1R- 426-1

WORKPLANS

Infrastructure, buildings, environment, communications

Ed Hansen New Mexico Oil Conservation Division 1220 So. Saint Francis Drive Santa Fe, New Mexico 87505

Certified Mail Receipt No. 7002 2410 0001 5813 3630

Subject: Investigation and Characterization Plan Blinebry-Drinkard (BD) Junction F-35 T21S, R37E, Section 35, Unit F, Eunice, Lea County, New Mexico

Dear Mr. Hansen,

RICE Operating Company (ROC) has retained ARCADIS U.S., Inc. to address potential environmental concerns at the above-referenced site. ROC is the service provider (agent) for the Blinebry-Drinkard (BD) SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental projects of this magnitude require System Partner AFE approval and work begins as funds are received. In general, project funding is not forthcoming until NMOCD approves the work plan. Therefore, your timely review of this submission is requested.

For all environmental projects, ROC will choose a path forward that:

- protects public health,
- provides the greatest net environmental benefit,
- complies with NMOCD Rules, and
- is supported by good science.

Each site shall have three submissions or a combination of:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is a proposal for data gathering and site characterization and assessment.
- 2. Upon evaluating the data and results from the ICP, a recommended remedy will be submitted in a <u>Corrective Action Plan</u> (CAP).
- 3. Finally, after implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

On behalf of ROC, ARCADIS respectfully submits this ICP for the above-referenced site.

RECEIVED

2008 JUN 19 PM 1 31

ARCADIS U.S., Inc. 1004 N. Big Spring Street Suite 300 Midland Texas 79701 Tel 432.687.5400 Fax 432.687.5401 www.arcadis-us.com

1R426-110

Date: June 16, 2008

Contact: Sharon Hall

Phone: 432 687-5400

Email: shall@arcadis-us.com

Part of a bigger picture

SITE HISTORY AND BACKGROUND

The site is located west of the town of Eunice, New Mexico (Figure1). Elevated chlorides in this area have been reported since as early as 1952 (Ground-Water Report 6, Geology and Ground-Water Conditions in Southern Lea County, Alexander Nicholson, Jr. and Alfred Clebsch, Jr.). The expected depth to groundwater at this site is approximately 44 feet below ground surface.

The junction was eliminated and replaced with a new junction box located 30 feet west of the former junction box location (Figure 2). Initial delineation began on April 27, 2005 and was completed on April 28, 2005. A delineation trench was excavated at the former junction box location using a backhoe. A backhoe was used to collect soil samples at one-foot intervals to a depth of 12 feet below ground surface (bgs) at the removed junction box location. Soil samples were analyzed in the field for chlorides using field-adapted Method 9253 and screened in the field using a photoionization detector (PID). Field analytical and PID results are shown in Table 1. Laboratory results are shown in Table 2.

A grab sample was collected from the bottom of the excavation and submitted to Environmental Lab of Texas and analyzed for benzene, toluene (BTEX), ethylbenzene and total xylenes, gasoline range organics (GRO), diesel range organics (DRO) and chloride analysis. BTEX was detected at very low concentrations. DRO was detected at a concentration of 2120 milligrams per kilogram (mg/kg). GRO was detected at a concentration of 616 mg/kg. Elevated PID readings were observed in the samples collected from a depth of 5 feet bgs to 12 feet bgs. Field chloride concentrations were low (131 mg/kg or less). The chloride concentration of the 12 foot bgs sample submitted to the lab was 32.2 mg/kg. Field and Laboratory analytical results and PID readings are summarized in Table 1.

Based on the results of the soil sampling analytical results elevated hydrocarbon (DRO) concentrations are present at the subject site (Figure 2).

The excavation was backfilled with imported clean soil and the surface graded and seeded. An identification plate was placed on the surface to identify the former junction box location and for possible future environmental considerations.

ROC disclosed potential groundwater impact at the site to NMOCD in a Disclosure Report dated 5/16/2005. A disclosure report was submitted to NMOCD with all of the ROC 2005 Junction Box Reports in March 2006 per the ROC Junction Box Upgrade Work Plan. The source of this impact is historical and has been removed.

INVESTIGATION AND CHARACTERIZATION PLAN

As discussed above, existing site data suggest a potential for impairment of ground water quality. Therefore the work elements described below are designed to assist ROC in selecting an appropriate vadose zone remedy and, if necessary, a groundwater remedy.

Task 1- Collect Regional Hydrogeologic Data

Chloride impacted regional groundwater has been reported in this area near the towns of Eunice and Monument since as early as 1952 (Groundwater Report 6, Geology and Ground-Water Conditions in Southern Lea County, New Mexico, Nicholson and Clebsch, United States Geological Survey).

A one-half mile water well inventory will be performed. The water well inventory will include a review of water well records listed on the New Mexico State Engineer Office and United States Geological Survey (USGS) websites and windmills indicated on applicable USGS topographic maps.

Task 2- Evaluate Concentrations of Constituents of Concern in Soil and Groundwater

One soil boring will be installed at the site near the former Junction box location. Soil samples will be collected at regular intervals no greater than five feet, screened in the field using a photo ionization detector (PID) and field tested for chlorides. Soil lithology and the presence of any observed staining or odor will be recorded. Representative select samples will be submitted to a laboratory for laboratory analysis as confirmation of the field sampling. The soil boring will be drilled to a depth where PID readings do not exceed 100 ppm or to groundwater, whichever is shallower. It is not anticipated that elevated chloride concentrations will be detected. If field readings indicate elevated hydrocarbon concentrations at the total depth of the boring, the boring will be converted to a monitor well.

The monitor well will be constructed of Schedule 40 PVC blank and the well screen will consist of Schedule 40 PVC with 0.020 inch slots. 15 feet of well screen will be installed, 5 feet above the groundwater table and 10 foot below. The monitor well will be constructed, developed and sampled in accordance with Environmental Protection Agency and NMOCD standards. A groundwater sample will be collected and submitted for laboratory analysis for chlorides, BTEX and general chemistry.

If analytical results indicate that chloride and/or BTEX concentrations in groundwater exceed New Mexico Water Quality Control Commission standards, additional monitoring wells may be installed as warranted by the results of the investigation.

Additional soil borings will be used to evaluaté soil impacts. Soil borings will be installed in the approximate locations shown in Figure 3 in order to delineate the lateral extent of impacts to soil. Soil samples will be collected at regular intervals no greater than five feet, screened in the field using a photo ionization detector (PID) and field tested for chlorides. Soil lithology and the presence of any observed staining or odor will be recorded. Representative select samples will be submitted to a laboratory for laboratory analysis as confirmation of the field sampling.

Task 3 Evaluate Potential Flux from the Vadose Zone to Ground Water

The information gathered from Tasks 1 and 2 will be evaluated and utilized to design a groundwater remedy if needed. The groundwater remedy that offers the greatest environmental benefit while causing the least environmental impairment will be selected. If the evaluation demonstrates that residual constituents pose no threat to groundwater quality, only a surface restoration plan protective of groundwater will be proposed. Such recommendations and findings will be presented to NMOCD in a subsequent Corrective Action Plan (CAP). When evaluating any proposed remedy or investigative work, ROC will confirm that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

A report that details the investigation activities and results will be submitted to the NMOCD. The report will include recommendations for further action (CAP) if necessary or for closure of the site.

Very truly yours,

ARCADIS U.S, Inc.

Shann E. Hall

Sharon E. Hall Associate Vice President

Copies: Marvin Burrows- Rice Operating Company

Attachment:

Ed Hansen June 16, 2008

Figures 1 and 2

Disclosure report with field sampling results

Tables 1 and 2

PLOTSTYLETABLE: AGANDM.CTB PLOTTED: 0/13/2008 7:37 AM BY: CLARDY, HERB 1 PAGESETUP: : PIC: PIK: SH TM: SH LYR: ON="OFF="REF" UN: LAYOUT: 1 SAVED: 8/13/2008 7:38 AM ACADVER: 17.08 (LMS TECH) CITY: MIDLAND TX DIV/GROUP: ENV DB: HC LD: HC C: CADMCTWTD0101410000110000110WG L

Blinebry-Drinkard F-35 Boot

Table 1Field Sampling ResultsRemoved Junction Box Location

Depth (feet)	Chloride result (ppm)	PID Reading
3	75	1.7
4	68	36.4
5	75	315
6	79	513
7	75	517
. 8	110	846
9	105	838
10	84	913
11	131	1176
12	86	1093

Table 2 Laboratory Results, mg/kg Removed Junction Box, 12 Feet below Ground Surface

Benzene	Toluene	Ethylbenzene	Total	GRO	DRO	Chloride
			Xylenes			
0.00976	0.187	0.645	2.021	616	2120	32.2

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE* REPORT

				BOX LOCA	TION					
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX DI	MENSION	S - FEET	
	C 05 h + + +	F	36	240	275	1.00	Length	Width	Depth	
BD	F-35 DOOL	F	30	215	3/2	Lea	mc	oved 30 ft w	ft west	
LAND TYPE: B	SLMST	ATE	FEE LAND	OWNER	Eva Owen I	Estate	OTHER			get man and
Depth to Groun	dwater	44	feet	NMOCD	SITE ASSE	SSMENT	RANKING S	CORE:	20	<u> </u>
Date Started	4/27/20	005	Date Cor	mpleted	4/28/2005		D Witness		no	
Soil Excavated	12	cubic yar	ds Exc	avation Le	ength 9	Width	3	Depth	12	feet
Soil Disposed	0	cubic yar	rds Off	fsite Facility	n/:	a ·	Location		n/a	
INAL ANALY	TICAL RES	SULTS:	Sampl	e Date	4/28/20	05	Sample De	pth	12 ft	

TPH, BTEX, and chloride laboratory test results completed by using an approved laboratory and testing procedures pursuant to NMOCD guidelines.

Sample	<u>Benzene</u>	<u>Toluene</u>	<u>Ethyl Benzene</u>	<u>Total Xylenes</u>	<u>GRO</u>	<u>DRO</u>	<u>Chloride</u>
Location	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GRAB @ 12 ft below junction box	0.00976	0.187	0.645	2.021	616	2120	32.2

General Description of Remedial Action:

This junction box historically contained a gas-releasing boot. The junction was moved 30 ft west with the pipeline replacement program. The box from the former junction was removed when the site was decontaminated for NORM. On 4/27/2005, a delineation trench was excavated at the site of the former junction with soil samples collected every vertical foot to 12 ft BGS. Sandy soils from the trench exhibited odors and stains of hydrocarbon impact. Chloride concentrations were very low and similar to that of the background sample (84 ppm). On 4/28/2005 a 12 ft grab sample was collected for lab analysis from the trench before it was backfilled. 12 cubic yards of clean soil was imported to complete the backfill and to contour the surface. An identification plate was placed on the surface of this site to mark the location of the former junction for future environmental considerations. NMOCD has been notified of potential groundwater impact at this location. A new water-tight junction box was built 30 ft west of this site.

ADDITIONAL EVALUATION IS HIGH PRIORITY

enclosures: chloride graph, photos, lab results

CHLORIDE FIELD TESTS

LOCATION	DEPTH (ft)	ppm
1	3	75
	4	68
vertical	5	75
	6	79
	7	75
junction box	8	110
	9	105
	10	84
	11	131
	12	86

HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

	srael Juarez SIGNATURE	localdury	COMPANY RICE Operating Company
		0 5	1
REPORT ASSEMBLED BY	Kristin Farris Pope	SIGNATURE	Knistin doine Pope
DATE	5/16/2005	TITLE	Project Scientist

* This site is a "DISCLOSURE." It will be placed on a prioritized list of similar sites for further consideration.

new poly plumbing for new junction box 30 ft west of former undisturbed junction box 23/2003 delineation trench 12 ft deep at former junction site BD F-35 vent & boot Unit 'F', Sec. 35, T21S, R37E 4/27/2005

* Laboratory analysis BD jct. F-35 boot T218, R37E Groundwater = 44 ft Vertical Delineation at Source epth bgs (It) 12 * 10 9 ∞ 0 _ CI ppm 32.3 84 131 105 110 68 79 75 75 ppm 200 250 100 150 50 \sim ယ Chloride Concentration vs. Depth 4 S 6 ► [Chloride] Depth bgs (ft) 7 ∞ 9 10 ____ 12 *

CHLORIDE CONCENTRATION CURVE

RICE Operating Company

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: BD F-35 Boot Grab Sample @ 12' Project Number: None Given Location: None Given

Lab Order Number: 5E02013

Report Date: 05/05/05

Rice Operating Co.	Project: BD	F-35 Boot Grab Sample @ 12'	Fax: (505) 397-1471
122 W. Taylor	Project Number: Nor	ne Given	Reported:
Hobbs NM, 88240	Project Manager: Roy	Rascon	05/05/05 12:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Grab Sample	5E02013-01	Soil	04/28/05 08:51	04/30/05 08:30

Page 1 of 8

Rice Operating Co.	Project:	BD F-35 Boot Grab Sample @ 12'	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Roy Rascon	05/05/05 12:49
		······································	

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting	Units	Dilution	Batch	Propagad	Analuzed	Method	Notes
Grab Sample (5E02013-01) Soil				Dilation	Balen	Troparou	Trinaty 200	sicalog	
Benzene	J [0.00976]	0.0250	mg/kg dry	25	EE50306	05/03/05	05/03/05	EPA 8021B	J
Toluene	0,187	0.0250	*	н	*	•	*		
Ethylbenzene	0,645	0.0250	4	٣	,	"		n	
Xylene (p/m)	1.63	0.0250		-	n		*	ê#	
Xylene (0)	0,391	0.0250	-	"		*	*	*	
Surrogate: a,a,a-Trifhuorotoluene		105 %	80-12	20	"	41	"	"	
Surrogate: 4-Bromofluorobenzene		129 %	80-12	10	"	p	"	**	S-04
Gasoline Range Organics C6-C12	616	10.0	mg/kg dry	1	EE50205	05/02/05	05/02/05	EPA 8015M	
Diesel Range Organics >C12-C35	2120	10.0	*	u		*	"	а	
Total Hydrocarbon C6-C35	2740	10.0		n	*	11	N		
Surrogate: 1-Chlorooctane		86.0 %	70-13	0	м	¢	R	#	
Surrogate: 1-Chlorooctadecane		76.4 %	70-13	0	*1	n	"	22	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page

Page 2 of 8

•	•
Rice Operating	Co. Project: BD F-35 Boot Grab Sample @ 12'
122 W. Taylor	Project Number: None Given

Fax: (505) 397-1471 Reported: 05/05/05 12:49

General Chemistry Parameters by EPA / Standard Methods

Project Manager: Roy Rascon

Environmental l	Lab of Texas
-----------------	--------------

Analyte	Result.	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	32.2	5.00	mg/kg	10	EE50311	05/03/05	05/03/05	EPA 300.0	
% Moisture	9.5	0.1	%	I	EE50301	05/02/05		% calculation	

Environmental Lab of Texas

Hobbs NM, 88240

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written upproval of Environmental Lab of Texas.

Page 3 of 8

Rice Operating Co.		I	Project: BE	F-35 Boot (Grab Sampl	e @ 12'			Fax: (505) 397-1471				
122 W. Taylor		Project N	umber: No	ne Given					Repo	rted:			
Hobbs NM, 88240		Project Ma	anager: Ro	y Rascon					05/05/0	5 12:49			
	0	rganics by	y GC - Q	Quality Co	ontrol								
		Environ	nental L	ab of Te	xas								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch EE50205 - Solvent Extraction (GC)													
Blank (EE50205-BLK1)				Prepared &	Analyzed:	05/02/05							
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet										
Diesel Range Organics >C12-C35	ND	10.0	n										
Total Hydrocarbon C6-C35	ND	10.0											
Surrogate: 1-Chlorooctane	38.5		mgʻkg	50.0		77, 0	70-130	-					
Surragate: 1-Chlorooctadecane	37.4		*	50.0		74.8	70-130						
LCS (EE50205-BS1)				Prepared &	Analyzed:	05/02/05							
Gasoline Range Organics C6-C12	411	10.0	mg/kg wet	500		82,2	75-125						
Diesel Range Organics >C12-C35	444	10.0		500		88.8	75-125						
Fotal Hydrocarbon C6-C35	855	10.0		1000		85.5	75-125						
Surrogate: 1-Chlorooctane	35.7		mg/kg	50.0		71.4	70-130						
Surrogate: 1-Chlorooctadecane	39.8		"	50.0		79.6	70-130						
Calibration Check (EE50205-CCV1)				Prepared &	Analyzed:	05/02/05							
Gasoline Range Organics C6-C12	428		mg/kg	500		85.6	80-120						
Diesel Range Organics >C12-C35	520		٣	500		104	80-120						
Total Hydrocarbon C6-C35	948		*	1000		94.8	80-120						
Surrogate: 1-Chlorooctane	46.4		n	50.0		92.8	70-130						
Surrogate: 1-Chloroovtadecane	38,2		"	50.0		76.4	70-130						
Matrix Spike (EE50205-MS1)	Sou	rce: 5E02002	-01	Prepared &	Analyzed:	05/02/05							
Dasoline Range Organics C6-C12	411	10.0	mg/kg dry	503	ND	81.7	75-125						
Diesel Range Organics >C12-C35	545	10.0	**	503	ND	108	75-125						
Fotal Hydrocarbon C6-C35	956	10.0	*	1010	ND	94.7	75-125						
Surrogate: 1-Chlorooctane	40.7		mg/kg	50.0		81.4	70-130						
Surrogate: 1-Chlorooctadecane	36.1		"	50.0		72.2	70-130						
Matrix Spike Dup (EE50205-MSD1)	Sou	rce: 5E02002	-01	Prepared &	Analyzed:	05/02/05							
Sasoline Range Organics C6-C12	495	10.0	mg/kg dry	503	ND	98.4	75-125	18.5	20				
Diesel Range Organics >C12-C35	523	10.0		503	ND	104	75-125	4.12	20				
fotal Hydrocarbon C6-C35	1020	10.0		1010	ND	101	75-125	6.48	20				
Surrogate: 1-Chloroactane	42.0		mg/kg	50.0		84,0	70-130		·	· · · · · ·			
Surroyate: 1-Chlorooctadecane	15.8		н	50.0		716	76.130						

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page

Page 4 of 8

Rice Operating Co. 122 W. Taylor		P Project Ni	roject: BI imber: No	O F-35 Boot (one Given	Grab Sampl	e @ 12'			Fax: (505)	Fax: (505) 397-1471			
Hobbs NM, 88240		Project Ma	nager: Ro	y Rascon					05/05/0	5 12:49			
		ganics by	GC - C	Juality Co	ontrol								
		Environn	nental I	Lab of Te	xas								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit) Notes			
Batch EE50306 - EPA 5030C (GC)													
Blank (EE50306-BLK1)				Prepared &	Analyzed:	05/03/05							
Всписне	ND	0.0250	mg/kg wet										
Toluene	ND	0.0250	24										
Ethylbenzene	ND	0.0250	"										
Xylene (p/m)	ND	0.0250	"										
Xylene (o)	ND	0.0250	۳.										
Surrogate: a,a,a-Trifluorotoluene	87.8		ug/kg	100		87.8	80-120						
Surrogate: 4-Bromofluorobenzene	94.7		*/	100		94.7	80-120						
LCS (EE50306-BS1)				Prepared &	: Analyzed:	05/03/05							
Benzene	86.9	······································	ug/kg	100		86.9	80-120						
Foluene	90.9		*	100		90.9	80-120						
Ethylbenzene	91.8			100		91.8	80-120						
Xylene (p/m)	208			200		104	80-120						
Xylenc (0)	99.3		N	100		99.3	80-120						
Surrogate: a,a,a-Trifluorotoluene	104	· · · · · · · · · · · · · · · · · · ·	"	100		104	80-120						
Surrogate: 4-Bromofluorobenzene	117		"	100		117	80-120						
Calibration Check (EE50306-CCV1)				Prepared: 0	5/03/05 Ai	nalyzed: 05	/04/05						
Benzene	86,1		ug/kg	100		86,1	80-120						
Foluene	87.3		9	100		87.3	80-120						
Ethylbenzene	82.6		"	100		82.6	80-120						
Yylene (p/m)	178		•	200		89.0	80-120						
Kylene (0)	85.5		•	100		85.5	80-120						
Surrogate: a.a.a-Trifluorotoluene	99.5		H	100		99.5	80-120						
Surrogate: 4-Bromojluorabenzene	- 88.0		u	100		88.0	80-120						
Matrix Spike (EE50306-MS1)	Sour	ce: 5D29014-	02	Prepared: 0	5/03/05 Ar	alyzed: 05	/04/05						
3enzene	90.6		ug/kg	100	ND	90.6	80-120						
oluene	93.5		"	100	ND	93.5	80-120		•				
thylbenzene	93.6			100	ND	93.6	80-120						
(ylene (p/m)	211		14	200	ND	106	80-120						
Cylene (0)	101		1+	100	ND	101	80-120						
urrogate: a,a,a-Trifluorosoluene	101		n	100		101	80-120						
urrogate: 4-Bromofluorobenzene	106		*	100		106	80-120						

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page

Page 5 of 8

,	
	•
-	1

Rice Operating Co.	Project:	BD F-35 Boot Grab Sample @ 12'	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager	Roy Rascon	05/05/05 12:49

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	l.evel	Result	%REC	Limits	RPD	Limit	Notes

Batch EE50306 - EPA 5030C (GC) *

Matrix Spike Dup (EE50306-MSD1)	Source: 51	D29014-02	Prepared &	Analyzed	05/03/05			
Benzene	83.2	ug/kg	100	ND	83.2	80-120	8,52	20
Toluene	85.0	*	100	ND	85.0	80-120	9.52	20
Ethylbenzene	82.2	-	100	ND	82.2	80-120	13.0	20
Xylene (p/m)	182	8	200	ND	91.0	80-120	15.2	20
Xylene (o)	88.5	*	100	ND	88.5	80-120	13.2	20
Surrogate: a,a,a-Trifluorotoluene	96.0	y	100		96,0	80-120		
Surraguie: 4-Bromofluorobenzene	113	"	100		113	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 8

Rice Operating Co.				Fax: (505) 397-147									
122 W. Taylor		Project Nu	mber: N	one Given					Repo	rted:			
Hobbs NM, 88240		Project Ma	nager: R	oy Rascon					05/05/05 12:49				
Genera	I Chemistry Par	ameters by	EPA /	Standard	l Metho	ds - Qua	lity Con	trol					
		Environn	nental	Lab of Te	xas								
Analyte	Result	Reporting Lîmit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch EE50301 - General Preparatio	on (Prep)												
Blank (EE50301-BLK1)				Prepared: (
% Moisture	ND	0.1	%		•								
Duplicate (EE50301-DUP1)	Sou	irce: 5E02002-	01	Prepared: ()5/02/05 A								
% Moisture	0.5	0.1	%		0.5			0.00	20				
Batch EE50311 - Water Extraction													
Blank (EE50311-BLK1)				Prepared &	Analyzed:	05/03/05							
Chloride	ND	0.500	mg/kg										
LCS (EE50311-BS1)				Prepared &	: Analyzed:	05/03/05							
Chloride	10,2		mg/l.	10.0		102	80-120						
Calibration Check (EE50311-CCV1)				Prepared &	Analyzed:								
Chloride	10.7		mg/L	10.0		107	80-120		A				
Duplicate (EE50311-DUP1)	Sou	rce: 5E02004-	01	Prepared &	Analyzed:	05/03/05							
Chloride	634	100	mg/kg	* ************************************	636			0.315	20				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 8

.

Rice Oper 122 W. Ta Hobbs NN	rating Co. aylor vi, 88240	Project: Project Number: Project Manager:	BD F-35 Boot Grab Sample @ 12' None Given Roy Rascon	Fax: (505) 397-147] Reported: 05/05/05 12:49
S-04	The surrogate recovery for this sample is outside o	f established control	limits due to a sample matrix effect.	
J	Detected but below the Reporting Limit; therefore,	, result is an estimated	d concentration (CLP J-Flag).	
DET	Analyte DETECTED			

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland K Julies Date: 5/5/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 8

	012	¢							_	۰.	۰.													
	0									TAT bisb	USIS									4.		:		
	Ter A					1		******	1.	alubado2-ang) TAT Hi	sna I	-+-	+	+		-+	-+-			┥_			ł	
L.	X										-+			+		-+	+		-†	12				
iues	20	İ									-1		1			-	-		1				3	
REQ	હ																			T	ž	, ו ו	8	
SIS	*									Contonstantions, TDS	юįвМ		_						_		1	Š.,	4.	
ALY	de la	{						1	.	CEC, SAR, ESP	ECC					-+	_			celp d				
AN	5						vze		 	D605/81208 X	11.0	<u>×</u> -		$\left \right $						a la	nent	1		
ANC	\sim		i				Anal	+	┨───	nivojaŭi63	195			+-+						L all	amo j	15	l	
CKD CKD	1						$\left[\right] -$	+	loc f	HUR VA VA RA LO LE LA	NIGH			++		-+				fure 201	0: ≩	همامه ۱	\sim	
ECC	22						a			1 BOIEN CHOUSE		$\overline{\mathbf{x}}$	+	$\left - \right $						Perel O	rato	ЧÇ.	23	
УR	ě	*	ž	 ₩	1		Į.	101	┢─	900¥/500¥ XJ.F	ter		+			-+	-+	-+-		Sam Sam	e bo	ě	-3	
TOL	Мап	Ject	ב ז	õ						t.8r) ł	स्वा		1			1			-	1	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	G	
cns	jact	ď	roje							ľ	וכר	\mathbf{x}]	Time	مٰن	E Me	
OF.	2 d		۵.							(Appeds) a	ertto]	Ĺ		0	
ła(n									칇		POS	<u>×</u>						_		_		~	5	
さ	F	t		e I		I	I		Į≥ -	989	pnis								4_	- ·	Date	5	S St	
									\vdash	St stranger	PEAN			$\left - \right $	\neg	-+	-+-	_		4		The second	52	
										(Vicinos) a				$\left - \right $	-+	-				-	-			
									2		с ⁷ н			$\left\{ -\right\}$		-+	-+			-			. [
	1								1 Z	н	אייכ		+	+	-+	-+	┯╋			-				
					147				les.	a Mahadha an an an ann an an an an an an an an a	IJН		+-		\neg	\neg		-	-+	1				
					-16					fc	жн									1		\backslash		
			1		ю-р				Ш		901	\times]		1		
					50					of Containers	ON	-										Can and a second se		
					Fex No:					balqme2 an	niT	1.51 129										and the second	1 Jul	
ů										bəlqms2 st	60 Da	23.65			_						eived by:	A Contraction	and by ELOT.	
S											-	5	1							4	Rec	\sim	8 ×	
Kas , 1800 1713		Au			l	X															Time	9:15	Time	
		dm				2.750															-	5	0	
of 1 ² 316 ² 316		ng Co	2	98240	4	l'a	÷.,				CODE	7									Date	-29-0-	Costo Costo	~
a a	ascon	perati	Taylo	MN	3-917	2561	13				FIELD	2 2 T										14		
annan annan	УR	8	2 V	sdö	5-3	L'						n el											ι , Ι	
ta	Ř	ž	2	윈	20	1	•					N.												
5	:168	arno	688;	ZIp:	No:	:eun						ar										Å	1	
88 X	lana	y Vr	Vddn	tate/	ane	gnat			L			E						·		1.	}	والمعرية	1. 1	
/ironr Vest1-20 Ear , Texas 7974	Project M	Сотрал	Company A	Clty/SI	Teleph	Sampler Si				5/2	ib usé only)									nstructions:	ed by:	ailler	12 J C	
										los est	AB # (2									Special	(elinquist	124		

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	lice operating
Date/Time:	5/2/05 8:30
Orcer #:	6E0203
Initials:	· r.V

Sample Receipt Checklist

Femcerature of container/cooler?	Yas I	Nc 1	2.0 Ci
Shicoing container/cooler in good condition?	YESI	NG 1	
Custody Seals intect on shipping container/cooler?	1 733 1	No 1	Not cresent
Custody Seals Intact on sample cottles?	1 Jan	Nc :	Not oresent
Chain of custody present?	Xes i	Ne	
Esample Instructions complete on Chain of Custody?	1 A	NC 3	
Chain of Custody signed when relinquished and received?	1 23 1	Ne 1	
Chain of sustody agrees with sample label(s)	1 Nes :	No -	
Container labels legible and intact?	1 Yest	Nic -	
Sample Matrix and properties same as on chain of sustody?	YES	No	
Samples in proper container/bottle?	KS.	No	
Samples procedy preserved?	1.00	No	
Sample bottles intact?	1 Viel	No	
Preservations documented on Chain of Custody?	1 63	No	
Containers documented on Chain of Custony?	175	No	
Sufficient sample amount for incidated test?	Frs	NHC .	
. Al sampes received within sufficient ficial time?	· B	NC.	:
/ VCC samples have zero headspace?	1 105	NG	Not Acolicabia

·

Other observations:

Variance Documentation:

Contact Person:	 Date:77me:	 Contected by:	•
Regeraing:		•	

Corrective Action Takan:

4