AP -

STAGE 1 & 2 WORKPLANS

DATE: 10 - 10 - 08

STAGE 1 & 2 ABATEMENT PLAN

BD JCT. P-26-1 SITE (1R-0426-106) BD JCT. P-26-2 SITE (1R-0426-107)

T21, R37E, SECTION 26 UNIT LETTER P
LEA COUNTY, NEW MEXICO

PREPARED BY:

PREPARED FOR:

P. O. Box 7624 MIDLAND, TEXAS 79708

122 WEST TAYLOR HOBBS, NEW MEXICO 88240 CERTIFIED MAIL
RETURN RECIEPT NO. 7099 3400 0017 1737 1971

October 13, 2008

Mr. Edward Hansen New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: Stage 1 and 2 Abatement Plan

BD Jct. P-26-1 Site (1R-0426-106) BD Jct. P-26-2 Site (1R-0426-107) T21S-R37E-Section 26, Unit Letter P

Dear Mr. Hansen

On behalf of Rice Operating Company (ROC), enclosed are the proposed Stage 1 and 2 Abatement Plan and Notice of Publication for the above-referenced sites. The two sites are in close proximity of each other (within 350 feet) and have similar impacts and characterization profiles; therefore, they are being combined into one abatement plan per your approval on September 8, 2008.

After approved by the Division, ROC will give written notice of the Stage 1 and 2 Abatement Plan to the following persons:

- (a) surface owners of record within one (1) mile of the perimeter of the site,
- (b) the Lea County commissioner,
- (c) those persons, as identified by the Director, who have requested notification;
- (d) the New Mexico Trustee for Natural Resources, and any other local, state or federal governmental agency affected, as identified by the Director.

Upon your review, ROC will issue the approved public notice for publication in the Albuquerque Journal and the Hobbs News Sun pursuant to OCD Rule 19.G.(2). A copy of these publications and notice to owners and all interested parties will be provided.

If you have any questions please call me at 432-638-8740 or Hack Conder at 505-393-9174.

Sincerely,

Gilbert Van Deventer Trident Environmental

cc: Hack Conder, Rice Operating Company
Marvin Burrows, Rice Operating Company

NOTICE OF PUBLICATION State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

Notice is hereby given that pursuant to New Mexico Oil Conservation Division Regulations, the following Stage 1 and 2 Abatement Plan has been submitted to the Director of the Oil Conservation Division, 1220 S. St. Francis Dr., Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

Rice Operating Company, Marvin Burrows, Engineering Manager, Telephone (505) 393-9174, 122 West Taylor, Hobbs, New Mexico 88240, has submitted a Stage 1 and 2 Abatement Plan for a release at the BD Jct. P-26-1 (NMOCD Case No. 1R-0426-106) and BD Jct. P-26-2 (NMOCD Case No. 1R-0426-107) sites. Both junction box sites are located in Section 26, Township 21 south, Range 37 east, approximately 2 miles east of Eunice, New Mexico. Rice Operating Company operates a saltwater disposal pipeline at the site. Soil boring and groundwater samples at the site have exhibited elevated chloride concentrations. The Stage 1 and 2 Abatement Plan proposes the following site abatement activities: (1) Corrective actions to the vadose zone at each site have already taken place with the new construction and relocation of watertight junction boxes, upgrade to poly pipeline, and installation of a one-foot thick clay barrier at 6 ft bgs. The surrounding area is supportive of vegetation and each site has been reseeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. (2) ROC proposes to install one groundwater recovery well at each site which will share a single groundwater treatment system. Once installed, the performance of the system will be monitored until the chloride mass contributed by releases from the former junction boxes has been mitigated.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The Stage 1 and 2 Abatement Plan may be viewed at the above address or at the Oil Conservation Division District Office, 1625 N. French Drive, Hobbs, New Mexico 88240, Telephone (505) 393-6161 between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed Stage 1 and 2 Abatement Plan, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which written requests for a public hearing that includes reasons why a hearing should be held and written comments may be submitted to him.

TABLE OF CONTENTS

1.0	EXE	CUTIVE SUMMARY	1
2.0	BAC	KGROUND AND PREVIOUS WORK	
	2.1 2.2	Site Location and Land Use	
	2.2	JCT. P-26-2 SITE - PREVIOUS WORK	
3.0	GEO	LOGY AND HYDROGEOLOGY	6
	3.1	REGIONAL AND LOCAL GEOLOGY	
	3.2	REGIONAL AND LOCAL HYDROGEOLOGY	6
4.0	SOIL	AND GROUNDWATER INVESTIGATION	9
5.0	GRO	UNDWATER QUALITY	12
	5.1	GROUNDWATER MONITORING PROGRAM	12
	5.2	CONSTITUENTS OF CONCERN IN GROUNDWATER	12
6.0	STA	GE 2 ABATEMENT PLAN	15
	6.1	Corrective Actions to Vadose Zone	
	6.2	Corrective Actions to Groundwater	
	6.3	Proposed Schedule of Activities	16

TABLES

TABLE 1: SUMMARY OF ACTIVE WATER WELLS
TABLE 2: SUMMARY OF CHLORIDE CONCENTRATIONS IN VADOSE ZONE
TABLE 3: SUMMARY OF GROUNDWATER MONITORING RESULTS
FIGURES
FIGURE 1: SITE LOCATION MAP
FIGURE 2: AERIAL PHOTO MAP
FIGURE 3: WATER TABLE ELEVATION MAP
FIGURE 4: CHLORIDE CONCENTRATIONS IN VADOSE ZONE MAP
FIGURE 5: CHLORIDE, TDS, & BTEX CONCENTRATIONS IN GROUNDWATER
ABBENDICES
APPENDICES
Appendix A: NMOCD Correspondence

Appendix B: Lithologic Logs and Well Construction Diagrams

Appendix C: Laboratory Reports and Chain of Custody Documentation

1.0 EXECUTIVE SUMMARY

The Jct. P-26-1 and P-26-2 sites are operated by Rice Operating Company (ROC) and are located in Township 21 South, Range 37 East, Section 26, unit letter P approximately 2 miles east of Eunice, NM. The two sites are in close proximity of each other (within 350 feet) and have similar impacts and characterization profiles; therefore, they are being combined into one abatement plan as approved by NMOCD on September 8, 2008 (Appendix A). This combined Stage 1 and 2 Abatement Plan incorporates the findings of additional investigations performed after those described in the Investigation and Characterization Plans (ICP) which were submitted to the NMOCD on February 12, 2007. The Stage 2 portion (section 6.0) of this abatement plan proposes corrective actions for vadose zone and groundwater remedies.

The constituents of concern at each site are limited to chloride and total dissolved solids (TDS) which exceed New Mexico Water Quality Control Commission (WQCC) standards for groundwater. There are no indications of adverse hydrocarbon impacts to the vadose zone or groundwater at either site. A maximum chloride concentration of 4,350 milligrams per liter (mg/L) in MW-1 at the P-26-1 site (November 12, 2007) and 5,300 mg/L in MW-1 at the P-26-2 site (April 4, 2008) were observed; however, elevated chloride and TDS concentrations are limited to the near vicinity of the source at each site, and levels have decreased approximately 50 percent at the P-26-1 site.

Corrective actions to the vadose zone at each site have already taken place with the new construction and relocation of watertight junction boxes, upgrade to poly pipeline, and installation of a one-foot thick clay layer at 6 ft bgs to minimize infiltration through the vadose zone. The surrounding area is supportive of vegetation and each site has been re-seeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. ROC will monitor the site for continued healthy growth of native vegetation and add amendments if necessary.

As described further in section 6.2, ROC proposes to install one groundwater recovery well at each site which will share a single groundwater treatment system. Once installed, the performance of the system will be monitored until the chloride mass contributed by releases from the former junction boxes has been mitigated. Flow rate, total volume, and chloride content of the recovered and treated groundwater will be measured. Water from the recovery wells will be stored on site for treatment. Treated water will be used for irrigation of the site vegetation. Untreated and/or rejected water will be used in pipeline maintenance operations.

ROC will continue quarterly groundwater sampling at each site.

2.0 BACKGROUND AND PREVIOUS WORK

2.1 SITE LOCATIONS AND LAND USE

The Jct. P-26-1 and P-26-2 sites are located on land owned by Delrose Scott in Township 21 South, Range 37 East, Section 26, unit letter P approximately 2 miles east of Eunice, NM as shown on the attached Site Location Map (Figure 1). Produced water gathered by the BD SWD System in the site area is sent to the C-2 SWD well, which is located approximately 1 mile south-southeast of the Jct. P-26-1 and P-26-2 sites. Land in the site area is primarily utilized for oil & gas production, and cattle ranching. Figure 2 is a recent aerial photograph (2005) showing both sites and other pertinent features.

2.2 JCT P-26-1 SITE - PREVIOUS WORK

In June 2004, ROC initiated replacement activities of the Jct. P-26-1 vent as part of the NMOCD-approved Junction Box Upgrade Program. The P-26-1 junction box was rebuilt at a location approximately 20 feet to the north of its former location. Soil sampling activities at the former vent location were conducted from June 28 to July 1, 2004 and included the installation of eight 12-ft deep trenches.

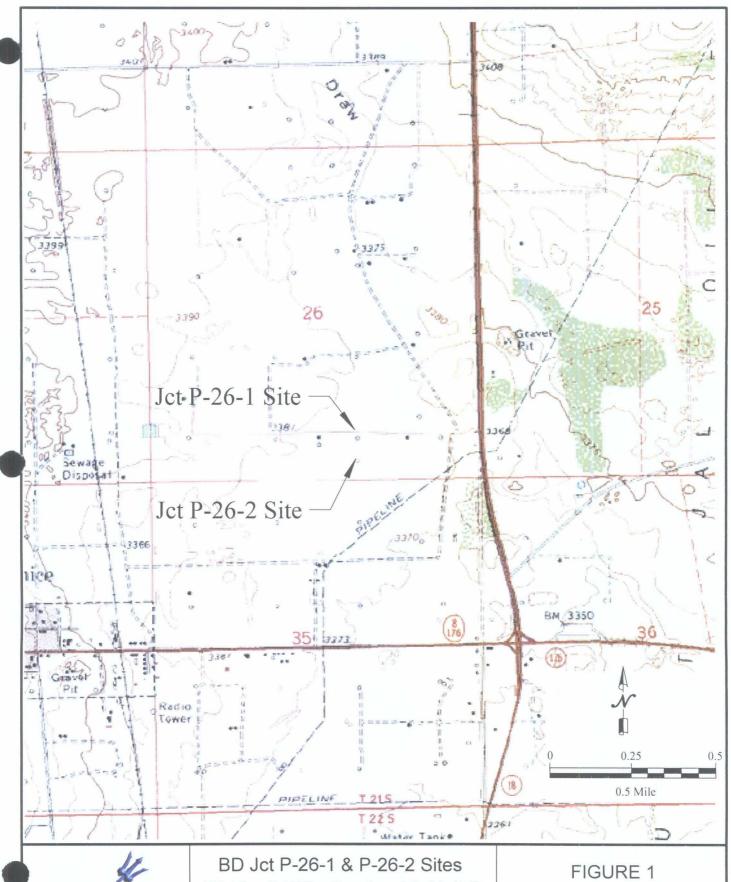
Between July 8 and July 15, 2004, a 25-ft wide by 35-ft long area was excavated to a depth of 12 feet below ground surface (bgs). Composite soil samples were recovered from the floor of the excavation, from each of the four walls of the excavation, and from the excavated soil. Following the characterization of the soil, the excavated soil was blended and returned to the excavation up to a depth of 6 feet bgs. A one-foot thick compacted clay barrier was installed to prevent potential downward migration of any residual contaminants and the remaining soil was placed above the clay. An identification plate was placed on the surface to mark to location of the clay barrier.

Notice of potential groundwater impact was emailed to the NMOCD on November 16, 2004. A Junction Box Disclosure Report was submitted to the OCD on March 18, 2005 to disclose the site as having potential for adverse impact to the vadose zone and groundwater. The site was placed on a prioritized list of similar sites for further consideration.

An ICP was submitted to NMOCD on February 12, 2007, to address potential environmental concerns at site. NMOCD approved the ICP via email on August 6, 2007, and assigned the site case number 1R-0426-106.

2.3 JCT P-26-2 SITE - PREVIOUS WORK

On June 2, 2004, ROC initiated replacement activities at the P-26-2 junction box as part of the NMOCD-approved Junction Box Upgrade Program. Jct. P-26-2 was rebuilt at a location approximately 67 feet to the north.



Soil sampling activities at the former P-26-2 junction box site were conducted from June 2 to 4, 2004 and included the installation of four 12-ft deep trenches and one 16-ft deep trench from which soil samples were collected every 2 feet beginning at 4 ft bgs. On June 7, 2004, a 10-ft wide by 12-ft long area was excavated to a depth of 12 ft bgs. Composite soil samples were recovered from the floor of the excavation, from each of the four walls of the excavation, and from the excavated soil.

Following the characterization of the soil, the excavated soil was blended and returned to the excavation up to a depth of 6 feet bgs. A one foot thick compacted clay barrier was installed to prevent potential downward migration of any residual contaminants and the remaining soil was placed above the clay. An identification plate was placed on the surface to mark to location of the clay barrier.

Notice of potential groundwater impact was emailed to the NMOCD on August 25, 2004. A Junction Box Disclosure Report was submitted to the OCD on March 18, 2005 to disclose the site as having potential for adverse impact to the vadose zone and groundwater. The site was placed on a prioritized list of similar sites for further consideration.

An ICP was submitted to NMOCD on February 12, 2007, to address potential environmental concerns at site. NMOCD approved the ICP via email on August 6, 2007, and assigned the site case number 1R-0426-107.

T21S - R37E - Section 26, Unit P

RICE Operating Company

SITE LOCATION MAP

BD Jct P-26-1 & Jct P-26-2 Sites T21S - R37E - Section 26, Unit P

RICE Operating Company

FIGURE 2

AERIAL PHOTO MAP (2005)

3.0 GEOLOGY AND HYDROGEOLOGY

3.1 REGIONAL AND LOCAL GEOLOGY

According to published information (Nicholson and Clebsch, 1961, Barnes, 1976, and Anderson, Jones, and Green, 1997) the site is underlain by Quaternary Colluvial Deposits composed of sand, silt, and gravel deposited by slopewash and talus from the Tertiary Ogallala Formation. These colluvial deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The thickness of the colluvial deposits and Ogallala Formation is approximately 45 feet; however it varies locally as a result of significant paleo-topography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the alluvium and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the unconfined water-bearing formation (colluvial deposits and Ogallala Formation) and therefore limit the amount of recharge to the underlying Dockum Group.

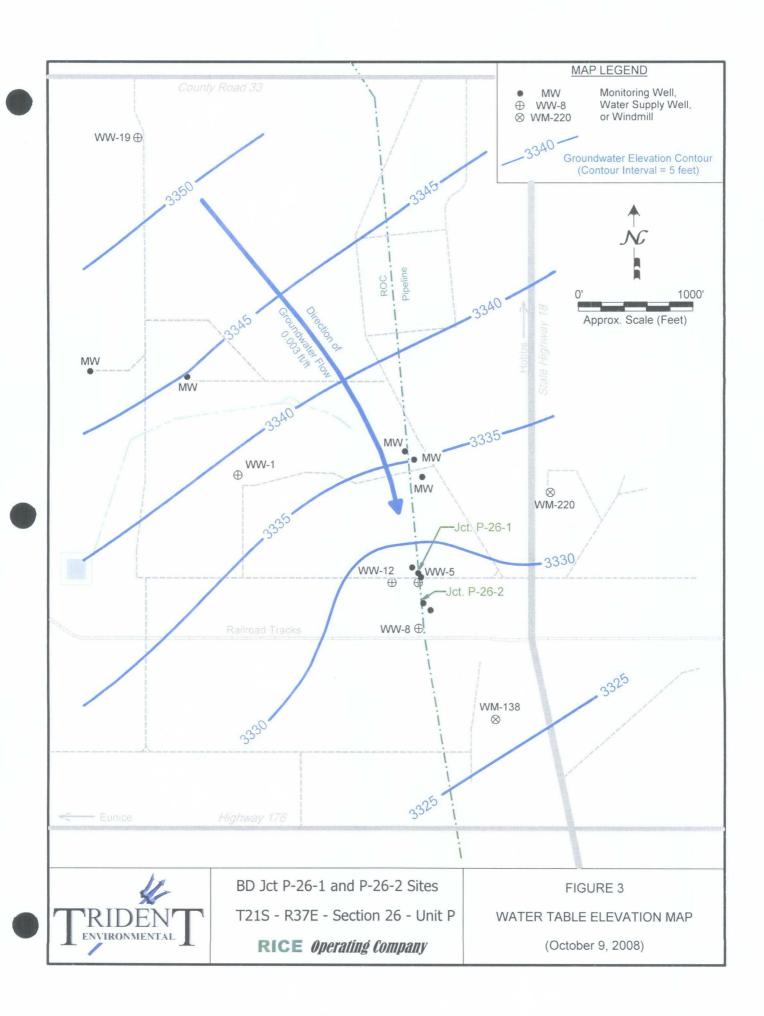
During soil sampling activities, the subsurface soils were generally composed of calcareous very fine-grained sand nearer to the surface (upper 25 feet or so) which transitioned to fine-grained sand (approximately 25-ft to 45-ft bgs), and then to a fine- to medium-grained sand below 45 ft bgs to the bottom of the borings (approximately 60 ft bgs). Variations to this generalized lithologic description occurred from boring to boring. More detailed descriptions of the subsurface lithology are included in the lithologic logs along with other pertinent observations in Appendix B.

3.2 REGIONAL AND LOCAL HYDROGEOLOGY

Potable groundwater used in southern Lea County is derived primarily from the Ogallala Formation and the Quaternary alluvium. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, livestock, domestic, industrial, and public supply purposes.

Based on the total depths of water wells in the area (85 to 90 feet) and the depth to groundwater (average of 45 feet bgs), the saturated thickness of the Ogallala Formation in the site area is estimated at approximately 40 - 45 feet.

Nicholsen and Clebsch (1961) found that the regional gradient of the Ogallala and interconnected colluvial aquifer in the site area generally flows toward the southeast and the hydraulic gradient varies from approximately 0.001 to 0.01 feet/feet.

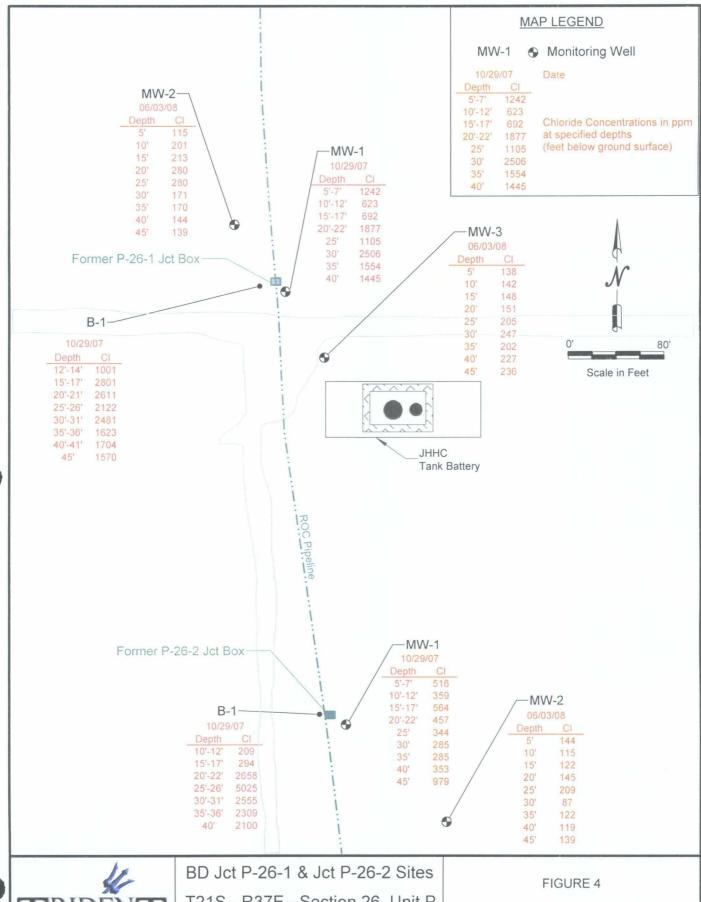

Based on the known depth to groundwater data from accessible wells located within a mile of the Jct. P-26 sites the magnitude of the regional groundwater gradient is 0.003 feet/foot and the prevailing direction of flow is to the southeast (Figure 3). However, the magnitude and direction of the groundwater gradient in the vicinity of the P-26-1 and P-26-2 sites is significantly influenced by the groundwater withdrawal from several nearby industrial water supply wells. Based on records from the New Mexico Office of the State Engineer (NMSEO) these wells are consistently pumping at a combined rate of approximately 80 to 90 gallons per minute (gpm). The groundwater withdrawal induces groundwater to flow from the site towards the water supply wells. During times when the water supply wells are not in service the gradient intermittently returns to the prevailing southeast direction.

A summary of active water wells located in the vicinity of the Jct. P-26-1 and P-26-2 sites are listed in Table 1 below. These wells are also depicted in Figure 3.

Table 1
Summary of Active Water Wells

Well ID	Well Type/Use	T21S'-	R37E UL	Distance from Jct. P-26-1 Site	Distance from Jct. P-26-2 Site
WW-1	Industrial Supply	26	K	2,640 ft NW	2,770 ft West
WW-5	Industrial Supply	26	P	120 ft South	240 ft North
WW-8	Industrial Supply	26	Р	650 ft South	300 ft SSW
WW-12	Industrial Supply	26	0	330 ft WSW	430 ft NW
WM-220	Windmill/Livestock	25	I	1,920 ft NE	2,100 ft NE

There are no surface water bodies located within a ½ mile of the site.


4.0 SOIL AND GROUNDWATER INVESTIGATION

ROC conducted initial upper vadose zone delineation field activities at the Jct. P-26-1 and P-26-2 sites in June 2004. Results of those activities were disclosed to NMOCD in November 2004 (Notice of potential groundwater impact) and March 2005 (Junction Box Disclosure Report). A comprehensive description of these initial investigations was provided in the ICP and submitted to NMOCD in February 2007. The above-referenced documents are included with this abatement plan submission in portable document format on compact disk.

On October 29 and 30, 2007, a soil boring (B-1) was advanced immediately adjacent to the former junction box at a point were the early investigations indicated maximum chloride mass within the vadose zone to further delineate depth of impact in the vadose zone at both sites. Field testing of the soil borings suggested chloride impact to groundwater was likely; therefore, a monitoring well was installed just outside of the southeast corner of excavated area around each of the former junction boxes. After two quarters of sampling data confirmed groundwater impact, additional upgradient (MW-2) and downgradient (MW-3) wells were installed at the Jct.P-26-1 site on June 3, 2008, to determine the local groundwater gradient direction and lateral extent of groundwater impact. Only one downgradient well (MW-2) was necessary at the Jct. P-26-2 site since upgradient conditions can be characterized by the downgradient well at the Jct. P-26-1 site.

Results of chloride field testing at all soil borings and monitoring wells are depicted in Figure 4 and summarized in Table 2. Detailed descriptions of the lithology, field chloride tests, and well construction are also shown on the lithologic and well construction logs in Appendix B.

Copies of the laboratory analytical reports and chain of custody forms are included in Appendix C.

T21S - R37E - Section 26, Unit P

RICE Operating Company

CHLORIDE CONCENTRATIONS IN VADOSE ZONE

TABLE 2
SUMMARY OF CHLORIDE CONCENTRATIONS IN VADOSE ZONE

Jet	. P-26-1 Si	te
Boring/	Depth	Field Chloride
Monitoring Well	(ft bgs)	(ppm)
	12' - 14'	1001
	15' - 17'	2801
	20' - 21'	2611
D 1	25' - 26'	2122
B-1	30' - 31'	2481
	35' - 36'	1623
	40' - 41'	1704
	45' 5' - 7'	1570
		1242
	10' - 12'	623
	15' - 17'	692
	20' - 22'	1877
MW-1	25'	1105
	30'	2506
	35'	1554
	40'	1445
	45'	1464
	5'	115
	10'	201
İ	15'	213
NOW 2	20'	280
MW-2	25'	280
	30'	171
:	35' 40'	170 144
	40 45'	139
	5'	138
	10'	142
	15'	148
	20'	151
MW-3	25'	205
1	30'	247
	35'	202
	40'	227
	45'	236

Jc1	. P-26-2 Si	te.
Boring/	Depth	Field Chloride
Monitoring Well	(ft-bgs)	(ppm)
	×10' - 12'	209
1) above per 100 control mass mass mass mass mass mass mass mas	15' - 17'	294
- R-1	20' - 22' 25' - 26'	2658 5025
P 1	30' - 31'.	2555
	35' - 36'	2309
12:00 VII (A.1)	40'	2100
	5' - /' 10' - 12'	516 359
	15' - 17'	564
	20' - 22'	457
· MW-1	25'	344
	30' 35'	285 285
	40!	353
	45'	979
	5'	144
	10' 15'	115 122
	20'	145
MW-2	25!	209
	30'	87
	35' 40'	122 119
	45!	139

Note: Values with depth intervals indicate split-spoon samples. All others are from cutting returns.

5.0 GROUND WATER QUALITY

5.1 GROUNDWATER MONITORING PROGRAM

The monitoring wells at the Jct. P-26-1 and P-26-2 sites have been sampled on a quarterly basis for major ions, chloride, TDS, benzene, toluene, ethylbenzene, and xylenes (BTEX) since November 12, 2007.

5.2 CONSTITUENTS OF CONCERN IN GROUNDWATER

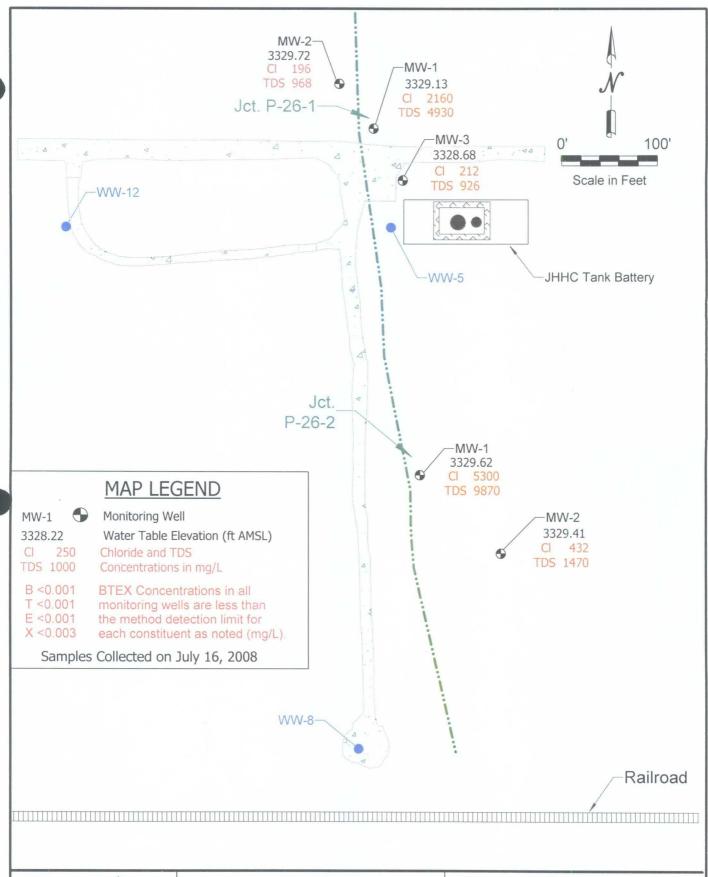
BTEX concentrations in all monitoring wells at the Jct. P-26-1 and P-26-2 sites have been below the WQCC standards and laboratory detection limits during each sampling event; therefore regulated hydrocarbons are not constituents of concern at either site.

The constituents of concern in groundwater at each site are limited to chloride and TDS which exceed WQCC standards of 250 mg/L and 1,000 mg/L, respectively.

- The elevated chloride and TDS concentrations are limited to the near vicinity of the former junction box locations at each site.
- Maximum chloride (4,350 mg/L) and TDS (8,396 mg/L) concentrations in monitoring well MW-1 at the Jct. P-26-1 site were recorded on November 12, 2007. The levels of these constituents have since decreased by 50 percent, with chloride and TDS concentrations of 2,160 mg/L and 4,930 mg/L, respectively, during the last sampling event on July 16, 2008.
- Chloride (5,300 mg/L) and TDS (9,870 mg/L) concentrations in monitoring well MW-1 at the Jct. P-26-2 site have remained relatively stable during the period of record (November 2007 through July 2008).
- The upgradient and downgradient monitoring wells at each site allow complete characterization of the lateral extent of chloride and TDS impact to groundwater.

A summary of historical analytical results and ground water elevations is listed in Table 3. Analytical results for the most recent sampling event conducted on July 16, 2008, are also depicted in graphical format in Figure 5. A copy of the laboratory analytical report and chain of custody form for the most recent ground water sampling event is included in Appendix C.

TABLE 3
SUMMARY OF GROUNDWATER MONITORING RESULTS


Site	Monitoring Well	Sample Date	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)	Chloride (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/E)	Ethylbenzene (mg/L)	Xylene (mg/L)
		11/12/07	50.37	3329.04	4,350	8,396	< 0.002	< 0.002	< 0.002	< 0.006
	MW-1	01/14/08	49.80	3329.61 ⁻	3,900	7,655	<0.001	< 0.001	<0.001	<0.003
1-9	101 00 - 1	04/04/08	50.00	3329.41	3,000	6,340	<0.001	<0.001	<0.001	< 0.003
P-26-		07/15/08	50.28	3329.13	2,160	4,930	<0.001	< 0.001	<0.001	< 0.003
	MW-2	07/15/08	49.51	3329.72	196	968	< 0.001	< 0.001	<0.001	< 0.003
	MW-3	07/15/08	49.20	3328.68	212	926	< 0.001	< 0.001	<0.001	< 0.003
		11/12/07	47.39	3330.30	5,000	9,415	<0.002	<0.002	< 0.002	<0.006
6-2	MW-1	01/14/08	47.84	3329.85	5,100	9,453	<0.001	<0.001	<0.001	<0.003
. 67		04/04/08	47.45	3330.24	5,300	10,100	<0.001	<0.001	<0.001	<0.003
, P		07/16/08	48.07	3329.62	5,300	9,870	** <0.001°	<0.001	<0.001	< 0.003
	MW-2	07/16/08	47.11	3329.41	432	. 1,470	<0.001	<0.001	< 0.001	< 0.003
land Land			WC	CC Standards	250	1,000	. ``.0.01" [0.75	0.75	0.62

Total Dissolved Soilds (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L). Analyses performed by Cardinal Laboratories (Hobbs NM).

Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

BTOC - Below Top of Casing

AMSL – Above Mean Sea Level

BD Jct P-26-1 & Jct P-26-2 Sites T21S - R37E - Section 26, Unit P

RICE Operating Company

FIGURE 5

WATER TABLE ELEVATIONS AND CHLORIDE, TDS, and BTEX CONCENTRATIONS IN GROUNDWATER

6.0 STAGE 2 ABATEMENT PLAN

The WQCC groundwater standards for chloride (250 mg/L) and TDS (1,000 mg/L) were exceeded at each site with the Jct. P-26-1 site having a lower level of impact. Corrective actions to the vadose zone and groundwater are proposed below.

6.1 CORRECTIVE ACTION TO THE VADOSE ZONE

The following corrective actions taken at the Jct. P-26-1 and P-26-2 sites have successfully mitigated past and future threats to the vadose zone or groundwater:

- The new construction and relocation of watertight junction boxes
- Upgrade from A/C line to poly line
- Installation of a one-foot thick clay barrier at 6 ft bgs to minimize infiltration through the vadose zone.
- Placement of clean topsoil and application of a native seed mixture to encourage revegetation.

The surrounding area is supportive of vegetation and has been re-seeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. ROC will monitor the site for continued healthy growth of native vegetation and add amendments if necessary.

6.2 CORRECTIVE ACTION TO GROUNDWATER

One 4-in diameter monitoring well will be completed adjacent to the original monitoring wells (MW-1) at each site to a total depth reaching the base of the aquifer which is estimated at 85 ft to 90 ft bgs. Each well will be screened continuously throughout the saturated zone and the lower 5 feet of vadose zone for groundwater removal. Due to the close proximity of each site to one another (within 350 feet) only one groundwater treatment system is necessary for both sites.

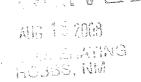
Groundwater will be recovered from the recovery wells by a solar powered pump system and stored on site for treatment to remove chloride and TDS to levels below WQCC standards. Treated water will be used for irrigation of the site vegetation. Untreated and/or rejected water will be used in pipeline maintenance operations.

6.3 SCHEDULE OF PROPOSED ACTIVITIES

This plan proposes a source removal program which will be initiated soon after approval of this abatement plan. Experience suggests a pumping rate of 2 to 4 gallons per minute may be possible from each of the 4-inch diameter wells completed at these sites. The proposed program includes:

- 1. Installation of recovery wells, pumping, and storage system as proposed in section 6.2
- 2. Measurement of water levels in the recovery wells and monitoring well(s).
- 3. Collection of groundwater samples from the recovery wells for chloride analysis on a monthly basis,
- 4. Measurements of the flow rate and total flow from the recovery wells at each site visit.

If the groundwater at the site becomes suitable for mature livestock (i.e. less than 3,000 mg/L TDS, NMSU Guide M-112, 1995), and a pump-and-use groundwater restoration program is no longer feasible or necessary, the evaluation of alternatives suggests that natural restoration in conjunction with the existing industrial water use, and a groundwater monitoring program provides the best abatement option.


When evaluating any proposed remedy or investigative work, ROC will confirm that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs. The remedy that offers the greatest environmental benefit while causing the least environmental impairment will be selected.

APPENDIX A NMOCD Correspondence

Bill Richardson

Joanna Prukop Cabinet Secretary Reese Fullerton Deputy Cabinet Secretary

Mark Fesmire Division Director Oil Conservation Division

CERTIFIED MAIL RETURN RECEIPT NO: 3929 4449

August 12, 2008

Hack Conder Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

RE: REQUIREMENT TO SUBMIT ABATEMENT PLAN

Dear Mr. Conder:

The New Mexico Oil Conservation Division (OCD) has determined after reviewing your Notification of Groundwater Impact for each of the following four sites:

- 1) Rice Justis E-1 Vent Unit E, Section 1, T25S, R37E Lea County, New Mexico OCD Case #1R0423-06
- 2) Rice BD P-26-1 Vent Unit P, Section 26, T21S, R37E Lea County, New Mexico OCD Case #1R0426-106
- 3) Rice BD P-26-2 Unit P, Section 26, T21S, R37E Lea County, New Mexico OCD Case #1R0426-107
- 4) Rice Hobbs Jct. E-4 Vent Unit E, Section 4, T19S, R38E Lea County, New Mexico OCD Case #1R0428-71

that the Rice Operating Company (ROC) must submit for each of the four sites a separate Stage 1 Abatement Plan in accordance with OCD Rule 19 (19.15.1.19 NMAC) to investigate the ground water contamination at each of these sites. The Stage 1 Abatement Plans must be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office and must meet of all the requirements specified in OCD Rule 19 (19.15.1.19 NMAC), including, but not limited to, the public notice and participation requirements specified in Rule 19G. The Stage 1 Abatement Plan is due sixty (60) days from the receipt by ROC of this written notice.

ROC's Stage 1 Abatement Plans must specifically meet all of the requirements specified in OCD Rule 19E.3, including, but not limited to, a site investigation work plan and monitoring program that will enable it to characterize the release using an appropriate number of isoconcentration maps and cross sections that depict the contamination that has been released from the sites and to provide the data necessary to select and design an effective abatement option. ROC may, if it chooses, concurrently submit a Stage 2 Abatement Plan that addresses appropriate proactive abatement options.

ROC should submit one paper copy and an electronic copy on CD for each of the Plans and for all future workplans and/or reports for each of the Plans. Please be sure to include the current corresponding OCD Case # on each of the respective Abatement Plans. An Abatement Plan # will be assigned as each of the Plans are submitted to the OCD. If you have any questions, please contact Edward J. Hansen of my staff at (505) 476-3489 or mailto:edwardj.hansen@state.nm.us.

Sincerely,

Wayne Price

Environmental Bureau Chief

WP:EJH:ejh

cc:

Chris Williams, OCD Hobbs District Supervisor

Larry Johnson, OCD Hobbs

Gil Van Deventer

From:

"Hansen, Edward J., EMNRD" <edwardj.hansen@state.nm.us>

"Haskell Conder" < hconder@riceswd.com>

"Marvin Burrows" <mburrows@riceswd.com>; "Gil Van Deventer" <gilbertvandeventer@suddenlink.net> Monday, September 08, 2008 6:06 PM

Attach:

Subject:

RE: Request for Single AP for two BD P-26 sites

Dear Mr. Conder:

The New Mexico Oil Conservation Division (OCD) has reviewed your request to incorporate both the BD P-26-1 Vent (#1R0426-106) and the BD Jct P-26-2 (#1R0426-107) into one Stage 1 and Stage 2 Abatement Plan. The OCD hereby approves the incorporation.

Also, please be advised that NMOCD approval of this abatement plan incorporation does not relieve the owner/operator of responsibility should operations pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve the owner/operator of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

If you have questions regarding this matter, please contact me at 505-476-3489.

Edward J. Hansen Hydrologist Environmental Bureau

From: Gil Van Deventer [mailto:gilbertvandeventer@suddenlink.net]

Sent: Thursday, August 28, 2008 5:18 PM To: Hansen, Edward J., EMNRD

Cc: Marvin Burrows; Haskell Conder

Subject: Request for Single AP for two BD P-26 sites

Hello Edward

In your letter dated August 12, 2008 (attached), NMOCD requested that Rice Operating submit separate abatement plans for the BD P-26-1 Vent (#1R0426-106) and the BD Jct P-26-2 (#1R0426-107) sites. Would it be acceptable to NMOCD if we combined these sites into a single combined Stage 1 and 2 Abatement Plan? These sites are close together (~ 350 ft) and share similar chloride levels of groundwater impact. We plan on proposing the same corrective actions to groundwater that will likely iinclude a recovery well at each site but connected to the same treatment system.

Thanks - Gil

map showing relative locations of the two P-26 sites pictured below:

APPENDIX B

Lithologic Logs

and

Well Construction Diagrams

SOIL BORING LITHOLOGIC LOG

BOREHOLE NO.: B-1 TOTAL DEPTH: 45 Feet

CLIENT: RICE Operating Company SITE ID: BD Jct. P-26-1 Vent

CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea DRILLING METHOD: Air Rotary STATE: New Mexico

START DATE: 10/29/07 LOCATION: T21S-R37E-Sec 26-Unit P

FIELD REP.: G. Van Deventer COMPLETION DATE: 10/29/07

COMMENTS: Boring located 14 feet west-southwest of former junction box (plate marker)

Photo at left shows drilling of B-1 (facing west). Orange pin flagging identifies active brine water lines.

		Samp	е	Chloride	PID	USCS	LITHOLOGIC DESCRIPTION:		
	Depth	Time	Туре	(ppm)	(ppm)	0000	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES		
			Surface						
						BF	Compacted backfill material consisting of fine-grained sand, moderate orange pink (5YR 8/4) with so		
						Di	very pale orange (10YR 8/2) calcium carbonate in matrix.		
	5								
						11			
						CL	Compacted clay layer, grayish red (5R 4/2).		
							Composted bookfill material consisting of fine grained and moderate grange pink (EVR 9/4) with an		
	10					BF	Compacted backfill material consisting of fine-grained sand, moderate orange pink (5YR 8/4) wivery pale orange (10YR 8/2) calcium carbonate in matrix.		
							very pare orange (1911/1972) calcium carbonate in matrix.		
		1450	Split	1001			Very fine-grained sand, olive gray (5Y 4/1), with calcium carbonate in matrix, loose, unconsolidated, of		
	1000000	1430	Spoon	1001			slight hydrocarbon odor.		
	15								
		1455	Split	2801		SM/CAL	Fine-grained sand, moderate orange pink (5YR 8/4) with some very pale orange (10YR 8/2) calcium		
		1-100	Spoon	2001			carbonate in matrix. Sand grains are moderately well-sorted, subrounded, unconsolidated, dry. Samp		
							submitted for laboratory analysis with results as follows: Chloride = 866 mg/kg.		
	20						Very fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2), moderately ha		
		1500	Split	2611			(indurated caliche). Sand grains are moderately sorted, subrounded, unconsolidated, dry.		
			Spoon				(modified salidity). Salid grains are moderately solida, salidation, ansolidated, ary.		
6n									
<u>a</u>									
후	25								
3/8 Bentonite Hole Plug		1510	Split	2122		SW	Fine-grained sand, light brown (5YR 6/4), moderately hard, moderate sorting of subrounded sand		
ino			Spoon				grains, unconsolidated, dry.		
ent									
<u>ш</u>									
6	30						Very fine- and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2),		
		1520	Split	2481			moderately hard (indurated caliche). Sand grains are medium sorted, subrounded, dry.		
			Spoon						
	35	4505		4000			Very fine-grained sand, very pale orange (10YR 8/2), hard (indurated caliche). Sand grains are media		
	10 10 10 10 10 10 10 10 10	1530	Split	1623			sorted, subrounded, dry.		
			Spoon			SM/CAL			
	45								
	40	1542	Split	1704			Very fine-grained sand, very pale orange (10YR 8/2), hard (indurated caliche). Sand grains are medi-		
		1342	Split	1704			sorted, subrounded, dry.		
			Spoon						
							Vary fine grained and very role arrang (10VD 0/0) had (1-d-1-d-1-d-1-d-1-d-1-d-1-d-1-d-1-d-1-d		
							Very fine-grained sand, very pale orange (10YR 8/2), hard (indurated caliche). Sand grains are media sorted, subrounded, unconsolidated, slightly moist.		
4 E" -	45	1556	Cuttings	1570			Bottom of boring at 45 ft below ground surface.		
← 5" →							Bottom of borning at 45 ft below ground surface.		
		10 M M M M M		1					

MONITORING WELL NO.: MW-1 TOTAL DEPTH: 55 Feet

SITE NAME: BD Jct. P-26-1 Vent Site CLIENT: RICE Operating Company

CONTRACTOR: Harrison & Cooper, Inc.

DRILLING METHOD: Air Rotary

START DATE: 10/29/07

COUNTY: Lea

STATE: New Mexico

LOCATION: T21S-R37E-Sec 26 - Unit P

COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer

COMMENTS: Located approximately 12 feet southeast of former junction box (plate marker).

Photo at left shows completed MW-1 (facing northwest) and new junction box (right-center).

1 1				Samp	le	Chloride	PID		LITHOLOGIC DESCRIPTION:
			Depth	Time	Туре	(ppm)	(ppm)	USCS	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES
					Surface				Fine-grained sand, grayish orange (5YR 7/4) with some very pale orange (10YR 8/2) calcium carbona
									in matrix. Sand grains are medium-sorted, subrounded, unconsolidated, dry.
ent		ient.							
Cement		Cement	5						
				1620	Split	1242			Fine-grained sand, grayish orange (5YR 7/4) with some very pale orange (10YR 8/2) calcium carbona
					Spoon				in matrix. Sand grains are medium-sorted, subrounded, unconsolidated, dry.
		11121							
			10						
	D			1625	Split	623			Fine-grained sand, pale yellowish brown (10YR 6/2) with some very pale orange (10YR 8/2) calcium
	asin		******		Spoon				carbonate in matrix. Sand grains are medium-sorted, subrounded, unconsolidated, dry.
	Sched 40 PVC Blank Casing								
gn	Blai	- Bn	15						
le P	PVC	е Р		1628	Split Spoon	692			Very fine and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2). Sand grains are medium-sorted, subrounded, unconsolidated, dry.
e Ho	40	유							grams are mediam sorted, substantially, unconsolidated, dry.
tonit	shed	tonit							
Bentonite Hole Plug	2" Sc	Bentonite Hole Plug	20		0-14				Very fine and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2). Sand
3/8		3/8	*****	1630	Split Spoon	1877			grains are medium-sorted, subrounded, unconsolidated, dry.
								SM/CAL	, -, -,
									Vary fine and fine agained agad with addition parkenets in matrix year, add arrange (10VD 9/0) hard
			25	1634	Cuttings	1105			Very fine and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2 (indurated caliche). Sand grains are medium-sorted, subrounded, dry.
		100							(madatata anima). Sana grama are madam asrica, austranasa, ary.
			30	1626	Cuttings	2506			Very fine and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2), hard (indurated caliche). Sand grains are medium-sorted, subrounded, dry. Sample submitted for laborato
			30	1030	Cuttings	2500			analysis with results as follows: Chloride = 903 mg/kg.
			35	1638	Cuttings	1554			Very fine and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2), hard
									(indurated caliche). Sand grains are medium-sorted, subrounded, dry.
농 당	S	쑹							
Sand Pack	Slot	Sand Pack	40	1640	Cuttings	1445			Very fine and fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2), hard
Sand	10.	Sand							(indurated caliche). Sand grains are medium-sorted, subrounded, dry.
ica	0.0	200							
y Sil	with	y Sil							
Brad	reen	Brad	45	1642	Cuttings	1464			Very fine and fine-grained sand, grayish orange (5YR 7/4) with some very pale orange (10YR 8/2) calcium carbonate in matrix, hard (indurated caliche). Sand grains are medium-sorted, subrounded, or
20/40 Brady Silica	ameter Screen with 0.010" Slots	20/40 Brady Silica							Calcium carbonate in matrix, hard (indurated calicine). Sand grains are medium-sorted, subfounded, t
20	nete	20							Groundwater encountered
	Diar			1646	Cuttings	E 42			Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, damp.
	2"		50	1045	Cuttings	543		CIAI	The and medium-granica sand, light brown (5110 570), moderately well sorted, subrounded, damp.
								SW	
-			55	1650	Cuttings	537			Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, wet
-	5" -	-	an 60 M, 50 M, 50 A		A-				Bottom of boring at 55 ft below ground surface.
			60						

			65		1	1	1	1	

MONITORING WELL NO.: MW-2 TOTAL DEPTH: 62 Feet

SITE NAME: BD Jct. P-26-1 Vent Site CLIENT: RICE Operating Company

CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea

DRILLING METHOD: Air Rotary STATE: New Mexico

START DATE: 06/03/08 LOCATION: <u>T21S-R37E-Sec 26 - Unit P</u>

COMPLETION DATE: 06/03/08 FIELD REP.: G. Van Deventer

COMMENTS: Located approximately 80 ft NW of the former junction box (plate marker) and 100 ft NW of MW-1.

Photo at left shows completed MW-2 in foreground (facing SE). Drill rig in background is at MW-3.

					Samp	le	Chloride	PID	LICOC	LITHOLOGIC DESCRIPTION:			
				Depth	Time	Туре	(ppm)	(ppm)	USCS	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES			
						Surface				Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4). Calcium			
										carbonate in matrix. Sand grains are moderately well sorted, subrounded/rounded, unconsolidated, d			
ent	>	ent -	1										
Cemen		Cement	-	5	0042	Cuttings	115			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4). ~5% calcium			
		0	1	5	0042	Cuttings	113			carbonate in matrix. Sand grains are moderately well sorted, subrounded/rounded, unconsolidated, d			
						- 4							
							10 400 400 1000			Very fine and fine-grained sand, very pale orange (10YR 8/2), with ~10% calcium carbonate in r			
			-	10	0843	Cuttings	201			Very fine and fine-grained sand, very pale orange (10YR 8/2), with ~10% calcium carbonate in matrix			
										Sand grains are medium-sorted, subrounded, unconsolidated, dry.			
				S. S. S. S. S. S. S. S. S.									
	ng			15	0844	Cuttings	213			Fine and medium-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4),			
	Casi									oderately well sorted, subrounded, dry, <5% calcium carbonate in matrix			
6	Juk (6	1										
로	Bla	Plu	1										
lole	D/C	lole		20	0848	Cuttings	280			Fine and medium-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4),			
Bentonite Hole Plug	Sched 40 PVC Blank Casing	Bentonite Hole Plug								moderately well sorted, subrounded/rounded, dry, <5% calcium carbonate in matrix			
101	hed	noti											
	Sc.	Ø											
3/8	2"	3/8		25	0849	Cuttings	280		OIVI/O/ LE	Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted			
										subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix			
								s					
			1	30	0050	Cuttings	474			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted			
			ŀ	30	0052	Cuttings	171			subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix			
										Control of the state of the sta			
				0.5	0050	0	470			Fine grained and year note groups (40VP 9/9) with some gravials groups (5VP 7/4) modifies and			
			ŀ	35	0853	Cuttings	170			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix			
										Subtounded, dry, 170% calcium carbonate (semi-hard calione) in matrix			
									y v				
			ŀ	40	0855	Cuttings	144			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix			
			1							Subrounded, dry, <10% calcium carbonate (semi-nard caliche) in matrix			
		_	-	45	0859	Cuttings	139			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted			
ac	lots	Pack								subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix			
Sand Pack	SC	Sand Pack								Groundwater encountered			
200	.01												
2	th	ilice	-	50						Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, damp			
9	N C	dy S								(, ,			
Bla	же	Bra	1										
20/40 Brady Silica	r Sc	20/40 Brady Silica	1										
77	nete	20		55					SW	Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, moist			
	Diameter Screen with 0.010" Slots							-		The same measure granted early, light brown (o fix 5/6), include ately well sorted, subrounded, moist			
	2" [
	218			60						Fire and reading resided and light have (SVR 5/2)			
										Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, wet			
	5" -		-							Rottom of having at 62 ft halous ground auritors			
		-	- 1					1		Bottom of boring at 62 ft below ground surface.			
-	5												

MONITORING WELL NO.: MW-3

TOTAL DEPTH: 62 Feet

SITE NAME: BD Jct. P-26-1 Vent Site

CLIENT: RICE Operating Company

CONTRACTOR: Harrison & Cooper, Inc.

COUNTY: Lea

DRILLING METHOD: Air Rotary

STATE: New Mexico

START DATE: 06/03/08
COMPLETION DATE: 06/03/08

LOCATION: T21S-R37E-Sec 26 - Unit P
FIELD REP.: G. Van Deventer

COMMENTS: Located approximately 75 ft SE of the former junction box (plate marker) and 60 ft SE of MW-1.

Image at left shows relative location of monitoring wells and former junction box.

Ш				Samp		Chloride	PID	USCS	LITHOLOGIC DESCRIPTION:
			Depth	Time	Туре	(ppm)	(ppm)	0000	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES
				1025	Surface				Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4). Calcium carbonate in matrix. Sand grains are moderately well sorted, subrounded/rounded, unconsolidated, d
Cement		Cement	5	1026	Cuttings	138			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4). ~5% calcium carbonate in matrix. Sand grains are moderately well sorted, subrounded/rounded, unconsolidated, d
			10	1027	Cuttings	142			Very fine and fine-grained sand, very pale orange (10YR 8/2), with ~10% calcium carbonate in matrix Sand grains are medium-sorted, subrounded, unconsolidated, dry.
	Casing		15	1028	Cuttings	148			Fine and medium-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), moderately well sorted, subrounded, dry, <5% calcium carbonate in matrix
Bentonite Hole Plug	Sched 40 PVC Blank Casing	Bentonite Hole Plug	20	1029	Cuttings	151			Fine and medium-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), moderately well sorted, subrounded/rounded, dry, <5% calcium carbonate in matrix.
3/8 Bentonite	2" Sched 40	3/8 Bentonite	25	4000	Cultina	205		SM/CAL	Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted,
			25	1030	Cuttings	205			subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix
			30	1033	Cuttings	247			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix
			35	1034	Cuttings	202			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix
			40	1036	Cuttings	227			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix
ack	ots	Pack	45	1040	Cuttings	236			Fine-grained sand, very pale orange (10YR 8/2) with some grayish orange (5YR 7/4), medium sorted subrounded, dry, <10% calcium carbonate (semi-hard caliche) in matrix
Sand Pack	010" Slots	Sand P							Groundwater encountered
20/40 Brady Silica	Diameter Screen with 0.	20/40 Brady Silica	50						Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, damp
20/4	2" Diameter S	20/4	55					SW	Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, moist
			60						Fine and medium-grained sand, light brown (5YR 5/6), moderately well sorted, subrounded, wet
4	5" -	-							Bottom of boring at 62 ft below ground surface.

SOIL BORING LITHOLOGIC LOG

BOREHOLE NO.: B-1 TOTAL DEPTH: 40 Feet

SITE ID: BD Jct. P-26-2 CLIENT: RICE Operating Company

CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea

DRILLING METHOD: Air Rotary STATE: New Mexico

START DATE: 10/30/07 LOCATION: T21S-R37E-Sec 26-Unit P

COMPLETION DATE: 10/30/07 FIELD REP.: G. Van Deventer

COMMENTS: Boring located 8 feet west of former junction box (plate marker).

Photo at left shows drilling of B-1 (facing west) with marker plate in foreground.

		Samp	le	Chloride	PID	USCS	LITHOLOGIC DESCRIPTION:				
	Depth	Time	Туре	(ppm)	(ppm)	0303	FEATURES				
	****		Surface								
	~~~~~										
						BF	Compacted backfill material consisting of fine-grained silty sand with calcium carbonate in matrix, pale yellowish				
							brown (10YR 6/2), loose, unconsolidated, dry.				
	5										
						CL	Compacted clay layer, dusky red (5R 3/4).				
						OL.	compacted stay tayon, eachly red (on only.				
	*****										
	10					BF	Compacted backfill material consisting of fine-grained silty sand with calcium carbonate in matrix, pale yellowish				
		1405	Split	209	0		brown (10YR 6/2), loose, unconsolidated, dry.				
		1405	Spoon	209	0						
						Fine-grained sand with calcium carbonate in matrix, pale yellowish brown (10YR 6/2), unconsolidated, dry.					
	15										
		1408	Split Spoon	294	4		Fine-grained sand with calcium carbonate in matrix, pale yellowish brown (10YR 6/2), unconsolidated, dry.				
D C	******										
						SW/CAL					
	20					OTTIONE					
	20	4.400	Split	0050			  Fine-grained sand, grayish orange (5YR 7/4) with some very pale orange (10YR 8/2) calcium carbonate in matr				
		1422	Spoon	2658	0		moderately hard. Sand grains are medium-sorted, subrounded, unconsolidated, dry.				
	25										
Section 1		1435	Split	5025	0		Very fine-grained sand with calcium carbonate in matrix and intermittent hard (indurated) caliche, very pale (10YR 8/2). Sand grains are medium-sorted, subrounded, unconsolidated, dry. Sample submitted for labo				
			Spoon				analysis with results as follows: Chloride = 4670 mg/kg.				
	30										
	30	1445	Split	2555	0		Very fine-grained sand with calcium carbonate in matrix and intermittent hard (indurated) caliche, very pale orar				
			Spoon				(10YR 8/2). Sand grains are medium-sorted, subrounded, unconsolidated, dry.				
						SM/CAL					
	35						Very fine-grained sand with calcium carbonate in matrix and intermittent hard (indurated) caliche, very pale oran				
		1449	Split	2309	0		(10YR 8/2). Sand grains are medium-sorted, subrounded, unconsolidated, dry.				
			Spoon								
	40	1505	Cuttings	2100			Very fine and fine-grained sand with calcium carbonate in matrix and intermittent hard (indurated) caliche, pale yellowish brown (10YR 6/2). Sand grains are medium-sorted, subrounded, unconsolidated, dry.				
-	40	1000	Outungo				Bottom of boring at 40 feet below ground surface.				
							and the second of second or second o				
	45										

#### LITHOLOGIC LOG AND MONITORING WELL CONSTRUCTION DIAGRAM MONITORING WELL NO.: MW-1 TOTAL DEPTH: 56 Feet SITE NAME: BD Jct. P-26-2 CLIENT: RICE Operating Company CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea DRILLING METHOD: Air Rotary STATE: New Mexico LOCATION: T21S-R37E-Sec 26 - Unit P START DATE: 10/30/07 COMPLETION DATE: 10/30/07 FIELD REP .: G. Van Deventer COMMENTS: Located approximately 15 feet southeast of former junction box (plate marker). Photo at left shows MW-1 drilling activities (facing southeast). Orange pin flagging identifies active brine water lines and marker plate is shown in foreground. PID Sample Chloride LITHOLOGIC DESCRIPTION: USCS Time Type (ppm) (ppm LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES Surfac Fine-grained dune sand, light brown (5YR 6/4), well sorted, well-rounded, unconsolidated, dry. SW Very fine-grained sand with calcium carbonate in matrix, very pale orange (10YR 8/2), unconsolidated, Split 1540 516 0 Spoor SM/CAL 10 1542 Fine-and medium-grained sand, pale yellowish brown (10YR 6/2) and grayish orange (10YR 7/4), Split 359 0 Spoor moderately well-sorted, subrounded, unconsolidated, dry. Blug . 3/8 Bentonite Hole Plug Sched 40 PVC Blank 15 Split Fine-and medium-grained sand, pale yellowish brown (10YR 6/2) and grayish orange (10YR 7/4), 3/8 Bentonite Hole 1543 564 0 Spoon moderately well-sorted, subrounded, unconsolidated, dry. Sample submitted for laboratory analysis with results as follows: Chloride = 162 mg/kg. 20 Fine-and medium-grained sand, pale yellowish brown (10YR 6/2) and grayish orange (10YR 7/4), Split 1545 457 0 Spoor moderately well-sorted, subrounded, unconsolidated, dry. Fine and medium-grained sand with slight calcium carbonate in matrix, light brown (5YR 6/4), 25 1602 Cuttings 344 moderately well--sorted, subrounded, dry. SW/CAL Fine and medium-grained sand with slight calcium carbonate in matrix, light brown (5YR 6/4), 30 1604 Cuttings 285 moderately well-sorted, subrounded, dry. Fine-grained sand with calcium carbonate in matrix and intermittent hard (indurated) caliche, very pale 35 1606 Cuttings 285 orange (10YR 8/2) and grayish orange (10YR 7/4), moderately well-sorted, subrounded, dry. SM/CAL Sand Pack 40 Fine-grained sand with calcium carbonate in matrix and intermittent hard (indurated) caliche, very pale 1608 Cuttings 353 Screen with 0.010" Slots Silica Sand orange (10YR 8/2) and grayish orange (10YR 7/4), moderately well-sorted, subrounded, dry. Silica ! Brady : 20/40 Brady 45 Fine-and medium-grained sand, light brown (5YR 6/4), moderately well-sorted, subrounded, slightly 1610 Cuttings 979 moist. 20/40 Fine-and medium-grained sand, light brown (5YR 6/4), moderately well-sorted, subrounded, slightly 50 1615 Cuttings 470 Diar moist. SW Fine-and medium-grained sand, pale yellowish brown (10YR 6/2), well-sorted, sub to well-rounded, 55 1620 Cuttings 605 moist. Fine-and med-grained sand, pale yellowish brown (10YR 6/2), well-sorted, sub to well-rounded, moist. 60 1625 Cuttings Bottom of boring at 60 ft below ground surface. 65



MONITORING WELL NO.: MW-2 TOTAL DEPTH: 58 Feet

SITE NAME: BD Jct. P-26-2 Site CLIENT: RICE Operating Company

CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea

DRILLING METHOD: Air Rotary STATE: New Mexico

START DATE: 06/03/08 LOCATION: T21S-R37E-Sec 26 - Unit P
COMPLETION DATE: 06/03/08 FIELD REP.: G. Van Deventer

COMPLETION DATE: 06/03/08 FIELD REP.: G. Van Deventer

COMMENTS: Located approximately 115 ft SE of the former junction box (plate marker) and 100 ft SE of MW-1.

 $\underline{\text{Image at left shows relative location of monitoring wells and former junction box.}\\$ 

				Samp	le	Chloride	PID	USCS	LITHOLOGIC DESCRIPTION:
			Depth	Time	Туре	(ppm)	(ppm)	0303	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES
H -		nt		1300	Surface			SW	Fine-grained dune sand, light brown (5YR 6/4), well sorted, well-rounded, unconsolidated, dry.
Cement		Ceme	5	1304	Cuttings	144		SM	Very fine- to fine-grained sand, very pale orange (10YR 8/2) and grayish orange pink (5YR 7/2), subangular, medium to poorly sorted, dry.
			10	1306	Cuttings	115		SM/CAL	Very fine-grained sand, grayish orange (10YR 7/4) with very pale orange (10YR 8/2) soft and hard caliche. Sand grains are subrounded/subangular, medium to poorly sorted, dry.
			15 1308 Cu	Cuttings	122		SW	Fine- to medium-grained sand, very pale orange (10YR 8/2) and grayish orange (10YR 7/4). Sand grains are subrounded/subangular, medium sorted, dry.	
			20	1310	Cuttings	145			Very fine- to fine-grained sand, grayish orange pink (5YR 7/2), with some slightly hard caliche chunks very pale orange (10YR 8/2), dry.
			25	1312	Cuttings	209			Very fine- to fine-grained sand, grayish orange pink (5YR 7/2), with some slightly hard caliche chunks very pale orange (10YR 8/2), dry.
			30 13	1314	Cuttings	87		SM/CAL	Very fine- to fine-grained sand, grayish orange pink (5YR 7/2), with some slightly hard caliche chunks very pale orange (10YR 8/2), dry.
			35				Very fine- to fine-grained sand, grayish orange pink (5YR 7/2), with some slightly hard caliche chunks very pale orange (10YR 8/2), dry.		
×	ots	SK.	40	1318	Cuttings		Very fine- to fine-grained sand, grayish orange pink (5YR 7/2), with some very pale orange (10YR 8/2 calcium carbonate (<5%) in matrix, dry.		
Silica Sand Pack	Screen with 0.010" Slots	Silica Sand Pack	45	1325	Cuttings	139			Medium- to coarse-grained sand, pale reddish brown (10YR 5/4), medium to well graded, slightly dan
20/40 Brady	Diameter Screen	20/40 Brady	50					SW	Medium- to coarse-grained sand, pale reddish brown (10YR 5/4), medium- to well-graded, moist.
	2"[		55						Medium- to coarse-grained sand, pale reddish brown (10YR 5/4), medium- to well-graded, wet.
	Y		60	2				GW	Medium- to coarse-grained sand and pea gravel, pale reddish brown (10YR 5/4), well-graded, wet.
4	5" -	<b>→</b>	65						Bottom of boring at 62 ft below ground surface.  Bottom of well was set at 58 ft where natural gravelly sands filled in.

# **APPENDIX C**

**Laboratory Reports** 

and

**Chain of Custody Documentation** 



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY

ATTN: HACK CONDER 122 W. TAYLOR ST. HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 07/21/08 Reporting Date: 07/28/08

Project Number: NOT GIVEN

Project Name: BD P-26-1 VENT

Project Location: T21S R37E SEC26 P ~ LEA CO., NM

Sampling Date: 07/16/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: KS

Analyzed By: AB

LAB NUMBE	R SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS D	ATE:	07/21/08	07/21/08	07/21/08	07/21/08
H15202-1	MONITOR WELL #1	<0.001	<0.001	<0.001	<0.003
H15202-2	MONITOR WELL #2	< 0.001	<0.001	< 0.001	<0.003
H15202-3	MONITOR WELL #3	<0.001	<0.001	<0.001	<0.003
Quality Contr	rol	0.100	0.103	0.106	0.313
True Value C	C	0.100	0.100	0.100	0.300
% Recovery		100	103	106	104
Relative Pero	cent Difference	1.0	<0.1	2.8	<0.1

**METHOD: EPA SW-846 8021B** 

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

Chemist

Date



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 122 W. TAYLOR STREET HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 07/21/08 Reporting Date: 07/27/08 Project Number: NOT GIVEN

Project Name: BD P-26-1 VENT

Project Location: T21S R37E SEC26 P-LEA COUNTY, NM

Sampling Date: 07/16/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: KS Analyzed By: HM/KS

LAB NUMBE	R SAMPLE ID	Na (mg/L)	Ca (mg/L)	Mg (mg/L)	K (mg/L)	Conductivity (u S/cm)	T-Alkalinity (mgCaCO ₃ /L)
ANALYSIS D	PATE:	07/25/08	07/25/08	07/25/08	07/27/08	07/23/08	07/23/08
H15202-1	MONITOR WELL#1	1,020	264	165	14.8	6,870	216
H15202-2	MONITOR WELL#2	151	62.5	44.7	7.8	1,280	208
H15202-3	MONITOR WELL #3	161	64.1	43.7	7.2	1,290	220
Quality Contr	<b>TO</b>	NR	52.1	51.0	3.03	1,416	NR
True Value C	C	NR	50.0	50.0	3.00	1,413	NR
% Recovery	tasandasinnasin kirinten andiku selektronom nuurun elektronom (* 1. V) sakuraken andik (*) (V) - A APA (*) ( Mousebore	NR	104	102	101	100	NR
Relative Perc	cent Difference	NR.	< 0.1	< 0.1	5.4	0.1	NR
METHODS:	anner i ma <mark>gantetata tamandatak ya mananan k</mark> alan ka ka ka mananan ka ka mananan ka ka manan ka	SM3	500-Ca-D	3500-Mg E	8049	120.1	310.1

		CI	SO ₄	CO ₃	HCO ₃	pН	TDS
	•	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS E	DATE:	07/24/08	07/24/08	07/23/08	07/23/08	07/23/08	07/21/08
H15202-1	MONITOR WELL #1	2,160	299	0	264	7.22	4,930
H15202-2	MONITOR WELL #2	196	187	0	254	7.62	968
H15202-3	MONITOR WELL #3	212	. 174	0	268	7.63	926
Quality Cont	rol	500	42.8	NR	976	7.01	NR
True Value (	ac	500	40.0	NR	1000	7.00	NR
% Recovery		100	107	NR	97.6	100	NR
Print to excel an expectable triple you have restricted	cent Difference	< 0.1	6.2	NR	3.7	0.1	NR
METHODS:	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

the S. Maine

07-28-08

Date

arund Around Time ~ 24 Hours Chlorides Total Dissolved Solids CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Anions (CI, SO4, CO3, HCO3) Cations (Ca, Mg, Na, K) Additional Fax Number: Moisture Content lweinheimer@riceswd.com Hq ,2ST ,008 rozanne@valornet.com hconder@riceswd.com Pesticides 8081A/608 Circle or Specify Method No. ANALYSIS REQUEST bCB.2 8087/608 GCMS Semi. Vol. 8270C/625 82608/624 **COMS AND** S ŝ BCI LAB Order ID# ICLP Pesticides ICLP Semi Volatiles (es Yes CLP Volatiles Email Results to: TCLP Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/2007 Phone Results Fax Results REMARKS: TPH 418.1/TX1005 / TX 1005 Extended (C35) BTEX 8021B/602 MTBE 8021B/602 SAMPLING 9:40 8:50 8:00 3 **BINIT** (575)397-1471 Rozanne Johnson (575)631-9310 rozanne@valomet.com 7-16 7-16 7-16 Cardinal Laboratories, Inc. **DATE (2008)** 8/K/A Street, City, Zip) NONE Time: PRESERVATIVE CE (1-11)96: HDSE) 122 W Taylor Street ~ Hobbs, New Mexico 88240 METHOD *OS*H CHECKED BY: Date: OSHEN Date: B (Initials)  c ONH RICE Operating Company HCL (2 40ml VOA) Received By: (Laboratory Staff STUDGE Yes V (575) 393-9174 Address: ЯІ∀ Š TIOS (575) 397-1471 **MATER** Sample Condition Received by # CONTAINERS Υes T21S R37E Sec26 P - Lea County New Mexico qmo(O) to det(O) O O O 8,5 BD P-26-1 Vent 122 W Taylor Street - Hobbs, New Mexico 88240 Time: FIELD CODE UPS - Bus - Other: Project Name 7-21-2008 RICE Operating Company Date: Monitor Well #2 Monitor Well #3 Date: Monitor Well #1 (Street, City, Zip) (Circle One) 101 East Martend - Hobbs, New Mexico 88240 Tel (575) 393-2326 Fox (575) 393-2470 (575) 393-9174 Hack Conder Relinquished by ompany Name: roject Manager roject Location: LAB USE ONLY Delivered By: LAB# Sampler/ Address: Hone #:



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY

ATTN: HACK CONDER 122 W. TAYLOR ST. HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 07/21/08 Reporting Date: 07/28/08

Project Number: NOT GIVEN

Project Name: BD P-26-2

Project Location: T21S R37E SEC26 P ~ LEA CO., NM

Sampling Date: 07/16/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: KS

Analyzed By: AB

LAB NUMBER	SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DA	TE:	07/21/08	07/21/08	07/21/08	07/21/08
H15201-1	MONITOR WELL #1	<0.001	<0.001	< 0.001	<0.003
H15201-2	MONITOR WELL #2	<0.001	<0.001	<0.001	<0.003
Quality Control		0.100	0.103	0.106	0.313
True Value QC	,	0.100	0.100	0.100	0.300
% Recovery		100	103	106	104
Relative Perce	nt Difference	1.0	<0.1	2.8	<0.1

METHOD: EPA SW-846 8021B

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

Chemist

Date



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 122 W. TAYLOR STREET HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 07/21/08 Reporting Date: 07/27/08 Project Number: NOT GIVEN

Project Name: BD P-26-2

Project Location: T21S R37E SEC26 P-LEA COUNTY, NM

Sampling Date: 07/16/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: KS Analyzed By: HM/KS

		Na	Ca	Mg	K	Conductivity	T-Alkalinity
LAB NUMBE	ER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mgCaCO ₃ /L)
ANALYSIS E	DATE:	07/25/08	07/25/08	07/25/08	07/27/08	07/23/08	07/23/08
H15201-1	MONITOR WELL #1	3,250	208	131	80.6	14,900	300
H15201-2	MONITOR WELL #2	248	99.4	75.8	9.2	2,030	240
Quality Cont		NR.	52.1	51.0	3.03	1.416	NR
True Value (	programme and the contraction of	NR	50.0	50.0	3.00		NR
% Recovery		NR	104	102	101	100	NR
AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	cent Difference	NR	< 0.1	< 0.1	5.1	0.1	NR
METHODS:	ware repopulations and confidency and order of the confidency is a sea confidency of the confidence of	SM:	3500-Ca-D	3500-Ma E	8049	120.1	310.1

		CI	SO ₄	$CO_3$	HCO ₃	pН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS E	DATE:	07/24/08	07/24/08	07/23/08	07/23/08	07/23/08	07/21/08
H15201-1	MONITOR WELL#1	5,300	448	0	366	7.30	9,870
H15201-2	MONITOR WELL #2	432	253	0	293	7.49	1,470
		AND THE PERSON NAMED IN COMPANY OF THE PERSON NAMED IN COMPANY		2200.00001000	or 1,480000 yr, 4404 yr,3880000 yrd		
Quality Cont	rol	500	42.8	NR	976	7.01	NR
True Value (	QC .	500	40.0	NR	1000	7.00	NR
% Recovery		100	107	NR	97.6	100	NR
Relative Per	cent Difference	< 0.1	6.2	NR	3.7	0.1	NR
METHODS:	nego en	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Chemist

07-28-08

Date

anoth +2 - smill bruotA mult Saprioldi CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Total Dissolved Solids Anions (CI, SO4, CO3, HCO3) Cations (Ca, Mg, Na, K) Additional Fax Number Moisture Content weinheimer@riceswd.com Hq., SST, GOB rozanne@valornet.com hconder@riceswd.com Pesticides 8081A/508 ANALYSIS REQUEST (Circle or Specify Method No. PCB's 8082/508 8510C/855 GC/MS Semi. Vol. **CC/W2 API 8560B/624** ž ဍ BCI LAB Order ID# TCLP Pesticides TCLP Semi Volatiles es ŝ Email Results to: TCLP Metals Ag As 8a Cd Cr Pb Se Hg Cotal Metals Ag As Ba Cd Cr Pb Se Hg 6010B/2007 hone Results Fax Results REMARKS TPH 418.1/TX1005/TX1005 Extended (C35) BTEX 80218/602 × MTBE 80218/602 11:00 12:05 SAMPLING TIME (575)397-1471 R6zarine Johnson (575)631-9310 rozanne@valornet.com δ 2,Ξ 7.16 7-16 (800S) 3TAG Cardinal Laboratories, Inc. (Street, City, Zip) NONE Time Time: PRESERVATIVE Solten (3-чин ноче) 22 W Taylor Street - Hobbs, New Mexico 88240 METHOD OSZH CHECKED BY Date: OSHEV Date: (Initials) CONH RICE Operating Company HCL (2 40ml vOA) N Received By: (Laboratory Staff) BOOMS CMATERIA Yes C 575) 393-9174 ЯІ∀ TIOS (575) 397-1471 **ABTAW** × Sample Condition Received by: # CONTAINERS Yes ŝ T21S R37E Sec26 P ~ Lea County New Mexico qmo(O) 10 det(O) O O 20:11 8002-12-6 122 W Taylor Street - Hobbs, New Mexico 88240 Time Other: FIELD CODE BD P-26-2 Project Name RICE Operating Company Date: Date Monitor Well #2 Monitor Well #1 Bus (Circle One) (Street, City, Zip) 101 East Mariand - Hobbs, New UPS Moxico 88240 Tel (576) 303-2326 Fax (575) 303-2476 (575) 393-9174 Hack Conder ozanne Jerinsoj Relinquished by Company Name: roject Manager: 115201-1 roject Location LAB USE Delivered By: LAB# ONLY Sampler ddress hone #: