd				nd
Sodium	66.2				150				3600
Mercury	nd				nd				nd
Gen Chem									
Alkalinity (meq/l)	54.4				3500				1.9
Bicarbonate (meq/l)	49.4				2900				1.9
Carbonate (meq/l)	4.52				540				nd
Sulfate (mg/kg)	81.7				nd				1600
Chloride (mg/kg)	nd				660	180	37	68	4100

· · ·

Crude Cell

· · · ·

	2007 Annual	2007 2nd Quarter	2007 3rd Quarter	2007 4th Quarter	2008 Annual	2008 2nd Quarter	2008 3rd Quarter	2008 4th Quarter	2009 Annual
TPH (mg/kg)	nd	nd	nd	nd	nd	nd	nd	nd	520
GRO	nd	nd	nd ·	nd	nd	nd	nd	nd	nd
DRO	nd	nd	nd	nd	nd	nd	nd	nd	250
MRO	nd	nd	nd	nd	nd	nd	nd	nd	270
BTEX (mg/kg)	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzene	nd	nd	nd	nd	nd	nd	nd	nd	nd
Toluene	nd	nd	nd	nd	nd	nd	nd	nd	nd
Ethyl-Benzene	nd	nd	nd	nd	nd	nd	nd	nd	nd
Xylenes	nd	nd	nd	nd	nd	nd	nd	nd	nd
Metals (mg/kg)									
Arsenic	0.173				1.9				nd
Barium	14.8				140				96
Cadmium	nd				nd				nd
Calcium	3530				2800				4500
Chromium	0.248				3.7				4
Lead	0.479				3.8				5.3
Magnesium	957				1200				1100
Potassium	806				1100				640
Selenium	nd				nd				nd
Silver	nd				nd				nd
Sodium	69.7				nd				nd
Mercury (mg/kg)	nd				nd				nd
Gen Chem									
Alkalinity (meq/l)	791				1200				1.8
Bicarbonate (meq/l)	731				880				1.8
Carbonate (meq/l)	56.3				280				nd
Sulfate (mg/kg)	68				690				860
Chloride (mg/kg)	nd				110	540	2.1	35	4.3

COVER LETTER

Monday, April 20, 2009

Bruce Cauthen Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Bisti Land Farm

Dear Bruce Cauthen:

Order No.: 0903159

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 3/11/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Lab Order:	0903159			Collection Dat	te: 3/6/2009	9:09:00 AM
Project:	Bisti Land Farm			Date Receive	d: 3/11/200	9
Lab ID:	0903159-01			Matri	x: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS				Analyst: SCC
Diesel Range C	Organics (DRO)	ND	10	mg/Kg	1	3/13/2009
Motor Oil Rang	e Organics (MRO)	ŇD	50	mg/Kg	1	3/13/2009
Surr: DNOP		95.5	61.7-135	%REC	1	3/13/2009
EPA METHOD	8015B: GASOLINE RAN	GE	:			Analyst: DAM
Gasoline Range	e Organics (GRO)	ND	5.0	mg/Kg	1	3/18/2009 9:25:57 PM
Surr: BFB	•	84.2	58.8-123	%REC	1	3/18/2009 9:25:57 PM
EPA METHOD	8021B: VOLATILES					Analyst: DAM
Benzene		ND	0.050	mg/Kg	1	3/18/2009 9:25:57 PM
Toluene		ND	0.050	mg/Kg	1	3/18/2009 9:25:57 PM
Ethylbenzene		ND	0.050	mg/Kg	1	3/18/2009 9:25:57 PM
Xylenes, Total		ND	0.10	mg/Kg	1	3/18/2009 9:25:57 PM
Surr: 4-Brom	ofiuorobenzene	89.2	66.8-139	%REC	1	3/18/2009 9:25:57 PM
EPA METHOD	300.0: ANIONS			. '	•	Analyst: IC
Chloride		4100	15	mg/Kg	50	3/18/2009 9:47:05 AM
Sulfate		1600	15	mg/Kg	10	3/16/2009 11:07:23 PM
EPA METHOD	7471: MERCURY					Analyst: SNV
Mercury		ND	0.033	mg/Kg	1	3/18/2009 2:12:51 PM
EPA METHOD	6010B: SOIL METALS					Analyst: TES
Arsenic		ND	13	. mg/Kg	5	3/13/2009 2:04:59 PM
Barium		81	0.50	mg/Kg	5	3/13/2009 2:04:59 PM
Cadmium		ND	0.50	mg/Kg	5	3/13/2009 2:04:59 PM
Calcium		740	130	mg/Kg	5.	3/13/2009 2:04:59 PM
Chromium		2.9	1.5	mg/Kg	5	3/13/2009 2:04:59 PM
Lead		3.5	1.3	mg/Kg	5	3/13/2009 2:04:59 PM
Magnesium		830.	130	mg/Kg	5	3/13/2009 2:04:59 PM
Potassium	2.4	680	250	mg/Kg	5	3/13/2009 2:04:59 PM
Selenium		ND	13	mg/Kg	5	3/13/2009 2:04:59 PM
Silver		ND	1.3	mg/Kg	5	3/13/2009 2:04:59 PM
Sodium		3600	130	mg/Kg	5	3/13/2009 2:04:59 PM

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

CLIENT:

Date: 20-Apr-09

Client Sample ID: GLF API Cell

Page 1 of 2

Lab Order:	0903159	·		Collection Dat	te: 3/6/2009	9:27:00 AM
Project:	Bisti Land Farm			Date Receive	d: 3/11/200	9
Lab ID:	0903159-02			Matri	ix: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS				Analyst: SCC
Diesel Range C	Organics (DRO)	250	10	mg/Kg	1	3/17/2009
Motor Oil Rang	e Organics (MRO)	270	50	mg/Kg	1	3/17/2009
Surr: DNOP	•	103	61.7-135	%REC	1	3/17/2009
EPA METHOD	8015B: GASOLINE RAN	NGE				Analyst: BDH
Gasoline Range	e Organics (GRO)	ND	5.0	mg/Kg	1	3/19/2009 1:32:09 PM
Surr: BFB		87.2	58.8-123	%REC	1	3/19/2009 1:32:09 PM
EPA METHOD	8021B: VOLATILES			,		Analyst: BDH
Benzene		ND	0.050	mg/Kg	1	3/19/2009 1:32:09 PM
Toluene		ND	0.050	mg/Kg	1	3/19/2009 1:32:09 PM
Ethylbenzene		ND	0.050	mg/Kg	1	3/19/2009 1:32:09 PM
Xylenes, Total		ND	0,10	mg/Kg	1	3/19/2009 1:32:09 PM
Surr: 4-Brom	ofluorobenzene	91.7	66.8-139	%REC	1	3/19/2009 1:32:09 PM
EPA METHOD	300.0: ANIONS					Analyst: RAGS
Chloride		4.3	0.30	mg/Kg	1	3/17/2009 12:34:27 AM
Sulfate		860	15	mg/Kg	10	3/17/2009 12:51:51 AM
EPA METHOD	7471: MERCURY	,				Analyst: SNV
Mercury		ND	0.033	mg/Kg	1	3/18/2009 2:17:36 PM
EPA METHOD	6010B: SOIL METALS					Analyst: TES
Arsenic		ND	12	mg/Kg	5	3/13/2009 2:13:19 PM
Barium		96	0.50	mg/Kg	5	3/13/2009 2:13:19 PM
Cadmium		ND	0.50	mg/Kg	5	3/13/2009 2:13:19 PM
Calcium		4500	120	mg/Kg	5	3/13/2009 2:13:19 PM
Chromium		4.0	1.5	mg/Kg	5	3/13/2009 2:13:19 PM
Lead		5.3	1.2	mg/Kg	5	3/13/2009 2:13:19 PM
Magnesium	Magneslum		120	mg/Kg	5	3/13/2009 2:13:19 PM
Potassium		640	250	mg/Kg	5	3/13/2009 2:13:19 PM
Selenium		ND	. 12	mg/Kg	5	3/13/2009 2:13:19 PM
Silver		ND	1.2	mg/Kg	5	3/13/2009 2:13:19 PM
Sodium		ND	120	ma/Ka	5	3/13/2009 2:13:19 PM

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

CLIENT:

Date: 20-Apr-09

Client Sample ID: GLF Crude Cell

Qualifiers: Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank ٠ Ε Estimated value H Holding times for preparation or analysis exceeded Analyte detected below quantitation limits MCL Maximum Contaminant Level J RL Reporting Limit

- Not Detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits

2

Page 2 of 2

LABORATORY ANALYTICAL REPORT

Client: Site Name:	Hall Environmental 0903159				•		Report D	ate: 04/20/09
Site Name: Lab ID: Client Sample II Matrix: Analyses AGRONOMIC PF Alkalinity, sat. paste Bicarbonate, sat. past Carbonate, sat. past	C09030605-001 GLF API Cell Soil		·····			(Collection D DateRecel	ved: 03/06/09 09:09
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
AGRONOMIC PRO	PERTIES	2 - E. J L L L L L L L.						
Alkalinity, sat. paste	,	1.90	meq/L		0.10		ASA10-3	04/02/09 09:13 / Iji
Bicarbonate, sat. pas	te	1.90	meq/L		0.10		ASA10-3	04/02/09 09:13 / ljl
Carbonate, sat. paste	· · ·	ND	meq/L	• .	0.10		ASA10-3	04/02/09 09:13 / lji
Lab ID:	C09030605-002					(Collection D	ate: 03/06/09 09:27
Client Sample ID: Matrix:	GLF Crude Cell Soil	, <u> </u>	· ·				DateRecely	/ed: 03/19/09
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By

AGRONOMIC PROPERTIES					
Alkalinity, sat. paste	1.80	meq/L	0.10	ASA10-3	04/02/09 09:13 [.] / Iji
Bicarbonate, sat. paste	1.80	med/L	0.10	ASA10-3	04/02/09 09:13 / Iji
Carbonate, sat. paste	ND	meq/L	0.10	ASA10-3	04/02/09 09:13 / lji

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 * Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

Client: Hall Environmental

Project: 0903159

Report Date: 04/20/09

Work Order: C09030605

Analyte	Result	Units	RL	%REC	Low Limiț	High Limit	RPD	RPDLimit	Quat
Method: ASA10-3			<u>، د مار د مار میلید میلید میلید و کرم میلید میلید</u>	*****				Bat	ch: 21860
Sample ID: MB-21860	Method Blank				Run: TTR-/	LK_090402A		04/02	2/09 09:13
Alkalinity, sat. paste	ND	meg/L	0,1					•	
Bicarbonate, sat. paste	ND	meq/L	0.1						
Carbonate, sat. paste	. ND	meq/L	0.1	*					

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

QA/QC SUMMARY REPORT

Project: Western Ker Bisti Land F	lining South arm	iwest, inc.					w	ork Order:	0903159
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: A	nions								
Sample ID: MB-18545		MBLK			Batch I	D: 18545	Analysis Dai	le: 3/16/2	.009 8:30:42 PM
Chloride	ND	mg/Kg	0.30						
Sulfate	ND	mg/Kg	1.5						
Sample ID: LCS-18545		LCS			Batch II	D: 18545	Analysis Dal	e: 3/16/2	009 8:48:07 PM
Chloride	15.53	mg/Kg	0.30	104	90	110			
Sulfate	31.68	mg/Kg	1.5	106	90	110			
Method: EPA Method 8015B: D	liesel Range	Organics							
Sample ID: MB-18519		MBLK			Batch II	D: 18519	Analysis Dat	e:	3/13/2009
Diesel Range Organics (DRO)	ND	mg/Kg	10						
Motor Oil Range Organics (MRO)	ND	mg/Kg	50						
Sample ID: LCS-18519		LCS			Batch II	D: 18519	Analysis Dat	e:	3/13/2009
Diesel Range Organics (DRO)	41.89	mg/Kg	10	83.8	64.6	116			
Sample ID: LCSD-18519		LCSD			Batch II	D: 18519	Analysis Dat	e:	3/13/2009
Diesel Range Organics (DRO)	45.77	mg/Kg	10	91.5	64.6	116	8.85	17.4	
Method: EPA Method 8015B: G	asoline Ran	ae			•				<u> </u>
Sample ID: MB-18517		MBLK			Batch II): 18517	Analysis Dat	e: 3/18/20	009 2:50:01 PM
Gasoline Range Organics (GRO)	ND	ma/Ka	5.0		•		-		
Sample ID: LCS-18517		LCS	0.0		Batch IC): 18517	Analysis Date	a: 3/18/20	009 4:51:37 PM
	28.46	malKa	50	100	64.4	133			
Sample ID: CSD-18517	20.40	LCSD	0.0	100	Batch II) 18517	Analysis Dat	e: 3/18/2/	009 5-22-08 PM
Gasoline Range Organics (GRO)	28 75	ma/Ka	5.0	110	69.5	120	1.01	11.6	700 0.22.00 T M
Mathad: EDA Mathad 8024D: V									
Sample ID: MB-18517	Diatites	MBLK			Batch IC): 18517	Analysis Date	∋: 3/18/2(009 2:50:01 PM
Benzene	ND	ma/Ka	0.050						
Toluene	ND	ma/Ka	0.050						
Ethylbenzene	ND	ma/Ka	0.050						
Xylenes, Total	ND	mg/Kg	0.10						
Sample ID: LCS-18517		LCS			Batch ID	: 18517	Analysis Date	e: 3/18/20	009 5:52:40 PM
Benzene	1.091	ma/Ka	0.050	108	78.8	132			
Toluene	1.063	mg/Kg	0.050	104	78.9	112			
Ethylbenzene	1.108	mg/Kg	0.050	111	69.3	125			
Kylenes, Total	3.296	mg/Kg	0.10	108	73	128			
Sample ID: LCSD-18517		LCSD			Batch ID	: 18517	Analysis Date) : 3/18/20	09 6:23:10 PM
3enzene	1.127	mg/Kg	0.050	112	78.8	132	3.23	27	
foluene	1.097	mg/Kg	0.050	108	78.9	112	3.06	19	
Ethylbenzene	1.173	mg/Kg	0.050	117	69.3	125	5.70	10	
(ylenes, Total	3.463	mg/Kg	0.10	113	73	128	4.95	13	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

QA/QC SUMMARY REPORT

Project: Bisti Lan	d Farm	iwest, Inc.					Wo	rk Order:	0903159
Analyte	Result	Units	PQL	%Rec	LowLimit H	lighLimit	%RPD F	RPDLimit G)ual
Method: EPA Method 7471:	Mercury							1	
Sample ID: 0903159-01BMSD)	MSD			Batch ID	18559	Analysis Date	: 3/18/20	09 2:16:00 PM
Mercury	0.1575	mg/Kg	0.033	91.3	75	125	1.74	20	
Sample ID: MB-18559		MBLK			Batch ID:	18559	Analysis Date	: 3/18/20	09 2:09:45 PM
Marcury	ND	ma/Ka	0.033						
Sample ID: LCS-18559		LCS			Batch ID:	18559	Analysis Date	: 3/18/200	09 2:11:18 PM
Marcuty	0 1619	ma/Ka	0.033	97 1	80	120			
Sample ID: 0903159-01BMS	011010	MS	0.000	••••	Batch ID:	18559	Analysis Date	: 3/18/200)9 2:14:26 PM
Mercuti/	0 1603	ma/Ka	0 033	02 7	75	125	· ···· , ··· · ···		
	0.1005	mging	0.000	02.1	10	120			
Method: EPA Method 60106	3: Soil Metals								
Sample ID: 0903159-01BMSD		MSD			Batch ID:	18523	Analysis Date	: 3/13/200	9 2:10:30 PM
Arsenic	24.98	mg/Kg	13	100	75	125	4.42	30	
Barium	105,2	mg/Kg	0.50	98.2	75	125	0.375	30 -	
Cadmium	23.77	mg/Kg	0.50	95.6	75	125	5.40	30	
Calcium	3193	mg/Kg	130	98.5	75	125	2.06	30	
Chromium	26.53	mg/Kg	1.5	95.2	75	125	4.75	30	
Lead	26.76	mg/Kg	1.3	93.5	75	125	4.82	30	
Magnesium	3438	mg/Kg	130	105	75	125	0.635	30	
Potassium	3345	mg/Kg	250	107	75	125	0.821	30	-4
Selenium	24.16	mg/Kg	13	97.1	75	125	17.4	30	
Silver	23.97	mg/Kg	1.3	96.4	75	125	1.46	30	
Sodium	6568	mg/Kg	130	118	75	125	0.186	30	
Sample ID: MB-18523		MBLK			Batch ID:	18523	Analysis Date:	3/13/2009	11:11:13 AM
Arsenic	ND	mg/Kg	2.5						
Sample ID: LCS-18523		LCS			Batch ID:	18523	Analysis Date:	3/13/2009	11:14:14 AM
Arsenic	21.55	ma/Ka	2.5	86.2	80	120			
Sample ID: 0903159-01BMS		MS			Batch ID:	18523	Analysis Date:	3/13/200	9 2:07:43 PM
Arsenic	26.11	mg/Kg	13	105	75	125			
Barium	105.6	mg/Kg	0.50	99.4	75	125			
Cadmium	25.09	mg/Kg	0.50	101	75	125			
Calcium	3259	mg/Kg	130	10 1	75	125			
Chromium	27.82	mg/Kg	1.5	100	75 ⁻	125			
_ead	28.08	mg/Kg	1.3	98.5	75	125			
Magnesium	3460	mg/Kg	130	105	75	125			
Potassium	3373	mg/Kg	250	108	75	125			
Selenium	20.29	mg/Kg	13	81.3	75	125			
Silver	24.32	mg/Kg	1.3	97.5	75	125			
Sodium	6580	ma/Ka	130	118	75	125			

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Receipt Checklist													
Client Name WESTERN REFINING SOUT	~			Date Receive		3/11/2009							
Work Order Number 0903159				Received by	: ARS		01						
Checklist completed by:	¥	,	3 Date	Sample ID la	abels checked	by:	Initials						
Matrix:	Carrier name:	<u>Grey</u>	/hound										
Shipping container/cooler in good condition?		Yes		No 🗌	Not Present								
Custody seals intact on shipping container/coole	ər?	Yes		No 🗋	Not Present		Not Shipped						
Custody seals intact on sample bottles?		Yes		No 🗔	N/A								
Chain of custody present?		Yes		No \Box									
Chain of custody signed when relinquished and	received?	Yes		No 🗍									
Chain of custody agrees with sample labels?		Yes		No 🗋									
Samples in proper container/bottle?		Yes		No 🗌									
Sample containers intact?		Yes	\checkmark	No 🗌									
Sufficient sample volume for indicated test?		Yes		No 🗔									
All samples received within holding time?		Yes		No 🗔									
Water - VOA vials have zero headspace?	No VOA vials subm	itted		Yes 🗌	No 🗌								
Water - Preservation labels on bottle and cap ma	atch?	Yes		No 🗔	N/A 🗹								
Water - pH acceptable upon receipt?		Yes		No 🗌	N/A 🗹								
Container/Temp Blank temperature?			1°	<6° C Acceptabl	<i>'</i> ө								
COMMENTS:				If given sufficient	time to cool.								
						= = :							
			ъ.										
Client contacted			Perso	on contacted	••••		· ···,_						
Contacted by:	Regarding:		• •										
Comments:													
	, <u> </u>						· · · · · · · · · · · · · · · · · · ·						
			-				<u></u>						

-

Hall Environmental Analysis Laboratory, Inc.

Corrective Action

7

	IRONMENTAL		lental.com rolle NM 87109	ng-345-4107	kequest			(N)	AO/ 10 Y	(AOV) 8081 Pesticic (AOV) 80828 7-im92) 728 7 م ا لا ا م ا ما لا 7 م ا ما لا	×	×						et st	tarszruices, rom
			www.riallenvironr 4901 Hawkins NF - Albliche	Tel. 505-345-3975 Fax !	Analysis	(Jes	10 265 2001/25	300 ^{2,} F 26 (G 4.1) 4.1) 4.1) (H) (1,2) (2,4) (2,4) (2,5) (3,1) (BTEX + MTB TPH Method EDB (Method 8310 (PNA o 8310 (PNA o 8310 (PNA o 8310 (PNA o	XX	XXXXX					Jarks: ~ 1	Place copy Ner	a la Colode
Time:	C Rush		Lind Farm			jer:	Cartues [(8021	Hun Ai al		Preservative Type Type Type Type Type Type Type Typ	× -	2 \hat{k}					Date Time Ren	15.10 x 1.15	Date
Turn-Around	X Standard	Project Name	S ist:	Project #:	-	Project Mana	Bruce	Sampler: 5	Sample telut	Container Type and #	3x toz	3x 4bz					Received by:		Received by:
of-Custody Record	a Refining	(arther	111 CR 4990	Sloomfreld NM 87415	632 4035		C Level 4 (Full Validation)	□ Other		Matrix Sample Request ID	soil GLF API cell	sail GLF Linde cell					telinquişhed by:	BTM.Or	telinquished by:
Chain-c	Client: Wester.	Bruce	Mailing Address:		Phone #: 505	email or Fax#:	QA/QC Package: 🕇 Standard	Accreditation	🗆 EDD (Type)	Date	3/6/09 0909	16/09 0917		 			pater Time: R	0010 10/01/0	Date: Time: R

April 14, 2008

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico, 87505

RE: Annual Sampling at Western Refining,'s (formerly Giant's) Centralized Surface Waste Management Landfarm Facility NM -02-0010

Dear Mr. Price,

On March 11, 2008, Lodestar Services, Inc. collected annual samples from Western Refining Company, L.P.'s (formerly Giant Industries Arizona, Inc.) landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One crude cell sample and one API cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from three feet beneath native ground surface. Each sample was placed in an eight ounce glass jar and stored on ice during shipping to Pinnacle Laboratories in Albuquerque, NM. Strict chain-of-custody procedures were followed. Pinnacle Laboratories analyzed the samples for the following constituents:

- Total Petroleum Hydrorcarbons;
- Benzene, Toluene, Ethyl benzene, and Xylenes;
- Major Ions (Na, Ca, Mg, K, Cl-, SO4, CO3, and HCO3); and
- RCRA Metals (As, Ba, Cd, Cr, Pb, Se, Ag, and Hg).

The analytical results are attached and can be compared to the original baseline data collected on March 27, 1998.

Should you have any questions or require additional information please do not hesitate to call me at (505) 632-4077.

N

2

Π

Respectfully Submitted, Western Refining, LP

ley L. Azer for Bill Robertson

Bill Robertson Safety, Environmental & Regulatory Manager

Cc. Mr. Dave Richards, Western Refining Company, L.P. Mr. Carlos Guerra, Western Refining Company, L.P. Ms. Ann Allen, Western Refining Company, L.P. File

Pinnacle Lab ID number 803045 April 02, 2008

LODESTAR 1588 CR 204 DURANGO co 81302

Project Name LANDFARM **Project Number** (NONE)

ASHLEY AGER Attention:

3/13/2008 Pinnacle Laboratories Inc., (ADHS License No. AZ0643), received a On request to analyze non-aq samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

EPA Methods 8021 and 8015 analyses were performed by Pinnacle Laboratories, Inc. (PLI).

All remaining analyses were performed by TestAmerica Laboratories, Inc. (TA), Pensacola, FL.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

H. Mitchell Rubenstein, Ph.D. General Manager, Pinnacle Laboratories, Inc.

MR: jt

Enclosure

CLIENT	LODESTAR	PINNACLE ID	: 803045
PROJECT #	: (NONE)	DATE RECEIVED	: 3/13/2008
PROJECT NAME	: LANDFARM	REPORT DATE	: 4/2/2008
PINNACLE			DATE
ID #	CLIENT DESCRIPTION	MATRIX	COLLECTED
803045 - 01	LANDFARM API CELL	NON-AQ	3/11/2008
803045 - 02	LANDFARM CRUDE CELL	NON-AQ	3/11/2008

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

2

GAS CHROMATOGRAPHY RESULTS

5
OR

CHEMIST NOTES: N/A

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY RESULTS METHOD BLANK

TEST	: EPA 8021B / 8015B GRO		PINNACLE I.D.	: 803045
BLANK I.D.	: 031708B		DATE EXTRACTED	: 03/17/08
CLIENT	: LODESTAR		DATE ANALYZED	: 03/17/08
PROJECT #	: (NONE)		SAMPLE MATRIX	: NON-AQ
PROJECT NAME	: LANDFARM		ANALYST	: ARM
PARAMETER		UNITS		
FUEL HYDROCARBONS		MG/KG	<10	
HYDROCARBON RANGE			C6-C10	
HYDROCARBONS QUANTI	TATED USING		GASOLINE	
BENZENE		MG/KG	<0.025	
TOLUENE		MG/KG	<0.025	
ETHYLBENZENE		MG/KG	<0.025	
TOTAL XYLENES		MG/KG	<0.10	
SURROGATE:				
BROMOFLUOROBENZENE	(%)		103	
SURROGATE LIMITS	(80 - 120)			

CHEMIST NOTES: N/A

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

TEST BATCH ID CLIENT PROJECT # PROJECT NAME	: EPA 8021B : 031708B : LODESTAR : (NONE) : LANDFARM				PINNACLE I.D DATE EXTRAG DATE ANALYZ SAMPLE MAT UNITS	CTED ÆD RIX		803045 03/17/08 03/17/08 NON-AQ MG/KG	
PARAMETER	SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD	REC LIMITS	RPD LIMITS
BENZENE	<0.025	1.00	0.964	96	1.00	100	4	(68 - 120)	20
TOLUENE	<0.025	1.00	0.952	95	0.988	99	4	(64 - 120)	20
ETHYLBENZENE	<0.025	1.00	0.940	94 .	0.980	98	4	(49 - 127)	20
TOTAL XYLENES	<0.10	3.00	2.89	96	2.95	98	2	(58 - 120)	20

CHEMIST NOTES: N/A

% Recovery =

(Spike Sample Result - Sample Result)

--- X 100

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

----- X 100

		GAS CHF	ROMATOGRAI LCS	PHY QUAL /LCSD	ÎTY CONTROL	<u>.</u>	• . •		
· · ·	TEST: EPA 801BATCH ID031708ECLIENTLODESTPROJECT #(NONE)PROJECT NAMELANDFA	ISB GRO FAR			PINNACLE DATE EXTR DATE ANAL SAMPLE M/ UNITS	I.D. ACTED YZED ATRIX	:	803045 03/17/08 03/17/08 NON-AQ MG/KG	
	BLAN PARAMETER RESU	IK CONC	SPIKED SAMPLE	% REC	DUP. SPIKE	DUP % REC	RPD	REC	RPD LIMITS
	FUEL HYDROCARBONS <10 HYDROCARBON RANGE HYDROCARBONS QUANTITATED US	50.0 C6-C10 BING GASOLINE	54.9	110	49.6	99	10	(70 - 130)	20
	CHEMIST NOTES: N/A		•						
	(Spike Sample Result % Recovery =Spike Conce	t - Sample Resul 	t) X 100	•					
	RPD (Relative Percent Difference) =	(Sample Result	- Duplicate Re	sult)	X 100				
		Averag	e Result		~~ ~ 100				

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

TEST SAMPLE ID CLIENT PROJECT # PROJECT NAME	: EPA 8021B : 803045-01 : LODESTAR : (NONE) : LANDFARM				PINNACLE DATE EXTR DATE ANAL SAMPLE M/ UNITS	.D. ACTED YZED ATRIX	:	803045 03/17/08 03/17/08 NON-AQ MG/KG	
PARAMETER	SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD	REC LIMITS	RPD LIMITS
BENZENE	<0.025	1.00	0.958	96	0.885	89	8	(68 - 120)	20
TOLUENE	0.064	1.00	0.935	87	0.879	82	6	(64 - 120)	20
ETHYLBENZENE	0.082	1.00	0.928	85	0.876	79	6	(49 - 127)	20
TOTAL XYLENES	0.542	3.00	2.81	76	2.66	71	5	(58 - 120)	20

CHEMIST NOTES:

% Recovery =

N/A

(Spike Sample Result - Sample Result)

---- X 100

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

----- X 100

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

TEST : EPA 801	5B GRO			PINNACLE	I.D.	:	803045	
SAMPLE ID 803045-0)1			DATE EXTR	RACTED	:	03/17/08	
CLIENT LODEST	AR			DATE ANAL	YZED	:	03/17/08	
PROJECT # (NONE)				SAMPLE M	ATRIX	:	NON-AQ	÷
PROJECT NAME LANDFA	RM			UNITS		:	MG/KG	
SAMPI	E CONC	SPIKED	%	DUP	DUP		REC	RPD
PARAMETER RESUL	T SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
FUEL HYDRÖCARBONS 30.9	50.0	48.0	34 M4	49.5	37 M4	3 ·	(70 - 130)	20
HYDROCARBON RANGE	C6-C10							
HYDROCARBONS QUANTITATED US	ING GASOLINE							

CHEMIST NOTES:

M4 = %REC is outside of PLI criteria.

(Spike Sample Result - Sample Result) - X 100 % Recovery = Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = - X 100 Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY RESULTS

TEST		: EPA 8015 MC	DIFIED (DIR	ECT INJECT)		
CLIENT		LODESTAR				PINNACLE I.D.	: 803045
PROJECT #		: (NONE)				ANALYST	: STH
PROJECT N	IAME	LANDFARM					
SAMPLE				DATE	DATE	DATE	DIL.
ID. #	CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
01	LANDFARM API CELL		NON-AQ	3/11/2008	3/18/2008	3/19/2008	1
02	LANDFARM CRUDE CE	LL	NON-AQ	3/11/2008	3/18/2008	3/19/2008	1
PARAMETE	R	DET. LIMIT	U	NITS	LANDFARM API CELL	LANDFARM CRUDE	
FUEL HYDR	OCARBONS, C10-C22	10	MG	S/KG	< 10	< 10	
FUEL HYDR	OCARBONS, C22-C36	10	MG	6/KG	< 10	< 10	
SURRÒGAT O-TERPHEN SURROGAT	E: NYL (%) E LIMITS	(70-130)			94	95	

CHEMIST NOTES: N/A

GAS CHROMATOGRAPHY RESULTS METHOD BLANK

: EPA 8015 MODIFIED (DI : 031808FS : LODESTAR	RECT INJECT)	PINNACLE I.D. DATE EXTRACTE DATE ANALYZED	: 803045 D : 3/18/2008 : 3/19/2008
: (NONE)		SAMPLE MATRIX	: NON-AQ
: LANDFARM		ANALYST	: STH
	UNITS		
10-C22	MG/KG	< 10	
22-C36	MG/KG	< 10	
(70-130)		97	
	: EPA 8015 MODIFIED (DI : 031808FS : LODESTAR : (NONE) : LANDFARM 10-C22 22-C36 (70-130)	: EPA 8015 MODIFIED (DIRECT INJECT) : 031808FS : LODESTAR : (NONE) : LANDFARM UNITS 10-C22 MG/KG 22-C36 MG/KG	: EPA 8015 MODIFIED (DIRECT INJECT) PINNACLE I.D. : 031808FS DATE EXTRACTE : LODESTAR DATE ANALYZED : (NONE) SAMPLE MATRIX : LANDFARM ANALYST UNITS 10-C22 MG/KG < 10 22-C36 MG/KG < 10 97 (70-130)

. - .

CHEMIST NOTES: N/A

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

TEST BATCH ID CLIENT PROJECT # PROJECT NAME	: EPA 8015 MC : 031808FS : LODESTAR : (NONE) : LANDFARM	ODIFIED (DIF	RECT INJECT)		PINNACLE I. DATE EXTR/ DATE ANAL SAMPLE MA UNITS	D. ACTED /ZED TRIX	· · · · · · · · · · · · · · · · · · ·	803045 3/18/2008 3/19/2008 NON-AQ MG/KG	
PARAMETER	BLANK RESULT	CONC	SPIKED BLANK	% REC	DUP SPIKE	DUP % REC	RPD	REC	RPD LIMITS
FUEL HYDROCARBONS HYDROCARBON RANGE	<10	200 C10-C32	193	97	194	97	0	(75-125)	20

-- X 100

HYDROCARBONS QUANTITATED USING DIESEL FUEL

CHEMIST NOTES: N/A

> (Spike Sample Result - Sample Result) ----- X 100

% Recovery =

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

TEST SAMPLE ID CLIENT PROJECT # PROJECT NAME	: EPA 8015 M : 803045-01 : LODESTAR : (NONE)	ODIFIED (DI	RECT INJECT	-)	PINNACLE DATE EXTR DATE ANAL SAMPLE MA	I.D. RACTED YZED ATRIX		803045 3/18/2008 3/19/2008 NON-AQ MG/KG	
	SAMPLE	CONC	SPIKED	%	DUP	DUP	• • • • • •	REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
FUEL HYDROCARBONS	<10	200	188	94	189	94	1	(70-130)	20
HYDROCARBON RANGE		C10-C32							

--- X 100

HYDROCARBONS QUANTITATED USING DIESEL FUEL

CHEMIST NOTES: N/A

% Recovery =

(Spike Sample Result - Sample Result)

----- X 100

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

ANALYTICAL REPORT

Job Number: 400-29326-1

Job Description: 803045

For:

Pinnacle Laboratories 2709-D Pan American Freeway Northeast Albuquerque, NM 87107 Attention: Francine Torivio

Marty Edwards Project Manager I marty.edwards@testamericainc.com 04/01/2008

The test results in this report meet all NELAP requirements for accredited parameters and relate only to the referenced samples. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval from the laboratory.

TestAmerica Pensacola Certifications and Approvals: Alabama (40150), Arizona (AZ0710), Arkansas (88-0689), California (2510), Florida (E81010), Illinois (200041), Iowa (367), Kansas (E-10253), Kentucky UST (53), Louisiana (30748), Maryland (233), Massachusetts (M-FL094), Michigan (9912), New Hampshire (250507), New Jersey (FL006), New York (11503), North Carolina (314), North Dakota (R-108), Oklahoma (9810), Pennsylvania (68-00467), South Carolina (96026), Tennessee (TN02907), Texas (T104704286-08-TX), Virginia (00008), Washington (C2043), West Virginia (136), USDA Foreign Soil Permit (P330-08-00006).

TestAmerica Laboratories, Inc. TestAmerica Pensacola 3355 McLemore Drive, Pensacola, FL 32514 Tel (850) 474-1001 Fax (850) 478-2671 www.testamericainc.com

Page 1 of 20

METHOD SUMMARY

Client: Pinnacle Laboratories

Job Number: 400-29326-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Inductively Coupled Plasma - Atomic Emission Spectrometry	TAL PEN	SW846 6010B	
Acid Digestion of Sediments, Sludges, and Soils	TAL PEN		SW846 3050B
Mercury	TAL PEN	SW846 7471A	
Mercury in Solid or Semi-Solid Waste (Manual Cold	TAL PEN		SW846 7471A
Sulfate (Turbidimetric)	TAL PEN	SW846 9038	
Deionized Water Leaching Procedure (Routine)	TAL PEN		ASTM DI Leach
Chloride (Colormetric, Automated Ferricyanide)	TAL PEN	SW846 9251	
Deionized Water Leaching Procedure (Routine)	TAL PEN		ASTM DI Leach
Alkalinity, Titration Method	TAL PEN	SM18 SM 2320	3
Deionized Water Leaching Procedure (Routine)	TAL PEN		ASTM DI Leach

Lab References:

TAL PEN = TestAmerica Pensacola

Method References:

ASTM = ASTM International

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

14

METHOD / ANALYST SUMMARY

Client: Pinnacle Laboratories

Job Number: 400-29326-1

ID

TestAmerica Pensacola

Page 3 of 20

15

SAMPLE SUMMARY

Client: Pinnacle Laboratories

Job Number: 400-29326-1

-

. p.

2

;

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
400-29326-1	LANDFORM API CELL/ 803045-01	Solid	03/11/2008 1120	03/18/2008 1007
400-29326-2	LANDFORM CRUDE CELL/ 803045-02	Solid	03/11/2008 1125	03/18/2008 1007

TestAmerica Pensacola

SAMPLE RESULTS

TestAmerica Pensacola

Page 5 of 20

17

Analytical Data

Job Number: 400-29326-1

Client: Pinnacle Laboratories

Client Sample ID:	LANDFO	RM API CELL/ 803045-0	1			
Lab Sample ID: Client Matrix:	400-2932 Solid	26-1	% Moisture:	6.3	Date Sampled: Date Received:	03/11/2008 1120 03/18/2008 1007
		6010B Inductively	/ Coupled Plasma -	Atomic Em	ission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/20/2008 03/19/2008	Anal Prep 1816 1610	ysis Batch: 400-662 Batch: 400-66137	39	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP-AES N/A 1.22 g 100 mL
Analyte		DryWt Corrected: Y	Result (mg/K	(g)	Qualifier	RL
Arsenic		ternen men en en gine hjeller et de en	2.5			0.44
Barium			130			0.88
Cadmium			<0.44			0.44
Calcium			7300		•	44
Chromium			4.4			0.44
Lead			4.1			0.44
Magnesium			1800			44
Potassium			1300			88
Selenium			<0.88			0.88
Silver			<0.44			0.44
Soulum			7471A Mor			88
				cury	•	
Method:	7471A	Analy	ysis Batch: 400-6644	44	Instrument ID:	PE FLOW
Preparation:	7471A	Prep	Batch: 400-66380		Lab File ID:	N/A
Dilution:	1.0				Initial Weight/Volume:	.6430 g
Date Analyzed:	03/25/2008	0834			Final Weight/Volume:	25 mL
Date Prepared:	03/24/2008	0955				
Analyte		DryWt Corrected: Y	Result (mg/K	g)	Qualifier	RL
Mercury		***************************************	<0.0083			0.0083

...

Analytical Data

Job Number: 400-29326-1

Client Sample ID:	LANDFO	RM CRUDE CELL/ 80304	5-02		
Lab Sample ID: Client Matrix:	400-2933 Solid	26-2	% Moisture: 4.7	Date Sampled: Date Received:	03/11/2008 1125 03/18/2008 1007
		6010B Inductively	Coupled Plasma - Atomic	Emission Spectrometry	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/20/2008 03/19/2008	Analy: Prep I 1840 1610	sis Batch: 400-66239 Batch: 400-66137	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP-AES N/A 1.09 g 100 mL
Analyte		DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver Sodium			1.9 140 <0.48 2800 3.7 3.8 1200 1100 <0.96 <0.48 <96		0.48 0.96 0.48 48 0.48 0.48 48 96 0.96 0.48 96
			7471A Mercury		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 03/25/2008 03/24/2008	Analys Prep E 0835 0955	sis Batch: 400-66444 3atch: 400-66380	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	PE FLOW N/A .6182 g 25 mL
Analyte		DryWt Corrected: Y	Result (mg/Kg)	Qualifier	RL
Mercury	······	**************************************	<0.0085		0.0085

TestAmerica Pensacola

Client: Pinnacle Laboratories

19

-
Analytical Data

1

.

- ----

Client: Pinnacle Laboratories

Job Number: 400-29326-1

		Gen	eral Che	mistry				
Client Sample ID:	LANDFORM API CE	LL/ 803045-01						
Lab Sample ID: Client Matrix:	400-29326-1 Solid					Date Sampled: Date Received:	03/11. 03/18	/2008 1120 /2008 1007
Analyte	Res	ult Qual	Units			RL	Dil	Method
Alkalinity, Total	350 Anly Batch: 400-66547	0 7 Date Anal	mg/Kg lyzed	03/25/2008	1615	20	1.0 DryW	SM 2320B t Corrected: N
Bicarbonate Alkalinity a	as CaCO3 290 Anly Batch: 400-66547	0 7 Date Anal	mg/Kg yzed	03/25/2008	1615	20	1.0 DryW	SM 2320B t Corrected: N
Carbonate Alkalinity as	CaCO3 540 Anly Batch: 400-86547	7 Date Anal	mg/Kg yzeđ	03/25/2008	1615	20	1.0 DryW	SM 2320B t Corrected: N
Sulfate	<10 Anly Batch: 400-66767	0 7 Date Anal	mg/Kg yzed	03/28/2008	1230	100	1.0 DryWi	9038 Corrected: N
Chloride	660 Anly Batch: 400- 66 764	Date Anal	mg/Kg yzed	03/28/2008	1223	40	1.0 DryWi	9251 Corrected: N
Percent Solids	94 Anly Batch: 400-66080) Date Anal	% yzed	03/18/2008	0000	0.10	1.0	PercentMoisture
Client Sample ID:	LANDFORM CRUDE	CELL/ 803045-02						
Lab Sample ID: Client Matrix:	400-29326-2 Solid					Date Sampled: Date Received:	03/11/ 03/18/	/2008 1125 /2008 1007
Analyte	Res	ult Qual	Units			RL.	Dil	Method
Alkalinity, Total	1200 Anly Batch: 400-66547	0 7 Date Anal	mg/Kg yzed	03/25/2008	1615	20	1.0 DryWi	SM 2320B Corrected: N
Bicarbonate Alkalinity a	s CaCO3 880 Anly Batch: 400-66547	Z Date Anal	mg/Kg yzed	03/25/2008	1615	20	1.0 DryWi	SM 2320B Corrected: N
Carbonate Alkalinity as	CaCO3 280 Anly Batch: 400-66547	Date Anal	mg/Kg yzed	03/25/2008	1615	20	1.0 DryWi	SM 2320B Corrected: N
Sulfate	690 Anly Batch: 400-66767	Date Anal	mg/Kg yzed	03/28/2008	1231	100	1.0 Dry₩t	9038 Corrected: N
Chloride	110 Anly Batch: 400-66764	Date Anal	mg/Kg yzed	03/28/2008	1223	40	1.0 DryWt	9251 Corrected: N
Percent Solids	95 Anly Batch: 400-66080	Date Anal	% yzed	03/18/2008	0000	0.10	1.0	PercentMoisture

QUALITY CONTROL RESULTS

TestAmerica Pensacola

Client: Pinnacle Laboratories

Job Number: 400-29326-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 400-66137			a 1994 - Tanan ang kanang ang kang ang tang ang tang ang tang ang tang ang tang t		
LCS 400-66137/19-A	Lab Control Spike	т	Solid	3050B	
MB 400-66137/18-A	Method Blank	т	Solid	3050B	
400-29326-1	LANDFORM API CELL/ 803045-01	Т	Solid	3050B	
400-29326-1MS	Matrix Spike	Т	Solid	3050B	
400-29326-1MSD	Matrix Spike Duplicate	т	Solid	3050B	
400-29326-2	LANDFORM CRUDE CELL/	т	Solid	3050B	
Analysis Batch:400-66239)				
LCS 400-66137/19-A	Lab Control Spike	т	Solid	6010B	400-66137
MB 400-66137/18-A	Method Blank	т	Solid	6010B	400-66137
400-29326-1	LANDFORM API CELL/ 803045-01	т	Solid	6010B	400-66137
400-29326-1MS	Matrix Spike	т	Solid	6010B	400-66137
400-29326-1MSD	Matrix Spike Duplicate	Т	Solid	6010B	400-66137
400-29326-2	LANDFORM CRUDE CELL/	Т	Solid	6010B	400-66137
Prep Batch: 400-66380					
LCS 400-66380/15-A	Lab Control Spike	т	Solid	7471A	
MB 400-66380/14-A	Method Blank	т	Solid	7471A	
400-29326-1	LANDFORM API CELL/ 803045-01	т	Solid	7471A	
400-29326-2	LANDFORM CRUDE CELL/	т	Solid	7471A	
400-29326-2MS	Matrix Spike	т	Solid	7471A	
400-29326-2MSD	Matrix Spike Duplicate	т	Solid	7471A	
Analysis Batch: 400-66444	k i i i i i i i i i i i i i i i i i i i				
LCS 400-66380/15-A	Lab Control Spike	т	Solid	7471A	400-66380
MB 400-66380/14-A	Method Blank	Т	Solid	7471A	400-66380
400-29326-1	LANDFORM API CELL/ 803045-01	т	Solid	7471A	400-66380
400-29326-2	LANDFORM CRUDE CELL/	т	Solid	7471A	400-66380
400-29326-2MS	Matrix Spike	т	Solid	7471A	400-66380
400-29326-2MSD	Matrix Spike Duplicate	т	Solid	7471A	400-66380

Report Basis

T = Total

:

Client: Pinnacle Laboratories

Job Number: 400-29326-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch: 400-66080				1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
400-29326-1	LANDFORM API CELL/ 803045-01	Т	Solid	PercentMoisture	
400-29326-2	LANDFORM CRUDE CELL/	т	Solid	PercentMoisture	
Prep Batch: 400-66490					
MB 400-66490/1-A	Method Blank	S	Solid	DI Leach	
400-29326-1	LANDFORM API CELL/ 803045-01	Т	Solid	DI Leach	
400-29326-1DU	Duplicate	т	Solid	DI Leach	
400-29326-2	LANDFORM CRUDE CELL/	Т	Solid	DI Leach	
Analysis Batch:400-66547					
MB 400-66490/1-A	Method Blank	S	Solid	SM 2320B	
LCS 400-66547/5	Lab Control Spike	Т	Water	SM 2320B	
400-29326-1	LANDFORM API CELL/ 803045-01	Т	Solid	SM 2320B	
400-29326-1DU	Duplicate	т	Salid	SM 2320B	
400-29326-2	LANDFORM CRUDE CELL/	T	Solid	SM 2320B	
Prep Batch: 400-66763					
LCS 400-66763/2-A	Lab Control Spike	S	Solid	DI Leach	
LCS 400-66763/3-A	Lab Control Spike	S	Solid	DI Leach	
MB 400-66763/1-A	Method Blank	S	Solid	DI Leach	
400-29326-1	LANDFORM API CELL/ 803045-01	т	Solid	DI Leach	
400-29326-1MS	Matrix Spike	Т	Solid	DI Leach	
400-29326-1MSD	Matrix Spike Duplicate	Т	Solid	DI Leach	
400-29326-2	LANDFORM CRUDE CELL/	Т	Solid	DI Leach	
Analysis Batch:400-66764			,		
LCS 400-66763/2-A	Lab Control Spike	S	Solid	9251	
MB 400-66763/1-A	Method Blank	S	Solid	9251	
400-29326-1	LANDFORM API CELL/ 803045-01	Т	Solid	9251	
400-29326-1MS	Matrix Spike	т	Solid	9251	
400-29326-1MSD	Matrix Spike Duplicate	т	Solid	9251	
400-29326-2	LANDFORM CRUDE CELL/	т	Solid	9251	
Analysis Batch:400-66767					
LCS 400-66763/3-A	Lab Control Spike	S	Solid	9038	
MB 400-66763/1-A	Method Blank	S	Solid	9038	
400-29326-1	LANDFORM API CELL/ 803045-01	т	Salid	9038	
400-29326-1MS	Matrix Spike	т	Solid	9038	
400-29326-1MSD	Matrix Spike Duplicate	Т	Solid	9038	
400-29326-2	LANDFORM CRUDE CELL/	Т	Solid	9038	

Report Basis

S = Soluble

T = Total

TestAmerica Pensacola

~

Job Number: 400-29326-1

Client: Pinnacle Laboratories

Method Blank - Batch: 400-66137

Lab Sample ID: MB 400-66137/18-A

Solid

1.0

Date Analyzed: 03/20/2008 1754

Date Prepared: 03/19/2008 1610

Client Matrix:

Dilution:

Analysis Batch: 400-66239 Prep Batch: 400-66137 Units: mg/Kg

Method: 6010B Preparation: 3050B

Instrument ID: ICP-AES Lab File ID: N/A Initial Weight/Volume: 1 g Final Weight/Volume: 100 mL

Analyte	Result	Qual	RL
Arsenic	<0.50		0.50
Barium	<1.0		1.0
Cadmium	<0.50		0.50
Calcium	<50		50
Chromium	<0.50		0.50
Lead	<0.50		0.50
Magnesium	<50		50
Potassium	<100		100
Selenium	<1.0		1.0
Silver	<0.50		0.50
Sodium	<100		100

Lab Control Spike - Batch: 400-66137

Method: 6010B Preparation: 3050B

Lab Sample ID:	LCS 400-66137/19-A	Analysis Batch: 400-66239	Instrument ID: ICP-AES
Client Matrix:	Solid	Prep Batch: 400-66137	Lab File ID: N/A
Dilution:	1.0	Units: mg/Kg	Initial Weight/Volume: 1.03 g
Date Analyzed:	03/20/2008 1759		Final Weight/Volume: 100 mL
Date Prepared:	03/19/2008 1610		

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Arsenic	347	334	96	80 - 120	·····
Barium	555	558	100	82 - 118	
Cadmium	162	151	93	82 - 119	
Calcium	4500	4540	101	79 - 121	
Chromium	168	163	97	79 - 121	
Lead	258	249	96	81 - 119	
Magnesium	3880	4180	108	77 - 123	
Potassium	3310	4150	125	71 - 129	
Selenium	265	253	95	76 - 124	
Silver	168	173	103	61 - 139	
Sodium	1530	1700	111	56 - 144	

Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Pensacola

Client: Pinnacle Laboratories

Job Number: 400-29326-1

4 -- - ------

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 400-66137

Method: 6010B Preparation: 3050B

MS Lab Sample ID:	400-29326-1	Analysis Batch: 400-66239	Instrument ID: ICP-AES
Client Matrix:	Solid	Prep Batch: 400-66137	Lab File ID: N/A
Dilution:	1.0		Initial Weight/Volume: 1.22 g
Date Analyzed:	03/20/2008 1825		Final Weight/Volume: 100 mL
Date Prepared:	03/19/2008 1610		-
MSD Lab Sample ID:	400-29326-1	Analysis Batch: 400-66239	Instrument ID: ICP-AES
Client Matrix:	Solid	Prep Batch: 400-66137	Lab File ID: N/A
Dilution:	1.0		Initial Weight/Volume: 1.09 g
Date Analyzed:	03/20/2008 1830		Final Weight/Volume: 100 mL
Date Prepared:	03/19/2008 1610		-

	<u>% I</u>	<u> Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Arsenic	96 ·	98	75 - 125	13	20	***********	
Barium	182	54	75 - 125	45	20	F	F
Cadmium	96	98	75 - 125	14	20		
Calcium	-172	-205	75 - 125	9	20	4	4
Chromium	97	100	75 - 125	13	20		
Lead	97	99	75 - 125	13	20		
Magnesium	114	113	75 - 125	4	20		
Potassium	159	162	75 - 125	7	20	F	F
Selenium	92	95	75 - 125	15	20		
Silver	100	101	75 - 125	12	20		
Sodium	113	114	75 - 125	10	20		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Job Number: 400-29326-1

.

.: ::

÷

....

-

.

···· [- ··· ·····

Method Blank -	- Batch	1: 400-66380					Method: 7471A Preparation: 7471A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 40 Solid 1.0 03/25/ 03/24/	00-66380/14-A 2008 0827 2008 0955	Analys Prep I Units:	sis Batch: 4 Batch: 400- mg/Kg	400-66444 66380		Instrument ID: PE FLC Lab File ID: N/A Initial Welght/Volume: Final Weight/Volume:	.6000 g 25 mL
Analyte				Result		Qual		RL
Mercury				<0.008	33			0.0083
Lab Control Sp	ike - B	atch: 400-66380					Method: 7471A Preparation: 7471A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 4 Solid 5.0 03/25/ 03/24/	00-66380/15-A 2008 0828 2008 0955	Analys Prep E Units:	sis Batch: 4 3atch: 400- mg/Kg	00-66444 66380		Instrument ID: PE FLC Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	DWINJECTION .2016 g 25 mL
Analyte			Spike	Amount	Result	% Re	ec. Limit	Qual
Mercury		**************************************	1.76	*****	1.65	94	68 - 132	
Matrix Spike/ Matrix Spike Du	uplicat	e Recovery Report -	Batch: 40	0-66380			Method: 7471A Preparation: 7471A	
MS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D:	400-29326-2 Solid 1.0 03/25/2008 0839 03/24/2008 0955	Analys Prep E	sis Batch: 4 3atch: 400-4	00-66444 66380		Instrument ID: PE FI Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	.0W INJECTION .6189 g 25 mL
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID:	400-29326-2 Solid 1.0 03/25/2008 0841 03/24/2008 0955	Analys Prep E	sis Batch: 4 Batch: 400-6	00-66444 [.] 66380		Instrument ID: PE FLC Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	DW INJECTION .6320 g 25 mL
			<u>%</u>	Rec.				
Analyte		**************************************	MS	MSD	Limit	RPI	D RPD Limit M	S Qual MSD Qual
Mercury			104	105	75 - 125	1	20	

.

Client: Pinnacle Laboratories

Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Pensacola

26

Job Number: 400-29326-1

......

÷

÷

Method Blank - Batch: 400-66767		Method: 9038 Preparation: N/A
Lab Sample ID:MB 400-66763/1-AClient Matrix:SolidDilution:1.0Date Analyzed:03/28/2008 1230Date Repared:N/A	Analysis Batch: 400-66767 Prep Batch: N/A Units: mg/Kg	Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 1.0 mL
Date Leached: 03/27/2008 0930	Leachate Batch: 400-66763	
Analyte	Result	Qual RL
Sulfate	<100	100
Lab Control Spike - Batch: 400-66767		Method: 9038 Preparation: N/A
Lab Sample ID:LCS 400-66763/3-AClient Matrix:SolidDitution:1.0Date Analyzed:03/28/2008 1254Date Prepared:N/ADate Leached:03/27/2008 0930	Analysis Batch: 400-66767 Prep Batch: N/A Units: mg/Kg Leachate Batch: 400-66763	Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL
Analyte	Spike Amount Result	% Rec. Limit Qual
Sulfate	20.0 20.4	102 90 - 110
Matrix Spike/ Matrix Spike Duplicate Recovery Report - Ba	atch: 400-66767	Method: 9038 Preparation: N/A
MS Lab Sample ID:400-29326-1Client Matrix:SolidDilution:1.0Date Analyzed:03/28/2008 1230Date Prepared:N/ADate Leached:03/27/2008 0930	Analysis Batch: 400-66767 Prep Batch: N/A Leachate Batch: 400-66763	Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL
MSD Lab Sample ID:400-29326-1Client Matrix:SolidDilution:1.0Date Analyzed:03/28/2008 1231Date Prepared:N/ADate Leached:03/27/2008 0930	Analysis Batch: 400-66767 Prep Batch: N/A Leachate Batch: 400-66763	Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL
Analyte	<u>% Rec.</u> MS MSD Limit	RPD RPD Limit MS Qual MSD Qual

Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Pensacola

Client: Pinnacle Laboratories

Job Number: 400-29326-1

......

2

-

. . .

and the second sec

· • • • •

Method Blank -	Batch: 400-66764					Method: 9251 Preparation: N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	MB 400-66763/1-A Solid 1.0 03/28/2008 1223 N/A 03/27/2008 0930	Analys Prep B Units: Leacha	s Batch: 4 atch: N/A mg/Kg te Batch: 4	00-66764		Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 m Final Weight/Volume: 1.0 m	L
Analyte		2040/12	Result		Qual	RL	
Chioride			<40			40	
Lab Control Sp	ike - Batch: 400-66764					Method: 9251 Preparation: N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	LCS 400-66763/2-A Solid 1.0 03/28/2008 1223 N/A 03/27/2008 0930	Analysi Prep B Units: Leacha	s Batch: 4 atch: N/A mg/Kg te Batch: 4	00-66764 400-66763		Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 ml Final Weight/Volume: 10 mL	L
Analyte		Spike A	mount	Result	% Re	c. Limit	Qual
Chloride		50.0		47.8	96	90 - 110	
Matrix Spike/ Matrix Spike Du	plicate Recovery Report	- Batch: 400)-66764 ,			Method: 9251 Preparation: N/A	
MS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	D: 400-29326-1 Solid 1.0 03/28/2008 1223 N/A 03/27/2008 0930	Analysi Prep B Leacha	s Batch: 4 atch: N/A te Batch: 4	00-66764 400-66763		Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 r Final Weight/Volume: 10 n	nL nL
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	ID: 400-29326-1 Solid 1.0 03/28/2008 1223 N/A 03/27/2008 0930	Analysi Prep B Leacha	s Batch: 4 atch: N/A te Batch: 4	00-66764 400-66763		Instrument ID: Konelab 1 Lab File ID: N/A Initial Weight/Volume: 1.0 ml Final Weight/Volume: 10 mL	L
		<u>% I</u>	<u>Rec.</u>				
Analyte		MS	MSD			RPD Limit MS Qual	MSD Qual
Chlonae		110	119	75 - 125	1	20	

Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Pensacola

Client: Pinnacle Laboratories

Page 16 of 20

Client: Pinnacle Laboratories

Job Number: 400-29326-1

.

.....

4

. . .

territoria a contra

Method Blank	- Batch: 400-66547				Method: SM 232 Preparation: N/A	0B	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 400-66490/1-A Solid 1.0 03/25/2008 1615 N/A	Analysis Batch: 4 Prep Batch: N/A Units: mg/Kg	00-66547		Instrument ID: Ad Lab File ID: N/ Initial Weight/Volur Final Weight/Volun	ccumet AB 15+ A ne: 1.0 mL ne: 1.0 mL	
Date Leached:	03/25/2008 1525	Leachate Batch:	400-66490				
Analyte		Result		Qual		RL	
Alkalinity, Total		<20				20	
Lab Control Sp	oike - Batch: 400-66547				Method: SM 2320 Preparation: N/A)B	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 400-66547/5 Water 1.0 03/25/2008 1615 N/A	Analysis Batch: 4 Prep Batch: N/A Units: mg/Kg			Instrument ID: Ac Lab File ID: N/ Initial Weight/Volum Final Weight/Volum	ccurret AB 15+ A ne: 1.0 mL ne: 50.0 mL	
Analyte		Spike Amount	Result	% Re	c. Limit		Qual
Alkalinity, Total	99999999999999999999999999999999999999	250	271	108	90 - 1	10	
Duplicate - Bat	ch: 400-66547				Method: SM 2320 Preparation: N/A)B	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-29326-1 Solid 1.0 03/25/2008 1615 N/A	Analysis Batch: 400- Prep Batch: N/A Units: mg/Kg	66547		Instrument ID: Ac Lab File ID: N/ Initial Weight/Volun Final Weight/Volun	cumet AB 15+ A ne: 1.0 mL ne: 1.0 mL	
Date Leached:	03/25/2008 1525	Leachate Batch: 400	-66490				
Analyte		Sample Result/Qu	al	Result	RPD	Limit	Qual
Alkalinity, Total	74 November des Antonio en antonio des antonio en antonio de antonio de antonio de antonio de antonio de antoni	3500		3360	4	20	

Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Pensacola

DATA REPORTING QUALIFIERS

Client: Pinnacle Laboratories

Job Number: 400-29326-1

.

Lab Section	Qualifier	Description
Metals		
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
	F	RPD of the MS and MSD exceeds the control limits

Page 18 of 20

	Γ	S	BER OF CONTAINER	MUN	 		<u> </u>								6						તં			Π
4				01			 			ļ		·										ë	ë	
ام ق			ete8/etgle sse	010												Ē		Dat				Ē	Dat	
4			855+855 muit	Ba											Ч. УЧ				ſ					
Page:			(2012) (1020) (2012) (2	<u>(626</u>					-			:			1SED						D BY:			
8			omo pip (leatine 14)	368											IONI	ure:		d Name		any	EIVE	;nre;	d Name	any
÷		HE	50 (TCLP 1311) Z	928											REI	Signat		Printe		Com	REC	Signat	Printe	Comp
2		SM	112 0728\(01£8) A	'Nd											F				~		1.	~	X	
Dat	ST	(1	'ðf8\ðfð) sebioid	юH													8		2			ġ		
X	B	(2808/1808/	808) 809\esticides/PCB (608	səq												Time:	17	Date:	m M	ž		е́.Q	0 Ete	
M	RE		D	00											×		3		ş	les, l		,	.5	J
Si	SIS		۵	BO											a C B		Ń		1	ratof	ž	\mathbf{N}	Ŭ	X
	AL	(0928) SM/:	OD soingon O Site	lοV											11SH		Ň	je -	খ্র	Labo		X	ie s	η
og M	AN		,05 Y	5	Х	У.									CNI	ture:		d Nar	277	acle	Ň	Ë	d Nam	any
Ist		כמתף/ נמתף	Kalinity ak	¥	X	X									REI	Signa	J.	Printe	4	<u>Pi</u>	REC	Signa	Printe	В S
Ũ			n Chemistry:	Ge												L						2		
0 L			0	οτ											ġ									
hail		10/	9. Mar. K.	2	X	χ									LT				<u>Z</u>			E E		
Ū		(0109) d	solved Fe, Mn, Pl	siQ											S S	BS			뒬		BS	AER		
lab		(sji	steM CS) JAT-slbt	эM											H I H	N N N		ЯŇ	Š		Ţ	AS	土	
Iter			tais-13 PP List	эM											- SAN	APE	ARS	<u>B</u>	ğ	ы	₹	S S	N N	
<u> </u>		sle	LP RCRA (8) Met	JT																				
			4307 (8) RCRA	ЭM	X	Х										L								
				AB ID											EIPT	iners	s		Cold					
	Joric			X 1									$\left - \right $	_	REC	Conta	Seal		ond					
	a Tei			ATRI	ÅQ	4									E E	r of	stody	act3	0 B	ά				
	cint	111		M	8	-			<u> </u>						SAN	mbe a	f Cus	d Int	ğ	MBE			ψ	
С	ц В	N N		TIME	02/1	521								·		otal N	hain o	eceive	eceive	AB NL			<i>b</i>	
es, li		way		ш	8	~								_	\vdash	F	0	R.	Х	긕		NTS:	Ŵ	
torie	anag	Inc. Free		DAT	3-11-0	ン													BLA			COMME		
ora	ct M	38, 1017 1017				20													힜	_		Ť		
Lab	roje	orie nicc 34			45-0	-54									NOL				ž	F SI				
cle	Ķ			٥	18030	80.30									ZMA-	540	5	=	MS	R		8 (ΙÉ	6
na	letw	abo ue, ^{Fax}		ЪГЕ	cell	/// <i>च</i>									LFOF	6	107	A	$\overline{\mathcal{A}}$	A		R R R R R R R R	HUH NH	Š,
Pir	8			MAK	4P7	nuler									CTI	00	ш	Y	Ü	đ		윈A	ERT OL	Ϋ́
		44 44 50 50 50 50 50 50 50 50 50 50 50 50 50		"	W.	JWL									OLE	CT#	NAM	Ē	ā	STA		ATE: SUR		E E E
		linr 70(Jbu			el la	nel fa									R R	l Sol	Į Į	١ Ш	煭	Ņ		USH US		IJ.
	2	日ろへじ			2	2						[Ľ	6	ŏ١	ĕł	21		티전	라방	Ř

.

.

•

,

Page 19 of 20

31

Login Sample Receipt Check List

Client: Pinnacle Laboratories

Job Number: 400-29326-1

Login Number: 29326 List Source: TestAmerica Pensacola Creator: Chea, Vanda List Number: 1 Question T/F/NA Comment Radioactivity either was not measured or, if measured, is at or below N/A background N/A The cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or True tampered with. True Samples were received on ice. 5.8°C Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True There are no discrepancies between the sample IDs on the containers and True the COC. True Samples are received within Holding Time. Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in N/A diameter. If necessary, staff have been informed of any short hold time or quick TAT True needs Multiphasic samples are not present. True

True

Samples do not require splitting or compositing.

TestAmerica Pensacola

PLI Accession - 80% Or 45	های در از حل) volatile Organics 8260 (ا حل) volatile Organics 8260 (CUST) volatile Organics 8260 (CUST) volatile Organics 8260 (CUST) volatile Organics 8260 (Landfill) volatile Organics 8260 (Fanfile Viewers) 8260 (CUST) 8260 (Context Promistry: All 8260 (Context Promistry: All 8260 (Cust I LE List Metals (23) 870 (Contily Pollutant Metals (23) 870 (Crost I V CLP (Method 13) 1)										\$00er 1400	he: U Date: Printed Name: Date:	Dr Services company:	ED.BY: (LAB) 2	Time Signade Time	te. Date: PrinfedName. Date Date: Date: Date Date: Date: Date: Date	Primacle Laboratories Inc.	Levenessee and the second s
boratories Inc. CHAIN OF CUSTODY	Petroleum Hydrocarbons (418.1) TRPH Petroleum Hydrocarbons (418.1) TRPH Petroleum Hydrocarbons (418.1) TRPH Mm Syttls B021 (BTEX)/8015) Diesel/Direct Inject 8021 (BTEX)/8015) Diesel/Direct Inject 8021 (BTEX)/8015) Diesel/Direct Inject 8021 (BTEX) 8021 (CL) 8021 (CUST) 8021 (CUST) 8021 (CUST)	-11-08 1120 50i 1 80/ V V V	HI-08/1125 501 02 V V V							I AN ADDITIONAL SURCHARGE - PLEASE INQUIRE.		METHANOL PRESERVATION D METALS DITOTAL DISSOLVED AS LEA	COMMENTS: COMMENTS: COMMENTS:	Clight King Lantach list	Place rote tro non change. Sever resures signatures	Printed Nar Policy Services	Durango, CO 81302 * temp out "Frange Company.	Pan American Freeway, NE • Albuquerque, New Mexico 87107 • (505) 344-3777 • Fax (505) 344-4413 • E-mail: PIN. LAB @ ATT i
PROJECT MANAGER: Achiev	COMPANY: Lodestar ADDRESS: 1588 CR PHONE: DWRANGO PHONE: 070 294 FAX: 070 204 FAX:	E Landfarm API cell 3	Landtarm Crude cell 3	EQ	ZIEIS		13.	13.	191	C WEEKEND ANALYSES MAY RESULT IN DRAIECTINEODMATICNI	PROJ. NAME: Landfar M	P. 0. NO.:	SHIPPED VIA:					July, 2003 PL1 Inc.: Pinnacle Laboratories, inc. • 2709-D i

ł

File : C:\HPCHEM\1\DATA\031708B\03170810.D
Operator : ARM
Acquired : 17 Mar 2008 2:28 pm using AcqMethod GCB80305.M
Instrument : GC-2 PID/
Sample Name: BLK031708 [001B]
Misc Info : EXTRACTION BLANK EXT SOIL
Vial Number: 10

34

÷

1

File : C:\HPCHEM\1\DATA\031708B\03170811.D
Operator : ARM
Acquired : 17 Mar 2008 3:01 pm using AcqMethod GCB80305.M
Instrument : GC-2 PID/
Sample Name: 803045.01 [001X]
Misc Info : LANDFARM API CELL EXT SOIL
Vial Number: 11

File : C:\HPCHEM\1\DATA\031708B\03170812.D
Operator : ARM
Acquired : 17 Mar 2008 3:30 pm using AcqMethod GCB80305.M
Instrument : GC-2 PID/
Sample Name: 803045.02 [001X]
Misc Info : LANDFARM CRUDE CELL EXT SOIL
Vial Number: 12

File : C:\HPCHEM\2\DATA\031908F\03190803.D Operator : STH Acquired : 19 Mar 2008 8:54 am using AcqMethod GCF80318.M Instrument : FID-1 Sample Name: CCV031908 [200C] Misc Info : DRO CCV 200UG/ML Vial Number: 3

1. 1....

File : C:\HPCHEM\2\DATA\031908F\03190804.D Operator : STH Acquired : 19 Mar 2008 9:45 am using AcqMethod GCF80318.M Instrument : FID-1 Sample Name: BLK031908 [001B] Misc Info : SOIL METHOD BLANK 03/18/08@1701 STH Vial Number: 4

File : C:\HPCHEM\2\DATA\031908F\03190807.D
Operator : STH
Acquired : 19 Mar 2008 11:00 am using AcqMethod GCF80318.M
Instrument : FID-1
Sample Name: 803045.01 [001X]
Misc Info : LANDFARM API CELL 03/18/08@1701 STH
Vial Number: 7

File : C:\HPCHEM\2\DATA\031908F\03190808.D
Operator : STH
Acquired : 19 Mar 2008 11:24 am using AcqMethod GCF80318.M
Instrument : FID-1
Sample Name: 803045.02 [001X]
Misc Info : LANDFARM CRUDE CELL 03/18/08@1701 STH
Vial Number: 8

40

Cation-Anion Balance Worksheet

Accession Number:	803045-01			
Anions	Result (mg/i)	Factor		<u>Total (me/l)</u>
Alkalinity	3500			
Chloride	660	0.02821		18.61860
Fluoride		0.05264		0.00000
Nitrate as N		0.01613	i	0.00000
Sulfate		0.02082		0.00000
Carbonate	540	0.03333		17.99820
Bi-Carbonate	2900	0.01639)	47.53100
	Total Anions =			84.1478
Cations	Result (ma/l)	Factor		Total (me/l)
<u>oduons</u>	<u>ittesuit (ing/ij</u>	<u>1 dotor</u>		<u>rotar (mon)</u>
Calcium	7300	0.04990	ł	364.27000
Potassium	1300	0.02558	I	33.25400
Magnesium	1800	0.08229	I	148.12200
Sodium	150	0.04350	I	6.52500
Copper		0.03147		0.00000
Iron		0.05372		0.00000
Manganese		0.03640	I.	0.00000
Zinc		0.03059	1	0.00000
	Total Cations =	1		552.171
Anion/Cation Balance	(% difference) =	73.6%		
Total Anions+Cations	=	13310	ma/l	(calculated)
Total Dissolved Solids	3 =	N/A	mg/l	(measured)
TDS/ion sum ratio =		N/A		· · · ·
Electrical Cond =		N/R	umh/cm	(measured)
TDS/EC ratio =		N/A		- ·
		N/A = not a	applicable	

N/R = not requested

. . 41

....

Cation-Anion Balance Worksheet

Accession Number:	803045-02		
Anions	Result (mg/l)	Factor	Total (me/l)
Alkalinity	1200		
Chloride Fluoride Nitrate as N Sulfate Carbonate	110 690 280	0.02821 0.05264 0.01613 0.02082 0.03333	3.10310 0.00000 0.00000 14.36580 9.33240
Bi-Carbonate	880	0.01639	14.42320
	Total Anions =		41.2245
Cations	<u>Result (mg/l)</u>	Factor	<u>Total (me/l)</u>
Calcium Potassium Magnesium Sodium Copper Iron Manganese Zinc	2800 1100 1200	0.04990 0.02558 0.08229 0.04350 0.03147 0.05372 0.03640 0.03059	$\begin{array}{c} 139.72000\\ 28.13800\\ 98.74800\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\end{array}$
	Total Cations =	=	266.606
Anion/Cation Balance	(% difference) =	73.2%	
Total Anions+Cations Total Dissolved Solids TDS/ion sum ratio =	= }=	6620 mg/l N/A mg/l N/A	(calculated) (measured)

Electrical Cond =N/Rumh/cm (measured)TDS/EC ratio =N/A

N/A = not applicable N/R = not requested March 4, 2008

RECEIVED 2008 MAR 7 PM 1 23

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico, 87505

CERTIFIED MAIL 7006 2150 0002 6417 2629

RE: FourthQuarter Sampling at Giant Industries Arizona, Inc. Centralized Surface Waste Management Landfarm Facility NM -02-0010

· : -

Dear Mr. Price,

On December 29, 2007, Lodestar Services, Inc. collected fourth quarter samples from Giant Industries Arizona, Inc.'s landfarm, permit number NM-02-0010, located in the NW/4 SE/4 of Section 16, Township 25 North, Range 12 West, NMPM, San Juan County, NM. One crude cell sample and one API cell sample was collected as shown on Figure 1. Each sample was collected using a hand powered auger from three feet beneath native ground surface. Each sample was placed in an eight ounce glass jar and stored on ice during shipping to Pinnacle Laboratories in Albuquerque, NM. Strict chain-of-custody procedures were followed during shipping. Pinnacle laboratories analyzed the samples for the following constituents: total petroleum hydrocarbons, benzene, toluene, ethyl benzene, and xylenes.

No target analytes were detected in the samples. Laboratory reports are included for your review.

Should you have any questions or require additional information please do not hesitate to call me at (505) 632-4077.

Respectfully Submitted, Giant Industries Arizona, Inc.

- for Bill Robertson

Bill Robertson U Safety, Environmental & Regulatory Manager

Cc. Mr. Dave Richards, Giant Mr. Carlos Guerra, Giant Ms. Ann Allen, Western Refining Company, L.P. File

Pinnacle Lab ID number 801008 January 14, 2008

LODESTAR 26 CR 3500 FLORA VISTA, NM 87415

Project Name LANDFARM Project Number (NONE)

Attention: MARTIN NEE/BILL ROBERTSON

On 01/03/2008 Pinnacle Laboratories Inc., (ADHS License No. AZ0643), received a request to analyze **non-aq** samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

H. Mitchell Rubenstein, Ph.D. General Manager, Pinnacle Laboratories, Inc.

MR: jt

Enclosure

CLIENT	LODESTAR	PINNACLE ID	: 801008
PROJECT #	: (NONE)	DATE RECEIVED	: 01/03/2008
PROJECT NAME	LANDFARM	REPORT DATE	: 01/14/2008
PINNACLE		•	DATE
ID #	CLIENT DESCRIPTION	MATRIX	COLLECTED
801008 - 01	APICELL	NON-AQ	12/29/2007
801008 - 02	WESTLINE CELL	NON-AQ	12/29/2007

GAS CHROMATOGRAPHY RESULTS

TEST		: EPA 8021B / 80	15B GRO				
CLIENT		LODESTAR				PINNACLE I.D.	: 801008
PROJECT #	<u>+</u>	: (NONE)				ANALYST	: ARM
PROJECT N	IAME	: LANDFARM					
SAMPLE				DATE	DATE	DATE	DIL.
ID. #	CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
01	APICELL		NON-AQ	12/29/07	01/09/08	01/10/08	1
02	WESTLINE CEL	.L	NON-AQ	12/29/07	01/09/08	01/10/08	1
PARAMETE	R	DET. LIMIT	UN	ITS	APICELL	WESTLINE CELL	
FUEL HYDR	OCARBONS	10	MG	/KG	< 10	< 10	
HYDROCAR	BON RANGE				C6-C10	C6-C10	
HYDROCAR	BONS QUANTIT	ATED USING			GASOLINE	GASOLINE	
BENZENE		0.025	MG	/KG	< 0.025	< 0.025	
TOLUENE		0.025	MG	/KG	< 0.025	< 0.025	
ETHYLBEN 2	ZENE	0.025	MG	/KG	< 0.025	< 0.025	
TOTAL XYLE	ENES	0.10	MG	/KG	< 0.10	< 0.10	
SURROGAT	E:						
BROMOFLU	OROBENZENE	(%)			102	98	
SURROGAT	E LIMITS	(65 - 120)					•

CHEMIST NOTES: N/A

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 FOLLIRFE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY RESULTS METHOD BLANK

TEST BLANK I.D. CLIENT PROJECT # PROJECT NAME PARAMETER	: EPA 8021B / 8015B GRO : 010908B : LODESTAR : (NONE) : LANDFARM	UNITS	PINNACLE I.D. DATE EXTRACTED DATE ANALYZED SAMPLE MATRIX ANALYST	: 801008 : 01/09/08 : 01/10/08 : NON-AQ : ARM
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBONS QUANTI	TATED USING	MG/KG	<10 C6-C10 GASOLINE	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		MG/KG MG/KG MG/KG MG/KG	<0.025 <0.025 <0.025 <0.10	
SURROGATE: BROMOFLUOROBENZENE SURROGATE LIMITS	(%) (80 - 120)		106	

CHEMIST NOTES: N/A

.

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 FOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

TEST	EPA 8015B C	GRO			PINNACLE	I.D.	:	801008	
BATCHID	: 010908B				DATE EXTR	RACTED	:	01/09/08	
CLIENT	LODESTAR				DATE ANAL	YZED	;	01/10/08	
PROJECT #	: (NONE)				SAMPLE M	ATRIX	:	NON-AQ	
PROJECT NAME	LANDFARM				UNITS		:	MG/KG	
	BLANK	CONC	SPIKED	%	DUP	DUP		REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
FUEL HYDROCARBONS HYDROCARBON RANGE	<10	50.0 C6-C10	61.0	122	63.0	126	3	(70 - 130)	20

HYDROCARBONS QUANTITATED USING GASOLINE

CHEMIST NOTES: N/A

(Spike Sample Result - Sample Result)

% Recovery =

Spike Concentration

-----X 100

(Sample Result - Duplicate Result)

-----X 100

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

5

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

TEST	: EPA 8015B G	RO			PINNACLE	I.D.	:	801008	
SAMPLE ID	: 801008-01				DATE EXTR	RACTED	:	01/09/08	
CLIENT	: LODESTAR				DATE ANAI	_YZED	:	01/10/08	
PROJECT #	: (NONE)				SAMPLE M	ATRIX		NON-AQ	
PROJECT NAME	LANDFARM				UNITS		:	MG/KG	
	SAMPLE	CONC	SPIKED	%	DUP	DUP		REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
FUEL HYDROCARBONS	<10	50.0	58.4	117	67.0	134 M4	14	(70 - 130)	20
HYDROCARBON RANGE		C6-C10							
HYDROCARBONS QUANT	ITATED USING	GASOLINE							

CHEMIST NOTES: M4 = %REC is outside of PLI criteria.

ł

% Recovery =

(Spike Sample Result - Sample Result) -----X 100

Spike Concentration

(Sample Result - Duplicate Result) -----X 100

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

TEST BATCH ID CLIENT PROJECT # PROJECT NAME	: EPA 8021B : 010908B : LODESTAR : (NONE) : LANDFARM				PINNACLE I DATE EXTR DATE ANAL SAMPLE MA UNITS	.D. ACTED YZED ATRIX		801008 01/09/08 01/10/08 NON-AQ MG/KG	
PARAMETER	SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD	REC LIMITS	RPD LIMITS
BENZENE	<0.025	1.00	0.976	98	0.974	97	0	(68 - 120)	20
TOLUENE	<0.025	1.00	1.03	103	1.03	103	0	(64 - 120)	20
ETHYLBENZENE	<0.025	1.00	1.03	103	1.04	104	1	(49 - 127)	20
TOTAL XYLENES	<0.10	3.00	3.13	104	3.15	105	1	(58 - 120)	20

----- X 100

CHEMIST NOTES:

N/A

(Spike Sample Result - Sample Result)

-----X 100 % Recovery =

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 FAX 877.PIN.1998 (OLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

7

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

TEST SAMPLE ID CLIENT PROJECT # PROJECT NAME	: EPA 8021B : 801008-01 : LODESTAR : (NONE) : LANDFARM				PINNACLE DATE EXTR DATE ANAL SAMPLE M/ UNITS	I.D. RACTED .YZED ATRIX	:	801008 01/09/08 01/10/08 NON-AQ MG/KG	
PARAMETER	SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD	REC LIMITS	RPD LIMITS
BENZENE	<0.025	1.00	0.902	90	0.928	93	3	(68 - 120)	20
TOLUENE	<0.025	1.00	0.949	95	0.978	98	3	(64 - 120)	20
ETHYLBENZENE	<0.025	1.00	0.969	97	0.993	99	2	(49-127)	20
TOTAL XYLENES	<0.10	3.00	2.92	97	3.01	100	3	(58-120)	20

----- X 100

CHEMIST NOTES:

% Recovery =

N/A

(Spike Sample Result - Sample Result)

----- X 100

Spike Concentration

(Sample Result - Duplicate Result) -----

RPD (Relative Percent Difference) =

Average Result

2709-D Pan American Fwy, NE Albuquerque, NM 87107 505.344.3777 505.344.4413 rex 877.PIN.1998 TOLL FREE www.pinnaclelabs.org www.pinnaclelabsonline.com

													N	\int			2	0	ىمى ر
	sials:		╋		+	┼─	┼──					花園設		N	1			6	2 3
	(1151 Metals by TCLP (Method131)	i T	+										jue.		je m		â	» ()	
	(8) ARDA Metals (8)		1	1		1-						2a		ſ	°∖		S.	- %	
\mathbf{X}	Target Analyte List Metals (23)					\uparrow						G	3				X	10	210
2	Priority Pollutant Metals (13)		1	1		1						Į	2		0	Λ	a l	NN.	100
<u>N</u>						1						Ç	ē		LI BA	<u> </u>			
\odot	General Chemistry:	1	1									800 1910	natu				Image: Second se		33
ΟQ II	Polynuclear Aromatics (610/8310/8270-SIMS)					1							ŝ	õ	2	ပိ	1		Δ
	Base/Neutral/Acid Compounds GC/MS (625/8270)				2				_							ŝ	\mathbb{N}		
	Herbicides (615/8151)			\square											5	Ň			
	Pesticides/PCB (608/8081/8082)												کر ا	5 L	õ	7 7		$\backslash $.	
	8260 (Landfill) Volatile Organics		1										ĮŇ		2				
	8260 (CUST) Volatile Organics											98			_	P3		N	
	8260 (Full) Volatile Organica DPBMS	-														S E	B <	- 1	
	8260 (TCL) Volatile Organics	╆						-+				CIS CIS		V ë	$\langle y \rangle$	S [§]		Je	\mathbf{N}
				┝╴┨					\rightarrow	-+	-		F	ŊĨ	3	verse verse	<u>気</u> g	1 Nar	Në
<u> </u>		╉─┤			-			+	-+	-+		١Ņ	N	<u>ع</u> اد	Ð	omp;	M and	jite	NË
	8051 (COSI)								-+				ū	Je	2	ບັທັ	្លាល	٦	0
っ十日					-			+	-	-+					e				
U iii				$\left - \right $	-+		-+		-+	+		15	Ê	EB	5 C	-9			
) a		+			-+	-+	-+	-+	-+-			13	MH	HO	ISSI	Ø	•		
			X		\dashv				-+			ĬĔ	NZ			S S			
		P		┝──┟	-+				-+	-+	-	B		М	_	š			
1	Ann a son (crown)		V		+			-+-	-+	-+		2			OTA	10	- 2		
	GET & ADUIQ/SED (7108M)	P	γ		÷	·					-	١ <u></u>	兕	_	6	+	20	•	
	129(11129)10(1959)0 (CL09;00)M)	\vdash			-+						- 2	Ā	NE N	MD	σ	:S		b	
		\vdash	-	-+	-+		-+-	+	+	+	┦፩	R	ō	ő	ETAI	2	ジモ		
			1		800 S				<u>1</u>		SE IS	Ē			Σ	Ye	v		
			\otimes								LEA	IS F	427L	ž		÷	ġ	1	
		9	9								<u>-</u> -	6	BES			13	جم ا		
2									**		P	N.	Bhr [*]	Ω.	NO L	5	S)	1	•
7		5	- 2								H	ZHC	44	En l	₹ľ	Ň	<u>n</u>		
3		11	azt	_					:		- Iñ	HIC	N N	Ĩ.		ad	8		
Ξ []	3027 1 21	5	শ								AL	ŊV	124h BLE (ē	E		-		
5 L`	ADY I VEBN	E	2								<u>N</u>	D HO	AIA	۲ <u>۲</u>	ğ	z ŏ	\$		
3	101320 3 V3	Ľ	M	+	-	-+	+	-		+-	-15	B	USH)		H	\$ 60	_		
5]	rm an a was	24	8								A N		Ξž	ö	ž (3			
5	AVAN WXXX	2	N					ľ			A N		T				5.5	s	- N
3	BALA LECK											7		2			<u>_(</u>	à,	うび
											E SI	ē		3			12	Š	2 5
	OZZNO NICS		3								ž	S		C			CREA BARGE	alan s Georgia	
い 記		· ا	と								M	BO		2	V	ງພິ			
N N			Ŋ								ы Ы	뵑		ß			o ر	S C	5
S NA		5	2								F	5		N.	-	쉿뤜	ËB	N I	
	NA IN	J-	J.				ŀ	1	1		¥	3		ц у		S	AIN	No.	
		51	Ø						1.		S	Ha	<u>g</u>	Z ,			5		
1 P		4.	3						1	1	ШĚ		l gi				S 0	UST 191	
<u>ا چ</u>		<u></u>		_				_			JŠ	6997 36.44	ā	ā d	ı o	5 222	ź	ō o	
3			0-	เล่น	110						~~		1417 -	~ ·	<u></u>		.		
21.37		(=)						at:	3 1	aw	UU.	NI	MA	C P	SII	4L I		324	

9

;

I to the state date to

File : C:\HPCHEM\1\DATA\011008B\01100808.D Operator : ARM Acquired : 10 Jan 2008 12:48 pm using AcqMethod BG100207.M Instrument : GC-2 PID/ Sample Name: METHOD BLANK EXT SOIL Misc Info : 0.10ML/5ML + 10UL MS5-98-19 EXT SOIL Vial Number: 8

10

··· | --

File : C:\HPCHEM\1\DATA\011008B\01100810.D
Operator : ARM
Acquired : 10 Jan 2008 2:05 pm using AcqMethod BG100207.M
Instrument : GC-2 PID/
Sample Name: 801008.01 [1X] 1145 EXT SOIL
Misc Info : 0.10ML/5ML + 10UL MS5-98-19 EXT SOIL
Vial Number: 10

File : C:\HPCHEM\1\DATA\011008B\01100811.D
Operator : ARM
Acquired : 10 Jan 2008 2:36 pm using AcqMethod BG100207.M
Instrument : GC-2 PID/
Sample Name: 801008.02 [1X] 1215 EXT SOIL
Misc Info : 0.10ML/5ML + 10UL MS5-98-19 EXT SOIL
Vial Number: 11

÷

12