AP -

AMEMOED STAGE182 WORKPLANS

DATE:

S-25-06

Hansen, Edward J., EMNRD

From:

Hack Conder [hconder@riceswd.com]

Sent:

Tuesday, May 12, 2009 12:21 PM

To: Cc: Hansen, Edward J., EMNRD 'Katie Jones'; 'Hall, Sharon'

Subject:

RE: EME M16-1 AP 42

Hack Conder Environmental Manager Rice Operating Company 575-393-9174 fax 575-397-1471

From: Hack Conder [mailto:hconder@riceswd.com]

Sent: Tuesday, May 12, 2009 12:08 PM

To: 'Hansen, Edward J., EMNRD'

Cc: 'Katie Jones'

Subject: EME M16-1 AP 42

Ed,

I am requesting an addendum to AP42 section 7.3 I would like to ad the following sentence to the last paragraph in this section

Total volume and chloride content of the recovered groundwater will be measured prior to being utilized in pipeline maintenance operations.

Thanks

Hack Conder Environmental Manager Rice Operating Company 575-393-9174 fax 575-397-1471

This inbound email has been scanned by the MessageLabs Email Security System.

Hansen, Edward J., EMNRD

From:

Hall, Sharon [Sharon.Hall@arcadis-us.com]

Sent:

Thursday, March 05, 2009 7:07 AM

To:

Jones, Brad A., EMNRD

Cc:

Hansen, Edward J., EMNRD; Hack Conder

Subject:

NMOCD case # AP-42 ROC Response

Attachments:

03-04-09 response letter.pdf

Brad,

Respectfully submitted on behalf of ROC is this response to your meeting discussions with ROC. Please let Hack or me know if you have any questions or need additional information.

Regards,

fax:432 687-5401

Sharon

Sharon E. Hall PG, REM Associate Vice President ARCADIS G&M Inc 1004 N. Big Spring Street, Suite 300 Midland, Texas 79701 ph: 432 687-5400

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates.

This inbound email has been scanned by the MessageLabs Email Security System.

Infrastructure, environment, buildings

Sent Certified Mail Return Receipt No. 7002 2410 0001 5813 0172

Mr. Brad Jones
New Mexico Energy, Minerals, & Natural Resources Dept.
Oil Conservation Division. Environmental Bureau
1220 S. St. Francis Drive
Santa Fe, New Mexico 87505

e, isew mealed arous

Subject

Response to NMOCD Request Jet. M-16-1, EME SWD SYSTEM Unit M, SEC. 16, T20S, R37E NMOCD CASE # AP-42

Dear Mr. Jones:

On behalf of Rice Operating Company (ROC), ARCADIS G&M, Inc. (ARCADIS) respectfully submits this response to your request to ROC in the meeting on February 24, 2008 regarding this site. NMOCD requested further information regarding the likelihood of impacts to groundwater resulting from vadose zone conditions.

The highest chloride concentration detected in investigation trench soil samples was 875 mg/kg and averaged 313 mg/kg. Chloride concentrations represent field tested chloride concentrations. It has been documented at other ROC sites that duplicate soil samples submitted for laboratory analysis have resulted in a laboratory concentration less than that measured in the field. This suggests that the field measured chloride concentrations may be conservatively higher than actual concentrations. Based on the trench investigations, vadose zone conditions should not contribute to elevated chloride concentrations at the site. Additionally, ROC's Stage 2 Abatement Plan Proposal provided a chloride mass calculation and proposed removal of the calculated chloride mass.

ROC is the service provider (agent) for the BD Salt Water Disposal System and has no ownership of any portion of pipeline, well or facility. The BD SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

Environmental

ARCADIS G&M, Inc.

Tel 432 687 5400

Fax 432 687 5401 www.arcadis-us.com

Suite 300 Midland Texas 79701

1004 North Big Spring Street

March 4, 2009

Comag. Sharon E. Hall

Phone: 432 687-5400

shall@arcadis-us.com

Our ret MT000834.0001

Part of a bigger picture

ARCADIS

Mr. Brad Jones

March 4, 2008

Thank you for your consideration concerning this additional information regarding vadose zone conditions. Your approval of the Stage 2 Abatement Plan Proposal will be appreciated. If you have any questions, do not hesitate to contact me.

Sincerely, ARCADIS G&M, Inc.

Sham E. Huer

Sharon E. Hall Associate Vice President

Copies: Ed Hansen, NMOCD Hack Conder, ROC Marvin Burrows, ROC

Use or disclosure of information contained on this sheet is subject to the restriction and disclaimer located on the signature page of this document.

Imagine the result

2008 AUG 28 PM 3 35

Eunice Monument Eumont (EME) Saltwater Disposal System Jct. M-16-1

NMOCD AP-42

Stage 1 Abatement Plan Report and Stage 2 Abatement Plan Proposal

Rice Operating Company

Hobbs, New Mexico

Infrastructure, buildings, environment, communications PN 3 35

Ed Hansen New Mexico Oil Conservation Division 1220 So. Saint Francis Drive Santa Fe, New Mexico 87505

Certified Mail Receipt No. 7002 2410 0001 5812 9978

ARCADIS U.S., Inc. 1004 N. Big Spring Street Suite 300 Midland Texas 79701 Tel 432.687.5400 Fax 432.687.5401 www.arcadis-us.com

Subject:

Stage 1 Abatement Plan Report and Stage 2 Abatement Plans Eunice Monument Eumont (EME) M-16-1 and A-20 NMOCD Case # AP-42 and AP-43

Dear Mr. Hansen,

Respectfully submitted on behalf of Rice Operating Company are the above-referenced Stage 1 Abatement Plan Reports and Stage 2 Abatement Plan Proposals. Please let Hack or I know if you have any questions or need additional information.

Very Truly Yours,

ARCADIS U.S, Inc.

Sharn E. Hall

Sharon E. Hall Associate Vice President

Copies:

Hack Conder- Rice Operating Company

Attachment:

EME M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan Proposal with CD EME A-20 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan Proposal with CD

Date:

August 25, 2008

Contact:

Sharon Hall

Phone:

432 687-5400

shall@arcadis-us.com

Sharon E. Hall

Associate Vice President

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan Proposal Rice Operating Company Hobbs, New Mexico

Prepared for:
Rice Operating Company

Prepared by:
ARCADIS
1004 N. Big Spring Street
Suite 300
Midland,
Texas 79701
Tel 432.687.5400
Fax 432.687.5401

Our Ref.: MT000856.0001.00001

Date: August 25, 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

1.	Executive Summary							
2.	Chronology of Events							
3.	Вас	kground	2					
4.	Geo	logy and Hydrogeology	3					
	4.1	Regional and Local Geology	3					
	4.2	Regional and Local Hydrogeology	3					
5.	Sub	surface Soils	4					
6.	Gro	undwater Quality	4					
	6.1	Hydrocarbons in Groundwater	5					
7.	Stag	ge 2 Abatement Plan	5					
	7.1	Remediation of Soil	5					
	7.2	Groundwater	6					
	7.3	Chloride Mass Calculation and Chloride Mass Removal Work Plan	6					
	7.4	Reporting	8					
8.	Pro	posed Schedule of Activities	8					
9.	Refe	erences	8					

Figures

- 1 Site Location Map
- 2 Trench, Boring and Monitor Well Locations
- 3 Soil Sampling Results
- 4 October 2006 Groundwater Sampling Results

Table of Contents

Tables

- 1 Soil Sample Analytical Results
- 2 Monitor Well Data Sheets

Appendices

- A Soil Boring Lithology Log
- B Monitor Well Logs
- C Laboratory Analytical Results
- D Recovery Well Design Diagram

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

Rice Operating Company Hobbs, New Mexico

1. Executive Summary

The subject site is a junction box on the EME Salt Water Disposal System operated by Rice Operating Company (ROC). The site is located in Section 16, Township 20 south, Range 37 east, Lea County, New Mexico, near the town of Monument/Oil Center (Figure 1). The disposal system transports produced water from oil and gas leases to a permitted well for disposal by subsurface injection.

Identification of soil impacts occurred during line replacement being performed as part of the approved Junction Box Upgrade Program. Soil investigation at Jct. M-16-1 was initiated in December 2001 with a back hoe by trenching to 12 feet below ground surface (bgs) in five locations. To further delineate depth of impact, a soil boring was completed to a depth of 35 feet bgs at the junction box location. Soil samples were analyzed in the field for chlorides using field-adapted Method 9253. The soil boring samples were additionally analyzed in the field for total petroleum hydrocarbons (TPH) using field-adapted Method 9253.

On January 9, 2002, a monitor well (MW-1) was installed southwest of Jct. M-16-1 (Figure 2). A water level was recorded at 22.60 feet below measuring point. The monitor well has been sampled quarterly since installation. Four additional monitor wells have been installed at the site; MW-2 and MW-3 were installed on February 28, 2006, and MW-4 and MW-5 were installed on June 1, 2006.

A Stage 1 Abatement Plan proposal was submitted on June 02, 2005 and following approval by the New Mexico Oil Conservation Division (NMOCD) a Public Notice was submitted on November 28, 2005.

Soil impacts at the site include chlorides and hydrocarbons. Groundwater samples exhibit elevated chloride concentrations consistent with regional impacts. This Stage 1 Report and Stage 2 Abatement Plan proposes restoration of the site with native soils and seeding.

2. Chronology of Events

- Initial delineation began on December 11, 2001 and was performed as part of the Junction Box Upgrade Program;
- A soil boring was installed on December 20, 2001 to a depth of 35 feet bgs for TPH and chlorides;

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

Rice Operating Company Hobbs, New Mexico

- On January 9, 2002, a monitor well (MW-1) was installed southwest of the Jct. M-16-1. A groundwater sample was submitted for laboratory analysis for benzene, toluene, ethylbenzene and xylenes (BTEX) and chlorides;
- ROC notified the New Mexico Oil Conservation Division (NMOCD) of groundwater impacts on January 18, 2002. The monitor well has been sampled quarterly since installation, and a Monitor Well Report has been submitted annually. The most recent report was submitted on January 12, 2006.
- An Investigation & Characterization Plan was submitted to the NMOCD on March 21, 2005. On May 05, 2005, Mr. Daniel Sanchez of the NMOCD wrote a letter to ROC indicating that several sites, including Jct. M-16-1, required abatement plans pursuant to NMOCD Rule 19.
- A Stage 1 Abatement Plan proposal was submitted on June 02, 2005 and following approval by the New Mexico Oil Conservation Division (NMOCD) Public Notice was submitted on November 28, 2005.
- The Stage 1 Abatement Plan proposal was approved by NMOCD on February 21, 2006.
- On January 30, 2007, a Stage 1 Abatement Plan Report and Stage 2 Abatement Plan was submitted to NMOCD; and
- On July 1, 2008, the Stage 1 Abatement Plan Report and Stage 2 Abatement Plan was conditionally deemed administratively complete with recommendations for an amendment to the plan to include an estimation of chloride mass related to the release at the site and a plan for removal of that mass.

3. Background

Identification of soil impacts occurred during line replacement being performed as part of the approved Junction Box Upgrade Program. A soil boring and monitor well have been installed at the site, and the monitor well has been sampled quarterly since installation on January 9, 2002. The latest annual Monitor Well Report was submitted to the NMOCD on January 12, 2006. An Investigation and Characterization Plan was submitted to the NMOCD on March 23, 2005. On May 5, 2005, the NMOCD requested that ROC submit an abatement plan to the NMOCD pursuant to Rule 19. The Stage 1 Abatement Plan was submitted to NMOCD on June 6, 2005 and

Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

EME Jct. M-16-1

Rice Operating Company Hobbs, New Mexico

approved as administratively complete on November 18, 2005. Public Notice was submitted to the NMOCD on November 28, 2005 and published in the *Albuquerque Journal* and *Hobbs News Sun* on December 9, 2005.

The Stage 1 Abatement Plan Proposal proposed site soil and groundwater investigation activities including: performing a one-mile water well inventory; further delineation of the vertical and lateral extent of soil impact; and investigation of groundwater impacts. Stage 1 activities were performed in February, June and July 2006 following the public comment period and receipt of NMOCD final approval of the Stage 1 Abatement Plan Proposal.

On January 30, 2007, a Stage 1 Abatement Plan Report and Stage 2 Abatement Plan was submitted to NMOCD. On July 1, 2008 the Stage 1 Abatement Plan Report and Stage 2 Abatement Plan was conditionally deemed administratively complete with recommendations for an amendment to the plan to include an estimation of chloride mass related to the release at the site and a plan for removal of that mass.

4. Geology and Hydrogeology

4.1 Regional and Local Geology

The subject site lies in southern Lea County in the Pecos valley section of the Great Plains physiographic province. The site lies within the Eunice Plain, which is bounded by the South Plain to the south, the Rattlesnake Ridge to the east, the High Plains to the northeast, the Laguna Valley and Gramma Ridge Area to the northwest, the San Simon Ridge and San Simon Sale to the west and the Antelope Ridge Area to the southwest. An estimated 80% of southern Lea County is covered by sand. Shin oak, bear grass and burr grass dominate the areas of sand cover. Elsewhere, the vegetation is grama grass, burr grass and mesquite.

Monument Draw is the only major surface drainage feature in southern Lea County. The draw runs north and south slightly over two miles east of the M-16-1 junction box. Generally, the topography in the area of the site slopes gently to Monument Draw at an approximate dip of 35 feet per mile.

4.2 Regional and Local Hydrogeology

The Ogallala Formation is the principal source of groundwater in the subject area. Depth to groundwater in Lea County ranges from approximately 12 to approximately

300 feet bgs. The Ogallala consists of predominantly coarse fluvial conglomerate and sandstone and fine-grained Eolian siltstone and clay. Where present in the subject area, the Ogallala unconformably overlies Triassic redbeds. The regional groundwater gradient is to the east/southeast. The local groundwater gradient is very flat and to the southwest. Depth to groundwater at the subject site is approximately 23 feet bgs. Subsurface geology in the subject area consists of approximately 15 to 20 feet of loose, fine-grained, calcareous sand underlain by caliche to a depth of approximately 20 to 25 feet bgs. The caliche is underlain by fine-grained sand. The boring lithology log is included in Appendix A.

5. Subsurface Soils

Soil delineation field activities were conducted in December 2001. Initial delineation was begun by ROC as part of the Junction Box Upgrade Program. Investigation activities were conducted with a backhoe by trenching to 12 feet bgs in five locations. To further delineate depth of impact, a soil boring at the junction to 35 feet was completed. Soil samples were analyzed in the field for chlorides using field-adapted Method 9253. Field chloride concentrations are shown in Table 1 and Figure 3. The presence of hydrocarbons was noted in field observations.

6. Groundwater Quality

On January 9, 2002, a monitor well (MW-1) was installed southwest of Jct. M-16-1 (Figure 2). The water level was recorded at 22.60 feet below measuring point. Monitor well MW-1 has been sampled quarterly since installation.

In accordance with the Stage 1 Abatement Plan, monitor wells MW-2 and MW-3 were installed southeast and southwest of Jct. M-16-1 (Figure 2) on February 28, 2006 and March 1, 2006, respectively. Monitor wells MW-4 and MW-5 were installed June 1, 2006 south and north of Jct. M-16-1 (Figure 2), respectively. Static water levels were recorded for the existing monitor well, MW-1, and the new monitor wells MW-2, MW-3, MW-4 and MW-5. Monitor well logs are included in Appendix B. The measurements are presented in Table 2.

Monitor well MW-1, installed in January 2002, has been monitored quarterly since its installation. Analysis of groundwater includes BTEX using USEPA Method 8021B and inorganic compounds (total alkalinity, chloride, total dissolved solids, sulfate, calcium, magnesium, sodium and potassium) using EPA Methods 310, 300, 160.1 and 6010B. Analytical results for the quarterly groundwater monitoring have been

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

Rice Operating Company Hobbs, New Mexico

submitted annually to the NMOCD. The historical results for MW-1 are presented in Table 2.

Concentrations of inorganic compounds including chlorides, TDS, sulfate and sodium are elevated in the groundwater samples collected from monitor well MW-1. Wells intended as background monitor wells (MW-2 and MW-5) and downgradient monitor wells (MW-3 and MW-4) also contain elevated concentrations of these compounds.

Analysis of groundwater from monitor wells MW-2, MW-3, MW-4 and MW-5 included BTEX, using USEPA Method 8021B and inorganic compounds (total alkalinity, chloride, total dissolved solids, sulfate, calcium, magnesium, sodium and potassium), using EPA Methods 310, 300, 160.1 and 6010B. Monitor wells MW-2 and MW-3 were sampled in March, May, July and October 2006. Monitor wells MW-4 and MW-5 were sampled in June, July and October 2006. The analytical results for all of the monitor wells are presented in Table 2.

6.1 Hydrocarbons in Groundwater

No free-phase hydrocarbons have been detected in groundwater. In only one sampling event, November 24, 2004, have hydrocarbons been detected in groundwater in MW-1. Toluene, ethylbenzene and xylenes were detected at concentrations well below the New Mexico drinking water standards. These compounds were not detected in the 2006 sampling events in samples collected from any of the monitor wells.

7. Stage 2 Abatement Plan

7.1 Remediation of Soil

The highest chloride concentration detected in soil samples was 875 mg/kg at the location 15 feet south of the valve at a depth of 12 feet below ground surface (bgs). The presence of hydrocarbons was noted in field observations. Hydrocarbons (BTEX) were not detected in any of the samples collected from the monitor wells. A soil sample was collected from the boring at a depth of 25 feet bgs and gasoline range organic (GRO) and diesel range organic (DRO) concentrations were less than 50 mg/kg. It appears that soil impacts resulting from the junction box have been removed by excavation of soils.

Soil that will support re-vegetation will be placed above the backfilled excavations. The area will be evaluated for fertilizer or soil amendment requirements and reseeded

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

Rice Operating Company Hobbs, New Mexico

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

Rice Operating Company Hobbs, New Mexico

with native vegetation. Areas that are not currently supporting vegetation will be ripped and blended with topsoil and reseeded with native grasses. Areas supporting vegetation will not be disturbed.

7.2 Groundwater

Groundwater in the area has been reported as regionally impacted with chlorides and unusable as early as 1952 (Groundwater Report 6). No water wells were identified in Township 20, Section 37 in the USGS and state databases. This site did not significantly contribute to the degradation of groundwater quality.

No further action regarding chloride impacted groundwater was proposed for this site in the Stage 1 Abatement Plan Report and Stage 2 Abatement Plan submitted on January 30, 2007.

As requested by the NMOCD in their conditional approval as administratively complete of the Stage 1 Abatement Plan Report and Stage 2 Abatement Plan submitted on January 30, 2007, the following revisions are made to the Stage 2 Abatement Plan:

This Stage 2 Abatement Plan is revised to include an estimation of the chloride mass that may have impacted groundwater as a results of the release from junction box and a plan for the removal of that mass.

7.3 Chloride Mass Calculation and Chloride Mass Removal Work Plan

Calculations used to estimate the chloride mass in groundwater that may have resulted from releases from the former junction box is detailed in the table below. The size of the impacted area is conservatively assumed to be the combined width and length of the excavation multiplied by a factor of 10 (the estimated horizontal dispersivity factor). This total area is then multiplied by the thickness of the aquifer (15 feet) and the estimated porosity (25%) resulting in a total saturated pore space volume.

The increase in chloride concentrations in groundwater is calculated by subtracting the lowest chloride concentration at the site (MW-3, 2,650 mg/L) from the highest measured chloride concentration identified at the site (MW-1, 1,800 mg/L). This net difference in chloride concentrations conservatively reflects the net impact to groundwater at the site resulting from releases from the junction boxes. It does not take into account other sources or regional groundwater conditions. Impacted groundwater conditions are documented in this area since the 1950's. (Ground-Water Report 6; Geology and Ground-Water Conditions in Southern Lea County, New Mexico;

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

Rice Operating Company Hobbs, New Mexico

Alexander Nicholson, Jr. and Alfred Clebsch, Jr., U.S. Geological Survey in cooperation with the State Bureau of Mines and Mineral Resources Division of the New Mexico Institute of Mining and Technology and with the State engineer.)

The net difference in the concentration of chlorides is multiplied by the total saturated pore space volume resulting in the estimated chloride mass as shown in the following table.

Estimate of Chloride Mass

Parameter	Value	Description of equations used
Release Area	1600 ft ²	Physical measurement of junction box excavation
Longitudinal Dispersivity	10	Professional estimate for factoring the plume length
Aquifer Thickness	15 ft	Based on regional groundwater data*
Porosity	25%	Professional estimate of pore volume
Volume of impacted groundwater below former junction boxes	60,000 ft ³	Multiplication of parameters listed above
Volume of impacted groundwater below former junction boxes	1,699010.8 L	Unit conversion of above value to liters
Averaged increase in onsite chloride concentrations	850 mg/L	Difference between concentrations in MW-4 and MW-1
Total Chloride Mass	1,444.15 kg	Multiplication of two parameters above

^{*} Ground-Water Report 6; Geology and Ground-Water Conditions in Southern Lea County, New Mexico; Nicholson and Clebsch

EME Jct. M-16-1 Stage 1 Abatement Plan Report and Stage 2 Abatement Plan

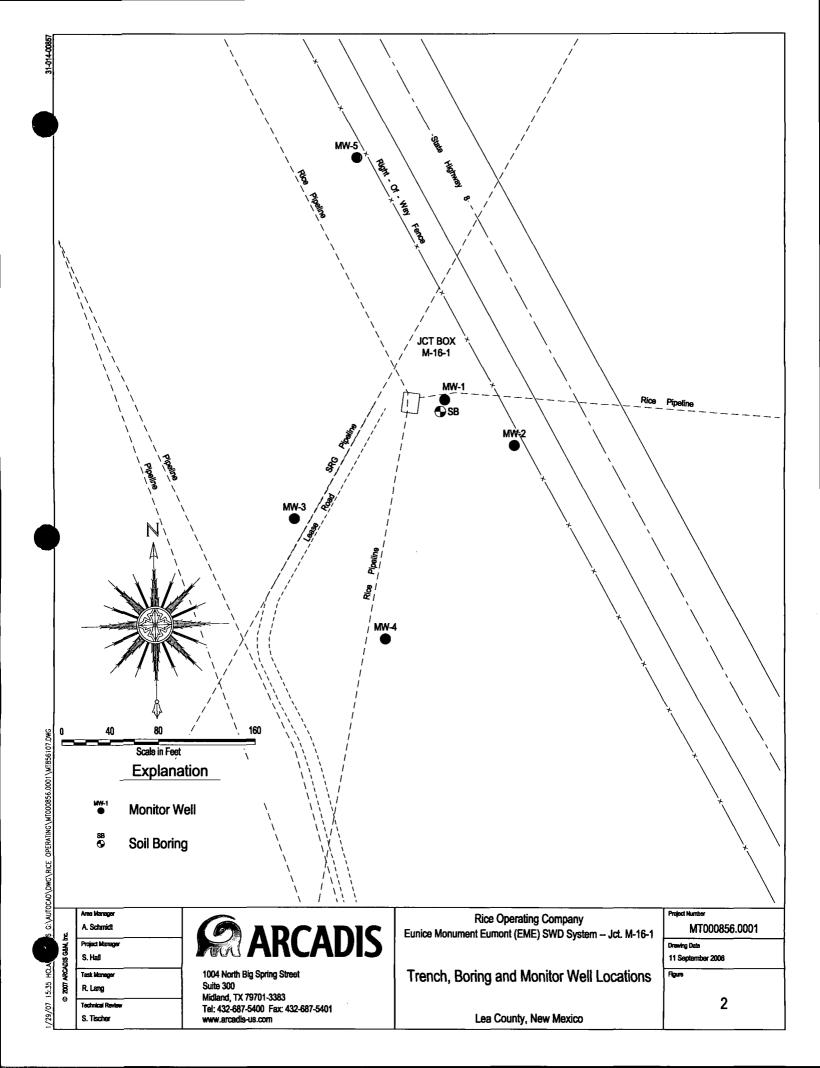
Rice Operating Company Hobbs, New Mexico

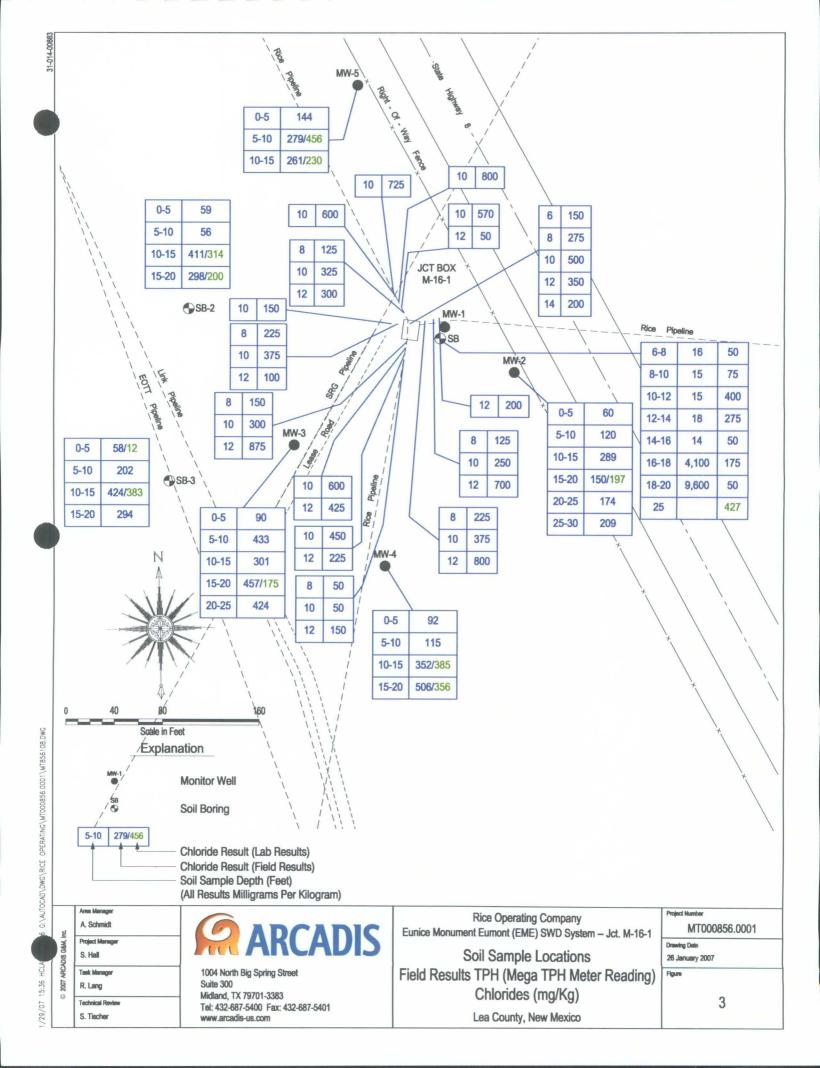
At a pumping rate of 1 gallon per minute, for a daily ten-hour period the groundwater recovery system could extract 1.08 kg per day. At that rate it will take approximately 1,337 days to remove the 1,444.15 kg of chloride mass. The groundwater will be extracted from a newly-installed 4-inch recovery well. The recovery well design is shown in Appendix D.

Installation of the groundwater recovery system is contingent on approval of the New Mexico Office of the State Engineer and landowner approval in accordance with NMSA 1978 Article 72-12-3(B) (Article 1 1-17). The volume of recovery and duration to completion of recovery is based on the wells yield that can be sustained during pumping. If the recovery volumes are not sufficient to complete the chloride mass recovery in 1,337 days, NMOCD will be notified and informed of the anticipated duration of recovery operations. Additionally, a second pump may be placed in another well. Additionally, second 4-inch recovery well may be installed and equipped with a pump.

7.4 Reporting


A Stage 2 Abatement Plan report detailing investigation activities and results will be submitted to the NMOCD. The report will include recommendations for closure of the site.


8. Proposed Schedule of Activities


Following approval of this Stage 2 Abatement Plan by the NMOCD, surface restoration will commence within 30 days of approval. A Stage 2 Abatement Completion Report will be submitted within 45 days of completion of field activities.

9. References

Groundwater Report 6; Geology and Ground-Water Conditions in Southern Lea County, New Mexico; Alexander Nicholson, Jr. and Alfred Clebsch, Jr.

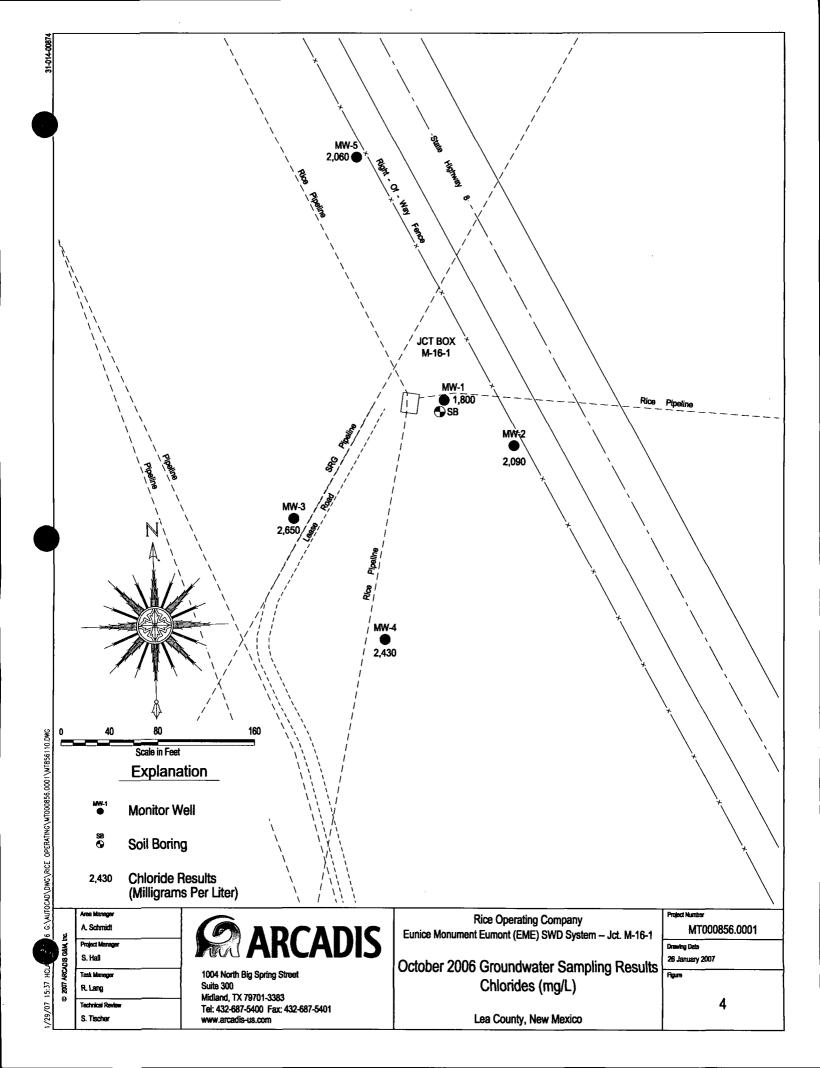


Table 1 Soil Sample Analytical Results December 11, 2001

Sample ID and Depth	Field Chloride (mg/kg)
Source 6' bgs	150
Source 8' bgs	275
Source 10' bgs	500
Source 12' bgs	350
Source 14' bgs	200
10'N of valve 8 'bgs	. 125
10'N of valve 10'bgs	325
10'N of valve 12'bgs	300
15'N of valve 10'bgs	570
15'N of valve 12'bgs	50
20'N of valve 10'bgs	800
25'N of valve 10'bgs	600
30'N of valve 10'bgs	725
13' E of valve 8'bgs	225
13' E of valve 10'bgs	375
13' E of valve 12'bgs	800
20' E of valve 8'bgs	125
20' E of valve 10'bgs	250
20' E of valve 12'bgs	700
25' E of valve 12'bgs	200
15' S of valve 8' bgs	150
15' S of valve 10' bgs	300
15' S of valve 12' bgs	875
20' S of valve 10' bgs	600
20' S of valve 12' bgs	425
25' S of valve 10' bgs	450
25' S of valve 12' bgs	225
30' S of valve 8' bgs	50
30' S of valve 10' bgs	50
30' S of valve 12' bgs	. 150
10' W of valve 8'bgs	225
10' W of valve 10'bgs	375
10' W of valve 12'bgs	100
15' W of valve 10'bgs	150

Bgs- below ground surface
Mg/kg- milligrams per kilogram

Table 1 (con't) Soil Sample Analytical Results December 20, 2001

Sample ID and Depth	Field TPH Mega TPH Reading	Field Chlorides (mg/kg)
SB 6-8' bgs	16	50
SB 8-10' bgs	15	75
SB 10-12' bgs	15	400
SB 12-14' bgs	18	275
SB 14-16' bgs	14	50
SB 16-18' bgs	4,100	175
SB 18-20' bgs	9,600	50

Bgs- below ground surface

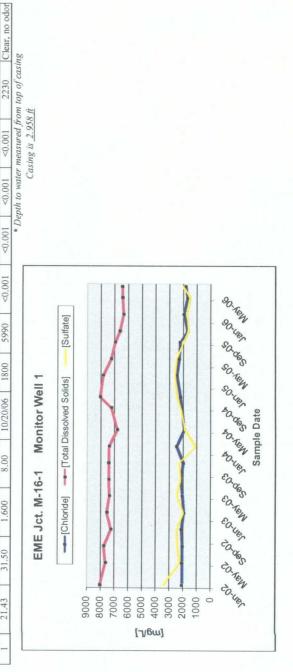
Mg/kg- milligrams per kilogram

Table 1 (con't)
Soil Sample Laboratory Analytical Results
January 10, 2002

Sample ID and Depth	GRO (mg/kg)	DRO (mg/kg)	Chlorides (mg/kg)
SB @25' bgs	<50	<50	427

Bgs- below ground surface

Mg/kg- milligrams per kilogram

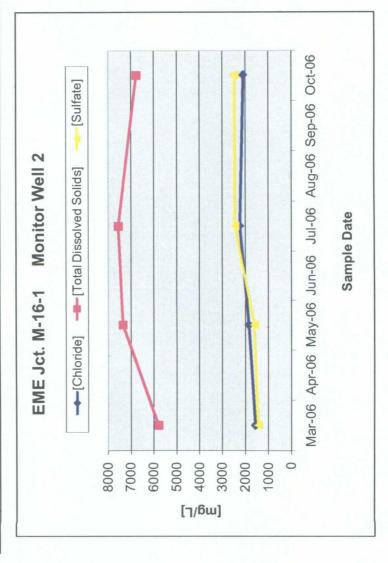

EME jct. M-16-1 unit 'M', Sec. 16, T20S, R37E

NMOCD Case #1R0427-93

2-inch well

	COMMENTS												lt. odor; clear				Clear with no	odor	Clear with no	odor			Clook no odon
	SULFATE	3420	2220	2380	2460	1980	2470	2170	2300	1106	1889	2180	2460	2600	2480	1990		1630		1740	1510	2010	2230
	TOTAL	>0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	>0.006	<0.006	<0.001	0.01019	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001	70.001
ng/L	ETHYL TOTAL BENZENE XYLENES	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	0.00291	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001	Z0 001
All concentrations are in ingle	TOLUENE	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	0.000766	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001	<0.001
All Collectina	BENZENE TOLUENE	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001	ZO 001
,	TDS	8016	7620	7740	7230	7520	7350	7390	7400	7368	6784	7200	8020	7810	7230	0569		0099		6340	6420	6435	2000
	CT	2079	2070	2040	2130	1960	2060	2170	1990	2479	1919	2130	2210	2470	2310	2250		1700		1960	1690	1830	1800
	SAMPLE DATE	01/10/02	05/13/02	08/23/02	11/12/02	02/27/03	05/22/03	08/22/03	11/20/03	02/18/04	05/26/04	09/07/04	11/24/04	03/22/05	06/28/05	50/90/60		11/02/05		02/01/06	05/03/06	7/25/2006	10/00/06
1)	VOLUME PURGED	6.10	1.00	5.75	5.50	5.40	5.40	5.00	4.90	4.47	5.50	3.95	4.30	XXX	5.61	5.09		5.00		5.00	10.00	10.00	8 00
(gai)	WELL	2.000	0.325	1.875	1.786	1.800	1.824	1.660	1.640	1.490	1.840	1.315	1.430	XXX	XXX	XXX		1.600		1.600	1.700	1.500	1 600
	TOTAL	35.10	25.81	34.80	34.69	34.49	34.50	34.25	34.34	34.25	34.25	31.40	31.40	XXX	32.00	32.00		31.50		31.50	31.50	31.50	3150
(11)	DEPTH TO WATER *	22.60	23.78	23.08	23.53	23.20	23.10	23.83	24.07	24.90	22.75	23.18	22.45	XXX	21.00	21.39		21.35		21.27	21.14	21.95	2143
	# MM	1	1	1	1	1	1	1	1	1	1	_	1	1	1	1		-		_	-	1	-

Casing is 2.958 ft

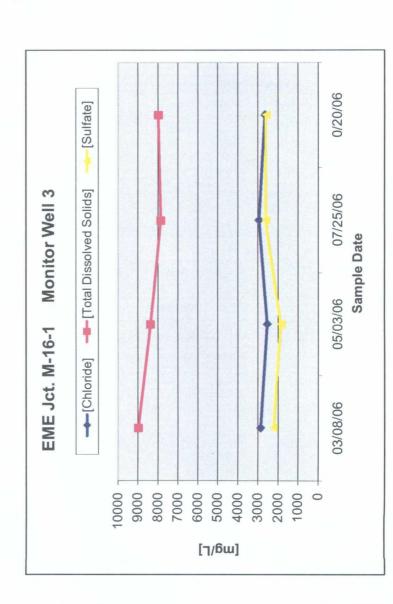

EME jct. M-16-1

unit 'M', Sec. 16, T20S, R37E

NMOCD Case # 1R0427-93

2-inch well

						_
	COMMENTS					
	SILEATE	SOLIMIL	1450	1620	2440	2470
	TOTAL	XYLENE	<0.001	<0.001	<0.001	<0.001
mg/L	ETHYL	BENZEN	<0.001	<0.001	<0.001	<0.001
All concentrations are in mg/L	TOLLENE	IOLOLINE	<0.001	<0.001	<0.001	<0.001
All concentra	BENZEN	Ε	<0.001	<0.001	<0.001	<0.001
1	THE	103	5780	7330	7535	6740
	-15		1570	1850	2240	2090
	SAMPLE	DATE	90/80/80	05/03/06	07/25/06	10/20/06
(gal)	VOLUME		00.9	10.00	10.00	8.00
(g)	WELL	VOLUME PURGED	1.800	1.900	1.700	1.800
t)	TOTAL		32.35	32.35	32.35	32.35
(ff)	DEPTH TO	WATER *	20.81	20.75	21.58	21.02
	TT ZXXY X	# MIM	2	2	2	2

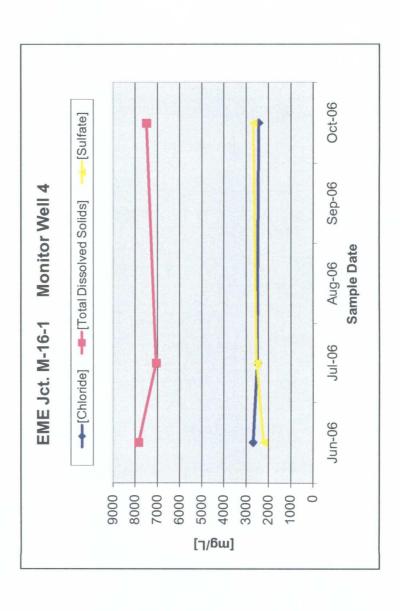

* Depth to water measured from top of casing Casing is 2.958 ft

EME jct. M-16-1 unit 'M', Sec. 16, T20S, R37E

NMOCD Case # 1R0427-93

2-inch well

COMMENTS	COMMENTS				
SINEATE	SOLIAIL	2220	1860	2620	2600
TOTAL	XYLENE	<0.001	<0.001	<0.001	<0.001
ETHYL	BENZEN	<0.001	<0.001	<0.001	<0.001
TOLLENE	IOLUEINE	<0.001	<0.001	<0.001	<0.001
BENZEN	E	<0.001	<0.001	<0.001	<0.001
THE	1103	0968	8350	7840	0962
-15	CI	2860	2540	2940	2650
SAMPLE	DATE	90/80/20	05/03/06	07/25/06	0/20/06
VOLUME	PURGED	4.50	10.00	10.00	00.9
WELL	VOLUME	1.400	1.400	1.300	1.400
TOTAL DEPTH		27.53	27.53	27.53	27.53
-		18.73	18.69	19.44	18.96
TATAL TE	# w [v]	3	3	3	3
	DEPTH TO TOTAL WELL VOLUME SAMPLE G: The BENZEN TOTTENE ETHYL TOTAL SITTENTE	TOTAL WELL VOLUME SAMPLE CI TDS BENZEN TOLUENE BENZEN BENZEN BENZEN	DEPTH TO TOTAL WELL VOLUME SAMPLE CI TDS BENZEN TOLUENE ETHYL TOTAL SULFATE WATER * DEPTH VOLUME PURGED DATE 2860 8960 <0.001	DEPTH TO NATE WATER* WELL VOLUME WELL VOLUME SAMPLE PATE NATE NATE NATE CI NATE NATE NATE NATE NATE NATE NATE NATE	DEPTH TO MATER * WELL VOLUME NATER * VOLUME PURGED SAMPLE DATE CI TDS BENZEN ED TOLUENE ED ETHYL TOTAL ED TOTAL ED SULFATE SULFATE 18.73 27.53 1.400 4.50 03/08/06 2860 8960 <0.001

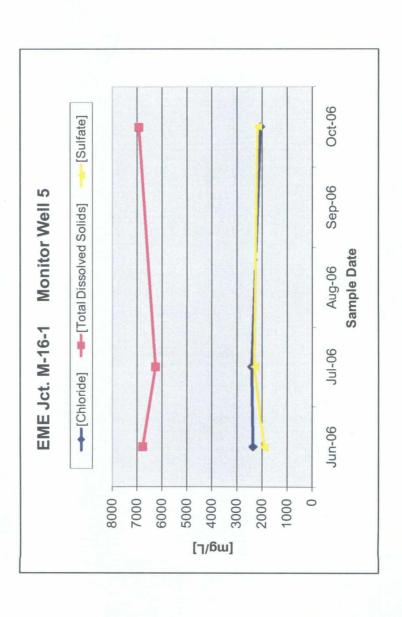

* Depth to water measured from top of casing Casing is 2.958 ft

EME jct. M-16-1 unit 'M', Sec. 16, T20S, R37E

NMOCD Case # 1R0427-93

2-inch well

1	U	2			
	COMMENTS	COMMENT			
	SITEATE	SOLFAIL	2220	2530	2680
	TOTAL	XYLENE	<0.001	<0.001	<0.001
mg/L	ETHYL	BENZEN	<0.001	<0.001	<0.001
All concentrations are in mg/L	TOLLENE	IOLUEINE	<0.001	<0.001	<0.001
All concentra	BENZEN	E	<0.001	<0.001	<0.001
7	THE	IDS	7820	7030	7470
	- 5	CI	2680	2500	2430
	SAMPLE	DATE	06/13/06	07/25/06	10/20/06
(gal)	VOLUME	PURGED	10.00	10.00	8.00
g)	WELL	VOLUME	1.700	1.700	1.700
t)	TOTAL	DEPTH	31.40	31.40	31.40
(f	DEPTH TO		20.82	21.08	20.59
	1 ATTY #	# w Ivi	4	4	4



unit 'M', Sec. 16, T20S, R37E EME jct. M-16-1

NMOCD Case # 1R0427-93

2-inch well

		_			
	COMMENTS	COMMINICALIS			
	SITEATE	SOLIAIL	1920	2310	2170
	TOTAL	XYLENE	<0.001	<0.001	<0.001
mg/L	ETHYL	BENZEN	<0.001	<0.001	<0.001
All concentrations are in mg/L	TOLIENE	IOLOEINE	<0.001	<0.001	<0.001
All concentra	BENZEN	BENZEN E		<0.001	<0.001
	THE	100	0929	6245	6910
	-15	5	2350	2400	2060
	SAMPLE	DATE	06/13/06	07/25/06	10/20/06
gal)	VOLUME	PURGED	10.00	10.00	10.00
g)	WELL	VOLUME	2.000	2.000	2.000
f)	TOTAL	DEPTH	33.50	33.50	33.50
(ft)	DEPTH TO	WATER *	20.91	21.19	20.70
	TYXY #	# w Ivi	5	5	5

Appendix A

Soil Boring Lithology Log

Atkins Engineering LOG OF BORING Rice M-16-1 TH1 Associates, Inc. 2904 W. 2nd St., Roswell, NM 88202-3156 (Page 1 of 1) Rice Operating Company Date : 12-20-01 Auger Type 122 West Taylor : Hollow Stem Drill Start : 830 Logged By Hobbs, New Mexico 88240 : Mort Bates Drill End : 0955 **Boring Location** : South side of pit Contact: Donnie Anderson Site Location : 4 mi. South of Monument, NM Job #Riceoil.air.01 Samples Depth **DESCRIPTION** feet Lab Poorly graded sand, tan, loose, dry Backfill cuttings SP 10 15 Poorly graded sand w/caliche, tan, firm, dry 20 SP Bentonite seal Sandstone, tan, firm, dry SS 25 Poorly graded sand, tan, loose, moist 30 SP 35

Appendix B

Monitor Well Logs

WELL NO.

M-16-1 MW-2

1004 N. Big Spring St. Suite 300, Midland, TX 79701-3383

Tel: 432/687-5400 Fax: 432/687-5401

Page 1 of 1

PROJECT NUMBER: MT000856.0001

Rice Operating Company

STATIC WATER LEVEL:

MEAS. PT.: T.O.C. DATE:

IENT NAME:

HOLE SIZE(S): 6 1/4"

OJECT NAME:

Junction M-16-1 EME SWD System

SURFACE COMPLETION:

TOTAL DEPTH: -30 0'

SITE LOCATION:

Lea County, New Mexico

GROUT TYPE:

CASING TYPE:

8" Locking Steel Sleeve, 4'x4'x6" Conc. Slab

DRILLING CO:

White Drilling Co.

TYPES Portland Cement

DEPTHS -5.0' to Surface

DRILLING METHOD: Rotary/Air

SEAL TYPE: SCREEN PACK: Bentonite Chips 8/16 Sand

-8.0' to -5.0' -30.0' to -8.0'

SAMPLE METHOD: Shovel DATE BEGUN: 2/28/06

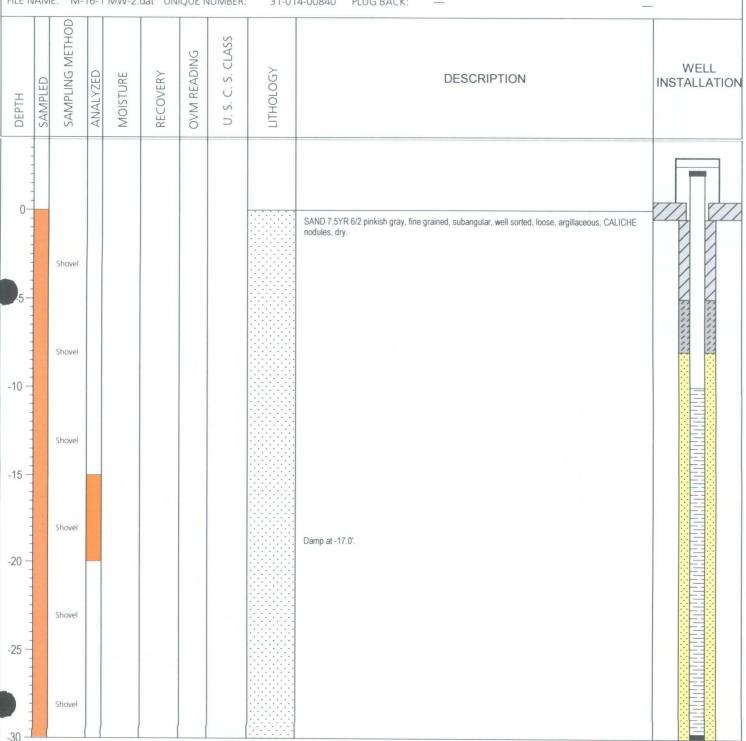
DATE COMPLETED: 2/28/06 2" Diameter Sch. 40 PVC Blank

-10.0' to Surface

DRILLER: R. Allen **ELEVATION (SURF.):**

WELL SCREEN:

2" Diameter Sch. 40 PVC, 0.020" slots


LOGGER: R. Lang

ELEVATION (T.O.C.):

-30.0' to -10.0'

FILE NAME: M-16-1 MW-2.dat UNIQUE NUMBER:

31-014-00840 PLUG BACK:

WELL NO.

M-16-1 MW-3

1004 N. Big Spring St. Suite 300, Midland, TX 79701-3383

Tel: 432/687-5400 Fax: 432/687-5401

Page 1 of 1

PROJECT NUMBER: MT000856.0001

HOLE SIZE(S): 6 1/4" Rice Operating Company

MEAS. PT.: T.O.C. DATE:

IENT NAME: ROJECT NAME:

Junction M-16-1 EME SWD System

SURFACE COMPLETION:

TOTAL DEPTH:

SITE LOCATION:

-25.0

GROUT TYPE:

8" Locking Steel Sleeve, 4'x4'x6" Conc. Slab **DEPTHS** TYPES

DRILLING CO:

Lea County, New Mexico White Drilling Co.

SEAL TYPE:

-5.0' to Surface Portland Cement -8.0' to -5.0' Bentonite Chips

DRILLING METHOD: Rotary/Air

SCREEN PACK: CASING TYPE:

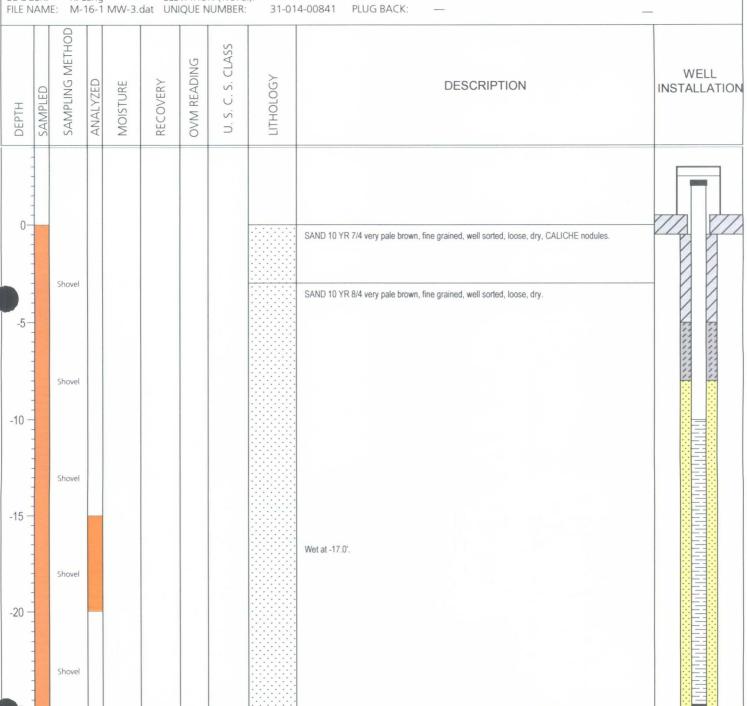
8/16 Sand -25.0' to -8.0'

SAMPLE METHOD: Shovel DATE BEGUN: 3/1/06

DATE COMPLETED: 3/1/06 2" Diameter Sch. 40 PVC Blank

-10.0' to Surface

DRILLER: R. Allen LOGGER:


ELEVATION (SURF.):

WELL SCREEN: 2" Diameter Sch. 40 PVC, 0.020" slots

STATIC WATER LEVEL:

-25.0' to -10.0'

R. Lang ELEVATION (T.O.C.):

HOLE SIZE(S): 6 1/4"

SURFACE COMPLETION:

WELL NO.

M-16-1 MW-4

1004 N. Big Spring St. Suite 300, Midland, TX 79701-3383

Tel: 432/687-5400 Fax: 432/687-5401

Page 1 of 1

PROJECT NUMBER: MT000856.0001 LIENT NAME:

Rice Operating Company

Junction M-16-1 EME SWD System

ROJECT NAME: SITE LOCATION:

Lea County, New Mexico

DRILLING CO: White Drilling Co.

DRILLING METHOD: Rotary/Air SAMPLE METHOD: Shovel

DATE BEGUN:

DRILLER:

LOGGER:

6/1/06

DATE COMPLETED:

ELEVATION (SURF.):

R. Allen R. Lang ELEVATION (T.O.C.):

6/1/06

31-014-00852

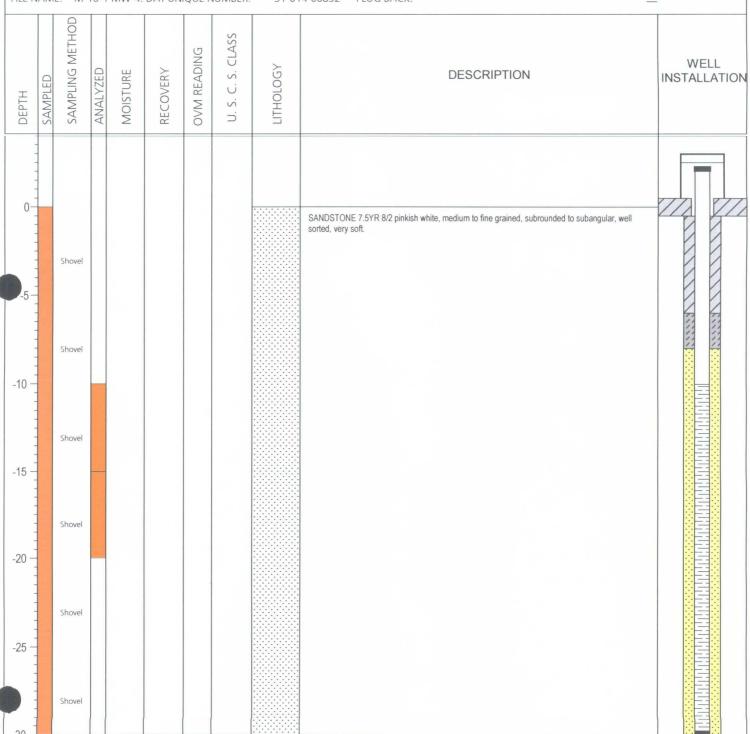
STATIC WATER LEVEL:

MEAS. PT.: T.O.C.

DATE: -30.0'

TOTAL DEPTH:

6" Locking Steel Sleeve, 2'x2'x4" Conc. Slab


TYPES DEPTHS

GROUT TYPE: Portland Cement -6.0' to Surface

SEAL TYPE: Bentonite Chips -8.0' to -6.0' -30.0' to -8.0' SCREEN PACK: 8/16 Sand CASING TYPE: 2" Diameter Sch. 40 PVC Blank -10.0' to Surface

2" Diameter Sch. 40 PVC, 0.020" slots -30.0' to -10.0' WELL SCREEN:

FILE NAME: M-16-1 MW-4. DAT UNIQUE NUMBER: PLUG BACK:

WELL NO.

M-16-1 MW-5

1004 N. Big Spring St. Suite 300, Midland, TX 79701-3383

Tel: 432/687-5400 Fax: 432/687-5401

Page 1 of 1

PROJECT NUMBER: MT000856.0001

STATIC WATER LEVEL:

MEAS. PT.: T.O.C.

DATE:

JENT NAME: ROJECT NAME: Rice Operating Company

Junction M-16-1 EME SWD System

HOLE SIZE(S): 6 1/4" SURFACE COMPLETION:

SEAL TYPE:

6" Locking Steel Sleeve, 2'x2'x4" Conc. Slab

TOTAL DEPTH: -30.01

SITE LOCATION:

DRILLING CO:

Lea County, New Mexico

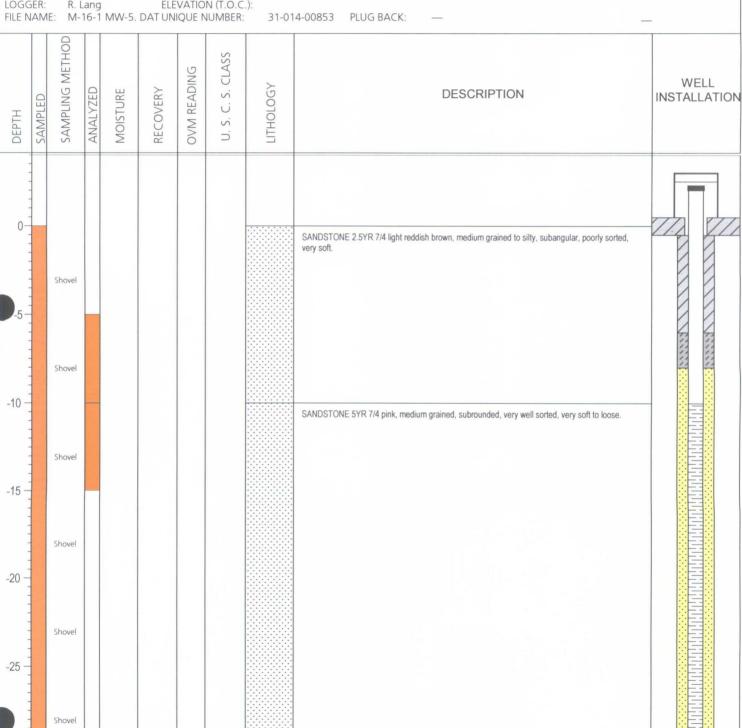
White Drilling Co.

TYPES GROUT TYPE: Portland Cement

DEPTHS -6.0' to Surface -8.0' to -6.0' Bentonite Chips

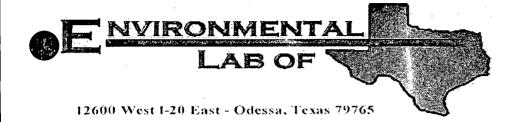
DRILLING METHOD: Rotary/Air SAMPLE METHOD: Shovel DATE BEGUN: 6/1/06

DATE COMPLETED: 6/1/06 SCREEN PACK: 8/16 Sand CASING TYPE: 2" Diameter Sch. 40 PVC Blank -30.0' to -8.0' -10.0' to Surface


R. Allen DRILLER: R. Lang LOGGER:

ELEVATION (SURF.):

WELL SCREEN: 2" Diameter Sch. 40 PVC, 0.020" slots


-30.0' to -10.0'

ELEVATION (T.O.C.):

Appendix C

2006 Laboratory Analytical Results

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. M-16-1

Project Number: None Given

Location: T20S-R37E-Sec 16M, Lea County, NM

Lab Order Number: 6J23008

Report Date: 10/31/06

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope.

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1		6J23008-01	Water	10/20/06 12:05	10-23-2006 12:00
Monitor Well #2		6J23008-02	Water	10/20/06 10:10	10-23-2006 12:00
Monitor Well #3	•	6J23008-03	Water	10/20/06 13:00	10-23-2006 12:00
Monitor Well #4		6J23008-04	Water	10/20/06 14:10	10-23-2006 12:00
Monitor Well #5		6J23008-05	Water	10/20/06 09:05	10-23-2006 12:00

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC Environmental Lab of Texas

Analyte .	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 (6J23008-01) Water									
Benzene	ND	0.00100	mg/L	i	EJ62606	10/26/06	10/27/06	EPA 8021B	
Toluene	ND	0.00100	11	"	**	ų	"	ч	
Ethylbenzene	ND	0.00100	**	"	"	"	"	**	
Xylene (p/m)	ND	00100.0	н	"	"	*	"	н .	
Xylene (o)	ND	0.00100	**	"	**		#	ч	
Surrogate: a,a,a-Trifluorotoluene		80.2 %	80-12	0	н	"	"	н	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-12	0	"	"	u	"	
Monitor Well #2 (6J23008-02) Water									
Benzene	ND	0.00100	mg/L	1	EJ62606	10/26/06	10/27/06	EPA 8021B	
Toluene	ND	0.00100	n	P	44	16	ч		
Ethylbenzene	ND	0.00100	н	Ħ	r	ч	Ir	"	
Xylene (p/m)	ND	0.00100	**	r	**	w		17	
Xylene (o)	ND	0.00100	*	**	**		**	tt	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-12	0	"	"	. "	н	
Surrogate: 4-Bromofluorobenzene		85.5 %	80-12	0	"	,	"	"	
Monitor Well #3 (6J23008-03) Water									
Benzene	ND	0.00100	mg/L	1	EJ62606	10/26/06	10/29/06	EPA 8021B	
Toluene	ND	0.00100	*	н	и	*	u	N	
Ethylbenzene	ND	0.00100	•	•	11	н	** .	н	
Xylene (p/m)	ND	0.00100	н	19	**	9	"	•	
Xylene (o)	ND	0.00100		*	я	н .	n	"	
Surrogate: a,a,a-Trifluorotoluene		95.5 %	80-120)	n	"	. "	tt.	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-120)	"	a	**	"	
Monitor Well #4 (6J23008-04) Water									
Benzene	ND	0.00100	mg/L	1	EJ62606	10/26/06	10/29/06	EPA 8021B	•
Foluene	ND	0.00100	. "	N	**	".	"	n	
Ethylbenzene	ND.	0.00100	"	11	.	*	"	# .	
Xylene (p/m)	ND	0.00100	H	"	it.		u	"	
Xylene (o)	ND ·	0.00100	"	"	а.	"	п -		
Surrogate: a,a,a-Trifluorotoluene		104 %	80-120)	u	. "	"	и	
Surrogate: 4-Bromofluorobenzene		92.2 %	80-120)	u	"	"	· `"	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #5 (6J23008-05) Water									
Benzene	ND	0.00100	mg/L	1	EJ62606	10/26/06	10/29/06	EPA 8021B	
Toluene	ND	0.00100	۳.	**	o	и	н	*	
Ethylbenzene	ND	0.00100		P	н	, "	**	*	
Xylene (p/m)	ND	0.00100	п	**		**	*	n	
Xylene (o)	ND	0.00100	*	n	н	If	и	м	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-120)	" .	"	и	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-126)	"	. "	"	"	

Project: EME Jct. M-16-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
Monitor Well #1 (6J23008-01) Water					··				
Total Alkalinity	456	4.00	mg/L	2	EJ62401	10/25/06	10/25/06	EPA 310.1M	
Chloride	1800	50.0	п	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Total Dissolved Solids	5990	10.0	H	1	EJ62601	10/25/06	10/26/08	EPA 160.1	,
Sulfate	2230	50.0	н	- 100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Monitor Well #2 (6J23008-02) Water									
Total Alkalinity	368	. 4.00	mg/L	2	EJ62401	10/25/06	10/25/06	EPA 310.1M	
Chloride	2090	50.0	"	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Total Dissolved Solids	6740	10.0	н	i	EJ62601	10/25/06	10/26/08	EPA 160.1	,
Sulfate	2470	50.0	**	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Monitor Well #3 (6J23008-03) Water									
Total Alkalinity	412	4.00	mg/L	2	EJ62401	10/25/06	10/25/06	EPA 310.1M	
Chloride	2650	50.0	"	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Total Dissolved Solids	7960	10.0	**	1	EJ62601	10/25/06	10/26/08	EPA 160.1	
Sulfate	2600	50.0	"	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Monitor Well #4 (6J23008-04) Water		-		•	_				
Total Alkalinity	448	4.00	mg/L	2	EJ62401	10/25/06	10/25/06	EPA 310.1M	
Chloride	2430	50.0	"	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Total Dissolved Solids	7470	10.0		1	EJ62601	10/25/06	10/26/08	EPA 160.1	
Sulfate	2680	50.0	"	100 .	EJ62404	10/24/06	10/24/06	EPA 300.0	
Monitor Well #5 (6J23008-05) Water	·								
Total Alkalinity	404	4.00	mg/L	2	EJ62401	10/25/06	10/25/06	EPA 310.1M	,
Chloride	2060	50.0	17	100	EJ62404	10/24/06	10/24/06	EPA 300.0	
Total Dissolved Solids	6910	10.0	•	1	EJ62601	10/25/06	10/26/08	EPA 160.1	
Sulfate	2170	50.0	"	100	EJ62404	10/24/06	10/24/06	EPA 300.0	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

		Reporting		•					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 (6J23008-01) Water				-					
Calcium	245	4.05	. mg/L	50	EJ62513	10/25/06	10/25/06	EPA 6010B	
Magnesium	160	1.80	ŧr	41	н		11	**	
Potassium	33.7	0.600	4	10	н	н	#	н	
Sodium	1690	10.8	. "	250	ıı	н	"	. "	
Monitor Well #2 (6J23008-02) Water									···
Calcium	376	4.05	mg/L	50	EJ62513	10/25/06	10/25/06	EPA 6010B	
Magnesium	230	1.80	ų .		н	t+	**	*	
Potassium	42.4	0.600	**	10	"	"	**	41	
Sodium	1850	10.8	"	250	н	**	п	"	
Monitor Well #3 (6J23008-03) Water							<u> </u>		
Calcium	356	4.05	mg/L	50	EJ62513	10/25/06	10/25/06	EPA 6010B	
Magnesium	222	1.80		"	н	'н	н	"	
Potassium	44.7	0.600	4	10	. "	**	n	н	
Sodium	2370	10.8		250	н	n	ч		
Monitor Well #4 (6J23008-04) Water	·								
Calcium	341	.4.05	mg/L	50	EJ62513	10/25/06	10/25/06	EPA 6010B	
Magnesium	262	1.80	"	•	*	н	o		
Potassium	41.1	0,600	**	10	"			н	
Sodium	2260	10.8	**	250	н		, n	11	
Monitor Well #5 (6J23008-05) Water						·			
Calcium	315	4.05	mg/L	50	EJ62513	10/25/06	10/25/06	EPA 6010B	. —
Magnesium	218	1.80	,,	•	ıı	ы	**	"	
Potassium	39.9	0.600	н	10	**	11	**	и	
Sodium	1960	10.8	۳	250	*	**	, и	n .	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ62606 - EPA 5030C (GC)		*************								
Blank (EJ62606-BLK1)				Prepared	10/26/06 A	nalvzed: 10	127/06			
Benzene	ND	0.00100	mg/L	Trepared.	10/20/00 71					
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100							•	
Xylene (p/m)	ND	0.00100	#	•						
Xylene (o)	ND	0.00100	#							
Surrogate: a,a,a-Trifluorotoluene	33.1		ug/l	40.0		82.8	80-120	 		
Surrogate: 4-Bromofluorobenzene	32.8		"	40.0		82.0	80-120			
LCS (EJ62606-BS1)				Prepared: 1	0/26/06 Aı	nalyzed: 10	/27/06			
Benzene	0.0439	0.00100	mg/L	0.0500		87.8	80-120			
Foluene	0.0444	0.00100		0.0500		88.8	80-120			
Ethylbenzene	0.0423	0.00100	"	0.0500		84.6	80-120			
Xylene (p/m)	0.0834	0.00100	. "	0.100		83.4	80-120			
Xylene (o)	0.0428	0.00100	,,	0.0500		85.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.0		ug/l	40.0		87.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.0		"	40.0		87.5	80-120			•
Calibration Check (EJ62606-CCV1)				Prepared: I	0/26/06 Ar	nalyzed: 10	/29/06			
Benzene	59.5		ug/l	50.0		119	80-120			
Coluene	56.1		*	50.0		112	80-120			
Ethylbenzene	58.4		м	50.0		117	80-120			
Kylene (p/m)	116		"	100		116	80-120	•		
(ylene (o)	59.0		H	50.0		118	80-120			
urrogate: a,a,u-Trifluorotoluene	37.1		п	40.0		92.8	80-120			
urrogate: 4-Bromofluorobenzene	42.0		"	40.0		105	80-120			
Aatrix Spike (EJ62606-MS1)	Sou	rce: 6J23009-0)1	Prepared: 1	0/26/06 Ar	nalyzed: 10	/29/06			
Benzene	0.0563	0.00100	mg/L	0.0500	ND	113	80-120			-
Oluene	0.0560	0.00100	п	0.0500	ND	112	80-120			
thylbenzene	0.0593	0.00100	"	0.0500	ND	. 119	80-120			
(ylene (p/m)	0.115	0.00100	"	0.100	ND	115	80-120			
(ylene (o)	0.0501	0.00100	"	0.0500	ND	100	80-120			
urrogate: a,a,a-Trifluorotoluene	39.4		ug/l	40.0		98.5	80-120			
urrogate: 4-Bromofluorobenzene	44.4		"	40.0		111	80-120			

Project: EME Jct. M-16-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ62606 -	EPA 5030C	(GC)
-----------------	-----------	------

Matrix Spike Dup (EJ62606-MSD1)	Sou	Source: 6J23009-01			0/26/06 A	nalyzed: 1	0/29/06			
Benzene	0.0488	0.00100	mg/L	0.0500	ND	97.6	80-120	14.6	20	
Toluenc	0.0459	0.00100	•	0.0500	ND	91.8	80-120	19.8	20	
Ethylbenzene	0.0481	0.00100		0.0500	ND	96.2	80-120	21.2	20	QR-02
Xylene (p/m)	0.0984	0.00100	*	0.100	ND	98.4	80-120	15.6	20	
Xylenc (o)	0.0521	0.00100	*	0.0500	ND	104	80-120	3.92	20	
Surrogate: a,a,a-Trifluorotoluene	34.3		ug/l	40.0		85.8	80-120			
Surrogate: 4-Bromofluorobenzene	42.0		"	40.0		105	80-120			

Project: EME Jct. M-16-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ62401 - General Preparation (V	VetChem)									
Blank (EJ62401-BLK1)				Prepared &	Analyzed:	10/24/06				
Total Alkalinity	ND	2.00	mg/L		**************************************					
Duplicate (EJ62401-DUP1)	Sou	rce: 6J19010-	01	Prepared & Analyzed: 10/24/06						
Total Alkalinity	270	2.00	mg/L		272			0.738	20	
Reference (EJ62401-SRM1)				Prepared &	Analyzed:	10/24/06				
Total Alkalinity	248		mg/L	250		99.2	90-110	,		
Batch EJ62404 - General Preparation (W	/etChem)						•			
Blank (EJ62404-BLK1)				Prepared & Analyzed: 10/24/06						
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	•							
LCS (EJ62404-BS1)				Prepared &	Analyzed:	10/24/06				
Chloride	11.3	0.500	mg/L	10.0		113	80-120			
Gulfate	10.6	0.500	n	10.0		106	80-120			
Calibration Check (EJ62404-CCV1)				Prepared &	: Analyzed:	10/24/06				
Sulfate	11.0		mg/L	10.0		110	80-120			
Chloride	11.8			10.0		118	80-120			
Duplicate (EJ62404-DUP1)	Sou	rce: 6J19026-0	03	Prepared &	: Analyzed:	10/24/06				
ulfate	23.2	5.00	mg/L		22.8			1.74	20	
Chloride	69.5	5.00	*		77.5			10.9	20	
Duplicate (EJ62404-DUP2)	Sou	rce: 6J24001-(01	Prepared &	: Analyzed:	10/24/06				
ulfate .	44.0	25.0	mg/L		45.3			2.91	. 20	
Chloride	1570	25.0	0		1640			4.36	20	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ62404 - General Preparation (W		,	Ollid	Ecvol		, unde				
Matrix Spike (EJ62404-MS1)	······································	rce: 6J19026-0	03	Prepared &	& Analyzed:	10/24/06				
Chloride	192	5.00	mg/L	100	77,5	114	80-120			
Sulfate	124	5.00	"	100	22.8	101	80-120			
Matrix Spike (EJ62404-MS2)	Sou	rce: 6J24001-0	01	Prepared &	k Analyzed:	10/24/06				
Chloride	2240	25.0	mg/L	500	1640	120	80-120			
Sulfate	540	25.0	"	500	45.3	98.9	80-120	,	•	
Batch EJ62601 - Filtration Preparation										
Duplicate (EJ62601-DUP1)	Sou	rce: 6J23008-0	01	Prepared:	10/25/06 Ai	nalyzed: 10	/26/08			
Total Dissolved Solids	6280	10.0	mg/L		5990			4.73	5	
Duplicate (EJ62601-DUP2)	Sou	rce: 6J25004-(01	Prepared:	10/25/06 A ı	nalyzed: 10	/26/08			
Total Dissolved Solids	1040	10.0	mg/L		1010			2.93	. 5	

Project: EME Jet. M-16-1

Project Number: None Given

Fax: (505) 397-1471

Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	. %REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ62513 - 6010B/No Digestion										
Blank (EJ62513-BLK1)				Prepared &	Analyzed:	10/25/06				
Calcium	ND .	0.0810	mg/L							
Magnesium	ND	0.0360	**							
Potassium	ND	0.0600	**							
Sodium	ND	0.0430	"							
Calibration Check (EJ62513-CCV1)				Prepared &	: Analyzed:	10/25/06				
Calcium	2.23		mg/L	2.00		112	85-115			
Magnesium	2.29		**	2.00		114	85-115			
Potassium	1.74		"	2.00		87.0	85-115			
Sodium	2.13		•	2.00		106	85-115			
Duplicate (EJ62513-DUP1)	Sou	rce: 6J19026-0)3	Prepared &	: Analyzed:	10/25/06				
Calcium	53.8	0.810	mg/L		54.7			1.66	20	
Magnesium	21.4	0.360	**		21.5			0.466	20	
Potassium	12.0	0.600	• .		12.2			1.65	20	
Sodium	27.4	0.430	"		27.0			1.47	20	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

.

Fax: (505) 397-1471

Notes and Definitions

QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC

batch were accepted based on percent recoveries and completeness of QC data.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland K July

Date:

10/31/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Formental Lab of Texas West i-20 East Phone: 432-553-1800 Fax: 432-553-1713

12600 West 1-20 East Odessa, Texas 79768

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

		ty NM						(əţn	payag	-a19) TA	T HSUR								····	z Z			
1		Lea County NM							S	bilo2 bavlo	NACURIAN. Toksi Dissa	\vdash	×	×	×	×				(Color)			
1-16-1		c16M, L				Anglyze For	×				BUEX SUS	×	×	×	×	×				lect?	mente:		
Junction M-16-		T20S-R37E-Sec16M,						25 B	CP 63P H	PO 88 GA	SALSANA SANSON TABONÍTANS									Sample Contelners Intect? Labels on contelner? Custody Sesis Containeds Temparature Upon Receipt:	Laboratory Comments:		<u>ر</u> 7
EME L		T20S-F				TOL	TOTAL:		Ç1	* 304` CO	Codemic (C) Animas (C) SAR / ESP	×	×	×	×	×				Samp Label Cueto	Time Labor		Time 1
	101					LL.		SOUN.	5004		Soil Other (sp									Æ		৬	
Project Name:	Project Number:	Project Loc:	PO Number:					-			(a) manto	×	×	×	×	×				eswd.co	9)8C	20-23-01	150 Date
Pr	أ	*	Ä	471				Freeding		CH POTE	*05*H H0#1	7	-	,		7				ıks@rlc			
		-		Fax No: (505) 397-1471		1				and gives	sor comm	×	X	X Z	× 2	X 2				m; mfraı		2	
				Fax No: (5)		7	1		·	bəlqma	- 	12:05 3	10:10	13:00	14:10 3	9:05 3				riceswd.co	2	a the true	
griceswa.com					1310				H	peldure	S edge S	10/20/2006	10/20/2006	10/20/2006	10/20/2006	10/20/2006	,			i TO: kpope@riceswd.com; mfranks@riceswd.com ១៣	Received 4y:	James John Soft	Redeived by ELOT
rope kpope@r	ng Company	Street	Mexico 88240	74	nson (505) 631-9	ornst.com					00									PLEASE Email RESULTS T	Date Time	્	Date Time 10 - 23 - 06 12:00
Project Manager: Nistin Farris Pode	Company Name RICE Operating Company	Company Address: 122 W. Taylor Street	city/8tate/zip: Hobbs, New Mexico 88240	Tekephone No: (505) 393-9174	Sampler Signature: Rozanne Johnson (505) 631-9310	Email: 102anne@valornst.com					FIELD CODE	Monitor Well #1	Monitor Well #2	Monitor Well #3	Monitor Well #4	Monitor Well #5				PLEASE		10	1, 10
Project Manag	Company Na	Company Addre	City/State/2	Tetaphone	Sampler Signatu					, J.	(0) / / (ab use only)	1/4		> Mo	\ \ \ \ \ \	⊝ Mo		を表する。		Special instructions:	Bhed by	Rozenne Johnson	1
											LAG # (lab ue	3	100	分	0 0%	70		多数		Special	Religioned by	Rosenne	Ralipoulahed by:

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In 12:00 Date/ Time: Lab ID#: Initials: Sample Receipt Checklist Client Initials Temperature of container/ cooler? Yes 4.0 No Shipping container in good condition? Yes No #2 Custody Seals Intact on shipping container/ cooler? No Not Present Yes. Custody Seals intact on sample bottles/ container? No Not Present Yes. Chain of Custody present? No Yes Sample instructions complete of Chain of Custody? No Yes Chain of Custody signed when relinquished/ received? No Yes Chain of Custody agrees with sample label(s)? Νo ID written on Cont./ Lid Yeş Container label(s) legible and intact? No Not Applicable Yes #10 Sample matrix/ properties agree with Chain of Custody? No Yes #11 Containers supplied by ELOT? Ύе́ѕ No #12 Samples in proper container/ bottle? Yes No See Below #13 Samples properly preserved? Xes No See Below No #14 Sample bottles intact? Xes. Preservations documented on Chain of Custody? No o Containers documented on Chain of Custody? Yés No #17 Sufficient sample amount for indicated test(s)? Νo Ye₃ See Below #18 All samples received within sufficient hold time? Nο See Below Xes #19 VOC samples have zero headspace? No Not Applicable Variance Documentation Date/ Time: Contact: Contacted by: Regarding: Corrective Action Taken: See attached e-mail/ fax Check all that Apply:

> Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

E-Mail. lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H Lubbock, Texas 79424 El Paso, Texas 79932 800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

Analytical and Quality Control Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: A

August 17, 2006

Work Order:

6072814

Project Location:
Project Name:

Project Location: Lea County,NM

Project Number:

EME Junction M-16-1 EME Junction M-16-1

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
97135	MW-1	water	2006-07-25	08:45	2006-07-26
97136	MW-2	water	2006-07-25	09:40	2006-07-26
97137	MW-3	water	2006-07-25	10:35	2006-07-26
97138	MW-4	water	2006-07-25	11:55	2006-07-26
97139	MW-5	water	2006-07-25	13:10	2006-07-26

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 21 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Work Order: 6072814 EME Junction M-16-1 Page Number: 2 of 21 Lea County,NM

Analytical Report

Sample: 97135 - MW-1

Analysis: Alkalinity QC Batch: 28763 Prep Batch: 25162 Analytical Method: SM 2320B Date Analyzed: 2006-08-07 Sample Preparation: 2006-08-07 Prep Method: N/A Analyzed By: LJ Prepared By: LJ

RL Dilution Parameter Flag Result Units RLHydroxide Alkalinity mg/L as CaCo3 1.00 < 1.00 Carbonate Alkalinity mg/L as CaCo3 1.00 < 1.00 1 1 Bicarbonate Alkalinity mg/L as CaCo3 4.00 386 Total Alkalinity 386 mg/L as CaCo3 4.00

Sample: 97135 - MW-1

Analysis: BTEX QC Batch: 28457 Prep Batch: 24898

Analytical Method: S 8021B
Date Analyzed: 2006-07-28
Sample Preparation: 2006-07-28

Prep Method: S 5030B Analyzed By: KB Prepared By: KB

RL Parameter Dilution Flag RL Result Units Benzene < 0.00100 mg/L 0.00100 Toluene 0.00100mg/L 1 < 0.00100 0.00100 Ethylbenzene < 0.00100 mg/L 1 0.00100 Xylene < 0.00100 mg/L 1

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.0904	mg/L	1	0.100	9.0	66.2 - 127.7
4-Bromofluorobenzene (4-BFB)	i	0.0651	mg/L	1	0.100	65	70.6 - 129.2

Sample: 97135 - MW-1

Analysis: Cations QC Batch: 28607 Prep Batch: 24949 Analytical Method: S 6010B
Date Analyzed: 2006-08-02
Sample Preparation: 2006-07-31

Prep Method: S 3005A Analyzed By: TP Prepared By: TS

RL Parameter Flag Result Units Dilution RLDissolved Calcium 302 mg/L 10 0.500 Dissolved Potassium 52.2 mg/L 1 1.00 Dissolved Magnesium 188 mg/L 10 1.00 **Dissolved Sodium** 1660 mg/L 100 1.00

Sample: 97135 - MW-1

Prep Batch: 24973

Analysis: Ion Chromatography OC Batch: 28552

Analytical Method: E 300.0
Date Analyzed: 2006-07-31
Sample Preparation: 2006-07-29

Prep Method: N/A
Analyzed By: WB
Prepared By: WB

¹BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

EME Junction M-16-1

Work Order: 6072814 EME Junction M-16-1 Page Number: 3 of 21 Lea County,NM

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		1830	mg/L	50	0.500
Sulfate		2010	mg/L	50	0.500

Sample: 97135 - MW-1

Analysis: TDS QC Batch: 28666 Prep Batch: 25064 Analytical Method: SM 2540C Date Analyzed: 2006-08-01 Sample Preparation: 2009-07-31

Prep Method: N/A Analyzed By: SM Prepared By: SM

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Total Dissolved Solids		6435	mg/L	5	10.00

Sample: 97136 - MW-2

Analysis: Alkalinity QC Batch: 28763 Prep Batch: 25162 Analytical Method: SM 2320B Date Analyzed: 2006-08-07 Sample Preparation: 2006-08-07

Prep Method: N/A Analyzed By: LJ Prepared By: LJ

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		< 1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		338	mg/L as CaCo3	1	4.00
Total Alkalinity		338	mg/L as CaCo3	1	4.00

Sample: 97136 - MW-2

Analysis: BTEX QC Batch: 28457 Prep Batch: 24898 Analytical Method: S 8021B Date Analyzed: 2006-07-28 Sample Preparation: 2006-07-28 Prep Method: S 5030B Analyzed By: KB Prepared By: KB

		RL			
Parameter	Flag	Result	Units	Dilution	RL
MTBE		< 0.00100	mg/L	1	0.00100
Benzene		< 0.00100	mg/L	1	0.00100
Toluene		< 0.00100	mg/L	111	0.00100
Ethylbenzene		< 0.00100	mg/L	1	0.00100
Xylene		< 0.00100	mg/L	1	0.00100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0895	mg/L	1	0.100	90	66.2 - 127.7
4-Bromofluorobenzene (4-BFB)	2	0.0621	mg/L	1	0.100	62	70.6 - 129.2

²BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Work Order: 6072814 EME Junction M-16-1 Page Number: 4 of 21 Lea County,NM

Sample: 97136 - MW-2

Analysis: QC Batch: Prep Batch:

Cations 28607 24949

Analytical Method: Date Analyzed:

S 6010B 2006-08-02 Sample Preparation: 2006-07-31

S 3005A Prep Method:

Analyzed By: TP Prepared By: TS

DΙ

		I/L			
Parameter	Flag	Result	Units	Dilution	RL
Dissolved Calcium		389	mg/L	10	0.500
Dissolved Potassium		60.4	mg/L	1	1.00
Dissolved Magnesium		244	mg/L	10	1.00
Dissolved Sodium		1830	mg/L	. 100	1.00

Sample: 97136 - MW-2

Analysis: QC Batch: Ion Chromatography

28552 Prep Batch: 24973

Analytical Method: Date Analyzed:

Sample Preparation:

E 300.0 2006-07-31 2006-07-29 Prep Method:

N/A Analyzed By: WB Prepared By: WB

RL.

Parameter	Flag	Result	Units	Dilution	RL
Chloride	, , , , , , , , , , , , , , , , , , , ,	2240	mg/L	50	0.500
Sulfate		2440	mg/L	50	0.500

Sample: 97136 - MW-2

Analysis:

TDS

QC Batch: 28667 Prep Batch: 25065 Analytical Method:

Date Analyzed:

SM 2540C 2006-08-01 Sample Preparation: 2009-07-31 Prep Method: N/A Analyzed By:

SM Prepared By: SM

LJ

RL.

Parameter	Flag	 Result	Units	Dilution	RŁ.
Total Dissolved Solids		7535	mg/L	5	10.00

Sample: 97137 - MW-3

Prep Batch: 25162

Analysis: QC Batch: Alkalinity 28763

Analytical Method: Date Analyzed:

Sample Preparation:

SM 2320B 2006-08-07 2006-08-07 Prep Method: N/A Analyzed By: LJ

Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		< 1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		404	mg/L as CaCo3	1	4.00
Total Alkalinity		404	mg/L as CaCo3	1	4.00

EME Junction M-16-1

Work Order: 6072814 EME Junction M-16-1 Page Number: 5 of 21 Lea County, NM

Sample: 97137 - MW-3

Analysis:

BTEX

Analytical Method:

S 8021B

Prep Method:

S 5030B

QC Batch: Prep Batch: 24898

28457

Date Analyzed: Sample Preparation:

2006-07-28 2006-07-28 Analyzed By: Prepared By:

KB KB

RL

		I CL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.00100	mg/L	1	0.00100
Toluene		< 0.00100	mg/L	1	0.00100
Ethylbenzene		< 0.00100	mg/L	l	0.00100
Xylene		< 0.00100	mg/L	1	0.00100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0887	mg/L	1	0.100	89	66.2 - 127.7
4-Bromofluorobenzene (4-BFB)	3	0.0596	mg/L	1	0.100	60	70.6 - 129.2

Sample: 97137 - MW-3

Analysis:

Cations 28607

Analytical Method:

S 6010B

Analyzed By: TP

Prep Method: S 3005A

QC Batch: Prep Batch:

24949

Date Analyzed: Sample Preparation: 2006-07-31

2006-08-02

Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
Dissolved Calcium		343	mg/L	10	0.500
Dissolved Potassium		60.1	mg/L	1	1.00
Dissolved Magnesium		228	mg/L	10	1.00
Dissolved Sodium		1900	mg/L	100	1.00

Sample: 97137 - MW-3

Analysis:

Ion Chromatography

Analytical Method:

E 300.0

Prep Method: N/A

QC Batch:

29104 a Prep Batch: 25429

Date Analyzed:

Sample Preparation:

2006-08-16 2006-08-15 Analyzed By: WB

Prepared By: WB

[&]quot;Matrix not reported %IA Cl is 124 and SO4 123 and RPD is 2 for CL and 2 for SO4.

Parameter	Flag	Result	Units	Dilution	RL
Chloride		2940	mg/L	100	0.500
Sulfate		2620	mg/L	100	0.500

Sample: 97137 - MW-3

Analysis: OC Batch: **TDS**

28667

Analytical Method:

SM 2540C

Analyzed By:

Prep Method: N/A SM

Prep Batch: 25065

Date Analyzed: Sample Preparation:

2006-08-01 2009-07-31

Prepared By:

SM

³BFB surrogate recovery outside normal limits, ICV/CCV and TFT surrogate recovery show the method to be in control.

EME Junction M-16-1

EME Junction M-16-1

Work Order: 6072814

Page Number: 6 of 21 Lea County,NM

4.00

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Total Dissolved Solids	-	7840	mg/L	10	10.00
Sample: 97138 - MW-4					
Analysis: Alkalinity		Analytical Method:	SM 2320B	Prep Method:	N/A
QC Batch: 28763		Date Analyzed:	2006-08-07	Analyzed By:	LJ
Prep Batch: 25162		Sample Preparation:	2006-08-07	Prepared By:	LJ
		RL	•		
Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		< 1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		410	mg/L as CaCo3	1	4.00

Sample:	97138 -	MW-4
---------	---------	------

Total Alkalinity

Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5030B
QC Batch:	28457	Date Analyzed:	2006-07-28	Analyzed By:	KB
Prep Batch:	24898	Sample Preparation:	2006-07-28	Prepared By:	KB

410

mg/L as CaCo3

	RL			
Flag	Result	Units	Dilution	RL
	< 0.00100	mg/L	1	0.00100
	< 0.00100	mg/L	1	0.00100
	< 0.00100	mg/L	1	0.00100
	< 0.00100	mg/L	1	0.00100
	Flag	Flag Result	Flag Result Units <0.00100 mg/L <0.00100 mg/L <0.00100 mg/L <0.00100 mg/L	$\begin{tabular}{c ccccc} Flag & Result & Units & Dilution \\ \hline & <0.00100 & mg/L & 1 \\ <0.00100 & mg/L & 1 \\ <0.00100 & mg/L & 1 \\ \hline \end{tabular}$

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0888	mg/L	1	0.100	89	66.2 - 127.7
4-Bromofluorobenzene (4-BFB)	4	0.0603	mg/L	1	0.100	60	70.6 - 129.2

Sample: 97138 - MW-4

Analysis: QC Batch: Prep Batch:	28607	Analytical Method: Date Analyzed: Sample Preparation:	2006-08-02	Prep Method: Analyzed By: Prepared By:	ŢΡ
		,			

		RL			
Parameter	Flag	Result	Units	Dilution	· RL
Dissolved Calcium		346	mg/L	10	0.500
Dissolved Potassium		54.9	mg/L	1	1.00
Dissolved Magnesium		251	mg/L	10	1.00
Dissolved Sodium		1840	mg/L	100	1.00

⁴BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Work Order: 6072814 EME Junction M-16-1 Page Number: 7 of 21 Lea County,NM

Sample: 97138 - MW-4

Analysis:

Ion Chromatography

QC Batch:

29113

Prep Batch: 25430

Analytical Method: Date Analyzed:

Sample Preparation:

E 300.0

2006-08-16 2006-08-15 Prep Method:

N/A Analyzed By: WB

Prepared By: WB

RΤ

		ICL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		2500	mg/L	100	0.500
Sulfate		2530	mg/L	100	0.500

Sample: 97138 - MW-4

Analysis: QC Batch: TDS

28667 Prep Batch: 25065 Analytical Method: Date Analyzed:

Sample Preparation:

SM 2540C

2006-08-01 2009-07-31 Prep Method:

N/A SM

Analyzed By: Prepared By: SM

RL

Parameter	Flag	Result	Units	Dilution	RL
Total Dissolved Solids		7030	mg/L	10	10.00

Sample: 97139 - MW-5

Analysis: OC Batch: Alkalinity

28763 Prep Batch: 25162

Analytical Method: Date Analyzed:

Sample Preparation:

SM 2320B

2006-08-07 2006-08-07 Prep Method: N/A

Analyzed By: LJ LJ

Prepared By:

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		< 1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity	•	384	mg/L as CaCo3	1	4.00
Total Alkalinity		384	mg/L as CaCo3	1	4.00

Sample: 97139 - MW-5

Analysis: QC Batch: **BTEX** 28457

Prep Batch: 24898 Analytical Method:

Sample Preparation:

Date Analyzed:

S 8021B

2006-07-28 2006-07-28 Prep Method: S 5030B

Analyzed By: KB Prepared By:

KB

RL

		102			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.00100	mg/L	1	0.00100
Toluene		< 0.00100	mg/L	1	0.00100
Ethylbenzene		< 0.00100	mg/L	1	0.00100
Xylene		< 0.00100	mg/L	1	0.00100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0882	mg/L	1	0.100	88	66.2 - 127.7

continued ...

EME Junction M-16-1

Work Order: 6072814 EME Junction M-16-1 Page Number: 8 of 21 Lea County,NM

sample continued ...

	•				Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
4-Bromofluorobenzene (4-BFB)	5	0.0601	mg/L	1	0.100	60	70.6 - 129.2

Sample: 97139 - MW-5

Analysis: Cations QC Batch: 28607 Prep Batch: 24949

Analytical Method: S 6010B 2006-08-02 Date Analyzed: Sample Preparation: 2006-07-31

Prep Method: S 3005A Analyzed By: TP Prepared By:

RL Parameter Flag Result Units Dilution RLDissolved Calcium 306 10 0.500 mg/L 1.00 Dissolved Potassium 56.6 mg/L 1 10 1.00 Dissolved Magnesium 209 mg/L 100 1.00 Dissolved Sodium 1650 mg/L

Sample: 97139 - MW-5

Analysis:

Ion Chromatography

QC Batch: 28553 Prep Batch: 24974 Analytical Method: E 300.0 Date Analyzed: 2006-07-31 Sample Preparation:

Prep Method: N/A Analyzed By: WB 2006-07-29 Prepared By: WB

RL Parameter Result Units Dilution RL Flag Chloride mg/L 50 0.500 2400 Sulfate 2310 mg/L 50 0.500

Sample: 97139 - MW-5

Analysis: QC Batch:

TDS 28667 Prep Batch: 25065 Analytical Method: Date Analyzed:

SM 2540C 2006-08-01 Sample Preparation: 2009-07-31 Prep Method: N/A Analyzed By: SM Prepared By: SM

RLRLParameter Flag Result Dilution Units Total Dissolved Solids 6245 mg/L 5 10.00

Method Blank (1)

QC Batch: 28457

OC Batch: 28457 Prep Batch: 24898 Date Analyzed: 2006-07-28 QC Preparation: 2006-07-28 Analyzed By: KB Prepared By: KB

continued ...

⁵BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Work Order: 6072814 EME Junction M-16-1 Page Number: 9 of 21 Lea County,NM

method	bl	'ank	continued	
--------	----	------	-----------	--

		MDL		
Parameter	Flag	Result	Units	RL
		MDL		
Parameter	Flag	Result	Units	RL
MTBE		< 0.000193	mg/L	0.01
Benzene		< 0.000255	. mg/L	0.001
Toluene		< 0.000210	mg/L	0.001
Ethylbenzene		< 0.000317	mg/L	0.001
Xylene		< 0.000603	mg/L	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0915	mg/L	1	0.100	92	79.3 - 116
4-Bromofluorobenzene (4-BFB)		0.0654	mg/L	1	0.100	65	47.6 - 122

Method Blank (1)

QC Batch: 28552

QC Batch: 28552 Prep Batch: 24973 Date Analyzed: 2006-07-31 QC Preparation: 2006-07-29

2006-07-31 Analy

Analyzed By: WB Prepared By: WB

Parameter Flag Result
Chloride <0.0181

 Units
 RL

 mg/L
 0.5

 mg/L
 0.5

Method Blank (1)

Sulfate

QC Batch: 28553

QC Batch: 28553 Prep Batch: 24974 Date Analyzed: 2006-07-31 QC Preparation: 2006-07-29

< 0.0485

Analyzed By: WB Prepared By: WB

Method Blank (1)

QC Batch: 28607

QC Batch: 28607 Prep Batch: 24949 Date Analyzed: 2006-08-02 QC Preparation: 2006-07-31 Analyzed By: TP Prepared By: TS

MDL Parameter Flag Result Units RLDissolved Calcium 0.175 mg/L 0.5 Dissolved Potassium 0.614mg/L 1 Dissolved Magnesium 0.935mg/L 1 Dissolved Sodium 0.947 mg/L 1

Work Order: 6072814 EME Junction M-16-1 Page Number: 10 of 21 Lea County, NM

Method Blank (1)

OC Batch: 28666

QC Batch: 28666 Prep Batch: 25064 Date Analyzed: 2006-08-01 Analyzed By: SM

QC Preparation: 2006-07-31 Prepared By: SM

MDL

Parameter Flag Result Units RL**Total Dissolved Solids** < 5.000 mg/L 10

Method Blank (1)

QC Batch: 28667

QC Batch: 28667 Prep Batch: 25065

Date Analyzed: 2006-08-01 QC Preparation: 2006-07-31 Analyzed By: SM

Prepared By: SM

MDL

RLUnits Parameter Result Flag Total Dissolved Solids < 5.000 mg/L 10

Method Blank (1)

QC Batch: 28763

QC Batch: 28763 Prep Batch: 25162 Date Analyzed: 2006-08-07 2006-08-07 QC Preparation:

Analyzed By: LJ Prepared By: LJ

MDL Parameter Units RL Result Flag Hydroxide Alkalinity < 1.00 mg/L as CaCo3 Carbonate Alkalinity <1.00 mg/L as CaCo3 1 Bicarbonate Alkalinity < 4.00 mg/L as CaCo3 4 **Total Alkalinity** < 4.00 mg/L as CaCo3

Method Blank (1)

QC Batch: 29104

QC Batch: 29104 Prep Batch: 25429

2006-08-16 Date Analyzed: QC Preparation: 2006-08-15

Analyzed By:

WB Prepared By: WB

MDL Parameter Flag Result Units RLChloride < 0.0181 mg/L 0.5 Sulfate < 0.0485 mg/L 0.5

Method Blank (1)

QC Batch: 29113

QC Batch: 29113 Prep Batch: 25430 Date Analyzed: 2006-08-16 OC Preparation: 2006-08-15

Analyzed By: WB Prepared By: WB

MDL

Result Units RL Parameter Flag Chloride < 0.0181 mg/L 0.5 Sulfate < 0.0485 mg/L 0.5

EME Junction M-16-1

Work Order: 6072814 EME Junction M-16-1 Page Number: 11 of 21 Lea County,NM

Duplicates (1)

QC Batch: Prep Batch: 25064

28666 Date Analyzed:

2006-08-01 QC Preparation: 2006-07-31 Analyzed By: SM

Prepared By: SM

	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Total Dissolved Solids	7235	6435	mg/L	5	12	17.2

Duplicates (1)

QC Batch: Prep Batch: 25065

28667

Date Analyzed: 2006-08-01 QC Preparation: 2006-07-31 Analyzed By: SM

Prepared By: SM

	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD -	Limit
Total Dissolved Solids	1344	1298	mg/L	2	4	17.2

Duplicates (1)

QC Batch: Prep Batch: 25162

28763

Date Analyzed: 2006-08-07 QC Preparation: 2006-08-07 Analyzed By: LJ Prepared By: LJ

	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Hydroxide Alkalinity	<1.00	<1.00	mg/L as CaCo3	1	0	20
Carbonate Alkalinity	< 1.00	< 1.00	mg/L as CaCo3	1	0	20
Bicarbonate Alkalinity	170	174	mg/L as CaCo3	. 1	2	12.6
Total Alkalinity	170	174	mg/L as CaCo3	1 ·	2	11.5

Laboratory Control Spike (LCS-1)

QC Batch:

28457

Prep Batch: 24898

Date Analyzed:

2006-07-28

QC Preparation: 2006-07-28

Analyzed By: KB

Prepared By: KB

	LCS		•	Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
MTBE	0.0958	mg/L	1	0.100	< 0.000193	96	82.3 - 110
Benzene	0.0958	mg/L	1	0.100	< 0.000255	96	82.2 - 119
Toluene	0.0943	mg/L	1	0.100	< 0.000210	94	81.2 - 119
Ethylbenzene	0.0926	mg/L	1	0.100	< 0.000317	93	80 - 122
Xylene	0.284	mg/L	1	0.300	< 0.000603	95	81.3 - 122

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
MTBE	0.0930	mg/L	1	0.100	< 0.000193	96	82.3 - 110	3.	20
Benzene	0.0950	mg/L	1	0.100	< 0.000255	96	82.2 - 119	I	20
Toluene	0.0940	mg/L	1	0.100	< 0.000210	94	81.2 - 119	0	20

continued . . .

Work Order: 6072814 EME Junction M-16-1 Page Number: 12 of 21 Lea County,NM

control spikes continued ...

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Ethylbenzene	0.0925	mg/L	1	0.100	< 0.000317	93	80 - 122	0	20
Xylene	0.284	mg/L	1	0.300	< 0.000603	95	81.3 - 122	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.0910	0.0909	mg/L	1	0.100	91	91	81.8 - 114
4-Bromofluorobenzene (4-BFB)	0.101	0.101	mg/L	1	0.100	101	101	72.7 - 116

Laboratory Control Spike (LCS-1)

QC Batch: 28552 Prep Batch: 24973 Date Analyzed: 2006-07-31 QC Preparation: 2006-07-29

Analyzed By: WB Prepared By: WB

LCS Spike Matrix Rec. Param Result Dil. Result Limit Units Amount Rec. 12.5 < 0.0181 95 90 - 110 Chloride 11.8 mg/L 95 90 - 110 12.5 < 0.0485 Sulfate 11.9 mg/L 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	12.0	mg/L	1	12.5	< 0.0181	95	90 - 110	1	20
Sulfate	12.0	mg/L	1	12.5	< 0.0485	95	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 28553 Prep Batch: 24974 Date Analyzed: 2006-07-31 QC Preparation: 2006-07-29

Analyzed By: WB Prepared By: WB

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Chloride 12.0 1 12.5 < 0.0181 96 90 - 110 mg/L Sulfate 12.1 mg/L 1 12.5 < 0.0485 97 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units.	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	12.0	mg/L	1	12.5	< 0.0181	96	90 - 110	0	20
Sulfate	12.0	mg/L	i	12.5	< 0.0485	97	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 28607 Prep Batch: 24949 Date Analyzed: 2006-08-02 QC Preparation: 2006-07-31

Analyzed By: TP Prepared By: TS

EME Junction M-16-1

Work Order: 6072814

Page Number: 13 of 21 EME Junction M-16-1 Lea County, NM

	LCS			Spike	Matrix	_	Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Dissolved Calcium	53.7	mg/L	1	50.0	< 0.0950	107	85 - 115
Dissolved Potassium	49.7	mg/L	1	50.0	< 0.377	99	85 - 113
Dissolved Magnesium	49.5	mg/L	1	50.0	< 0.704	99	85 - 113
Dissolved Sodium	48.7	mg/L	1	50.0	< 0.261	97	85 - 111

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Calcium	52.6	mg/L	1	50.0	< 0.0950	107	85 - 115	2	20
Dissolved Potassium	49.0	mg/L	1	50.0	< 0.377	99	85 - 113	1	20
Dissolved Magnesium	51.4	mg/L	1	50.0	< 0.704	99	85 - 113	4	20
Dissolved Sodium	49.8	mg/L	1	50.0	< 0.261	. 97	85 - 111	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

Prep Batch: 25429

29104

Date Analyzed: QC Preparation:

2006-08-16 2006-08-15 Analyzed By: WB Prepared By:

WB

	LCS			Spike	Matrix		Rec.
Param .	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	11.9	mg/L	1	12.5	< 0.0181	95	90 - 110
Sulfate	11.3	mg/L	1	12.5	< 0.0485	.90	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD		•	Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	 11.6	mg/L	1	12.5	< 0.0181	95	90 - 110	3	20
Sulfate	11.3	mg/L	1	12.5	< 0.0485	90	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

29113 Prep Batch: 25430 Date Analyzed: QC Preparation:

2006-08-16 2006-08-15

Analyzed By: WB Prepared By: WB

LCS Matrix Rec. Spike Result Dil. Result Limit Param Units Amount Rec. Chloride 11.8 mg/L 1 12.5 < 0.0181 94 90 - 110 90 Sulfate 11.3 mg/L 1 12.5 < 0.0485 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	11.9	mg/L	1	12.5	< 0.0181	94	90 - 110	1	20
Sulfate	11.5	mg/L	1	12.5	< 0.0485	90	90 - 110	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

EME Junction M-16-1

Work Order: 6072814 EME Junction M-16-1

Page Number: 14 of 21 Lea County, NM

Matrix Spike (MS-1) Spiked Sample: 97188

OC Batch: 28457 Prep Batch: 24898 Date Analyzed:

2006-07-28

QC Preparation: 2006-07-28 Analyzed By: KB Prepared By:

MS Spike Matrix Rec. Param Result Units Dil. Result Rec. Limit Amount 68.6 - 122 MTBE 0.0968 mg/L 0.100 < 0.000193 97 70.9 - 126 Benzene 0.0965 < 0.000255 96 1 0.100 mg/L 70.8 - 125 Toluene 96 0.0961 mg/L 1 0.100< 0.000210 Ethylbenzene 96 74.8 - 125 0.0956 0.100 < 0.000317 mg/L I Xylene 97 75.7 - 126 0.291 mg/L 0.300< 0.000603

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	•	MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
MTBE	6	NA	mg/L	1	0.100	< 0.000193	0	68.6 - 122	200	20
Benzene	7	NA	mg/L	1	0.100	< 0.000255	0	70.9 - 126	200	20
Toluene	8	NA	mg/L	1	0.100	< 0.000210	0	70.8 - 125	200	20
Ethylbenzene	9	NA	mg/L	1	0.100	< 0.000317	0	74.8 - 125	200	20
Xylene	10	NA	mg/L	1	0.300	< 0.000603	0	75.7 - 126	200	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	11	0.0916	NA	mg/L	1	0.1	92	0	73.6 - 121
4-Bromofluorobenzene (4-BFB)	12	0.102	NA	mg/L	1	0.1	102	0	81.8 - 114

Matrix Spike (MS-1) Spiked Sample: 97132

OC Batch: 28552 Prep Batch: 24973

Date Analyzed: QC Preparation:

2006-07-31 2006-07-29 Analyzed By:

WB ' Prepared By:

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	8800	mg/L	500	12.5	2890	94	25.4 - 171
Sulfate	6870	mg/L	500	12.5	566	101	0 - 677

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	8820	mg/L	500	12.5	2890	95	25.4 - 171	0	20
Sulfate	6780	mg/L	500	12.5	566	99	0 - 677	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

⁶RPD is out of range because a matrix spike duplicate was not prepared:

⁷RPD is out of range because a matrix spike duplicate was not prepared.

⁸RPD is out of range because a matrix spike duplicate was not prepared.

⁹RPD is out of range because a matrix spike duplicate was not prepared.

¹⁰RPD is out of range because a matrix spike duplicate was not prepared. ¹¹RPD is out of range because a matrix spike duplicate was not prepared.

¹²RPD is out of range because a matrix spike duplicate was not prepared.

EME Junction M-16-1

Work Order: 6072814 EME Junction M-16-1 Page Number: 15 of 21 Lea County,NM

Matrix Spike (MS-1) Spiked Sample: 96738

QC Batch: 28553 Prep Batch: 24974 Date Analyzed: OC Preparation:

2006-07-31 2006-07-29 Analyzed By: WB

Prepared By: WB

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	280	mg/L	5	12.5	223	91	25.4 - 171
Sulfate	451	mg/L	5	12.5	400	82	0 - 677

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	274	mg/L	5	12.5	223	82	25.4 - 171	2	20
Sulfate	443	mg/L	5	12.5	400	69	0 - 677	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 97133

QC Batch: 28607 Prep Batch: 24949 Date Analyzed: 2006-08-02 QC Preparation: 2006-07-31 Analyzed By: TP Prepared By: TS

Param		MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Dissolved Calcium		420	mg/L	1	50.0	362	116	68.4 - 138
Dissolved Potassium	13	95.5	mg/L	1	50.0	56.3	78	82 - 129
Dissolved Magnesium		344	mg/L	1	50.0	291	106	61.2 - 135
Dissolved Sodium	14	1420	mg/L	100	50.0	1320	2	81.8 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	ŔPĎ	Limit
Dissolved Calcium		416	mg/L	1	50.0	362	108	68.4 - 138	1	20
Dissolved Potassium		101	mg/L	1	50.0	56.3	89	82 - 129	6	20
Dissolved Magnesium		333	mg/L	1	50.0	291	84	61.2 - 135	3	20
Dissolved Sodium	· 15	1480	mg/L	100	50.0	1320	3	81.8 - 125	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 97138

QC Batch: 29113 Prep Batch: 25430

Date Analyzed: 2006-08-16 QC Preparation: 2006-08-15 Analyzed By: WB
Prepared By: WB

	MS			Spike	Matrix	4	Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	3680	mg/L	100	12.5	2497	95	25.4 - 171

continued ...

¹³ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

¹⁴Matrix spike recoveries out of control limits due to matrix spike being diluted out. Use LCS/LCSD to demonstrate analysis is under control.

¹⁵ Matrix spike recoveries out of control limits due to matrix spike being diluted out. Use LCS/LCSD to demonstrate analysis is under control.

Work Order: 6072814 EME Junction M-16-1 Page Number: 16 of 21 Lea County,NM

matrix spikes continued . . .

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Sulfate		3760	mg/L	100	12.5	2530	98	0 - 677

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD	*		Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	3690	mg/L	100	12.5	2497	96	25.4 - 171	0	20
Sulfate	3750	mg/L	100	12.5	2530	98	0 - 677	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 28457

Date Analyzed: 2006-07-28

Analyzed By: KB

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE	=	mg/L	0.100	0.0936	94	85 - 115	2006-07-28
Benzene		mg/L	0.100	0.0950	95	85 - 115	2006-07-28
Toluene		mg/L	0.100	0.0942	94	85 - 115	2006-07-28
Ethylbenzene		mg/L	0.100	0.0926	93	85 - 115	2006-07-28
Xylene		mg/L	0.300	0.285	95	85 - 115	2006-07-28

Standard (CCV-1)

QC Batch: 28457

Date Analyzed: 2006-07-28

Analyzed By: KB

			CCVs	CCVs	CCVs	Percent	_
			True	Found	Percent	Recovery	Date
Param	Flag_	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.100	0.0953	95	85 - 115	2006-07-28
Benzene		mg/L	0.100	0.0963	96	85 - 115	2006-07-28
Toluene		mg/L	0.100	0.0945	94	85 - 115	2006-07-28
Ethylbenzene		mg/L	0.100	0.0930	93	85 - 115	2006-07-28
Xylene		mg/L	0.300	0.285	95	85 - 115	2006-07-28

Standard (ICV-1)

QC Batch: 28552

Date Analyzed: 2006-07-31

Analyzed By: WB

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.5	11.9	95	90 - 110	2006-07-31
Sulfate		mg/L	12.5	12.1	97	90 - 110	2006-07-31

Standard (CCV-1)

QC Batch: 28552

Date Analyzed: 2006-07-31

Analyzed By: WB

Work Order: 6072814 EME Junction M-16-1 Page Number: 17 of 21 Lea County,NM

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/L	12.5	12.1	97	90 - 110	2006-07-31
Sulfate		mg/L	12.5	12.0	96	90 - 110	2006-07-31

Standard (ICV-1)

QC Batch: 28553

Date Analyzed: 2006-07-31

Analyzed By: WB

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.5	12.1	97	90 - 110	2006-07-31
Sulfate		mg/L	12.5	12.0	96	90 - 110	2006-07-31

Standard (CCV-1)

QC Batch: 28553

Date Analyzed: 2006-07-31

Analyzed By: WB

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.5	12.2	98	90 - 110	2006-07-31
Sulfate		mg/L	12.5	12.1	97	90 - 110	2006-07-31

Standard (ICV-1)

QC Batch: 28607

Date Analyzed: 2006-08-02

Analyzed By: TP

			· ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/L	50.0	50.5	101	90 - 110	2006-08-02
Dissolved Potassium		mg/L	50.0	48.6	97	90 - 110	2006-08-02
Dissolved Magnesium		mg/L	50.0	50.7	101	90 - 110	2006-08-02
Dissolved Sodium		mg/L	50.0	50.4	101	90 - 110	2006-08-02

Standard (CCV-1)

QC Batch: 28607

Date Analyzed: 2006-08-02

Analyzed By: TP

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/L	50.0	50.8	102	90 - 110	2006-08-02
Dissolved Potassium		mg/L	50.0	47.2	94	90 - 110	2006-08-02
Dissolved Magnesium		mg/L	50.0	49.0	98	90 - 110	2006-08-02
Dissolved Sodium		mg/L	50.0	48.9	. 98	90 - 110	2006-08-02

Work Order: 6072814 EME Junction M-16-1 Page Number: 18 of 21 Lea County,NM

Standard (ICV-1)

QC Batch: 28666

Date Analyzed: 2006-08-01

Analyzed By: SM

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	982.0	98	90 - 110	2006-08-01

Standard (CCV-1)

QC Batch: 28666

Date Analyzed: 2006-08-01

Analyzed By: SM

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	1003	100	90 - 110	2006-08-01

Standard (ICV-1)

QC Batch: 28667

Date Analyzed: 2006-08-01

Analyzed By: SM

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	999.0	100	90 - 110	2006-08-01

Standard (CCV-1)

QC Batch: 28667

Date Analyzed: 2006-08-01

Analyzed By: SM

			CCVs	CCVs	CCVs	Percent	5.
			True	Found	Percent	Recovery	Däte
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	1003	100	90 - 110	2006-08-01

Standard (ICV-1)

QC Batch: 28763

Date Analyzed: 2006-08-07

Analyzed By: LJ

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Alkalinity		mg/L as CaCo3	250	236	94	90 - 110	2006-08-07

Standard (CCV-1)

QC Batch: 28763

Date Analyzed: 2006-08-07

Analyzed By: LJ

Param

Sulfate

Chloride

Flag

Units

mg/L

mg/L

Work Order: 6072814 EME Junction M-16-1 Page Number: 19 of 21 Lea County,NM

Param	Flag	Unit	_	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Alkalinity	у	mg/L as (CaCo3	250	240	96	90 - 110	2006-08-07
Standard (ICV	V-1)							
QC Batch: 29	0104		Date .	Analyzed: 20	006-08-16	;	Anal	yzed By: WB
			ICVs	ICVs	3	ICVs	Percent	
			True	Found	d	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc		Recovery	Limits	Analyzed
Chloride		mg/L	12.5	12.5		100	90 - 110	2006-08-16
Sulfate		mg/L	12.5	12.2		98	90 - 110	2006-08-16
Standard (CC	V-1)							
QC Batch: 29	104		Date A	Analyzed: 20	06-08-16		Anai	yzed By: WB
			CCVs	CCV	s ·	CCVs	Percent	
			True	Found		Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc		Recovery	Limits	Analyzed
Chloride		mg/L	12.5	11.6		93	90 - 110	2006-08-1
Sulfate		mg/L	12.5	11.3		90	90 - 110	2006-08-1
Standard (ICV	'-1)							
C Batch: 29			Date A	Analyzed: 20	006-08-16		Anal	yzed By: WB
			ICVs	ICVs	;	lCVs	Percent	
			True	Found		Percent	Recovery	Date
aram	Flag	Units	Conc	Conc		Recovery	Limits	Analyzed
Chloride		mg/L	12.5	11.6		93	90 - 110	2006-08-10
ulfate		mg/L	12.5	11.3		90	90 - 110	2006-08-10
Standard (CCV	/-1)			,				
C Batch: 291			Date A	Analyzed: 20	106-08 - 16		Anal	yzed By: WB

CCVs

Found

Conc.

11.8

11.4

CCVs

Percent

Recovery

94 91 Percent

Recovery

Limits

90 - 110

90 - 110

Date

Analyzed

2006-08-16

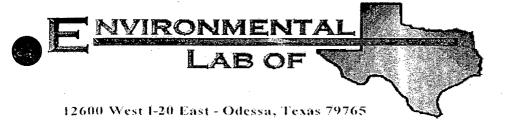
2006-08-16

CCVs

True

Conc.

12.5


12.5

Work Order: 6072814 EME Junction M-16-1 Page Number: 20 of 21 Lea County,NM

											ļ								İ				à,	Page_	-	Ö	-	1
Lubbock, Texas 79424 7el (806) 794-1298	xas 79424 '94-1286		· (• •		<u>}</u>	•		ž.	5 McCu	tcheon (155 McCutcheon Way, Suite H	H e		٦	CHAIN-OF-CUSTODY AND ANALYSIS REQUES	0-1	건	ISTC	λQ(QN O	ANA	LYS	IS R	EOC	EST	١.	Γ
Fax (806) 794-1298 1 (800) 378-1296	794-1298 78-1296	II accanalysis,	2				زز			Tel ((915) 58 (916) 58	Tel (915) 585-3443 Fex (915) 585-4944					Ϋ́	LAB Order ID#	# 01.	17	100	J. S. R.	17	4			ĺ	Π
Company Name:					[Phone #	#																					Γ
Operati	ід Сотрапу					505)3	(505)393-9174				į						-	ָבָּלְיבָּ בַּי	ANALYSIS REQUEST	SIST	S S S S S S S S S S S S S S S S S S S	JEST						
Address: (5	(Street, City, Zip)					Fax#:									-	-	-			, J		į,			•			
122 W Taylor	Street - Hobbs, N	122 W Taylor Street - Hobbs, New Mexico 88240		,		505) 3	(505) 397-1471									۷ 0	7:0											
Contact Person:									ļ								מלח											
Kristin Farris	Kristin Farris - Pope, Project Scientist	cientíst			,	dody	kpope@riceswd.com	Sesw	Q.C0	ΕĮ					(98:	0011	BO14										Ν	
Invoice to:														_	O) P	n a	_										pu	
(if different from above)	яроле)				į			İ							өри	~rı '				-					((ejs i	
Project #:					Ĭ.	Sroject	Project Name:								rtei	-51									00		mo	
None Given						EME	Junction	1	_	3-1					<u> </u>	10 1		·			52				ЭН		i in	
Project Location;						Sample	Samplet Signethire.	thure:	Roza	inne Jc	opunc	Rozanne Johnson (505)631-9310	31-9310		100	<u>ر ب</u>		_			9/0						ere	
Lea Count	Lea County - New Mexico	xico			7	M	Ţ	J	rozé	anne	@va	rozanne@valornet.com	com		ΧL	J 6				224				(<u>K</u>)		sp	Ħib	
			SAB	juno	4	MATRIX	ZIX C		PRES	SERVAT METHOD	PRESERVATIVE METHOD		SAMPLING			0 37 0				3/8087						ilos bi	ti əmi	
LAB#		FIELD CODE	NIAT	mA\	٤		35			* (900								R JoV						esojas	pund	
(LAB USE)	-		# CON.	Volume	13TAW	SOIL	ernoc	HCF	EONH	H ^S 2O ⁵	ICE	NONE STAD	3MIT	8 38TM 8 Y3T8	8 X3T8	S8 HA9	Total Me	TCLP Vo	าดาวา	ecwe / BCI	ecwe	PCB's 8 Pesticide	ST, GOB	Moisture Cations) snoinA	Fotal Dis	orA muT	Hold
971135	Monitor Well #1	1#1	2	40 ml	×	Н	口	×		H	×	7-25	25 8:45		×			H		$\left - \right $		-						
,	Monitor Well #1	1#1	-	긡	×						×	7-25	25 8:45										_	×	×	×		
R	Monitor Well #2	1#2	2	40 ml X	×	\vdash		×		-	×	7-25	-		×			-		-		-		-	+	-		
	Monitor Well #2	1#2	-	11	×						×	7-25	25 9:40											×	×	×		
37	Monitor Well #3	1#3	2	40 ml	×	\Box		×			×	7-25	25 10:35		×													
	Monttor Well #3	1#3	-	7	×	\dashv		\dashv			×	7-26	25 10:35					\dashv				\dashv	\Box	×	×	×		
38	Monitor Well #4	1#4	2	40 ml	×	\dashv		×		-	×	7-25	25 11:55		×			-		-		\dashv		\dashv		-	_	
	Monttor Well #4	#4	-	4	×	\dashv		_		_	×	7-25	25 11:55		_			-				\dashv		×	×	×	_	
34	Monitor Well #5	1#5	2	40 ml	×	-		×		\dashv	×	7-25	25 13:10		×			-		-		\dashv		\dashv		\dashv		
	Monitor Well #5	1#5	-	11	×			_		\dashv	×	7-25	25 13:10		\dashv							\dashv	\exists	×	×	×		
															\dashv		_	-				\dashv		\dashv		\dashv		
7	2					_		_				-			_			-		-		\dashv		\dashv		-	_	
Relinguishedby		Time:	Received by:	ed by:				Datè:		Time:				1	9	Y INC EST GALY	> 11	REM	REMARKS:		ease	Please email the results	ii the	e res	sults	to:		
Rozaria Johnson	son "/24/04						ĺ							ξ	3 `	5 . (j			죄)obe	kpope@riceswd.com	pwse		⊏ I			
Relinquished by		Time;	Received by:	ed by:				Date:		Time:				Intact	7		10			=	fran	mfranks @ riceswd.com	rices	swd.(8	١		
								į						Headspace	_pace_	X	4			빔	zanr	rozanne@valornet.com	alorr	net.c	E			
Relinquished by	y: Date:	Time:		Remined at Labo	夏辽			7 de) (2)	Time: 6/06	^	43	475 YS	Temp. Log-in	Temp	7	Edul	Ц	check if special reporting limits needed	ik if sp	ecial	reporti	mig lím	ıits ne	eded	*		
-				1					_						1	Q.	1	-	196	7	7	7			1			
Submittal of sam,	ples constitutes	Submittal of samples constitutes agreement to Terms and Conditions listed on reverse	ns listed	on reve	arse s	side of COC	၁							Carrier #				9	1			$ \sqrt{} $	100					٦

Cation-Anion Balance Sheet

						•						
Sample #	Calcium	Magnesium	Sodium	Potassium	Alkalinity	Sulfate	Chloride	Nitrate	Fluoride	TDS	EC EC	
	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	μMHOs/cm	
97135	302	188	1660	52.2	386	2010	1830			6435		
97136	389	244	1830	60.4	338	2440	2240			7535		
97137	343	228	1900	60.1	404	2620	2940			7840		
97138	346	251	1840	54.9	410	2530	2500			7030		
97139	306	209	1650	56.5	384	2310	2400			6240		
										Total	Total	
Sample #	Calcinm	Magnesium	Sodium	Potassium	Alkalinity	Sulfate	Chloride	Nitrate	Fluoride	Cations	Anions	Percer
	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	E E
97135	15.07	15.47	72.21	1,34	7.72	41.85	51.62			104.09	101.19	
97136	19.41	20.08	79.61	1.55	6.76	50.80	63.19			120.64	120.75	
97137	17.12	18.76	82.65	1.54	8.08	54.55	82.94			120.07	145.57	
97138	17.27	20.65	80.04	1.40	8.20	52.67	70.53			119.36	131.40	
97139	15.27	17.20	71.78	1.45	7.68	48.09	67.70			105.69	123.48	
	-											
	EC/Cation	EC/Anion	-					TDS/EC	TDS/Cat	TDS/Anion		
97135			range	0	2	0	-		0.62	.0.64	needs to be 0.55-0.77	77.
97136			range	0	2	o	•		0.62	0.62	needs to be 0.55-0.77	117
97137			range	0	2	0			0.65	0.54	needs to be 0.55-0.77	11
97138			range	0	9				65.0	0.54	needs to be 0.55-0.77	11.
97139			range	0	2	0	•		0.59	0.51	needs to be 0.55-0.77	77

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. M-16-1
Project Number: None Given
Location: Lea County

Lab Order Number: 6F15001

Report Date: 06/26/06

Project: EME Jet. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #4	6F15001-01	Water	06/13/06 09:45	06/15/06 07:50
Monitor Well #5	6F15001-02	Water	06/13/06 11:00	06/15/06 07:50

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #4 (6F15001-01) Water			•						
Benzene	ND	0.00100	mg/L	ĺ	EF61921	06/19/06	06/20/06	EPA 8021B	
Toluene	ND	0.00100	n	**	11	п	н	**	
Ethylbenzene	ND	0.00100	"	*	1*	40	u	**	
Xylene (p/m)	ND	0.00100	н ,	. "	**	**	"	v	
Xylene (o)	ND	0.00100	n	н	**	4	11	"	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-12	0	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	80-12	0	"	<u>,"</u>	n	"	
Monitor Well #5 (6F15001-02) Water						•			
Benzene	ND	0.00100	mg/L	1	EF61921	06/19/06	06/20/06	EPA 8021B	
Toluene	ND	0.00100	11	п	**	п	**	v	
Ethylbenzene	ND	0.00100	ч	н	"	r	"	n	
Xylene (p/m)	ND	0.00100	"	11	**	"	4	**	
Xylene (0)	ND	0.00100	n	**	"	**	11	**	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-12	0	"	"	u	"	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #4 (6F15001-01) Water									
Total Alkalinity	. 386	2.00	mg/L	l	EF62316	06/22/06	06/22/06	EPA 310.1M	
Chloride	2680	50.0	**	100	EF61712	06/17/06	06/17/06	EPA 300.0	
Total Dissolved Solids	7820	5.00	**	1	EF61918	06/15/06	06/16/06	EPA 160.1	
Sulfate	2220	50.0	**	100	EF61712	06/17/06	06/17/06	EPA 300.0	
Monitor Well #5 (6F15001-02) Water									
Fotal Alkalinity	344	2.00	mg/L	1	EF62316	06/22/06	06/22/06	EPA 310.1M	
Chloride	2350	50.0	**	100	EF61712	06/17/06	06/17/06	EPA 300.0	•
Total Dissolved Solids	6760	5.00	"	1	EF61918	06/15/06	06/16/06	EPA 160.1	
Sulfate	1920	50.0	н	100	EF61712	06/17/06	06/17/06	EPA 300.0	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Analyte .	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #4 (6F15001-01) Water						_			_
Calcium	320	0.500	mg/L	50	EF61505	06/15/06	06/15/06	EPA 200.7	
Magnesium	229	0.0500	11	n	"	•	н	ч	
Potassium	38.5	0.500	**	10	**	u	n	**	
Sodium	1760	5.00	п	500	"		o.	· et	
Monitor Well #5 (6F15001-02) Water									
Calcium	296	0.500	mg/L	50	EF61505	06/15/06	06/15/06	EPA 200.7	_
Magnesium	206	0.0500	**	,,	11	**		**	
Potassium	34.1	0.500	14	10	**	17	**	"	
Sodium	1790	5.00	11	500	*	**	"	P	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control

Analyte	Dli	Reporting	Heite	Spike	Source	9/ P.C.	%REC	RPD	` RPD	Nas-
Maryte	Result	Limit	Units	Level	Result	%REC	Limits	KrD	Limit	Notes
Batch EF61921 - EPA 5030C (GC)								·		
Biank (EF61921-BLK1)				Prepared: 0	06/19/06 A	nalyzed: 06	5/20/06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	.,							
Xylene (p/m)	ND	0.00100	"							
Xylene (0)	ND	0.00100	**							
Surrogate: a,a,a-Trifluorotoluene	38.4		ug/l	40.0		96.0	80-120			
Surrogate: 4-Bromofluorobenzene	38.4		"	40.0		96.0	80-120			
LCS (EF61921-BS1)				Prepared: 0	6/19/06 Aı	nalyzed: 06	/20/06			
Benzene	0.0529	0.00100	mg/L	0.0500		106	80-120			
Toluene	0.0579	0.00100	**	0.0500		116	80-120			
Ethylbenzene	0.0565	0.00100	**	0.0500		113	80-120			
Kylene (p/m)	0.119	00100.0	11	0.100		119	80-120			
Xylene (o)	0.0589	0.00100	**	0.0500		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.6		ug/l	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	40 .7	•	"	40.0		102	80-120			
Calibration Check (EF61921-CCV1)				Prepared: 0	6/19/06 Ai	nalyzed: 06	5/20/06			
Benzene	58.0		ug/l	50.0		116	80-120			
oluene	59.2		71	50.0		118	80-120			
Ethylbenzene	57.5		41	50.0		115	80-120			
(ylene (p/m)	119		•	100		119	80-120			
(ylene (o)	59.0		4	50.0		118	80-120			
urrogate: a,a,a-Trifluorotoluene	44.1		"	40.0		110	80-120			
urrogate: 4-Bromófluorobenzene	38.4		. "	40.0		96.0	80-120			
Matrix Spike (EF61921-MS1)	Sou	rce: 6F15001-	01	Prepared: 0	6/19/06 Ar	nalyzed: 06	/20/06			
Benzene	0.0488	0.00100	mg/L	0.0500	ND	97.6	80-120			
oluene	0.0539	0.00100	"	0.0500	ND	108	80-120			
Ethylbenzene	0.0501	0.00100	**	0.0500	ND	100	80-120			
(ylene (p/m)	0.115	0.00100	"	0.100	ND	115	80-120			
(ylene (o)	0.0576	0.00100	11	0.0500	ND	115	80-120			
urrogate: a,a,a-Trifluorotoluene	37.6		ug/l	40.0		94.0	80-120			
urrogate: 4-Bromofluorobenzene	41.7		"	40.0		104	80-120			

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control

		Reporting		Spike	Source		%REC			
Analyte ·	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61921 - EPA 5030C (GC)										
Matrix Spike Dup (EF61921-MSD1)	Sou	rce: 6F15001-	01	Prepared: 0	06/19/06 A	nalyzed: 06	5/20/06			
Benzene	0.0484	0.00100	mg/L	0.0500	ND	96.8	80-120	0.823	20	
Toluene	0.0469	0.00100	**	0.0500	ND	93.8	80-120	14.1	20	
Ethylbenzene	0.0451	0.00100	**	0.0500	ND	90.2	80-120	10.3	20	
Xylene (p/m)	0.0979	0.00100	**	0.100	ND	97.9	80-120	16.1	20	
Xylene (o)	0.0497	0.00100	**	0.0500	ND	99.4	80-120	14.6	20	
Surrogate: a.a.a-Trifluorotoluene	33.7		ug/l	40.0		84.2	80-120			
Surrogate: 4-Bromofluorobenzene	39.1		"	40.0		97.8	80-120			

Project: EME Jet. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61712 - General Preparation (V	VetChem)									
Blank (EF61712-BLK1)				Prepared &	: Analyzed:	06/17/06				
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	. **							
LCS (EF61712-BS1)				Prepared &	Analyzed:	06/17/06				
Chloride	10.0		mg/L	10.0		100	80-120			
Sulfate	8.16		"	10.0		81.6	80-120			
Calibration Check (EF61712-CCV1)				Prepared & Analyzed: 06/17/06						
Chloride	10.9		mg/L	10.0		109	80-120			
Sulfate	10.5		n	10.0		105	80-120			
Duplicate (EF61712-DUP1)	Sour	rce: 6F14013-	01	Prepared &	: Analyzed:	06/17/06				
Chloride	47.9	5.00	mg/L		48.8			1.86	20	
Sulfate	69.2	5.00	н		69.8			0.863	20	
Duplicate (EF61712-DUP2)	Sour	ce: 6F15003-	05	Prepared &	: Analyzed:	06/18/06				
Chloride	198	5.00	mg/L		197			0.506	20	
Sulfate	154	5.00	#		152			1.31	20	
Matrix Spike (EF61712-MS1)	Soui	ce: 6F14013-	01	Prepared &	: Analyzed:	06/17/06				
Chloride	157	5.00	mg/L	100	48.8	108	80-120			
Sulfate	154	5.00	"	100	69.8	84.2	75-125			÷
Matrix Spike (EF61712-MS2)	Sour	ce: 6F15003-	05	Prepared &	: Analyzed:	06/18/06				
ulfate	249	5.00	mg/L	100	152	97.0	75-125			
Chloride	301	5.00	**	100	197	104	80-120			

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

			:.	· · · · · · · · · · · · · · · · · · ·						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
				20101	resure	, , , , , ,				
Batch EF61918 - Filtration Preparation										· · · · · · · · · · · · ·
Blank (EF61918-BLK1)				Prepared: (6/15/06 Ai	nalyzed: 06	/16/06			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EF61918-DUP1)	Sou	rce: 6F15001-	01	Prepared: (06/15/06 At	nalyzed: 06	/16/06			
Total Dissolved Solids	7770	5.00	mg/L		7820			0.641	5	
Batch EF62316 - General Preparation (We	tChem)									
Blank (EF62316-BLK1)				Prepared &	: Analyzed:	06/22/06				
Total Alkalinity	ND	2.00	mg/L							
Carbonate Alkalinity	ND	0.100	н							
Bicarbonate Alkalinity	ND	2.00	-0							
Hydroxide Alkalinity	NĎ	0.100	n							
LCS (EF62316-BS1)				Prepared &	: Analyzed:	06/22/06				
Fotal Alkalinity	248	2.00	mg/L	250		99.2	85-115	-		
Duplicate (EF62316-DUP1)	Sou	rce: 6F15001-	01	Prepared &	: Analyzed:	06/22/06				
Total Alkalinity	380	2.00	mg/L		386			1.57	20	
Carbonate Alkalinity	0.00	0.100	п		0.00				20	
Bicarbonate Alkalinity	380	2.00	u ,		386			1.57	20	
Hydroxide Alkalinity	0.00	0.100	н		0.00				20	
Duplicate (EF62316-DUP2)	Sou	rce: 6F22003-	01	Prepared &	Analyzed:	06/22/06				
Total Alkalinity	142	2.00	mg/L		144			1.40	20	
Carbonate Alkalinity	0.00	0.100	"		0.00				20	
Bicarbonate Alkalinity	142	2.00	"	•	144			1.40	20	
Tydroxide Alkalinity	0.00	0.100	"		0:00				20	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

										ì
	•	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF62316 - General Preparation (WetChem)

Reference (EF62316-SRM1)				Prepared & Ana	lyzed: 06/22/06	
Total Alkalinity	78.0	2.00	mg/L	82.0	95.1	85-115
Bicarbonate Alkalinity	78.0	2.00		82.0	95.1	85-115

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control

		•								
•		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61505 - 6010B/No Digestion				·-···						
Blank (EF61505-BLK1)				Prepared &	k Analyzed:	06/15/06				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	"							
Potassium	ŃD	0.0500	н							
Sodium	ND	0.0100	"							
Calibration Check (EF61505-CCV1)				Prepared &	Analyzed:	06/15/06				
Calcium	2.01		mg/L	2.00		100	85-115			
Magnesium	2.12		ч	2.00		106	85-115			
Potassium	1.76		61	2.00		88.0	85-115			
Sodium	1.74		n	2.00		87.0	85-115			
Duplicate (EF61505-DUP1)	Sou	rce: 6F15001-	01	Prepared &	Analyzed:	06/15/06				
Calcium	316	0.500	mg/L		320			1.26	20	
Magnesium	231	0.0500	н.		229			0.870	20	
Potassium	38.4	0.500	**		38.5			0.260	20	
Sodium	1740	5.00	н		1760			1.14	20	

Project: EME Jct. M-16-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland K Julis

Date:

6/26/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

onmental Lab of Texas 12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

Project Manager: Kristin Farris Pope

kpope@riceswd.com

Company Address: 122 W. Taylor Street

Company Name, RICE Operating Company

Lea County

Project Loc:

Project #:

Project Name: EME Jct. M-16-1

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT brishnet2 \times (Pre-Schedule) sbilo2 bevlossi@ listo] พชา 105 BTEX 8021B/5030 Welsie: As Ag Ba Cd Cr Pb Hg Se TCLP: SAR / ESP / CEC # 0d Anions (Ct, SO4, CO3, HCO3) × Cations (Ca, Mg, Na, K) 9001 2001 M3108 1.811-H9 Other (specify): lio2 Sindge × AASIGL Other (Specify) Mone (1) 1 Liter HDPE OS^zH Fax No: (505) 397-1471 HOEN HCI (S) 40 ml glass vials N N 93| ന No. of Containers က 9:45 11:00 Time Sampled 6/13/2006 6/13/2006 Date Sampled Sampler Signature: Rozanne Johnson (505) 631-9310 City/State/Zip: Hobbs, New Mexico 88240 Email: rozanne@valornet.com FIELD CODE Telephone No: (505) 393-9174 Monitor Well #5 Monitor Well #4

PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com

Special Instructions:

Custody Seals: Containers / Coolei

Sample Containers Intact?

Labels on container?

Temperature Upon Receipt:

Time Date Received by:

aboratory Comments: 0250 5:3/ 6/15/06 Date Jamés Johnson 02:50 5:30 Time e/15/06

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

$\mathbf{O}_{\mathbf{W}}$	•			
HICE UP.				
111/1/ 11/05				
te/Time: 6/5/00 7:50				
1 TIC And				
der#: UMDW			•	
ΛM^{2}				
ials:				
0	Ot 1.11			
Sample Receipt			15 01	
nperature of container/cooler?	Yes	No	1,5 C	
oping container/cooler in good condition? tody Seals intact on shipping container/cooler?	為	No	Not present	
stody Seals intact on snipping container cooler:		No	Not present	
tody Seals intaction sample bottles? in of custody present?	T Ses 1	No	Trot present	
nple Instructions complete on Chain of Custody?	THE I	No		
sin of Custody signed when relinquished and received?) (23)	No		
ain of custody agrees with sample label(s)	₩ E S	No	 i	
ntainer labels legible and intact?	(Es)	No		
mple Matrix and properties same as on chain of custody?) ee	No	· · · · · · · · · · · · · · · · · · ·	
mples in proper container/bottle?	Yas	No		
mples properly preserved?	湯	No		
mple bottles intact?	Yes	No		
eservations documented on Chain of Custody?	YES)	No		
ntainers documented on Chain of Custody?	() as	No	1	
ent sample amount for indicated test?	(Zes	No		
imples received within sufficient hold time?	res	No	1	
DC samples have zero headspace?	₹ € \$	No	Not Apolicable	
ther observations:		· · · · · · · · · · · · · · · · · · ·		
				·
		 		
			•	
				•
Variance Docu	montati	on:		
•			Contacted by:	
			Contacted by	
egarding:				
A-Line Tolling				
orrective Action Taken:				
	···			
				
	·			
				···
	 ,			

Analytical Report

Prepared for:

Sharon Hall
ARCADIS
1004 N. Big Spring Street
Midland, TX 79701

Project: MT000856.0001

Project Number: MT000856:001

Location: None Given

Lab Order Number: 6C02008

Report Date: 03/08/06

Project: MT000856.0001 Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
A20 MW-3 5'-10'	6C02008-01	Soil	02/28/06 14:00	03/02/06 09:20
A20 MW-3 20'-25'	6C02008-02	Soil	02/28/06 14:10	03/02/06 09:20
A20 MW-2 0-5'	6C02008-03	Soil	02/28/06 11:15	03/02/06 09:20
A20 MW-2 15'-20'	6C02008-04	Soil	02/28/06 11:35	03/02/06 09:20
M16-1 MW-3 15'-20'	6C02008-05	Soil	03/01/06 09:10	03/02/06 09:20
M16-1 MW-2 15'-20'	6C02008-06	Soil	02/28/06 17:40	03/02/06 09:20

Project Number: MT000856.0001
Project Manager: Sharon Hall

Fax: (432) 687-5401

Reported:
03/08/06 16:08

Organics by GC Environmental Lab of Texas

Analysis	Dls	Reporting	11-7-						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
A20 MW-3 5'-10' (6C02008-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC60604	03/06/06	03/06/06	EPA 8021B	
Toluene	0.0875	0.0250	17	"	#	**	v	14	
Ethylbenzene	0.106	0.0250		**	n		"	н	
Xylene (p/m)	0.176	0.0250	•	**		*1	•		
Xylene (o)	ND	0.0250			"				
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80-1	20	"	"	n		
Surrogate: 4-Bromofluorobenzene		105 %	80-1	20	"	"	и		
A20 MW-3 20'-25' (6C02008-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC60604	03/06/06	03/06/06	EPA 8021B	
Toluene	ND	0.0250	ņ	*	n	**	n	11	
Ethylbenzene	ND	0.0250	ч		"		"	•	
Xylene (p/m)	ND .	0.0250	ч	n	n	"	et	•	
Xylene (o)	ND	0.0250	net.	**	**	n	·	4	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	"	"	"	"	
urrogate: 4-Bromofluorobenzene		96.0 %	80-1	20	#	"	n	"	
A20 MW-2 0-5' (6C02008-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC60604	03/06/06	03/06/06	EPA 8021B	
Toluene	ND	0.0250	*	•	٠,	**	ч	#	
Ethylbenzene	ND	0.0250	**		er	11	"	"	
Xylene (p/m)	ND	0.0250	•	н	,,	**	п	4	
Xylene (o)	ND	0.0250	+ <mark>#</mark> -	•	*	п	п	"	
Surrogate: a,a,a-Trifluorotoluene		81.0 %	80-1	20	и	"	н	"	
Surrogate: 4-Bromofluorobenzene		107 %	80-1	20	"	n	"	и	
A20 MW-2 15'-20' (6C02008-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC60604	03/06/06	03/06/06	EPA 8021B	
l'oluene e e e e e e e e e e e e e e e e e e	ND	0.0250	**	4	**	н	n	н	
Ethylbenzene	ND	0.0250	н	. "	4	u		11	
Kylene (p/m)	ND	0.0250	n	"	"	n	"	•	
Kylene (o)	ND	0.0250	*	#	н .	**	**	"·	
Surrogate: a,a,a-Trifluorotoluene		81.8 %	80-1.	20	а	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-1.	20	u	"	"	п	

Project: MT000856.0001

Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M16-1 MW-3 15'-20' (6C02008-05) Soil									······
Benzene	ND	0.0250	mg/kg dry	25	EC60604	03/06/06	03/06/06	EPA 8021B	
Toluene	ND	0.0250	"	v.	*	**	*	er.	
Ethylbenzene	ND	0.0250	0	**	**	**	"	**	
Xylene (p/m)	ND	0.0250	n	**	я	н	н	н	
Xylene (o)	ND	0.0250	ч	Ħ	**	11	**	•	
Surrogate: a,a,a-Trifluorotoluene		81.0 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-1.	20	"	"	"	"	
M16-1 MW-2 15'-20' (6C02008-06) Soil						`		_	
Benzene	ND	0.0250	mg/kg dry	25	EC60604	03/06/06	03/06/06	EPA 8021B	
Toluene	ND	0.0250	п	•	"	#	н	**	
Ethylbenzene	ND .	0.0250	*	**	"		"	·	
Xylene (p/m)	ND	0.0250	n	п	*	"	41	et.	
Xylene (o)	ND	0.0250	n		"	•	1*	"	
Surrogate: a,a,a-Trifluorotoluene	4,***	85.0 %	80-1.	20	"	"	"	" .	
Surrogate: 4-Bromofluorobenzene		91.8 %	80-12	20	"	"	. "	. "	

Project: MT000856,0001

Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	5 2.2	D . I	D /		Made 1	X 1 ·
	Kesun		Onts	Dilution	Batch	Prepared	Analyzed	Method	Note
A20 MW-3 5'-10' (6C02008-01) Soil									
Chloride ·	188	20.0	mg/kg	40	EC60801	03/07/06	03/08/06	EPA 300.0	
% Moisture	6.5	0.1	%	1	EC60307	03/02/06	03/03/06	% calculation	
A20 MW-3 20'-25' (6C02008-02) Soil									
Chloride	292	10.0	mg/kg	20	EC60801	03/07/06	03/08/06	EPA 300.0	
% Maisture	7.1	0.1	%	l	EC60307	03/02/06	03/03/06	% calculation	
A20 MW-2 0-5' (6C02008-03) Soil	_					•			
Chloride	49.9	5.00	mg/kg	10	EC60801	03/07/06	03/08/06	EPA 300.0	
% Moisture	4.9	0.1	%	1	EC60307	03/02/06	03/03/06	% calculation	
A20 MW-2 15'-20' (6C02008-04) Soil									
Chloride	500	10.0	mg/kg	20	EC60801	03/07/06	03/08/06	EPA 300.0	
% Moisture	9.1	0.1	%	1	EC60307	03/02/06	03/03/06	% calculation	
M16-1 MW-3 15'-20' (6C02008-05) Soil									
Chloride	175	10.0	mg/kg	20	EC60801	03/07/06	03/08/06	EPA 300.0	
% Moisture	5.7	0.1	%	1	EC60307	03/02/06	03/03/06	% calculation	
M16-1 MW-2 15'-20' (6C02008-06) Soil									
Chloride	197	5.00	mg/kg	10	EC60801	03/07/06	03/08/06	EPA 300.0	
% Moisture	7.3	0.1	%	1 .	EC60307.	03/02/06.	03/03/06	% calculation	

Project: MT000856.0001

Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

Organics by GC - Quality Control Environmental Lab of Texas

			····			,,				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	Units	Level	Result	70NEC	LHIIIIS	KFD	Linux	inotes
Batch EC60604 - EPA 5030C (GC)		,		·						
Blank (EC60604-BLK1)				Prepared &	: Analyzed:	03/06/06				
Веплепе	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	**							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	*							
Xylene (o)	ND	0.0250	u							•
Surrogate: a,a,a-Trifluorotoluene	32.1		ug/kg	40.0		80.2	80-120			
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	80-120			
LCS (EC60604-BS1)				Prepared &	Analyzed:	03/06/06				
Benzene	0.0405	0.00100	mg/kg wet	0.0500		81.0	80-120			
Toluene	0.0464	0.00100	. "	0.0500		92.8	80-120			
Ethylbenzene	0.0555	0.00100	tr.	0.0500		111	80-120			
Xylene (p/m)	0.117	0.00100	h	0.100		117	80-120			
Xylene (o)	0.0579	0.00100	•	0.0500		116	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.7		ug/kg	40.0		94.2	80-120			
Surrogate: 4-Bromofluorobenzene	42.9		"	40.0		107	80-120			
Calibration Check (EC60604-CCV1)				Prepared &	Analyzed:	03/06/06				
Веплепе	40.3		ug/kg	50.0		80.6	80-120			
Toluene	42.0		"	50.0		84.0	80-120			
Ethylbenzene	47.3		и	50.0		94.6	80-120			
Kylene (p/m)	99.5		*	100		99.5	80-120			
Xylene (0)	50.2		"	50.0		100	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.6		"	40.0		84.0	80-120			
Surrogate: 4-Bromofluorobenzene	33.3·	-	"	40.0		83.2	80-1-20			
Matrix Spike (EC60604-MS1)	Sou	rce: 6C03004	-01	Prepared &	Analyzed:	03/06/06				
Benzene	1.25	0.0250	mg/kg dry	1.55	ND	80.6	80-120			
Toluene ·	1.40	0.0250	**	1.55	ND	90.3	80-120			
Ethylbenzene	1.73	0.0250	•	1.55	ND	112	80-120			
(ylene (p/m)		0.0250	14	3.11	ND	117	80-120			
, · · · · · · · · · · · · · · · · · · ·	3.64	0.0230								
Kylene (0)	3.64 1.82	0.0250	"	1.55	ND	117	80-120			
			" ug/kg	1.55	ND	117 85.0	80-120 80-120			

Project: MT000856.0001

Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC60604 - EPA 5030C (GC)										
Matrix Spike Dup (EC60604-MSD1)	Sour	ce: 6C03004-	01	Prepared 8	Analyzed:	03/06/06				

Matrix Spike Dup (EC60604-MSD1)	Sour	ce: 6C03004	4- 01	Prepared &	Analyzed	: 03/06/06				
Benzene	1.26	0.0250	mg/kg dry	1.55	ND	81.3	80-120	0.865	20	
Toluene	1.40	0.0250	"	1.55	ND	90.3	80-120	0.00	20	
Ethylbenzene	1.69	0.0250	#	1.55	ND	109	80-120	2.71	20	
Xylene (p/m)	3.58	0.0250	11	3.11	ND	115	80-120	1.72	20	
Xylene (o)	1.79	0.0250		1.55	ND	115	80-120	1.72	20	
Surrogate: a,a,a-Trifluorotoluene	34.1		ug/kg	40.0		85.2	80-120			
Surrogate: 4-Bromofluorobenzene	44.3		"	40.0		111	80-120			

Project: MT000856.0001

Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC60307 - General Preparation (Prep)								<u>-</u> ,		
Blank (EC60307-BLK1)				Prepared: (03/02/06 A	nalyzed: 03	/03/06			
% Solids	100		%							
Duplicate (EC60307-DUP1)	Sou	rce: 6C02006-	01	Prepared: (03/02/06 A	nalyzed: 03	/03/06			
% Solids	98.9		%		98.8			0.101	20	
Duplicate (EC60307-DUP2)	Sou	rce: 6C02009-	08	Prepared: (3/02/06 A	nalyzed: 03	/03/06			
% Solids	71.3		%		73.3			2.77	20	
Batch EC60801 - Water Extraction										·-
Blank (EC60801-BLK1)				Prepared: 0	3/07/06 A	nalyzed: 03	/08/06			
Chloride	ND	0.500	mg/kg							
LCS (EC60801-BS1)				Prepared: 0	3/07/06 A	nalyzed: 03	/08/06			
Chloride	8.66		mg/L	10.0		86.6	80-120			
Calibration Check (EC60801-CCV1)				Prepared: (3/07/06 A	nalyzed: 03	/08/06			
Chloride	9.34		mg/L	10.0		93.4	80-120			
Ouplicate (EC60801-DUP1)	Sou	rce: 6C02003-	01	Prepared: 0	3/07/06 A	nalyzed: 03	/08/06			
Chloride	473	. 10.0	mg/kg		470			0.636	20	

Duplicate

Project: MT000856.0001

Project Number: MT000856.001 Project Manager: Sharon Hall Fax: (432) 687-5401

Reported: 03/08/06 16:08

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting lim
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
.cs	Laboratory Control Spike
MS	Matrix Spike

	Kaland K Julia		•	
Report Approved By:	Kawanen	Date:	3/8/2006	

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Laboratory Task Order No./P.O. No.

CHAIN-OF-CUSTODY RECORD Page

Project Number/Name MT000856.0001	ANA	ANA! YSIS / METHOD / SIZE		
Project Location Rice Operating		(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)		
Laboratory Environmental Lab of Texas	\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOON TOON		
Project Manager_Sharon Hall	ASET.	eo _A		
Sampler(s)/Affiliation ARCADIS/RL	o le de la la la la la la la la la la la la la	Zw O		
Date/XXXXX Time & Sample ID/Location Matrix Sampled XXXXXX \	A LI I	(2) A RICI (2) A RICI	Romarks	F.
10,1 5 2/28/06 14:00			10-X002010)	-
(20.25) 5 2/28/06				
17			-03	
MW-2 (15-20) 5 2/28/06			40-	\
7 5 3/1/06 19.			50-	_
MIG-1 MW-2 (15:20) 5 2/28/06 /7:40 /			0)9	
			and the state of t	
Sample Matrix: L = Liquid; S = Solid; A = Air			Total No. of Bottles/ Containers	Ø
Received by: Received by: Received by:	CADIS	Date 3 12 106 Date 3 12 106	Time 4:20 Res No	Seal Intact?
.,,,		Date / /		1 (1)
o				No N/A
Special Instructions/Remarks: 5.0°C 402 080.882	s w (whel			
	-	-		
Delivery Method: XXXIn Person Common Carrier		☐ Lab Courier	Other	

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

ont: ARCADS					
Date/Time: 32/06 9'.26					
Determine.					
Order #: 6002008					•
Initials:					
militals.					
Sample Receipt	Checkli	st			
Temperature of container/cooler?	Yes	No	5,0	CI	*
Shipping contained cooler in good condition?	Yes	No			
Custody Seals intact on shipping container/cooler?	Yes	No	Not presen	t j	
Custody Seals intact on sample bottles?	Yes	No	Not presen		
Chain of custody present?	Yes	No			
Sample Instructions complete on Chain of Custody?	A 223	No			•
Chain of Custody signed when relinquished and received?	(Fig.	No		<u> </u>	
Chain of custody agrees with sample label(s)	Yes	No	· · · · · · · · · · · · · · · · · · ·		
Container labels legible and intact?	YES	No		 i	
Sample Matrix and properties same as on chain of custody?	¥ es	No		— -	
Samples in proper container/bottle?	Yes	No		, 	
Samples properly preserved?	ES,	No		 -(•
Sample bottles intact?	¥eş	No			
Preservations documented on Chain of Custody?	Yes	No		 i	
Containers documented on Chain of Custody?	Yes	No			
Sufficient sample amount for indicated test?	Yes	No			
amples received within sufficient hold time?	G S	No			
C samples have zero headspace?	Yes	No	Not Applical	10	
Control of the contro	1 63		, wormponder		
Other observations:					
				*	
The second secon					
	 	•			· · · · · · · · · · · · · · · · · · ·
Variance Docur	nentatio	n:			
Contact Person: - Date/Time:			Contacted I	W.	
			Odnicoled i	уу	
Regarding:				•	
Corrective Action Taken:					
				·	
				 -	
·					
	- 				
**************************************					· · · · · · · · · · · · · · · · · · ·
			·	-	

ARCADIS

Appendix D

Recovery Well Design Diagram

RICE Operating Company Recovery well diagram 8/4/2008

Well Construction		
		2 x 2 ft concrete pad on surface
	4 in. Schedule 40 PVC casing	bentonite seal
40 ft of screen above water		sand pack (20/40 silica sand)