1R- 415

REPORTS

DATE:

April 2008

April 2008

1008

Rad

1

PI

h ---- h

56

M

 \bigcirc

m

< E

O

Lovington Abo 1G Site NMOCD Case # 1R 0415

Closure Report

R. T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. Suite F-142 Albuquerque, NM 87501

April 2008

Lovington Abo 1G Site NMOCD Case #1R 0415

Closure Report

Prepared for:

Rice Operating Company 122 West Taylor Hobbs, NM 88240

R. T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. Suite F-142 Albuquerque, NM 87501

1.0 Location

Unit G, Section 1 Township 17S Range 36E NMOCD # 1R 0415

Plate 1 shows the location of the Abo 1-G site relative to Lovington, New Mexico. Plate 2 is an aerial photograph of the site. Plate 3 shows locations of all subsurface investigations (borings, trenches, and moisture ports) and installed clay caps relative to the release boundaries.

2.0 Work Elements Performed Since March 2006

Throughout 2006 and 2007, Rice Operating Company (ROC) routinely sampled MW-1. All laboratory results from this ground water sampling program are summarized in the 2006 and 2007 Annual Monitoring Reports, which are in Appendix A. Appendix A also contains all significant submissions to NMOCD regarding this site and Forms C-141 C-103.

In October of 2006, ROC supervised sampling of the unsaturated zone in one boring shown on Plate 3.

Confirmatory	Drilled to 50 feet to determine chloride profile since the
Boring	installation of MW-1 in November, 2004 . It is located
C C	approximately 15 feet northeast of MW-1.

In December of 2006, Hicks Consultants supervised the sampling of the unsaturated zone in three borings. Plate 3 shows the locations of these borings and other sampling/ monitoring points:

SBE-1	This boring, was drilled to 16 feet but was terminated when it was determined that it penetrated Trench C and would not provide meaningful results.
SBE-2	Drilled to 50-feet to determine the subsurface conditions within the release footprint but outside of the excavation/ barrier program implemented by ROC during late 2005 and early 2006 (see March 3, 2006 report in Appendix A). This location is about 20 feet from SBE-1.
SBB	Drilled to 50-feet at a location about 300-feet southeast from the junction box in undisturbed native vegetation. This boring determined back ground subsurface conditions beneath healthy vegetation.

R.T. Hicks Consultants, Ltd.

Appendix B provides the boring logs, field chloride profiles from MW-1, SBE-2 and SBB. Appendix A provides chemical analyses of samples from MW-1.

Beginning in 2007, Hicks Consultants routinely obtained soil moisture readings from the gypsum block installation at the site. Information relating to gypsum block soil moisture monitoring is in Appendix C.

3.0 Conclusions

3.1 Chloride Migration in the Vadose Zone Is 0-3 Feet/Year

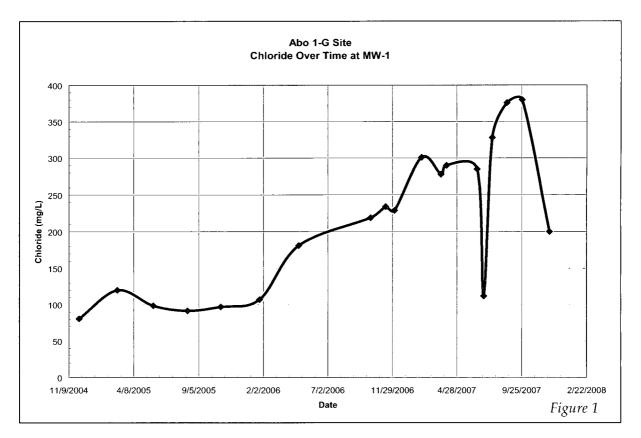
The data from moisture monitoring, described in Appendix C, suggest a maximum moisture flux of less than 3 feet/year.

The estimate of vadose zone water flux from moisture monitoring is consistent with the Hydrus 1-D model predictions of flux, which are about 1.4 feet/year (0.12 cm/ day) during moisture pulses (generally after El Nino precipitation events) and less at other times. The estimate of moisture migration obtained from comparison of chloride profiles from SB-1 (Oct., 2003) and SBE-1 (Dec., 2006) is approximately 3.2 feet / year (plus or minus 0.33 feet/year because of the variation possible due to the sampling interval)

The observations presented in Plate 4 also support the estimates of chloride migration by the HYDRUS-1D model and soil moisture measurements. All historical evidence suggests that the 1993 release was very similar to the 2003 release and we can assume that the depth of initial penetration of the 1993 release was about 4 feet at SB-01, which is the same depth we observe as center of mass for the 2003 release event. From 1993 to just before the 2003 release, the chloride center of mass at SB-1 migrated downward. The chloride from the 1993 release at SB-01 migrated from a depth of about 4 feet, to a total depth of about 11 feet from 1993 to the time just before the 2003 release – a rate of 0.7 feet/year. We can assume that the 2003 release caused a sudden increase in soil moisture content and a displacement downwards of soil moisture in the upper four feet of the soil profile. This resulted in movement of the moisture (and the deeper chloride mass associated with the 1993 release) from a depth of 11 feet to a depth of about 15 feet. If we include a rapid 4-foot migration pulse due to the 2003 release, the total migration rate is 1.1 feet/year, resulting in the 15-foot deep center of mass observed in SB-1. Given the five-foot sampling interval employed at MW-1, the boring adjacent to SB-1 (see Plate 4), the interpretation of these two releases over the ten-year time interval suggests that the center of chloride mass migrated about 1-foot/year at MW-1.

3.2 Impacts of Release(s) Remain In The Upper 50-feet of the Vadose Zone, 40-feet Above Ground Water

Plate 4 presents the chloride profiles of all borings at the site as well as Trenches A, B and C. The borings are arranged from left to right based upon the distance of each boring from the junction box. Plate 4 presents an interpretation showing three separate release events that caused increases in chloride relative to background concentrations. Elevated chloride in the vadose zone from about 4-8 feet below ground surface is associated with the 2003 event and is most clearly represented in Trench A and SB-1. The 2003 release did not impact Trench B and some of the impacted soil at the 2006 Confirmation Boring was removed during the 2005-06 excavation.


The impact from the 1993 release event is apparent in Trench A (from 10-20 feet bgs) and in the Confirmatory Boring (from 12-18 feet bgs). The bottom of the impact zone is less obvious in SB-1 and MW-1. In SB-1 and MW-1 the chloride from the 1993 release may be superimposed on residual chloride from an earlier unidentified release, which is apparent in the Confirmatory Boring (30-45 feet bgs).

Chloride concentrations in all borings do not exceed 250 mg/Kg at depths greater than or equal to 50 feet below ground surface. Ground water at the site is about 95 feet below ground surface.

3.3 The Increase in Chloride Observed in MW-1 Is Not Caused by the Abo-1G Release

Other sources of chloride must be responsible for the observed concentrations in MW-1 since all of the chloride released from the Abo-1G site remains in the uppermost 50-feet of the vadose zone (depth to water is approximately 95 feet). Figure 1 shows the results of ground water monitoring at the Abo-1G site.

Abo 1G Closure Report

4.0 Request for Closure

• ROC investigated the release of fluids from the Abo-1G release site and found no threat to public health, fresh water or the environment due to petroleum hydrocarbons. All submissions associated with this site are included as Appendix A.

• ROC submitted a plan to close the site which would cause the sequestration of chloride in the upper vadose zone such that this material poses no threat to ground water. This plan also mitigated any threat to public health or the environment.

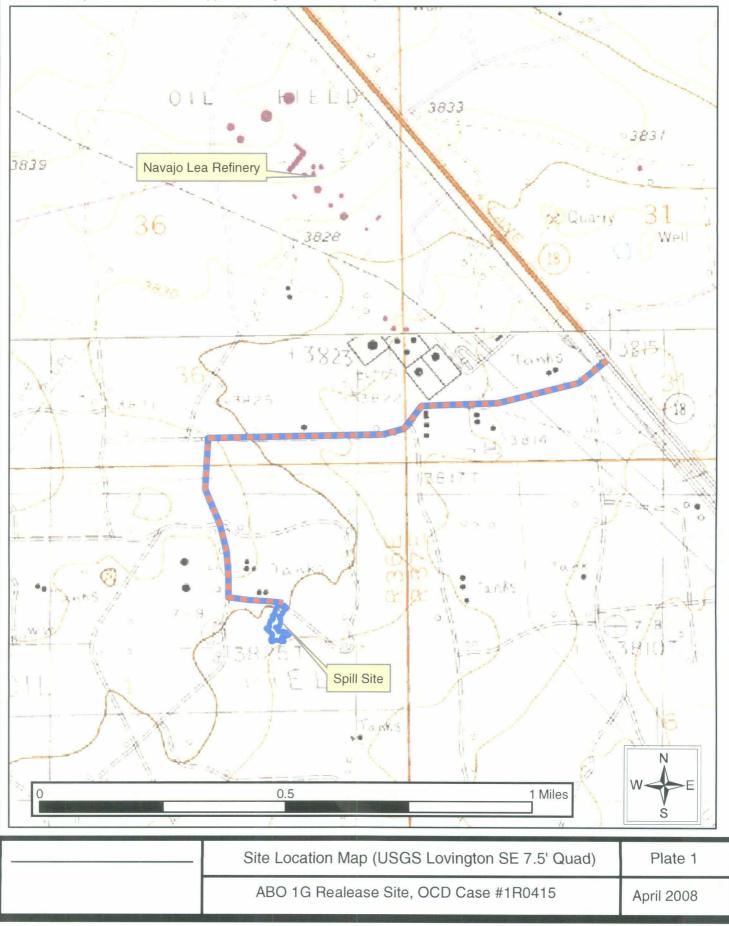
- NMOCD approved the plan submitted by ROC on August 31, 2005.
- ROC completed the infiltration barrier in accordance with the NMOCD-approved plan in January 2006.

Abo 1G Closure Report

• Monitoring of the infiltration barrier performance demonstrates that the barrier

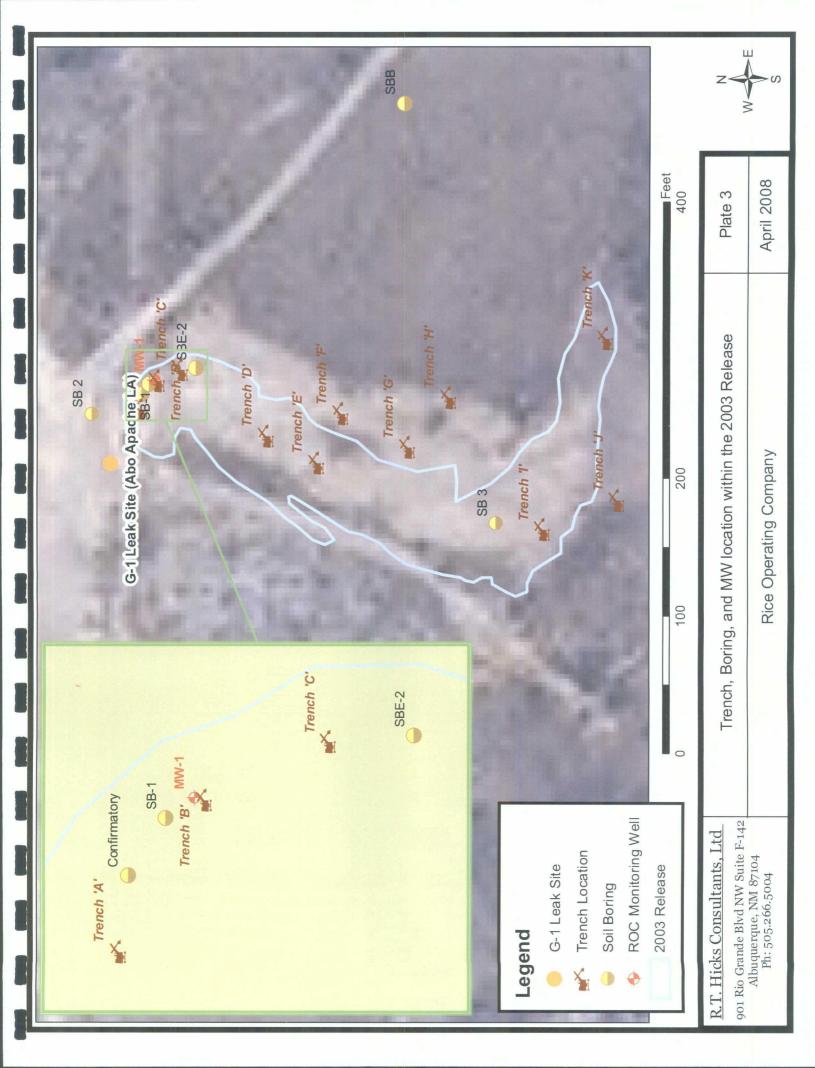
and natural re-vegetation effectively prevent deep percolation of water.

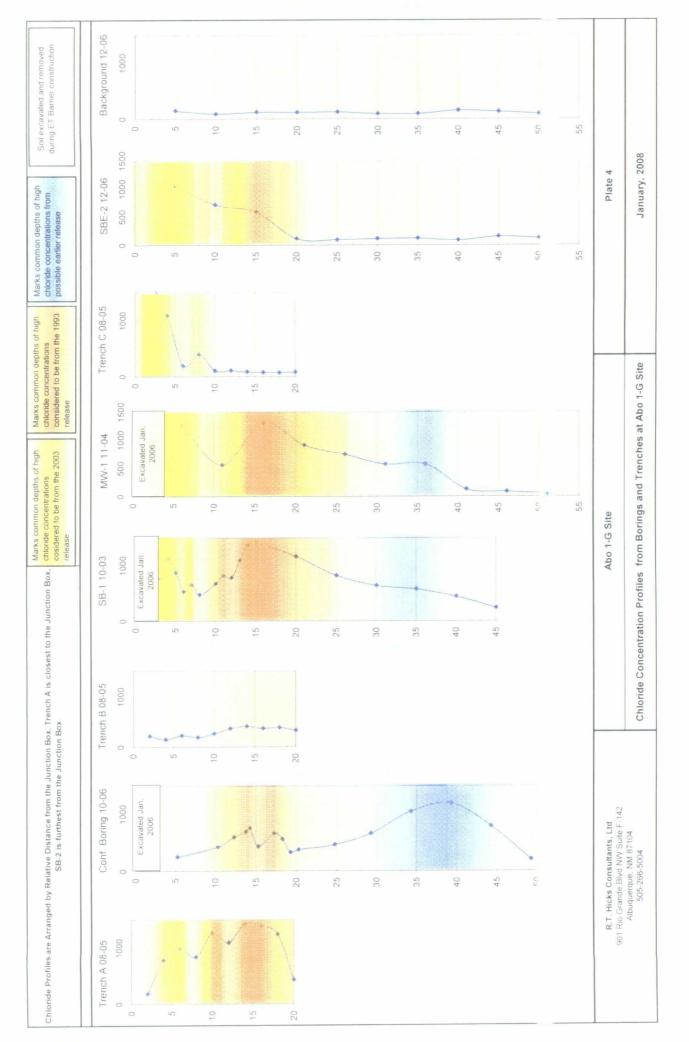
• ROC is willing to relinquish responsibility for the well, MW-1, to the City of Lovington. In the absence of the transfer of responsibility for the well from ROC to the City, ROC will plug and abandon the monitoring well.

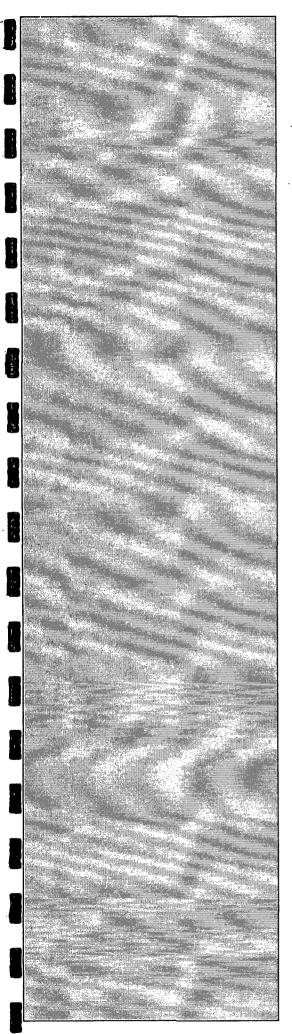

• ROC respectfully requests closure of the regulatory file associated with the Abo-1G release site.

Plates

R. T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. Suite F-142


Albuquerque, NM 87501


Directions: From Lovington, NM, proceed on Highway 18 for approximatly 5.3 miles. Head southwest on an unnamed dirt road (0.5 miles southeast of the Navajo Lea Refinery. Proceed on the dirt road for approximately 0.8 miles. Head south on an unnamed dirt road for approximately 0.3 miles. Head east on an unnamed dirt road immediatley south of a tank battery. Proceed east for approximately 550 feet. The spill site is on the south side of the road.



and the

j

Appendix A:

Previous Submissions & Correspondence

R. T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. Suite F-142

Albuquerque, NM 87501

District 1 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rto Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

nge oo oo occoop

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

ا . بۇ

Release Notification and Corrective Action

		OPERATOR	Initial Report	S Final Report
Name of Company	RICE OPERATING COMPANY	Contact	K	RISTIN POPE
Address	122 W. TAYLOR ST., HOBBS, NM 88240	Telephone No.	((575) 393-9174
Facility Name	ABO SWD SYSTEM	Facility Type	SWD DISPOS	AL PIPELINE
Surface Owner	City of Lovington Mineral Owne	r	Lease No	

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
G	. 1	178	36E					LEA

Latitude 32° 52' 02.54" N

Longitude 103° 18' 14.39 W

NATURE OF RELEASE

Type of Release	PRODUCED WATER	Volume of Release approx. 200 BBLS	Volume Recovered 130 BBLS
Source of Release	SWD PIPELINE	Date and Hour of Occurrence	Date and Hour of Discovery 10/18/2003 10:30
Was Immediate Notice Given?	🛛 Yes 🗌 No 🗌 Not Required	If YES, To Whom? PAUL SHEELEY	
By Whom?	JOE GATUS	Date and Hour	10/20/2003 11:55
Was a Watercourse Reached?	Yes 🛛 No	If YES, Volume Impacting the Wat	ietcourse. N/A
If a Watercourse was Impacted, I	Describe Fully.*		N/A
Describe Cause of Problem and I	Remedial Action Taken.*		
4-IN, POLYET	HYLENE PIPELINE SPLIT; REMAIN		MOVED' AND THE CRACK WAS FUSED. AND DISPOSED OF STANDING FLUID.
Describe Area Affected and Clea	inup Action Taken.*		
		SEE ATTACHED CLOSURE R	EPORT BY R. T. HICKS CONSULTANTS
regulations all operators are required public health or the environment should their operations have failed	fred to report and/or file certain release. The acceptance of a C-141 report by t ed to adequately investigate and remedia NMOCD acceptance of a C-141 report	notifications and perform corrective ac he NMOCD marked as "Final Report" ate contamination that pose a threat to g does not relieve the operator of respon-	does not relieve the operator of liability ground water, surface water, human health sibility for compliance with any other
Signature: Knutin	Pope	OIL CONSERV	VATION DIVISION
Printed Name:	KRISTIN POPE	Ápproved by District Supervisor:	
Tide:	PROJECT SCIENTIST	Approval Date:	Expiration Date:
E-mail Address:	KPOPE@RICESWD.COM	Conditions of Approval:	Atlached
Data: 4/3/2008	Phone: (575) 393-9174		

Attach Additional Sheets If Necessary

Santa F

energies is substance a subgenergies

، د مەردىپ دىك ەر ىيەن دىكە ر سىدۇ د بېرىپ			يې	المعالية المعالية	<u>ل</u> ې د ب	
· · · · · · · · · · · · · · · · · · ·						
Submit 3 Comm. To Appropriate District	State of 1					n C-103
District I	Energy, Minerals	and Natur	ral Resources		Revised June	: 10, 2003
1625 N. Franch Dr., Hobbs, NM 88240 District II		7 . mm . m	-	WELL API S	30-025-12801	
1301 W. Grand Ave., Artesia, NM 88210.	OIL CONSERV			5. Indicate T		
District III 1000 Rio Brazos Rel., Aztec, NM 87410	1220 South			STAT	E 🗌 FEE 🛛]
<u>District IV</u> (220 S. Si, Francis Dr., Santa Fe, NM	Salita re	:, NM 87	202	6. State Oil &	k Gas Lease No.	
87505			······			·····
SUNDRY NOTIC (DO NOT USE THIS FORM FOR PROPOSA DIFFERENT RESERVOIR. USE "APPLICA		PEN OR PLL		EUNICE MO	ne or Unit Agreement ONUMENT EUMON	
PROPOSÁLS.)	an anna a sharar sh		A 1 - 3,45 Col 100 5 B	(EME) 8. Well Num	ta an	
I. Type of Well: Oil Well Gas Well	Other SWD WELL			B. WCILNUI	M-5	
2. Name of Operator				9. OGRID N	umber	
3. Address of Operator	RATING COMPANY			10. Pool nam	a ar Wildon	
122 W. TA	YLOR, HOBBS, NM 8	8240		10. 1 001 (01)		NDRES
4. Weli Location	. –					
Unit Letter M	fcet from the	SOUT	"Hline and		at from theWEST	line
Section 5	Township 11. Elevation (Show wh	205 wether DR	Range 37E	NMPM	LEA	County
		GL: 353			Sector Sector	100
	opropriate Box to In-	dicate N				
					REPORT OF:	
	PLUG ANU ABANUON		REMEDIAL WO	KK I	ALTERING CAS	ING []
	CHANGE PLANS		COMMENCE DI	RILLING OPNS.[PLUG AND ABANDONMEN	T
PULL OR ALTER CASING	MULTIPLE COMPLETION		CASING TEST	AND [
OTHER: CLOSE REDWOO	DD TANKS	8	OTHER:			
 Describe proposed or complet of starting any proposed work or recompletion. 	led operations. (Clearly 1). SEE RULE (103. P	state all p or Multipi	ectiment details, 2 e Completions: 7	nd give pertident Attach wellbore c	dates including estin liagram of proposed of	med date
Proposed work according to NMOCD	-approved RBCA works	nia n cuih-mi	ned by R. T. Hiel	consultants of	Albuquemus: Delin	Patr
vertical and lateral extent of impact by						
necessary. The HYDRUS1D model w	rill be employed to evalu	uate the po	tential of any imp	pact in the vadose	e xuncio impair groun	idwater
quality at this site. A remedy will be c	levised based on these n	esults. Dr	illing will be cond	ducted on Nover	ibet 3, 2003. Replace	ment
allow 48 hours notice to NMOCD.	. ourrent reawood anks,	,	events metability			icu io
• · · · · · · · · · · · · · · · · · · ·				o	· # 2360	
tanks will be crected 300 ft west of the allow 48 hours notice to NMOCD. Depth to groundwater is 33 ft. The NMOCD Site Assessment Score i	$5 m M_{-}5 = 20$					
	ريد سو اس ≉∙د پرين				en e	
I hereby certify that the information at	pove is true and complet	te to the be	st of my knowled	ige and belief.		
SIGNATURE Maistin de	1 · · · · · · · · · · · · · · · · · · ·	**** **	5		والاستريار والمسترين والمسترين	
SIGNATURE <u>Maistin</u>		TITLE	Project 50	cientist	DATE 10	-28-00
Type or prim name Kristin Farris		E-mail ad	dress: enviro@l	eaco.net	Telephone No. (505).	393-9174
(This space for State use)						
APPPROVED BY	1	TITLE	-11		DATE 1	
Conditions of approval. if any:		L SIGI 4ED				an a
	OC DISTR	SUPE	RVISOR/GENER	AL MANAUER		
	v., w *					

Appendix A Table of Contents

- 1. Work Plan
- 2. Corrective Action Plan
- 3. Corrective Action Plan Supplement
- 4. Response to NMOCD Email and Notification of Field Activities
- 5. Response to NMOCD July 8, 2005 letter
- 6. Amended Corrective Action Plan
- 7. Closure Report
- Data collected from the Abo 1-G Site and discussion of analytical results (Memo to Wayne Price)
- 9. 2006 Annual Ground Water Monitoring Report
- 10. 2007 Annual Ground Water Monitoring Report

R. T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW Suite F-142

F-142 Albuquerq

Albuquerque, NM 87109

Fax: 505.266.0745

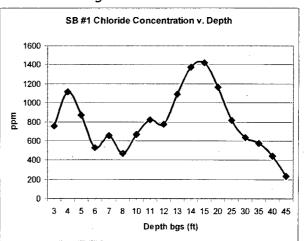
January 22, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Abo 1G Leak Site: Section 1, 17S 36E Unit G

Dear Mr. Price:

Rice Operating Company retained Hicks Consultants to address potential environmental concerns at the above referenced site. This submission proposes a scope of work that we believe will best mitigate any threat to human health and the environment and lead to closure of the regulatory file for this site.


Background

The Abo 1G Discharge Site is located about 6 miles southeast of the center of Lovington, New Mexico. Plate 1 shows the location of the site relative to Route 18, the Hobbs-Lovington Highway. The pipeline failure released produced water with little or no hydrocarbons.

Rice Operating Company (ROC) prepared a Release Notification report that summarizes activities to date. Plate 2 shows the geometry of the release and the locations of soil borings used to characterize the release. Soil boring SB2 is uphill from the spill site and we consider this a "background" location. The soil borings within the area of the release

(#1 and #3) show a decline in chloride concentrations from more than 1000 ppm chloride to background levels (about 280 ppm) at 45 feet and 15 feet below land surface respectively. Because the water table lies about 80 feet below land surface, this observed decrease of chloride concentrations suggests that the release from did not create saturated conditions between ground surface and ground water.

Figure 1 plots the chloride

7/3/2003 Page 2 of 4

concentration v. depth for Soil Boring #1. This diagram for Soil Boring #1 shows that the recent release is the second of two releases at or near this site. This data and that from Soil Boring #3 demonstrate that the center of mass from the recent release is at a depth of 4-5 feet below land surface. From 13-20 feet below land surface in Soil Boring #1, a second center of mass exists. As stated earlier, chloride concentrations decline to background levels from 40-45 feet in this boring. ROC confirmed that an earlier release of about 10 barrels did occur in the past near Soil Boring #1.

We conclude that these soil boring data show no evidence of potential ground water impairment. The chloride from the releases remains within the vadose zone. Based upon our experience with other sites, we hypothesize that the chloride will remain in the vadose zone for decades, centuries, or indefinitely. Previous research on the migration and fate of chloride conducted by API suggest that any vertical migration of chloride is so slow that ground water quality cannot be materially impacted by releases of this magnitude. Therefore, we have restricted our proposed activities to reclamation of the surface to its original productive capacity and performing simulation modeling to determine if the residual chloride mass in the vadose zone poses no threat to ground water quality.

1. Evaluate Chloride Flux from the Vadose Zone to Ground Water

We propose to employ HYDRUS1D and a simple ground water mixing model to evaluate the potential of residual chloride mass in the vadose zone to materially impair ground water quality at the site. We will employ predictions of the migration of chloride ion from the vadose zone to ground water then select an appropriate remedy for the land surface and underlying vadose zone. The first simulation is the "no action" alternative, which predicts chloride flux to ground water in the absence of any action by ROC.

For this simulation, we will employ the input parameters to HYDRUS and the mixing model outlined in Table 1. We will assume that vegetation is not present over the release site (no evapotranspiration) and an aquifer thickness of about 35 feet, or whatever value can be justified by examination of the literature and nearby well logs. At other sites, we have found that chloride can be distributed throughout the thickness of the aquifer.

Input Parameter	Source
Vadose Zone Thickness – 80 feet	Nearby water supply well logs (Appendix A)
Vadose Zone Texture – caliche and sand	Nearby water supply well logs and on-site borings (Appendix A)
Dispersion Length -	Professional judgment
Soil Moisture - wet	Professional judgment
Vadose Zone Chloride Load – 19 kg/m ²	Appendix B

Table 1: Input Parameters for Simulation Modeling

7/3/2003 Page 3 of 4

Length of release perpendicular to ground water flow – 100 meters	Field Measurements (see Plate 2)		
Climate	Pearl, NM station (Hobbs)		
Background Chloride in Ground Water	City of Lovington water system data		
Ground Water_Flux	Calculated from regional hydraulic data		
Aquifer Thickness	Nearby water supply well logs (Appendix A)		

2. Design Remedy and Submit Report

ROC has completed the repair of the pipeline at the site. We do not anticipate additional releases of produced water. Our modeling of similar sites strongly suggests that the relatively small residual chloride loading (19 kg/m², Appendix B) in the vadose zone poses a threat to ground water quality. If the modeling described above suggests that a threat does exist, we will use the HYDRUS-1D model predictions to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. installation of a low permeability barrier to minimize natural infiltration,
- 2. surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 3. a combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage.

Once we determine the most appropriate vadose zone remedy, we propose to immediately restore the soil through the addition of fresh water and, if necessary, soil amendments to move the identified chloride mass at the 2-5 foot depth to below the root zone (6-10 feet below land surface). If necessary, we use HYDRUS 1D to simulate this addition of fresh water to determine if any proposed vadose zone remedy might be affected by this soil flushing program. The protocol for the soil restoration program is simple:

1. Sample soils to determine if amendments, such as gypsum, will be necessary to restore soil structure and permeability.

7/3/2003 Page 4 of 4

- 2. If soil amendment is required, we will gently till the surface soil without disturbing the underlying caliche to mix the gypsum with the soil. If amendments are not required, we will forego tilling and the resultant disturbance of the existing soil structure.
- 3. Then we cover areas of the spill with black plastic to minimize evaporation and apply fresh water to the soil beneath the plastic to flush the chloride from the root zone. When possible, we will irrigate beneath the plastic immediately after precipitation events or immediately before predicted precipitation events. Conducting soil flushing in concert with precipitation events accelerates the process and conserves water.
- 4. Periodically, we will obtain samples of the soil and underlying material for field chloride analyses. When samples demonstrate that fresh water flushing has moved the chloride to below the root zone, we will remove the plastic and begin the process at another location at the site.

We plan to commence the HYDRUS1D simulations described above immediately. Your approval to move forward with this work plan will speed the implementation of a surface remedy because soil flushing is best conducted in winter when evaporation is low and precipitation is more widespread and easier to predict.

Sincerely, R.T. Hicks Consultants, Ltd.

Kanded T. Hay

Randall T. Hicks Principal

Copy: Rice Operating Company

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

June 11, 2004

Wayne Price NMOCD Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail

RE: Abo 1G Pipeline Release Corrective Action Plan Section 1, 17S, 36E, Unit G

Dear Wayne:

On behalf of Rice Operating Company, R.T. Hicks Consultants, Ltd. is pleased to submit the attached Corrective Action Plan for the above-referenced site. We have followed the same approach with this site as in our previously-submitted CAP for the Zachary Hinton site. We would appreciate your comments on this and the Zachary Hinton report as soon as possible to allow us to address your concerns before we complete our reports on the following ROC sites:

B-29	(NMOCD approved work plan)
N-29	(NMOCD approved work plan)
M-5	(NMOCD approved work plan)
Hobbs SWD system	(work plan submitted to NMOCD)
Vacuum G-35	(work plan forthcoming)

Your comments on or approval of the Hobbs SWD system abandonment work plan will allow us to begin the characterization process of this important site. Please expect the work plan for the Vacuum G-35 site shortly.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall Hicks Principal

Copy: Rice Operating Company

Corrective Action Plan

a contract of the

5 \$ 2 °

÷.

Abo 1G Release Site

R.T. HICKS CONSULTANTS, LTD.

901 RIO GRANDE BLVD. NW, SUITE F-142, ALBUQUERQUE, NM

June 7, 2004

Abo 1G Release Site Report

Prepared for:

Rice Operating Company 122 West Taylor Hobbs, NM 88240

R.T. HICKS CONSULTANTS, LTD.

901 RIO GRANDE BLVD. NW, SUITE F-142, ALBUQUERQUE, NM 87104

1.0 BACKGROUND

The Abo 1G Discharge Site is located about 6 miles southeast of the center of Lovington, New Mexico. Plate 1 shows the location of the site relative to Route 18, the Hobbs-Lovington Highway.

On October 18, 2003, Rice Operating Company (ROC) prepared a

Release Notification report that estimated the pipeline failure released 190 barrels of produced water and recovered 130 barrels. The pipeline failure released produced water with little or no hydrocarbons. Plate 2 shows the geometry of this release, which affected about 31,000 square feet of rangeland. Plate 2 also shows the locations of soil borings used to characterize the release. ROC is also aware that a 10 barrel release near this same location on occurred on June 3, 2003 and this earlier release impacted a 2,400 square foot area near SB-1.

Figure 1 is a photograph of the site in October, 2003 looking south from a caliche road. The line in the foreground ruptured and produced water flowed south.

ROC mobilized to the site on November 10, 2003 and drilled three borings as shown on Plate 2. The field procedures employed by ROC were consistent with industry practice and with previously-submitted ROC characterization plans (e.g. junction box plan). Hicks Consultants used the data collected by ROC and obtained additional data from public sources as input to the HYDRUS-1D vadose zone fate and transport model. Hicks Consultants employed the results of the modeling to predict the potential impact to ground water quality as a result of the release and to develop a remedy to protect ground water quality and to restore the ground surface.

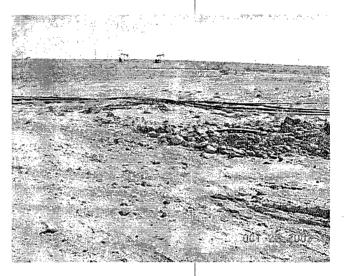


Figure 1. Abo 1G site looking south.

CORRECTIVE ACTION PLAN- ABO 10 RELEASE SITE June 7, 2004

Page 1

R.T. HICKS CONSULTANTS, LTD.

2.0 RESULTS OF FIELD PROGRAMS AND INVESTIGATIONS

CHARACTERISTICS OF VADOSE ZONE AND SATURATED ZONE

Next to the pipeline rupture, SB - 01 was drilled to a depth of 45 feet. From field inspection, the site has several inches of sandy soil covering a high-fractured caliche horizon. We examined borehole samples and the on-site cuttings log from SB-01 and concluded that the subsurface is composed of 24 feet of thin caliche layers within sands and silts. Interbedded with these caliche-rich sands and silts are silty clays. Below this uppermost 24 feet is 20 feet of sand and silt. The logs for each of these three ROC borings are included in Appendix A.

In well L-1716, about 1 mile west of the release site, the driller's log reports "water sand" from 45 feet to 70 feet underlain by 7 feet of "calcium sand" before penetrating water bearing units. At well L-5014, approximately 5 miles north of the site, the driller log identifies caliche from 2 to 28 feet below surface. Below this upper strata is sand and sandy clay to a depth of 190 feet. From 190 to 205 feet below surface, the driller reports a clay zone. This 15 feet of clay is underlain by 10 feet of clay and gravel. The driller penetrated the Dockum Group red beds at 215 feet below grade. Monitoring wells in the Lea Refinery, one mile to the northeast, driller's logs report a 4 foot caliche bed overlying more than 100 feet of very fine to fine grained sands. At the Lea Refinery, April, 1996 water levels are 90 feet below grade (H+GCL, 1996). These well logs are also included in Appendix A.

We conclude that the vadose zone is about 90 feet thick and is composed of a caliche-rich upper horizon underlain by sand with minor amounts of silt. The saturated Ogallala Aquifer, which underlies the location, is dominantly sand. The saturated thickness of the aquifer is about 130 feet. The screened interval of wells in the area range from 20 feet to more than 100 feet.

According to the USGS (<u>http://water.usgs.gov/GIS/metadata/usgswrd/ofr98-548.html#Identification_Information</u>), the hydraulic conductivity of the High Plains Aquifer ranges from less

CORRECTIVE ACTION PLAN- ABO 16 RELEASE SITE June 7, 2004

than 25 feet/day to greater than 300 feet per day with an average hydraulic conductivity of 60 feet/day. At this location, where saturated gravel units are restricted to the base of the Ogallala,

we estimate the hydraulic conductivity is about 50 feet per day. Geologists who drilled monitoring wells at the Lea Refinery estimated the saturated hydraulic conductivity as ranging from 25-75 feet per day. At the Lea Refinery, the hydraulic gradient is 0.004 feet/foot to the southeast. The resultant ground water flux is probably about 0.2 feet per day.

We have no site specific or regional data on the moisture content of the vadose zone. Such data are generally rare. As described in a later section of this report, we used HYDRUS-1D to simulate an initial water content of the unsaturated zone.

CHLORIDE DISTRIBUTION IN THE VA-DOSE ZONE

Soil boring SB-2 is uphill from the spill site and we consider this a "back-

ground" location. At this soil boring, the chloride near the ground surface is 475 ppm. From 4 feet below grade to the total depth of 15 feet, chloride in this calicherich horizon ranges between 230 and 356 ppm (Figure 2). Other workers suggest that "background" chloride concentration in Lea County soil can be less than 100 ppm. At this site, where the caliche dominates the upper vadose zone, the background is about 300 ppm.

The soil borings within the area of the release (#1 and #3) show a decline in chloride concentrations from more than 1000 ppm chloride to background levels at

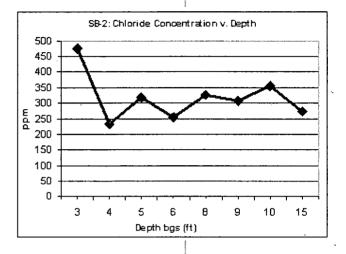
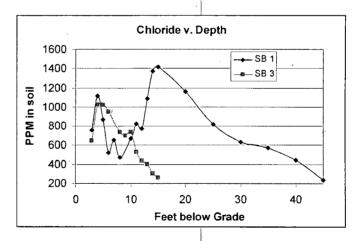



Figure 2. Chloride vs. depth in soil boring 2.

45 feet and 9 feet below land surface respectively (Figure 3). Because the water table lies about 90 feet below land surface, this observed decrease of chloride concentrations to background suggests that the release did not create saturated conditions between ground surface and ground water.

CORRECTIVE ACTION PLAM- ABO 10 RELEASE SITE June 7, 2004

Figure 3. Chloride vs. Depth in soil borings 1 and 3.

The pattern for SB-1 shown in Figure 3, which was closest to the pipeline rupture, confirms that the October 2003 release is not the first release at or near this site. An earlier release appears as chloride concentrations above 1000 ppm between 12 and 20 feet below grade and the October release appears as the high chloride between 3 and 6 feet depth. We do not believe that the chloride concentrations between 12 and 20 feet in SB-1 were caused by the 10-barrel release of June 2003.

The data from SB-3 suggests the influence of only the October 2003 release. Data from SB-1 and SB-3 demonstrate that the center of mass from the recent release is at a depth of 4-5 feet below land surface.

Regardless of the source of chloride observed at 12-20 feet below grade in SB-1, we can conclude that these soil boring data show no evidence of imminent ground water impairment. The chloride from the releases remains within the vadose zone. Using these data, and the chloride concentration in the produced water, we can estimate the volume of produced water released at this site.

RELEASE CHARACTERISTICS

ROC provided an analysis of the chloride in the produced water – 19,994 ppm. Because the soil sampling program identified an older spill event at SB-1, we considered the calculated chloride load at SB-3 more representative of the October release. Calculations using the chloride load at SB-3 imply that the spill was 1 in. deep (see Appendix B for these calculations). If 1-inch was the average spill height for the 31,000 square feet of impact (see Plate 2), the total volume of the release would be 440 barrels. However, ROC located SB-3 where the released "pooled", therefore using the chloride load from this boring will probably overestimate the release volume. We suggest that the October event released between 200 and 500 barrels of produced water and 130 barrels were recovered.

Ground water at the Lea Refinery flows toward the southeast. We estimate that the length of the spill parallel to ground water flow is 477 feet.

EVALUATION OF CHLORIDE FLUX FROM THE VADOSE ZONE TO GROUND WATER

We employed the HYDRUS-1D and a simple ground water mixing model to evaluate the potential of residual chloride mass in the vadose zone to materially impair ground water quality at the site. Appendix C presents the background documentation for this modeling approach. We applied the results from the HYDRUS-1D modeling of the migration

CORRECTIVE ACTION PLAN - ABO W RELEASE SITE June 7, 2004

of chloride ions from the vadose zone to ground water in our selection of an appropriate remedy for the land surface and underlying vadose zone. This simulation is the "no action" alternative, which predicts chloride flux to ground water in the absence of any action by Rice Operating Company.

DATA FOR SIMULATION MODELING

The HYDRUS-1D and mixing model simulation requires input of 11 parameters. As Table 1 shows, site specific data are required for several of these parameters and other data are available from public sources. The source of most of the data is described in the previous section of this report.

Table 1. Input Parametersfor Simulation Modeling

		•
	Input Parameter	Source
1.	Vadose Zone Thickness - 77 feet	Appendix A well logs
2.	Vadose Zone Texture - Plate 3	Samples and attached well logs
3.	Dispersion Length - 1.85 meters	Professional judgment
4.	Soil Moisture	HYDRUS-1D initial condition simulation
5.	Chloride in release - 19,994 ppm	Samples of produced water
6.	Height of spill on land surface -1.0 inches	Calculated from chloride load at sampling location SB-3 and chloride in released water
7. l 477	ength of release parallel to ground water flow - ft	Field Measurements
8.	Climate – Arid	Pearl Weather Station near Hobbs Airport
9. ppr	Background Chloride in Ground Water - 100 n	Professional judgment
10.	Ground Water Flux - 6.1 cm/day	Calculated from published data and the Lea Refinery Report
11.	Aquifer Thickness - 10 feet	NMOCD suggestion

The vadose zone profile used for the HYDRUS-1D modeling is composed from the well log and samples of SB-1 and information from the logs of wells in the area. For the purpose of this report, we will assume that the ground water is unconfined and is at a depth of 77 feet below land surface. Some driller's logs suggest this depth to water, however we believe that 90 feet is more accurate. The 13-foot difference is probably due to falling water levels in the Ogallala. To be conservative in our approach, we used 77 feet at the thickness of the vadose zone. Plate 3 shows the vadose zone profile (texture) employed in the modeling with the HYDRUS-1D input parameters.

CORRECTIVE ASTION PLAN - ABO 10 RELEASE SITE June 7, 2004

The dispersion length of 1.85 meters is less than 10% of the total length of the HYDRUS-1D model and is consistent with standard modeling protocol.

We installed the profile described above as the initial condition in HYDRUS-1D and ran it with the estimated spill installed as an atmospheric event on day 1 of the simulation. We ran the model for 2 years to create a chloride profile v. depth that we use to "calibrate" the model. Comparison of the solute concentrations computed by HYDRUS-1D with the field measured solute concentrations caused us to simplify the soil profile by using higher hydraulic conductivity in the upper soil profile. The parameters used to model the caliche typically employ a very low saturated hydraulic conductivity. From field inspection, the surface caliche in the area is fractured and filled with fine sands. Because of the stratagraphic location near the ground surface, we believe the caliche at this site has a much higher saturated hydraulic conductivity than that typically used in the HYDRUS-1D model. During intense rainfall events (or produced water spills), water will flow quickly to the subsurface through the fractures via saturated flow. Therefore, we adjusted for this observation and modified the default caliche parameters to behave less like clay and more like sand. Deeper in the vadose zone, fractures become barriers to flow and deeply buried caliche behaves more like clay. From previous modeling experience, the properties of the upper soil profile are the most important in determining flow in the vadose zone. Therefore, adjusting the hydraulic input data for the uppermost vadose zone is relatively important.

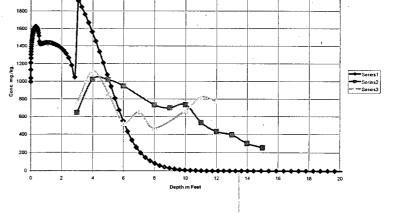

The parameters of the lower caliche were also altered to allow the higher hydraulic conductivity. In addition, two intermediate layers were

Figure 4. Predicted chloride concentrations in soil at 200 days.

merged using the parameters of the coarser layer. These changes err in favor of ground water protection; they will cause the model to overestimate the flux of chloride from the vadose zone into ground water. After making these adjustments, one can observe the relationship between predicted chloride concentration in soil and actual measurements in Figures 4 and 5.

What are important in the examination of these figures are the distribution of the predicted chloride mass in the vadose zone and

CORRECTIVE ACTION PLAN - ABO 10 RELEASE SITE June 7, 2004

SB-1, SB-3, Ti

Page 6

the measured distribution of vadose zone chloride. The simulation of the chloride distribution at 200 days after the release (Figure 4) shows a peak chloride concentration at about 3 feet deep and background concentrations (zero ppm in the model) at 10 feet below grade. The simulation at time=730 days provides a better fit between the predicted chloride concentrations and the measured values. The reason for this "time shift" is due how the model uses the meteorological data from Pearl, New Mexico. The meteo-

1200

rological data consists of 47 years of daily data. Day 1 is NOT the day that the October 2003 release occurred, however. Day 1 of the file is about 50 years ago. The measured values will only correlate exactly with the predicted values if rainfall, wind speed and other atmospheric events between the time of the release and the time of the sampling event were exactly the same as the atmospheric file in the model. We maintain that the "match" between the predicted chloride concentrations and the measured concentrations presented in Figure 5 provide adequate verification of our input parameters for the vadose zone texture.

For the mixing model, the largest dimension of the spill (477 feet) was used for the length of spill parallel to groundwater flow. Climate data from the Pearl Weather Station near the Hobbs, New Mexico airport, approximately 15 miles south of the site, was used. Ground water flux at the Lea refinery is estimated at .4 feet/day to 1.2 feet/ day. (Lea refinery Report) Well logs in Appendix A indicate that 10 feet is a very conservative estimate for the aquifer thickness in that most wells exhibit well screens in excess of 20 feet.

We then ran the HYRDUS-1D model to predict chloride movement through the vadose zone for 71 years. From the output, we found that the center of chloride mass enters the ground water zone between 15 years and 50 years from present.

This flux was then fed into the aquifer mixing model with the resulting output shown in Figure 6. The predicted peak concentration is less than 200 ppm. *Figure 5. Predicted Chloride concentrations in soil at 730 days.*

CORRECTIVE ACTION PLAN- ABO 10 RELEASE SITE June 7, 2004

In examining Figure 6, it is important to understand that the model assumes that rainfall is distilled water (0 ppm chloride) and that the initial vadose zone water also contains 0 ppm chloride. Attempting to use chloride concentrations other than zero for precipitation and initial soil moisture creates too much complexity in the model. This simplification causes a minor under estimate of the chloride flux to ground water, as described below.

In our model, natural precipitation (0 ppm chloride) moves the released chloride through the vadose zone and dilutes the chloride mass (from above)

during transport, just as real rainfall dilutes the real spill. Minor dilution of released chloride also occurs as it moves downward and mixes with 0 ppm pore water. Dilution of the release by pore water also occurs in nature. Thus from time zero to slightly more than 3 years, a flux of 0 ppm chloride enters the aquifer from the vadose zone, diluting the 100 ppm chloride ground water to 75 ppm. This decrease in chloride concentration in the mixing model is due to the relatively high flux through the bottom of the sandy soil vadose zone. After 3 years, the chloride mass from the release begins entering ground water raising chloride concentration. The maximum chloride concentration in a 10-foot thick aquifer beneath the site would occur about 30 years after present and would be less than 200 ppm chloride.

We can confidently conclude that the release(s) that created the chloride load observed in SB-1 will cause minimal impairment of ground water quality at an imaginary well located immediately adjacent to the release. Our predictions show that a well with 20 feet of screened interval located immediately next to the release would observe chloride concentrations less than 150 ppm.

POTENTIAL IMPACT ON CITY OF LOVINGTON WATER SUPPLY WELLS

The water supply wells for the City of Lovington are more than 2000 feet from the release site. These wells do not draw water from only the uppermost 20 feet of the Ogallala Aquifer, but from most or the entire 130-foot thick saturated zone. Let us assume that in the future the City of Lovington or another water user were to install a water supply well at

CORRECTIVE ACTION PLAN- ADD 16 RELEASE SITE June 7, 2004

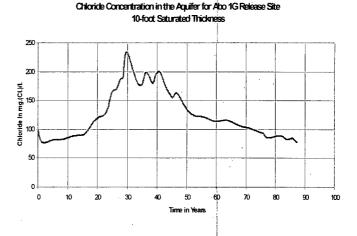


Figure 6. Ground water chloride concentrations in imaginary monitoring well.

R.T. HICKS CONSULTANTS, LTD.

the edge of the release site. The maximum predicted chloride concentration in this fully-penetrating, fully-screened well (130 feet of screen within the 130-foot saturated zone) is 109 ppm or 9 ppm above the assumed 100 ppm background concentration (see Figure 7).

If we wish to predict the potential impact to an existing City of Lovington water supply well that lies 2000 feet from the release site, we must calculate the dilution that will occur as background water is drawn to the well.

For example, let us assume that a City of Lovington supply well creates a cone of depression with a 2000-foot radius and a circumference of 12,560 feet (Figure 8). If we assume this large cone of depression, all of the chloride from the release will eventually be drawn into the well. In our modeling, we assumed that the maximum length

of the release parallel to ground water flow was 477 feet. Referring to Plate 2, the maximum width of the release (perpendicular to ground water flow) is 375 feet. Therefore, the supply well will draw in water from the release site (375 feet of the circumference) and background quality water (12,560 feet of the circumference). The water from the site contributes only 3% of the total volume of water pumped by the well. In

a simple dilution calculation where 3% of the water drawn into the well will exhibit a chloride concentration of 109 ppm and 97% of the water drawn into the well is background water quality (100 ppm), the resultant concentration in the supply well is 100.27 ppm. In other words, one will not be able to measure the effect of this release on the Lovington water supply wells. Figure 8 shows this hypothetical situation.

We conclude that the chloride from this release site will have no impact on the City of Lovington water supply wells.

CORRECTIVE ACTION PLAN- ABO 18 RELEASE SITE June 7, 2004

Figure 7. Chloride concentration in imaginary monitoring well with 130 foot saturated thickness

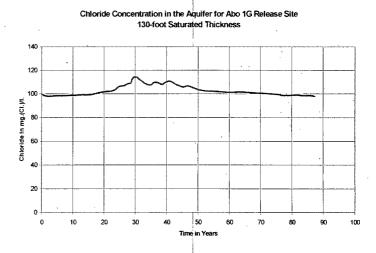
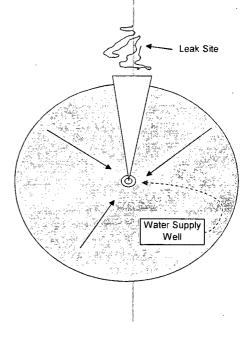
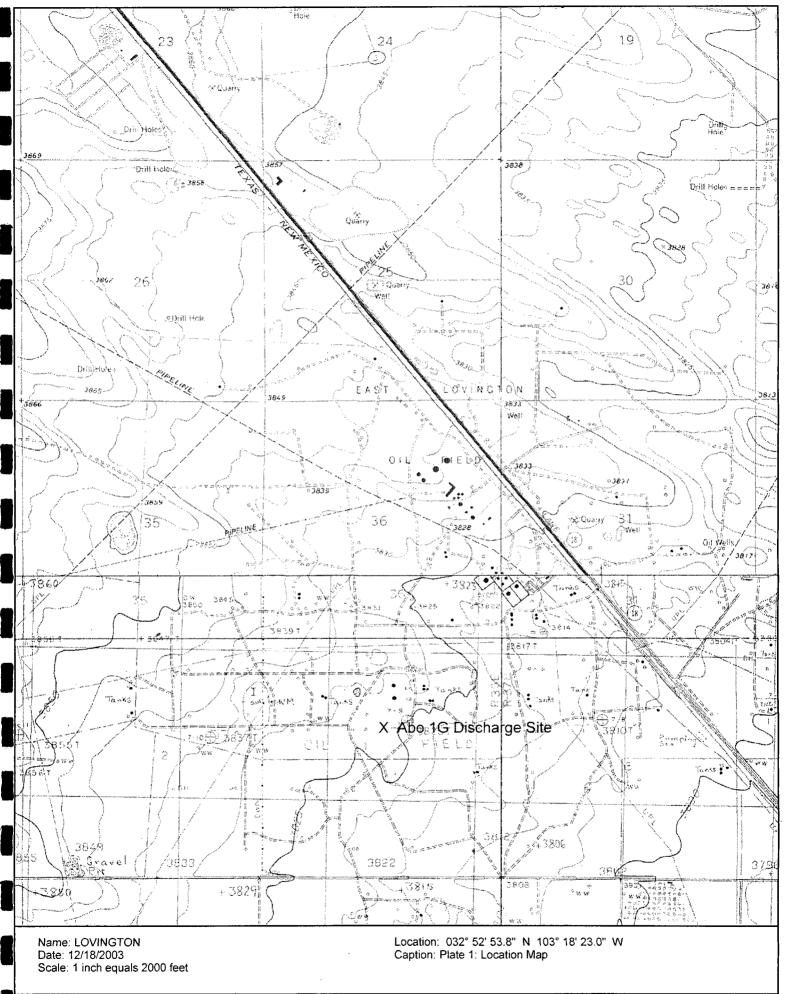
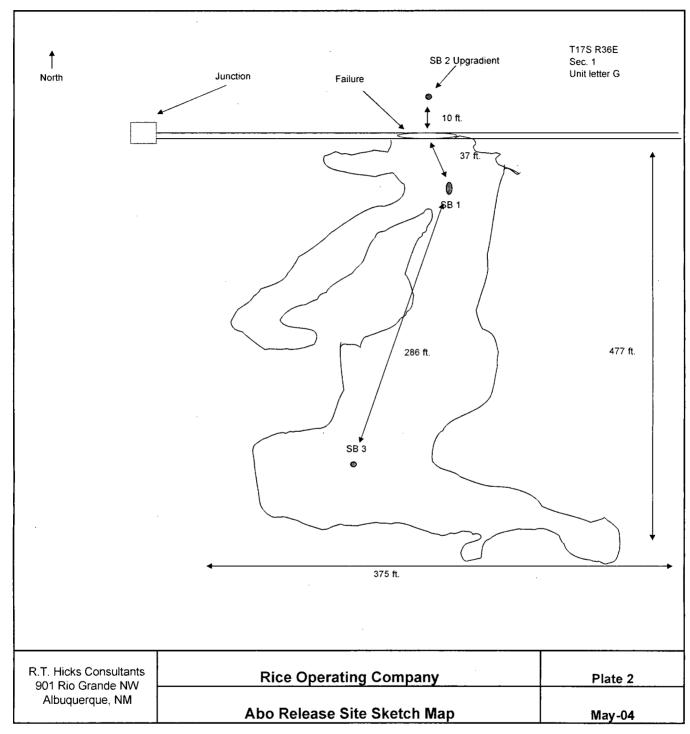



Figure 8. Hypothetical situation showing a Lovington water supply well drawing in: i. release ground water containing chloride molecules (represented by the triangular area) and ii. background water.

PROPOSED REMEDY


We conclude that the release poses no material threat to ground water quality. Simulations using input parameters that should over-estimate the chloride concentration in ground water show that the release will not cause WQCC Standards to be exceeded at a place of reasonable foreseeable future use.


We recommend closure of the regulatory file.

We propose annual inspection of the site and re-seeding when vegetation begins to invade the spill site. Our site visit in April, 2004 showed that the recent heavy rains of the area have permitted some natural revegetation of the site.

CORRECTIVE ACTION PLAN - ABO 16 RELEASE SITE June 7, 2004

PLATES

Depth	Lithologic Description	Van Genuchten's parameters as used in adjusted profile	s Soil description by USDA soil triangle	
Oft.				
3ft.	0-3ft Top Soil	.th_r065, th_s41, alpha - .075, n - 1.89, Ks - 106.1	sandy loam	
10 (6.2)	3 -16 ft Clay - very fine sand, caliche	th_r078, th_s43, alpha - .038, n - 1.58, Ks - 35	fractured caliche, value modified from Jan Hendrick	
16 feet 19 ft 22 ft.	16 - 19 ft.silt - clay, min. caliche 19 - 22 ft. clay - silt, min. caliche	th_r089, th_s43, alpha - .01, n - 1.23, Ks - 1.68	silty clay loam	
22 ft. 28 ft. 32 ft.	22 - 28 ft Silt - v.f. sand ,some caliche 28 - 32 ft. silt - very fine sand, caliche	th_r078, th_s43, alpha - .038, n - 1.58, Ks - 35	fractured caliche, value modified from Jan Hendrick	
45 ft.	32 - 45 ft., silt - very fine sand, some clay	th_r095, th_s41, alpha - .019, n - 1.31, Ks - 6.24	clay loam	
	45 - 70 ft. vf sand	th_r067, th_s45, alpha - .02, n - 1.41, Ks - 10.8	silt loam	
70 ft.	70 - 77 ft. limey sand	th_r095, th_s41, alpha - .019, n - 1.31, Ks - 6.24	clay loam	
R.T. Hicks Consultants, Lt		bany Lovinton	Abo Soil Profile at SB-1	
901 Rio Grande, Suite F-14 Albuquerque, NM	Lovington Abo Rele	ase Site	Apr-04	

I

I

I

. .

· · · · · ·

.

.

APPENDIX A

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

Section 1	(A) Owner of well Jeck Caytim
	Street and Number Fox 1021 City Lovington State New Mexico Well was drilled under Permit No. Le25564-1716 and is located in the MAY 4 NY 4 NY 4 S5 544 of Section 2 Twp. 17 S. Rge, 35 E
# 5 41 730 -20 - 13 OPN: 25- 1350	(B) Drilling Contractor. Gayton & Porter License No.ND-163 Street and Number City Lovington State New Maxico Drilling was commenced Sapt. 2 19.55
(Plat of 540 acres)	

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth in Feet		Thickness in Feet	Description of Water-Bearing Formation			
1		<u>92</u>	15	Water Sand			
2							
3	1						
4							
5		1					

Section 3				RECOR		. •			
Dia	Pounds	Threads	Depth		Feet	Type Shoe	Perforations		
ìn.	It,	in	Тор	Bottom	rect	Type Shoe	From	To	
				1					

Section 4

RECORD OF MUDDING AND CEMENTING

Methods Used	No. Sacks of	Tons	Diameter Hole in in,	Depth in Feet		
ALCHIOUS OBER	Cement	Clay Cement		To	From	
	· · ·					
	· .					
	·					
	+		<u>∤</u> ∤			

Section 5

PLUGGING RECORD

Name of Plugging Contractor	License No	
•	City State	
Tons of Clay used	used	
Plugging method used	Date Plugged	19
Plugging approved by:	Cement Plugs were placed as follows:	

		No.	Depti From	n of Plug To	No. of Sacks Used
FOR USE C	DF STATE ENGINEER ONLY				
Date Received	94.0125 1955.				
	OFFICE FOLL REPART LOPPYMEDR				
File No.	2490 1716 Use	rig	L	ocation No.,	12.362

ı.

1

				G OF WELL
Depth ir From	To	Thickness in Feet	Color	` Type of Material Encountered
0]	1		Sail
	- 7	6		lock
-7	 16	9		- Caliche
16	20	4		Boulder
20	26	6		Sand Rock
26	45	10		Sand
45	70	25		Water Sand
70		7		Galcium Sand
77		15		Quick Send
02	_106_	14		Sandy Clay
206	3.0Ê	2		Sand
108	112	4.		Rook
112	134	22		Sandy Clay
134	743	<u> </u>	·	Sand
243	345	2		Sandy Clay
				
				· · · · · · · · · · · · · · · · · · ·
			<u></u>	· · · · · · · · · · · · · · · · · · ·
		ļ		
		h		

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Well Driller

LOG FILED

O,

 \bigcirc

(This form to be executed in triplicate)

WELL RECORD

WELL RECORD	lour L-4058
Date of Receipt	
Name of permittee,Lovington-Hunicipal-Utilities	1959
Street or P.O.,	/
1. Well location and description: The	
LCL-G. Range. 36	
casing above sea level, <u>3979</u> feet; diameter of hole, <u>16</u> inches; total depth, <u>127</u> feet;	
depth to water upon completion,	
and completed. June 1:5. , 19.52 ; name of drilling contractor. Aqua Drilling Cox	
Box 1004 ; Address, Lovington, N.M. ; Driller's License No. 130, 35	`
2. Principal Water-bearing Strata:	
Depth in Feet From To Thickness Description of Water-bearing Farmation	
No. 1	

70		······································	herest. Office
No. 2	71	2	Water Spnd
No. 3 82	86	<u>h</u>	Judick Sand & Water
No. 4	17.6		Vater Sand & Shale
No. 5			

3. Casing Record:

	Diamster in inches	Pounds por ft.	Threads per inch	Depth of Casing Top	or Liner Boltom	Feet of Casing	Type of Shoe	Perfora From	tions To
	•••••								
								RECEN	YEN
	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••					<i>با</i>	OCT 271	952
				······································			ST	ATE ENG	INFED
							<u>E37</u>		
4.	If above con		laces old	well to be aban	doned, giv		¥, -		······¥
	of Section	, 	Townshi	P	., Range		; name and edd	ress of plugging	contractor,

	 2		

ł

	· ·	
date of plugging	19 describe how	well was plugged:
	۲۰۰۰ - ۲۰۰۵ (۲۵۲۲) (۲۰۰۰ - ۲۰۰۰) (۲۰۰۱ - ۲۰۰۰) (۲۰۰۰ - ۲۰۰۰) (۲۰۰۰ - ۲۰۰۰) ۱۹۹۳ - ۲۰۰۹ ۱۹۹۳ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰	
	<u>007 00 1050</u>	100 1 5 105R
	1	1
	SPICE STREET	(FTTT
	ROSWELL, NEW MEXICO	
	L Construction of the second s	

 C^{\prime}

ł

man productive suggestion of the op-يور المنظم المريخ موريد المالي 19 - منطق المركب المريد الم

5. Log of Well:

۰.

Bepth in feet From | To Thickness in feet Description of Permution ... 2 Soil 0 2 24 Caliche & Lime Shale 2 26 58 32 Sandy Shale 26 58 59 · Water Sand 1: . 69 10 Sand & Shale 59 Water Sand & Shale 71 2 69 82 Sand Shale with Streaks of Clay 11 71 86 4 Quick Sand & Water 82 86 112 26 Sand & Shale h Tight Water Sand & Clay Shale 112 116 ·Л Sandy Shale . 116 127 ÷ -.

والمحافظ فعفر والالمراجع The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor-. ... rect record of the above described well.

Licensed Well Driller

Instructions

This form shall be executed, preferably typewritten, in triplicate and filed with the State Engineer's Office at Roswell, New Mexico, within 10 days after drilling has been completed. Data on water-bearing strata and on all formations encountered should be as complete and accurate as possible.

(This form to be executed in triplicate)

WELL RECORD

Date of Receipt		· · · · · · · · · · · · · · · · · · ·	·····	Pe	rmit No_L-265
Name of permittee,	Ern	est Nahan		· · ·	
Street or P.O.,	Box 32	······································	, City and St	ste Lovingto	
1. Well location and d	lescription: T	he shallow	tesian)	s located inNV	<u>и "Nw "</u>
SW% of	Section]	<u>], Townshi</u>	<u>16 s</u>		E; Elevation of top of
casing above sea le	γel,	feet; diameter	of hole,]	inches; to	tal depth, <u>120</u> teet
depth to water upon	completion, .		irilling was co	mmenced	lan. 8 10_48
and completed	J	an. 9., 1948	; name of dri	lling contractor.	bbott Bros.
	;`A	ddress, Box 63	7, Hobbs		's License No_WD-46
2 Principal Water-bes	aring Strata:		-		
Depth in From	Feet To	Thickness	b	oscription of Wuter-de	aring Formatian

No. 1 Water sand 45 120 75 No. 2 No. 3 No. 4 No. 5 . •

3. Casi	ng Re	cord:
---------	-------	-------

Э

С

Dinmeter	Pounds	Threads	Depth of Casin		Feat of		Perfor	ations
in inches	per ft.	per inch	Top	Bettom	Casing	. Type of Shee	From	То
NON	IE					: . ·		
		•						**************************************
		· ····-				· ····		****
							· .	
						• ••••••••••••••••••••••••••••••••••••	···	·····
-						·	·• ·	
						. 7		
								••••••••••••••••••••••••••••••••••••••
		•	· ·	• • • •		the star of		•

n 1971 auto est

		·
	•	~

date of plug	zing	 , 19	deser	ibe how	well wa	s plugg	ed:			
a.t			n steri	2000 tu. 1990 tu.	Ì	igenta.	£13	ij		11 Party
					-		12144	5	1995	
		 		·			J	AN 1	1 153	2
, <u>, , , , , , , , , , , , , , , , , , </u>		 				ARTI	ISIAL DSWE	I WFL	i C è L SUPSI IW MEI	RVISOR

5. Log of Well:

Depth From	in feet To	Thickness in rest	Description of Formation
0	4	4	Soil
4	35	31	Caliche
35	45	10	Hard shell
45	120	75	Water sand
		· · ·	
			· · · · · · · · · · · · · · · · · · ·
			······································
•			
			· · · · · · · · · · · · · · · · · · ·
		~····	
			·
·····			
<u> </u>			· · · · · · · · · · · · · · · · · · ·
	·····		
			1

 $\{ e^{i \alpha} \}_{i=1}^n$

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

ed Well Drille

... .

Instructions

...

This form shall be executed, preferably typewritten, in triplicate and filed with the State Engineer's Office at Roswell, New Mexico, within 10 days after drilling has been completed. Data on water-bearing strate and on all formations encountered should be as complete and accurate as possible.

I

WELL NEUUNU

ļ,

			Section 1.	GENERAL I	NFORMATIO	N		
(A) Owner of	well Huld	la Heide	1			Owner's W	ell No.	
Street or P	ost Office Ad	dress 10	18 West	Avenue	K			
City and S	tateL(vington	, New Ne	exico	88260			
Well was drilled						d in the:		
A/2 /a	<u> %</u> <u>***</u> *	%%	NW ¼ of Sec	tion]	Township.	16S Range	36E	_N.M.P.M.
b. Tract N	lo	of Map No		of th	e			
c. Lot No Subdivi	ision, recorded	of Block No I in	Lea	of th	e County.			
					.M. Coordinat	e System		
(B) Drilling Co	ontractor A	bbott Br	cos.		· · · · · · · · · · · · · · · · · · ·	License NoWI	-46	
Address P.	O, Box	637, Hob	obs, New	Mexico	88240			
								76
Drilling Began _	3/17/	<u>17</u> Com	pleted	3/22/11	_ Type tools.	Cable	Size of hole	in.
Plaustice of las	d melone or					ft. Total depth of		
clevation of fan	u sunace or	. 		41 WI				
Completed well	is 🖾 si	hallow 🔲 .	artesian.		Depth to wat	er upon completion of	well 58	ft.
		_						
		r	ction 2. PRIN	CIPAL WATE	R-BEARING	STRATA	· · · · · · · · · · · · · · · · · · ·	
Depth i		Thicknes in Feet		Description of	Water-Bearing	Formation	Estimated 7 (gallons per n	
From .	To					<u> </u>	(ganonii pri i	
58	146	88	San	d				
		}						
				- <u>.</u>				
1		,						
			Castio	- 2 PECOPI	OF CASING			
	Pounds	Thursday		in Feet		-T	Dasfa	ations
Diameter (inches)	per foot	Threads per in.	Тор	Bottom	_ Length (feet)	Type of Shoe	From	To
			100	Dottom			11011	10
12 3/4	43	Welded	0	146	146	None	66	146
						- <u> </u>		
ţ,L				L		·		I
		Seci	lion 4. RECOI	RD OF MUDI	DING AND CE	MENTING		
Depth i		Hole	Sack		ubic Feet	Method of	of Placement	
From	То	Diameter	of M	<u>ua</u>	of Cement			

Depth i	in Feet	Hole	Sacks	MUDDING AND CEME	
Tom	То	Diameter	of Mud	of Cement	Method of Placement

Section 5, PLUGGING RECORD

•••

÷

Plugging Contrac Address					· · · · · · · · · · · · · · · · · · ·		Denth	in Feet	Cubic Feet
Plugging Method	<u></u>			······································		No	Top .	Bottom	of Cement
Date Well Plugge						1			
Plugging approve	ed by:					2 .	· • • • • • • • • • • • • • • • • • • •		
				···· · · · · · · · · · · · · · · · · ·		3			
			State Eng	ineer Representat	tive	4			
Date Received	June	14.	1977	FOR USE OF	STATE ENGINE	ER ONLY			
					Quad Supplemen		FWI		. FSL

			pappromentar			
¥.	File No. <u>L-135</u>	& L-135-Enlgd-S	Use Irr	Location No.	16.36.11.	

Ì,

11101 .1

			Section 6. LOG OF HOLE
	in Feet	Thickness in Feet	Color and Type of Material Encountered
From	<u>To</u>		
0	2	2	Surface soil
2	26	24	Caliche
26	58	32	Sand-tight
58	112	54	Sand-water
112	1.28	16	Sand-tight
128	146	18	Sand-water
<u></u>			
<u></u>			
		·	
			· · · · · · · · · · · · · · · · · · ·
·····			
· · · · · · · · · · · · · · · ·			
		· ·	· · · · · · · · · · · · · · · · · · ·
	<u> </u>		
<u> </u>			
	<u> </u> .	Section	7. REMARKS AND ADDITIONAL INFORMATION
			7. REMARKS AND ADDITIONAL INFORMATION
			8 O 8
			10E - 1

ľ

ł

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

:

. . .

Murrell Abbott Driller H. 13

• • • • •

.

•••

. .

STATE ENGINEEN VERICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

Form WR-23

DELD ENGR. LOG

	(A) Owner of well J. H. Taylor Jr.
	Street and Number_0.0.
	CityHope Statenew Mexa
	Well was drilled BAREF FEHREF NS Enlgd. 1-155 and is located in the <u>N.W.J. S.W.J. H.W.</u> 4 of Section <u>II</u> Twp. <u>I6S0</u> <u>Rge</u> <u>36</u> <u>E</u> . (B) Drilling Contractor <u>C.D.</u> <u>Sld2'6CEC</u> <u>License No. W.D.79</u>
	Street and Number
]	City State State
	Drilling was commenced Mar. 14 19.64
	Drilling was completed ikur. 16 19.64.
(Plat of 640 acres)	

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth From	in Feet	Thickness in Feet	Description of Water-Bearing Formation						
1	95	IIO	15	Small crystlized sand rock & quick sand						
2										
3		-	-							
4		1								
5			-							

Section 3

RECORD OF CASING

Dia Pounds	Threads	Depth		Feet	Type Shoe	Perforations		
in.	ft.	in	Top	Bottom	reet	Type Shoe	From	To
			NO.	t cased				
	<u> </u>							
	· · · ·		1					

Section 4

RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Diameter	Tons	No. Sacks of	Methods Used			
From	To	Hole in in.	Clay	Cement	Metuous Oseu			
		IG			2 sacks of drilling web used to			
					hold guick sand beck			
		· · · · · · · · · · · · · · · · · · ·			While cleaning out well			
	i			ļ				

Section 5

PLUGGING RECORD

Name of Plugging Contractor		License	No
Street and Number	City	State	
Tons of Clay used	of Roughage used	Type of rougha	ge
Plugging method used	Dat	2 Plugged	
Plugging approved by:	, Cemen	t Plugs were place	d as follows:

	No.		h of Plug	No. of Sacks Used
Basin Supervisor		From	То	
FOR USE OF STATE ENGINEER ONLY 1914001500 Date Received				
15:8 MA 81YAM 4801				
File No. L-135-E-lyd. Use	$\overline{\mathcal{M}}$			<u>, 16.36.11.13/</u>

Section 6

LOG OF WELL

 \mathbf{r}

Depth in Feet		Thickness	(Ja ³ a-	There at Malaviel Theorem 1
From	To	- in Feet	Color	Type of Material Encountered
95	IIO	75	red	small cgystlized saw rock
			<u><u>-</u>-<u>-</u>-<u>-</u>-<u>-</u>-<u>-</u>-<u>-</u>-<u>-</u>-<u>-</u>-<u></u></u>	
		·		
· <u>·</u> ····				
·	·[
_				
	1			
				· · · · · · · · · · · · · · · · · · ·
				·
·				
····				·····
	1			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·				
· · · · ·			·····	

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

<u>G. O. Aldre d</u> Well Driller

Revised June 1972

STATE	ENG	INEER	OFFICE	
W	=11	RECO	RD	

		S	ection 1. GEN	ERAL IN	FORMATIO	4			
(A) Owner o Street or City and	f well Post Office Ad State	<u>City of Loving</u> dress <u>P.O.</u> Lovington, N	oton Box 1268 .M. 88260)			Owner's V	Vell No. <u>2</u> -	.9517
		No. <u>L 9517</u> SESW ₁₄ SW					- Range	36E.	
_	-	of Map No							
		of Block No I in					-		
d. X≠ the		_ feet, Y=		_ icct, N.1	A. Coordinate	System	·····		Zone ir Grant
		G						· · ·	
		Rt 4							
Elevation of 12	ind surface or _		~						
Completed we	llis 🖾 si	allow 🗀 artes Section	ian. 2. PRINCIPA			•	pletion of	well	<u>66 </u>
Depth From	in Feet To	Thickness in Feet	Descri	ption of V	Vater-Bearing	Formation		Estimated (gallons per	
66	138	72	Brown w	ater sar	id w/ sand	stone stri	ngers	30	
· · · · · · · · · · · · · · · · · · ·								,	

Section 3, RECORD OF CASING

Diameter	Pounds	Threads	Depth	in Feet	Length	There at the a	Perfo	rations
(inches)	per foot p) per foot per in. Top Bottom	Bottom	(feet)	Type of Shoe	Ftom	To	
5 3/4	160 psi,				134		118	138
5 3/4	Sch. 40 sto	eel for	pitless add	pter	4			

Section 4. RECORD OF MUDDING AND CEMENTING

Depth in Feet		Hole Sack		Cubic Feet	
From	To	Diameter	oî Mud	of Cement	Method of Placement
					· ·
	··				·
		1			
			1 1		

Section 5. PLUGGING RECORD

Plugging Contractor	····						
Address				N.,	Depth	in Feet	Cubic Feet
Plugging Method	<u>_</u>	<u>`</u>	i	No.	Тор	Bottom	of Cement
Date Well Plugged				1		1	
Plugging approved by:				2			
				3			
State Engineer Representative		ĺ	4				

FOR USE OF STATE ENGINEER ONLY

Date Received December 10, 1984 Quad _____ FWL ____ FSL__

File No. L-9517

V

He Drinking/Sanitary 16.36.3.33244

.1

			Section 6. LOG OF HOLE	
Depth From	in Feet To	Thickness in Feet	Color and Type of Material Encountered	· · · · · · · · · · · · · · · · · · ·
0	3	3	Top soil	
3	15	12	Caliche	
15	21	6	Sandy clay	······································
21	40	19	Sandy clay & sandstone	
40	65	25	Sand & sandstone	
65	66	1	Hard sandstone	
66	138	72	Brown water sand	i
±			· · · · · · · · · · · · · · · · · · ·	
<u> </u>				
			· · ·	
		·		
·				
<u> </u>	·			
<u></u>		ļ	· · · · · · · · · · · · · · · · · · ·	
<u></u>				
<u></u>				<u>-</u>
- <u></u>			<u> </u>	
<u></u>				
•+ •• ···			<u> </u>	
<u></u>				
<u></u>				
	l <u> </u>	Section	7. REMARKS AND ADDITIONAL INFORMATION	
		bracion		STATE ROST
				E EHE
				B 22 AH
				HELL. NH OH

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Jare John Driller

Form WR-23	
· · · · ·	2/2

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section	+			er of well_	122	Lity of Lot ex 1268	1116, FO21	
			Street and	l Number.	in. Territra	AG 1 42000		
			City			Farmera.	Stal	e
			Well was	drillad jun %	der Perm	it No.	1355 Two	eRee W. D. 2 License No
			(B) Drill	ing Contra	ctor.	ady Daelet lox 791	15 I P 1	License No.
		Ī	Street and	d Number	ovingo	2		e 64 19 19
			City			April 6	3 Stat	e64-
			Drilling V	vas comme	enced	h751	12 12	19.
	Plat of 840							A. P
Hevatio	on at top o	of casing i	n feet above se	a level 4-1	<u> </u>		oth of well.	104 200 70 200
state w	hether we	ell is shall	ow or artesian	مراطق (۲۷۹۹) - ۲۲۰۰ 		Depth to wa	ter upon con	mpletion
ection	2.		PRIN	ICIPAL WA	TER-BEAR	NG STRATA		
No.		in Feet	Thickness in		Des	cription of Water	-Bearing For	mation
	From	<u>.</u>	Feet		Simil	·	-	
1	117	120	10					
2	138	12.15	5 03		Litter 			
3	153	158	5		1181115-1112			
4				. ·.	110440			
5			Į					
ection	3			RECOR	D OF CAS	ING		
Dia	· Pounds	Three		pth	Feet	Type Shoe		Perforations
1 ^{yn} ()	a 311	in	Ŧpp	Bottom	1 SLIFY		From	161. To
			··	ļ				
			(
							<u>~</u>	
<u> </u>			I				<u> </u>	<u> </u>
ection	4		RECOR		DING AN	D CEMENTING		
	h in Feet	Diame Hole in			cks of ent	·····	Methods U:	sed
From	То	11010 1			ent.			
·		_ 						
	_						·····	
·							<u> </u>	
		-1	U U	· · ·	·			
ection	5 .	•	·	PLUGG	ING RECO	ORD	•	
amę [.] o	f Pluggin	g Contrac	tor				License	e No
treet a	ind Numb	er			City		State	
ons of	Clay used	ł	Tons of R	loughage u	sed	Ту	pe of rough:	age
luggin	g method	used				Date Plu	gged	19
	g approve					Cement Plu	zs were place	ed as follows:
		•.			NT-	Depth of P	lug	
			Basin Sur	ervisor	No.	From 7	<u>'o</u>	No. of Sacks Used
	FOR US	E OF STAN	TE ENGINEER O	NLY				
		ίτι (<u>β</u> ι)	12:0	, ·				
Date	Received	<u></u>	<u>1981 (1943 -</u>	J		T		
	-1-1-	-0 210 0	WIN HORI			++		
	LE	18 MQ 8	2 891 4391			<u> </u>		
		5356	ç	-<	Ale C.		1/ 5	
ile No)/			_Usel	Mel.	Locatio	n No. 16. 5	36, 3. 400

Section 6			LOG C	DF WELL
	in Feet	Thickness	Color	Type of Material Encountered
From	То	in Feet		
0	1.	1 ît.		Soil
1	4	3 ît.		Rock
Հբ	18	14 ft.		Caliche
18	62	44 ît.		Sand
62:	70	8 ft.		Sand Stone
70	84	14 ft.		Sand
84	98.	14 ft	•	Sand & Calcum
98	112	14 24	¢	Sandy Clay
112	120	. 8 It.		Sand
120	138	18 ît.		Sandy Clay
1.38	146	8 ft.		Water Sand
146	153	7 ft.		Sandy Clay
153	158	5 ft.		Sand
158	164	6 ft.		Sandy Clay
<u></u>			· · · · · · · · · · · · · · · · · · ·	
	-			
		·		
	-			
	+)
			•	
				· · · · · · · · · · · · · · · · · · ·
			······	
		<u> </u>	<u>.</u>	· · · · · · · · · · · · · · · · · · ·
	1	1	1	l

*~

~

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Una fre Bart Aure Well Driller

STATE ENGINEER OFFICE

WELL RECORD

in 5.f.

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

Form WR-23

-		
(A) Owner of wall	atter of Levinstein	

			Street and Number City Logington		State	Nor Linx	1.00
			Well was drilled under Permit	Section 10	Two. 16	8 Rec.	36 L
			(B) Drilling Contractor Corbor Street and Number Data I	b Drife Cos	Lice	nse No	~18]
			City Lawrange		State	Kan Lan	
			Drilling was commenced Drilling was completed		· · · · · · · · · · · · · · · · · · ·		19.58 19.58
(Plat of	640 acres)						

Elevation at to	p of casing in	fect above	sea level	Total	depth	of we	-11 X04 2	40	
State whether	well is shallov	v or artesi	an Distantion	Depth to	water	upon	completion_		19

Section	2		PRINC	JIPAL WATER-BEARING STRATA
No.	Depth	in Feet	Thickness in	Description of Water-Bearing Formation
IND.	From	To	Feet	
1	66	74	8	Vistar Bend
2	82	90	8	Quisk Suns
3				
4			1	
5	1			

Section 3				RECOR	D OF CA	SING		
Dia	Pounds	Threads	D	epth	Feet	Type Shoe	Perfora	tions
in.	ft.	in	Top	Bottom		Type Supe	From	То
7 500	26	8	Sud)	204	105	Here	65	200
GoDo			<u> </u>		[· .	· · · · · · · · · · · · · · · · · · ·
			}					-

Section 4 RECORD OF MUDDING AND CEMENTING

Depth		Diameter	Tons	No. Sacks of		Met	bods Used	
From	To	Hole in in.	Clay	Cement ·				
20	101,	8 1ne	200 200	9	Der u	B	· ·	
		•			· · ·			
, 1								

Section 5 PLUGGING RECORD
Name of Plugging Contractor______License No._____

 Street and Number______City_____State:______

 Tons of Clay used______Tons of Roughage used______Type of roughage______

 Plugging method used_______Date Plugged______19___

 Plugging approved by:
 Cement Plugs were placed as follows:

	Basin Supervisor	No.	Depth From	of Plug To	No. of Sacks Used
FOR USE	OF STATE ENGINEER ONLY				
Date Received					
File No. <u>2-39</u>			Lı		1636.10.413

٠,

ومترجر والع

Section 6

LOG OF WELL

Depth in		Thickness	Color	Type of Material Encountered
From	То	in Feet		Type of Material Encountered
_0				
-2		18		0013000
_20		8		Boold and
-28		38		
_66		8		Tatar Band
-74	<u>012</u>	8		Barry Olar
-82-		8		Oniok Rand
-90-		h		Sund
		· · · · ·		ar Marrin
				· · · ·
			•	· · · · · · · · · · · · · · · · · · ·
			_	
			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			
	• • • • • • •		•	
	-			
·	· · · · ·		·····.	·····
			· · · · · · · · · · · · · · · · · · ·	
··· - [· · · · · · · · · · · · · · · · · · ·			

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

.;: ¹

Well Driller

120

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

FIFT O FMCR LOG WELL RECORD INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

City of Lovington Section 1 (A) Owner of well <u>P.O. Ext 1268</u> Street and Number_Lovington Morr Mary 1- 5014____ State ____ City ____ 4_____K____Kor Section 202____ Twp._____ Rgen 302___ (B) Drilling Contractor_______ License No.______ Kov. 27, State _____62 City _____ Drilling was commenced Boos 9, 19 62 Drilling was completed _____19_____ 216 Pt. (Plat of 640 acres)

65 74. Elevation at top of casing in feet above sea level 116.110w_____Total depth of well_____ State whether well is shallow or artesian_____Depth to water upon completion_____

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth	in Feet	Thickness in	Description of Water-Bearing Formation
	Erom	1 78	Feet	80.76.
1	82	94	12	Outer Sand
2	112	116	2.,	Serid ,
3	132	1.37	5	Spn2.
4	164	168	4	Send 7
5	170	1720	12	Smid

RECORD OF CASING Section 3

Dia	- Rounds	Threads	De	pth	Feet	Type Shoe		orations
tif.	B/1H WE	in in	Top	Bottom	Teet		Ston	D To
•.								

Section 4

RECORD OF MUDDING AND CEMENTING

Depth From	in Feet To	Diameter Hole in in.	Tons Clay	No. Sacks of Cement	Methods Used
	· ·	· · · · · · · · · · · · · · · · · · ·	·		
1	l	{			

Section 5		

PLUGGING RECORD

Name of Plugging Contractor_	License No	
Street and Number	City State	
Tons of Clay used	Tons of Roughage usedType of roughage	
Plugging method used	Date Plugged19	·
Plugging approved by:	Cement Plugs were placed as follows:	

	No.	Depth	of Plug	No. of Sacks Used
入出 剂 门门出 (滑apin Supervisor		From	То	140. OF SACRE Used
FOR USE OF STATES ENGINEER ONLY				
STATE ENGINEER OFFICE				
Date Received :8 W EI JEU 7961				
V 1061 JEC 13 81 0.11			- <u></u>	
	L		<u></u>	p
	0			
File No. <u>L-5014</u> Use 24/24	<u> </u>		ocation No.	16.36.10.240

I

Section	6
---------	---

ą

2-5014

LOG OF WELL

-	in Feet	Thickness	Color	Type of Material Encountered
From	То	in Feet		
0	2	2		Soil
2	8	6		Clachie
8	12	<u> </u>		Bolder
12	28	16	· · ·	Clichie
28	70	42	** <u>-</u>	Sandy Clay
70	7.6.	6-		Water Sand
76	82	6		Sandy Clay
82	. 94.	12		Quick Sand
94	112	18		Sandy Clay
115	116	4		Sand
116	132	16	<u></u>	Sandy Clay
132	137	5	····	Sand
L <u>37</u>	164	27		Sandy Clay
164	168	4		Sand
168 ·	178	10	_	Sandy. Clay
178	190	12		Band
190	205	15		Clay
205	215	10	- <u></u> .	Clay & Gravel
215	216	- 1		Red_Bed
				L S Elev Depth to KTrc Elev of KTrc
			······································	Loc. No Hydro. SurveyFisld_Check

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

<u>Hicely Backen</u> Well Driller

SOURCE OF ALTITUDE GIVEN Interpolated from Topo. Statet______ Determined by Inst. Leveling______

16.36.10.240

Other

APPENDIX B

Vol. in barrels, assumes a barrel is 42 gal. 30000 0.037853 335.5 53584.96 2680.052 94.63264 2786.819 823.5 945.5 1372.5 19.228 1159 19994 30.5 671 CIIn Depth to mmol/cm^ Depth to bndy. In 3 bndy in ft. cm. 45 Calc. of hydrus ci inputs, C_hyd = a * .003489 mmol/cm^3 -31 Ŧ 3 88 27 0.379603 -0.183173 0.2219 0.19992 0.08234 -_ 0.405073 Conc. of the spill mg.(Cl)/liter(from field test) Calc. Chloride load In kg./m^2 Volume of spill in liters = Total Ci * 1000)/ Conc.) height of spill in inches = vol.of spill / area) volume of spill in ft.^3 Totfal CIIn kg. = CIload * area.) Area of spill in m^2 Area of spill in ft^2 573 236 525 1088 1161 636 cL In mg/kg

Depth	Lithologic Description	Measured Soll Chloride Concentratio n mg/kg	Bulk Density of Sample kg/m3	Thickness of Column (ft)	Calculated Chloride Mass in Column (kg/m2)
0 feet	0-1ft Top Soil				
10 feet		525	1858	0	3.23
20 feet	1-22 ft Caliche	1088	1858	Ξ	7.37
	416-22	1161	1858	ŝ	3.57
30 feet	che	636	1858	4	1.57
40 feet	31-45 ft Sand	573	1858	7	2.47
	200	236	1858	7	1.02
		Cat	Calculated Chloride Load	Load	19.22
R.T. Hicks Consultants 901 Rio Grande NW	RICE	RICE Operating Company		Soil B	Soil Bore #1
Albuquerque, NM	Calculation of Chloride Load, Abo Leak, Lea County, New Mexico	of Chloride Load, Ab County, New Mexico	o Leak, Lea	Apı	Apr-04

16.85587 treis, a

ABO leak

Unit G, Sec. 1, T17S, R36E

Calculation of Lovington Abo Spill Height, SB-1

Calc. Chloride load in kg./m^	2 (From calc., see other sheet)	19.228		
Area of spill in ft ² (Field	i measurements, ROC)	30818		
Area of spill in m ²		2866.84445	Barrel size	42
Totlal CI in mg.	(= CI load * area)	55123685085		
Conc. of the spill mg.(Cl)/cm/	3 (from field test)	247.04	theta_v assumed	.15
Volume of spill in liters	(= (Total CI * 1000)/ Conc.)	223136.6786		
volume of spill in ft.^3		7878.956122	Vol. in barrels.	1403.392
height of spill in inches	(= vol.of spill / area)	3.067930218	assumes a	
height of spill in cm.		7.783354922	barrel is 42 gal.	

6.00112835

Calculated Chloride load at SB-3

Soil Bore #.	-	Soil density	Kg./m^3		Depth in ft.	Cl. in each layer in kg.
3	647			1858	3	1.194808711
4	1023			1858	1	0.629721438
5	1018			1858	1	0.626643621
6	947			1858	1	0.582938614
8	733			1858	2	0.902416059
9	700			1858	1	0.430894435
10	736			1858	1	0.45305472
. 11	533			1858	1	0.328095334
12	432			1858	1	0.265923423
13	396			1858	1	0.243763137
14	301			1858	1	0.185284607
15	256			1858	1	0.15758425

Total CL. in kg./m² for SB-3

Calculation of Lovington Abo Spill Height, SB-3

Calc. Chloride load in kg./m ²	(From calc.)	6.00112835
Area of spill in ft ² (Field r	neasurements, ROC)	30818
Area of spill in m ²		2866.84445
Totlal CI in mg.	(= Ci load * area)	17204301503
Conc. of the spill mg.(Cl)/cr	n^3 (from field test)	247.04
Volume of spill in liters	(= Total Ci / Conc.*1000)	69641.7645
volume of spill in ft.^3		2459.050705
height of spill in inches	(= vol.of spill / area)	0.957512118
height of spill in cm.		2.429213224

theta_v assumed .15

Vol. in barrels, assumes a barrel is 42 gal.

The SB-3 spill data was used in the HYDRUS-1D runs to calibrate the model to the soil. For the long time run with the adjusted soil, the chloride load at SB-1 was installed as the initial condition in the soil profile. This adds the chloride load from the earlier spill to the long time simulation.

APPENDIX C

1.0 FACTORS INFLUENCING THE MIGRATION OF CHLORIDE FROM A RELEASE

Chloride ion migration is controlled by a combination of factors related to the vadose zone, the aquifer and the characteristics of a release. Eleven factors control chloride ion migration. Here we discuss how these factors affect the movement of the chloride ion through the vadose zone and in the aquifer.

1. Vadose Zone Texture

The proportion of sand, silt, and clay in a soil or sediment defines vadose zone texture. Texture affects the flow of water and the transport of dissolved chloride. In the vadose zone, fine-grained layers containing silt and clay, which generally have relatively high moisture content, can often transmit water more quickly than drier coarse-grained units containing sand and gravel. A vadose zone composed of layers of fine-grained and coarse-grained units will often transmit water more slowly than a homogeneous, fine-grained profile. In the unsaturated zone, open fractures do not transmit water.

2. Water Content in the Vadose Zone

The soil moisture content is the volumetric fraction of water in a soil or sediment. Climate and soil texture influence soil moisture contents. Wetter, more humid environments result in higher moisture contents. Fine grained and heterogeneous soils retain water better than coarse-grained, more homogeneous soils. Therefore, the more heterogeneous and finer grained the material, the greater the water content.

The water content of a soil or sediment affects its ability to transmit fluids because the hydraulic conductivity increases with increasing water content. The hydraulic conductivity of a sandy soil with water content of 20% can be 1,000 times greater than the same soil in an arid climate where water content is only 5%. Although chloride ion from a release may migrate much faster in a wet soil profile, the natural water in the soil also dilutes the chloride concentration and provides some mitigation of its effects on ground water quality.

NYDRUS 19 AVPENDIKA September 12, 2003

3. Dispersion Length of Chloride in the Vadose Zone

The dispersion length describes the amount of mixing a solute such as chloride will undergo in the vadose zone. Dispersion causes dilution of solute concentrations through mixing with ambient vadose water or ground water in a longitudinal direction parallel to water flow as well as in a transverse direction perpendicular to water flow. Systems with larger dispersion lengths produce greater mixing. Soil and aquifer heterogeneity tend to increase dispersion.

The dispersion length is very difficult to measure in the field. Researchers and field personnel rely upon professional judgement and published values (from laboratory or field experiments) to arrive at the dispersion length for a particular site. In general, researchers employ a dispersion length that is 7-10% of the total model length. When modeling a ten meter thick vadose zone, one may set the dispersion length at 10% of ten meters (100 cm).

4. Depth to Ground Water or Vadose Zone Thickness

The vadose zone is the region between the land surface and ground water table, and its thickness is defined by the depth to the ground water table. The vadose zone (also referred to as the unsaturated zone) includes the capillary fringe (pore space completely filled with water, under negative soil water pressure) and the overlying soil and sediment where the pore space is partially filled with water. Because ground water table depth rises and falls due to seasonal fluctuations in precipitation, ground water pumping withdrawals, and other factors, the thickness of the vadose zone is not constant. Like soil texture, the thickness of the vadose zone affects the time required for a release at the ground surface to reach the water table. The thicker the vadose zone, generally, the longer the travel time from ground surface to the water table. A relatively thick vadose zone also has more open pore space to temporarily store released fluid. A thick vadose zone can attenuate the effects of a chloride ion release more effectively than a thin vadose zone.

5. Climate

Precipitation and evaporation affect the water content of the vadose zone (before a release) and exert control over the migration of chloride after a release. In a humid climate regular and gener-

NYDRUS (B APPENDIXA Sectorics: 12, 2007 Pays 2

ous precipitation over the annual cycle can create relatively uniform infiltration patterns and a predictable soil water profile. In arid climates, where rainfall occurs in short-duration thunderstorms punctuated by long periods of drought, the infiltration is not uniform and occurs only immediately after large precipitation events. Arid climates exhibit vadose zones with relatively low water contents.

In humid climates with relatively uniform infiltration patterns, one could employ monthly climate data for simulation modeling. In arid climates, daily precipitation and evaporation data are necessary.

6. Chloride Concentration of Release

Chloride concentration in oil field brine water can be 100,000 ppm, or much lower if the producing formation contains fresh water due to infiltration of precipitation over geologic time. One of the easiest input parameters to measure in the oil and gas fields is the chloride concentration of the produced water. The chloride concentration in other types of released fluids can also be measured. The effect of chloride concentration in a released substance is straightforward: the higher the chloride concentration, the greater the environmental threat.

7. Release Volume and Chloride Mass

The volume of the release multiplied by the chloride concentration of the release yields the total mass of chloride released to the environment. The total mass released is a very important input parameter because it determines for a specific site the risk for ground water impairment. In the absence of reliable data on the volume of a release, the total mass of chloride can generally be estimated by a field investigation.

8. Height of Spill

Chloride ion releases occur in bermed areas when produced water storage tanks fail or within the natural terrain due to transmission line leaks and other transportation accidents. Releases may pond in a berm, pit, or natural depression, or can be dispersed over a large area. If the release is contained within a berm, the spill height is equal to or less than the height of the berm. In an open field, the spill height may vary. For a given site the amount of chloride ion infiltration into the soil is a function of the hydrau-

NYDRUS VEAPPENDERA September 12, 2003 lic head or ponding depth. As the ponding depth increases, so does the hydraulic head, (pressure, at the soil/chloride ion spill interface). Understanding the depth of ponding and the total amount of infiltration per unit area guides the characterization efforts. A large amount of infiltration may require deep drilling for site characterization while a small release may require sampling with a hand shovel.

9. Ground Water Flux

Ground water moves through an aquifer in response to its capacity for transmitting water, or, hydraulic conductivity (m/day), and the driving force caused by a sloping water table (hydraulic gradient). The hydraulic conductivity of aquifers can be measured in the field, and can be found in publications that often provide estimates of this parameter. The hydraulic gradient can be measured in the field by determining the depth to water at three wells of known surface elevation. Multiplication of the hydraulic conductivity by the hydraulic gradient yields the ground water flux, which is the volume of water flowing through a unit area of aquifer over a specified time period (expressed in $m^3/(m^2 * day) =$ m/day). The lower the ground water flux, the higher the probability that a release will cause unacceptable ground water quality impairment.

10. Aquifer Thickness

A thick aquifer contains more water than a thin aquifer. A given amount of chloride that enters from the vadose zone in a thick aquifer will result in a lower chloride concentration than the same amount entering a thin aquifer since aquifers that contain more water can be more effective at diluting contaminates. A thick aquifer that exhibits a large ground water flux may be able to absorb chloride from a large surface release without any severe impact to water quality.

11. Aquifer Ambient Chloride Concentration

Ambient chloride concentrations of ground water will influence whether or not a release causes unacceptable ground water quality impairment. If ground water has a low chloride concentration, even a considerable release may not cause chloride concentrations to exceed the US EPA Secondary Standard of 250 ppm or preclude the use of the water for agricultural needs. A high chloride concentration in ground water increases the risk that a chlo-

EVORUS ID AFTENDIXA Saglember 12, 2005

ride ion release will render the groundwater unfit for use. Simple field measurements from nearby well water or published data can supply an accurate estimate of the ambient chloride concentration in an aquifer.

1.1 HETEROGENEITY

Heterogeneity, most often caused by the layering of different sediment or soil types within a vadose zone, is more common in nature than not. Heterogeneity affects the distribution of chloride and other solutes through its strong influence on dispersion and hydraulic permeability.

One of the most common simplifying assumptions employed by regulators and guidance manuals is the assumption of homogeneity. However, a clay lens one meter thick found 3 meters below a release in a sandy soil will have a profound effect on the migration of chloride through the vadose zone. Heterogeneity can increase the attenuation of a release and help mitigate the effects on ground water quality.

1.2 RELEASE VOLUME, SPILL HEIGHT, AND CHLORIDE CONCENTRATION OF THE RELEASE

We have found that knowledge of the volume of a release is less important than understanding (1) the chloride load per unit area and (2) the geometry of the release with respect to ground water flow. Because release volume is seldom known with accuracy, we have combined chloride concentration in the release and spill height into a single parameter: chloride load/ unit area. We then used the release volume and spill height to calculate the size of a circular release. As described below, we used the diameter of the release as the length of a release parallel to ground water flow. If an oblong release geometry is oriented parallel to ground water flow, more chloride will enter the aquifer along a specific flow line, yeilding a higher chloride concentration in the down gradient well. If the long axis of the oval release is perpendicular to ground water flow, the impact to a well will be less. By re-arranging and combining these factors, we reduced the total number of factors from 11 to 10.

NYDRUS 18 APPERDIX A Soutember 12, 2003

2.0 MODELING APPROACH

The modeling of chloride ion migration from the soil surface through the vadose zone into a shallow aquifer towards a monitoring well would require a sophisticated three-dimensional model, which takes into account the full coupling between unsaturated flow in the vadose zone and saturated flow in the aquifer. Such an approach is outside the scope of this study since generally acceptable three-dimensional models capable of such simulations are still being developed. Moreover, the computer time necessary to conduct such simulations would have been prohibitive for regulators and oil field personnel.

We used an approach based upon the assumption that flow through the vadose zone is mainly downward. This assumption is reasonable for humid climates where precipitation exceeds evapotranspiration most of the year. It is also reasonable in arid climates when the ground water table is so deep that no upward flow due to capillary rise can be maintained. Under these conditions, it is possible to de-couple the modeling of water flow and chloride transport in the vadose zone from the modeling of water flow and chloride transport in the aquifer. We assume that flow in the vadose zone is one-dimensional downward and flow in the aguifer is one-dimensional horizontal. This assumption allows us to first simulate water flow and chloride transport through the vadose zone using the model HYDRUS-1D. The output from HYDRUS-1D is the downward water flow seeping out of the vadose zone and the downward chloride flux over time. These outputs are used as inputs into the model for the aquifer. In this study, we used two models for the aquifer: MODFLOW and a simple groundwater mixing model. MODFLOW is a standard code for modeling water flow and solute transport through aquifers (Domenico & Schwartz, 1998). Since it takes guite some time to setup a simulation in MODFLOW, we used a validated excel spreadsheet mixing model to generate results more cost effectively.

2.1 VADOSE ZONE MODEL: HYDRUS-1D

2.1.1 Model Overview

HYDRUS-1D (Simunek et. al, 1998) is used to simulate one-dimensional transport of water, heat, and solute movement in variably saturated porous media. The HYDRUS- 1D model was developed by the George E. Brown Jr., Salinity Laboratory, USDA, ARS, Riverside, California and is distributed by the International

NYOSAAS **ID APPENDIKA** Seminendes 12, 2003

Ground Water Modeling Center (IGWMC), Golden, Colorado. A Microsoft Windows[™] based Graphics User Interface (GUI) supports HYDRUS-1D.

The HYDRUS-1D model numerically solves the Richards' equation for water flow and Fickian-based advection-dispersion equations for heat and solute transport. The HYDRUS-1D flow equation includes a sink term (a term used to specify water leaving the system) to account for transpiration by plants. The solute transport equation considers advective, dispersive transport in the liquid phase, diffusion in the gaseous phase, nonlinear and non-equilibrium sorption, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and first-order degradation. The heat transport equation describes conduction as well as convection.

HYDRUS-1D can handle large numbers of soil layers, and uses the van Genuchten-Mualem, Brooks-Corey, Kosugi lognormal, and Durner dual porosity models to describe soil hydraulic properties. When values of soil hydraulic properties are unavailable, HYDRUS-1D can estimate them from a small catalog of values based on major textural classes (e.g., sand, sandy loam, etc.) or neural network based predictions.

The HYDRUS-1D code can simulate a wide range of boundary conditions. These are constant and time-variable pressure heads and fluxes, free drainage, seepage face, and an atmospheric boundary condition. An atmospheric boundary condition can be used to either generate run-off when the precipitation rate exceeds the infiltration capacity of the soil, or store excess water on the land surface allowing the water to infiltrate when precipitation stops. Time-variable conditions can be entered hourly, daily, or any general time interval.

We used HYDRUS-1D for the vadose zone simulations of this research project because we are interested in the vertical transport of water and chloride through the vadose zone. The outputs from HYDRUS-1D are the daily water flow and chloride flux from the vadose zone over the time period of the simulation expressed as cm day⁻¹ and mg cm⁻² day⁻¹ respectively. These outputs are used as inputs into the simple mixing model.

2.1.2 Applicability of HYDRUS-1D for Chloride ion Releases

Surface or near surface releases of chloride ion migrate through the vadose zone under variably saturated conditions as a function

istenus **ID** APPEReixik September 72, 2003 Pagel

R.T. HIGE CONSULTANTS, LTD.

of release volume, topography, and climatic conditions (i.e., precipitation and evapotranspiration). Although other vadose zone models exist that satisfy this criterion, we selected HYDRUS-1D over other models for the following three reasons:

- 1. It can simulate water and solute transport through heterogeneous porous media: horizons and sediments of varying geology;
- 2. It can incorporate daily climatic data; and
- 3. We are familiar with the model.

Dr. Jirka Šimùnek of our team developed the HYDRUS-1D model with his colleagues Dr. van Genuchten and Dr. Sejna; Dr. Jan Hendrickx, another team member, has used the HYDRUS-1D model for many years for evaluation of groundwater recharge and salt movement through the vadose zone.

2.2 SATURATED ZONE MODEL: MIXING MODEL AND MODFLOW

As stated, the objective of this part of this study is to evaluate the impact of choride releases on ground water quality as measured in a well adjacent to and down gradient of the release. The chloride flux leaving the vadose zone, the horizontal flux in the unconfined aquifer, the original chloride concentration in the ground water, and the thickness of the unconfined aquifer also affect the chloride concentration of the aquifer. Since the water flux seeping from the vadose zone and its chloride concentration vary with time, no simple analytical solutions are available for determination of the time-varying chloride concentration in the well.

Therefore, we implemented a simple spreadsheet ground water mixing model for the determination of the chloride concentration in the well. This mixing model uses the output of the HYDRUS-1D model as input. We have to define the aquifer volume, (the mixing compartment underneath the spill) as a first step in the ground water mixing modeling process. Assuming a circular spill area and a unidirectional horizontal flux in the aquifer, the highest impact will occur where the ground water has the longest exposure to the incoming chloride from the vadose zone. This takes place along the diameter of the circular spill. Therefore, the length of the mixing compartment is made equal to the diameter of the spill area, D. The depth of the mixing compartment is the thickness of the aquifer, H. The width, W, of the mixing compartment is taken equal to unity (one) to simplify the calculations.

NYERUS IE SPECKORA Sourcement 12, 2003

Now we will develop the relation between the water flux seeping out of the vadose q_v , the chloride concentration in the vadose zone flux, C_v , the horizontal flux in the aquifer underneath the release entering the compartment, q_{in} , the original chloride concentration in the aquifer, C_{in} , the horizontal flux in the aquifer underneath the release leaving the compartment, q_{out} , and the chloride concentration of the aquifer flux leaving the area underneath the chloride ion release, C_{out} . The latter concentration is the one that will be monitored in the down gradient well. We make the following reasonable assumptions to determine C_{out} :

1. Ground water flow is in steady state. The discharge entering into the mixing compartment from the vadose zone, q_v HDHW, plus the horizontal discharge in the aquifer entering the mixing compartment at its up-gradient side, q_{in} HHHW, are equal to the discharge leaving the mixing compartment, q_{out} HHHW.

2. Changes in thickness of the saturated aquifer are small compared to the total thickness of the aquifer H.

3. The thickness of the aquifer, H, and its porosity, n, are constant.

4. Mixing of the chloride entering the mixing compartment is complete and immediate. This assumption appears invalid from data published in the recent literature (LeBlanc et al., 1991; Zhang et al., 1998). We can use the results of the mixing model as an excellent indicator of the mean chloride concentration in a supply well penetrating the aquifer underlying the release, but not as an indicator of the chloride distribution in the aquifer.

The volume of the mixing compartment, *V*, will be constant under these assumptions, and is equal to:

$$V = D \times H \times W \times n \tag{2-1}$$

The water balance of the mixing compartment is equal to:

$$q_{in} \times H \times W + q_{v} \times D \times W = q_{out} \times H \times W$$
(2-2)

We can eliminate variable *W* from Eqs. [2-1] and [2-2] by putting W= 1 m.

RYGRUS 15 AFPENDER & Soutectiber 12, 2003

The chloride balance of this mixing compartment during any time period dt is:

$$\left[\left(q_{in} \times C_{in} \times H + q_{i} \times C_{i} \times D\right) - \left(q_{in} \times H + q_{i} \times D\right) \times C_{out}\right] dt = \left[D \times H \times n\right] dC$$

(2-3)

where dC is the change of chloride concentration occurring during time period dt.

Rearranging Eq. [2-3] we obtain the ordinary differential equation:

$$\frac{dC}{dt} = \frac{q_{in} \times C_{in} \times H + q_{v} \times C_{v} \times D - (q_{in} \times H \times q_{v} \times D) \times C_{out}}{H \times D \times n}$$

(2-4)

As soon as chloride from the release enters the ground water, the volume average concentration in the mixing compartment is C_{out} after complete mixing has occurred. Thus the chloride concentration of the water leaving the department, C_{out} , becomes:

$$C = C_{out}$$
 and $dC = dC_{out}$ (2-5)

Therefore, we can convert Eq. [2-4] in a forward finite difference expression:

$$\frac{C_{out}^{i+1} - C_{out}^{i}}{t^{i+1} - t^{i}} = \frac{q_{in}^{i} \times C_{in}^{i} \times H + q_{v}^{i} \times C_{v}^{i} \times D - (q_{in}^{i} \times H + q_{v}^{i} \times D) \times C_{out}^{i}}{H \times D \times n}$$
(2-6)

which yields an explicit expression for C_{out}^{i+i} ,

$$C_{out}^{i+1} = C_{out}^{i} + \frac{\left[q_{in}^{i} \times C_{in}^{i} \times H + q_{v}^{i} \times C_{v}^{i} \times D - \left(q_{in}^{i} \times H + q_{v}^{i} \times D\right) \times C_{out}^{i}\right] \times \left[t^{i+1} - t^{i}\right]}{H \times D \times n}$$
(2-7)

Using the output from HYDRUS-1D: the chloride concentration, C_v^i , of the water, q_v^i , entering the ground water table on day, t^i , we have put into a spreadsheet the mixing model of Eq.

HYDREE 18 APPEKDIKA September 12, 2003 Pays 10

[2-7]. By changing the values for spill diameter, D, ground water flux, q_{in} , original chloride concentration in the aquifer, C_{in} , and the aquifer thickness, H, we have evaluated the effect of these four factors of an unconfined aquifer.

Figure 2-1 Comparison between MODFLOW and the Mixing Model

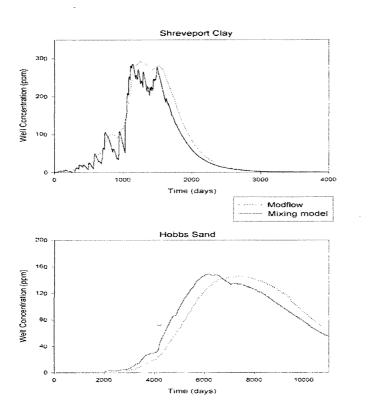


Figure 2-1 presents two comparisons between the chloride concentrations in the well located down gradient of the entry point of the release obtained with the mixing model Eq. [2-7] and those obtained with the model MODFLOW. The two comparisons deal with two complete different sets of environmental and release factors. In Shreveport the vadose zone texture is clay, the dispersion length 0.1 m, release chloride concentration 10,000 ppm, spill height 0.6 m, and aquifer flux 0.05 m/ day. In Hobbs, vadose zone texture is sand, dispersion length 2.0 m, release chloride concentration 100,000 ppm, spill height 0.004 m/day. The maximum chloride concentrations predicted by the two models is quite similar, although the time of arrival to the maximum concentration is different between the two models. We have conducted

NYDBEES IN APPPERINA Soptember 12, 2003 Pays 11

this part of the study using the less expensive mixing model Eq. [2-7]. (Our approach using HYDRUS-1D in combination with MODFLOW and Eq. [2-7] is valid for situations where the vadose zone seepage flux, q_v , is downward. A downward flux in the vadose zone is always found in the profiles with a deep ground water table depth. However, in the profiles with a ground water table depth between $\mathbf{0} - (+/-) \mathbf{10}$ m an upward flux from ground water table towards the soil surface does occur as a result of capillary rise. The magnitude of the upward capillary flux depends on soil type and climate.

A large amount of precipitation enables the downward vadose zone flux to dominate the chloride transport in both the sandy and clayey soil in the humid climate of Shreveport. Occasionally in the clayey soil an upward flux is encountered during short periods without rain.

An upward flux is sometimes found in the sanyd soil but is prevalent in the clay soil in the arid climate of Hobbs. For example, when the ground water table depth is 3 m, the average upward flux in a clay profile would be 0.04 cm/day or 13.5 cm/ year; this upward capillary flux causes the chloride and soil water from the release to stay in the vadose zone and protects the ground water from impairment. In hydrogeological situations where capillary rise is common, vadose zone water movement towards ground water is sporadic. However, a big storm can push chloride ion into a shallow aquifer very quickly.

There is a strong dynamic interaction between all eleven factors, outlined in section 1.1., when water leaving the vadose zone, $q_{..}$ changes direction frequently in response to precipitation events (downward movement) and evapotranspiration (upward movement). In dry climates with shallow ground water (less than 3 m), upward movement of ground water into the vadose zone thnce to the atmosphere is common. The only manner to correctly simulate the interaction between these factors is by employing a two- or three-dimensional model, such as HYDRUS-2D. However, since the main objective of this study is ground water impairment and the effect of capillary rise in diminishing the leaching of chloride to the ground water, and is not the chloride ion concentration in the root zone, we used the mixing model Eq. [2-7] for ground water table depths of 3 m. We used the equation only for downward fluxes and made it inactive when the vadose zone flux q_v , goes upward. It was

HYBRUS ID AMPLEDINA September 72, 2003

initiated again with the next occurrence of a downward flux, q_v , taking the C_{out} value of the previous occurrence of a downward q_v . In this manner a conservative estimate is obtained of the chloride concentration in the monitoring well assuming perfect mixing for shallow groundwater tables.

ETRABS TO APPENDER Segtember 12, 2006 Paya 13

3.0 SENSITIVITY ANALYSIS OF FACTORS DETERMINING CHLORIDE ION FATE

3.1 PURPOSE

After a brine release, the concentration of chloride in the vadose zone decreases with time and distance traveled through the vadose zone towards ground water because of dilution with ambient soil water. Further dilution occurs in the aquifer after the chloride reaches the ground water. The maximum chloride concentration occurring at a well down gradient from the release will depend on all the factors that affect chloride transport through the vadose zone and shallow aquifer. Understanding these factors is critical for the design and implementation of a site characterization program after a chloride ion release. The degree of ground water quality impairment determines to a large extent the need for a ground water remedy. The purpose of this sensitivity study is to evaluate which of the eleven factors have the greatest effect on prediction of maximum chloride concentration in the well down gradient of the release.

3.2 MODELING SPECIFICS

We needed to optimize our simulation efforts in order to obtain the maximum amount of information from the modeling. Statistics of experimental designs (e.g. Law & Kelton, 2000; Snedecor & Cochran, 1967; Steel & Torrie, 1980) allow us to decide which combination of factors to simulate so that the desired information can be obtained with the lowest possible number of simulations.

The factors used in experimental design statistics are the input variables to our simulation models. The outputs of our simulations are the responses. The responses that we consider in this study are the maximum chloride concentration, C_{max} , occurring in the well and the time at which the maximum chloride concentration reaches the well, T_{max} .

We have opted for a 2^k *factorial design* that requires us to choose two levels of each factor in this study. This design results in a

HYDRES 10 APPENDIXA September 12, 2003 total of 2^k simulation runs, where k is the number of factors. We chose the two values for each factor so that they represent two opposite conditions such as an arid and a humid climate. The factors can be qualitative like climate or quantitative like depth to ground water. The two input values should not be too extreme or unrealistic. Additionally, the two values should not be too similar or the simulations may not adequately evaluate important aspects of the transport process under consideration. The 11 factors of this sensitivity analysis (see Table 3-1) resulted in 2^{11} or 2,048 different chloride ion release scenarios.

Table 3-1:Vadose zone, aquifer, andbrine release factors determiningmaximum chloride concentrationarriving at a monitoring well downgradient.

3.2.1 VADOSE ZONE FACTORS

Climate

We selected the two contrasting climates of Lea County, New Mexico, and Shreveport, Louisiana for the sensitivity analysis. Lea County is located in the arid southwest, and Shreveport is in the humid south. Lea County's annual precipitation and potential evapotranspiration is 14 inches and 59 inches, respectively, while annual precipitation and potential evapotranspiration for Shreveport is 46

Factor	Factor	Factor	Maximum Chloride Concentration		
#	Description	Abbreviation	Decrease	Increase	
1	Climate	clim	Arid	Humid	
2	Soil Texture	soil	Clay	Sand	
3	Initial Water Content	wein	Wet	Dry	
4	Chloride Dispersion Length	disp	2.0 m	0.1 m	
5	Ground Water Depth	gwl	30 m	3 m	
6	Ground Water Flux	qaq	0.05 m/day	0.001 m/day	
7	Ambient Aquifer Cl Concentration	cin	0 ppm	100 ppm	
8	Aquifer Thickness	thick	30 m	3 m	
9	Release Volume	vol	100 barrels	10,000 barrels	
10	Release Height	depth	0.025 m	.6m	
11	Release Chloride Concentration	cleon	10,000 ppm	100,000 ppm	
10*11	Release Chloride Mass	clmass	250 g/m^2	$60,000 \text{ g/m}^2$	

inches and 67 inches, respectively. Lea County and Shreveport also differ in how precipitation occurs. In Lea County, the majority of precipitation occurs during the "monsoon" of July-August and much of the remainder of the year resembles drought conditions. Shreveport's precipitation falls throughout the year.

Vadose Zone Texture

We selected sand and clay as contrasting soil textures for the sensitivity analysis. Sand and clay differ not only in grain size but also in their ability to retain and transmit water. Sand has a relatively high-saturated hydraulic conductivity and low water retention; whereas clay has a relatively low saturated hydraulic conductivity and high water retention.

NYDAUS 15 APPENDIKA Sevtember 12, 2003

Water Content in Vadose Zone

We hypothesized that higher initial water content in the vadose zone would result in slower chloride ion movement because the initial moisture must be displaced before the chloride ion can move downward through the vadose zone. We used HYDRUS-1D to predict initial water contents for both vadose zone textures in both Lea County and Shreveport. We used these predictions as initial conditions in the sensitivity analysis.

We ran simulations for one hundred years or until we achieved dynamic equilibrium between soil water content and climatic conditions for both the wet and dry initial conditions. To create *wet* conditions, we ran simulations without any vegetation (low evapotranspiration); and ran simulations with vegetation (high evapotranspiration) in *dry* conditions. We used evergreen plants capable of transpiring soil water all year round with a 3 meter (~10 ft) deep root zone. Transpiration of soil water created a drier soil profile than simulations without vegetation.

Dispersion Length of Chloride in Vadose Zone

For the sensitivity analysis, we selected minimum and maximum chloride dispersion lengths of 0.10 m (0.33 ft) and 2.0 m (6.6 ft), respectively. The larger dispersion length will produce greater mixing of chloride ion with ambient soil water in the vadose zone, and it is expected to result in a lower maximum chloride concentration in the well. Conversely, the smaller dispersion length will result in minimal mixing, e.g. minimal attenuation of the release, and larger maximum chloride concentrations. We based our selection of dispersion lengths on values reported in the literature (Gelhar, 1993).

Depth to Ground Water

Deep ground water allows for more storage of chloride ion and more attenuation of the maximum chloride concentration during its downward migration. We selected ground water depths of 3.0 m (9.8 ft) and 30 m (98 ft) for the sensitivity analysis. These depths represent reasonable values for a shallow and deep aquifer, respectively.

3.2.2 AQUIFER FACTORS

Ground Water Flux

Ground water flux represents the rate of ground water movement and effects the ability of an aquifer to dilute chloride and other constituents of a chloride ion release. A large ground water flux produces greater dilution.

NYERUS 18 APPENDIKA Sectember 12, 2003 We based our selection of minimum and maximum groundwater fluxes on literature values for the Ogalalla aquifer, Southern Lea County, New Mexico (Native and Smith, 1987). We used 0.10 cm/day (0.0033 ft/day) and 5.0 cm/day (0.16 ft/day) as minimum and maximum values, respectively. The maximum flux is lower than some of the ground water fluxes reported in the literature (e.g. 40 cm/day by Zhang et al., 1998) and, thus, is a conservative estimate.

Aquifer Ambient Chloride Concentration

We selected ambient chloride concentrations for ground water of o ppm and 100 ppm. One hundred parts per million or less is typical for ground water of the Ogallala aquifer (Nicholson and Clebsch, 1961) and the Carrizo-Wilcox aquifer in Caddo Parish, Louisiana (Rapp, 1992). Although 10-ppm chloride is a more characteristic minimum value for the Ogallala and Carrizo-Wilcox aquifers, we selected 0.0 ppm to create a greater difference between minimum and maximum chloride concentrations of ground water.

Aquifer Thickness

The thicker the aquifer, the more opportunity for mixing (dilution), and the lower the predicted chloride concentration will be in the aquifer. We selected two aquifer thicknesses, 3.0 m (9.8 ft) and 30 m (98 ft). Three meters are approximately equal to the length of most well screens used to monitor the chloride changes. Therefore, an aquifer thickness of 3 meters provides a good estimate of expected chloride concentrations at a monitor well in a thicker aquifer under conditions of limited vertical mixing. Many unconfined, alluvial aquifers are greater than 30 m thick, but we have selected 30 m as the maximum value. A 30 m thick saturated sandy formation with a hydraulic conductivity of at least 0.0005 m/s (140 ft/day) is classified as a good aquifer (Freeze and Cherry, 1979).

3.2.3 CHLORIDE ION RELEASE FACTORS

Release Volume

We used minimum and maximum release volumes of 100 bbl (16 m³) and 10,000 bbl (1,600 m³), respectively. These release volumes are representative of large and very large releases based on the experience of oil and gas industry personnel.

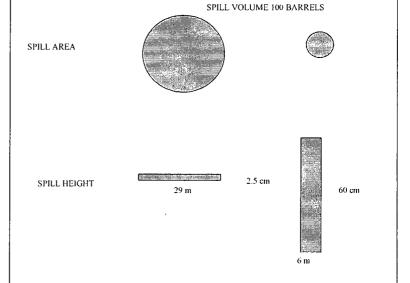
NYBRUS 18 APPENDINA Segtember 12, 2003 In the one-dimensional HYDRUS-1D model we used only spill height as an input variable. The spill volume was introduced into the mixing model using the diameter of the spill. For example, a

Figure 3-1. Schematic of Two Possible Brine Release Characteristics After a Release of 100 Barrels.

100 barrel release resulting in a chloride ion release of 0.025 m height with circular shape will have a diameter of 29 m while a release of 0.6m height will have a diameter of only 6m (Figure 3-1). Table 3-2 summarizes the four chloride ion release areas evaluated with the mixing model. These four release areas are combinations of the two spill heights (0.025 and 0.6 m) and two release volumes (large: 100 barrels and very large: 10,000 barrels).

We represented all spill areas as circles, and then, used the mixing model to evaluate mixing along the diameter of each circular spill (see Table 3-2). The diameter of each circle represents

the longest path groundwater must flow beneath each release area, and thus provides a conservative estimate of groundwater quality impairment at a well immediately down gradient of a release.


Chloride Concentration of Release

We selected chloride concentrations of 10,000 and 100,000 ppm, as the minimum and maximum concentrations for the chloride ion release input parameter in consultation with experienced professionals. These concentrations are representative of most chloride ion releases.

The mixing model does not consider density differences between the density of the chloride ion arriving at the aquifer and the density of the water in the aquifer. These differences (even if small) may cause chloride ion to sink in an aquifer (LeBlanc et al., 1991; Zhang et al., 1998) and would influence the distribution of chloride ion in the aquifer. Since our approach assumes complete mixing in the aquifer, the chloride distribution is not taken into account. Water extracted from a well by bailing or pumping typically would represent a well mixed sample. The

NYDRUS 18 APPENDIXA September 12, 2003 Table 3-2.Characteristics ofbrine releases in this study.

Volume	Depth		Ar	Diameter	
Barrels	m ³	m	m^2	acres	m
100	16	0.025	640	0.16	29
		0.6	26.67	0.007	6
10000	1600	0.025	64000	16	285
		0.6	2666.67	0.7	58

results of the mixing model help to identify environmental and release characteristics that cause groundwater quality impairment and provide a measure of the overall impact of a chloride ion release on an aquifer.

Height of Spill

We selected 0.025 m (1 inch) and 0.6 m (2 ft) as the minimum and maximum spill heights, respectively, of brine water on the land surface, based on observations of oil and gas industry personnel. A 0.6 m (two-foot) height represents a discharge of 1600 m³ (10,000-bbls) of chloride ion to a 2670 m² (0.7 acre) bermed area or large depression. Releases to flat or gently sloped areas are likely to result in initial heights of 0.025m (an inch) or less.

Chloride Mass

Table 3-1 presents a final factor, "Release Chloride Mass". This factor, which is the product of "Release Height" and "Release Chloride Concentration", is the mass of chloride released to the ground surface per unit area. As Table 3-1 shows, a chloride ion release (see Release Chloride Concentration) of 100,000 ppm chloride that ponds to a depth of 0.6 meters (see Release Height) causes a subsurface chloride input of 60,000 grams per square meter (the Release Chloride Mass).

3.3 SIMULATION RESPONSES

The simulations with the HYDRUS-1D code and the mixing model yield large amounts of information about the flow of water and the transport of chloride through the vadose zone and the underlying aquifer. As mentioned above, we have selected two critical response variables for the sensitivity analysis: (i) the maximum chloride concentration in a down gradient monitoring well, C_{max} , and (ii) the time of arrival of the maximum chloride concentration at the monitoring well, T_{max} .

Maximum Chloride Concentration

The maximum chloride concentration defines the center of mass of a release as it migrates through the vadose zone into the aquifer and reaches a well. For this reason, we used the maximum chloride concentration, C_{max} , to identify those factors listed in Table 3-1 that have a significant influence on chloride migration through the vadose zone and the aquifer as the release moves toward the well. Evaluation of C_{max} can also identify the environmental con-

EXPORUS 1D APPENDIX A Sociamber 12, 2063

ditions that result in significant attenuation of chloride ion. For example, for those simulations where C_{max} is much less than the original chloride concentration of released chloride ion, environmental factors cause significant chloride ion attenuation. Additionally, an evaluation of C_{max} can be used to identify release scenarios that pose little or no threat to groundwater quality. For instance, simulations that predict a C_{max} less than the EPA Secondary Water Quality Standard of 250-ppm chloride will not cause water quality impairment. On the other hand, when predictions of C_{max} are greater than 250-ppm, ground water quality may be threatened by the release. Thus, the maximum chloride concentration in the well informs us about the risk for ground water impairment and its severity.

Time of Arrival of Maximum Concentration at the Well

Time of arrival of maximum concentration, T_{max} , is the time required for the chloride center of mass to reach the well. It dictates the urgency to implement a field investigation and possible remedy. A relatively rapid response is required if simulations suggest a chloride concentration of 250 ppm or more at a well within a few years. However, when input factors combine to predict that decades or centuries are required for a well to show ground water impairment, an immediate ground water investigation may be of little value.

3.4 STATISTICAL ANALYSIS OF THE RESPONSES AT MONITORING WELL

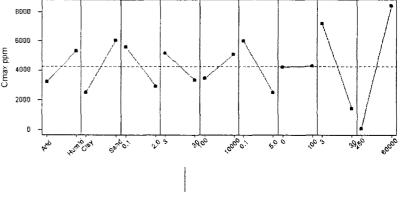
Table 3-3. Main effects of the vadosezone, aquifer, and brinerelease factorson the maximum chloride concentration

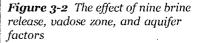
Following the statistical approach by Law & Kelton (2000) for simulation modeling and analysis, we determined the impact of each factor presented in Table 3-1 on the migration of chloride ion through the vadose zone and aquifer. We did this by inspecting the effect of each factor on the maximum chloride concentration in a down gradient well, C_{max} , and the arrival time of this concentration, T_{max} , at the well.

Factor	Effect on Cmax		
· · · · · · · · · · · · · · · · · · ·	ppm	Relative Effect	
Height of Brine Release	4,340	1	
Release Chloride Concentration	4,017	0.93	
Thickness of Aquifer	3,237	0.75	
Soil	2,070	0.48	
Aquifer Flux	1,994	0.46	
Dispersion Length	1,545	0.36	
Climate	1,184	0.27	
Ground Water Depth	1,081	0.25	
Volume of Brine Release	932	0.21	
Ambient Cl Concentration	76	0.02	
Initial Water Content of Soil	25	0.01	

NYGRUS 18 APPRISINA September 12, 2003

3.4.1 MAXIMUM CHLORIDE CONCENTRATION


Table 3-3 presents the sensitivity of C_{max} to each of the 11 factors considered in this study (Table 3-1). The factors are sorted according to their impact on C_{max} in Table 3-3. The most important factors are the Height of Chloride ion Release and the Release Chloride Concentration. Changing the Height of Chloride ion Release from 0.025 to 0.6 m while holding all other factors fixed results in an average increase of maximum chloride concentration of 4,340 ppm. Changing the Release Chloride Concentration from 10,000 to 100,000 ppm results in an average increase of 4,017 ppm in maximum chloride concentration in the well. The absolute concentration values depend on the set up of the simulation experiment. We have added the relative effects of each factor in Table 3-3. The factors Height of Chloride ion Release and Release Chloride Concentration have relative effects of 1.00 and 0.93 respectively, much higher than of any other factor. The predicted difference in C_{max} due to the difference in Release Chloride Concentration is 93% of predicted difference for the Height of Chloride ion Release. The predicted difference in C_{max} for the two climate's indices, however, was only 27% of predicted difference for the Height of Chloride ion Release. As Table 3-3 shows, Initial Water Content of Soil exerts the smallest influence on the prediction of C_{max} .


The two most important factors, Height of Chloride ion Release and the Release Chloride Concentration, determine the Mass of Chloride entering the soil surface during a release. If the Height of Chloride ion Release or the Release Chloride Concentration increases, the Mass of Chloride increases and consequently, the maximum chloride concentration increases. Because the Mass of Chloride appears to be the key factor in determining the maximum chloride concentration arriving at a down gradient moni-

toring well, we repeated the sensitivity analysis using Mass of Chloride instead of Height of Chloride ion Release and Release Chloride Concentration. We eliminated the Initial Water Content of Soil in the second sensitivity analysis since this factor has very little impact on C_{max} .

The results of the second analysis are presented in Table 3-4 and in Figure 3-2. The mean chloride concentration of all 256 scenarios with

NYDAUS 10 APPENdixA September 72, 2003

Mass of Chloride 250 g/m² is 89 ppm and that of all 256 scenarios with Mass of Chloride 60,000 g/m² is 8,446 ppm (See Figure 3-2). The difference between these two values is 8,357 ppm, which is the predicted sensitivity of the maximum chloride concentration for an increase of factors fixed.

Table 3-4. Main effects and important interactions of the vadose zone, aquifer, and brine release factors on the maximum chloride concentration arriving at the monitoring well C_{max} and the time of arrival of the maximum concentration T_{max} .

The Thickness of Aquifer also has a large impact with a sensitivity of 5,632 ppm for a change from 3 to 30 m. All other factors are less important. For comparison, we have determined the relative impacts of each factor by dividing each affect by the influence of the Mass of Chloride (Table 3-4). The most important factors Mass of Chloride and Thickness of

Factor	Eff	Effect on C _{max}		Effect on T _{max}	
	ppm	Relative Effect	Years	Relative Effect	
Main Effects					
Chloride Mass	8357	1	52	0.46	
Aquifer Thickness	5632	0.67	5	0.04	
Soil	3560	0.43	106	0.93	
Aquifer Flux	3525	0.42	7	.0.06	
Dispersion Length	2699	0.32	11	0.06	
Climate	2099	0.25	114	1	
Ground Water Depth	1826	0.22	104	0.91	
Volume of Brine Release	1631	0.2	0	0	
Ambient Cl Concentration	82	0.01	44	0.39	
Interaction Effects					
Chloride Mass x Aquifer Thickness	5573	0.67		T	
Chloride Mass x Soil	3519	0.42			
Chloride Mass x Aquifer Flux	3509	0.42			
Aquifer Thickness x Aquifer Flux	2529	0.3			
Aquifer Thickness x Soil	2509	0.3			
Soil x Aquifer Flux	1223	0.15			
Soil x Climate			98	0.86	
Climate x Depth Ground Water			95	0.83	
Soil x Depth Ground Water			90	0.79	

Aquifer with relative affects of 1.00 and 0.67, respectively. The factors Soil, Aquifer Flux, and Dispersion Length have relative affects of 0.43, 0.42, and 0.32, respectively. The factors Climate, Ground Water Depth, and Volume of Chloride ion Release have much less impact with relative affects of 0.25, 0.22, and 0.20. Ambient Chloride Concentration (Relative effect 0.01) has virtually no effect.

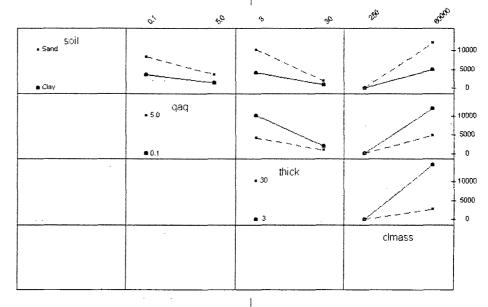
We know that the predicted maximum and minimum values of C_{max} for a factor of interest can depend on the values of other factors. Where this is the case, the two factors are said to interact. An Analysis of Variance revealed that six interactions affect the **maximum** chloride concentration. These are the interactions be-

- Chloride Mass and Thickness of Aquifer,
- Chloride Mass and Vadose zone texture,
- Chloride Mass and Aquifer Flux,

NYORUS 11: APPENDEXA Septembs: 12, 2003

- Thickness of Aquifer and Aquifer Flux,
- · Thickness of Aquifer and Vadose zone texture, and
- Vadose Zone Texture and Aquifer Flux.

Table 3-4 shows the relative importance of each interaction and the interactions are presented in Figure 3-3. As shown in Figure 3-3, if Mass of Chloride increases from 250 to $60,000 \text{ g/m}^2$ above an aquifer with a thickness of 3 m, the maximum chloride concentration at the well increases from 118 to 14,501 ppm. The same increase of Mass of Chloride occurring above an aquifer with a thickness of 30 m causes only a modest chloride increase


from 60 to 2,757 ppm. In a sandy vadose zone, C_{max} increases from 110 to 11,985 ppm in response to the different chloride loads to the ground surface. However, different chloride ion releases to a clay result in smaller differences, 68 to 4,906 ppm, but fall within the range of responses in a sandy zone.

The implication of the results of our sensitivity analysis is that determination of Mass of Chloride per unit surface area and

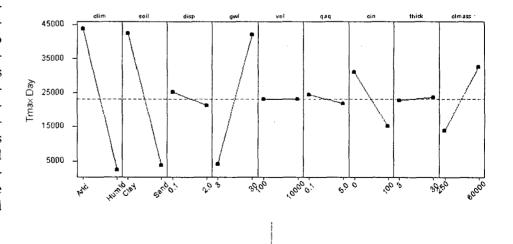
Thickness of Aquifer is critical for the evaluation of ground water impairment. Knowledge of Vadose Zone Texture Conditions, Aquifer Flux, Dispersion length, Climate, Ground Water Depth, and Volume of Chloride ion Release can provide useful additional information, while ambient Chloride Concentration and Initial Water Content of Soil provide little relevant information.

The results of the sensitivity analysis cannot be used to directly evaluate field sites because they are based on the average change of maximum chloride concentration. For each factor, the maximum chloride concentration exhibits a wide range of values as is shown in Table 3-5.

Figure 3-3. Interaction effects between the factors soil, flux in aquifer, thickness of aquifer, and chloride load on the maximum chloride concentration in a downgradient monitoring well.

NYDROS ID APPENDIXA Segitember 12, 2003

Main Effect	Level	Mean	Minimum	Maximum
Mass of Chloride	250 g/m2 89		0	303
	60,000 g/m2	8,446	0	46,633_
Thickness of Aquifer	30 m	1,429	0	15,354
	3 m	7,195	0	46,633
Soil	Clay	2,487	0	37,233
	Sand	6,047	2	46,633
Aquifer Flux	0.05 m/day	2,505	0	29,779
	0.001 m/day	6,030	0	46,633
Climate	Arid	3,218	0	44,372
	Humid	5,317	0	46,633
Ground Water Depth	30 m	3,354	0	40,758
	3 m	5,181	0	46,633
Volume of Brine Release	100 barrels	3,452	0	41,603
	10,000 barrels	5,083	0	46,633
Dispersion Length	2.0 m	2,918	0.	25,653
	0.1 m	5,617	0	46,633
Ambient Cl Concentration	o ppm	4,226	0	46,593
	100 ppm	4,308	0	46,633

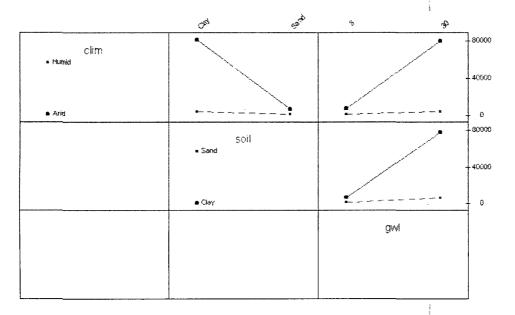

Table 3-5. Statistics of maximum chloride concentrations (ppm) determinedin the sensitivity analysis.

3.4.2 ARRIVAL TIME OF MAXIMUM CHLORIDE CONCENTRATION

We present the effects of the factors on the arrival time of the maximum chloride concentration at the well in Table 3-4. The arrival time strongly depends on climate (relative effect of 1.0 in Table 3-4), vadose zone texture, and depth of ground water. In the arid climate of Lea County, New Mexico, a chloride ion release will require an additional 114 years (40,515 days) for the maximum concentration to arrive at a well than a similar release in the humid climate of Shreveport, Louisiana. The vadose

Figure 3-4 The effect of nine brine release, vadose zone, and aquifer factors on the time when the maximum chloride concentration arrives in a downgradient monitoring well.

zone texture and ground water table effects are of the same order of magnitude (106 and 104 years respectively). Other factors are less important. Figure 3-4 graphically displays this same information. Our Analysis of Variance identified three important interactions that effect the length of time required


NYERUS 10 APPENDIXA September 12, 2003

for C_{max} to reach a well:

- · Vadose Zone Texture and Climate,
- · Climate and Depth to Ground Water, and
- Vadose Zone Texture and Depth to Ground Water.

The lower right section of Figure 3-5 shows that the depth to ground water has little effect on the arrival time of C_{max} if the texture of the vadose zone is sand. In a clay profile, however, the time of arrival is very different: nearly 80,000 days (219 years). This same relationship is expressed with the interaction between Climate and Depth to Ground Water (plotted in the upper right portion of Figure 3-5). In a humid climate, the texture of the vadose zone has little impact on the arrival time of C_{max} . However, in the arid Lea County, a release to a clay profile will require over 200 years longer for C_{max} to reach a well than the same release to a sandy vadose zone would.

Figure 3-5. Interaction effects between the factors climate, soil, and ground water depth on the time when the maximum chloride concentration arrives in a down gradient monitoring well.

HYDRES ID APPEADIAL September 12, 2003 20ye 25

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

August 31, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Abo 1G Leak Site: Section 1, 17S 36E Unit G

Dear Wayne:

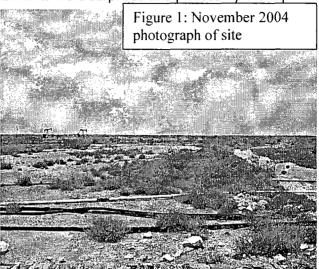
Due to the close proximity of the City of Lovington water supply wells to this release, we prepared the Corrective Action Plan of June 7, 2004 using highly "conservative" input values for the HYDRUS-1D model simulation. Specifically, we employed:

- the highest observed chloride values observed in boreholes
- a 10-foot aquifer thickness rather than the full thickness penetrated by the nearby supply wells,
- the absence of a vegetative cover that would reduce infiltration.

The predicted chloride concentration in an imaginary ground water monitoring well located immediately down gradient from the release site was less than 250 mg/L. We also predicted the potential impact to the closest Lovington water supply wells if the simulated chloride flux from this release actually intercepted ground water. Our predictions suggest the impact to the City of Lovington wells is smaller than the measurement error of most laboratory instruments.

We expected these results. Our modeling study for the American Petroleum Institute examined over 2000 brine release scenarios, many of which were similar to the Abo 1G release. We found that in an arid climate, such as Lovington, these types of releases rarely impair ground water quality. We also knew that many "dig and haul" responses to produced water releases actually cause more environmental damage than they cure. Therefore, we counseled Rice Operating Company (ROC) to examine the science first and then implement a remedy. This remains good advice for brine releases.

August 2004 Field Event


On August 16, 2004, ROC staff obtained shallow soil samples from the release site. Plate 1 shows the location of these samples and the field chloride values. ROC designed this field program to identify areas of residual chloride in shallow soil.

We can see from Figure 1 that recent rainfall has driven some of the chloride mass below the root zone, permitting vegetation. As our work with API and the site-specific modeling demonstrates, the relatively small mass of chloride below the root zone represents no threat to fresh water, human health or the environment. This evidence of natural restoration is good news. Vegetation over this spill site will reduce infiltration of precipitation and reduce the chloride flux to ground water. August 31, 2004 Page 2

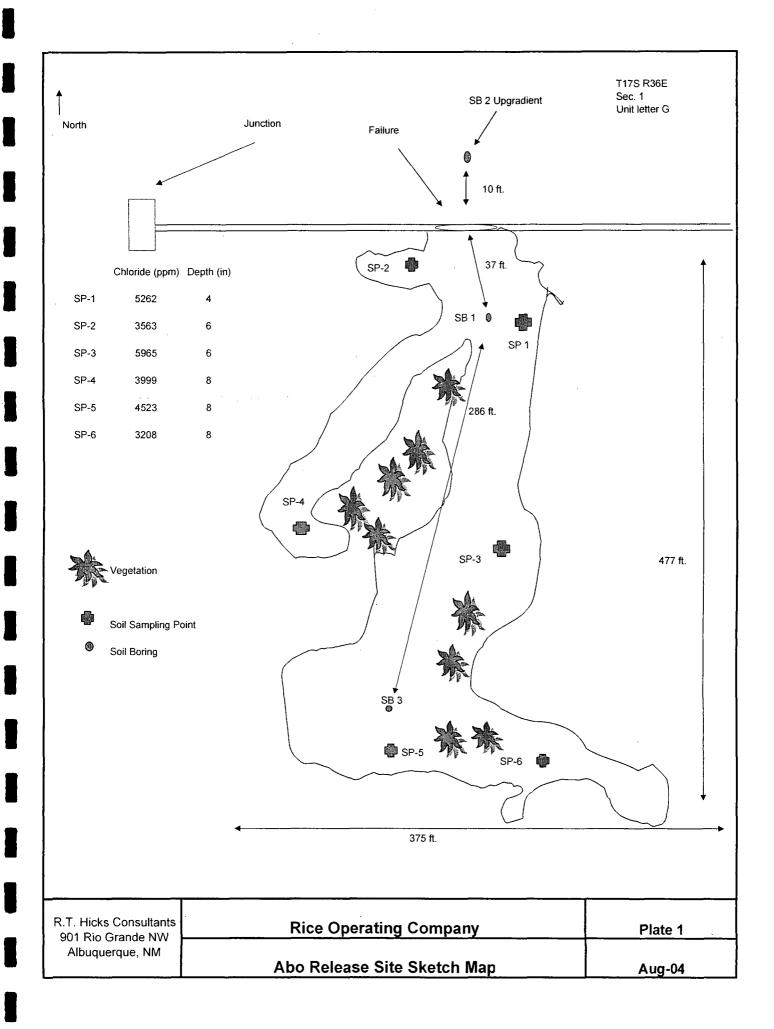
Remedy Amendment

Rice Operating Company and Hicks Consultants were surprised and pleased by the rapid

natural restoration of the ground surface at this site. However, despite the recent rains, some areas remain barren due to high chloride in soil (See also Plate 1). ROC proposes to accelerate the surface restoration process and establish a vegetative cap over the release. As stated above, a vegetative cove will significantly reduce the infiltration of precipitation and thereby reduce the flux of chloride to ground water, creating a "belt and suspenders" response action.

ROC proposes the following actions:

- 1. Remove as much of sterile topsoil from the site as possible without tearing the underlying caliche.
- 2. Remove any weeds with seed and till the areas now supporting growth.
- 3. Import sufficient topsoil to cover the spill site and raise the elevation of the site to prevent any ponding of stormwater.
- 4. Seed the site with an appropriate mix.
- 5. Monitor the progress of vegetation growth at the site on a monthly basis and add fresh water to assist the growth if necessary.
- 6. Provide NMOCD with a brief letter report upon completion of this proposed action.
- 7. Provide NMOCD with photographic evidence of re-vegetation in 12 months.


We look forward to NMOCD approval of this supplement to our Corrective Action Plan. Please contact Kristin Pope or me if you have any questions regarding this proposed action.

Sincerely, R.T. Hicks Consultants, Ltd.

and all T.Hz

Randall Hicks Principal

Copy: Kristin Pope, Rice Operating Company

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

November 1, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Abo 1G Leak Site: Section 1, 17S 36E Unit G Response to NMOCD email and Notification of Field Activities

Dear Wayne:

Rice Operating Company (ROC) intends to move forward with the construction of a ground water monitoring well as we discussed at our meeting last week. Please accept this letter as our notification of field activities, which we will commence on November 4 or 5. You or individuals in the Hobbs District Office may contact Dave Hamilton on his cell phone (505-977-4671) on Wednesday November 3 to determine the start date for this monitoring well.

We intend to perform the following actions to respond to your recent comments on the Corrective Action Plan.

- 1. We will construct a 2-inch monitoring well with 5 feet of screen above the observed water table and 15 feet of screen within the water table. Because the water levels in the Ogallala Aquifer are generally declining, we are placing more screen in the saturated zone than typically requested by NMOCD. We will locate this well adjacent to SB-1 (see Plate 1 of our August 31, 2004 letter, attached)
- 2. During the air-rotary boring of this well, we will collect 2.5-foot split spoon samples at five-foot intervals from 5 feet bgs to 50 feet bgs. From 50 feet bgs to the water table (about 77 feet).
- 3. We will examine the split spoon samples and cuttings and create a lithologic profile of the vadose zone.
- 4. ROC staff will evaluate the split spoon samples in the field for chloride concentration using the silver nitrate titration method.
- 5. We will submit two sample splits to a laboratory for analysis of chloride in soil as quality assurance for the field sampling protocol.
- 6. At least two weeks after completion of the well, ROC will collect a water sample for analysis of chloride and TDS.
- 7. After completion of the boring/well, ROC will remove the high-chloride, thin soil zone remaining on the caliche sub-strata. ROC will specifically instruct the contractor to avoid removal of the caliche substrata and soil

November 1, 2004 Page 2

that shows evidence of re-vegetation. ROC will then import top soil, grade the site to avoid ponding after precipitation events, and seed the area.

8. We will submit a letter report with the results of the vadose zone sampling, the initial water sampling results, documentation of the soil importation/exportation program, and a short discussion that compares the vadose zone chloride results to the previous results from SB-1.

If we find that this proposed vadose zone sampling shows that the migration of chloride is similar to that predicted by the HYDRUS-1D model presented in our June 7, 2004 report, we will conclude that this previously-submitted simulation and prediction is field-verified. We will then recommend closure of the regulatory file for this spill site. We remind NMOCD that the input parameters employed in our June 7, 2004 report were highly conservative. For example, the model in our report does not consider re-vegetation of the site. Establishing a vegetative cap over the site will greatly reduce infiltration and the resultant chloride flux to ground water will be much less than the input value used in our prediction.

Regardless of our conclusion regarding the accuracy of the previously-submitted HYDRUS-1D simulation, ROC will monitor chloride concentration in ground water at the site on a quarterly basis for two years. If chloride concentrations remain consistent with background values, we will plug and abandon this well. If chloride concentrations in ground water are greater than 250 mg/L during the proposed 2-year monitoring program, ROC will discuss the need for additional action with the NMOCD.

We trust this field program will meet with your approval and that any comments by the City of Lovington will be forthcoming prior to the proposed field activities.

Sincerely, R.T. Hicks Consultants, Ltd.

and all T. Hz

Randall Hicks Principal

Copy: Kristin Farris Pope

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

July 13, 2005

Roger Anderson New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: ABO 1G Release Site Unit Letter G, Sec. 1, T17S, R36E Lea County, NM OCD Case #1R0415

Dear Mr. Anderson:

This letter responds to the technical issues brought forth in the NMOCD letter to Rice Operating Company (ROC) dated July 8, 2005. Hicks Consultants collaborated with ROC staff to develop this response. The NMOCD technical comments or requirements are shown in italics and our response is presented below each comment or requirement.

1. ROC indicated this is a modeling experiment (page 3 March 2005 report). OCD does not feel that it is appropriate to allow "experiments" in such a sensitive area that may impact thousands of people in the city of Lovington.

In the report "experiment" is a term of science that means "a test made to demonstrate a known truth, to examine the validity of a hypothesis, or to determine the efficacy of something previously untried". The term refers to the simulation modeling, not the proposed remedy. We did not intend the word to mean anything that would suggest that ROC is not very serious regarding moving forward with an appropriate remedy that is fully supported by data and sound science. Nor did we mean to imply that the City of Lovington well field is not a "sensitive area". In our report, we refer to modeling, like monitoring or any scientific evaluation of a hypothesis, as an *experiment*. At this site, we used a simulation modeling experiment to test a null hypothesis: the residual chloride mass in the vadose zone would cause impairment of ground water quality.

2. OCD did not have the accessibility to run the model and therefore cannot confirm the results.

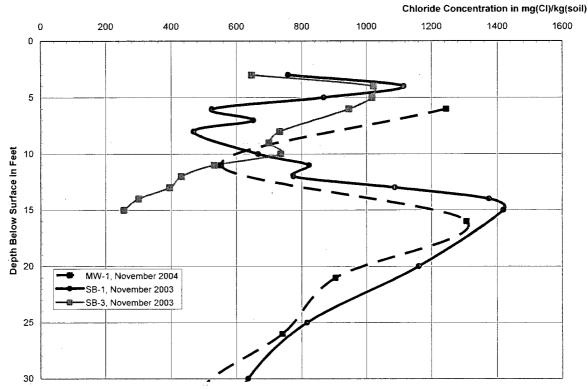
At a recent meeting of the New Mexico Oil and Gas Association, Mr. Daniel Sanchez stated that the State of New Mexico would not allow NMOCD to install the HYDRUS-1D software that ROC provided on June 26, 2003. Honestly, we were dumbfounded when NMOCD relayed this information to industry.

On June 26, 2003, Hicks Consultants and the author of the HYDRUS code, Dr. Jirka Simunek, provided NMOCD with a 1-day workshop on the use of HYDRUS. This workshop was a response to a request from NMOCD that the regulated community provide NMOCD with a copy of the HYRDRUS-1D software and instructions on how to use the code. The purposes of this workshop were outlined in the attached April 9, 2003 memorandum to Bill Olson of NMOCD and item 3 specifically states that the workshop would:

Provide NMOCD instruction on the use of HYDRUS1D and the ground water mixing model. This will enable NMOCD to review and approve remedies that employ these tools.

This seminar, which cost more than \$10,000, was funded by Rice Operating Company, Champion Technologies, Marathon Oil Company, and Hicks Consultants, all of whom had employed HYDRUS-1D in submittals submitted to the agency in 2003. Furthermore, the participants offered to fund the services of Dr. Jan Hendrickx of NM Tech for hands-on assistance after NMOCD had become familiar with the code.

NMOCD comment #2 and the recent statement by Mr. Sanchez was especially disturbing because the agency has approved several work plans that specifically stated our intention to employ HYDRUS-1D in our evaluation of potential remedies. Therefore, we can only respond to this comment by asking NMOCD to identify a means to provide independent verification of our modeling if your agency is unable to do so internally.


If requested by NMOCD, ROC will provide the agency with a stand-alone modeling station for use on ROC or System Partner projects. This would not become property of the State of New Mexico and we trust that NMOCD would employ this tool for evaluation of submittals from ROC or specifically-identified System Partners. We would load this computer with all of the atmospheric and other data files necessary to evaluate any ROC or System Partner submittals that employ a particular code, such as HYDRUS-1D. The original offer of ROC to provide hands-on instruction of the use of the HYDRUS-1D code by Dr. Hendrickx remains on the table as well.

3. The spill report showed a net release of 60 barrels. The actual investigation revealed this release amount actually caused the vadose zone to be contaminated down to a depth of approximately 46 feet in approximately one year.

Our report is obviously not clear on the depth of penetration into the vadose zone from the October 2003 release. Chloride from the October 2003 release has not penetrated the upper vadose zone to a depth of 46 feet. As discussed below and in the various submittals, produced water released in October 2003 penetrated the upper vadose zone to a depth of about 4 feet by November 2003 at the site of SB-1. By November of 2004, chloride from the October 2003 release migrated to a depth of about 6 feet below land surface, as the data from MW-1 show.

The lithology of the site, the sudden and instantaneous nature of the spill, and the excellent soil chemistry data allow a solid understanding of the mechanics of fluid flow at this site. We believe the data demonstrate that chloride from the October 2003 spill immediately drained through the fractures in the surface caliche to a depth of about 3 feet, where the base of the fractured caliche horizon is in contact with underlying "sand and caliche" (see the attached MW-1 well log, which was previously submitted to NMOCD). The release created temporary saturated conditions in this underlying unit that caused relatively rapid migration of chloride into the sand plus caliche unit identified from 3 to 5 feet below ground surface. The center of chloride mass from the October 2003 release is shown in the report but is more clearly presented below. The sampling experiments show the center of mass of chloride at a depth of about 4 feet for both SB-1 and SB-3, about one month after the documented release. These data also demonstrate a second chloride mass 15 feet below

ground surface at SB-1 and MW-1. This lower chloride mass is not present at SB-3 indicating that this mass is not part of the October 2003 release and dates from an earlier time.

Chloride Concentrations at Lovington Abo 1G Spill Site

The data simply do not support a hypothesis that chloride migrated to a depth 46 feet in one year. The chloride concentrations observed in SB-1 and MW-1, temporally separated by one year, could not agree in form if this were true. Rather, the data suggest that oil field activity over the past 50 years has caused an increase in chloride content in the upper vadose zone in this area, probably to a depth of about 46 feet. Perhaps produced water spills that occurred in this area decades earlier are the cause of this elevated chloride concentration. Perhaps the nature of the caliche itself contributes to the elevated chloride concentration in the uppermost vadose zone, as suggested in the report.

Our reports identified a June 2003 release of 10 barrels of produced water at this site, which may have impacted the area of SB-1 but did not impact the area characterized by SB-3. We hypothesize that the chloride released to the vadose zone in June 2003 may be the cause of the slightly higher chloride concentrations observed at the 4-foot depth at MW-1 and SB-1 relative to the concentrations observed at the same depth at SB-3.

If the area had not experienced oil field activity prior to the October 2003 release, then we would agree with NMOCD that the release caused an impact to a depth of 46 feet.

NMOCD's observation regarding the difference in chloride concentrations above 36 feet from the materially lower chloride concentrations below 46 feet is very interesting. Because the sampling data from SB-1 and MW-1 shows that chloride migration in this area is about 1-2 feet per year, one can use the depth of elevated chloride as a crude measure of when man's activities first affected the

area. This observation allows us to conclude that oil field activity in the area began 23-46 years ago. NMOCD data show that wells within Section 1 (unit letters F, G, and H) were originally drilled in the early 1950s. Because oil production, and the impact of accidental produced water releases, would have started about 47 years prior to the 2003 release, we believe NMOCD's observation supports a long-term chloride vertical migration rate of about 1-foot per year.

Using this information concerning migration rates and the data collected from SB-1 and MW-1 demonstrating initial infiltration rates, we suggest that the chloride mass at 15 feet bgs dates from 10 to 15 years ago.

ROC's model uses a spill input parameter of 500 barrels- almost ten times the amount of the actual spill. In other words, the model assumes that it would take a much larger release to cause contamination to a depth of 46 feet in one year.

It is apparent that in this particular case the model results do not accurately reflect the actual field conditions. OCD does not feel comfortable in accepting the results of the model when input parameters differ so greatly from the actual conditions.

The model's use of a 500 barrel release is consistent with the mass of chloride observed in the soil profile (between ground surface and the 4- to 6-foot depth of penetration) rather than the visual observations of field personnel. However, the sampling points of ROC were considered "worst case" samples because field personnel observed pooled produced water at these locations. We believe the use of this value, which may actually over predict the impact to ground water, is fully appropriate. As pointed out in Hendrickx and others (2005), the HYDRUS-1D model does not rely upon chloride concentrations or chloride mass as input parameters. Chloride mass is used in the simple ground water mixing model and we can employ whatever mass of chloride NMOCD wishes to use without the need to recalibrate or re-run the HYDRUS-1D portion of the simulation experiment. We look forward to your input on this mater and are pleased to re-run the mixing model and present the result.

4. ROC's June 07, 2004 report indicated that the background concentration in the caliche/upper vadose zone was 300-ppm chlorides. OCD received a complaint from the City of Lovington concerning where the background sample was taken. OCD does not believe that naturally occurring background levels would be this high.

We agree that naturally occurring background concentrations are not 300 ppm in sand. We believe the data from below 50 feet shown on the well log included in the report define the natural background (i.e. pre-Columbian conditions) as less than 100 ppm in sandy horizons. However, in order to differentiate between the impact of the October 2003 spill from previous releases or other anthropomorphic influences, we needed to establish a local background concentration (i.e. ambient concentration) in the same lithology as the spill itself. Therefore, ROC obtained samples from an area not effected by the recent release and the result was a finding that ambient chloride concentrations in the upper vadose zone were 300 ppm. Please remember, the purpose of the report was to examine the effect of the October 2003 spill on the environment. The purpose of the report was neither the evaluation of 50 years of man's activity in the area nor the natural variation between chloride in sandy horizons and chloride in caliche zones. We employed the ambient chloride concentration of 300 ppm only to assist us in the characterization of the release in the upper vadose zone.

The chlorides contamination migrated down to a depth of 46 feet from October 2003 to November 2004. The groundwater depth was reported at approximately 77 feet. The March 2005 report indicated that chlorides contamination had moved an additional 30-60 cm. The June 07, 2004 report (see page 6) states that "Deeper in the Vadose zone, fractures become barriers to flow and deeply buried caliche behaves more like clay". The March 2005 report (see page 5) reiterates that the chloride migration is impeded at the depth of 35 to 36 feet by the one foot thick caliche layer. The report estimates that the migration is about 2 feet per year and the chloride peak would reach the groundwater in 35 to 42 years.

NMOCD's experience in shallow vadose zone excavations (down to 50 feet) does not support the theory that fractured caliche acts as a clay barrier. ROC's plan did not support this theory with any field data. In fact, OCD notes that the chlorides contamination has migrated 46 feet in just one year. This is 10 feet deeper than the caliche zone that is purported to act as a barrier. Based on the limited information provided, OCD must reject the prediction that it will take another 30-40 years to reach groundwater.

In vadose zone profiles with low water content, many scientists contend that fractures are barriers to unsaturated flow and the ability of a hydrostratigraphic unit to transmit water is depended upon the properties of the porous matrix. However, a growing body of knowledge from simulation, laboratory and field experiments suggests that the role of fractures is far more complex. At this site, our modeling experiment did not rely upon an assumption that fractures were or were not a barrier to flow. Instead, we relied upon actual field data to calibrate the HYDRUS-1D simulations. We used the field data to adjust the hydraulic input parameters of the model to permit more accurate predictions. At this site, the field data demanded that we employ hydraulic input parameters for the deep caliche horizons that were similar to clay. Conversely, we used hydraulic properties more similar to gravel to simulate movement through the highly fractured surface caliche.

We cannot comment on NMOCD's experience at other sites that may or may not have any similarity to this sudden and accidental surface release. We hope the discussion above adequately addresses the misunderstanding of the chloride migration rate at this site. We can state with a reasonable degree of scientific certainty that we have a solid understanding of the hydrogeology of this particular location.

6. ROC's plan is to monitor groundwater for only two years and then request closure. This process does not correlate to the time that the model predicts salt will enter the groundwater, i.e., 30-40 years. OCD feels there will be no way to know if the model experiment is valid.

If NMOCD does not have access to the HYDRUS-1D model, we are certain that NMOCD cannot validate the findings presented in the report using internal resources. We urge NMOCD to consider requesting assistance from other State of New Mexico employees, such as those employed at NM Tech, UNM, or NMED to evaluate the validity of our findings. To reiterate, if NMOCD requests a stand-alone modeling station and expert, independent assistance to further test the simulation

0110.

5.

experiments that are the basis of our submissions, ROC is willing to fund this endeavor.

We would like to remind NMOCD that very early in this matter, ROC offered to install vadose zone monitoring devices that would be capable of measuring the migration (and sequestration) of chloride in the vadose zone. This type of monitoring is exactly what is currently approved by NMOCD, NMED and EPA within the saturated zone: Monitored Natural Attenuation. However, NMOCD stated categorically that such monitoring would be unacceptable and required the installation of a monitoring well. If requested by NMOCD, ROC is willing to provide the agency with a program to monitor the migration of chloride in the vadose zone as originally proposed.

7. OCD and the City of Lovington recently collected soil samples and discovered that high salt levels (i.e. chlorides up to 20,000 ppm) still remain in the spill area. These results were approximately 4-5 times higher than ROC's results submitted via E-mail on October 01, 2004.

OCD understands that chloride mass is a very important input parameter to the model. The March 2005 submittal included a plate 3 "Calculation of Chloride Load" which showed the highest soil concentration to be 1161-ppm chlorides. As pointed out above, surface soils had concentrations 10 times the value shown on Plate 3. ROC did not justify why these values should not have been included in the calculations.

The thin surface soil layer of high chloride concentration was not considered in our calculation of chloride load because this mass of chloride is inconsequential when compared to the overall chloride mass. Also, this thin zone of high chloride soil was not considered because ROC repeatedly offered to remove this soil layer (see August 31, 2004 work plan, for example). Although NMOCD initially approved the removal of the thin high chloride layer, this approval was then retracted (see November 4, 2004 email from NMOCD).

While selective sampling of the surface soil could demonstrate high or low chloride concentrations, we observed invasion of plants in 2004 and recent photographs show that the majority of the surface soil does not exhibit sufficient chloride concentration to inhibit growth. The invasion of vegetation in 2004, which is not well described in any submittals, provides evidence that the chloride mass in the thin soil horizon does not pose a material threat. Nevertheless, if requested by NMOCD, ROC will determine the mass of residual chloride in the thin soil horizon and we will re-run the model to account for increased chloride load.

8. The site has not been adequately delineated.

We maintain the characterization presented in the reports adequately defines site conditions, and provides the data necessary to select and design an effective remedy. The lateral extent of the surface impact can be measured to the inch. The vertical extent of impact is also defined to the inch in two areas of the spill, SB-1 and SB-3, where ROC observed pooled produced water. Sampling at locations such as SB-1 and SB-3 provide worst case conditions – maximum chloride penetration and the highest chloride concentrations (e.g. largest mass). Designing a remedy based upon these worst case conditions provides the maximum protection.

If requested by NMOCD, ROC is willing to expand temporal sampling to create a monitoring and reporting program that conforms to the criteria of Monitored Natural Attenuation. ROC discussed this strategy with NMOCD very early in the investigative process and our installation of permanent vadose zone monitoring at the site to more accurately measure the migration of chloride in the upper vadose zone remains on the table.

Below, we present our response to the corrective actions proposed by NMOCD.

1. ROC shall remove a minimum of 10 feet of contaminated soil in the impacted areas. This project shall start no later than July 22, 2005. All contaminated soils removed from the site shall be disposed of at an OCD approved site.

ROC and Hicks Consultants requests an opportunity to review the technical and regulatory justification for NMOCD's selection of the 10-foot minimum excavation.

2. The site shall be delineated both horizontally and vertically. The delineation parameters will be as follows: TPH - 100 ppm; chlorides - 250 ppm; and, total BTEX - 100 ppm.

As stated above, we believe the effect of the October 2003 release is characterized sufficiently to develop an appropriate remedy. Nevertheless, ROC will conduct any additional field testing requested by NMOCD.

3. Samples for laboratory confirmation shall be collected from the bottom and side walls of the final excavated area. The samples shall be analyzed for BTEX (8021), TPH (418.1 or 8015 GRO & DRO) and chlorides all using EPA approved methods.

Any NMOCD-directed investigation by ROC will follow appropriate scientific methods.

4. ROC shall install a barrier over the site to impede infiltration and prevent any further migration of chlorides contamination. The barrier installation shall extend at least 10 feet horizontally past any remaining contamination. A suitable amount of clean top soil similar to the pre-existing spill conditions shall be placed over the compacted clean backfill material.

ROC has not and will not advocate a "no action" strategy. ROC had always intended to install a vegetative cap over the site that would also direct runoff away from the underlying chloride mass. This type of barrier will materially reduce the infiltration of precipitation. Because the HYDRUS-1D experiments in the reports do not consider evapotranspiration, the predictions are very conservative as a result. As stated above, we will willing to conduct a simulation experiment showing the effect of this proposed barrier as compared to excavation.

5. An interim report shall be submitted to the OCD within 10 days of the final excavation or no later than August 15, 2005. This report shall contain the results of the analysis requested in items 2 and 3 above. The report shall contain a log of events, waste disposal manifest, photos, barrier design and conclusions. The excavated area shall not be backfilled until ROC has requested OCD's approval.

We would be pleased to keep NMOCD apprised of all ROC actions on a regular basis.

6. ROC will notify the OCD Santa Fe office and the OCD District office at least 72 hours in advance of all scheduled activities so that the OCD has the opportunity to witness the events and/or split samples during OCD's normal business hours.

We will inform NMOCD of any and all field activities.

We look forward to our meeting with you on Friday, July 15, 2005.

Sincerely, R.T. Hicks Consultants, Ltd.

and all T.H.J

Randall Hicks Principal

Copy:

William Carr Carolyn Haynes

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

August 31, 2005

Wayne Price NMOCD Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail and Federal Express

RE: Amended Corrective Action Plan Abo 1G Pipeline Release NMOCD Case #1R0415 Section 1, 17S, 36E, Unit G

Dear Wayne:

On behalf of Rice Operating Company, R.T. Hicks Consultants, Ltd. is pleased to submit the attached Amended Corrective Action Plan for the above-referenced site.

If you have any questions or concerns about the enclosed report, please let us know. Thank you for your time.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee_

Katie Lee Staff Scientist

Copy: Rice Operating Company

August 2005

狃

Amended Corrective Action Plan

R. 4. 4 . 4

4 9

2010

3.6

•

100 C

R.T. HICKS CONSULTANTS, LTD.

901 RIO GRANDE BLVD. NW, SUTTE F-142, ALBUQUERQUE, NM 87104

August 31, 2005

Amended Corrective Action Plan

LOVINGTON ABO 1G RELEASE SITE

Prepared for:

Rice Operating Company 122 West Taylor Hobbs, NM 88240

R.T. HICKS CONSULTANTS, LTD.

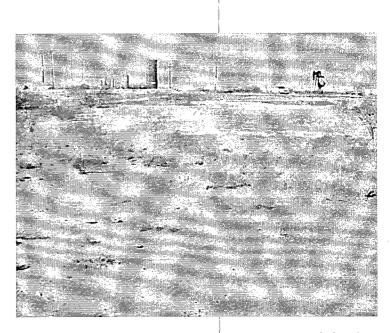
901 RIO GRANDE BLVD. NW, SUITE F-142, ALBUQUERQUE, NM 87104

1.0 SUMMARY

- 1. ROC mobilized to the Abo 1-G release site on November 10, 2003 and drilled three borings. The ROC field procedures were consistent with industry practice and with previously-submitted ROC characterization plans (e.g. junction box plan). Approximately 40 samples were collected.
- 2. In November 2005, Hicks Consultants completed a sampling boring and monitor well adjacent to SB-1 in accordance with an NMOCD-approved workplan. Approximately 15 samples were collected from the boring.
- 3. In July 2005, ROC implemented a deep soil sampling (about 130 samples) and surface soil sampling program (about 70 samples) to provide better characterization of the 1992 release and the 2003 release.
- 4. Chloride concentration data show a center of mass at depths of 3 to 6-feet below grade and a second mass at depths of 12- to 20-feet below grade. While the chloride from both spills is generally present at points near the source of the releases; at greater distances or release margins, the effects of only one of the releases may be present.
- 5. Samples from the bore holes, the deep soil sampling and the surface sampling yielded peak chloride concentrations of approximately 8,500 ppm, 1,500 ppm, and 1,400 ppm at respective depths of 0 feet, 4- to 6-feet below grade and 14- to 16-feet below grade. Area weighted average chloride concentrations were approximately 2,400 ppm, 850 ppm, and 475 ppm at these same respective depths.
- 6. Laboratory analyses confirm that regulated petroleum hydrocarbons are not present above screening levels employed by the PST Bureau of the New Mexico Environment Department.
- 7. Five potential remedies were evaluated using HYDRUS-1D and a simple mixing model to predict ground water chloride concentrations in an imaginary monitoring well with a 10-foot screened interval that is located at the edge of the release. Simulation experiments predict that only the simple vegetative cap remedy will cause ground water to exceed the 250 ppm chloride standard in the imaginary monitoring well.

R.T. HICKS CONSULTANTS, LTD.

- 8. A simple vegetative cap is sufficient to prevent impairment of ground water that would be produced from a windmill with a 40-foot screened interval located at the edge of the spill.
- 9. Ease of construction, long-term viability and other environmental considerations cause us to recommend the following remedy:
 - a. Excavate and stockpile the areas of high-chloride surface soil that do not currently support vegetation.
 - b. Excavate, characterize and segregate by chloride concentration the uppermost 2-feet of the vadose zone that overlies about 35% of the subsurface chloride load. This translates to removal of material where the average chloride concentration over the thickness of the impact is greater than about 1000 mg/kg.
 - c. Blend clean soil (imported or excavated from the site) with higher chloride stockpiles to create a mixture that will support vegetation (i.e. about 1000 ppm chloride).
 - d. Place a 1-foot thick clay barrier in the excavation in 6-inch lifts such that the saturated hydraulic conductivity of this clay barrier is less than 5×10^{-6} cm/sec.
 - e. Place at least 2-feet of the blended stockpiled soil and any imported soil over the clay barrier and over the remaining unexcavated portion of the spill to create a small swale that will shed excess precipitation.
 - f. Seed the site with native plants and fence the area to enhance re-vegetation


The selected remedy protects fresh water, human health and the environment. It complies with NMOCD rules and we believe it provides the greatest net environmental benefit.

R.T. HICKS CONSULTANTS, LTD.

2.0 BACKGROUND

The Abo 1G Discharge Site is located about 6 miles southeast of the center of Lovington, New Mexico. Plate 1 is a 1:24,000 topographic map showing the location of the site relative to Route 18, the Hobbs-Lovington Highway. Plate 2 is a 1:6,000 image (2004) of the site location and nearby features such as the Navajo Lovington Refinery and the Lovington-Hobbs highway.

In 2003, a line near the pick-up truck in Figure 1 ruptured and produced water flowed south. This 2003 release was the impetus for the investigations described herein. This final corrective action plan summarizes all of the data available for the site and recommends a remedy to protect fresh water, public health and the environment.

On October 18, 2003, Rice Operating Company (ROC) prepared a Release Notification report that estimated a pipeline failure released 190 barrels of produced water and ROC recovered 130 barrels. The pipeline failure released produced water with little or no hydrocarbons. Plate 3a is the same image as Plate 2 at a 1:600 scale. This image shows the geometry of the 2003 release, which affected about 31,000 square feet of rangeland. ROC is also aware that a 10 barrel release near this same location occurred on June 3, 2003 and this earlier release impacted a 2,400 square foot area near SB-1. In August 2005, ROC conducted an internal records search and discovered a release report dated October 21, 1992. This report documents a release of produced water that covered about 17,000 square feet at this same location. Plate 3b is an aerial photograph taken between 1996-1999 at the same scale as Plate 3a showing our interpretation of the extent of the 1992 release. Plate 3a & 3b demonstrates that both spills occurred at essentially the same location. The 1992 report suggests that the release was principally water with little or no hydrocarbons and ROC recovered about 500 barrels of the release. This search of older records became feasible in mid 2005 due to the efforts of ROC to categorize and organize their older files in various storerooms.

AMENDED CORRECTIVE ACTION PLAN - LOVINGTON ABO 16 RELEASE SITE August 31, 2005 Figure 1. View of Abo 1G Leak site

> Page 3 OCD Case #1R0415

R.T. HICKS CONSULTANTS, LTD.

ROC mobilized to the site on November 10, 2003 and drilled three borings. The field procedures employed by ROC were consistent with industry practice and with previously-submitted ROC characterization plans (e.g. junction box plan). In November 2004, Hicks Consultants completed a sampling boring and monitor well adjacent to SB-1 in accordance with an NMOCD-approved workplan. In July 2005, ROC implemented a deep soil sampling and surface soil sampling program to provide better characterization of the 1992 release and the 2003 release. Plate 4 is a sketch map that shows the outline of the 1992 and 2003 spills (based upon the imagery), 2003 borings, the 2004 monitor well and the 2005 trench samples. In 2005, ROC also collected surface soil samples on a 25-foot grid, which are not displayed on Plate 4.

Hicks Consultants used the data collected by ROC, the data from our 2004 field program and obtained additional data from public sources as input to the HYDRUS-1D vadose zone fate and transport model. Hicks Consultants employed the results of the modeling to develop a remedy to protect ground water quality and to restore the ground surface.

AMENDED CORRECTIVE ACTION PLAN - LOVINGTON ABC 10 RELEASE SITE August 31, 2005 Page 4 OGD Case #180415

3.0 RESULTS OF FIELD PROGRAMS & INVESTIGATIONS

Next to the pipeline rupture, ROC drilled SB - 01 in 2003 to a depth of 45-feet. From field inspection, the site has several inches of sandy soil covering a highly-fractured caliche horizon. We examined borehole samples and the on-site cuttings log from SB-01 and concluded that the subsurface is composed of 24-feet of thin caliche layers within sands and silts. Interbedded with these caliche-rich sands and silts are silty clays. Below this uppermost 24-feet is 20-feet of sand and silt.

The lithologic log of MW-1 confirms the observations of 2003 for SB-1. Lithologic logs for both borings are included in Plates 5 & 6. Plate 5 also displays the calculated chloride load for the boring. The lithology of MW-1 is primarily a very fine-grained sand silt interbedded with a complex series of caliche beds. Layers featuring some caliche exist from 0.5- to 10-feet bgs, 33- to 44-feet bgs, and 53- to 60-feet bgs. In addition to these zones, three well indurated layers of caliche exist at 0.5- to 3-feet bgs, 15- to 17-feet bgs, 20- to 22-feet bgs, and 35- to 36-feet bgs. There also exists a well indurated layer of sandstone at 67- to 68-feet bgs.

We have no site specific or regional data on the moisture content of the vadose zone. Such data are generally rare. As described in a later section of this report, we used HYDRUS-1D to simulate an initial water content of the unsaturated zone.

We conclude that the vadose zone is about 90-feet thick and is composed of a caliche-rich upper horizon underlain by sand with minor amounts of silt.

Characteristics of Saturated Zone

In well L-1716, about 1 mile west of the release site, the driller's log reports "water sand" from 45-feet to 70-feet underlain by 7-feet of "calcium sand" before penetrating water bearing units. At well L-5014, approximately 5 miles north of the site, the driller log identifies caliche from 2- to 28-feet below surface. Below this upper strata is sand and sandy clay to a depth of 190-feet. From 190- to 205-feet below surface, the driller reports a clay zone. This 15-feet of clay is underlain by 10-feet of clay and gravel. The driller penetrated the Dockum Group red beds at 215-feet below grade. For monitoring wells in the Lea Refinery, one mile to the northeast, driller's logs report a 4-foot caliche bed overlying more

AMENDED CORRECTIVE ACTION PLAN - LOWINGTON ABO 1G RELEASE SITE August 31, 2005

Page 5 OGD Case #1R0415 than 100-feet of very fine to fine grained sands. At the Lea Refinery, April 1996 water levels are 90-feet below grade (H+GCL, 1996). These well logs are included in Appendix A.

The saturated Ogallala Aquifer, which underlies the location, is dominantly sand. The saturated thickness of the aquifer is about 130-feet. The screened interval of wells in the area range from 20-feet to more than 100-feet. According to the USGS (http://water.usgs.gov/GIS/ metadata/usgswrd/ofr98-548.html#Identification_Information), the hydraulic conductivity of the High Plains Aquifer ranges from less than 25-feet/day to greater than 300-feet per day with an average hydraulic conductivity of 60-feet/day. At this location, where saturated gravel units are restricted to the base of the Ogallala, we estimate the hydraulic conductivity is about 50-feet per day. Geologists who drilled monitoring wells at the Lea Refinery estimated the saturated hydraulic conductivity as ranging from 25- to 75-feet per day. At the Lea Refinery, the hydraulic gradient is 0.004 feet/foot to the southeast. The resultant ground water flux is probably about 10 cm per day.

Basin Environmental obtained samples from LA MW-1 on December 3, 2004, March 1, 2005 and June 16, 2005. The results of these samples are presented in Appendix B. The results show no evidence of ground water impact. Please note that the results

of all analysis are in general agreement. The TDS result from the March 1, 2005 sampling was analyzed outside of the "hold time", but reproducibility of the results shows that all samples are representative of ground water quality.

Chloride Distribution in the Vadose Zone

Appendix C presents the analyses of field samples from the vadose zone during the 2005 field events. Earlier submissions present the analytical data for soils from previous sampling campaigns.

Soil boring SB-2 is uphill from the

Chloride in mg/kg

spill site and we considered this a "background" location, however the term "ambient" is more accurate. At this soil boring, the chloride near the ground surface is 475 ppm. From 4-feet below grade to the total

AMENDED CORRECTIVE ACTION PLAN - LOVINGTON ADD 16 RELEASE SITE August 31, 2005 Figure 2. SB-2 Field Chloride concentrations

> Page 6 OCB Case #1R0415

depth of 15-feet, chloride in this caliche-rich horizon ranges between 230 and 356 ppm (Figure 2). Other scientists suggest that "background" chloride concentration in Lea County soil can be less than 100 ppm. At this site, caliche dominates the upper vadose zone and oil and gas activities may have released small amounts of chloride to the environment for decades in the form of small spills that are subsequently re-distributed by wind. At this release site, the ambient chloride concentration in the upper vadose zone is about 300 ppm. In the deep vadose zone, below about 45-feet, chloride concentrations are less than 100 ppm (See Plates 5 and 6). We believe these low chloride concentrations below 45-feet are due to the sand lithology combined with our hypothesis that anthropogenic chloride originating from decades of oil and gas production has penetrated only 41-feet of the vadose zone.

Plate 7 compares the chloride concentration versus depth for SB-1 and SB-3 (November 2003) with MW-1 (November 2004). These three borings, which provide the deepest vertical characterization for the site, show two distinct chloride masses – one from 3- to 6-feet below land surface and a second mass at 12- to 20-feet below land surface. These soil borings show a decline in chloride concentrations to ambient levels (i.e. 300 ppm) at 45-feet, 9-feet and about 40-feet below land surface respectively. Because the water table lies about 90-feet below land surface, this observed decrease of chloride concentrations to background suggests that the release did not create saturated conditions between ground surface and ground water.

As stated in earlier submissions to NMOCD, the patterns for SB-1 and MW-1 shown in Plate 7, which are closest to the pipeline rupture, confirm that the October 2003 release was not the first release at or near this site. An earlier release appears as chloride concentrations above 1,000 ppm between 12- and 20-feet below grade and the October release appears as the high chloride between 3- and 6-feet depth. We stated in our earlier reports that we did not believe that the chloride concentrations between 12- and 20-feet in SB-1 and MW-1 were caused by the 10-barrel release of June 2003. As suggested earlier in this report, the recent examination of ROC files identified the source of this deeper center of mass as a 1992 release.

Plate 8 shows the results of the deep soil sampling at the 12 sampling trenches, 3 soil borings and the monitor well. In general, chloride concentration profiles of points closest to the junction box (Points A, C, E, G and SB-1 and LA MW-1) demonstrate both the shallow and the deeper chloride masses. Points further away may demonstrate only the most recent spills (Points H, I, J and SB-3). Other points (B and K) have a chloride profile showing relatively low concentrations near the surface

AMENDED CORRECTIVE ACTION PLAN - LOWINGTON ABO 16 RELEASE SITE Ausust 31, 2005

Page 7 OCD Case #180415 and higher concentrations at intermediate depths (8- to 14-feet bgs). The site has little relief and is located in an active oil field with considerable human activity. We believe that over the course of the last 15 years, small topographic changes due to rainfall events, human activities, and the variation in source location and flows of the different releases explains the variation in chloride distribution at the site.

AMENDED CORRECTIVE ACTION PLAN - LOVINGTON ABO 1G RELEASE SITE AUgust 31, 2005

Page 8 96D Case #180415

4.0 SIMULATION MODELING EXPERIMENTS

4.1 HYDRUS-1D CALIBRATION INPUT DATA

Because the chloride center of mass at SB-1/LA MW-1 (from the 1992 release) resides at a depth of about 15-feet below land surface, chloride movement is not temporarily perturbed by upward wicking due to evapotranspiration or individual rainfall events. This mass resides above and within the well indurated caliche at 15- to 17-feet bgs. We compared the observed chloride transport rates at these depths and within these known lithologies with the predictions of the model, then adjusted the input characteristics to calibrate the HYDRUS-1D simulation.

The density of chloride measurements from the ROC November 2003 field program is quite good and clearly defines the location of the chloride center of mass at the SB-1 location. The data from the November 2004 event at MW-1 does not allow us to identify the center of chloride mass with the same degree of precision, but for the purposes of our modeling experiment, the data are more than sufficient.

Plate 9 is similar to Plate 7 but more clearly shows that peak measured chloride concentration of the upper chloride center of mass has migrated approximately two feet downward during the 12-month period (November 2003 to November 2004) that separates these two deep sampling programs. We believe that the recent rain events may have temporarily created saturated flow in the upper soil profile moving the chloride into the sand and caliche layer below the upper fractured caliche.

The minimum chloride concentration between the two masses was at a depth of approximately 8-feet bgs in November 2003 and was located at approximately 11-feet bgs in November 2004. The chloride at these depths is within a very fine-grained sand silt featuring little caliche. Considering sampling depth approximations, this suggests a chloride migration rate of two to three feet per year.

The recent precipitation did not affect the downward migration of the peak chloride concentration at 15-feet in the same manner. As Plate 9 implies, the peak chloride concentration is at a depth of 16-feet in 2004, suggesting a migration rate of approximately one foot per year. At 35- to 36-feet bgs we note virtually identical chloride concentrations from both drilling events. At this depth, a hard caliche layer exists and the downward migration of chloride is less than 1-foot per year.

Page 9 OCE Case #1R0415 At the 35- to 36-foot depth the low moisture content of the caliche creates extremely low vertical hydraulic conductivities, thus these units act as barriers to vertical flow. Below this caliche layer, chloride concentrations decline to ambient levels.

We conclude that the recent precipitation events have resulted in movement of the upper chloride mass downwards about 2-feet. The minimum chloride concentration has migrated downwards two to three feet. The lower mass of chloride has migrated downwards about one foot through the caliche at this horizon. A lower rate of chloride migration is present at the 35- to 36-foot caliche layer. The rates of chloride migration, when weighted by thickness of soil material, suggest a rate of chloride migration of about one to two feet per year.

The data for the calibration included our acquisition and installation of weather data for Hobbs, New Mexico from October 1, 2003 to November 6, 2004. This data is collected approximately 12 miles south of the spill site because the data from the Lovington Airport is not complete for these dates and this is the closest available weather data to the site. We then began our simulations using weather data for October 2003, when the release actually occurred. We then added the 46 year weather record from the Pearl, New Mexico weather station to create a representative atmospheric file for the HYDRUS-1D simulations.

Our 2004 monitor well boring program allowed us to collect a very detailed description of the vadose zone for the MW-1 boring (See Plate 6). This improved vadose zone profile data was used in all simulations.

Table 1 summarizes the data employed in the final calibration simulation, attached. Appendix D is a CD with the data in a format that will allow the reader to verify the results of the simulations using HYDRUS-1D or a similar code.

4.2 HYDRUS-1D MODEL CALIBRATION

To calibrate the model, we installed the chloride concentration data obtained by ROC at SB-1 in their November 2003 field event as the initial condition. We then ran the model for one year with the November to November Hobbs weather data discussed above. We made slight adjustments to the hydraulic properties in order to calibrate the model predictions to the chloride migration observed in the 2004 MW-1 field data.

Plate 10 adds the predicted chloride concentrations of the calibrated simulation, (line marked with diamonds) to the observed field data shown in Plate 9.

To obtain the match shown in Plate 10 (i.e. to calibrate our HYDRUS-1D simulation) we adjusted the hydraulic properties of the caliche and sand zones such that the center of the upper chloride mass migrated about 1.5 feet downwards from November 2003 to November 2004. In the calibration simulation, the minimum chloride concentration observed at about 8-feet bgs in SB-1 migrated slightly over one foot downwards. The center of the lower chloride mass (15 feet bgs in SB-1) migrated 1.1-feet in the same time interval, about 10 percent more than observed.

We used extremely conservative dispersion coefficients for our calibration, which would tend to over-estimate the resultant chloride concentration in ground water. As stated earlier, we believe that the rate of movement of chloride in the upper ten feet of the soil profile is affected by the weather, such as large rainfall events, rather than the long-term climate of the site. Compounding the effects of day-long rainfall events is the difficulty of accounting for the hydraulic properties of the uppermost fractured caliche bed. These fractures act as aids to flow in saturated conditions and as a hindrance to flow during the unsaturated conditions between severe precipitation events. After infiltrated water (and entrained chloride) passes beyond this uppermost vadose zone, unsaturated flow is the dominant type of transport. Climate, not weather, is the principal influence of this rate of flow.

Because we see a match between the 2004 field chloride concentrations and the predicted chloride concentration of calibrated simulation, we believe that HYDRUS-1D is a reasonable representation of the flow regime. Vertical migration rates and preservation of the two separate chloride concentrations are a good match to field data. In our calibrated HYDRUS-1D simulation, the center of the upper chloride mass migrated about 1.5-feet downwards from November 2003 to November 2004. The minimum chloride concentration has migrated slightly over one foot downwards. The center of the lower chloride mass migrated 1.1-feet in the same time interval, about 10 percent more than observed. We believe that the rate of movement of the lower chloride mass demonstrates a good agreement of the model with the field data because these shortterm influences are not active at this depth.

4.3 SIMULATION AND DESIGN OF CORRECTIVE ACTION

Before design of a final corrective action for the site, we evaluated the following possible remedies:

- 1. Vegetation Cap without any excavation and chloride exportation.
- 2. Excavation and placement of chloride impacted surface soil beneath a synthetic liner which covers 100% of the site, then covering the liner with imported topsoil and vegetation cap.

AMENDED CORRECTIVE ACTION PLAN - LOVINGTON ABO 10 RELEASE SITE August 31, 2005

Page 11 OGD Case #1R0415

R.T. HICKS CONSULTANTS, LTD.

- 3. Excavation and exportation of 35% of the chloride load, which translates to removal of material where the average chloride concentration over the thickness of the impact is greater than about 1,000 mg/kg.
- 4. Excavation and placement of chloride impacted surface soil beneath synthetic liner strips that would cover 35% of the total spill area, then covering the lined and unlined portions of the spill site with imported topsoil and vegetation cap.
- 5. The selected remedy:
 - a) Excavate and stockpile the areas of high-chloride surface soil that do not currently support vegetation.
 - b) Excavate, characterize and segregate by chloride concentration the uppermost 2-feet of the vadose zone that overlies about 35% of the subsurface chloride load. This translates to removal of material where the average chloride concentration over the thickness of the impact is greater than about 1,000 mg/kg (see Plate 6).
 - c) Blend clean soil (imported or excavated from the site) with higher chloride stockpiles to create a mixture that will support vegetation (i.e. about 1,000 ppm chloride).
 - d) Place a 1-foot thick clay barrier in the excavation in 6-inch lifts such that the saturated hydraulic conductivity of this clay barrier is less than 5×10^{-6} cm/sec.
 - e) Place at least 1.5 feet of the blended stockpiled soil and any imported soil over the clay barrier and over the remaining unexcavated portion of the spill to create a small swale that will shed excess precipitation.
 - f) Seed the site with native plants and fence the area to enhance re-vegetation.

For the preliminary design of all remedies we employed field-calibrated HYDRUS-1D simulations. We followed the following protocol to calculate and install an average chloride load from the releases. We compiled all of the chloride concentration data from the trench samples, the bore hole samples, and the surface samples. As this data is from different depths at the various locations, we linearly interpolated depth discrete samples for each of the trench sites and each of the bore holes to create complete chloride profiles at each site. We gave these profiles an area weighting allowing for the calculation of an averaged chloride concentration profile representative of the entire spill area. This profile was used in the HYDRUS-1D modeling.

We calibrated the mixing model to the observed conditions in ground water. To do this, we assumed that the pore water in the capillary fringe (from 0- to 8-feet above the water table) equaled the ambient water quality documented by the existing monitoring well, which is about 100 ppm and compared the model output for the first 10 years of the simulation with the observed ground water data. We selected the period 0-10 years for the calibration because we are confident that only true "background" chloride in soil water (from 50- to 90- feet below land surface) is entering the aquifer during this time. In other words, we are confident that chloride from the 1992 release does not enter ground water from years 0-10 in our simulation experiment.

To determine the area of the spill that overlies 35% of the chloride load, we employed the same area-weighting protocol discussed above to map the area planned for the clay barrier. Using this method, we identified a clay barrier strategy that covers 35% of the chloride load by creating a barrier over two areas. The largest area is defined by trenches A, B, and D and MW-1 (see Plate 11). A smaller area defined by SB-3 and trench I completes this cover strategy.

Table 2 summarizes the output of the simulation experiments. HYDRUS-1D predicts that only the vegetative cap remedy allows chloride concentrations above the state standard of 250 mg/L for the imaginary well with a 10-foot screen located at the edge of the spill site. Because of the simulation methodology will exaggerate the chloride concentration in ground water, we are confident that the predicted maximum chloride in the imaginary well is what we say: a maximum concen-

Table 2. Simulation experiment outputs

Remedy		mum Chl entration		Duration of ground water chloride conentration above 250 mg/l (yrs.)	Time from present to Max. Concentration (yrs.)
	10 ft screen	40 ft screen	100 ft screen	10 ft screen	
Vegetative Cap only	405	188	137	19	29
Synthetic Barrier over 100% of the spill area, cover with topsoil and vegetative cap	100	100	100	0	Not Applicable
Excavtion and Exportation of 35% of the chloride load	243	140	116	0	29
Excavation of surface chloride and placement of synthetic barriers over 35% of the spill area and	243	140	116	0	29
Excavation of upper 3-feet. Replace with 1-foot of clay underlying 1.5 foot of loam and	243	140	116	0	29

AMENDED CORRECTIVE ACTION PLAN - LOVINGTON ABO 16 BELEASE SITE August 31, 2005

R.T. HICKS CONSULTANTS, LTD.

tration. At other sites, we have found that chloride is distributed throughout the underlying aquifer provided that geologic barriers to flow, such as silt-clay horizons, do not exist. At this site, MW-1 did not detect such barriers within the uppermost 30-feet of the saturated zone and the screened interval of nearby supply wells is 20- to 100-feet. Table 2 includes an evaluation of different mixing zones.

For the selected remedy, the simulated response of an imaginary monitoring well located at the edge of the spill that draws from an aquifer with a 10-foot thick mixing zone is shown below in Figure 3. After year 10, the chloride from the 1992 begins to enter ground water. After year 50, the released chloride from below the vegegative cap has effectively moved through the vadose zone. Released chloride that lies below the clay barrier is effectively sequestered in the vadose zone for more than a century. The maximum predicted chloride concentration in ground water caused by the slow release from beneath the clay barrier is less than 105 ppm, which is observed more than 410 years from now.

Although installation of a synthetic liner over 100% of the spill area permanently sequesters the chloride in the upper vadose zone and results in a better simulation result, we did not select this option. This remedy demands that the liner maintain integrity for hundreds of years. We favored the clay liner remedy which allows a very slow release of chloride to ground water that remains compliant with NMOCD Rules.

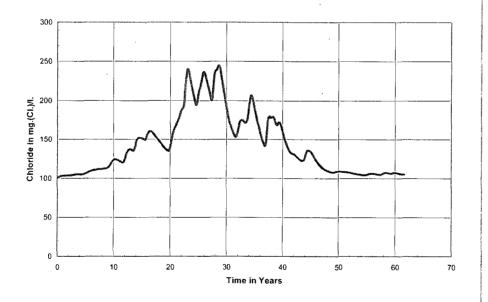


Figure 3. Chloride concentration in the aquifer for the Abo 1G Release Site, averaged chloride load from entire site, vegetation, 35% clay cap

AMENDED COBRECTIVE ACTION PLAN - L August 31, 2005

LOVINGTON ABO 16 RELEASE SITE

R.T. HICKS CONSULTANTS, LTD.

4.4 SCHEDULE

Sixty days after NMOCD approval of this remedy, we will submit detailed plans and specifications for this remedy. The plans will include hydraulic conductivity testing of the material selected for the clay barrier, a plot plan showing the area to be capped with clay, a detailed description of the proposed field methods, a quality assurance plan for the remedy, and a post-remedy monitoring plan. Thirty days after NMOCD approval of the detailed plans, ROC will begin field activities to implement the remedy, with completion of the remedy 60 days after NMOCD approval of the detailed plans.

LOVINGTON ABO 16 RELEASE SITE

TABLES

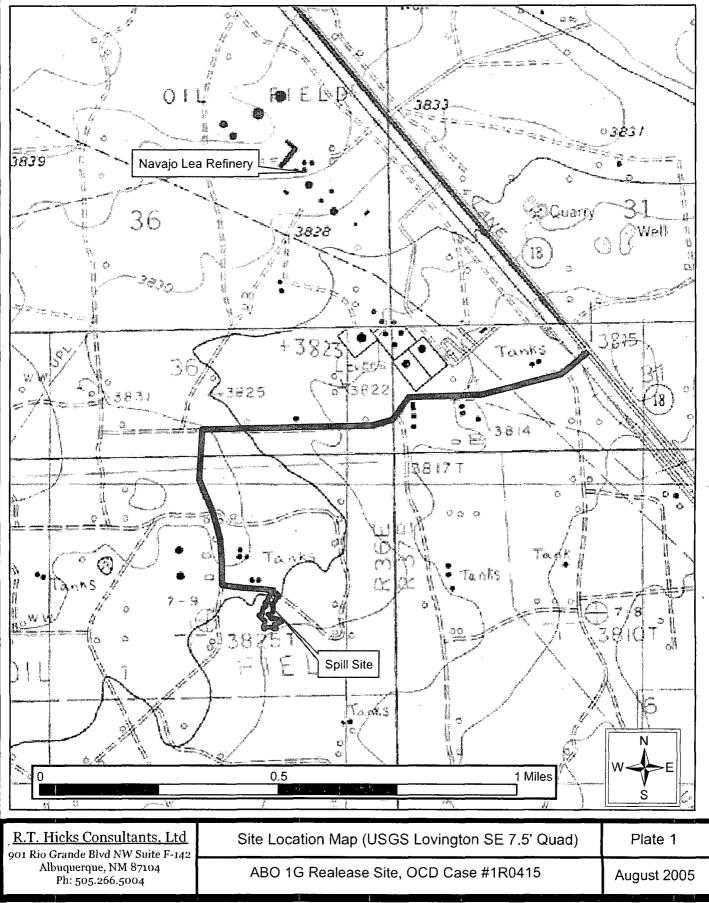
ĺ

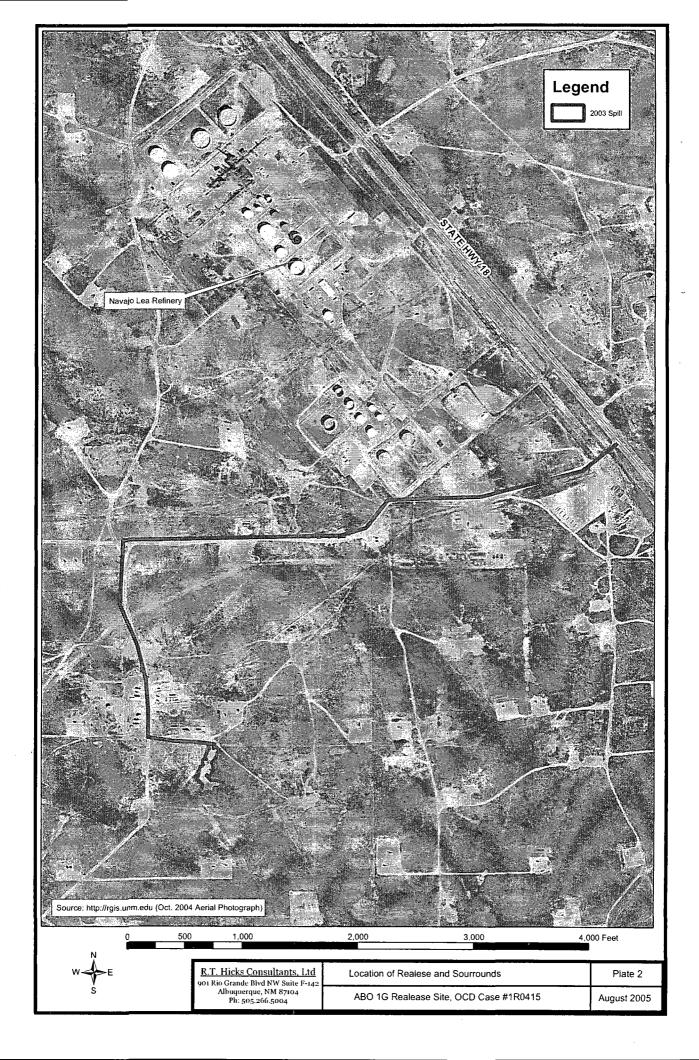
Table 1: Input Parameters for Simulation Modeling

ļ

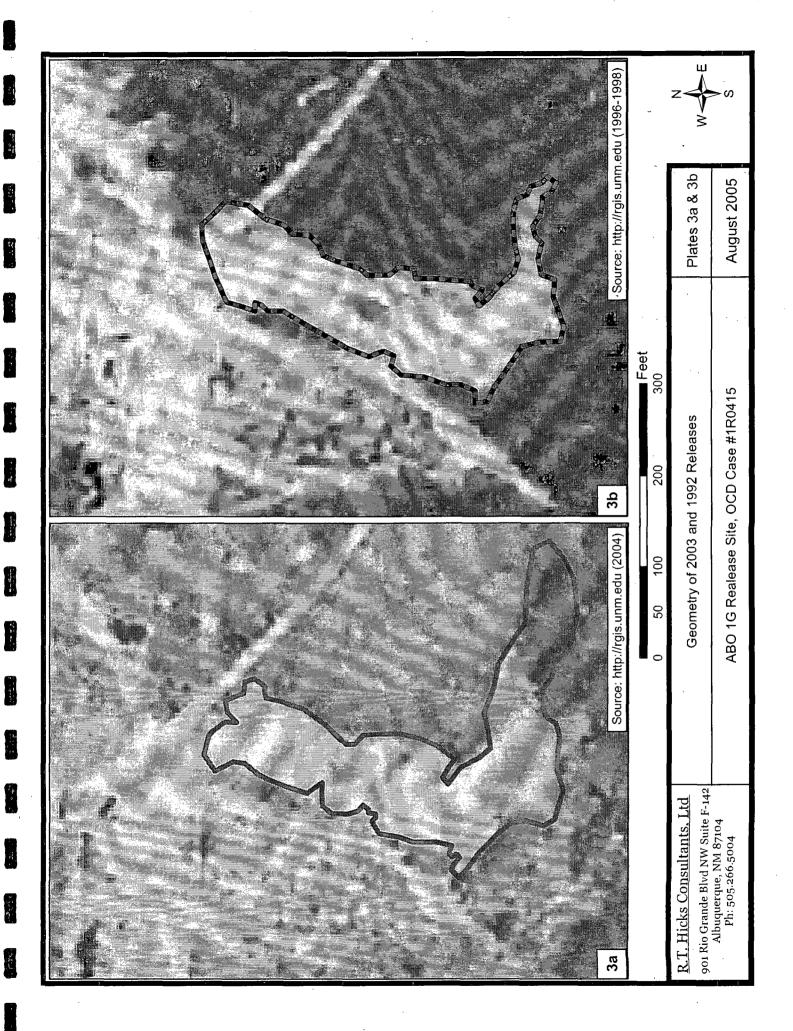
1 HOLE 1. IIIPUL I HIGHLELD JU JUNHHIMINI INTOMENING	1/10/40/11/2
Input Parameter	Source
1. Vadose Zone Thickness - 91 feet	Appendix A well logs
2. Vadose Zone Texture - Plate 6	Samples and attached well logs
3. Dispersion Length - < 10%	Professional judgment
4. Soil Moisture	HYDRUS-1D initial condition simulation
5. Chloride in release - 19,994 ppm	Samples of produced water
6. Height of spill on land surface –1.0	Calculated from chloride load at sampling location SB-3
inches	and chloride in released water
7. Length of release parallel to ground water flow - 477 ft	Field Measurements
8. Climate – Arid	Pearl Weather Station near Hobbs Airport
9. Background Chloride in Ground Water - 100 ppm	Professional judgment
10. Ground Water Flux – 10 cm/day	Calculated from published data and the Lea Refinery Report
11. Aquifer Thickness - 10 feet	NMOCD suggestion

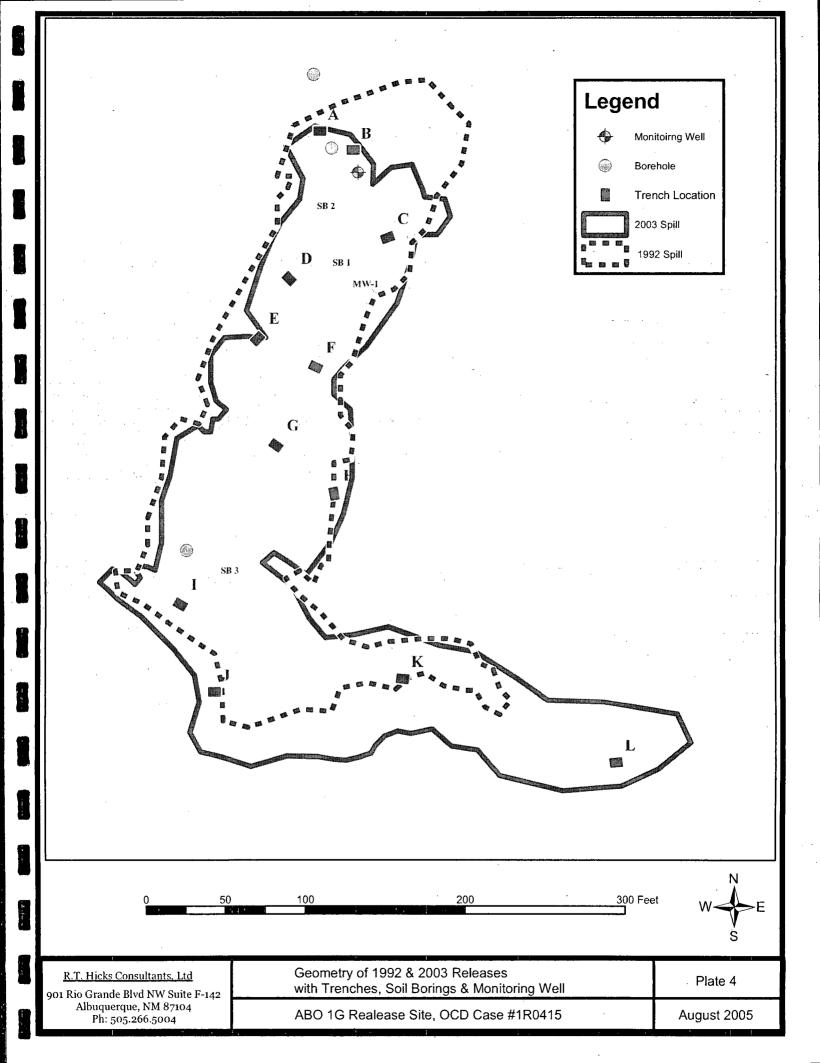
PLATES


1


1

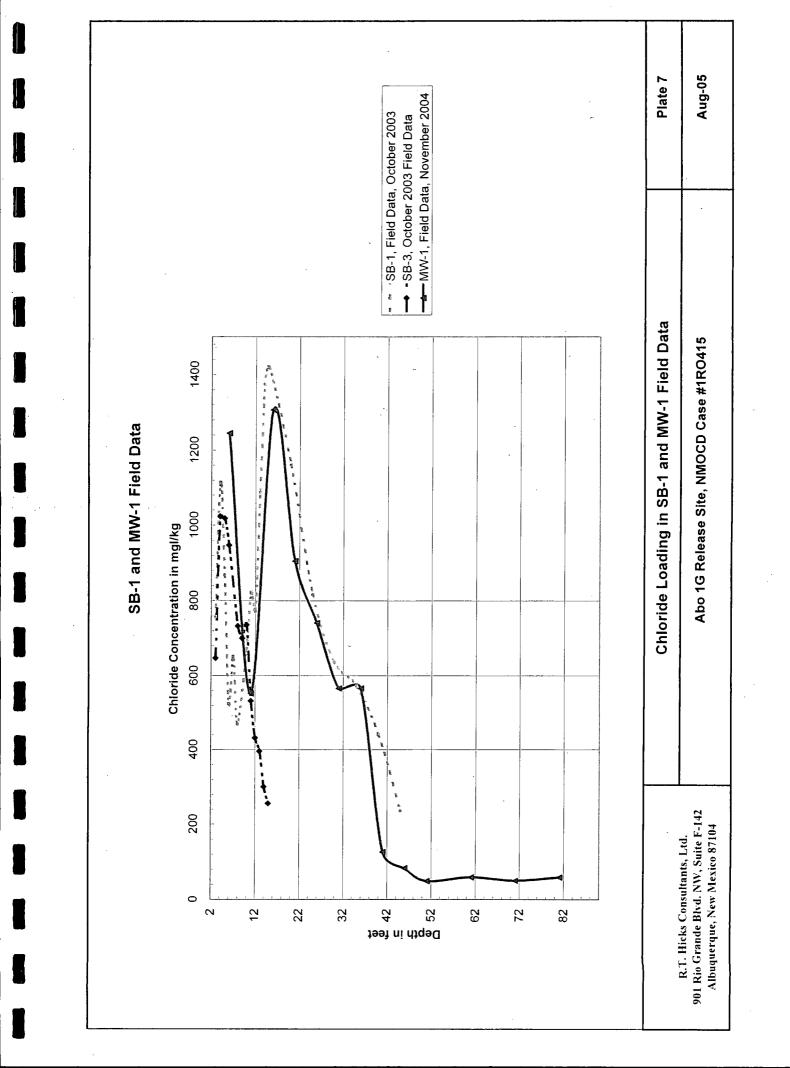
Ì

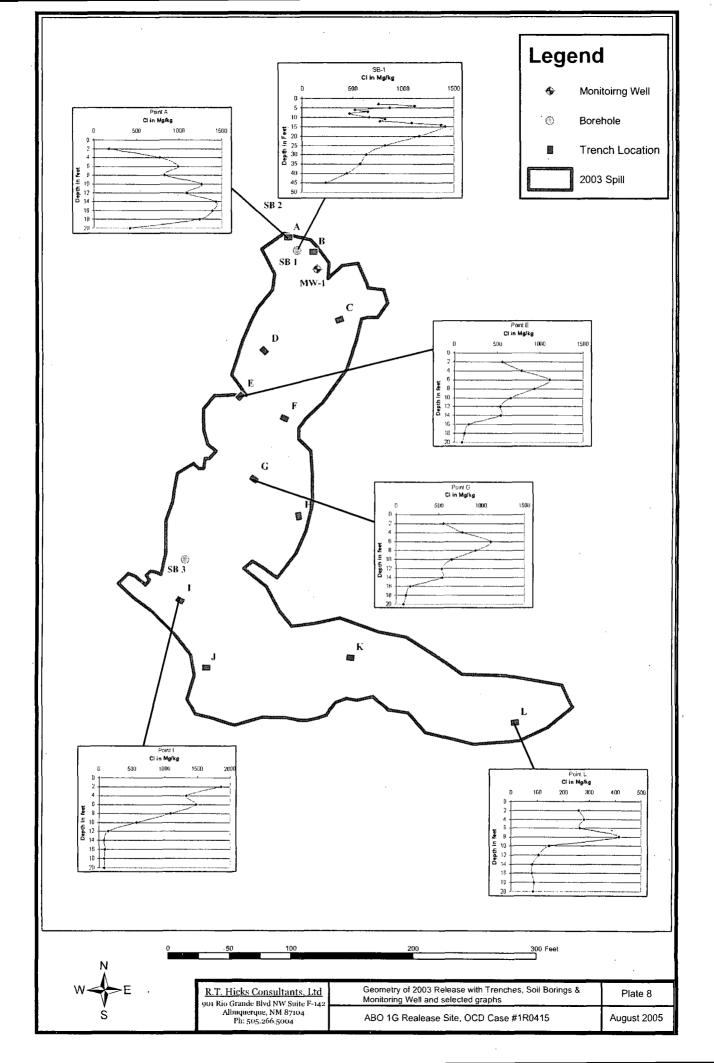

Directions: From Lovington, NM, proceed on Highway 18 for approximatly 5.3 miles. Head southwest on an unnamed dirt road (0.5 miles southeast of the Navajo Lea Refinery. Proceed on the dirt road for approximately 0.8 miles. Head south on an unamed dirt road for approximately 0.3 miles. Head east on an unnamed dirt road immediately south of a tank battery. Proceed east for approximately 550 feet. The spill site is on the south side of the road.

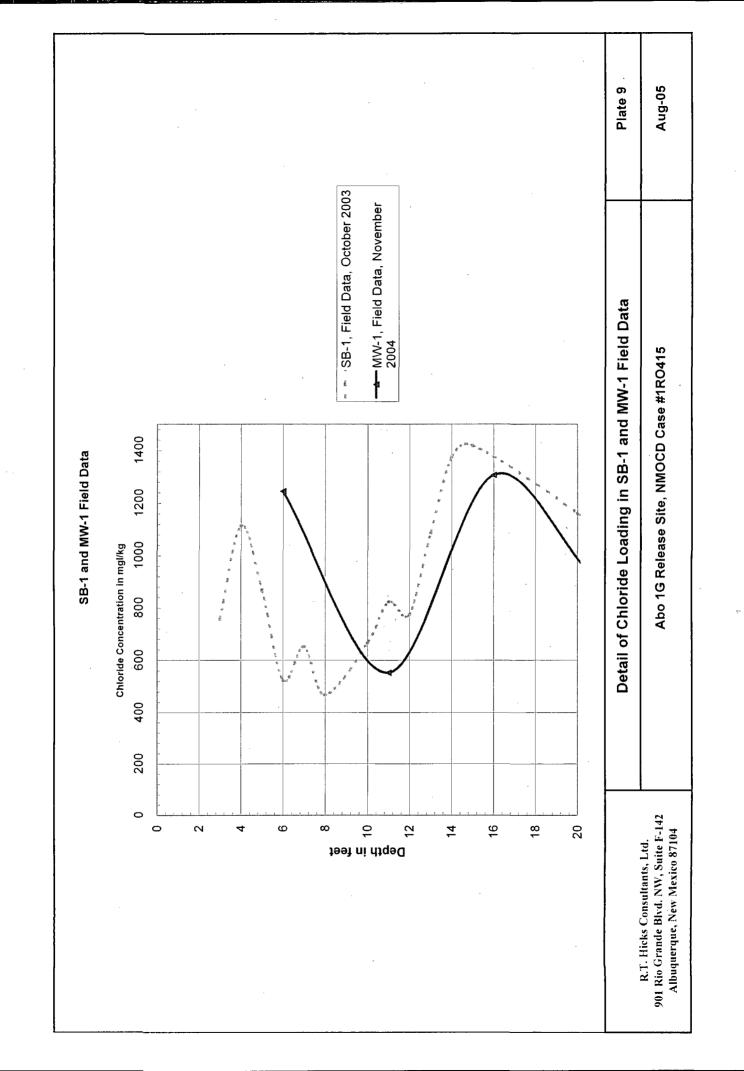

T

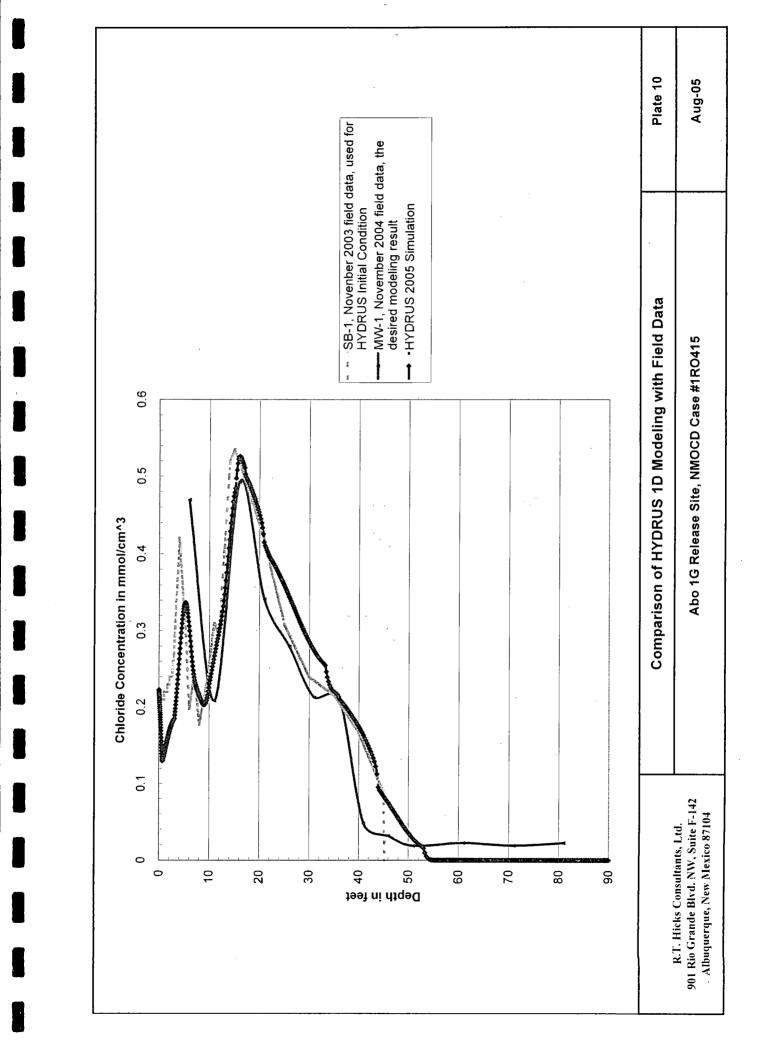
•

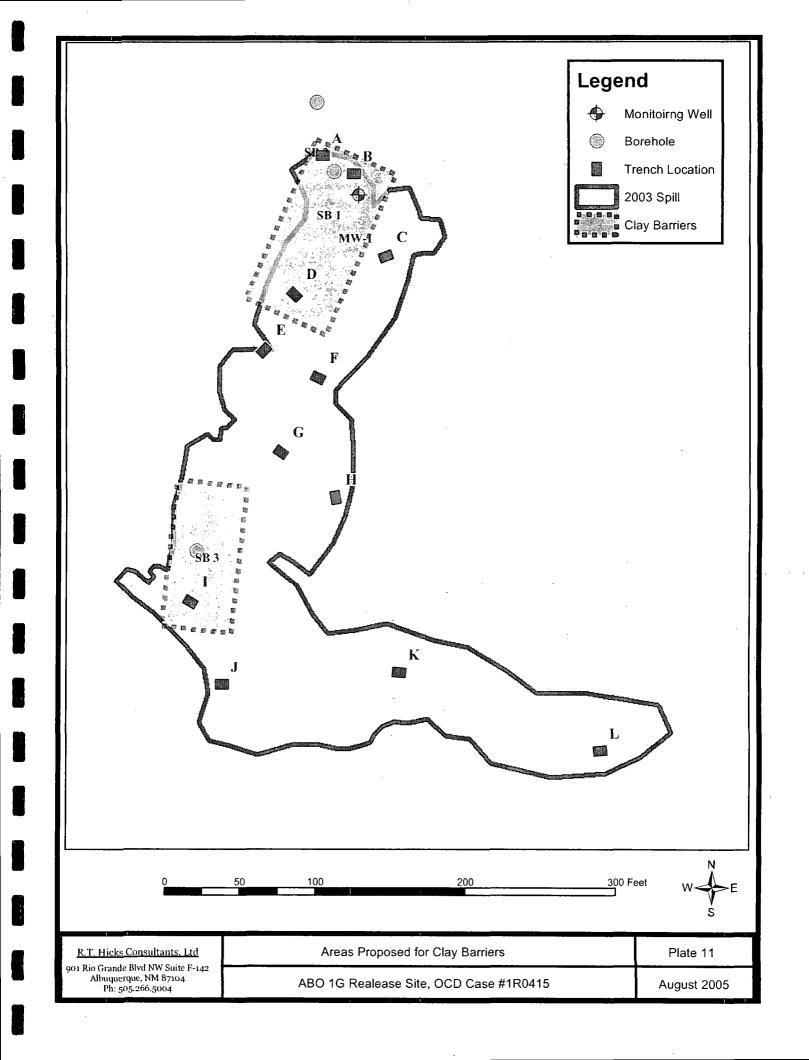
Depth	Lithologic Description	Measured Soil Chloride Bulk Density of Concentration mg/kg Sample kg/m3	Bulk Density of Sample kg/m3	Thickness of Column (ft)	Calculated Chloride Mass in Column (kg/m2)
0 facet	0-1ft Top Soil				
		525	1858	10	3.23
10 feet	1-22 ft Caliche				
20 feet		1088	1858	5	7.37
30 feet	22-31 ft	1161	1858	വ	3.57
	Sand & Caliche	636	1858	4	1.57
40 faat	31-45 ft Sand	573	1858	7	2.47
	000	236	1858	2	1.02
		Calculat	Calculated Chloride Load		19.22
R.T. Hicks Consultants 901 Rio Grande NW	RIC	RICE Operating Company		Ē	Plate 5
Albuquerque, NM	Soil Bore #1 - Calcu Lea C	Calculation of Chloride Load, Abo Leak, Lea County, New Mexico	I, Abo Leak,	AL	Aug-05


· · · ·


·


l


1.


	Logger:	David Hamilto		Client:			Well ID:			
	Driller:	Eades Drilling]		ROC		{			
	Method:	Air Rotary		Project Name:						
	tart Date:	11/5/2004			e LA 1-G I	Release Site		I A . BANA/ 4		
E	End Date:	11/6/2004		Location:	176 205	Lipit 10	LA MW-1			
				Section 1	, 17S, 36E		ł			
							1			
	212 C			<u> </u>			L			
Depth					T.			Field data		
(feet)	Des	cription	Lithology	Comments	Well	Construction	Depth	Chloride mg/kg	PID	
0.0		e, 05 feet				Cement, 0	·····			
2.0		d, clay, .5 - 3 feet, tan		Hard drilling		3 feet				
4.0		che, 3 - 5 feet, tan				£ 14	1 1			
		nd, silt, some caliche, 5 -					6.0	1245	6.3	
8.0		ieet, tan								
10.0	Very fine grained sa	nd, silt, little caliche, 10 -					11.0	553	7.3	
12.0	15	feet, tan	Autorial Autorials							
14.0	Indurated ca	liche, 15 - 17 feet				. • ¹				
16.0	Very fine grained sa	nd, silt, little caliche, 17 -					16.0	1307	5.2	
18.0	2	0 feet								
20.0	Thin caliche layer	s in sand, 20 - 22 feet					21.0	905	8.2	
22.0										
24.0				1		1. N. N.	Į [
26.0		and, silt, 22 - 33 feet, tan				e 1.	26.0	741	1.1	
28.0	with re	ddish tinge		Samples fell out of spoon, collected						
30.0				spoon, collected with shovel		1. N. N.	31.0	493	0.8	
32.0						1.2	1			
34.0							1		1	
36.0		and, silt, caliche , 33 -44					36.0	566	0.8	
	eet, light tan. Well in	durated caliche layer from								
40.0	. 35 t	o 36 feet.					41.0	126	3.3	
42.0						Hydrated				
44.0						bentonite, 3-				
46.0	Very fine grained sa	ind, silt, 44 - 53 feet, tan				87 feet	46.0	83	2.0	
48.0	.,									
50.0		····				- 1. B	51.0	49	1.0	
52.0]]			
		id, silt, some caliche, 53 -					-			
56.0	60	feet, tan								
58.0	<u>.</u>									
60.0							61.0	59	2.4	
62.0	Very fine grained sa	and, silt, 60 - 67 feet, tan				- 1 C				
64.0		·····				·				
66.0	Indurated sar	d, silt, 67 - 68 feet		Hard drilling				•	1 .	
68.0				1						
70.0 72.0							71.0	50	2.9	
74.0										
76.0										
78.0							l l			
80.0						17. V. T	81.0	59	3.7	
	Very fine grained sa	nd, silt, 68 - 100 feet tan.							<u> 3.1</u>	
84.0		er below 83 feet.								
86.0	-									
88.0				·.		704	1 1			
90.0		•		·.			91.0	55	2.7	
92.0									1	
94.0										
96.0				Soil moist at 100			1		1	
98.0			11.1.1.1.1.1.1.1.1	feet						
100.0										
102.0									1	
104.0						Sand, 87	{ }		1	
106.0					\square	122 feet				
108.0				Hole was drilled					ļ	
110.0	Very fine grained s	and, silt, 100 - 122 feet		with water below						
112.0				100 feet due to borehole collapse					Į	
114.0				sorenole collapse					1	
116.0]	
118.0									1	
120.0					L				1	
122.0	- · · · · · · · · · · · · · · · · · · ·			L			Ll_	······································	1	
		0								
		<u>s Consultants, Ltd</u> lo Blud NW Suito E 142		ROC Lovi	ngton Ab	o 1-G Site		Plate 6		
		le Blvd NW Suite F-142 erque, NM 87104						-	. <u></u>	
		5-266-5004		Monito	ring Well	Boring		August 2005		
		J-200-2004		1			1			

APPENDIX A

ς.

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

	(A) Owner of well Jeck Gaythn
	Street and Number Fox 1021
	City Lovington State New Mexico
· · · · · · · · · · · · · · · · · · ·	Well was drilled under Permit No. <u>L=21=24-17/6</u> and is located in the <u>WW 14 NN 14 NS 554</u> of Section 2 Twp <u>17 5</u> Rge. <u>35 E</u>
	(B) Drilling Contractor Cayton & Porter License No. XD-183
# 5 00 730-20-13	Street and Number 865 1021
25 01 436-20-13 OPN 25- 11350	City Lovington State New Merico
0, 25- 1350	Drilling was commenced 5206. 19.55
	Drilling was completed

(Plat of 640 acres)

Elevation at top of casing in feet above sea level______Total depth of well_____145______ State whether well is shallow or artesian Shallow ______Depth to water upon completion____50____

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth	in Feet	Thickness in Feet	Description of Water-Bearing Formation
1	777	92	7.5	Water Sand
2				
3				
4				
5		1		

Section 3				RECOR	D OF CAS	iing		
Dia	Pounds	Threads	D	apth	Feet	Type Shoe	Perforations	
in.	1t,	in	Top	Bottom	1666	1996 5106	From	To
			1					
						1		· ·

Section 4

RECORD OF MUDDING AND CEMENTING

Methods Used	No. Sacks of	Tons	Diameter	n Feet	Depth in
	Cement	Clay	Hole in in,	To	From
	· · · ·				+
	·				
······································	 				
	ļ				i

Section 5

PLUGGING RECORD

Name of Plugging Contractor	License No	
Street and Number		
Tons of Clay used	edType of roughage	
Plugging method used	Date Plugged	
Plugging approved by:	Cement Plugs were placed as follows:	

	No.	Depth	n of Plug	No. of Sacks Used
Basin Supervisor		From	To	NO. OI SECAS USED
FOR USE OF STATE ENGINEER ONLY			<u> </u>	
Date Received				
OFFICE PSIG REPART TO PERMIT				
File No. <u>(- 2490 1716</u> Use <u>Use</u>	ig	Ľ	ocation No.,	12362

T

ļ

Section 6

Ē

LOG OF WELL

Depth in	Feet	Thickness		1
From	To	in Feet	Color	Type of Material Encountered
0]	t		-Sα13
	- 7	6		Rock
7		9		Galiche
16	20	4		Boulder
20	26	6		Sand Rock
26	1,5	30		Sand
1:5	70	25		Water Sand
70	77	7		Galcium Sand
77		15		Quick Send
	106	14	· · · · · · · · · · · · · · · · · · ·	Sandy Clay
<u>92</u> 106	3.08 ·	2	· · · · · · · · · · · · · · · · · · ·	Sand
108	112	· Ą	· · · · · · · · · · · · · · · · · · ·	Rook
172	134	- 22		Sandy Clay
134	7.53	0	·	Sand
743	11.5	2		Sandy Clay
			· · · · · · · · · · · · · · · · · · ·	
			•	
	•	· · ·		
			· · · · · · · · · · · · · · · · · · ·	
-			·····	

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Well Driller

LOG FILED

(This form to be executed in triplicate)

WELL RECORD

WELL RECORD	enveloped L-4058
Date of Receipt	Frh 2
Name of permittee, Louington-Hunicipal-Utilities	
Street or P.O.,	· .
1. Well location and description: TheShallowwell is located in	
LOC-9	p of
casing above sea level, <u>3979</u> fcet; diameter of hole, <u>16</u> inches; total depth, <u>127</u>	feet;
depth to water upon completion,	2,
and completed. June is	
Roy 1004 ; Address, Lovington, N.M. ; Driller's License No. KD 35	
2. Principal Water-bearing Strata:	

Depth in Feet From | To Thickness Description of Water-bearing Formation No. 1 59 58 2 Water Sand No. 2 2 Water Sand 71 69 No. 3 ... Judick Sand & Water 86 1, 82 Na. 4 Mater Sand & Shale 172 116 No. 5

3. Casing Record:

in inches	por ft.	Threads per loch	Top	Boltom	Feel of Cosing	Type of Shoe	Perforatio From	To To
,	••••••				•• •••••			
						10	BRENN	15
						N	Rond (1g
						- عبا		Υζ
							OCT 27 19	52
			····	.,	••• ••••••••••••••••••••••••••••••••••	STA	TE ENGI	A 1
						EM		NE
							************	••••••
: •	۰.	•			•	namo and addres	•	
:	۰.	•			•	. •	•	
: •	۰.	•			•	. •	•	
:	۰.	•			•	. •	•	
:	۰.	•		, Range	· · · · · · · · · · · · · · · · · · ·	Damo and eddres	ss of plugging e	ontrac
Seation	۰.	, Townsh	lp	, Range	dascribe how	. •	ss of plugging e	ontract
Section		, Townsh		, Range	· · · · · · · · · · · · · · · · · · ·	vell was plugger	ss of plugging e	ontrac
Seation		, Townsh	lp	, Range	dascribe how	vell was plugger	as of plugging e	ontract
Section		, Townsh	lp	, Range	dascribe how	vell was plugge	as of plugging c	ontrac
Seation		, Townsh	lp	, Range	describe how	vell was plugge	as of plugging e	ontract
: Section		, Townsh	1p	, Range	describe how	vell was plugge	as of plugging c	ontract

÷

ł

5. Log of Well:

lispíi From	in feet To	Thickness in feet	Description of Formation
0	2	2	Soil
2	26	24	Caliche & Line Shale
26	58	32	Sandy Shale
58.	59	1	Water Sand
59	69	10	Sand & Shale
6 9	71	5	Water Sand & Shale
71	82	11	Sand Shale with Streaks of Clay
82	86	4	Quick Sand & Water
86	112	26	Sand & Shale
112	116	<u>L</u>	Tight Water Sand & Clay Shale
116	127	11	Sandy Shale
		, , , , , , , , , , , , , , , , , , ,	
	-		
		·	
•			· · · · · · · · · · · · · · · · · · ·
	1	· ···	

Marian and an an and a

.

.

· . · · ;

The undersigned hereby certifles that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Î Land and the second Licensled Well Driller

Instructions

•. .

This form shall be excented, preferably typewritten, in triplicate and filed with the State Engineer's Office at Roswell, New Mexico, within 10 days after drilling has been completed. Data on water-bearing strata and on all formations encountered should be as complete and accurate as possible.

(This form to be executed in triplicate)

÷

WELL RECORD

0

 $\overline{}$

Date of Receipt					Permit	No. L=3	265
Name of permitte	. Erne	st Mahan	-	•			
				·			
Street or P.O.,			, City and Stat	e LOVIT	igton.,-		*****
1. Well location and	description: Th	e shallow (shallow or artes	ian)	located in	NW		NW
SW Ko	f Section 11	, Township	<u>16 s</u>	Ranga	<u>36 E</u>	; Eleva	tion of to
		feet; diameter of			•		
depth to water upo	on completion,	14.5feet; dri	lling was com	menced	Jan.	. 8	, 10_4 :
and completed	Ja	n. 9., 1948;	name of drill	ng contrac	tor_Abb	ott Br	05.
	; Ado	iress, Box 63.7.	, Hobbs,		Driller's Li	icense No.	WD-46
2. Principal Water-b	earing Strata:	•	*- -			• •	
				-			
From	in Fest To	Thickness	Dasc	ription of W	nter-hearing	Formation	·
No. 1 45	120		Wa	<u>iter sa</u>	Ind		
No. 2							
No. 3		·				- <u></u>	
No. 4							·
No. 5							
					<u> </u>		
3. Casing Record; Diameter Pou	nde Thrende	Depth of Oasing or Lin	er Feat of				forations
3. Casing Record;	j nds Thrends ft. per Indu	Dapili of Casing or Lin Top Botton	er Feat of a Casing	Туро о	1 Shoe	Per From	forations To
3. Casing Record: Diameter Pau In incluse per	j ndo Threnčs ff, por inoh	Depth of Oasing or Lin Top Botton	n Casing	Турь о	f 5h00		forations To
3. Casing Record: Diameter Pau In incluse per	ft. per inch	Top Botton	n Casing	Турь о :	f 5hoo		forations To
3. Casing Record: Diameter Pau In incluse per	ft. per inch	Top Botton	n Casing	Турь о	f Shee		forations To
3. Casing Record: Diameter Pau In incluse per	ft. per inch	Top Botton	n Casing	Турь о	1 5400		forations To
3. Casing Record: Dinmeter Pau In inches per	ft. per inch	Top Botton	n Casing	Туро о	1 Shoe		forations
3. Casing Record: Dinmeter Pau In inches per	ft. per inch	Top Botton	n Casing	Турь о	/ Shoe		forstions To
3. Casing Record: Dimmeter Pau in incluse per 	ft. per Inola	Top Botton		Τγρο ο	1 Shoe		foration# To
 Casing Record: Dinmeter Pau In inches per NONE NONE 4. If above construction 	ft. yer hold	Top Botton	a Casing	· · · · · · · · · · · · · · · · · · ·		From	To
 Casing Record: Dirumster Pau In inches Per NONE NONE 4. If above construction of the period of the period	ft. yeer knoh	Top Botton	n Casing	· · · · · · · · · · · · · · · · · · ·		From	To
 Casing Record: Dirumster Pau In inches Per NONE NONE 4. If above construction of the period of the period	ft. yeer knoh	Top Botton	n Casing	· · · · · · · · · · · · · · · · · · ·		From	To
 Casing Record: Diameter Paulin inclose per set NONE 4. If above construction of Section	ft. yer hold	Top Botton	n Casing	· · · · · · · · · · · · · · · · · · ·		From	To
 Casing Record: Diameter Fau In inches per NONE 4. If above construction of Section	ft. per Inola	Top Botton	n Casing	· · · · · · · · · · · · · · · · · · ·		From	To
 Casing Record: Diameter Fau In inches per NONE 4. If above construction of Section	ft. yer hold	Top Botton	, give location	.; intre-Ri	¥,	From	To
S. Casing Record: Dinmeter Pau In incluse Pau NONE	ft. yer hold	Top Botton	, give location	.; intre-Ri	¥,	From	To
3. Casing Record: Dimmeter Pau In inches Pau NONE 4. If above construction of Section	ft. yer hold	Top Botton	, give location	.; intre-Ri	¥,	From	To

1 2012211

OTFICE ARTESIAN WELL SUPERVISOR ROSWELL, NEW MEXICO 5. Log of Well:

Depth in feet Thickness From To in feet		Thickness in fest	Description of Formatian				
0	4	4	Soil				
4	*35 ³³⁴	31	Caliche				
35	45	10	Hard shell				
45	120	75	Water sand				
			· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · ·						
		• •.					
		······					
		· · · · · ·	;				
			· · · · · · · · · · · · · · · · · · ·				
			•				
			· · · · · · · · · · · · · · · · · · ·				

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

ed Well Driller a.

.. .

Instructions

This form shall be executed, preferably typewritten, in triplicate and filed with the State Engineer's Office at Roswell, New Mexico, within 10 days after drilling has been completed. Data on water-bearing strata and on all formations encountered should be as complete and accurate as possible.

YYELL	neuunu

			Section 1.	. GENERAL	INFORMATION	I		
(A) Owner of	well Huld	<u>la Heide</u>	1				s Well No	
Street or I	ost Office Ad	dress 10	18 West , New No	<u>Avenue</u>	<u>K</u> 88260			
Well was drilled	under Permit	No. 1-135	enlarg	ea 1-12	^{5S} and is located	I in the:		
<u> 115 - 115 </u>	<u>%</u> %		NW ¼ of Se	ction <u>1</u>	<u> </u>	165 Rang	e <u>36E</u>	м.м.р.м.
c. Lot No Subdiv	ision, recorde	of Block No. d ín	Lea	of t	he County.	······		
					N.M. Coordinate	System		
						License No		
Address <u>P</u> .	O, Bos	637, Hol	obs, New	Mexico	88240	:		
Drilling Began _	3/17/	7.7 Con	pleted	3/22/77	Type tools	Cable	Size of hole	<u>16</u> іл.
Elevation of lan	d surface or _	, 		at w	vell is	ft. Total depth (of well 146	ít.
Completed well	is 🕅 s					r upon completion	of well <u>58</u>	ft,
Depth i	n Engt	7		CIPAL WAT	ER-BEARING S	TRATA	T-41	
From	To	Thicknes in Feet		Description o	of Water-Bearing	Formation	Estimated (gallons per r	
58	146	88	San	, д				
				<u></u>				
					<u> </u>			
			Sectio	л 3. RECOR	D OF CASING			
Diameter	Pounds	Threads		in Feet	Length	Type of Shoe	Perfor	rations
(inches)	per foot	per in.	Тор	Bottom	(feet)		From	To
12 3/4	43	Welded	0	146	146	None	66	146
	,,							
		Seci	ion 4. RECO	RD OF MUD	DING AND CEN	IENTING		
Depth i		Hole	Sac	ks	Cubic Feet		d of Placement	 ,
From	To	Diameter	of M	<u>ud</u>	of Cement		·····	
						······	•	·
		····						
11		1	<u> </u>	l		:		

k

Section 5. PLUGGING RECORD

Plugging Contractor			Depth in Feet		Cubic Feet
Plugging Method	No	Top .	Bottom	of Cement	
Date Well Plugged		- l i			
Plugging approved by: -	- .			· ·	
Photo Do and Do		- 3			
State Engineer Repres	State Engineer Representative				
Date Received June 14, 1977	OF STATE ENGI	NEEK UNLI			
	Quad Supplem	iental	FWI		FSL
Y File No. L-135 & L-135-Enlgd-S	UseIrr		ocation No	16.36.11	
		·			: }

•

÷

Section 6. LOG OF HOLE							
	in Feet	Thickness	Color and Type of Material Encountered				
From	То	in Feet					
0	2	2	Surface soil				
22	26	24	Caliche				
26	58	32	Sand-tight				
58	112	54	Sand-water				
112	1.28	16	Sand-tight				
128	146	18	Sand-water				
		[
	· · · · ·		· · · · · · · · · · · · · · · · · · ·				
<u></u>		· · · · ·	· · · · · · · · · · · · · · · · · · ·				
	L	 	· · · · · · · · · · · · · · · · · · ·				
RR		<u> </u>					
	<u> </u>						
		Section .	7. REMARKS AND ADDITIONAL INFORMATION				
			10 2 J				

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

•• •

.

. . .

:

. . ..

Murrell Abbott Driller H.B

.

.

Form WR-23

STATE ENGINEER VELICE DELD ENGR. LOG

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

······		(A) Owner of well J. W. Taylor Jr.	
		Street and Number_D.Q.	
		City Hope S	
		Well was drilled anter Petthe Wes Enlgd . L. 135	
		Nellet Salle 14 Il. 4 of Section II Twp	
		(B) Drilling Contractor G. G. slevecee	_ License No. <u>N.D.79</u>
		Street and NumberBox 52 379	
		City <u>LOvington</u> S	tateHex
		Drilling was commenced. Max. 14	19.64
	ļ	Drilling was completed Eur. 16	

(Plat of 640 acres)

State whether well is shallow or artesian Shallow Depth to water upon completion 75

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth in Feet		Thickness in Feet	Description of Water-Bearing Formation
1	95	IIO	15	Small crystlized sand rock & quick sand
2				
3	1			·
4				·
5				

RECORD OF CASING Section 3 Perforations Depth Dia Pounds Threads Type Shoe Feet From in. ft. in Top Bottom Τo Not cased

Section 4

RECORD OF MUDDING AND CEMENTING

Depth in Feet From To		Diameter Hole in in.	Tons Clay	No. Sacks of Cement	Methods Used		
		IÓ			2 sacks of drilling web used to		
					hold quick sadd beck		
					while cleaning out well		

Section 5	PLUGGING RECORD		
Name of Plugging Contractor		License	No
Street and Number	City	State	
Tons of Clay usedT	ons of Roughage used	Type of roughag	ge
Plugging method used	Date	Plugged	19
Plugging approved by:	Cement	Plugs were placed	as follows:

······································	No.	Depth of Plug		No. of Coulor Head
Basin Supervisor	NO. 1	From	To	No. of Sacks Used
ACH IN LEMAUU FOR USE OF STATE ENGINEER ONLY		[]		
Date Received				
15:8 MA 01 YAM 4801			[
		NEW CONTRACTOR	an out of the second	ĨĨĨĊŎĸĬŦŦŦĊŎĬĬŎĸĨŎĸŦŦŦŦŦŎĬĊŎĊĊĊĊĸĸĸŦĿĸŦŦĬŦŦŦŦŎŎĬĬŎŎĸŎŎ
File No. L-135-Erled. Use	w.		ocation No	16.36.11.131

ction 6			LOG	OF WELL				
	in Feet	Thickness						
From	То	in Feet	Color	Type of Material Encountered				
_95	II0		red	small cgranlized saud rock				
		÷	· · · · · · · · · · · · · · · · · · ·					
••••••	<u> </u>							
	<u> </u>							
				· · · · · · · · · · · · · · · · · · ·				
	+							
			·					
			·····					
		-		· · · · · · · · · · · · · · · · · · ·				
			~					
			_ <u>.</u>					
<u> </u>				1				
			,,,,,,					
,								
	1							

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

C. O. al bredge Well Driller

Revised June 1972

STATE ENGINEER OFFICE WELL RECORD

			· S	ection 1. GENE	RAL IN	FORMATIO	И			
(A)	0	n	<u>City of Loving</u> Idress <u>P.O.</u> Lovington, N	3ox 1268					Well No. <u>2</u> -	
Well	was drilled	l under Permit	No. L 9517							
	<u>1585</u>	EX AE V	SESW SW	% of Section_	3	Township .	165	Range	36E	N.M.P.M.
	b. Tract	Na	of Map No		of the					
			of Block No d in							
			feet, Y=							
(B)	Drilling (Contractor		ene Eades			License	No	WD982	
Add	ress		Rt., 4	Tahoka,	<u>Tx.</u>	79373	·			
Drill	ing Began	11-27-84	4 Complete	a <u>11-</u>	27-84	. Type tools .	Rotary		_ Size of hole.	8in,
Elev	ation of la	nd surface or _	·····	·····	_ at wel	l is	ft. Tota	depth of	welll	38 ft.
Com	plated wel	lis 🖾 s	hallow 🔲 artes	ian.		Depth to wat	сг црол сот	pletion of	well	56ft.
			Section	2. PRINCIPAL	WATE	BEARING	STRATA			
	Depth From	in Feet To	Thickness in Feet	Descrip	tion of V	Vater-Bearing	Formation		Estimated (gallons per	

From To in Feet			Description of Water-Bearing Formation	(gallons per minute)		
66	138	72	Brown water sand w/ sandstone stringers	30		
			•			

Section 3. RECORD OF CASING

Diameter	Pounds	Threads	Depth	Depth in Feet		(D	Perforations	
(inches)	per foot	per in.	· Top Bottom	Bottom	(feet)	Type of Shoe	From	To
5 3/4	160 psi,				134		118	138
5 3/4	Sch. 40 sto	el for	pitless add	pter	4			

Section 4. RECORD OF MUDDING AND CEMENTING

Depth in Feet		Hole	Sacks	Cubic Feet	
From	To	Diameter	of Mud	of Cement	Method of Placement
					· · · · · · · · · · · · · · · · · · ·
		ļ			
			1		

Section 5. PLUGGING RECORD

Plugging Contractor			· · · · · · · · · · · · · · · · · · ·	_			
Address		······		No.	Depth	in Feet	Cubic Feet
Plugging Method	· · · · · · · · · · · · · · · · · · ·	<u> </u>	i	INO.	Тор	Bottom	of Cement
Date Well Plugged				1		1	
Plugging approved by:				2			
·	State Engin	eer Representative		3			
			l	4		1	

FOR USE OF STATE ENGINEER ONLY

Date Received December 10, 1984

Quad _____ FWL ____ FSL ____

File No. L-9517

v

Hee Drinking/Sanitary 16.36.3.33244

. 1

		······	Section 6, LOG OF HOLE		
Depth From	in Feet To	Thickness in Feet	Color and Type of Material Encountered	1	
0	3	3	Top soil		<u></u>
3	15	12	Caliche		
15	21	6	Sandy clay		
21	40	19	Sandy clay & sandstone		
40	65	25	Sand & sandstone		
65	66	I	Hard sandstone		
66	138	72	Brown water sand		
-					
) L			
X.	<u>:</u>				
· · ·					
			<u>k 1.2 . (.</u>		
			-		
······		·			······
		· · ·			
		Section	7. REMARKS AND ADDITIONAL INFORMATION	DEC 10 8 22 AH 84	STAT
				0	SWELL, NH
				3 22	
					H ER

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Form	WR-25

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

			(A) Owne Street and	Number	150	X TROU		
					1	1-1000		Tilenty Tilesty Faur
			City				Stale .	
			Well was	drilled jyn 	der Permi	t No	16 ⁰	New Heriteo
			(B) Drillin	ng Contra	ctor	acy sacre Fy Ton	Lic	ense No
s s			Street and	Number	- SVI NERE	Carry I N.K		New Horleo 64 19.64 19.64
			City			Euril 8	State .	
	}		Drilling w	as comme	enced	hys	12-12	
(Pla	t of 640 :	icres)	Drilling w	as comple	ted			
levation :	at top of	casing in	feet above sea	level an			oth of well	164 55.
tate whet	ther wel	l is shallo	w or artesian_	51284.L.S		Depth to wa	ter upon comp	letion
ection 2			PRIM	CIPAL WA	TER REAR	NG STRATA		·
	Depth ir	Feet	Thickness in			cription of Water	Develop Develop	
No	From		Feet		•	ription of water	-Bearing Forma	lion
1	4.7 4.7	100	40		- Stand-			·
2 I I	-	120			जैल्ल्य		· ·	
3	38		<u> </u>			-Baad		
4	33	158	5	· · ·		- Sand	······································	
5		[·····			
	·····							
ection 3			is Der		D OF CAS	ING		
Dia 1 ^{.in} 3.in	Pounds	Thread	Top Top	Bottom	Feet	Type Shoe	From	forations
12 3.96	- <u>1</u>			<u>9 6.162</u>	164.F4		102	
		-						····
			·					
ection 4			RECOR	O OF MUD	DING AN	D CEMENTING	·	
	n Feet	Diamet Hole in		1	cks of ent	· ·	Methods Used	··· ·
From .	To	noie in		Cem		<u></u>	·	·····
<u>·</u>		<u>-</u>						
							·····	
			÷	+				
		· 1						**
ection 5				PLUGG	ING RECO	DRD	•	
								No
		r						
•			Tons of R	oughage u				8
•:	•	ised	· · ·			Date Plu		19
lugging a	pproved	by:			·	Cement Plu	gs were placed	as follows:
;	·.		 		No.	Depth of P	No.	of Sacks Used
0.0000000000000000000000000000000000000			Basin Sup	e - me indie vebreitet		From	<u>'o</u>	
I	FOR USE	OF STAF	E ENGINEER OI	VLY		-		
		<u> 11.1011</u>	1530 1530 631 - 119 (12)	-		{		
Date Re	3612.	j: 133위						
	15	-8 MM 83	2 2191 1361					
	26						in the second state of the	
		53,56						

;

Section	6
---------	---

LOG OF WELL

*

Denth	in Fost	Thiolmore				
From	in Feet	Thickness in Feet	Color	Type of Material Encountered		
0	1	1 ît.		Soil		
1.	1 4	3 ft.	Rock			
17	18	14 ft.		Caliche		
18	62	44 It.	· · · · · · · · · · · · · · · · · · ·	Sand		
62.	70	8 ft:.		Sand Stone		
70	84	14 IV.		Sand		
84	98	14 ft		Sand & Calcum		
98	112	14 ft		Sandy Clay		
112	120	8 ît.		Sand		
120	138	18 ît,		Sandy Clay		
1.38	146	8 ft.		Water Sand		
146	153	7 ft.		Sandy Clay		
153	158	5 ft.		Sand		
158	164	6 ft.		Sandy Clay		
				· · · · · · · · · · · · · · · · · · ·		
			·			
				•		
<u></u>						
			·			
<u></u>						
	ļ					
			-			
	<u> </u>					
	1	1				

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Una of Bar Acore Well Driller

.....

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

(A) Owner of well City of Invington Street and Number_ New Next of City Lovington State Well was drilled under Permit No. and is located in the 168 Rge. 16 L BR 14 BR 14 BE 14 of Section 10 Twp... (B) Drilling Contractor Carton Drigs Cos License No Des 1021 Street and Number_ Kent Harting City Landberge State 19.58 Juna 36 Drilling was commenced. 19.58 Juns 28 Drilling was completed. (Plat of 640 acres)

204 240 Elevation at top of casing in fect above sea level Total depth of well. 66 £6. Shallow Depth to water upon completion. State whether well is shallow or artesian.

PRINCIPAL WATER-BEARING STRATA Section 2

No	No. Depth in Feet		Thickness in	Description of Water-Bearing Formation						
110.	From	To	Feet		· · -					
1	65	74	8	Water Build	-*					
2	82	90	8	Quisk Seas						
3										
4						· · ·				
5										

RECORD OF CASING Section 3

Dia	Pounds	Threads	Threads Depth		Feet	Feet Type Shoe	Perforations		
in.	ít.	in	Top	Bottom	rcet	Type pupe	From	То	
7 5200	26	8	Built	泉山	105	Active	65	100	
QaDo	-						· · · ·		
							· · ·		

RECORD OF MUDDING AND CEMENTING Section 4

Depth	in Feet	Diameter	Tons	No. Sacks of		Methods Used	
From.	To	Hole in in.	Clay	Cement		,	
之口	IC),	8 ine	200 ZW	0	Der Ule		
					;		
	1						

PLUGGING RECORD Section 5

Name of Plugging Contractor..... License No. City Street and Number____ State Tons of Clay used_____Tons of Roughage used__ _Type of roughage. Date Plugged_ Plugging method used___ 19 Cement Plugs were placed as follows: Plugging approved by:

	Basin Supervisor	No.	Depth From	of Plug	No. of Sacks Used
FOR USE	OF STATE ENGINEER ONLY		····· .		
Date Received	WI STE NY				L
File No. <u>2-39</u>					1636.10.413

ي منځونې وړو ورو ورو د او والې او د د د د و

				 A state of the second state of th				
Section 6			LOG C	DF WELL				
		Thickness	Color	Type of Material Encountered				
From	То	in Feet	<u></u>					
0				S#13				
		18	·	Catlobo				
20		8		Ugaldage				
			• • • • •					
66	- 74	8	·	Bahar Dans				
		8	·					
		8		Quicil Aand				
90	I II)	<u></u>		Sand				
		· · · · · · · ·						
		·						
		•						
<u> </u>								
			·	} 				
<u> </u>								
	·							
		[
	<u> </u>							
·····								
			·					
······		·						
:			. :					
· · · · · · · · · · · · · · · · · · ·								
·.····································								

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well

CATTOR WATER NELL DRILLING COMPLEX Poa

÷

Form WR-23

STATE ENGINEER OFFICE WELL RECORD

WELL RECORD INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1		• •	V 11 Lovington		
		(A) Owner of well			
		City			
		Well was drilled under Po			
		(B) Drilling Contractor	<u> 791 - 791 - </u>	Licen	se No
		Street and Number	Louington	N.	ay Door,
		- City	Kov. 27.	State	63
		Drilling was commenced.	Doc. 9,		19 62
(Plat of 040 acre	25)	Drilling was completed	00		216 Pt.
		197. 1 .			10

Elevation at top of casing in feet above sea leveling 1200 Total depth of well 66 The State whether well is shallow or artesian _____Depth to water upon completion_____

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth	in Feet	Thickness in	Description of Water-Bearing Formation
110,	Egam Ja		Feet	Bene -
1	82	94	10	Outer Sand
2	112	116	žų.	Send
3	132	1.37	Ţ	Sand
4	164	168	4	Sand 7
5	178	130	15	Send

RECORD OF CASING Section 3

Dia Founds.	" Threads	De	Depth Feet		Type Shoe	Perforations		
tif.	3/11 议组	in in	Top	Bottom	rect	туре вное	Brom	OT To
•								
	·	· ·						

Section 4

RECORD OF MUDDING AND CEMENTING

Depth in I	Feet	Diameter	Tons	No. Sacks of	Methods Used
From	To	Hole in in.	Clay	Cement	themony open
					·
			·····		······································
					· · · · · · · · · · · · · · · · · · ·

Section	5
Decidon	

PLUGGING RECORD

Name of Plugging Contractor_	Licens	e No
Street and Number	City State:	
Tons of Clay used	_Tons of Roughage usedType of rough	age
Plugging method used	Date Plugged	
Plugging approved by:	Cement Plugs were plac	ed as follows:

AH A HASBein Supervisor	No.	Depth From	of Plug To	No. of Sacks Used
FOR USE OF STATE ENGINEER ONLY JULIU JIMINI JUVIS				
Date Received :8 WY EI JEG 2961				
		{ ·		
File No. L 5014 Use Type	<u>,</u>	Lo	ocation No.	16.36.10.240

ł

· ••••

Sec	tion	6

LOG OF WELL

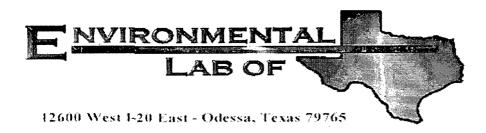
Depth in Feet Thickness			Color	Type of Material Encountered
From	To	in Feet		Type of Material Encountered
0	2	2		Soil
2	8	6		Clachie
8	12	4		Bolder
12	28	16		Clichie
28	70	42		Sandy Clay
70	7.6.	6		Water Sand
76	82	6	·	Sandy Clay
82	. 94.	12	<u></u>	Quick Sand
94	. 112	18		Sandy Clay
112	116	4		Sand
116	132	16		Sandy Clay
132	137	5		Sand
137	164	27		Sandy Clay
164	168	4		Sand
168	178	10		Sandy Clay
178	190	12		Band
190	205	15		Clay
205	215	10		Clay & Gravel
215	216	<u> </u>		Red Bed
		· · ·		LSELEV Depth to KTrc
				Depth to KTrc Elev. of KTrc
			······	
<u> </u>				Loc. No.
				Hydro, SurveyField Check
	· ·			

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Grady Backen Well Driller

SOURCE OF ALTITUDE GIVEN Interpolated from Topo. Shoet_____ Determined by Inst. Leveling_____ Other

16.36.10.240


2-5014

2 - 2

APPENDIX B

ß

~

Analytical Report

Prepared for:

Kristin Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: Lovington

Lab Order Number: 5H11001

Report Date: 08/23/05

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	08/23/05 10:09

ANALYTICAL REPORT FOR SAMPLES

l

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	5H11001-01	Water	08/10/05 09:30	08/11/05 07:45

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Pope	08/23/05 10:09

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (5H11001-01) Water									-
Benzene	ND	0.00100	mg/L	1	EH51609	08/16/05	08/16/05	EPA 8021B	
Toluene	ND	0.00100		u	"		**	"	
Ethylbenzene	ND	0.00100	"	"	"	"	11		
Xylene (p/m)	ND	0.00100	"			*	"		
Xylene (o)	ND	0.00100	*	*	н		"		
Surrogate: a,a,a-Trifluorotoluene		105 %	80-12	0	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-12	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Project Manager: Kristin Pope

Reported: 08/23/05 10:09

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (5H11001-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	159	2.00	mg/L	1	EH51208	08/11/05	08/11/05	EPA 310.2M	
Chloride	91.1	2.50		5	EH51906	08/15/05	08/15/05	EPA 300.0	
Total Dissolved Solids	603	5.00	•	ł	EH51210	08/16/05	08/17/05	EPA 160.1	
Sulfate	66,3	2.50		5	EH51906	08/15/05	08/15/05	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Pope	08/23/05 10:09

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (51111001-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	99.1	0.100	mg/L	10	EH51103	08/11/05	08/11/05	EPA 6010B	
Magnesium	15.3	0.0100	**	"	"		11		
Potassium	4.87	0.0500		1	"	•			
Sodium	56.5	0.100		10		"	"		

Environmental Lab of Texas

. The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Pr	oject: A	BO-Apache	LA Leak	Site			Fax: (505) 397-147
122 W. Taylor			•	one Given					Repo	rted:
Hobbs NM, 88240		Project Ma	inager: K	ristin Pope					08/23/0	5 10:09
	0	rganics by	GC	- Qualit	y Conti	rol				
		Environm	ental	Lab of	Texas					_
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
				Level			.			
Batch EH51609 - EPA 5030C (GC) Blank (EH51609-BLK1)				Prepared	& Analyz	ed: 08/16/0	<u> </u>			<u>_</u> .
Benzene	ND	0.00100	mg/L	Tieparea						
Toluene	ND	0,00100	"							
Ethylbenzene	ND	0.00100								
Xylenc (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100								
Surrogate: a.a.a-Trifluorotohuene	97.9		ug/l	100		97.9	80-120			
Surrogate: 4-Bromofluorobenzene	8].4		"	100		81.4	80-120			
LCS (EH51609-BS1)				Prepared	& Analyz	ed: 08/16/0.	5			•
3enzene	98.4		ug/l	100		98.4	80-120			
Foluene	97.0		"	100		97.0	80-120			
Ethylbenzene	106		"	100		106	80-120			
Xylene (p/m)	204			200		102	80-120			
Kylene (0)	104			100		104	80-120			
Surrogate: a,a,a-Trifluorotoluene	104		"	100		104	80-120			
Surrogate: 4-Bromofluorohenzene	95.4		"	. 100		95.4	80-120			
Calibration Check (EH51609-CCV1)				Prepared:	08/16/05	Analyzed:	08/17/05			
Benzene	94.2		ug/l	100		94.2	80-120			
foluene	94.5		•	100		94.5	80-120			
Ethylbenzene	106			100		106	80-120			
Nylene (p/m)	203			200		102	80-120			
Xylene (o)	109			100		109	80-120			
Surrogate: a,a,a-Trifluorotoluene	94.9		"	100		94.9	0-200			
Surrogate: 4-Bromofluorobenzene	102			100		102	0-200			
Matrix Spike (EH51609-MS1)		irce: 5111006		Prepared:		Analyzed:	08/17/05			
Benzene	91.6		ug/l	100	ND	91.6	80-120			
foluene	90.2			100	ND	90.2	80-120			
Ethylbenzene	101			100	ND	101	80-120			
Xylene (p/m)	191			200	ND	95.5	80-120			
Kylene (o)	102			100	ND	102	80-120			
Surrogate: a,a,a-Trifluorotoluene	91.5		"	100		91.5	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 10

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	08/23/05 10:09

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH51609 - EPA 5030C (GC)

Matrix Spike Dup (EH51609-MSD1)	Source: 5H	11006-01	Prepared:	08/16/05	Analyzed:	08/17/05		
Benzene	95.5	ug/l	100	ND	95.5	80-120	4.17	20
Toluene	94.5	n	100	ND	94.5	80-120	4.66	20
Ethylbenzene	106		100	ND	106	80-120	4.83	20
Xylene (p/m)	201	"	200	ND	100	80-120	4.60	20
Xylenc (0)	108	"	100	ND	108	80-120	5.71	20
Surrogate: a,a,a-Trifluorotoluene	82.3	"	100		82.3	80-120		
Surrogate: 4-Bromofluorobenzene	92.9	"	100		92.9	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

Rice Operating Co.		Pi	oject: A	BO-Apache	LA Leak	Site			Fax: (505) 397-147
122 W. Taylor		Project N	umber: N	one Given					Repo	rted:
Hobbs NM, 88240		Project Ma	anager: Ki	ristin Pope					08/23/0	5 10:09
Gen	eral Chemistry Par	ameters	by EP	A / Sta	ndard	Methods	- Quali	ty Cor	ntrol	
		Environm	ental	Lab of	Texas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH51208 - General Pi	reparation (WetChem)									
Blank (EH51208-BLK1)				Prepared	& Anałyz	zed: 08/11/0	5			
Total Alkalinity	ND	2.00	mg/L							
Duplicate (EH51208-DUP1)	Sour	ce: 5H11001	1-01	Prepared	& Analy:	zed: 08/11/0	5			
Total Alkalinity	0.00	2.00	mg/L		159				20	
Reference (EH51208-SRM1)				Prepared	& Analy:	zed: 08/11/0	5			
Bicarbonate Alkalinity	230		mg/L	200		115	80-120			
Batch EH51210 - General Pi	reparation (WetChem)									
Blank (EH51210-BLK1)				Prepared:	08/16/05	Anałyzed:	08/17/05			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EH51210-DUP1)	Sour	ce: 5H11001	-01	Prepared:	08/16/05	Analyzed:	08/17/05			
Total Dissolved Solids	628	5.00	mg/L		603			4.06	5	
Batch EH51906 - General Pi	reparation (WetChem)									
Blank (EH51906-BLK1)				Prepared	& Analyz	ved: 08/15/0	5			
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	n							
LCS (EH51906-BS1)				Prepared	& Analyz	red: 08/15/0	5			
Chloride	8.36		mg/L	10,0		83.6	80-120	·		
Sulfate	9.43			10.0		94.3	80-120			

Environmental Lab of Texas

I

I

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	08/23/05 10:09

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH51906 - General Preparation	(WetChem)							<u> </u>		
Calibration Check (EH51906-CCV1)				Prepared	& Analyze	d: 08/15/0	5			
Chloride	9.85		mg/L	10.0		98.5	80-120			
Sulfate	11.4		u	10.0		114	80-120			
Duplicate (EH51906-DUP1)	Sour	ce: 5H09007	-02	Prepared	& Analyze	d: 08/15/0	5			
Sulfate	122	5.00	mg/L		122			0.00	20	
Chloride	202	5.00	*		203			0.494	20	
						·				
	·									
				•						

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: ABO-Apache LA Leak Site Project Number: None Given

Fax: (505) 397-1471

Reported:

08/23/05 10:09

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Project Manager: Kristin Pope

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
						/MILEC	12111113			
Batch EH51103 - 6010B/No Digestion										
Blank (EH51103-BLK1)				Prepared	& Analyzed	l: 08/11/0	5			
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100								
Potassium	ND	0.0500								
Sodium	ND	0.0100	"							
Calibration Check (EH51103-CCV1)				Prepared a	& Analyzec	I: 08/11/0	5			
Calcium	1.95		mg/L	2.00		97.5	85-115			
Magnesium	2.17			2.00		108	85-115			
Potassium	1.90		"	2.00		95.0	85-115			
Sodium	1.84		"	2.00		92.0	85-115			
Duplicate (EH51103-DUP1)	Sou	rce: 51109005	5-01	Prepared a	& Analyzed	I: 08/11/0	5			
Calcium	148	0.500	mg/L		153			3.32	20	
Magnesium	24.3	0.0100			24.7			1.63	20	
Potassium	5.97	0.0500	"		5.92			0.841	20	
Sodium	80.0	0.100	"		81.4			1.73	20	

Environmental Lab of Texas

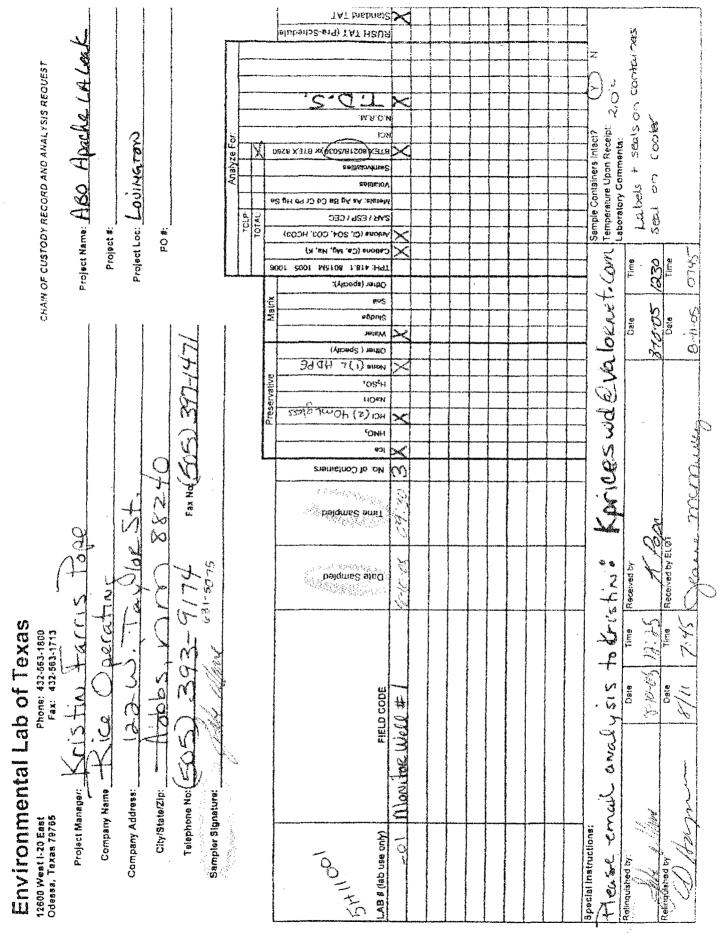
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

122 W.	erating Co. Taylor M, 88240	Project: ABO-Apache LA Leak Site Project Number: None Given Project Manager: Kristin Pope	Fax: (505) 397-1471 Reported: 08/23/05 10:09
		Notes and Definitions	-
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the reporting	limit	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate		

Report Approved By:

Raland Kestuch

Date: 8/23/2005


Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

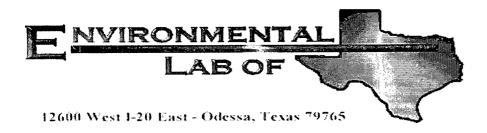
If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 10 of 10

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating</u>
Date/Time: 08-11-65 @ 0745
Order #: 5H11001
Initials: JMM


Sample Receipt Checklist

Temperature of container/cooler?	(Yes) No	1 2-0 C
Shipping container coolep in good condition?	(Yes) No	
Custody Seals intact on shipping container/cooler?	Ves No	Not present
Custody Seals intact on sample bottles?	Yes No	Not present
Chain of custody present?	Tes No	
Sample Instructions complete on Chain of Custody?	(Yes) No	
Chain of Custody signed when relinquished and received?	(Yes) No	
Chain of custody agrees with sample label(s)	(Yes) No	
Container labels legible and intact?	(YES) No	
Sample Matrix and properties same as on chain of custody?	(Yes) No	
Samples in proper container/bottle?	Yes No	
Samples properly preserved?	(Yes) No	
Sample bottles intact?	(Yes) No	
Preservations documented on Chain of Custody?	Ves No	
Containers documented on Chain of Custody?	VES NO	
Sufficient sample amount for indicated test?	((es) No	
Ail samples received within sufficient hold time?	(Yes) No	j
VOC samples have zero headspace?	Tes No	Not Applicable

Other observations: HI1001-01 Neutral pH. Ad 8/11/05

Variance Documentation:

Contact Person: Regarding:	Date/Time:	Contacted by:
Corrective Action Taken:		
		· · · · · · · · · · · · · · · · · · ·

Analytical Report

Prepared for:

Kristin Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Project Number: None Given Location: None Given

Lab Order Number: 5F16009

Report Date: 06/28/05

Rice Operating Co.Project: ABO-Apache LA LeakFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Kristin Pope06/28/05 14:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-I	5F16009-01	Water	06/16/05 09:42	06/16/05 15:20

Page 1 of 10

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Pope	06/28/05 14:04

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5F16009-01) Water									
Benzene	ND	0.00100	mg/L	1	EF51701	06/17/05	06/17/05	EPA 8021B	
Toluene	ND	0.00100			n	"			
Ethylbenzene	ND	0.00100	"	11	"	ч	n	**	
Xylene (p/m)	ND	0.00100	"	"		"		"	
Xylene (o)	ND	0.00100	"			11	u	"	
Surrogate: a.a.a-Trifluorotoluene		119 %	80-12)	**	**	**	15	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-12	2	"	"	"	"	

Environmental Lab of Texas

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	06/28/05 14:04

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte MW-1 (5F16009-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	153	2.00	mg/L	1	EF52213	06/22/05	06/22/05	EPA 310.2M	
Chloride	71.8	2,50	"	5	EF52001	06/17/05	06/17/05	EPA 300.0	
Total Dissolved Solids	389	5.00	н	1	EF52212	06/22/05	06/23/05	EPA 160.1	
Sulfate	84.0	2.50		5	EF52001	06/17/05	06/17/05	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor Projec	Number: None Given	Reported:
Hobbs NM, 88240 Project	Manager: Kristin Pope	06/28/05 14:04
	······································	

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5F16009-01) Water	<u></u>								
Calcium	69.2	0.100	mg/L	10	EF52114	06/21/05	06/21/05	EPA 6010B	
Magnesium	10.9	0.0100		"	•	"	n	n	a.
Potassium	4.70	0.0500	"	· 1			н		
Sodium	49.7	0,100		10	**	"			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

•

Rice Operating Co.		Pr	oject: A	BO-Apache	LA	Leak				Fax: (505) 397-147
122 W. Taylor			5	lone Given						Repo	rted:
Hobbs NM, 88240		•		ristin Pope					06/28/05 14:04		
······································	0	rganics by	GC	- Quality	y	Control					
		Environm	ental	Lab of '	Тe	exas					
		Reporting	· · · ·	Spike		Source		%REC		RPD	
Analyte	Result	Limit	Units	Level		Result	%REC	Limits	RPD	Limit	Notes
Batch EF51701 - EPA 5030C (GC)		<u> </u>					<u> </u>				
Blank (EF51701-BLK1)		·		Prepared	&	Analyzed:	06/17/05				
Benzene	ND	0.00100	mg/L								
Foluenc	ND	0.00100	n								
Ethylbenzene	ND	0.00100	**								
Xylene (p/m)	ND	0.00100	**								
Xylene (o)	ND	0.00100	"								
Surrogate: a,a,a-Trifluorotoluene	21.5		ug/l	20.0			108	80-120			
Surrogate: 4-Bromofluorobenzene	16.4		"	20.0			82.0	80-120			
LCS (EF51701-BS1)				Prepared	&	Analyzed:	06/17/05				
Benzene	98.2		ug/l	100			98.2	80-120			
l'oluene	99,0		**	100			99.0	80-120			
Ethylbenzene	89.8		n	100			89.8	80-120			
Xylene (p/m)	177		"	200			88.5	80-120			
Kylene (o)	82.1		"	100			82.1	80-120			
Surrogate: a,a,a-Trifluorotoluene	18.2		"	20.0			91.0	80-120			
Surrogate: 4-Bromofluorobenzene	19.0		"	20.0			95.0	80-120			
LCS Dup (EF51701-BSD1)				Prepared	&	Analyzed:	06/17/05				
Benzene	112		ug/l	100			112	80-120	13.1	20	
Foluene	113		*	100			113	80-120	13.2	20	
Ethylbenzene	103		"	100			103	80-120	13.7	20	
Kylene (p/m)	199		"	200			99.5	80-120	11.7	20	
Kylene (o)	94.3		*	100			94.3	80-120	13.8	20	
Surrogate: a.a.a-Trifhtorotoluene	20.1		"	20.0			100	80-120			
Surrogate: 4-Bromofluorobenzene	17.2		"	20.0			86.0	80-120			
Calibration Check (EF51701-CCV1)				Prepared	&	Analyzed:	06/17/05				
Benzene	112		ug/l	100			112	80-120			
foluene	112			100			112	80-120			
Ethylbenzene	108		"	100			108	80-120			
Sylene (p/m)	201		"	200			100	80-120			
(ylene (o)	93.6			100			93.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	20.7		"	20.0			104	80-120			
Surrogate: 4-Bromofluorobenzene	21.1		"	20.0			106	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope

Fax: (505) 397-1471

Reported: 06/28/05 14:04

Organics by GC - Quality Control

Environmental Lab of Texas

1											
			Reporting	4	Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF51701 - EPA 5030C (GC)

Matrix Spike (EF51701-MS1)	Source: 5	F17006-01	Prepared a	& Analyze	d: 06/17/0	05
Benzene	103	ug/l	100	ND	103	80-120
Toluene	114	*1	100	ND	114	80-120
Ethylbenzene	105	n	100	ND	105	80-120
Xylene (p/m)	203	н	200	ND	102	80-120
Xylene (o)	91.9	"	100	ND	91.9	80-120
Surrogate: a,a,a-Trifluorotoluene	20.6	"	20.0		103	80-120
Surrogate: 4-Bromofluorobenzene	20.0	"	20.0		100	80-120

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project N Project Ma	umber: No		LA Leak				Repo) 397-147 rted: 5 14:04
Genera	I Chemistry Para		•	'A / Star Lab of [*]		lethods	- Quali	ty Co	itrol	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF52001 - General Prepa	ration (WetChem)									
Blank (EF52001-BLK1)				Prepared	& Analyze	d: 06/17/05	;			
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	"							
LCS (EF52001-BS1)				Prepared	& Analyze	d: 06/17/05	;			
Chloride	11.5		mg/L	10.0		115	80-120			
Sulfate	11.1		"	10.0		111	80-120			
Calibration Check (EF52001-CCV1)				Prepared	& Analyze	d: 06/17/05	5			
Chloride	11.1		mg/L	10.0		111	80-120			
Sulfate	10.4		n	10.0		104	80-120			
Duplicate (EF52001-DUP1)	Sourc	e: 5F16004	-02	Prepared	& Anałyzeo	d: 06/17/05	;			
Chloride	90.7	2.50	mg/L	1	96.5			6.20	20	
Sulfate	70.2	2.50	н		76.0			7.93	20	
Batch EF52212 - Filtration Prep	aration									
Blank (EF52212-BLK1)				Prepared:	06/22/05	Analyzed:	06/23/05			
Fotal Dissolved Solids	ND	5.00	mg/L							
Duplicate (EF52212-DUP1)	Sourc	e: 5F16004	-04	Prepared:	06/22/05	Analyzed:	06/23/05			
Fotal Dissolved Solids	277	5.00	mg/L		276			0.362	20	
Batch EF52213 - General Prepa	ration (WetChem)									
Blank (EF52213-BLK1)				Prepared a	& Analyzed	d: 06/22/05	;			
Fotal Alkalinity	ND	2.00	mg/L							

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 7 of 10

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-147
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	06/28/05 14:04

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF52213 - General Prepar	ation (WetChem)									
Duplicate (EF52213-DUP1)	Sour	e: 5F16009	-01	Prepared	& Analyze	d: 06/22/0:	5			
Total Alkalinity	153	2.00	mg/L		153			0.00	20	
Reference (EF52213-SRM1)				Prepared	& Analyze	d: 06/22/0:	5			
Bicarbonate Alkalinity	230		mg/L	200		115	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope						Fax: (505) 397-14 Reported: 06/28/05 14:04				
	Total	Metals	by EPA Environn					Quality	Contr	ol		
Analyte		Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF52114 - 6010B/No Diges	tion											
Blank (EF52114-BLK1)					Prepared	Ŀ	Analyzed:	06/21/05				
Calcium	-	ND	0.0100	mg/L								
Magnesium		ND	0.00100									
Potassium		ND	0.0500									
odium		ND	0.0100	"		·						
Calibration Check (EF52114-CCV1)					Prepared	&	Analyzed:	06/21/05				
Calcium		1.94		mg/L	2.00			97.0	85-115			
Magnesium		2.14		•	2.00			107	85-115			
otassium		1.75			2.00			87.5	85-115			
Godium		1.73		"	2.00			86.5	85-115			
Duplicate (EF52114-DUP1)		So	urce: 5F16004	-01	Prepared	&	Anałyzed:	06/21/05				
Calcium		20.4	0.100	mg/L			21.8			6.64	20	
Aagnesium		19.6	0.0100				21.9			11.1	20	
Potassium		10.1	0.500				10,5			3.88	20	
odium			0.100				65.2			1.86	20	

Environmental Lab of Texas

ł

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope	Fax: (505) 397-1471 Reported: 06/28/05 14:04
		Notes and Definitions	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the reporting	limit	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate		

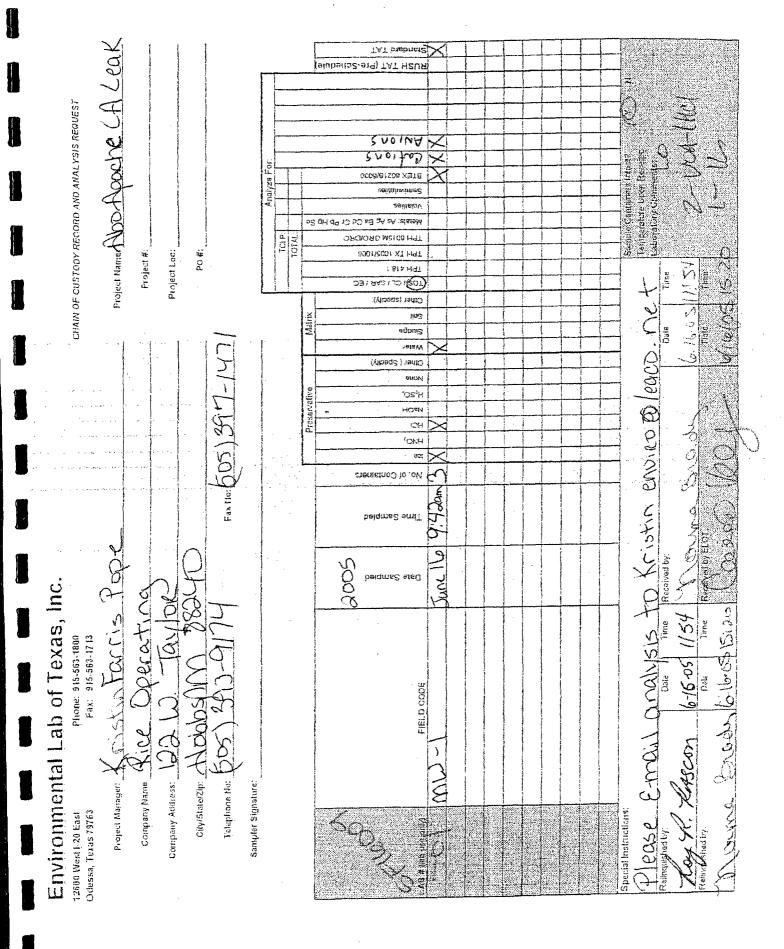
Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

6/28/2005

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Raland K Juli

Environmental Lab of Texas

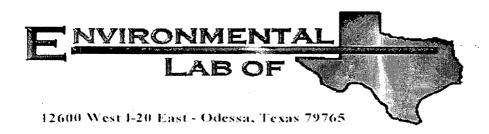
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

计关键 建氯 建设的 网络普尔的 法法律审判 化合金

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	lite	
Date/Time:	4/16/05	15:20
Order #:	SF16009	
Initials:	NK	


Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	(.o c)
Shipping container/cooler in good condition?	Yes	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Y29.	No	Not present
Chain of custody present?	Xes	No	
Sample Instructions complete on Chain of Custody?	Ves	No	
Chain of Custody signed when relinquished and received?	Yes	No	
Chain of custody agrees with sample label(s)	Yes	No	
Container labels legible and intact?	Yes	No	
Sample Matrix and properties same as on chain of custody?	105	No	
Samples in proper container/bottle?	YES,	No	
Samples properly preserved?	kes	No	
Sample bottles intact?	Ves	No	
Preservations documented on Chain of Custody?	Yes	No	
Containers documented on Chain of Custody?	(Yes)	No	
Sufficient sample amount for indicated test?	Yes)	No	
All samples received within sufficient hold time?	Xes	NO	
VOC samples have zero headspace?	XESI	No	Not Applicable

Other observations:

Variance Documentation:

Contact Person: Regarding:	Date/Time:	Contacted by:	
Corrective Action Taken:			
Confective Action Taken.			

Analytical Report

Prepared for:

Kristin Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Project Number: None Given Location: Hobbs

Lab Order Number: 5E24015

Report Date: 06/07/05

Rice O	perating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W.	Taylor Proj	ect Number: None Given	Reported:
Hobbs	NM, 88240 Proje	ct Manager: Kristin Pope	06/07/05 14:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	5E24015-01	Water	05/23/05 09:23	05/24/05 15:40

Page 1 of 10

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	06/07/05 14:09

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5E24015-01) Water		u							
Benzene	ND	0.00100	mg/L	1	EE52604	05/26/05	05/26/05	EPA 8021B	
Toluene	ND	0.00100	"	"	"	a a a a a a a a a a a a a a a a a a a	"	"	
Ethylbenzene	ND	0.00100	n	"	"		"	"	
Xylene (p/m)	ND	0.00100		н	"		"		
Xylene (o)	ND	0.00100	"	"	"	н	"	"	
Surrogate: a.a.a-Trifluorotoluene		98.0 %	80-12	0	"		"	"	
Surrogate: 4-Bromofluorobenzene		97.0 %	80-12	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5E24015-01) Water									
Total Alkalinity	170	2.00	mg/L	1	EE52509	05/24/05	05/24/05	ÉPA 310.2M	
Chloride	98.4	2.50	н	. 5	EE52703	05/27/05	05/27/05	EPA 300.0	
Total Dissolved Solids	573	5.00	۳.	1	EF50109	05/27/05	05/27/05	EPA 160.1	
Sulfate	82.2	2.50		5	EE52703	05/27/05	05/27/05	EPA 300.0	
	•	1 A.			· · ·				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	06/07/05 14:09

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5E24015-01) Water									
Calcium	78.3	0.100	mg/L	10	EE52518	05/25/05	05/25/05	EPA 6010B	
Magnesium	13.3	0.0100			"	n	Ħ	u	
Potassium	4.83	0.0500	. *	1	н			u	
Sodium	56.4	0.100		10		·	*	"	
		··· ·	•		··· · · ·				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

erating Co.		Pr.	niect Al	30-Apache	LA Leak				Fax: (505	5) 397-147
Taylor		Project Nu	-						Rend	rted:
IM, 88240		Project Ma							-	5 14:09
	0	rganics by			Contr				· · · ·	
	U	Environm				01				
		Reporting		Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
E52604 - EPA 5030C (GC)										
E52604-BLK1)				Prepared	& Analyze	d: 05/26/0:	5			
	ND	0.00100	mg/L							
	ND	0.00100	•							
e	ND	0.00100								
n)	ND	0.00100	۰.							
	ND	0.00100								
i,a,o-Trifluorotoluene	20.2		ug/l	20.0		101	80-120			
t-Bromofluorobenzene	17.1		"	20.0		85.5	80-120			
52604-BS1)				Prepared	& Anałyze	ed: 05/26/0:	5			
	93.7		ug/l	100		93.7	80-120			
	100		"	100		100	80-120			
e	102		**	100		102	80-120			
1)	205		*	200		102	80-120			
	101		"	100		101	80-120			
1.a.a-Trifluorotoluene	21.3		"	20.0		106	80-120			
l-Bromofluorobenzene	22.6		"	20.0		113	80-120			
n Check (EE52604-CCV1)				Prepared:	05/26/05	Analyzed:	05/27/05			
	87.9		ug/l	100		87.9	80-120			
	96.3		"	100		96,3	80-120			
2	98.2			100		98.2	80-120			
1)	197		"	200		98.5	80-120			
	96.2		"	100		96.2	80-120			
1,a.a-Trifluorotoluene	19.4		"	20.0		97.0	80-120			
I-Bromofluorobenzene	23.3		"	20.0		116	80-120			
oike (EE52604-MS1)	Sou	irce: 5E23014	-01	Prepared	& Analyze	ed: 05/26/0	5			
	95.4		ug/l	100	ND	95.4	80-120			
	101		*	100	ND	101	80-120			
e	100		"	100	ND	100	80-120			
n)	203			200	ND	102	80-120			
	98.2		*1	100	ND	98.2	80-120			
ı,a.a-Trifluorotoluene	19.8		"	20.0		99.0	80-120			
u,a.a-Trifluorotoluene 1-Bromofluorobenzene	19.8 20.3		"	20.0 20.0		99.0 102	80-120 80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	06/07/05 14:09

Organics by GC - Quality Control

Environmental Lab of Texas

									· · · · ·	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE52604 - EPA 5030C (GC)

Matrix Spike Dup (EE52604-MSD1)	Source: 5	E23014-01	Prepared a	& Analyze	d: 05/26/0)5		
Benzene	92.8	ug/l	100	ND	92.8	80-120	2.76	20
Toluene	97.3	"	100	ND	97.3	80-120	3.73	20
Ethylbenzene	98.9	"	100	ND	98.9	80-120	1.11	20
Xylene (p/m)	202		200	ND	101	80-120	0.985	20
Xylene (o)	99.1	**	001	ND	99.1	80-120	0.912	20
Surrogate: a.a.a-Trifluorotoluene	19.8	"	20.0		99.0	80-120		
Surrogate: 4-Bromofluorobenzene	21.8	"	20.0		109	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Р	roiect: A	BO-Apache	LA	A Leak				Fax: (50:	5) 397-147
122 W. Taylor			5	one Given						Repe	rted:
Hobbs NM, 88240	Project Manager Kristin Pope										5 14:09
General	Chemistry F	arameters Environn	•				thods -	Qual	ity Co	ntrol	2.4 <u>80</u> .
								<u> </u>			
Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE52509 - General Prepara	ation (WetChem)									
Blank (EE52509-BLK1)				Prepared	&	Analyzed:	05/24/05				
Fotal Alkalinity	ND	2.00	mg/L								
Duplicate (EE52509-DUP1)	S	ource: 5E1900	1-01	Prepared	&	Analyzed:	05/24/05				
Fotal Alkalinity	215	2.00	mg/L			214			0.466	20	
D. S				Droporad	8,	Analyzed:	05/24/05				
Reference (EÉ52509-SRM1)				ricpared	o.						
Reference (EES2509-SRMT) Bicarbonate Alkalinity	230		mg/L	200	a		115	80-120			
)	mg/L		a			80-120			
Bicarbonate Alkalinity)	mg/L	200		Analyzed:	115	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar:)	mg/L mg/L	200			115	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar: Blank (EE52703-BLK1)	ation (WetChem			200			115	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar Blank (EE52703-BLK1) Chloride	ation (WetChem	0.500	mg/L	200 Prepared	&		05/27/05	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar: Blank (EE52703-BLK1) Chloride Sulfate	ation (WetChem	0.500	mg/L	200 Prepared	&	Analyzed:	05/27/05	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar Blank (EE52703-BLK1) Chloride Sulfate LCS (EE52703-BS1)	ation (WetChem ND ND	0.500	mg/L "	200 Prepared Prepared	&	Analyzed:	115 05/27/05 05/27/05				
Bicarbonate Alkalinity Batch EE52703 - General Prepar Blank (EE52703-BLK1) Chloride Sulfate LCS (EE52703-BS1) Chloride	ation (WetChem ND ND 10.9	0.500	mg/L " mg/L	200 Prepared Prepared 10.0 10.0	& &	Analyzed:	115 05/27/05 05/27/05 109 99.9	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar: Blank (EE52703-BLK1) Chloride Sulfate LCS (EE52703-BS1) Chloride Sulfate	ation (WetChem ND ND 10.9	0.500	mg/L " mg/L	200 Prepared Prepared 10.0 10.0	& &	Analyzed: Analyzed:	115 05/27/05 05/27/05 109 99.9	80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar: Blank (EE52703-BLK1) Chloride Sulfate LCS (EE52703-BS1) Chloride Sulfate Calibration Check (EE52703-CCV1)	ation (WetChem ND ND 10.9 9.99	0.500	mg/L " mg/L	200 Prepared Prepared 10.0 10.0 Prepared	& &	Analyzed: Analyzed:	115 05/27/05 05/27/05 109 99.9 05/27/05	80-120 80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar Blank (EE52703-BLK1) Chloride Sulfate LCS (EE52703-BS1) Chloride Sulfate Calibration Check (EE52703-CCV1) Chloride	ation (WetChem ND ND 10.9 9.99 10.6 9.87	0.500	mg/L " mg/L "	200 Prepared 10.0 10.0 Prepared 10.0 10.0 10.0	&: &: &:	Analyzed: Analyzed:	115 05/27/05 05/27/05 109 99.9 05/27/05 106 98.7	80-120 80-120 80-120			
Bicarbonate Alkalinity Batch EE52703 - General Prepar Blank (EE52703-BLK1) Chloride Sulfate LCS (EE52703-BS1) Chloride Sulfate Calibration Check (EE52703-CCV1) Chloride Sulfate	ation (WetChem ND ND 10.9 9.99 10.6 9.87	0.500	mg/L " mg/L "	200 Prepared 10.0 10.0 Prepared 10.0 10.0 10.0	&: &: &:	Analyzed: Analyzed: Analyzed:	115 05/27/05 05/27/05 109 99.9 05/27/05 106 98.7	80-120 80-120 80-120	1.61	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	06/07/05 14:09

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF50109 - Filtration Preparation										
Blank (EF50109-BLK1)				Prepared &	Analyzed	: 05/27/05	;			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EF50109-DUP1)	Sour	ce: 5E24015	-01	Prepared &	Analyzed	: 05/27/05	;			
Total Dissolved Solids	567	5.00	mg/L		573			1.05	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

5

Rice Operating Co.			•	BO-Apache	LA L	.eak) 397-147
122 W. Taylor				one Given						Repo	rted: 5 14:09
Hobbs NM, 88240		Project Ma	anager: K	ristin Pope						06/07/0	5 14.09
	Total Metals	by EPA	/ Stan	dard Me	thod	ls - (Quality	Contro	ol		
		Environn	nental	Lab of	Texa	IS					
· · · · ·	Dk	Reporting	I	Spike		urce	%REC	- %REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Ke	sult	%REC	Limits	RPD	Lunit	Notes
Batch EE52518 - 6010B/No Diges	tion										
Blank (EE52518-BLK1)				Prepared	& An	nalyzed:	05/25/05				
Calcium	ND	0.0100	mg/L								
Magnesium	ND	0.00100	"			`					
Potassium	ND	0.0500									
Sodium	ND	0.0100	**								
Blank (EE52518-BLK2)				Prepared	& An	nalyzed:	05/25/05				
Calcium	ND	0.0100	mg/L								
Magnesium	ND	0.00100	*	-							
Potassium	ND	0.0500	•								
Sodium	ND	0.0100	*								
Calibration Check (EE52518-CCV1)				Prepared	& An	nalyzed:	05/25/05				
Calcium	1.86		mg/L	2.00			93.0	85-115			
Magnesium	2.10			2.00			105	85-115			
Potassium	1.93		**	2.00			96.5	85-115			
Sodium	2.18		"	2.00			109	85-115			
Duplicate (EE52518-DUP1)	So	ource: 5E19001	-01	Prepared	& An	nalyzed:	05/25/05				
Calcium	51.6	0.500	mg/L		56	5.0			8.18	20	
Magnesium	26.4	0.0100			27	7.2			2.99	20	
Potassium	5.70	0.0500	• '		5.	69			0,176	20	
Sodium	109	0.100	"		1	10			0.913	20	
Duplicate (EE52518-DUP2)	So	ource: 5E24016	5-01	Prepared	& An	nalyzed	05/25/05				
Calcium	. 90.2	0.100	mg/L		85	9.5			0.779	20	
Magnesium	50.6	0.0100	**		50	0.5			0.198	20	
Potassium	10.7	0.500	"	•	11	1.0			2.76	20	
Sodium	244	0.500	11		24	48			1.63	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

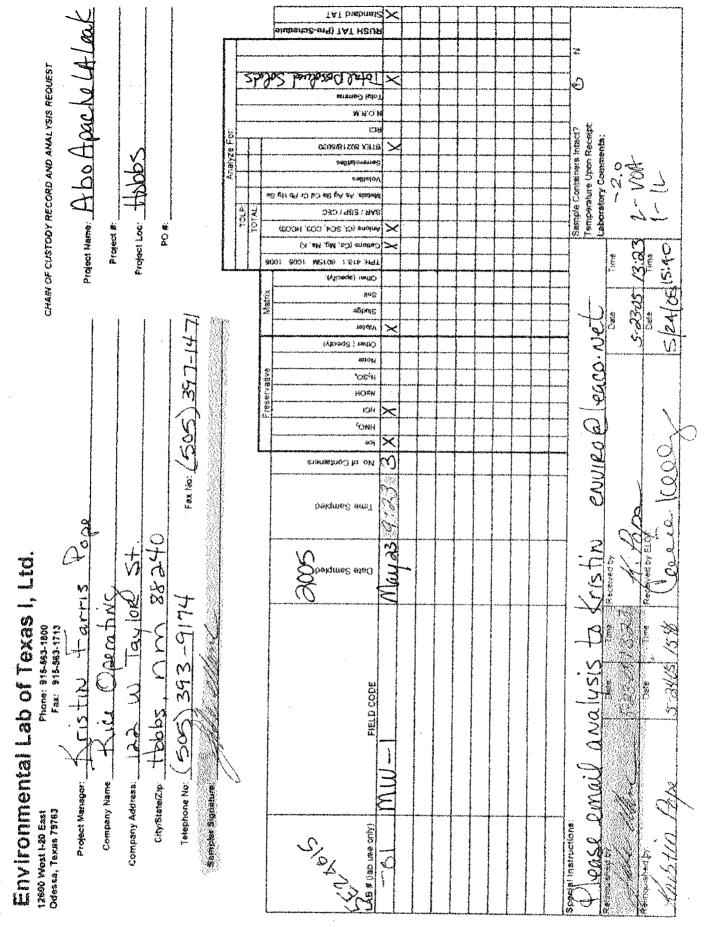
122 W.	perating Co. Taylor NM, 88240	Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope	Fax: (505) 397-1471 Reported: 06/07/05 14:09
		Notes and Definitions	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the rep-	orting limit	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate	- -	

Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

Date:

6/7/2005


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Kaland K Julies

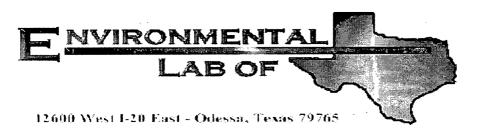
Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Pice Operating
Date/Time:	5/24/05 5:55
Order #:	SE24015
Initials:	CL

Sample Receipt Checklist


Temperature of container/cooler?	Yes	No	-20 C
			en v
Shipping container/cooler in good condition?	Yes	No	
Custody Seals intact on shipping container/ccoler?	YES	No	Not present
Custody Seals intact on sample bottles?	YES	No	Not present
Chain of custody present?	Kes	No	
Sample Instructions complete on Chain of Custody?	Yes	No	
Chain of Custody signed when relinquished and received?	Yes	No	
Chain of custody agrees with sample label(s)	tes	No	
Container labels legible and intact?	YES,	No	
Sample Matrix and properties same as on chain of custody?	Yes	No	
Samples in proper container/bottle?	Xes	No	
Samples properly preserved?	(es)	No	
Sample bottles intact?	Kesil	No	
Preservations documented on Chain of Custody?	Mes	No	
Containers documented on Chain of Custody?	Yes)	No	
Sufficient sample amount for indicated test?	Yes	No	
All samples received within sufficient hold time?	Yes	No	
VOC samples have zero headspace?	Yes	No	Not Applicable

Other observations:

Variance Documentation:

Contact Person:	-	Date/Time:	 Contacted	by:	
Regarding:					

Corrective Action Taken:

Analytical Report

Prepared for:

Kristin Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Project Number: None Given Location: Lovington

Lab Order Number: 5C02003

Report Date: 03/15/05

Rice Operating Co.Project: ABO-Apache LA LeakFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Kristin Pope03/15/05 12:19

ANALYTICAL REPORTFOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-I	5C02003-01	Water	03/01/05 14:10	03/01/05 18:45

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.	Project: ABC	D-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None	e Given	Reported:
Hobbs NM, 88240	Project Manager: Krist	tin Pope	03/15/05 12:19

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analys	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5C02003-01) Water			· · · ·						
Total Alkalinity	148	2.00	mg/L	1	EC50405	03/03/05	03/03/05	EPA 310.2M	
Chloride	120	2.50	"	5	EC50903	03/03/05	03/03/05	EPA 300.0	
Sulfate	91.8	2.50	'n	n	"	"	**		
MW-1 (5C02003-01RE1) Water									
Total Dissolved Solids	532	5.00	mg/L	1	EC50311	03/11/05	03/11/05	EPA 160,1	O-04. OC-08

Environmental Lab of Texas

The results inthis report apply to be samples analyzed inaccordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Ric	ce Operating Co.	Project:	ABO-Apache LA Leak	Fax: (505) 397-1471
122	2 W. Taylor	Project Number:	None Given	Reported:
Но	bbs NM, 88240	Project Manager:	Kristin Pope	03/15/05 12:19
<u>ц</u>			· · · · · · · · · · · · · · · · · · ·	

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyst	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5C02003-01) Water									
Calcium	85.2	0.100	mg/L	10	EC50412	03/03/05	03/04/05	EPA 6010B	
Magnesium	13.5	0.0100	*	н	"	n	"	n	
Potassium	5.10	0,100	"	2	н	**	"	n ⁻	
Sodium	48.3	0.100	"	10	u	**	n	\$ 1	

Environmental Lab of Texas

The results infus report apply to be samples analyzed inaccordance with the amples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Pope	03/15/05 12:19

Volatile Organic Compounds by EPA Method 8260B

Environmental Lab of Texas

Analyst	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5C02003-01) Water								<u>_</u>	
Benzene	ND	1.00	ug/l	1	EC50703	03/04/05	03/04/05	EPA 8260B	
Toluene	ND	1.00	•	"	"		-	n	
Ethylbenzene	ND	1.00		**	"	H	H	"	
Xylene (p/m)	ND	1.00	"	*	**	n	"	"	
Xylene (o)	ND	1.00	"	"	"	и	"	"	
Surrogate: Dibromofluoromethane		112 %	68-12	29	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		90.2 %	72-13	2	"	"	"	н	
Surrogate: Toluene-d8		104 %	74-11	8	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	65-14	10	"	"	"	"	

Environmental Lab of Texas

The results infhis report apply to be samples analyzed inaccordance with the amples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		P	roject: A	BO-Apache	LA Le	ak				Fax: (505	i) 397-147
122 W. Taylor				one Given						Repo	rted:
Hobbs NM, 88240		Project Ma	nager: K	ristin Pope						03/15/0	5 12:19
Genera	al Chemistry Para F		•	PA / Sta Lab of			nods	- Quali	ty Coi	ntrol	
		Reporting		Spike	Sour			%REC		RPD	
Analyst	Result	Limit	Units	Level	Resu		REC	Limits	RPD	Limit	Notes
Batch EC50311 - 410.4											
Blank (EC50311-BLK1)				Prepared:	03/02/0)5 Ana	lyzed:	03/03/05			
Fotal Dissolved Solids	ND	5.00	mg/L								
Duplicate (EC50311-DUP1)	Sourc	e: 5C02003	3-01	Prepared:	03/02/0)5 Ana	ilyzed:	03/03/05			
Total Dissolved Solids	1150	5.00	mg/L		108)	-		6.28	20	
Duplicate (EC50311-DUP2)	Sourc	e: 5C02003	3-01RE1	Prepared	& Ana	lyzed: 0	3/11/05				
Fotal Dissolved Solids	556	5.00	mg/L		532				4.41	20	
Batch EC50405 - General Prepa	aration (WetChem)			-							
Blank (EC50405-BLK1)				Prepared	& Ana	lyzed: 0	3/03/05				
Fotal Alkalinity	ND	2.00	mg/L								
Calibration Check (EC50405-CCV1)				Prepared	& Ana	lyzed: 0	3/03/05				
Carbonate Alkalinity	0.0500		mg/L	0.0500		1	00	80-120			
Duplicate (EC50405-DUP1)	Sourc	e: 5C02003	8-01	Prepared	& Ana	lyzed: 0	3/03/05				
Fotal Alkalinity	149	2.00	mg/L		148				0.673	20	
Batch EC50903 - General Prepa	aration (WetChem)										
Blank (EC50903-BLK1)			-	Prepared	& Ana	lyzed: 0	3/03/05				
Chloride	ND	0.500	mg/L	,		-					
Sulfate	ND	0,500									
LCS (EC50903-BS1)				Prepared	& Ana	lyzed: 0	3/03/05				
Chloride	10.2		mg/L	10.0			02	80-120		· ·	
Sulfate	10,5			10.0			105	80-120			

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Pope	03/15/05 12:19

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of T	l'exas
------------------------	--------

Analyt	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
, шауч				Bever	Result					
Batch EC50903 - General Preparation	(WetChem)									
Calibration Check (EC50903-CCV1)				Prepared	& Analyze	d: 03/03/0	5			
Chloride	10.5		mg/L	10.0		105	80-120			
Sulfate	10.8		"	10.0		108	80-120			
Duplicate (EC50903-DUP1)	Sourc	e: 5C02010	-01	Prepared	& Analyze	d: 03/03/0	5			
Sulfate	87.5	2.50	mg/L		87.9			0.456	20	
Chloride	529	10.0	"		577			8.68	20	

Environmental Lab of Texas

The results in this report apply to be samples analyzed inaccordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope						Fax: (505) Repor 03/15/05	ed:			
	Total Meta	-			ndard Me Lab of		Quality	Contro)		
Analys	Resul	-	porting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC50412 - 6010B/No Diges	tion								<u>_</u>		
Blank (EC50412-BLK1)					Prepared:	03/03/05	Analyzed:	03/04/05			
Calcium	NE)	0.0100	mg/L							
Magnesium	NE	• •	.00100	•							
Potassium	NE)	0.0500	"							
Sodium	NE)	0.0100								
Calibration Check (EC50412-CCV1)					Prepared:	03/03/05	Analyzed:	03/04/05			
Calcium	2.25	5		mg/L	2.00		112	85-115			
Magnesium	2.30)		"	2.00		115	85-115			
Potassium	1.85	5		"	2.00		92.5	85-115			
Sodium	1.82	2		"	2.00		91.0	85-115			
Duplicate (EC50412-DUP1)		Source: 5	B25005	-01	Prepared:	03/03/05	Analyzed:	03/04/05			
Calcium	104	ļ	0.100	mg/L		99.2			4.72	20	
Magnesium	38.9)	0.0100	м		41.0			5.26	20	
Potassium	10.8	3	0.500			11.1			2.74	20	
Sodium	267	7	1.00			252			5.78	20	

The results inthis report apply to he samples analyzed inaccordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240			Pr Project Nu Project Mar	mber: N		.A Leak				Repo	5) 397-147 rted: 5 12:19
	Volatile	Organic	Compounds Environm	-	PA Meth Lab of T)B - Q	uality (Control		
Analya		Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC50703 - EPA 503	BOC (GCMS))									
Blank (EC50703-BLK1)					Prepared &	Analyzed	l: 03/04/0	5			·
Benzene		ND	1.00	ug/l	· · · · · ·						
Toluene		ND	1.00								
Ethylbenzene		ND	1.00								
Xylene (p/m)		ND	1.00	•							
Xylene (o)		ND	1.00	•							
Surrogate: Dibromofluoromethane		50.5		"	50.0		101	68-129			
Surrogate: 1,2-Dichloroethane-d4		42.6		"	50.0		85.2	72-132			
Surrogate: Toluene-d8		48.6		"	50.0		97.2	74-118			
Surrogate: 4-Bromofluorobenzene		48.1		"	50.0		96.2	65-140			
LCS (EC50703-BS1)					Prepared &	k Analyzed	1: 03/04/0	5			
Benzene		55.7		ug/l	50.0		111	70-130			
Toluene		56,6			50.0		113	70-130			
Ethylbenzene		54.5			50.0		109	70-130			
Xylene (p/m)		95.6		*	100		95.6	70-130			
Xylene (o)		56.0		"	50.0		112	70-130			
Surrogate: Dibromofluoromethane		51.0		"	50.0		102	68-129			
Surrogate: 1.2-Dichloroethane-d4		47.6		"	50.0		95.2	72-132			
Surrogate: Toluene-d8		50.1		"	50,0		100	74-118			
Surrogate: 4-Bromofluorobenzene		50.2		"	50.0		100	65-140			
Calibration Check (EC50703-0	CCV1)				Prepared &	& Analyzed	I: 03/04/0	5			
Toluene	• •	54.0		ug/l	50.0		108	70-130			
Ethylbenzene		50.7		*	50.0		101	70-130			
Surrogate: Dibromofluoromethane		51.1		"	50.0		102	68-129			
Surrogate: 1,2-Dichloroethane-d4		44.2		"	50.0		88.4	72-132			
Surrogate: Toluene-d8		50.4		"	50.0		101	74-118			
Surrogate: 4-Bromofluorobenzene		48.6		"	50.0		97.2	65-140			

The results influs report apply to be samples analyzed inaccordance with the amples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope							Fax: (505) 397-1471 Reported: 03/15/05 12:19		
	Volatile Organi		inds by E onmental)B - Qı	uality (Control			
Analyt	Resu	Repor lt L	ting imit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch EC50703 - EPA 503	OC (GCMS)										
Matrix Spike (EC50703-MS1)		Source: 5C	02003-01	Prepared	& Analyzed	1: 03/04/05					
Benzene	56.	9	ug/l	50.0	ND	114	80-120				
Toluene	58.	8	"	50.0	ND	118	80-120				
Ethylbenzene	58.	3	"	50.0	ND	117	80-120				
Xylene (p/m)	10	4	"	100	ND	104	80-120				
Xylene (o)	58.	7		50.0	ND	117	80-120				
Surrogate: Dibromofluoromethane	51.	3	"	50.0		103	68-129				
Surrogate: 1,2-Dichloroethane-d4	48.	4	"	50.0		96.8	72-132				
Surrogate: Toluene-d8	50.	3	"	50.0		101	74-118				
Surrogate: 4-Bromofluorobenzene	49.	7	"	50.0		99.4	65-140				
Matrix Spike Dup (EC50703-N	4SD1)	Source: 50	02003-01	Prepared	& Analyzed	l: 03/04/05					
Benzene	56.	2	ug/l	50.0	ND	112	80-120	1.24	20	· · · · · ·	
Toluene	58.	1	"	50.0	ND	116	80-120	1.20	20		
Ethylbenzene	57.	.1		50.0	ND	114	80-120	2.08	20		
Xylene (p/m)	10	0		100	ND	100	80-120	3.92	20		
Xylene (0)	58.	4		50.0	ND	117	80-120	0.512	20		
Surrogate: Dibromofluoromethane	49.	2	"	50.0		98.4	68-129				
Surrogaic: 1,2-Dichloroethane-d4	47.	θ	"	50.0		94.0	72-132				

50.0

50.0

49.2

48.5

Environmental Lab of Texas

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

The results infhis report apply to be samples analyzed inaccordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

74-118

65-140

98.4

97.0

Page 9 of 10

122 W.	erating Co. Taylor M, 88240	Project Number: No	Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope			
		Notes andDefin	itions			
QC-08	Sample was originally analyzed within sample results. The sample was many the sample w	•	rmined that poitive interferences contribution nple.	suted to the		
O-04	This sample was analyzed outside	the EPA recommended holding	time.			
DET	Analyte IETECTED					
ND	Analyte NOT DETICTED to or basic them	eporting limi				

NR Not Reported

- dry Sample esults eported on a dry oright basis
- RPD Relative Brcent Difference
- LCS Laboratory Centrol Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K hands

Date: _____3/

3/15/05

Raland K. Tutle, lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, horg. Teb Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for he use of the individual () or entipt to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to be samples analyzed inaccordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

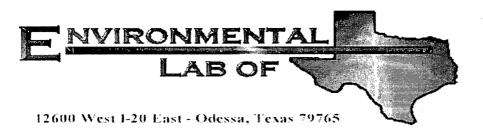
TAT bredness elubero2-erg) TAT HEUR IZ CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: HED - HACKE LA 1 Sai N'O'K'M Project LOULTNGTON Temperature Upon Receipt: 103 Sample Containers Intact? Laboratory Commants: < BTEX BO215/2020 or BTEX 8260 Rec 3.0°C IL HPTE remenserues Salabisticada AWY 2 WORK BY NO DO BU DY BY THE MAIN 1012 DEC/ 45E / HYS OTAL 10 % Project #: (60.004 '6000 'WOS '10) #00000 18:00 (N. M. (gint, e.S.) amother 3-105 1245 1435 TIMB 9001 SOOL MISTOR LIGIT HIL Office (achiever): 3-1-05 Matrix 505 3-1-W othors envico(~ leaco. Net AGBIGL ~ PANE (505) 397-147 (Astrady) 19130 olanini. Preservalive *05^z*3 \$3()8% 1084 × ^tCINH Ø.3{ × Cope (γ) energieses to considers 01:41 Project Manager: Kristin Facels 8/20 88240 belomes emil all c/i ristro 1 3112555 285 00 Date Sampled とと 1.18.4 Company Name Rice Operatives 410pm mst analysis to 1 7-05 14:34 Environmental Lab of Texas Phone: 432-583-1800 Fax: 432-593-1213 393-9174 alar 122 W 31.05 FIELD CODE Cityrsteterizip: 712665 Telephone No. Company Addrass: FLEUSE CMCL Sampier Signeture: MW 12800 West I-20 East Odessa, Texas 79765 200000 seçiel Instructions: Vino esu da) & GAU Kluta Holinquished by:

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Rive Operating
Date/Tim	ie: <u>2/2/05 8:20</u>
Order #:	502003
Initials:	· De

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	2.0° C	
Shipping container/cooler in good condition?	(Yes)	No		1
Custody Seals intact on shipping container/cooler?	1 8es	No I	M. presently	8-08-05
Custody Seals intact on sample bottles?	YES>	No 1	Not present	100
Chain of custody present?	Yes	No I		
Sample Instructions complete on Chain of Custody?	Yes	No I		
Chain of Custody signed when relinquished and received?	ores	No		
Chain of custody agrees with sample label(s)	1 YES	No		
Container labels legible and intact?	Yes, I	No I	· ·	
Sample Matrix and procerties same as on chain of custody?	1 78301	No		
Samples in proper container/bottle?	1 (8 23)	No I		
Samples properly preserved?	YES	No i		
Sample bottles intact?	X231	No I		
Preservations documented on Chain of Custody?	Ares 1	No 1	1	1
Containers documented on Chain of Custody?	8.25, 1	No 1		ĺ
Sufficient sample amount for indicated test?	Yes	No 1		Í
All samples received within sufficient hold time?	Yes	No		
VOC samples have zero headspace?	YES) 1	Nc	Not Applicable	


Other observations:

Variance Documentation:

Contact Person:	Date/1	Time:	_ Contacted by:	
Regarding:				

Corrective Action Taken:

 $(-\infty)^{-1} (-\infty)^{-1} (-\infty)$

Analytical Report

Prepared for:

Kristin Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Project Number: None Given Location: Lovington

Lab Order Number: 4L06004

Report Date: 12/16/04

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project: ABO-Apach ject Number: None Giver ect Manager: Kristin Pop	า	F	ax: (505) 397-1471 Reported: 12/16/04 09:21
	ANALYTICA	L REPORT FOR SA			
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	,	4L06004-01	Water	12/03/04 08:30	12/06/04 10:33

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	12/16/04 09:21

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (4L06004-01) Water							<u> </u>		<u> </u>
Benzene	ND	0.00100	mg/L	1	EL40913	12/08/04	12/08/04	EPA 8021B	
Toluene	ND	0.00100	"	"	"	11	м	н	
Ethylbenzene	ND	0.00100	"	"				"	
Xylene (p/m)	ND	0.00100	"	"	"	"		"	
Xylene (o)	ND	0.00100	"	н		u	n	۳	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-12	0	"	"	"	11	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-12	0	"	"	"	n	

Environmental Lab of Texas

I

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

:

Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte MW-1 (4L06004-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	142	2.00	mg/L	1	EL41406	12/10/04	12/10/04	EPA 310.2M	
Chloride	80.5	5.00		10	EL40916	12/08/04	12/08/04	EPA 300.0	
Total Dissolved Solids	329	5.00		1	EL40702	12/06/04	12/07/04	EPA 160.1	
Sulfate	85.7	5.00		10	EL40916	12/08/04	12/08/04	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

ſ	Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported:
	Hobbs NM, 88240	Project Manager Kristin Pope	12/16/04 09:21

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte MW-1 (4L06004-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	60.0	0.100	mg/L	10	EL41408	12/14/04	12/14/04	EPA 6010B	
Magnesium	12.9	0.0100		"	*	н	"		
Potassium	2.67	0.500	*	•	"	"	"		
Sodium	42.4	0.100	*	÷	"		"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Pr	oject: Al	BO-Apache L	.A Leak				Fax: (505	i) 397-1471
122 W. Taylor		Project Ni	umber: No	one Given					Repo	rted:
Hobbs NM, 88240		Project Ma	inager: Ki	istin Pope					12/16/0	4 09:21
	Ο	rganics by	GC	- Quality	Contro) J				
		Environm	ental	Lab of T	exas		•			
it it de		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL40913 - EPA 5030C (GC)						-				
Blank (EL40913-BLK1)				Prepared &	& Analyzed	±: 12/08/0)4			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	н							
Surrogate: a,a,a-Trifluorotoluene	19.8		ug/l	20.0		99.0	80-120			
Surrogate: 4-Bromofluorobenzene	17.4		"	20.0		87.0	80-120			
LCS (EL40913-BS1)				Prepared &	k Analyzed	i: 12/08/0	94			
Benzene	94.3		ug/l	100		94.3	80-120			
Toluene	97.6		. "	100		97.6	80-120			
Ethylbenzene	96.2		н	100		96.2	80-120			
Xylene (p/m)	194		۳	200		97.0	80-120			
Kylene (0)	99.5		н	100		99.5	80-120			
Surrogate: a,a,a-Trifluorotoluene	17.8		"	20.0		89.0	80-120			
Surrogate: 4-Bromofluorobenzene	22.1		"	20.0		110	80-120			
LCS Dup (EL40913-BSD1)				Prepared 8	è Analyzed	d: 12/08/0)4			
Benzene	97.4		ug/l	100		97.4	80-120	3.23	20	
Foluene	100		"	100		100	80-120	2.43	20	
Ethylbenzene	102		•	100		102	80-120	5.85	20	
Xylene (p/m)	202			200		101	80-120	4.04	20	
Xylene (0)	103		"	100		103	80-120	3.46	20	
Surrogate: a.a.a-Trifluorotoluene	18.7		"	20.0		93.5	80-120			
Surrogate: 4-Bromofluorobenzene	22.2		"	20.0		111	80-120			
Calibration Check (EL40913-CCV1)				Prepared &	& Analyzed	1: 12/08/0	4			
Benzene	97.0		ug/l	100		97.0	80-120			
foluene	99.1			100		99.1	80-120			
Ethylbenzene	101			100		101	80-120			
Xylene (p/m)	199			200		99.5	80-120			
Xylene (0)	101			100		101	80-120			
Surrogate: a.a.a-Trifluorotoluene	19.4		"	20.0		97.0	80-120			
Surrogate: 4-Bromofluorohenzene	21.5		"	20.0		108	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Kristin Pope	12/16/04 09:21

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EL40913 - EPA 5030C (GC)

Matrix Spike (EL40913-MS1)	Source: 4	L06002-01	Prepared a	& Analyze	d: 12/08/0)4
Benzene	102	ug/l	100	ND	102	80-120
Toluene	102	"	100	ND	102	80-120
Ethylbenzene	101	. •	100	ND	101	80-120
Xylene (p/m)	203	n	200	ND	102	80-120
Xylene (o)	111	"	100	ND	111	80-120
Surrogate: a,a,a-Trifluorotoluene	18.4	"	20.0		92.0	80-120
Surrogate: 4-Bromofluorobenzene	19.5	"	20.0		97.5	80-120

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		F	Project: A	BO-Apache	LA Leak				Fax: (505	5) 397-147
122 W. Taylor			5	lone Given					Repo	rted:
Hobbs NM, 88240		-	4 09:21							
	General Chemistry		-			Methods	- Quali	ty Co	ntrol	
		Environ	nental	Lab of	Texas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL40702 - Gener	ral Preparation (WetCher	n)								
Blank (EL40702-BLK1)				Prepared:	12/06/04	Analyzed:	12/07/04			
Total Dissolved Solids	ND	5.00	mg/L			·				
Duplicate (EL40702-DUP1)		Source: 4L0300	1-01	Prepared:	12/06/04	Analyzed:	12/07/04			
Total Dissolved Solids	4120	- 5.00	mg/L		4030			2.21	20	
	ral Preparation (WetCher	n)		Prepared	& Analyz	ed: 12/08/04	1			
Batch EL40916 - Gener Blank (EL40916-BLK1) Chloride	ral Preparation (WetCher		mg/L	Prepared	& Analyz	ed: 12/08/04	4			
Blank (EL40916-BLK1)	•••••••••••••••••••••••••••••••••••••••	0.500	mg/L	Prepared	& Analyz	ed: 12/08/04	1			
Blank (EL40916-BLK1) Chloride	0.00	0.500	-			ed: 12/08/04		 		
Blank (EL40916-BLK1) Chloride Sulfate	0.00	0.500	-							
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2)	0.00	0.500 0.500 0.500	"							
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate	0.00 0.00 0.00	0.500 0.500 0.500	" mg/L	Prepared	& Analyz		1			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride	0.00 0.00 0.00	0.500 0.500 0.500 0.500	" mg/L	Prepared	& Analyz	ed: 12/08/04	1			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride LCS (EL40916-BS1)	0.00 0.00 0.00 0.00	0.500 0.500 0.500 0.500 0.500	" mg/L "	Prepared	& Analyz	ed: 12/08/04	1			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride LCS (EL40916-BS1) Chloride	0.00 0.00 0.00 0.00 0.00 9.75	0.500 0.500 0.500 0.500 0.500	" mg/L mg/L	Prepared Prepared 10.0 10.0	& Analyz	ed: 12/08/04 ed: 12/08/04 97.5 117	4 80-120 80-120			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride LCS (EL40916-BS1) Chloride Sulfate	0.00 0.00 0.00 0.00 0.00 9.75	0.500 0.500 0.500 0.500 0.500 0.500	" mg/L mg/L	Prepared Prepared 10.0 10.0	& Analyz & Analyz	ed: 12/08/04 ed: 12/08/04 97.5 117	4 80-120 80-120			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride LCS (EL40916-BS1) Chloride Sulfate LCS (EL40916-BS2)	0.00 0.00 0.00 0.00 0.00 9.75 11.7	0.500 0.500 0.500 0.500 0.500 0.500 0.500	mg/L " mg/L "	Prepared Prepared 10.0 10.0 Prepared	& Analyz & Analyz	ed: 12/08/04 ed: 12/08/04 97.5 117 ed: 12/08/04	4 80-120 80-120			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride LCS (EL40916-BS1) Chloride Sulfate LCS (EL40916-BS2) Chloride	0.00 0.00 0.00 0.00 0.00 9.75 11.7 9.77 11.8	0.500 0.500 0.500 0.500 0.500 0.500 0.500	mg/L " mg/L "	Prepared Prepared 10.0 10.0 Prepared 10.0 10.0	& Analyz & Analyz & Analyz	ed: 12/08/04 ed: 12/08/04 97.5 117 ed: 12/08/04 97.7	4 80-120 80-120 4 80-120 80-120 80-120			
Blank (EL40916-BLK1) Chloride Sulfate Blank (EL40916-BLK2) Sulfate Chloride LCS (EL40916-BS1) Chloride Sulfate LCS (EL40916-BS2) Chloride Sulfate	0.00 0.00 0.00 0.00 0.00 9.75 11.7 9.77 11.8	0.500 0.500 0.500 0.500 0.500 0.500 0.500	mg/L " mg/L "	Prepared Prepared 10.0 10.0 Prepared 10.0 10.0	& Analyz & Analyz & Analyz	ed: 12/08/04 ed: 12/08/04 97.5 117 ed: 12/08/04 97.7 118	4 80-120 80-120 4 80-120 80-120 80-120	0.851	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Pr	oject: Al	30-Apache	LA	Leak				Fax: (505) 397-147
122 W. Taylor		Project N		-						Repo	rted:
Hobbs NM, 88240		Project Manager Kristin Pope									
Gen	eral Chemistry Pa	rameters	by EP	A / Sta	nd	ard Me	thods ·	Qual	ity Co	ntrol	· · · ·
		Environm	ental	Lab of	Те	xas					
		Reporting		Spike		Source		%REC		RPD	
Analyte	Result	Limit	Units	Level		Result	%REC	Limits	RPD	Limit	Notes
Batch EL40916 - General Pro	eparation (WetChem)	<u> </u>									
LCS Dup (EL40916-BSD2)				Prepared	&	Analyzed:	12/08/04				
Chloride	9.74	0.500	mg/L	10.0			97.4	80-120	0.308	20	
Sulfate	11.7	0.500	"	10.0			117	80-120	0.851	20	
Calibration Check (EL40916-CCV	⁷ 1)			Prepared	&	Analyzed:	12/08/04				
Chloride	9.79		mg/L	10.0			97.9	80-120			
Sulfate	11.7		и.	10.0			117	80-120			
Calibration Check (EL40916-CCV	⁷ 2)			Prepared	&	Analyzed:	12/08/04				
Chloride	9.80		mg/L	10.0			98.0	80-120			
Sulfate	11.7			10.0			117	80-120			
Duplicate (EL40916-DUP1)	Sou	rce: 4L03001	-01	Prepared	&	Analyzed:	12/08/04				
Chloride	1570	20.0	mg/L			1330			16.6	20	
Sulfate	809	20.0	•			682			17.0	20	
Duplicate (EL40916-DUP2)	Sou	rce: 4L06003	-02	Prepared	&	Analyzed:	12/08/04				
Chloride	731	20.0	mg/L			725		-	0.824	20	
Sulfate	1210	20.0				1200			0.830	20	
Batch EL41406 - General Pre	eparation (WetChem)										
Blank (EL41406-BLK1)				Prepared	&	Analyzed:	12/10/04				
Total Alkalinity	ND	2.00	mg/L								
Duplicate (EL41406-DUP1)	Sou	rce: 4L06003	-01	Prepared	&	Analyzed:	12/10/04				
Fotal Alkalinity	161	2,00	mg/L			160			0.623	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: ABO-Apache LA Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Pope	12/16/04 09:21

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL41406 - General Preparation (WetChem)									

Reference (EL41406-SRM1)]	Prepared & Analyzed:	12/10/04	4
Carbonate Alkalinity	0.0501	mg/L	0.0500	100	80-120

Environmental Lab of Texas

l

ļ

4.5

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project: ABO-Apache LA Leak Project Number: None Given Project Manager: Kristin Pope							Fax: (505) 397-1471 Reported: 12/16/04 09:21		
	Total Metals	by EPA Environm				Quality	Contro	bl		
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL41408 - 6010B/No Digesti	ion			•						
Blank (EL41408-BLK1)				Prepared	& Analyzed	: 12/14/04				
Calcium	ND	0.0100	mg/L	•						
Magnesium	ND	0.00100	"							
Potassium	ND	0.0500	n							
Godium	ND	0.0100	"							
Calibration Check (EL41408-CCV1)				Prepared	& Analyzed	: 12/14/04				
Calcium	1.95		mg/L	2.00		97.5	85-115			
Magnesium	2.06			2.00		103	85-115			
Potassium	2.18		"	2.00		109	85-115			
Godium	1.77		"	2.00		88.5	85-115.			
Duplicate (EL41408-DUP1)	So	urce: 4L03004	-01	Prepared	& Analyzed	: 12/14/04				
Calcium	120	1.00	mg/L		127			5.67	20	
Aagnesium	73.9	0.100	tr		75.1			1,61	20	
Potassium	5.29	0.500	"		5,37			1,50	20	
odium	102	1.00			97.9			4.10	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

,

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Reported: 12/16/04 09:21

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR .	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Ciliz D Kune

Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

Date:

12/16/2004

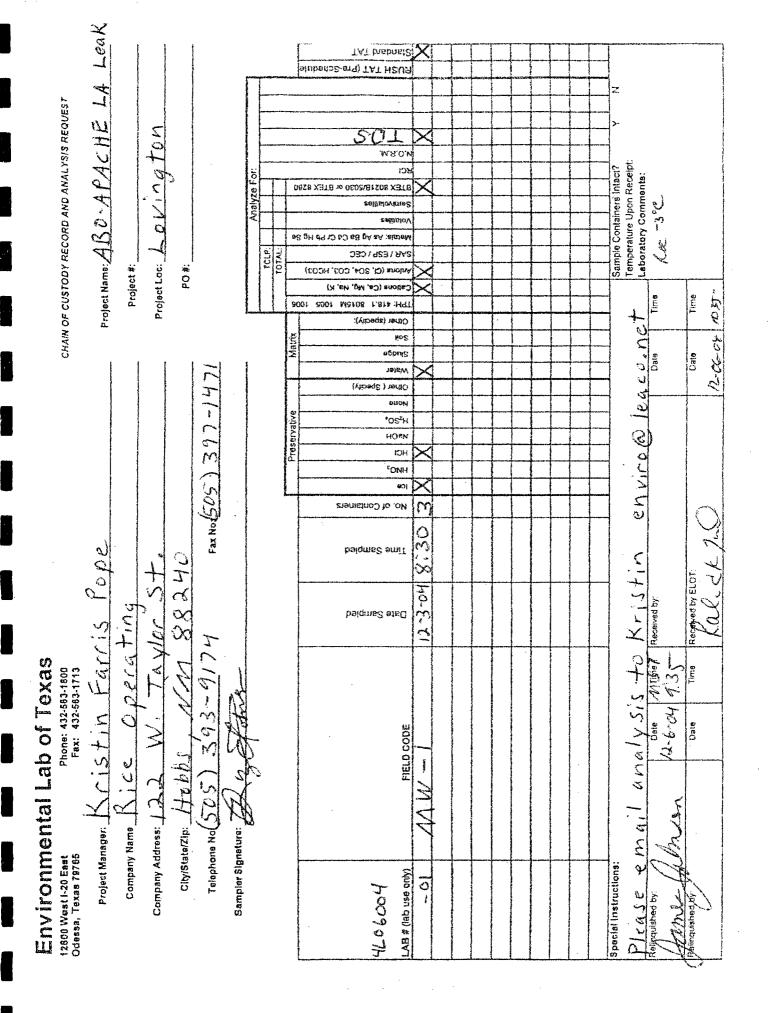
This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 12


Rice Operating Co.Project: ABO-Apache LA LeakFax122 W. TaylorProject Number: None GivenHobbs NM, 88240Project Manager: Kristin Pope

Fax: (505) 397-1471

Reported: 12/16/04 09:21

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u><u>Are Operation</u></u>
Date/Time: 12/6/04 11:58
Order #: 4606004
Initials: TLH

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	~~ C	1
Shipping container/cooler in good condition?	(Yes)	No		
Custody Seals intact on shipping container/cooler?	Yes	No	(Not present)	1
Custody Seals intact on sample bottles?	Yes	No	(Not present)	1
Chain of custody present?	(Yes)	No	tal and the second seco]
Sample Instructions complete on Chain of Custody?	1 (25)	No		
Chain of Custody signed when relinquished and received?	(Yes	No]
Chain of custody agrees with sample label(s)	Yes	No		٦.
Container labels legible and intact?	Yes	NO	Nulubel on 16 Pa	<u>]</u> [.
Sample Matrix and properties same as on chain of custody?	Yes	No		71
Samples in proper container/bottle?	Yes	No		7
Samples properly preserved?	(es)	No		7
Sample bottles intact?	Yes	No]
Preservations documented on Chain of Custody?	Kes	No		7
Containers documented on Chain of Custody?	Ves	No]
Sufficient sample amount for indicated test?	Yes	No		
All samples received within sufficient hold time?	(es)	No]
VOC samples have zero headspace?	(Yes	No	Not Applicable]

Other observations:

Variance Documentation:

Contact Person:	Date/Time:	Contacted by: _	
Regarding:			
		است سور و ۲۰۰۰ و این دیچی در بین اشتار اشتار بر اور وی میگذار اگر سر و میچین و از این از از این میروانگاه انتراب	

Corrective Action Taken:

. _____

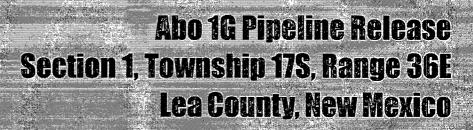
APPENDIX C & D On attached CD

Closure Report

æ,2r ⊅\$

1 .A. - 2"

4 30 - 10 A


1

1.18

日湯いた

A. M. M.

1. A. S.

1arch 3.2

R.T. HICKS CONSULTANTS, LTD.

901 RIO GRANDE BLVD. NW, SUITE F-142, ALBUQUERQUE, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

March 3, 2006

Wayne Price NMOCD Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail and Federal Express

RE: Closure Report Abo 1G Pipeline Release Section 1, 17S, 36E, Unit G

NMOCD Case #1R0415

Dear Wayne:

Attached are photographs that document the completion of all construction (soil excavation, exportation and importation of clay). Because electronic files of the final analytical results are quite large, please expect them with the paper copy of this letter, which will be sent on Monday.

Our progress report of January 31, 2006 provided the following post-closure monitoring plant:

We propose plugging and abandonment of the monitoring well and sampling the vadose zone monitoring devices two times per year for three years.

We will submit annual reports to NMOCD. After your approval of this closure report; we will notify NMOCD of the date for plugging the well.

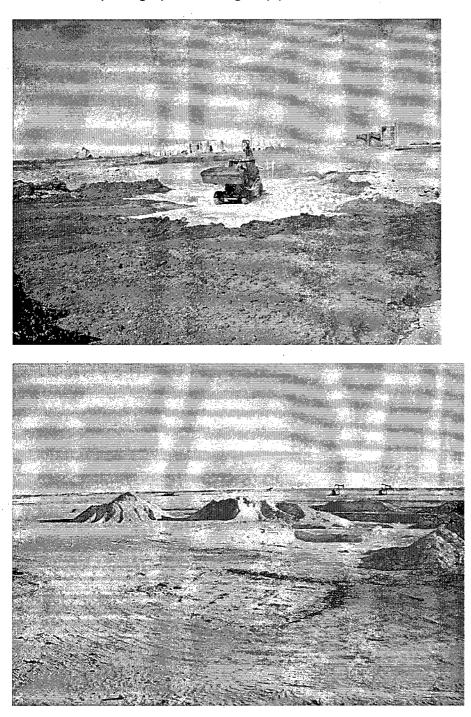
Sincerely, R.T. Hicks Consultants, Ltd.

HZ

Randall Hicks Principal

Copy: Rice Operating Company

March 3, 2006 Page 2

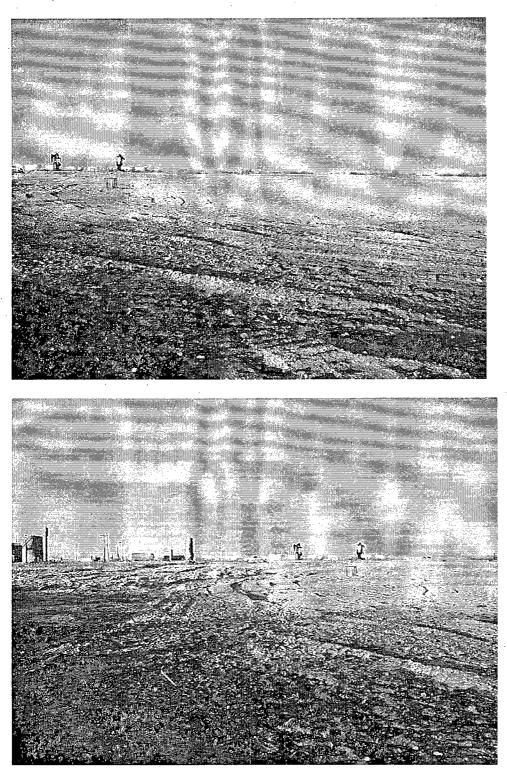

L

.

24.

. . .

. u _ u _




Construction photographs showing clay placement excavation

March 3, 2006 Page 3

2 10 2

Photographs showing final cover

Analytical Report

Prepared for: Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site
 Project Number: None Given
 Location: None Given

Lab Order Number: 6A11001

Report Date: 01/17/06

Rice Operating Co. Project: ABO-Apache LA Leak Site Fi 122 W. Taylor Project Number: None Given Fi Hobbs NM, 88240 Project Manager: Roy Rascon Fi							
	ANALYTICAL REPORT FOR SA	MPLES					
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
#45@ 1'bgs	6A11001-01	Soil	01/05/06 12:12-	01/11/06 08:00			
#54@ 1'bgs	6A11001-02	Soil	01/05/06 12:30	01/11/06 08:00			
#27@ 1'bgs	6A11001-03	Soil	01/06/06 15:05	01/11/06 08:00			
#13@ 1'bgs	6A11001-04	Soil	01/06/06 08:30	01/11/06 08:00			
#62@ 1'bgs	6A11001-05	Soil	01/05/06 13:00	01/11/06 08:00			
#39@ 1'bgs	6A11001-06	Soil	01/04/06 11:05	01/11/06 08:00			
#57@ 1'bgs	6A11001-07	Soil	01/04/06 11:20	01/11/06 08:00			
#14@ 1'bgs	6A11001-08	Soil	01/06/06 08:32	01/11/06 08:00			
#44@ 1'bgs	6A11001-09	Soil	01/05/06 12:15	. 01/11/06 08:00			
#60@ 3'bgs	6A11001-10	Soil	01/06/06 14:30	01/11/06_08:00			
#58@ 5'bgs	6A11001-11	Soil	01/04/06 11:10	01/11/06 08:00			
#10@ 1'bgs	6A11001-12	Soil	01/06/06 08:40	01/11/06 08:00			
#55@ 4'bgs	6A11001-13	Soil	01/09/06 08:56	01/11/06 08:00			
#28@ 1'bgs	6A11001-14	Soil	01/06/06 14:52	01/11/06 08:00			
#52@ 1'bgs	6A11001-15	Soil	01/05/06 12:45	01/11/06 08:00			
#22@ 1'bgs	6A11001-16	Soil	01/06/06 15:10	01/11/06 08:00			
#63@ 1'bgs	6A11001-17	Soil	01/05/06 12:25	01/11/06 08:00			
#38@ 5'bgs .	6A11001-18	Soil	01/04/06 13:40	01/11/06 08:00			
#33@ 1'bgs	6A11001-19	Soil	01/06/06 14:57	01/11/06 08:00			
#53@ 1'bgs	6A11001-20	Soil	01/05/06 12:20	01/11/06 08:00			
#56@ 1'bgs	6A11001-21	Soil	01/05/06 14:45	01/11/06 08:00			
#61@ 3'bgs	6A11001-22	Soil	01/06/06 14:45	01/11/06 08:00			
#26@ 1'bgs	6A11001-23	Soil	01/06/06 14:54	01/11/06 08:00			
#32@ 1'bgs	6A11001-24	Soil	01/06/06 15:00	01/11/06 08:00			
#74@ 5'bgs	6A11001-25	Soil	01/04/06 10:55	01/11/06 08:00			
#75@ 5'bgs	6A11001-26	Soil	01/04/06 11:00	01/11/06 08:00			
#59@ 5'bgs	6A11001-27	Soil	01/04/06 13:47	01/11/06 08:00			
#9@ 1'bgs	6A11001-28	Soil	01/06/06 08:35	01/11/06 08:00			

-

1 A A

5. T

ľ

Rice Operating Co.			Project: AE	80-Apache	LA Leak	Site		Fax: (505	5) 397-1471	
122 W. Taylor			Number: No					Repo	orted:	
Hobbs NM, 88240		Project N	Aanager: Ro	y Rascon				01/17/06 07:56		
		O	rganics	by GC				·····		
		Environ	-	-	Texas					
Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Not	
#62@ 1'bgs (6A11001-05) Soil				Dilaton	Daten	Tieparea				
Gasoline Range Organics C6-C12	ND	· 25.0	mg/kg dry	1	EA61214	01/12/06	01/13/06	TX 1005		
Diesel Range Organics >C12-C35	ND	. 25.0		"		n	н	u		
Total Hydrocarbon C6-C35	ND	25.0			"	*	n			
Surrogate: 1-Chlorooctane		77.8 %	70-,	130	"	"	"		 ·	
Surrogate: 1-Chlorooctadecane		77.4 %	70-,	130	"		н	"		
#14@ 1'bgs (6A11001-08) Soil			-							
Gasoline Range Organics C6-C12	ND	25.0	mg/kg dry	1	EA61214	01/12/06	01/13/06	TX 1005		
Diesel Range Organics >C12-C35	ND	. 25.0	"	"	"		"			
Total Hydrocarbon C6-C35	ND	25.0	"	"	"	"	"	"		
Surrogate: 1-Chlorooctane		82.8 %	70-1	130	"	"	"	"		
Surrogate: 1-Chlorooctadecane		82.4 %	70-1	130	"	н	"	"		
#55@ 4'bgs (6A11001-13) Soil										
Gasoline Range Organics C6-C12	ND	25.0	mg/kg dry	1	EA61214	01/12/06	01/13/06	TX 1005		
Diesel Range Organics >C12-C35	ND	25.0	"	"	"	"	*	"		
Total Hydrocarbon C6-C35	ND	25.0		"	н	м	11			
Surrogate: 1-Chlorooctane		79.4 %	70-1	30	"	"	"	"		
Surrogate: 1-Chlorooctadecane		78.8 %	70-1	30	"	"	"	"		
#38@ 5'bgs (6A11001-18) Soil										
Gasoline Range Organics C6-C12	ND	25.0	mg/kg dry	1	EA61214	01/12/06	01/13/06	TX 1005		
Diesel Range Organics >C12-C35	ND	25.0	"	"		"	"	۳		
Total Hydrocarbon C6-C35	ND	25.0	"	"	"	"	"	n		
Surrogate: 1-Chlorooctane		77.6 %	70-1	30	"	"	"	"		
Surrogate: 1-Chlorooctadecane		76.8 %	70-1	30	"	"	"	"		
#61@ 3'bgs (6A11001-22) Soil										
Gasoline Range Organics C6-C12	ND	25.0	mg/kg dry	J	EA61214	01/12/06	01/13/06	TX 1005		
Diesel Range Organics >C12-C35	ND	25.0	*1		*	и	"	"		
Total Hydrocarbon C6-C35	ND	25.0	n	n		"	11	16		
Surrogate: 1-Chlorooctane		87.0 %	70-1	30	"	"	"			
Surrogate: 1-Chlorooctadecane		86.2 %	70-1	30	"	"	"	"		

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Roy Rascon	01/17/06 07:56

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#75@ 5'bgs (6A11001-26) Soil									
Gasoline Range Organics C6-C12	ND	25.0	mg/kg dry	1	EA61214	01/12/06	01/13/06	TX 1005	
Diesel Range Organics >C12-C35	ND	25.0		"	"	"		"	
Total Hydrocarbon C6-C35	ND	25.0		"		*	ti	"	
Surrogate: 1-Chlorooctane		88.6 %	70-1	30	"	"	"	"	
Surrogate: I-Chlorooctadecane		88.2 %	· 70 . 1	30	"	"	п	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		. F	roject: Al	30-Apache	LA Leak	Site		Fax: (505)	397-147
122 W. Taylor		Project N	Jumber: No	one Given				Report	ted:
Hobbs NM, 88240		01/17/06 07:56							
-	General Ch	emistry Pa	rameter	s by EF	PA / Sta	andard M	lethods		
		Environ	nental	Lab of	Texas				
Analyza	Ďeruk	Reporting	Unite						
Analyte #45@ 1'bgs (6A11001-01) Soil	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
Chloride	267	10.0	malia	20	E 4 (1202	01/11/07	01/12/0 <i>C</i>	EPA 300.0	
	207	10.0	mg/kg	20	EA61303	01/11/06	01/13/06	EFA 300.0	
#54@ 1'bgs (6A11001-02) Soil									
Chloride	1960	50.0	mg/kg	100	EA61303	01/11/06	01/13/06	EPA 300.0	
27@ 1'bgs (6A11001-03) Soil									
Chloride	756	20.0	mg/kg	40	EA61303	01/11/06	01/13/06	EPA 300.0	
#13@ 1'bgs (6A11001-04) Soil									
Chloride	604	20.0	mg/kg	40	EA61303	01/11/06	01/13/06	EPA 300.0	
#62@ 1'bgs (6A11001-05) Soil									
Chloride	785	20.0	mg/kg	40	EA61303	01/11/06	01/13/06	ÉPA 300.0	
% Moisture	7.6	0.1	%	1	EA61202	01/11/06	01/12/06	% calculation	
439@ 1'bgs (6A11001-06) Soil									
Chloride	1360	20.0	mg/kg	40	EA61303	01/11/06	01/13/06	EPA 300.0	
457@ 1'bgs (6A11001-07) Soil									
Chloride	1560	25.0	mg/kg	50	EA61303	01/11/06	01/13/06	EPA 300.0	
414@ 1'bgs (6A11001-08) Soil									
Chloride	706	10.0	mg/kg	.20	EA61303	01/11/06	01/13/06	EPA 300.0	
% Moisture	5.9	0.1	%	1	EA61202	01/11/06	01/12/06	% calculation	
44@ 1'bgs (6A11001-09) Soil									
Chloride	290	10.0	mg/kg	- 20	EA61303	01/11/06	01/13/06	EPA 300.0	
'60@ 3'bgs (6A11001-10) Soil									
Chloride	1130	20.0	mg/kg	40	EA61303	01/11/06	01/13/06	EPA 300.0	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.			F	Project: AB	O-Apache	LA Leak	Site		Fax: (505)	397-1471
122 W. Taylor		Рго		Number: Nor					Repor	ted:
Hobbs NM, 88240				ianager: Roy					01/17/06	
	General	Chemistry	Par	rameters	by El	PA / Sta	andard M	lethods		
		Envi	roni	nental L	Lab of	Texas				
			orting		- 1					
	Result		Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
#58@ 5'bgs (6A11001-11) Soil			<u>.</u>				. <u> </u>			· · · · · · · · · · · · · · · · · · ·
Chloride	1720		25.0	mg/kg	50	EA61303	01/11/06	01/13/06	EPA 300.0	
#10@ 1'bgs (6A11001-12) Soil					·					
Chloride	1240		25.0	mg/kg	50	EA61303	01/11/06	01/13/06	EPA 300.0	
#55@ 4'bgs (6A11001-13) Soil										
Chloride	1220		20.0	mg/kg	40	EA61303	01/11/06	01/13/06	EPA 300.0	
% Moisture	7.5		0.1	%	. 1	EA61202	01/11/06	01/12/06	% calculation	
#28@ 1'bgs (6A11001-14) Soil								÷		
Chloride	908		20.0	mg/kg	40	EA61303	01/11/06	01/13/06	EPA 300.0	
#52@ 1'bgs (6A11001-15) Soil										
Chloride	625		20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0	
#22@ 1'bgs (6A11001-16) Soil										
Chłoride	948		20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0	
#63@ 1'bgs (6A11001-17) Soil										
Chloride	1260		20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0	
#38@ 5'bgs (6A11001-18) Soil		· .		•	,					
Chloride	1330		20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0	
% Moisture	9.0		0.1	%	1	EA61202	01/11/06	01/12/06	% calculation	
#33@ 1'bgs (6A11001-19) Soil										
Chloride	1020		20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0	
#53@ 1'bgs (6A11001-20) Soil										
Chloride	734		20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0	

*

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240			umber: No	BO-Apache one Given oy Rascon	LA Leak	Site		Fax: (505) 397-1471 Reported: 01/17/06 07:56		
	General Che	emistry Par Environn		-		andard N	Aethods			
Arabet	Result	Reporting Limit	Units		·					
Analyte #56@ 1'bgs (6A11001-21) Soil	Kesun			Dilution	Batch	Prepared	Analyzed	Method	Notes	
Chloride	2750	50.0	mg/kg	100	EA61304	01/12/06	01/13/06	EPA 300.0		
#61@ 3'bgs (6A11001-22) Soil										
Chloride	1320	20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0		
% Moisture	7.7	0.1	%	. 1	EA61202	01/11/06	01/12/06	% calculation		
#26@ 1'bgs (6A11001-23) Soil										
Chloride	754	20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0		
#32@ 1'bgs (6A11001-24) Soil										
Chloride	1960	25.0	mg/kg	50	EA61304	01/12/06	01/13/06	EPA 300.0		
#74@ 5'bgs (6A11001-25) Soil										
Chloride	424	10.0	mg/kg	20	EA61304	01/12/06	01/13/06	EPA 300.0		
#75@ 5'bgs (6A11001-26) Soil										
Chloride	712	10.0	mg/kg	20	EA61304	01/12/06	01/13/06	EPA 300.0		
% Moisture	5.9	0.1	%	1	EA61202	01/11/06	01/12/06	% calculation		
#59@ 5'bgs (6A11001-27) Soil										
Chloride	1100	20.0	mg/kg	40	EA61304 [.]	01/12/06	01/13/06	EPA 300.0		
#9@ 1'bgs (6A11001-28) Soil										
Chloride	2010	20.0	mg/kg	40	EA61304	01/12/06	01/13/06	EPA 300.0		

4

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Р	roject: AB	O-Apache	LA Leak	Site			Fax: (505) 397-1471
122 W. Taylor		Project N	lumber: Nor	e Given					Repo	rted:
Hobbs NM, 88240	Project Manager Roy Rascon									6 07:56
		ganics b	-	-	•	rol				-
		Environn					%REC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	Limits	RPD	RPD Limit	Notes
Batch EA61214 - Solvent Extraction (GC)									
Blank (EA61214-BLK1)				Prepared	& Analyz	ed: 01/12/0	6			
Gasoline Range Organics C6-C12	ND	25.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	25.0								
Total Hydrocarbon C6-C35	ND	25.0			·					
Surrogate: 1-Chlorooctane	41.8		mg/kg	50.0		83.6	70-130			
Surrogate: 1-Chlorooctadecane	42.2		n	50.0		84.4	70-130			
LCS (EA61214-BS1)				Prepared:	01/12/06	Analyzed:	01/13/06			
Gasoline Range Organics C6-C12	435	25.0	mg/kg wet	500		87.0	75-125			
Diesel Range Organics >C12-C35	526	25.0	۳.,	500		105	75-125			
Total Hydrocarbon C6-C35	961	25.0	n	1000		96,1	75-125			
Surrogate: 1-Chlorooctane	59.8		mg/kg	50.0		120	70-130			
Surrogate: 1-Chlorooctadecane	52.3		"	50.0		105	70-130			
Calibration Check (EA61214-CCV1)				Prepared:	01/12/06	Analyzed:	01/13/06			
Gasoline Range Organics C6-C12	447		mg/kg	500		89.4	80-120			
Diesel Range Organics >C12-C35	518		"	500		104	80-120			
Total Hydrocarbon C6-C35	965			1000		96.5	80-120			
Surrogate: 1-Chlorooctane	55.8		"	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	52.0		**	50.0		104	70-130			
Matrix Spike (EA61214-MS1)	Sour	ce: 6A1100	1-26	Prepared	& Analyza	ed: 01/12/0	6			
Gasoline Range Organics C6-C12	478	25.0	mg/kg `dry	531	ND	90.0	75-125			
Diesel Range Organics >C12-C35	531	25.0	۰.	531	ND	100	75-125			
Total Hydrocarbon C6-C35	1010	25.0	"	1060	ND	95.3	75-125			
Surrogate: 1-Chlorooctane	58.3		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	47.8			50.0		95.6	70-130			•
Matrix Spike Dup (EA61214-MSD1)	Sour	ce: 6A1100	1-26	Prepared:	01/12/06	Analyzed:	01/13/06			
Gasoline Range Organics C6-C12	469	25.0	mg/kg dry	531	ND	88.3	75-125	1.90	20	
Diesel Range Organics >C12-C35	504	25.0		531	ND	94.9	75-125	5.22	20	
Total Hydrocarbon C6-C35	973	25.0	•	1060	ND	91.8	75-125	3.73	20	
Surrogate: 1-Chlorooctane	57.8		mg/kg	50.0		116	70-130			
Surrogate: 1-Chlorooctadecane	46.7		"	50.0		93.4	70-130			

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.			2	BO-Apache	LA Leak	Site				5) 397-147			
122 W. Taylor				one Given					•	orted:			
Hobbs NM, 88240	Project Manager: Roy Rascon									01/17/06 07:56			
General	Chemistry Pa	arameters	by EP	PA / Sta	ndard M	Methods	- Quali	ty Co	ntrol				
		Environn	nental	Lab of	Texas			-					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch EA61202 - General Preparat	on (Prep)												
Blank (EA61202-BLK1)				Prepared:	01/11/06	Analyzed:	01/12/06						
% Solids	100		%										
Duplicate (EA61202-DUP1)	So	urce: 6A1001	2-01	Prepared:	01/11/06	Analyzed:	01/12/06						
% Solids	88.6		%		90.4			2.01	20				
Duplicate (EA61202-DUP2)	So	urce: 6A1001	6-04	Prepared:	01/11/06	Analyzed:	01/12/06						
% Solids	93.3		%		93.6			0.321	20				
Duplicate (EA61202-DUP3)	So	urce: 6A1100'	7-01	Prepared:	01/11/06	Analyzed:	01/12/06						
% Solids	. 96.6	-	%		97.0			0.413	20				
Batch EA61303 - Water Extraction				2									
Blank (EA61303-BLK1)				Prepared:	01/11/06	Analyzed:	01/13/06						
Chloride	ND	0.500	mg/kg										
LCS (EA61303-BS1)				Prepared:	01/11/06	Analyzed:	01/13/06						
Chloride	8.58		mg/L	10.0		85.8	80-120						
Calibration Check (EA61303-CCV1)				Prepared:	01/11/06	Analyzed:	01/13/06						
Chloride	8.75		mg/L	10.0		87.5	80-120						
Duplicate (EA61303-DUP1)	So	urce: 6A1001'	7-01	Prepared:	01/11/06	Analyzed:	01/13/06						
Chlonde	3850	100	mg/kg		3790			1.57	20				
Batch EA61304 - Water Extraction			-										
Blank (EA61304-BLK1)			,	Prepared:	01/12/06	Analyzed:	01/13/06						
Chloride	ND	0,500	mg/kg	·									

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

•

Project: ABO-Apache LA Leak Site Project Number: None Given Project Manager: Roy Rascon Fax: (505) 397-1471

Reported: 01/17/06 07:56

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA61304 - Water Extraction				_	•					
LCS (EA61304-BS1)				Prepared:	01/12/06	Analyzed:	01/13/06			
Chloride	8.60		mg/L	10.0		86.0	80-120			
Calibration Check (EA61304-CCV1)				Prepared:	01/12/06	Analyzed:	01/13/06			
Chloride	9.66	,	-mg/L	10.0		96.6	80-120			
Duplicate (EA61304-DUP1)	Source	e: 6A11001	-15	Prepared:	01/12/06	Analyzed:	01/13/06			
Chloride	639	20.0	mg/kg		625			2.22	20	· · · ···-

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Oper 122 W. T Hobbs NM	aylor	-	Project: ABO-Apache LA Leak Site Number: None Given Manager: Roy Rascon	Fax: (505) 397-1471 Reported: 01/17/06 07:56
		Notes	and Definitions	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reportin	g limit		
NR	Not Reported			
dry	Sample results reported on a dry weight basis			·
RPD	Relative Percent Difference			

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland K. Tuttle, Lab Manager

Peggy Allen, QA Officer

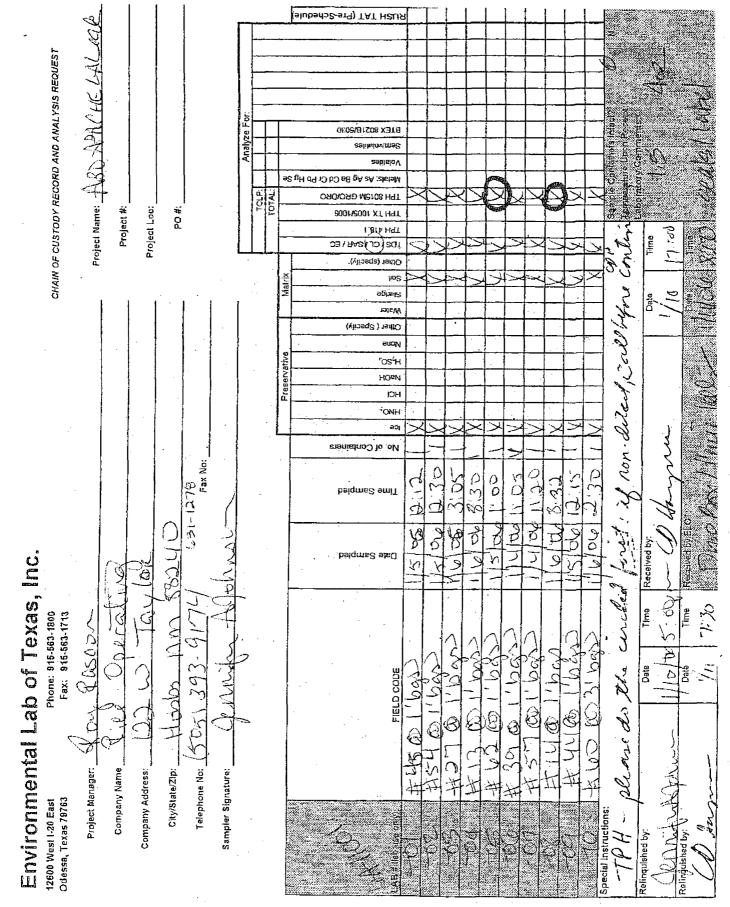
Celey D. Keene, Lab Director, Org. Tech Director

By: Raland K. Suturb

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

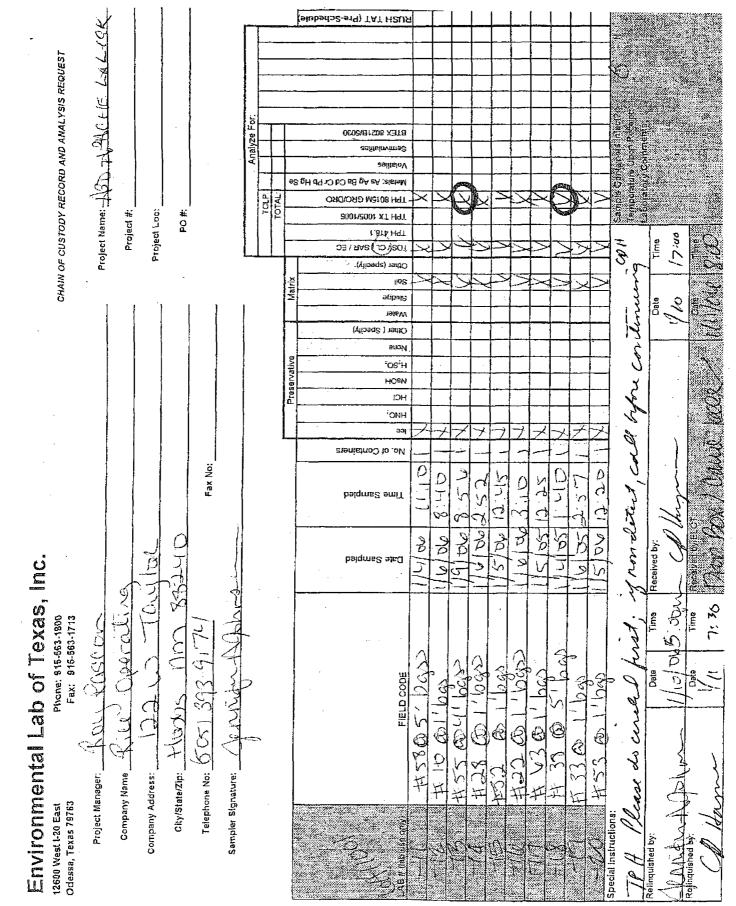
1/17/2006


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

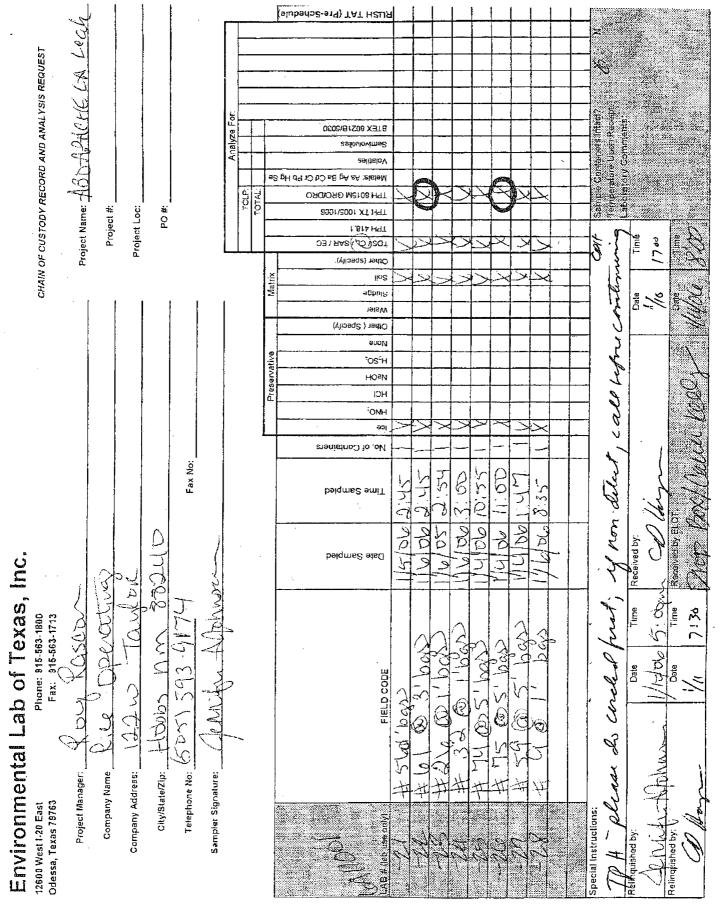
If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.


Page 10 of 10

J


l

I

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

₿

J

₿

A

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Rice op.	-
Date/Time:	1/11/06	3.00
Order #:	10ATILOO	
Initials:	UC_	- -

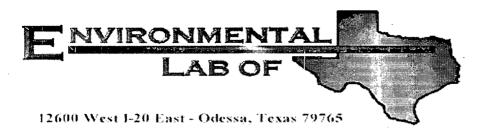
Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	<u> </u>
Shipping container/cooler in good condition?	Yes	No	
Custody Seals intact on shipping container/cooler?	Yes I	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	YES	No	
Sample Instructions complete on Chain of Custody?	Yes	No	
Chain of Custody signed when relinquished and received?	YES	No	
Chain of custody agrees with sample label(s)	Yes	No	
Container labels legible and intact?) (es	No	
Sample Matrix and properties same as on chain of custody?	Xes	No	
Samples in procer container/bottle?	Kas	No	-
Samples properly preserved?	Yaş	No	
Sample bottles intact?	Yes	I No	
Preservations documented on Chain of Custody?		No	
Containers documented on Chain of Custody?	X	No	
Sufficient sample amount for indicated test?	Xes	No	
All samples received within sufficient hold time?	1 2/25	No	
VOC samples have zero headspace?	1 (195	No	Not Applicable

Other observations:

j

<u>- - 6 v. 16</u>


I

I

	 	·	·	
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
· · ·	· · · · · · · · · · · · · · · · · · ·			
· · ·				

Contact Person:	Date/Time:	Contacted by:	
Regarding:			

Corrective Action Taken:

.

ļ

Analytical Report

Prepared for: Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: None Given

Lab Order Number: 6A17001

Report Date: 01/18/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project: ABO-Apache Project Number: None Given Project Manager: Roy Rascon	LA Leak Site		Fax: (505) 397-1471 Reported: 01/18/06 11:31
	ANALYTICAL REPORT FOR SAM	1PLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
#26 @ 2' bgs	6A17001-01	Soil	01/11/06 13:05	01/17/06 08:0
#25 @ 2' bgs	6A17001-02	Soil	01/11/06 13:00	01/17/06 08:0
#35 @ 1' bgs	6A17001-03	Soil	01/11/06 14:10	01/17/06 08:0
#37 @ 5' bgs	6A17001-04	Soil	01/10/06 14:00	01/17/06 08:0
#30 @ 3' bgs	6A17001-05	Soil	01/12/06 09:15	01/17/06 08:00
#29 @ 3' bgs	6A17001-06	Soil	01/12/06 09:11	01/17/06 08:00
#40 @ 5' bgs	6A17001-07	Soil	01/12/06 11:30	01/17/06 08:0
#31_@_3' bgs	6A17001-08	Soil	01/12/06 10:30	01/17/06 08:0
#1 @ 1' bgs	6A17001-09	Soil	01/13/06 10:50	01/17/06 08:0
#5 @ 1' bgs	6A17001-10	Soil	01/13/06 10:55	01/17/06 08:0
#6 @ 1' bgs	6A17001-11	Soil	01/13/06 11:00	01/17/06 08:0
#11 @ 1' bgs	6A17001-12	Soil	01/13/06 11:05	01/17/06 08:00
#18 @ 1' bgs	6A17001-13	Soil	01/13/06 13:05	01/17/06 08:0
Blend #1	6A17001-14	Soil	01/13/06 13:06	01/17/06 08:0
Blend #2	6A17001-15	Soil	01/13/06 14:10	01/17/06 08:0

ß

IJ

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project N	Project: AB0 lumber: Nor lanager: Roy	e Given	LA Leak	Site		Rep	5) 397-1471 orted:)6 11:31
		Or Environn	ganics t nental L	-	Texas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
#25 @ 2' bgs (6A17001-02) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA61709	01/17/06	01/17/06	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	*			"		۳	-
Total Hydrocarbon C6-C35	ND	10.0	"		"	n		P	
Surrogate: 1-Chlorooctane		97.0 %	70-1	30	· "	"	"	"	
Surrogate: 1-Chlorooctadecane		86.6 %	70-1	30	"	"	"	"	
#29 @ 3' bgs (6A17001-06) Soil									-
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA61709	01/17/06	01/17/06	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"		¥ .	"	*	"	
Total Hydrocarbon C6-C35	ND	10.0	"		*	"		*	
Surrogate: 1-Chlorooctane	•	104 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.4 %	70-1	30	"	"	"	"	
#40 @ 5' bgs (6A17001-07) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA61709	01/17/06	01/17/06	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		"	*	"	*	*	
Total Hydrocarbon C6-C35	ND	10.0	"		*	'n	"	n 	
Surrogate: 1-Chlorooctane		99.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		88.4 %	70-1	30	"	"	"	"	
#1 @ 1' bgs (6A17001-09) Soil				•					
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA61709	01/17/06	01/17/06	EPA 8015M	
Diesel Range Organics >C12-C35	192	10.0	"	"	"	*		n	
Total Hydrocarbon C6-C35	192	10.0	••	v		"	"		

101 %

89.6 %

70-130

70-130

Environmental Lab of Texas

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

2 - 2

.

*

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

"

"

"

,,

"

"

Page 2 of 7

Rice Operating Co.	· · · · · · · · · · · · · · · · · · ·	Р	roject: A	BO-Apache	LA Leak	Site		Fax: (505)	397-1471
122 W. Taylor Hobbs NM, 88240				one Given oy Rascon				Repor 01/18/06	
· · · · · · · · · · · · · · · · · · ·	General Ch	emistry Par	ameter	s by El	PA / Sta	andard N	lethods		
	<u> </u>	Environn	nental	Lab of	Texas		-		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#26 @ 2' bgs (6A17001-01) Soil									·
Chloride	995	20.0	mg/kg.	40	EA61708	01/17/06	01/17/06	EPA 300.0	
#25 @ 2' bgs (6A17001-02) Soil								. *	
Chłoride	1280	25.0	mg/kg	. 50	EA61708	01/17/06	01/17/06	EPA 300.0	
% Moisture	4.9	0.1	%	1 .	EA61801	01/17/06	01/18/06	% calculation	
#35 @ 1' bgs (6A17001-03) Soil									
Chloride	2130	25.0	mg/kg	50	EA61708	01/17/06	01/17/06	EPA 300.0	
#37 @ 5' bgs (6A17001-04) Soil									
Chloride	594	10.0	mg/kg	20	EA61708	01/17/06	01/17/06	EPA 300.0	
#30 @ 3' bgs (6A17001-05) Soil									
Chloride	1410	25.0	mg/kg	50	EA61708	01/17/06	01/17/06	EPA 300,0	
#29 @ 3' bgs (6A17001-06) Soil									
Chloride	1480	25.0	mg/kg	50	EA61708	01/17/06	01/17/06	EPA 300.0	
% Moisture	5.0	. 0.1	%	1	EA61801	01/17/06	01/18/06	% calculation	
#40 @ 5' bgs (6A17001-07) Soil									
Chloride	1440	25.0	mg/kg	50	EA61708	01/17/06	01/17/06	EPA 300.0	
% Moisture	6.2	0.1	%	1	EA61801	01/17/06	01/18/06	% calculation	
#31 @ 3' bgs (6A17001-08) Soil			•						
Chloride	1060	25.0	mg/kg	. 50	EA61708	01/17/06	01/17/06	EPA 300.0	
#1 @ 1' bgs (6A17001-09) Soil									-
Chloride	214	10.0	mg/kg	20	EA61708	01/17/06	01/17/06	EPA 300.0	
% Moisture	4.2	0.1	%	1	EA61801	01/17/06	01/18/06	% calculation	

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

. .

Page 3 of 7

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240			lumber: No	ne Given	LA Leak	Site		Fax: (505) Repor 01/18/06	ted:
· · ·	General Che	mistry Par Environn		•		andard M	ethods		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
#5 @ 1' bgs (6A17001-10) Soil									
Chloride	867	25.0	mg/kg	50	EA61708	01/17/06	01/17/06	EPA 300.0	
#6 @ 1' bgs (6A17001-11) Soil									
Chloride	594	_ 20.0	mg/kg	40	EA61708	01/17/06	01/17/06	EPA 300.0	
#11 @ 1' bgs (6A17001-12) Soil					×.				
Chloride	688	. 20.0	mg/kg	40	EA61708	01/17/06	01/17/06	EPA 300.0	
#18 @ 1' bgs (6A17001-13) Soil									
Chloride	334	10.0	mg/kg	20	EA61708	01/17/06	01/17/06	EPA 300.0	
Blend #1 (6A17001-14) Soil									
Chloride	322	10.0	mg/kg	20	EA61708	01/17/06	01/17/06	EPA 300.0	
Blend #2 (6A17001-15) Soil									
Chloride	356	10,0	mg/kg	20	EA61708	01/17/06	01/17/06	EPA 300.0	

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		F	roject: AB	O-Apache I	LA Leak	Site			Fax: (505) 397-147
122 W. Taylor			lumber: Non				Reported:			
Hobbs NM, 88240		Project M	lanager: Roy	Rascon					01/18/0	6 11:31
	Org	ganics b	y GC -	Quality	Contr	ol				
	1	Environr	nental L	ab of 7	Гехаѕ					
•		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA61709 - Solvent Extraction (GC)									
Blank (EA61709-BLK1)				Prepared a	& Analyze	ed: 01/17/0	6			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	- 10.0	"							
Fotal Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	53.9		mg/kg	50.0		108	70-130	,		
Surrogate: 1-Chlorooctadecane	49.7	•	"	50.0		99.4	70-130			
LCS (EA61709-BS1)				Prepared a	& Analyze	ed: 01/17/0	6			
Gasoline Range Organics C6-C12	445	10.0	mg/kg wet	500		89.0	75-125			
Diesel Range Organics >C12-C35	534	10.0		500		107	75-125			
Total Hydrocarbon C6-C35	979	10.0		1000		97.9	75-125			
Surrogate: 1-Chlorooctane	52.0		mg/kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	41.8	·	"	50.0		83.6	70-130			
Calibration Check (EA61709-CCV1)		~		Prepared:	01/17/06	Analyzed:	01/18/06			
Gasoline Range Organics C6-C12	478		mg/kg	500		95.6	80-120			
Diesel Range Organics >C12-C35	594			500		119	80-120			
Fotal Hydrocarbon C6-C35	1070		11	1000		107	80-120			
Surrogate: 1-Chlorooctane	59.0		"	50.0		118	70-130	•		
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Matrix Spike (EA61709-MS1)	Sourc	e: 6A1700	1-02	Prepared a	& Analyze	ed: 01/17/0	6			
Gasoline Range Organics C6-C12	480	10.0	mg/kg dry	526	ND	91.3	75-125			
Diesel Range Organics >C12-C35	579	10.0		526	ND	110	75-125			
Fotal Hydrocarbon C6-C35	1060	10.0	. и	1050	ND	.101	75-125			
Surrogate: 1-Chlorooctane	57.6		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	46.6		"	50.0		93.2	70-130			
Matrix Spike Dup (EA61709-MSD1)	Sourc	e: 6A1700	1-02	Prepared a	& Analyze	ed: 01/17/0	6			
Gasoline Range Organics C6-C12	. 480	10.0	mg/kg dry	526	ND	91.3	75-125	0.00	20	
Diesel Range Organics >C12-C35	583	10.0		526	ND	111	75-125	0.688	20	
Fotal Hydrocarbon C6-C35	1060	10.0		1050	ND	101	75-125	0.00	20	
Surrogate: 1-Chlorooctane	57.6		mg/kg	50,0		115	70-130			
Surrogate: 1-Chlorooctadecane	47.1		"	50.0		94.2	70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor	Project: ABO-Apache LA Leak Site Project Number: None Given							Fax: (505) 397-147 Reported:		
Hobbs NM, 88240	Project Manager: Roy Rascon								01/18/0	6 11:31
General Ch	emistry Par	ameters	by EP	A / Sta	ndard	Methods	- Quali	ity Con	trol	
		Environn	nental	Lab of	Texas					
		Reporting	•	Spike	Source		%ŔEC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA61708 - Water Extraction										
Blank (EA61708-BLK1)				Prepared	& Analyz	ed: 01/17/06	5			
Chloride	ND	0.500	mg/kg						-	
LCS (EA61708-BS1)				Prepared	& Analyz	ed: 01/17/06	5			
Chloride	8.48		mg/L	10.0		84.8	80-120			
Calibration Check (EA61708-CCV1)				Prepared	& Analyz	ed: 01/17/06	5			
Chloride	8,71	-	mg/L	10.0		87.1	80-120			
Duplicate (EA61708-DUP1)	Sour	ce: 6A16008	8-01	Prepared	& Analyz	ed: 01/17/06	5			
Chloride	3020	50.0	mg/kg		3010			0.332	20	
Batch EA61801 - General Preparation	(Prep)									
Blank (EA61801-BLK1)				Prepared:	01/17/06	Analyzed:	01/18/06			
% Solids	100		%							
Duplicate (EA61801-DUP1)	Sour	ce: 6A17001	1-02	Prepared:	01/17/06	Analyzed:	01/18/06			
% Solids	95.2		%	* <u>-</u>	95.1			0.105	20	
Duplicate (EA61801-DUP2)	Sour	ce: 6A17009	9-01	Prepared:	01/17/06	Analyzed:	01/18/06			
% Moisture	13.9	0,1	%		12.1		,	13.8	20	

١

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Oper 122 W. T Hobbs NN	faylor	Project N	Project: ABO-Apache LA Leak Si Number: None Given 1anager: Roy Rascon	te	Fax: (505) 397-1471 Reported: 01/18/06 11:31
		Notes a	and Definitions		
DET	Analyte DETECTED				
ND .	Analyte NOT DETECTED at or above the reporting	limit			
NR	Not Reported				
dry	Sample results reported on a dry weight basis				?
RPD	Relative Percent Difference				
LCS	Laboratory Control Spike				
MS	Matrix Spike				
Dup	Duplicate				

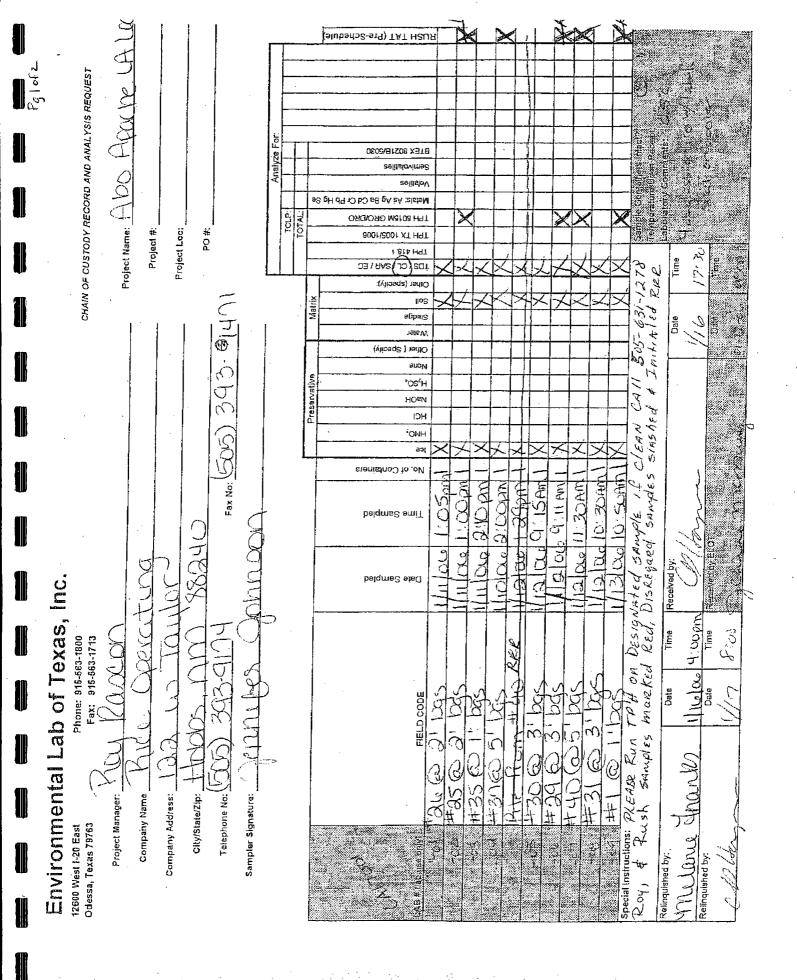
Ciliz D Kune

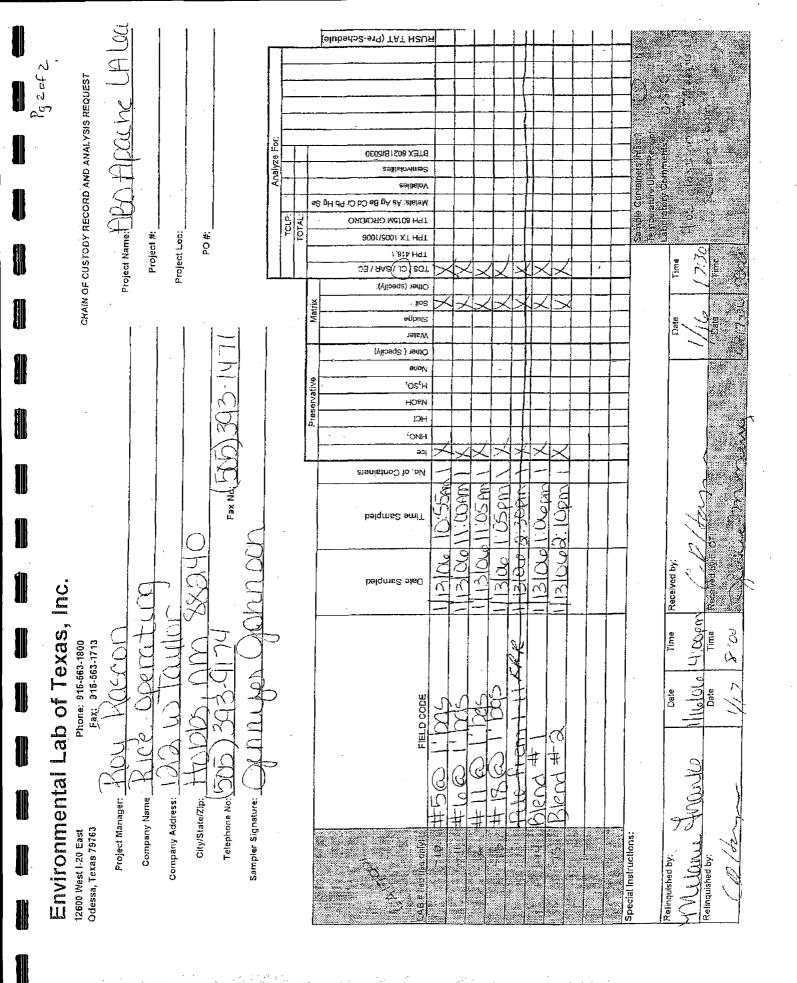
1/18/2006

Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director La Tasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 7

.

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating Co.</u>

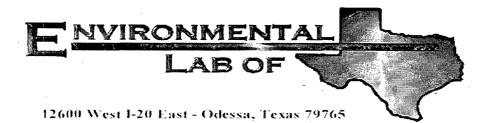
Date/Time: 01-13-04 @0800

Order #: 6417001

Initials: Jmm

Sample Receipt Checklist

	0,5 CI
(YES) NO	
YES NO	Not present
Yes No	Not present)
VE No	
Yes No	i
· (YES NO	
(Yes) No	
Yes No	
(YES) NO	ļ
(Yes) No	
Ves No	
Ves No	
(Tes) No	
(YES) NO	
Ves) No	
Yes No	
(Yes) No	Not Applicable
	Yes No Yes No


Other observations:

Variance Documentation:

Contact Person:	
Regarding:	

Date/Time: Contacted by:

Corrective Action Taken:

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: None Given

Lab Order Number: 6A17001

Report Date: 01/18/06

Rice Operating Co.Project: ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Roy Rascon01/18/06 09:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
#37 @ 5' bgs	6A17001-04	Soil	01/10/06 14:00	01/17/06 08:00
#40 @ 5' bgs	6A17001-07	Soil	01/12/06 11:30	01/17/06 08:00

Page 1 of 4

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

'13

Rice Operating Co.Project: ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Roy Rascon01/18/06 09:45

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#37 @ 5' bgs (6A17001-04) Soil									
Chloride	594	10.0	mg/kg	20	EA61708	01/17/06	01/17/06	EPA 300.0	
#40 @ 5' bgs (6A17001-07) Soil									
Chloride	1440	25.0	mg/kg	50	EA61708	01/17/06	01/17/06	EPA 300,0	
% Moisture	6.2	. 0.1	%	1	EA61801	01/17/06	01/18/06	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 4

Rice Operating Co.	
122 W. Taylor	
Hobbs NM, 88240	

Reported: 01/18/06 09:45

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike		Source		%REC		RPD	
Analyte	Result	Limit	Units	Level		Result	%REC	Limits	RPD	Limit	Notes
Batch EA61708 - Water Extraction											
Blank (EA61708-BLK1)				Prepared	&	Analyzed:	01/17/06				
Chloride	ND	0.500	mg/kg								
LCS (EA61708-BS1)				Prepared	&	Analyzed:	01/17/06				
Chloride	8.48		mg/L	10.0			84.8	80-120			
Calibration Check (EA61708-CCV1)				Prepared	&	Analyzed:	01/17/06				
Chloride	8.71		mg/L	10.0			87.1	80-120			
Duplicate (EA61708-DUP1)	Source:	6A16008	-01	Prepared	&	Analyzed:	01/17/06				
Chloride	3020	50.0	mg/kg			3010			0.332	20	
Batch EA61801 - General Preparation (Prep)								*-		
Blank (EA61801-BLK1)				Prepared:	01	/17/06 A	nalyzed:	01/18/06			
% Solids	100		%	-							
Duplicate (EA61801-DUP1)	Source:	6A17001	-02	Prepared:	01	/17/06 A	nalyzed:	01/18/06			
% Solids	95.2		%			95.1			0.105	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.Project: ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Roy Rascon01/18/06 09:45

Notes and Definitions

 DET
 Analyte DETECTED

 ND
 Analyte NOT DETECTED at or above the reporting limit

 NR
 Not Reported

 dry
 Sample results reported on a dry weight basis

 RPD
 Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

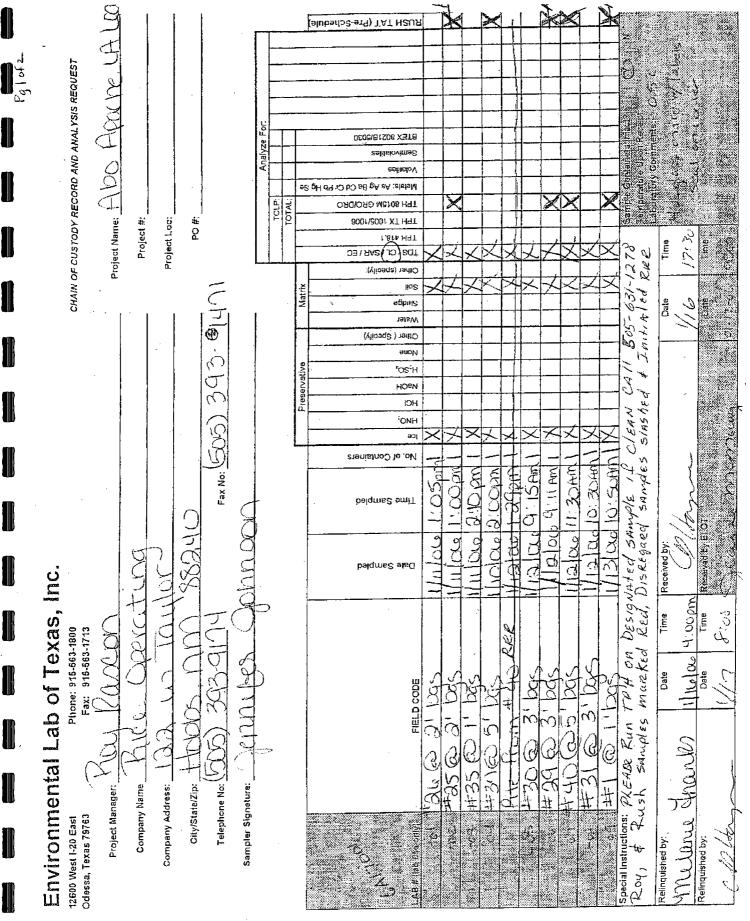
Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

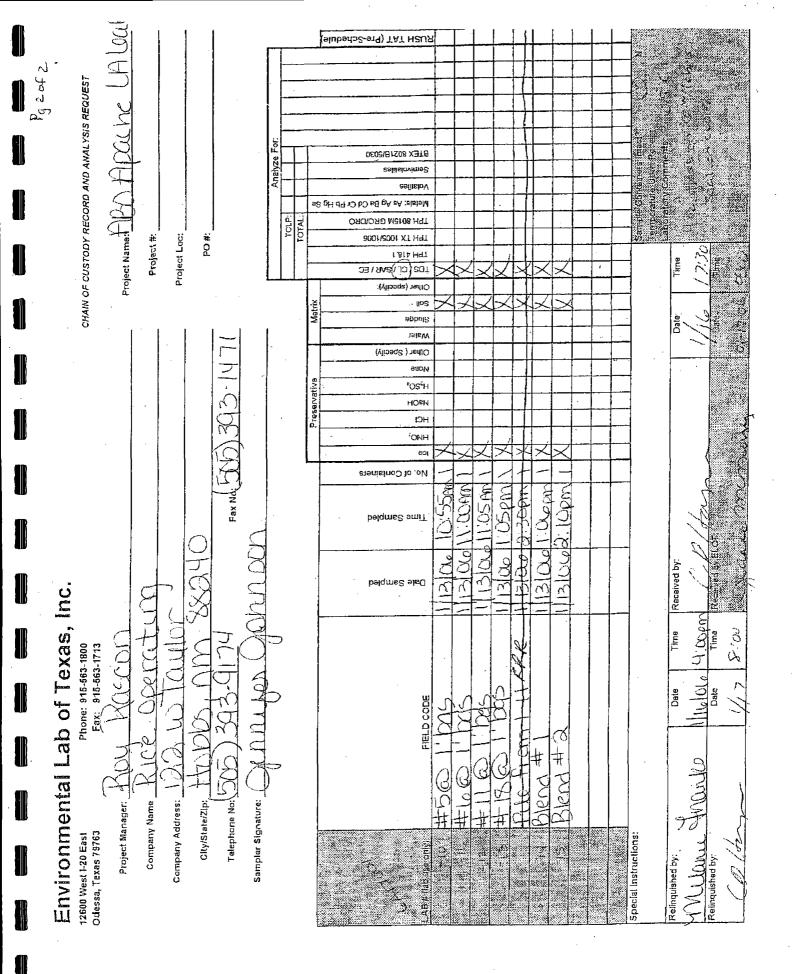
1/18/2006

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Raland K Julies

Environmental Lab of Texas


The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

e te se se se se se se se se se te transfer de la section de la section de la section de la section de la sect

U

al an state the state of the second ÷

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating Co.</u>

Date/Time: 01-17-04 @0800

Order #: 6417001

Initials: Jmm

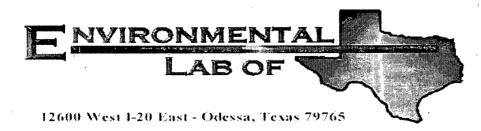
Sample Receipt Checklist

Temperature of container/cooler?.	YES NO	OS CI
Temperature of containencooler :	Yes No	· · · · · · · · · · · · · · · · · · ·
Shipping container/cooler in good condition?		Netperset
Custody Seals intact on shipping container/cooler?	Ves No 1	Not present
Custody Seals intact on sample bottles?	Yes No	Not present
Chain of custody present?	VES NO	
Sample Instructions complete on Chain of Custody?	Yes No	
Chain of Custody signed when relinquished and received?	VES NO	L
Chain of custody agrees with sample label(s)	Yes No	
Container labels legicle and intact?	YES NO	
Sample Matrix and properties same as on chain of custody?	(YES) NO	
Samples in procer container/bottle?	(Yes) No	
Samples properly preserved?	Yes No	
Sample bottles intact?	Ves No I	
Preservations documented on Chain of Custody?	(YES) NO	
Containers documented on Chain of Custody?	(Yas) No	i
Sufficient sample amount for indicated test?	Ves No	
All samples received within sufficient hold time?	Ves No	
VOC samples have zero headspace?	Ves No	Not Applicable

Other observations:

Variance	Documentation:

·____


17

Contact Person: -_____ Date/Time: _____ Contacted by: ______ Regarding:

Corrective Action Taken:

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: None Given

Lab Order Number: 6A23001

Report Date: 01/25/06

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number None Given	Reported:
Hobbs NM, 88240	Project Manager Roy Rascon	01/25/06 09:30

ANALYTICAL REPORT FOR SAMPLES

ł

l

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
#35@ 2' bgs	6A23001-01	Soil	01/18/06 14:45	01/20/06 17:00
#9@ 2' bgs	6A23001-02	Soil	01/17/06 11:05	01/20/06 17:00
#63@ 5' bgs	6A23001-03	Soil	01/18/06 12:30	01/20/06 17:00
#55@ 5' bgs	6A23001-04	Soil	01/18/06 07:50	01/20/06 17:00
#32@ 2' bgs	6A23001-05	Soil	01/17/06 13:30	01/20/06 17:00
#31@ 5' bgs	6A23001-06	Soil	01/19/06 15:15	01/20/06 17:00
#3 pile	6A23001-07	Soil	01/20/06 08:20	. 01/20/06 17:00
#25@ 4' bgs	6A23001-08	Soil	01/19/06 15:10	01/20/06 17:00
#36@ 5' bgs	6A23001-09	Soil	01/20/06 08:18	01/20/06 17:00
#56@ 5' bgs	6A23001-10	Soil	01/19/06 12:35	01/20/06 17:00
#29@ 5' bgs	6A23001-11	Soil	01/19/06 10:40	01/20/06 17:00
#60@ 5'_bgs	6A23001-12	Soil	01/18/06 08:30	01/20/06 17:00
Pile #4	6A23001-13	Soil	01/20/06 07:45	01/20/06 17:00
#33@ 2' bgs	6A23001-14	Soil	01/17/06 13:30	01/20/06 17:00
#54@ 3' bgs	6A23001-15	Soil	01/19/06 14:10	01/20/06 17:00
#30@ 5' bgs	6A23001-16	Soil	01/19/06 12:55	01/20/06 17:00
#10@ 2' bgs	6A23001-17	Soil	01/17/06 11:15	01/20/06 17:00
#61@ 5' bgs	6A23001-18	Soil	01/18/06 08:35	01/20/06 17:00

Rice Operating Co.			roject: AE lumber: No		LA Leak	Site		Fax: (505)	397-147
122 W. Taylor		Reported:							
Hobbs NM, 88240		Project N	lanager: Ro	y Rascon				01/25/06	5 09:30
	General Ch	emistry Pa	ameters	s by El	PA / Sta	andard N	lethods		
		Environi		•				а. — А.	
		· · · · · ·						ر	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
35@ 2' bgs (6A23001-01) Soil	······				Buton				1101
	1140	25.0	multa			01/04/07	01/01/07	EPA 300.0	
Chloride	1140	25.0	mg/kg	50	EA62501	01/24/06	01/24/06	EPA 300.0	
19@ 2' bgs (6A23001-02) Soil									
Chloride	1040	20.0	mg/kg	40	EA62501	01/24/06	01/24/06	EPA 300.0	
63@ 5' bgs (6A23001-03) Soil									
Chloride	1170	20.0	mg/kg	40	EA62501	01/24/06	01/24/06	EPA 300.0	
455@ 5' bgs (6A23001-04) Soil									
									· .
Chloride	1470	25.0	mg/kg	50	EA62501	01/24/06	01/24/06	EPA 300.0	
/32@ 2' bgs (6A23001-05) Soil									
Chloride	1020	25.0	mg/kg	50	EA62501	01/24/06	01/24/06	EPA 300.0	
	1020	23.0		50	EA02501	01/24/00	01/24/00	2111 000,0	
31@ 5' bgs (6A23001-06) Soil	-			· ·	•				
Chloride	1380	25.0	mg/kg	50	EA62501	01/24/06	01/24/06	EPA 300.0	
/3 pile (6A23001-07) Soil		·							
Chloride	250	10.0	mg/kg	20	EA62501	01/24/06	01/24/06	EPA 300.0	
25@ 4' bgs (6A23001-08) Soil									•
Chloride	1170	25.0	madra			0.1.10.1.10.5		EPA 300.0	
	1170	23.0	mg/kg	50	EA62501	01/24/06	01/24/06	EFA 300,0	
'36@ 5' bgs (6A23001-09) Soil									
Chloride	2120	25.0	mg/kg	50	EA62501	01/24/06	01/24/06	EPA 300,0	
,						· .			
56@ 5' bgs (6A23001-10) Soil									
Chloride	1640	25.0	mg/kg	50	EA62501	01/24/06	01/24/06	EPA 300.0	
29@ 5' bgs (6A23001-11) Soil									
	·								

Environmental Lab of Texas

ł

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

								Fax: (505)	397-1471	
Rice Operating Co. 122 W. Taylor			5		LA Leak	Sile		,		
Hobbs NM, 88240	Project Number None Given Project Manager Roy Rascon								Reported: 01/25/06 09:30	
	General Ch				PA / Ste	andard M	ethods			
	General en	Environm		-			enous			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
#60@ 5' bgs (6A23001-12) Soil				Diadon	Daten	Tepareu	Analyzed			
Chloride	1360	20.0	mg/kg	40	EA62501	01/24/06	01/24/06	EPA 300.0		
Pile #4 (6A23001-13) Soil										
Chloride	261	. 10.0	mg/kg	20	EA62501	01/24/06	01/24/06	EPA 300.0		
#33@ 2' bgs (6A23001-14) Soil							<u>.</u>			
Chloride	809	10.0	mg/kg ·	20	EA62501	01/24/06	01/24/06	EPA 300.0		
#54@ 3' bgs (6A23001-15) Soil										
Chloride	962	20.0	mg/kg	40	EA62501	01/24/06	01/24/06	EPA 300.0		
#30@ 5' bgs (6A23001-16) Soil										
Chloride	730	10.0	mg/kg	20	EA62501	01/24/06	01/24/06	EPA 300.0		
#10@ 2' bgs (6A23001-17) Soil			_							
Chloride	1050	20.0	mg/kg	40	EA62501	01/24/06	01/24/06	EPA 300.0		
#61@ 5' bgs (6A23001-18) Soil							·			
Chloride	1380	20.0	mg/kg	40	EA62501	01/24/06	01/24/06	EPA 300.0		

Environmental Lab of Texas

l

Į

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 5

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager Roy Rascon	01/25/06 09:30

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

·····		RPD	Limit Notes
		-	
Prepared & Analyzed: 0	1/24/06		
-			
Prepared & Analyzed: 03	1/24/06		
10.0 82	2.9 80-120		
Prepared & Analyzed: 0	1/24/06		
10.0 8:	5.9 80-120		•
Prepared & Analyzed: 0	1/24/06		
		4.48	20
	1140	1140	1140 4.48

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Ń

ų.

. .

Project: ABO-Apache LA Leak Site Project Number: None Given Project Manager: Roy Rascon Fax: (505) 397-1471

Reported: 01/25/06 09:30

Notes and Definitions

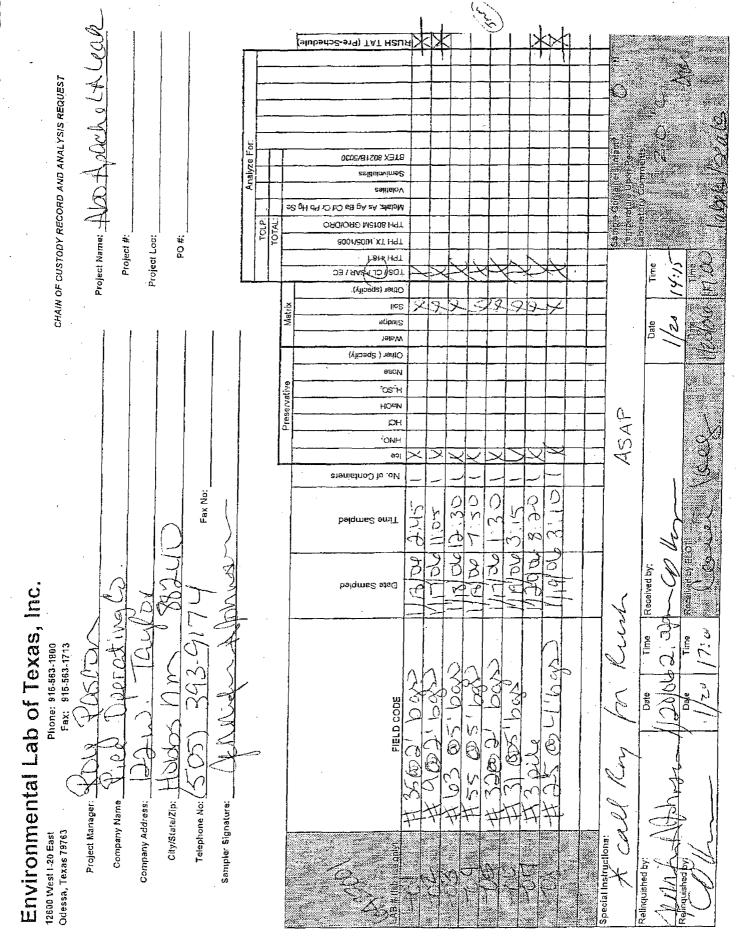
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

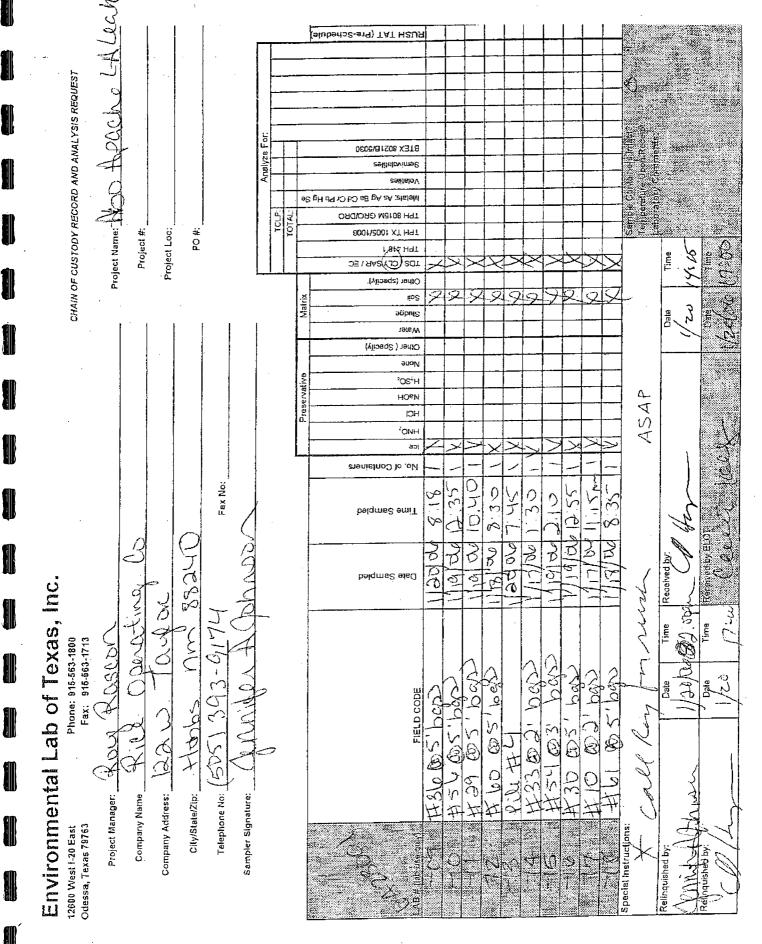
Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

1/25/2006

Date:


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Raland K Jutur

Environmental Lab of Texas

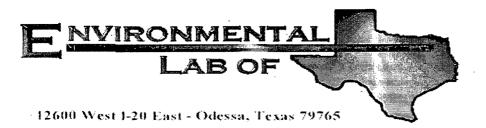
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Rice op.
Date/Time:	1/20/06 17:00
∎ _ Order #:	642300(
Initials:	CK

Sample Receipt	Checkli	st	
Temperature of container/cooler?	Yes	No	2,0 C
Shipping container/cooler in good condition?	Xes	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Yes,	No	Not present
Chain of custody present?	Yes I	No	
Sample Instructions complete on Chain of Custody?	YES	No	
Chain of Custody signed when relinquished and received?	Yes	No	
Chain of custody agrees with sample label(s)	Yes	No	
Container labels legible and intact?	Yes	No	
Sample Matrix and properties same as on chain of custody?	X-95	No	
Samples in procer container/bottle?	1 225 1	No	·. ·
Samples properly preserved?	Yes	No	
Sample bottles intact?	YES	No	
Preservations documented on Chain of Custody?	1 Yes	No	
Containers documented on Chain of Custody?	Yas	No	
Sufficient sample amount for indicated test?	YES	No	
All samples received within sufficient hold time?	XES	No	
VOC samples have zero headspace?	Yes	No	Net Acclicable

Other observations:


1

1

X

.

Contact Person: Regarding:	Variance Documentation:	Contacted by:
	· · · · · · · · · · · · · · · · · · ·	
Corrective Action Taken:		
· · · · · · · · · · · · · · · · · · ·		

I

l

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: Remediation Location: None Given

Lab Order Number: 6A24004

Report Date: 01/26/06

Į

Į

1

ł

Project: ABO-Apache LA Leak Site Project Number: Remediation Project Manager: Roy Rascon

Reported: 01/26/06 15:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Pile #1 Blended	6A24004-01	Soil	01/23/06 12:50	01/24/06 08:00
Pile #2 Blended	6A24004-02	Soil	01/23/06 14:45	01/24/06 08:00

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pile #1 Blended (6A24004-01) Soil				-					
Chloride	288	10.0	mg/kg	20	EA62404	01/25/06	01/26/06	EPA 300.0	
Pile #2 Blended (6A24004-02) Soil				•					
Chłoride	244	10.0	mg/kg	20	EA62404	01/25/06	01/26/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

ł

1

I

Reported: 101/26/06 15:20

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA62404 - Water Extraction										
Blank (EA62404-BLK1)				Prepared:	01/25/06	Analyzed:	01/26/06			
Chloride	ND	0.500	mg/kg							
LCS (EA62404-BS1)				Prepared:	01/25/06	Analyzed:	01/26/06			
Chloride.	8.31	0.500 ·	mg/kg	10.0		83.1	80-120			
Calibration Check (EA62404-CCV1)	-			Prepared:	01/25/06	Analyzed:	01/26/06			
Chloride	8.24		mg/L	10.0		82.4	80-120			
Duplicate (EA62404-DUP1)	Sour	ce: 6A24003	-01	Prepared	01/25/06	Analyzed:	01/26/06			
Chloride	348	10.0	mg/kg		327			6.22	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

122 W.	Project: ABO-Apache LA Leak Site Taylor Project Number: Remediation VM, 88240 Project Manager: Roy Rascon	Fax: (505) 397-1471 Reported: 01/26/06 15:20
10003 1	Notes and Definitions	
DET	Analyte DETECTED	
ND	Analyte NOT DETECTED at or above the reporting limit	
NR	Not Reported	
dry	Sample results reported on a dry weight basis	
RPD	Relative Percent Difference	
LCS	Laboratory Control Spike	
MS	Matrix Špike	
Dup	Duplicate	

Report Approved By:

I

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

1/26/2006

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Raland Kuthuk

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 4 of 4

12600 West I-20 East Phone: 915-553-180 Odessa, Texas 79763 Fax: 915-553-171 Project Manager: Roy Rascon Company Name Rice Operating Company	Company Name Rice Operating Company									НАНС	V OF Pro	OF CUSTODY Project Name Project #	CUSTODΥ act Name: Project #:	AL ST	Ba	HH HH	APAChi APAChi Linich	VSIS	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST ABA APACHE LA LA Project Name: Site Revealed Low	LEST K	N. St.		↓ 1
Company Address: 124 VV 1 Bylor Chty/State/Zip: Hobbs, NM 88240	, NM 88240										ñ.	Project Loc: PO #:	t Loc: PO #:										j 1
Telephone No: 505-393-9174 Sempler Signature:	33-9174 . Kat 25 re		Fax No: 505-397-147	505-3	97-1	471					·												
				,									1, T	TCLP:	4	Analyze For							
				L	ā	Preservative	ative			Matrix	1	\vdash	<u>}</u>	_	26		1		_	···			F
LAB # (lab use only)	FIELD CODR	balqma2 asaO	bəlqms2 əmīT	No. of Containers	нсі нио ^з	HOPN	*0S ^c H	None Other (Specify)	Water	Soil Soil	Chier (specify):	<u>וה</u> איזניו וכר <i>ו</i>	9001/S001 X1 Hd1	OSCION ON DEPART	h d9 که Da Ca Cr Pb hg Petals: Pb by Ba Ca Cr Pb hg Pb by	Semivolatiles	3LEX 80518/6030	SOT, and more and solution of the				Pre-Schedule (Pre-Schedule לtandard TAT (Pre-Schedule	
-61 P.16 #1	Blended	1-23.06	1250						-	9		5		-									
-67 Pile#2	Blended	1-23:04	245-P				Å					2					_						
																		<u> </u>					Y
																							·····
										$\left \cdot \right $		+-+											<u></u>
				<u> </u>	· .																		
Spacial Instructions:	-		-			-	- I .]		-		-	L er	nple (npera	fure L	Sample Containers Intact Temperature Upon Recei Laboratory Comments:	Sample Containers Intact? Temperature Upon Receipt: Laboratory Comments:	Le s	$\frac{1}{1} \frac{1}{N} \frac{1}$	1003			641/5
Relinquished by: King K. King Lann Relinduished by: C. E. L.	Date 11me 200 P	Received by:	2/2/						Date Date Date	Nº 8	- 3- 30	Time Time			dez	\ \							

.

.

₿

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	lice op.	-
Date/Time:	1/24/de 8:00	
o rder #:	6A24004	
Initials:	CIK-,	

Sample Receipt	Checkli	st	
Temperature of container/cooler?	Yes	No	1.5 CI
Shipping container/cooler in good condition?	Yes	No	1
Custody Seals intact on shipping container/cooler?	Cés I	No	Not present
Custody Seals intact on sample bottles?	Tø_	No	Not present
Chain of custody present?	l Ces	No	·
Sample Instructions complete on Chain of Custody?	(2) S	No	i
Chain of Custody signed when relinquished and received?	(C)	No	
Chain of custody agrees with sample label(s)		No	1
Container labels legible and intact?	(3)	No	
Sample Matrix and properties same as on chain of custody?	X=5	No	
Samples in procer container/bottle?		No	•
Samples properly preserved?	636	No	
Sample bottles intact?	শি ইচ	No	
Preservations documented on Chain of Custody?	1 (33	No	
Containers documented on Chain of Custody?	(Tès	No	i
Sufficient sample amount for indicated test?	Xes	No	
All samples received within sufficient hold time?	X es	No	
VOC samples have zero headspace?	1 Kes	No	Not Applicable

Other observations:

 Variance Documentation:

 Contact Person: -_____ Date/Time: ______ Contacted by: ______

. _____

 i_{i}

Regarding:

Corrective Action Taken:

J

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: None Given

Lab Order Number: 6B01009

Report Date: 02/06/06

Rice Operating Co.Project: ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Roy Rascon02/06/06 17:06

.

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Pile #6	6B01009-01	Soil	01/27/06 15:00	01/31/06 19:40
•				

Page 1 of 4

•	Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported:
	Hobbs NM, 88240	Project Manager: Roy Rascon	02/06/06 17:06

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pile #6 (6B01009-01) Soil									
Chloride	623	10.0	mg/kg	20	EB60608	02/03/06	02/06/06	EPA 300.0	

Environmental Lab of Texas

ľ

I

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 4

Rice Operati	ig Co.	Project: ABO-Apache LA Leak Site	Fax: (505)	397-1471
122 W. Tay	or Projec	Number: None Given	Report	ed: '
Hobbs NM,	88240 Projec	Manager: Roy Rascon	02/06/06	17:06

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB60608 - Water Extraction										
Blank (EB60608-BLK1)				Prepared:	02/03/06	Analyzed:	02/06/06			
Chloride	ND	0.500	mg/kg							
LCS (EB60608-BS1)				Prepared:	02/03/06	Analyzed:	02/06/06			
Chloride	8.98		mg/L	10.0		89.8	80-120			
Calibration Check (EB60608-CCV1)				Prepared:	02/03/06	Analyzed:	02/06/06			
Chloride	9.05		mg/L	10.0		90.5	80-120		÷	
Duplicate (EB60608-DUP1)	Sourc	e: 6B01006	-03	Prepared:	02/03/06	Analyzed:	02/06/06			
Chloride	200	10.0	mg/kg		200			0.00	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Roy Rascon02/06/06 17:06	Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
Hobbs NM, 88240 Project Manager: Roy Rascon 02/06/06 17:06	122 W. Taylor	Project Number: None Given	Reported:
	Hobbs NM, 88240	Project Manager Roy Rascon	02/06/06 17:06

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K troub

2/6/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

	Et Site Rend]						TAT brabrisiS			 		 <u> </u>		2		
	516					Г			eluberto2-erg) TAT H2UA							z -	Labers w/ washing	
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	LEAK											 				C S C	3	
SIS RE	L.R.								Najor cationaranions, TDS					 	-	0	2 2 2	
ATVNI	ahe	-				1		<u> </u>	8TEX 80218/6030 EC, CEC, SAR, ESP			 	-			Sample Containers Intact? Temperature Upon Receipt: Laboratory Comments:	- 1 8 1	
AND	Project Name: ARD HP POMC					-	Analyze rot.	-	Votables Semivotatiles			 		 		Sample Containers Intact? Temperature Upon Receip Laboratory Comments:		
совр	f.B							-	Metals: As Ag Ba Cd Cr Pb Hg							e Cont erature aforv C		
DYRE	ne: 📈	*	::0	F0 #			TCLP: TOTAL:	-	TPH 801500 570/060 TPH 801500 550/060			 		 _		Sampl Tempe Labora		
us ro	oct Nai	Project #:	Project Loc:	P D					1071) \C171								0	Time 940
V OF C	Proje	-	e 5			L			Offiet (specify):	<u> </u>		•	_	 				Ĕ (
CHAIN								Matrix	Soil Aby More	${\succ}$	-		-	 		ļ	te I	Date
									v Water (Specify)		\						$\frac{\text{Date}}{1/3}$	Dale
								e	доле		×							
					17			Preservative	OS ² H HOPN			+				-		:
		-			7-14			Pres	HCI HR/O ³			 		 		-		
					5-39				eoi		1							C
					Fax No: 505-397-1471				No. of Containers		-	_	-				}	1
	-			-	Fax N				balqms2 amiT	1500	3							, d le
nc.									bəiqms2 əlsü	1-27-06	2						Received by:	Received by ELOT:
Environmental Lab of Texas, Inc. 12600 West 1:20 East Phone: 915-663-1800 Ddessa, Texas 79763 Fax: 916-663-1713		any			ĺ	5											Date Time	19:40
b of Texas Phone: 915-563-1800 Fax: 916-563-1713		company Name Rice Operating Company		3240		Sampler Signature: Row R. R. 21200			щ								Date 31-04	Date
.ab.	ascon	peratin	Taylor	- NM 8	93-9174	R. 6			FIELD CODE								2	
a a	Project Manager: ROV Rascon	Rice C	company Address: 122 W Taylor	city/state/zip: Hobbs, NM 88240	Telephone No: 505-393-9174	Loc 1	-			s #(_							121	
	anager	y Name	dress	ate/Zip:	one No:	nature				d.	1						Citscon	(
Environm 12600 West 1.20 East Odessa, Texas 79763	oject Ma	ompan	any Ac	City/Sta	Felephc	der Sig			(vino							ctions:	0	Ľ
VITC Vest I. , Texa	D 76	Ŭ	Comp	-	Г	Samp			CPC	0						Special Instructions:	thed by:	thed by:
ED 2600 V										11						pecial	Relinquished by	Retinquished by

ĺ

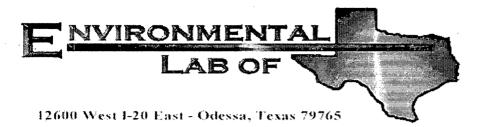
and a second second state of a second se

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	lice Op.	
Date/Time:	1/2/010 19:40	
Order #:	6601009	
Initials:	Cle	

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	0.5 01
Shipping container/ccoler in good condition?	Yes	No	
Custody Seals intact on shipping container/cooler?	165	No	Not present
Custody Seals intact on sample bottles?	YES	No	Not present
Chain of custody present?	1 Xes	No	
Sample Instructions complete on Chain of Custody?	Yes,	No	i
Chain of Custody signed when relinquished and received?	XES	No	
Chain of custody agrees with sample label(s)	2005	No	1
Container lacels legible and intact?	Yes	No	•
Sample Matrix and properties same as on chain of custody?	Yes	No 1	
Samples in procer container/bottle?	1 Yes	No	•
Samples properly preserved?	িকি	NO	1
Sample bottles intact?	Yes	No I	
Preservations documented on Chain of Custody?	Yas	No	
Containers documented on Chain of Custody?	Yes	No	
Sufficient sample amount for indicated test?	Yes	No	
All samples received within sufficient hold time?	Yes	No	
VOC samples have zero headspace?	Yes	No	Nct-Apoticagle


Other observations:

Variance Documentation:

Centact Person:	_ Date/Time:	••••••••••••••••••••••••••••••••••••••	Contacted by:	
Regarding:				

Corrective Action Taken:

Analytical Report

Prepared for: Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: None Given

Lab Order Number: 6B07001

Report Date: 02/09/06

Rice Operating Co.Project: ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Roy Rascon02/09/06 13:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Grid 18 E. Wall @ 5'	6B07001-01	Soil	02/03/06 10:00	02/07/06 08:00
Grid 18 Bttm Comp. @ 5'	6B07001-02	Soil	02/03/06 10:05	02/07/06 08:00
Grid 18 W. Wall @ 5'	6B07001-03	Soil	02/03/06 10:10	02/07/06 08:00
Grid 12 E. Wall @ 5'	6B07001-04	Soil	02/03/06 10:15	02/07/06 08:00
Grid 12 Bttm. Comp. @ 5'	6B07001-05	Soil	02/03/06 10:20	02/07/06 08:00
Grid 12 W. Wall @ 5'	6B07001-06	Soil	02/03/06 10:25	02/07/06 08:00
Grid 10 E. Wall @ 5'	6B07001-07	Soil	02/03/06 10:30	02/07/06 08:00
Grid 10 Bttm. Comp. @ 5'	6B07001-08	Soil	02/03/06 10:35	02/07/06 08:00
Grid 10 E. Wall @ 5'	6B07001-09	Soil	02/03/06 10:40	02/07/06 08:00

Page 1 of 4

Rice Operating Co.		· P	roject: AF	3O-Apache	LA Leak	Site		Fax: (505)	397-1471
122 W. Taylor			lumber: No					Repor	ted:
Hobbs NM, 88240		Project M	anager: Ro	y Rascon				02/09/06	13:41
	General Che	mistry Par Environn		•		andard M	lethods		
	D . k	Reporting							
Anaiyte Grid 18 E. Wall @ 5' (6B07001	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	· Method	Not
Chloride	200	10.0	mg/kg	20	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 18 Bttm Comp. @ 5' (6B(17001-02) Soil								
Chloride	863	20.0	mg/kg	40	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 18 W. Wall @ 5' (6B0700	1-(13) Soil	,							
Chloride	791	10.0	mg/kg	20	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 12 E. Wall @ 5' (6B0700)	1-04) Soil								
Chloride	807	25.0	mg/kg	50	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 12 Bttm. Comp. @ 5' (6B	07001-05) Soil							-	
Chloride	1060	20.0	mg/kg	40	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 12 W. Wall @ 5' (6B0700)1-06) Soil								
Chloride	2250	50.0	mg/kg	100	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 10 E. Wall @ 5' (6B07001	1-07) Soil								
Chloride	1370	20.0	mg/kg	40	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 10 Bttm. Comp. @ 5' (6B	07001-08) Soil								
Chloride	514	10.0	mg/kg	20	EB60823	02/08/06	02/09/06	EPA 300.0	
Grid 10 E. Wall @ 5' (6B0700)	1-09) Soil								
Chloride	1720	20.0	mg/kg	40	EB60823	02/08/06	02/09/06	EPA 300.0	

Environmental Lab of Texas

ł

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 4

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number None Given	Reported:
Hobbs NM, 88240	Project Manager: Roy Rascon	02/09/06 13:41

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB60823 - Water Extraction											
Blank (EB60823-BLK1)				Prepared	&	Analyzed:	02/08/06				
Chloride	ND	0.500	mg/kg							·	
LCS (EB60823-BS1)				[•] Prepared	&	Analyzed:	02/08/06				
Chloride	8.81	0.500	mg/kg	10.0			88.1	80-120			
Calibration Check (EB60823-CCV1)				Prepared	&	Analyzed:	02/08/06				
Chloride	9.22		mg/L	10.0			92.2 -	80-120			-
Duplicate (EB60823-DUP1)	Sour	ce: 6B07007	-01	Prepared	Ŀ	Analyzed:	02/08/06				
Chloride	66.2	5.00	mg/kg			65.3			1.37	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Opera 122 W. Ta Hobbs NM	lylor		. Numt	et: ABO-Apache LA Leak Site her: None Given her: Roy Rascon	Fax: (505) Report 02/09/06	ed:
		Notes	and	Definitions		
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the reporting	, limit				
NR	Not Reported					
dry	Sample results reported on a dry weight basis					
RPD	Relative Percent Difference					
LCS	Laboratory Control Spike					
MS	Matrix Spike	-				
Dup	Duplicate					

Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

2/9/2006

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Raland K Junis

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 4

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST AIDS APPROVE X. M. REALY SIFE Converticition Project Name: APP 1990 Project #:		i Analyze For. TOTAL: 3	۱٫۲٫٫ ۲РН ±18,5 ТРН ±18,5 ТРН ±1005/1006 ТРН ±1005/1006 ТРН ±1005/1006 ТРН ±1005/1006 ТРН ±1005/1006 Уовыйса Ва сд б. бр Нд Уовыйса Ва сд б. бр Нд Уовыйса Ва сд б. бр Сд б. бр Нд В Сд б. бр Е да бр В Сд бр Сд бр Г бр Е да бр В С С бр Е да бр В С бр С са бр Е да бр В С бр С са бр Е да бр В С бр С са бр Е да бр В С бр Е да бр В С бр С са бр В С бр							Sample Containers Intect? (Y N Temperature Upon Receipt: Laboratory Comments:		Time Hozylass on ice W/ lates + stails	6600
of Texas, Inc. e: 916-663-1713 :: 916-663-1713 g Company	240 Pav No. 505-397-1471		Water Other (Specify) Mone	-01 Grud 18 E. WAI/ OS' 2-3-26	-03 Gread 18 WI Wall @ 5 / 1010 11	Grid 12 4 was	12 W Wall 85" 102 102	-08 here 10 64 men 65' 1 1035 1 1	10 E W	Special instructions:	Relinquished by Date Time Received by Date Date Date Date Date Date Date Date	Date Time Received by ELOT:	(& Hoy] of 7 8:00 / game memory] oco role o

I

I

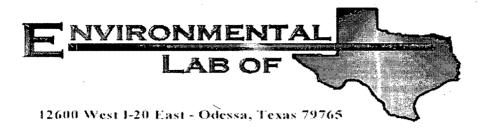
Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

Client: <u>Rice Operating Co.</u> Date/Time: 02-07-06 CO800

Order #: 6807001

Initials: JMM

Sample Receipt Checklist


Temperature of container/cooler?	Ves No	4.0 C
Shipping container/cooler in good condition?	Ves No	
Custody Seals intact on shipping container/cooler?	(es) No	Not present
Custody Seals intact on sample bottles?	(es) No	Not present
Chain of custody present?	(YES) NO	
Sample Instructions complete on Chain of Custody?	(Yes) No 1	
Chain of Custody signed when relinquished and received?	Yes No	,
Chain of custody agrees with sample labe!(s)	(res) No	
Container labels legible and intact?	(Yes) No I	
Sample Matrix and properties same as on chain of custody?	Yes No	
Samples in procer container/bottle?	(Yes) No	·
Samples properly preserved?	(Yes) No	
Sample bottles intact?	(VES) NO	
Preservations documented on Chain of Custody?	(es) No	1
Containers documented on Chain of Custody?	Ves No	
Sufficient sample amount for indicated test?	Ver No I	
All samples received within sufficient hold time?	Yed No	
VOC samples have zero headspace?	Yes No	NGT Apolicable

Other observations:

Regarding:

Contact Person: -_____ Date/Time: _____ Contacted by: _____

Corrective Action Taken:

A

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: None Given

Lab Order Number: 6B07002

Report Date: 02/13/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

an aire an

B

H

£.....

Pro

Project: ABO- Apache Leak Project Number: Nóne Given Project Manager: Roy Rascon Fax: (505) 397-1471

Reported:

02/13/06 10:36

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Grid 6 E. Wall @ 5'	6B07002-01	Soil	02/03/06 10:45	02/07/06 08:00
Grid 6 Bottom Comp. @ 5'	6B07002-02	Soil	02/03/06 10:50	02/07/06 08:00
Grid 6 W. Wall @ 5'	6B07002-03	Soil	02/03/06 10:55	02/07/06 08:00

Page 1 of 4

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240			roject: AB umber: Nor anager: Roy	ne Given	e Leak			Fax: (505) Repor 02/13/06	ted:
	General Ch	emistry Par Environn				andard M	ethods		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Grid 6 E. Wall @ 5' (6B07002-01)	Soil								
Chloride	209	10.0	mg/kg	20	EB61002	02/09/06	02/10/06	EPA 300.0	
Grid 6 Bottom Comp. @ 5' (6B070	002-02) Soil								
Chloride	1140	20.0	mg/kg	40	EB61002	02/09/06	02/10/06	EPA 300.0	
Grid 6 W. Wall @ 5' (6B07002-03)) Soil								
Chloride	465	10.0	mg/kg	20	EB61002	02/09/06	02/10/06	EPA 300.0	
		- - -					· · ·		
		1 1.7	N						
								. <u>.</u>	
			÷.,						
·		1 N.L							
							·		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

. . ..

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.	Project: ABO- Apache Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number None Given	Reported:
Hobbs NM, 88240	Project Manager: Roy Rascon	02/13/06 10:36

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61002 - Water Extraction				-						
Blank (EB61002-BLK1)			•	Prepared:	02/09/06	Analyzed:	02/10/06			
Chloride	ND	0.500	mg/kg							,
LCS (EB61002-BS1)				Prepared:	02/09/06	Analyzed:	02/10/06			
Chloride	8.93		mg/L	10.0		89.3	80-120			
Calibration Check (EB61002-CCV1)				Prepared:	02/09/06	Analyzed:	02/10/06			
Chloride	9.37		mg/L	10.0		93.7	80-120			
Duplicate (EB61002-DUP1)	Sou	rce: 6B06018	-33	Prepared:	02/09/06	Analyzed:	02/10/06			
Chloride	12.2	5.00	mg/kg		12.2			0.00	20	

Environmental Lab of Texas

ł

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Fax: (505) 397-1471 Rice Operating Co Project: ABO- Apache Leak 122 W. Taylor Project Number: None Given Reported: Hobbs NM, 88240 Project Manager: Roy Rascon Notes and Definitions DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate Dup

Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

2/13/2006

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 4

Kaland K Julies

02/13/06 10:36

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Prolact Name: the Lie is the Street	Project #:	Project Loc:	;≢ 0d	Fax No: 505-397-1471	Analyze For:	TOLP	 الحک الح الحک الح ال الح الح ال ال ال ال ال ال ال ال ال ال						Sample Containers Intact? (Y) N Temperature Upon Receipt: Laboratory Comments:	40.0		CANC 1 1000 1 1000 1 1000 1
Environmental Lab of Texas, Inc.	Odessa, fexas 79763 Fax: 915-563-1713 معتدمان المستقلم المعتدمان المعتدمان المعتدمان المعتدمان المعتدمان المعتدمان المعتدمان المعتدمان المعتدمان الم			city/state/zip: Hobbs, NM 88240		Sampler Signature:		Date Sampled	120026	aril & beton Conget 5	641.9 6 W Del 6			Special Instructions:	Relinquisting to Received by	hed by: Date Time Received by ELDT:	1 (d / topor 1/1 18 - N / Carrow man

`

J

l

l

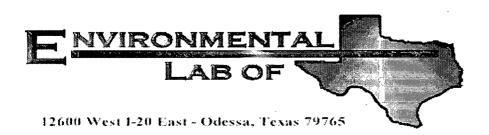
B

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

Client: <u>h</u>	ice Operating Co.
	02-07-06@ 0800
Order #:	6807002
Initiale:	6807002 JMM

Initials:

Sample Receipt Checklist


	Sample Receipt (Checkli	st	-	
	Temperature of container/cooler?	res	No	4.0	<u>C </u>
	Shipping container/cooler in good condition?	(es)	No		
1	Custody Seals intact on shipping container/cooler?	192	No	Not present	
ð	Custody Seals intact on sample bottles?	Ves)	No	Not present	
	Chain of custody present?	(YES)	No		
	Sample Instructions complete on Chain of Custody?	(Yes)	No		
	Chain of Custody signed when relinquished and received?	(Yes)	No		
	Chain of custody agrees with sample label(s)	(res,)	No		
	Container labels legible and intact?	(res)	<u>No</u>	<u> </u>	
	Sample Matrix and procerties same as on chain of custody?	CED	No		
	Samples in proper container/bottle?	1 Yes/1	No		•
	Samples properly preserved?	Ves	No		
S D	Sample bottles intact?	Tes	No]	
	Preservations documented on Chain of Custody?	(Tes)	No		
	Containers documented on Chain of Custody?	(Yes)	No		
	Sufficient sample amount for indicated test?		No		
1	All samples received within sufficient hold time?	(Yes)	No		
	VOC samples have zero headspace?	Yes	No	Not Acclicab	be

Other observations:

Ï

			I
Contact Person: Regarding:	Variance Documentation: Date/Time:	Contacted by:	
· · · · ·			
Corrective Action Taken:			
		· · · · · · · · · · · · · · · · · · ·	

ł

-

I

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: Remediation Project Location: None Given

Lab Order Number: 6B15003

Report Date: 02/21/06

Rice Operating Co.Project: ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number: Remediation ProjectReported:Hobbs NM, 88240Project Manager: Roy Rascon02/21/06 16:35

.

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Blended Backfill	6B15003-01	Soil	02/11/06 14:12	02/15/06 08:00
Sample P+A N Wall	6B15003-02	Soil	02/09/06 13:00	02/15/06 08:00
Sample P+A @ 5' Bottom Comp.	6B15003-03	Soil	02/09/06 13:05	02/15/06 08:00
Sample P+A S Wall	6B15003-04	Soil	02/09/06 13:10	02/15/06 08:00
Grid Z 2 Wall	6B15003-05	Soil	02/09/06 13:15	02/15/06 08:00
Grid Z N Wall	6B15003-06	Soil	02/09/06 13:20	02/15/06 08:00
Grid Z Bottom Comp. @ 5'	6B15003-07	Soil	02/09/06 13:25	02/15/06_08:00
Grid 3 N Wall	6B15003-08	Soil	02/09/06 13:20	02/15/06 08:00
Grid 3 BOH@ 5'	6B15003-09	Soil	02/09/06 13:40	02/15/06 08:00
Grid 3 2 Wall	6B15003-10	Soil	02/09/06 13:35	02/15/06 08:00

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

1. 1.

Rice Operating Co.		Р	roject: Al	3O-Apache	LA Leak	Site		Fax: (505)	397-147
122 W. Taylor		Project N	lumber: Re	mediation	Project			Report	
Hobbs NM, 88240		Project M	anager: Ro	y Rascon				02/21/06	16:35
	General Cher	nistry Par	ameter	s by EF	PA / Sta	andard M	ethods		x.
		Environn	nental	Lab of	Texas	,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
Blended Backfill (6B15003-01) Soil								· · · ·	
Chloride	236	10.0	mg/kg	20	EB61613	02/16/06	02/17/06	EPA 300.0	
Sample P+A N Wall (6B15003-02)	Soil								
Chloride	626	10.0	mg/kg	20	EB61613	02/16/06	02/17/06	EPA 300.0	
Sample P+A @ 5' Bottom Comp.	(6B15003-03) Soil					,			
Chloride	1060	25.0	mg/kg	50	EB61613	02/16/06	02/17/06	EPA 300.0	
Sample P+A S Wall (6B15003-04)	Soil								
Chloride	1150	25.0 ·	mg/kg	50	EB61618	02/16/06	02/20/06	EPA 300.0	
Grid Z 2 Wall (6B15003-05) Soil									
Chloride	1370	25.0	mg/kg	50	EB61618	02/16/06	02/20/06	EPA 300.0	
Grid Z N Wall (6B15003-06) Soil							<u>^</u>		
Chloride	737	10.0	mg/kg	20	EB61618	02/16/06	02/20/06	EPA 300.0	
Grid Z Bottom Comp. @ 5' (6B1	5003-07) Soil								
Chloride	1110	20.0	mg/kg	40	EB61618	02/16/06	02/20/06	EPA 300.0	
Grid 3 N Wall (6B15003-08) Soil									
Chloride	879	. 20.0	mg/kg	40	EB61618	02/16/06	02/20/06	EPA 300.0	
Grid 3 BOH@ 5' (6B15003-09) So	il								
Chloride	1250	25.0	mg/ķg	50	EB61618	02/16/06	02/20/06	EPA 300.0	
Grid 3 2 Wall (6B15003-10) Soil									
Chloride	1040	20.0	mg/kg	40	EB61618	02/16/06	02/20/06	EPA 300.0	

Environmental Lab of Texas

- - -- -

......

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.		P	oject: Al	BO-Apache	LA Leak	Site			Fax: (505) 397-147
122 W. Taylor			•	emediation					Repo	rted:
Hobbs NM, 88240		Project Ma	anager: Re	by Rascon			,		02/21/0	6 16:35
General	Chemistry Pa	arameters Environn	•			Methods	- Quali	ty Cor	itrol	
		Reporting		Spike	Source	<u> </u>	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61613 - Water Extraction										
Blank (EB61613-BLK1)				Prepared:	02/16/06	Analyzed:	02/17/06			
Chloride	ND	0,500	mg/kg							
LCS (EB61613-BS1)				Prepared:	02/16/06	Analyzed:	02/17/06			
Chloride	8.87	0,500	mg/kg	10.0		88.7	80-120			
Calibration Check (EB61613-CCV1)				Prepared:	02/16/06	Analyzed:	02/17/06			
Chloride .	9.01		mg/L	10.0		90.1	80-120			
Duplicate (EB61613-DUP1)	Soi	arce: 6B14010	-05	Prepared:	02/16/06	Analyzed:	02/17/06			
Chloride	38.5	5.00	mg/kg		38.6			0.259	20	
Batch EB61618 - Water Extraction		•								
Blank (EB61618-BLK1)		•		Prepared:	02/16/06	Analyzed:	02/20/06			
Chloride	ND	0.500	mg/kg		-					
LCS (EB61618-BS1)				Prepared:	02/16/06	Analyzed:	02/20/06			
Chloride	9.13	0.500	mg/kg	10.0		91.3	80-120			
Calibration Check (EB61618-CCV1)				Prepared:	02/16/06	Analyzed:	02/20/06			
Chloride	9.96		mg/L	10.0		99.6	80-120			
Duplicate (EB61618-DUP1)	Soi	ırce: 6B15003	-05	Prepared:	02/16/06	Analyzed:	02/20/06			
Chloride	1360	25.0	mg/kg		1370			0,733	20	

Environmental Lab of Texas

حافيت معاقد

1

and a second

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

122 W.	perating Co. Taylor NM, 88240	Project: ABO-Apache LA Leak Site Project Number: Remediation Project Project Manager: Roy Rascon	Fax: (505) 397-1471 Reported: 02/21/06 16:35
		Notes and Definitions	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the r	eporting limit	
NR	Not Reported		
dry	Sample results reported on a dry weight bas	is	
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike	·	
Dup	Duplicate		

Report Approved By:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

2/21/2006

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Raland K Shuts

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Aba Apache LA Levie SITE Project Name: Lowe D Vertione Conserved Project Luce:	Analyze For: TCLP: TOTAL:	TPH 8015M GROUPRO Seminotalitas Seminotalitas BTEX 80218/5030 BTEX 80218/5030 BTEX 80218/5030								Temple Governeis IIIIIIIIIII	State of the second	
W DF CUSTODY RECOF Project Name: <u>Aba</u> Project Lac: Project Lac:		LIH 11X 100211000 LIDH 418 1 Direk CEV SAR / EC Quirek (Sbeot()), 프		77		51	2	7	<u>}</u>		Time	NON CONTRACT
CHA		Ofher (Specify) Water Shudge									Date	Date -
		Nove H ² C0 ² KII HCI HCI										
	Na:	No. of Containers	<u>_</u>	 2 2	7			-	<u>, -</u>			
	nax No:	bəlqms2 əni)	2:12	e 1:00	01:1 2	6 1215			0 1:40			
s, Inc.		Date Sampled	021106	020906	020706	020506	01040	02070	2070	07070	Received by:	
b of Texas Phone: 815-563-1800 Fax: 915-563-1713 KASCON L.E. C.P.E. W. T. C.P.E.	न्तु.		2111	22/11 20 Bud			10-00-0				Time Time	
ILabof Phone: 81 Fax: 91 Fax: 91 Fax: 91 Fax: 91 Labbs A	1393.917	FIELD CODE	I Beach	E Batto	Lucil	المحافظ لتح	Co Her	N well	BAR C	4. (2 21	Date 03130/4	Date
ental La nager: <u>Koz</u> Name <u>KZ</u> fress: <u>122</u> fress: <u>122</u>	le No: <u>505</u> ature:		Blevels	2000 04 04 04 04 04 09	44000	2014 2	2000	Erric 3	1201 3 3			
Environmental Lab of Texas, 12600 West 1.20 East 12600 West 1.20 East Phone: 815-563-1800 Odessa, Texas 79763 Project Manager: Roy Rase 915-563-1713 Project Manager: Roy Rase 915-563-1713 Project Manager: Roy Rase 915-563-1713 Company Name RTC R COR R	Telephone No: Sampler Signature:						201 11/2			Special Instructions:	Relinquished by:	Relinquished by:

an in the state

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	live DP.
Date/Time:	2/15/06 8:00
Order #:	UB15003
Initials:	Cll

Sample Receipt Checklist Temperature of container/cooler? Yes No 2.0 С Shipping container/cooler in good condition? YES No Custody Seals intact on shipping container/cooler? Es No Not present Custody Seals intact on sample bottles? XPA. No Not present Chain of custody present? No Xes | Sample Instructions complete on Chain of Custody? YES, No Chain of Custody signed when relinquished and received? No e Chain of custody agrees with sample label(s) No ¥£5 Container labels legible and intact? No Yes Sample Matrix and properties same as on chain of custody? Yas | No Samples in procer container/bottle? Yéş No Samples properly preserved? YES. No Sample bottles intact? No XES Preservations documented on Chain of Custody? Yes 1 No Containers documented on Chain of Custody? No Xas | Sufficient sample amount for indicated test? No Yes 1 All samples received within sufficient hold time? ¥as I No Chr VOC samples have zero headspace? Not Apolicable Yas No

Other observations:

Variance Documentation:

Contact Person: Regarding:	Date/Time:	 Contacted by:				
	······································	 				
Corrective Action Taken:						
······································	······					
·		 				
		 ·				
	<u></u>	 	· · ·			

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

April 27, 2006

Wayne Price NMOCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail and Federal Express

RE: Final Closure Report Abo 1G Pipeline Release Section 1, 17S, 36E, Unit G

NMOCD Case #1R0415

Dear Wayne:

The attachment describes the implementation of the NMOCD-approved remedy: excavation and exportation of a portion of the upper vadose zone and the placement of a monolithic evapotranspiration (ET) infiltration barrier. The Table of Contents provides a description of the material in each section of this report. Only two sections of the attachment include new information to NMOCD. Tab 1, Executive Summary summarizes the implementation of the NMOCD-approved remedy. Tab 7 provides information on ET infiltration barriers that suggests that these barriers are very effective and as a result, moisture collection from lysimeters placed below the barrier may be difficult.

It is our understanding that NMOCD prefers to delay plugging and abandonment of the existing monitor well until two years of annual sampling confirms the performance of the ET cover. ROC is agreeable to this condition.

Please expect a report in early 2007 that presents the results of the lysimeter and monitor well sampling. If you have any questions regarding this submission, please contact me at our Albuquerque office. We trust this submission meets with your approval and written confirmation of your satisfaction would be appreciated.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall Hicks Principal

Copy: Rice Operating Company

Surface Restoration & Closure Report

A LOUGH AND A LOUGH AND A

R.T. HICKS CONSULTANTS, LTD.

901 RIO GRANDE BLVD. NW, SUITE F-142, ALBUQUERQUE, NM 87104

April, 2006

Lovington Abo

Surface Restoration and Closure Report

RICE OPERATING COMPANY HOBBS, NEW MEXICO

Prepared for:

Rice Operating Company 122 W. Taylor Hobbs, NM 88240

R.T. HICKS CONSULTANTS, LTD.

1

A

901 RIO GRANDE, SUITE F-142, ALBUQUERQUE, NM, 87104

TABLE OF CONTENTS

<u>Tab 1:</u>

This Executive Summary is the only new information provided in this submission. The Executive Summary is a description of the excavation of the impacted soil and installation of the clay and soil ET barrier. The report contains supporting data and graphics as well as a description of the installation of vadose zone monitoring instruments which will measure the infiltration (if any) of moisture below the barrier.

<u>Tab 2:</u>

This section presents the relevant email communication to NMOCD from Rice Operating Company and Hicks Consultants and relevant email communication from NMOCD to ROC or Hicks Consultants. Included in this material is email communication with the City of Lovington. Communications in November 2005 establish the criteria for the final design of the excavation of soil and placement of the evapotranspiration infiltration barrier.

<u>Тав 3:</u>

Reports and other data submissions to NMOCD, including the final closure plan for the site (August 2005), are included in this section. These reports illustrate the history of the site activities. Site maps, hydrogeologic information, the construction details of the monitor wells and soil borings and other information are included in these reports. The August Corrective Action Plan provides the most recent summary of existing data.

<u>Тав 4:</u>

The available laboratory analytical reports for soils that support the data summarized in the Final Surface Restoration Report are in this section. Laboratory data sheets for the previous reports included in Tab 3 are included as appendices to those reports and are not duplicated herein.

<u>Тав 5:</u>

The manifests documenting removal of the chloride-impacted material pursuant to the NMOCD-approved corrective action plan are included in this section.

<u>Тав 6:</u>

The Quality Procedures used in the field are included in this section.

<u>Тав 7:</u>

This section contains a recent peer-reviewed paper by Scanlon and others (2005) that describes the performance (measured and simulated) of ET covers in New Mexico and Texas. A second publication by Roesler and others (2003) provides additional support of the efficacy of ET infiltration barriers.

LOVINGTON ABD: SURFACE RESTORATION Auril 28, 2006

EXECUTIVE SUMMARY

LOCATION

The Abo 1G Discharge Site is located about 6 miles southeast of the center of Lovington, New Mexico. Plate 1 is a 1:24,000 topographic map showing the location of the site relative to Route 18, the Hobbs-Lovington Highway. Plate 2 is a 1:6,000 image (2004) of the site location and nearby features such as the Navajo Lovington Refinery and the Lovington-Hobbs highway.

SPILL SITE REMEDIATION

NMOCD approved the Corrective Action Plan in November, 2005 and Rice began excavation of the site in January 2006.

Initially, excavation proceeded in grids where the July 2005 field program (see Plate 3 and Table 1) revealed chloride above 1000 mg/kg. In general, excavation proceeded to a depth of 1-foot below ground surface (bgs) then ROC collected a five point composite sample from the bottom of the grid and field tested for chloride concentration and volatile organic compounds (VOC). If the result of the field chloride measurement was above 1000 mg/kg, excavation was continued vertically another foot. Additional grids with composite surface chloride concentrations above 1000 mg/kg were excavated following the same protocols as above. The Standard Operating Procedures (SOP) in Tab 6 of the attachment provides details on sample collection

Excavation within a grid ceased when either the composite floor sample yielded a chloride concentration below 1000 mg/kg or at a maximum depth of 5 feet bgs. In either of these cases, final samples were submitted to a laboratory for confirmatory analysis (see Table 2). Excavation was also halted in a grid if a final sample was only marginally above 1000 mg/kg and concentration the profile showed a declining chloride concentration with depth from previously excavated material.

As shown in Plate 4, 14 grid sections were excavated in a northern area and 15 grid sections were excavated in a southern area.

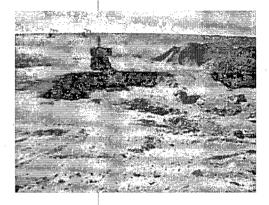


Figure 1. Adding Clay to Grid 63. View is to the South.

LOVINGTON ABO: SURFACE RESTORATION April 28, 2006

Excavated material was initially placed in stockpiles (Plate 4). Some of this material (Piles 3, 4, and 6) was blended with imported material to create the backfill material that would support vegetation. Imported material was composed of either a fine grained caliche byproduct material or a clean, top sand removed to expose caliche for quarrying. Suppliers were Wallach Concrete Co. and RWI. These materials were blended with the stockpiled material on the site to create the backfill material. Additional material was added and blended to a pile until a composite sample featured a chloride concentration below 250 mg/kg.

As a result of chloride concentrations obtained during the installation of Lysimeter 1, an additional area including parts of grids 2,6,7,10,12, and 18 was excavated to 5 feet bgs and capped with 1 foot of clay (Plate 4).

As stated above, all backfill material featured chloride concentrations below 250 mg/kg. Those grids for which final bottom samples tested above 1000 mg/kg received a one-foot thick clay cap (uncompacted) extended to a 31 by 31 foot square (Plate 4). The clay was moistened as installed and a final top cover of the blow sand was placed over the clay. Grids with 1) final samples below 1000 mg/kg or with 2) a declining chloride concentration and a marginally higher than 1000 mg/kg concentration were finished with the backfill material (Plate 4). The site was graded with a crown to

promote runoff from large precipitation events.

Imported materials consisted of:

- 1716 yards caliche base material from Wallach Concrete Co.
- 1092 yards of top sand from Wallach Concrete Co.
- 1392 yards caliche mixed with topsoil from RWI's caliche pit.
- 480 yards of red bed clay from Wallach Concrete Co.

Exported Materials consisted of:

- 2952 yards to Sundance Services Inc. in Eunice, N.M.
- 612 yards of material was spread on the ROC yard with NMOCD approval.

Figure 2. Clay Installed in the Southern Grids. View is to the Southeast.

LOWINGTON ABO: SUBFACE RESTORATION April 28, 2006 Page 3

Lysimeter Installation

In order to provide a demonstration of the effectiveness of the ET infiltration barrier, Hicks Consultants installed a pan lysimeter and tensiometer access tubes in each of the excavated areas to allow sampling of vadose zone moisture. The lysimeters were placed 4 and 8 feet below the floor of the particular excavated grid section. The casings for tensiometers were installed to depths corresponding to both one-foot above and one-foot below each lysimeter. Should it be not possible to collect soil moisture samples, tensiometer (matric potential) measurements will provide an explanation as to if there exists a difficulty with the lysimeter. See Appendix A for a detailed description of the installation.

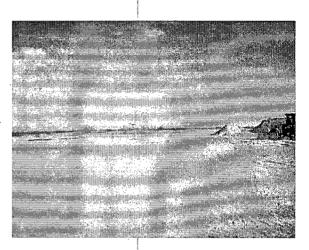


Figure 3. View is to the cast of the northern excavated area as backfilling is being completed. Lysimeter 1 and MW-1 are in the center of the middle distance.

LOWINGTON ARE: SURFACE DESTORATION April 28, 2006

TABLES

ß

ß

Samples Pulled:	-	A leak site Surface	
Samples Titrated			
All highlighted sq		b	
ALL Squares are			
Square Number	Chloride	Square Number	Chloride
1	3653	39	3409
2	375	40	11067
3	93	41	316
4	826	42	44
5	13458	43	112
6	7860	44	1128
7	83	45	2143
8	348	46	127
9	7502	47	89
10	4855	48	74
11	9646	49	288
12	581	50	179
13	1216	51	246
14	12110	52	2351
15	··· ·· · · · · · · · ·	53	634
16	948	54	284
17	407	55	6339
18	2715	56	2863
19	247	57	429
20	121	58	5192
21	77	59	7588
22	5686	60	10041
23	466	61	8222
24	708	62	3594
25	2240	63	1190
26	6806	64	515
27	11411	65	109
28	5347	66	137
29	1468	67	139
30	7732	68	104
31	7879	69	136
32	2279	ALC: 44 19 19 19 19 19 19 19 19 19 19 19 19 19	222
33	8568	71	160
34	109	72	117
a film of the second	6749	73	63
· 36	7774	74	129
37	2399		
38	2327		

Table 2: ABO Apache LA Leak Site Remediation Field CL- Titration Results

Lab Results in Bold

H

B

Results III Bold						· · · · · · · · · · · · · · · · · · ·
Comments	1' bgs Cl-	2' bgs Cl-	3' bgs Cl-	4' bgs Cl-	5' bgs Cl-	
	247/					
excavated to 1' bgs	214					tph-192
Top 1' soil used to blend	_					
w/ soil from grid #1,5,6,11	no test					
Top 1' soil used to blend	-'					
w/ soil from grid #1,5,6,11	no test					
-		·				
w/ soil from grid #1,5,6,11	no test					
	594					
•						
	no test					· · · · · · · · · · · · · · · · · · ·
-						
w/ soil from grid #1,5,6,11		570/				
						Leave alone per
· · · · · · · · · · · · · · · · · · ·		1040				Carolyn 1-25-06
		1050				Carolyn 1-25-06
		1030				
not excavated						
Hot excavated			·			<u> </u>
						no clay
	706					no clay
not excavated				— <u>—</u>		
not excavated						
not excavated	no test					
	193/					
	334					
not excavated	no test				<u> </u>	
not excavated	no test					
	Comments excavated to 1' bgs Top 1' soil used to blend w/ soil from grid #1,5,6,11 Top 1' soil used to blend w/ soil from grid #1,5,6,11 Top 1' soil used to blend w/ soil from grid #1,5,6,11 Top 1' soil used to blend w/ soil from grid #1,5,6,11 Top 1' soil used to blend w/ soil from grid #1,5,6,11 Top 1' soil used to blend mot excavated not excavated not excavated not excavated not excavated	CommentsÖ S S A AComments247/ excavated to 1' bgs214Top 1' soil used to blend w/ soil from grid #1,5,6,11 Top 1' soil used to blend w/ soil from grid #1,5,6,11 no testno testTop 1' soil used to blend w/ soil from grid #1,5,6,11 no testno testTop 1' soil used to blend w/ soil from grid #1,5,6,11 no tests67297/ excavated to 1' bgs594Top 1' soil used to blend w/ soil from grid #1,5,6,11 no testno testTop 1' soil used to blend w/ soil from grid #1,5,6,11 no testno testTop 1' soil used to blend w/ soil from grid #1,5,6,11 no testno testMoli from grid #1,5,6,11 no testno testA03 not excavatedno test659/ 604403not excavated not excavatedno testnot excavated not excavatedno testnot excavated not excavatedno testnot excavated not excavatedno test193/ 334not excavatednot excavatedno test	CommentsiiCommentsN247//247//excavated to 1' bgs214Top 1' soil used to blendno testw/ soil from grid #1,5,6,11no testTop 1' soil used to blendw/ soil from grid #1,5,6,11w/ soil from grid #1,5,6,11no testTop 1' soil used to blend297/w/ soil from grid #1,5,6,11no testTop 1' soil used to blend297/w/ soil from grid #1,5,6,11no testTop 1' soil used to blend297/w/ soil from grid #1,5,6,11no testTop 1' soil used to blend835/w/ soil from grid #1,5,6,11no testTop 1' soil used to blend835/w/ soil from grid #1,5,6,11no testTop 1' soil used to blend840/124010504031050403659/604451/706no testnot excavatedno testnot excavatedno testnot excavatedno test193/334not excavatedno test	ididididCommentsidid247/247/excavated to 1' bgs214Top 1' soil used to blendidw/ soil from grid #1,5,6,11no testTop 1' soil used to blendidw/ soil from grid #1,5,6,11no testTop 1' soil used to blendidw/ soil from grid #1,5,6,11no testTop 1' soil used to blendidw/ soil from grid #1,5,6,11no testTop 1' soil used to blendidw/ soil from grid #1,5,6,11no test297/idexcavated to 1' bgs594Top 1' soil used to blendidw/ soil from grid #1,5,6,11no testTop 1' soil used to blendidw/ soil from grid #1,5,6,11no test835/579/20101040840/id12401050403idnot excavatedno testnot excavatedno testnot excavatedno testin texcavatedno testnot excavatedno testin texcavatedno test </td <td>i i</td> <td></td>	i i	

$\frac{1}{50}$,			л ^г .		· · · · · · · · · · · · · · · · · · ·
21not excavatedno test $($	Grid#	Comments	1' bgs CI-	bgs	3' bgs Cl-	4' bgs Cl-	sɓq	
574/ 948 948 no no no no no clay 23 not excavated no test no clay clay clay no clay clay clay clay clay clay no clay <td< td=""><td>21</td><td>not excavated</td><td>no test</td><td></td><td></td><td></td><td></td><td></td></td<>	21	not excavated	no test					
22 948 no clay 23 not excavated no test 24 not excavated no test 24 not excavated no test 25 1494 929 1087 1170 Carolyn 1-25-06 26 489 754 27 705 28								
23 not excavated no test 818/ Leave alone per Carolyn 1-25-06 25 1494 929 1087 1170 Carolyn 1-25-06 26 489 754	22							no clav
24 not excavated no test 818/ 794/ Leave alone per Carolyn 1-25-06 25 1494 929 1087 1170 Carolyn 1-25-06 26 489 754 - - Carolyn 1-25-06 26 489 754 - - - - 27 756 - - no clay - - 28 908 - - no clay - <t< td=""><td></td><td>not excavated</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		not excavated						
25 1494 929 1087 1170 Leave alone per Carolyn 1-25-06 26 489 754 -				<u> </u>				
25 1494 929 1087 1170 Carolyn 1-25-06 26 489 754 4 5 7 6 6 7 26 489 754 4 6 7 7 6 6 7 27 756 503/ 503/ 7 6 7 10 7	-27	There excertated	10 1031			818/	<u> </u>	l eave alone per
26 794/ 489 794/ 754 27 794/ 405/ 503/ 908 28 no clay 27 756 503/ 908 no clay no clay 28 908 722/ 903 no clay no clay 29 1250 1004 1480 927 933 no clay 30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 35 such grid 31 2690 1532 1060 1080 1380 extend 35 such grid 32 1216/ 621/ 1020 1080 1380 extend 35 such grid 33 1020 809 1020 1080 1380 extend 35 such grid 34 not excavated no test 1020 809 1020 1034 36 2624 2120 2120 extend 35 over grid 1140 36 2624 1562/1 Instalf clay liner 1562/1 <td< td=""><td>25</td><td></td><td>1494</td><td>929</td><td>1087</td><td>1</td><td></td><td>A STATE OF A STATE OF A</td></td<>	25		1494	929	1087	1		A STATE OF A
26 489 754 27 405/ 756 no clay 28 503/ 908 no clay 28 908 no clay 29 1250 1004 1480 927 933 no clay 30 2476 1529 1410 815 730 no clay 30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 3 out or grid 32 1960 1020 Carolyn 1-25-06 33 1020 809 Leave alone per carolyn 1-25-06 33 533/ 537/ Leave alone per carolyn 1-25-06 35 Leave alone per carolyn 1-25-06 36 <	20	· · · · · · · · · · · · · · · · · · ·	- 1404		1007			
27 405/ 756 no clay 28 908 no clay 29 1250 1004 1480 927 933 no clay 29 1250 1004 1480 927 933 no clay 30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 3 over grid 32 1960 1020 - - Carolyn 1-25-06 33 1020 809 - - Carolyn 1-25-06 33 1020 809 - - Carolyn 1-25-06 33 1020 809 - - Carolyn 1-25-06 34 not excavated no test - - Carolyn 1-25-06 35 2801 1140 - - Carolyn 1-25-06 35 2801 1140 - - Carolyn 1-25-06 36 2624 - <td< td=""><td>26</td><td></td><td>180</td><td></td><td></td><td></td><td></td><td></td></td<>	26		180					
27	20			1 3 4				
28 503/ 908 680/ 1250 722/ 994/ 1250 no clay 29 1250 1004 1480 927 933 no clay 30 2476 1529 1410 815 730 no clay 30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 3' over grid 32 1960 1020 1020 1080 1380 extend 3' over grid 33 1020 809 no clay no clay no clay 34 not excavated no test - - - 36 2624 2120 extend 3' over grid - 36 2624 - 2120 extend 3' over grid 38 Initial excavation to 5' bgs - - - - 39 Initial excavation to 5' bgs - - - - 39 Initial excavation to 5' bgs -	27		1 1					
28	21							
29 1250 1004 1480 927 933 no clay 30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 3' aver grid 32 1216/ 621/ 1020 1080 1380 extend 3' aver grid 33 1020 809 no clay Carolyn 1-25-06 2637/ 2690 1020 1080 1380 extend 3' aver grid 34 not excavated no test	20		1 1					
29 1250 1004 1480 927 933 no clay 30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 3 over grid 31 2690 1532 1060 1080 1380 extend 3 over grid 32 1216/ 621/ - - - Carolyn 1-25-06 33 1020 809 - - no clay 34 not excavated no test -<	28		908		690/		700/	
30 2476 1529 1410 815 701/ 730 no clay 31 2690 1532 1060 1080 1380 extend 3' over grid 31 2690 1532 1060 1080 1380 extend 3' over grid 32 1960 1020 2 2 2 2 2 33 1020 809 10 10 12 2 2 34 not excavated no test 1140 2 2 2 2 35 2801 1140 2 <td>0</td> <td></td> <td>4050</td> <td>1001</td> <td></td> <td>007</td> <td></td> <td></td>	0		4050	1001		007		
30 2476 1529 1410 815 730 no clay 31 2690 1532 1060 1080 1380 extend 3 ever grid 32 1216/ 621/ 1080 1380 Eave alone per Carolyn 1-25-06 32 1960 1020 621/ 1080 1080 1020 33 1020 809 10 10 10 10 34 not excavated no test 1140 10 10 10 10 35 2801 1140 10 10 10 10 10 10 10 36 not excavated no test 1140 10	29		1250	1004		927		no clay
31 742/ 2690 1080 1532 Install Clay liner extend 3' over grid 32 1216/ 1960 621/ 1020 Leave alone per Carolyn 1-25-06 33 1020 809 no clay 34 not excavated no test no clay 35 2801 1140 Leave alone per Carolyn 1-25-06 36 2624 1140 Leave alone per Carolyn 1-25-06 37 Initial excavation to 5' bgs 1140 1043 38 Initial excavation to 5' bgs 1562/1 Install clay liner 39 Initial excavation to 5' bgs 1562/1 Install clay liner 39 Initial excavation to 5' bgs 1360 Install clay liner 40 /1214 1070 1043 1025 extend 3' over grid <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
31 2690 1532 1060 1080 1380 externd 3' over grid 32 1216/ 621/ 1020 1080 1280 Leave alone per 32 533/ 537/ 1020 1020 1020 1020 1020 33 1020 809 1020 809 1020 1020 1020 34 not excavated no test 1020 809 1020 1020 1020 35 1020 809 1200 1020 1020 1020 1020 1020 1020 34 not excavated no test 1020 809 1020 <td>30</td> <td></td> <td>2476</td> <td>1529</td> <td></td> <td>815</td> <td></td> <td></td>	30		2476	1529		815		
1216/ 1960621/ 1020Leave alone per Carolyn 1-25-0632533/ 1020533/ 809537/ no clay331020809no clay34not excavatedno testno test3528011140Leave alone per, Carolyn 1-25-063626241140Carolyn 1-25-063626242120extend 3' over grid37Initial excavation to 5' bgs110238Initial excavation to 5' bgs11562/139Initial excavation to 5' bgs1104339Initial excavation to 5' bgs1104340/121410701043104341not excavated1104342not excavated1142not excavated1142not excavated1143104104514410411441041144104145104146114710410434811410449104104340104104341104104342104143104144104144104145144614471448144914 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
32196010201020Carolyn 1-25-06331020809no clay34not excavatedno testno clay3528011140Leave alone per Carolyn 1-25-063628011140100037Initial excavation to 5' bgs100038Initial excavation to 5' bgs100039Initial excavation to 5' bgs10004010001043104341not excavated100042not excavated100042not excavated100042not excavated100042not excavated100042not excavated1000431000104344100010434410001043441000 <td>31</td> <td></td> <td>1</td> <td></td> <td>1060</td> <td>1080</td> <td>1380</td> <td></td>	31		1		1060	1080	1380	
33533/ 1020537/ 809no clay34not excavatedno testno clay3528011140Leave alone per Carolyn 1-25-063528011140Install clay liner carolyn 1-25-063626242120Install clay liner extend 3' over grid37Initial excavation to 5' bgs1341/38Initial excavation to 5' bgs11562/138Initial excavation to 5' bgs133039Initial excavation to 5' bgs1104340/121410701043104341not excavated1142not excavated11								(4) 確認が認識が必要なななない。
331020809Image: Market	32							Carolyn 1-25-06
34not excavatedno testImage: stand								
35579/ 28011140Leave alone per Carolyn 1-25-063626241140Install clay liner 21203626242120Install clay liner extend 3' over grid37Initial excavation to 5' bgs1138Initial excavation to 5' bgs1139Initial excavation to 5' bgs1139Initial excavation to 5' bgs11043401001043104341not excavated142not excavated1		· · · · · · · · · · · · · · · · · · ·	1020	809				no clay
3528011140Image: constraint of the second s	34	not excavated	no test					
362624262411 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td>							4	
3626242120extend 3 over grid37Initial excavation to 5' bgs341/37Initial excavation to 5' bgs38Initial excavation to 5' bgs39Initial excavation to 5' bgs39Initial excavation to 5' bgsInstall clay liner39Initial excavation to 5' bgsInstall clay liner4010431025extend 3' over grid4142	35		2801	1140	•.			
37Initial excavation to 5' bgs								
37Initial excavation to 5' bgsImage: second s	36		2624					extend 3' over grid
38Initial excavation to 5' bgs11562/1Install clay liner39Initial excavation to 5' bgs111360extend 3' over grid39Initial excavation to 5' bgs111360extend 3' over grid402001104310431025extend 3' over grid41not excavated1111142not excavated11111								
38Initial excavation to 5' bgs330extend 3' over grid39Initial excavation to 5' bgs1360extend 3' over grid40104310431025extend 3' over grid41not excavated42not excavated	37	Initial excavation to 5' bgs						1 5
39Initial excavation to 5' bgs739/Install clay liner40200Install clay linerInstall clay liner40/1214107010431043102541not excavatedInstall clay linerInstall clay liner42not excavatedInstall clay linerInstall clay liner								
39Initial excavation to 5' bgsImage: second s	38	Initial excavation to 5' bgs						
200 40200 /12141070104310431025Install clay liner extend 3' over grid41not excavated								
40 /1214 1070 1043 1025 extend 3' over grid 41 not excavated 42 not excavated	39	Initial excavation to 5' bgs					1360	
41 not excavated 42 not excavated			200					
42 not excavated	40		/1214	1070	1043	1043	1025	extend 3' over grid
	41	not excavated					·	
43 not excavated	42	not excavated						
	43	not excavated						

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>		<u> </u>
Grid#	Comments	1' bgs Cl-	2' bgs Cl-	3' bgs Cl-	4' bgs Cl-	5' bgs Cl-	
		253/					
44	1'bgs edge of vegetation	290					no clay
		227/					
45	1'bgs edge of vegetation	267					no clay
46	not excavated	no test					
47	not excavated	no test			· · · ·		
48	not excavated	no test					
49	not excavated	no test		-			
50	not excavated	no test					· · · · · · · · · · · · · · · · · · ·
51	not excavated	no test					
		538/					
52		625					no clay
		218/					
53		734					no clay
		923/		660/			
54		1960	845	962		1071/	no clay
		1010	000	1048/			Install clay liner
55		1819 309/	928	1220		1470 1041/	extend 3' over grid
56		2750	1188	002	1675		Install clay liner
00	******	2750	1100	893	1675		extend 3' over grid
57	Initial excavation to 5' bgs						extend 3' over grid
-57	Initial excavation to 5 bys		· · · · · · · · ·				Install clay liner
58	Initial excavation to 5' bgs					1720	extend 3' over grid
	Initial excavation to 5 bys				·	.749/	Install clay liner
59	Initial excavation to 5' bgs						extend 3" over grid
			· · · · · · · · · · · · · · · · · · ·	852/			Install clay liner
60		2588	1010	1130	921	1360	extend 3' over drid
	······································			927/			Install clay liner
61		2120	1154	1320	876		extend 3' over grid
	· · · · · · · · · · · · · · · · · · ·	197/					
62		785					no clay
		442/				990/	Install clay liner
63		1260			913	1170	extend 3' over grid
64	not excavated	no test					
65	not excavated						
66	not excavated						
67	not excavated						
68	not excavated						

ß

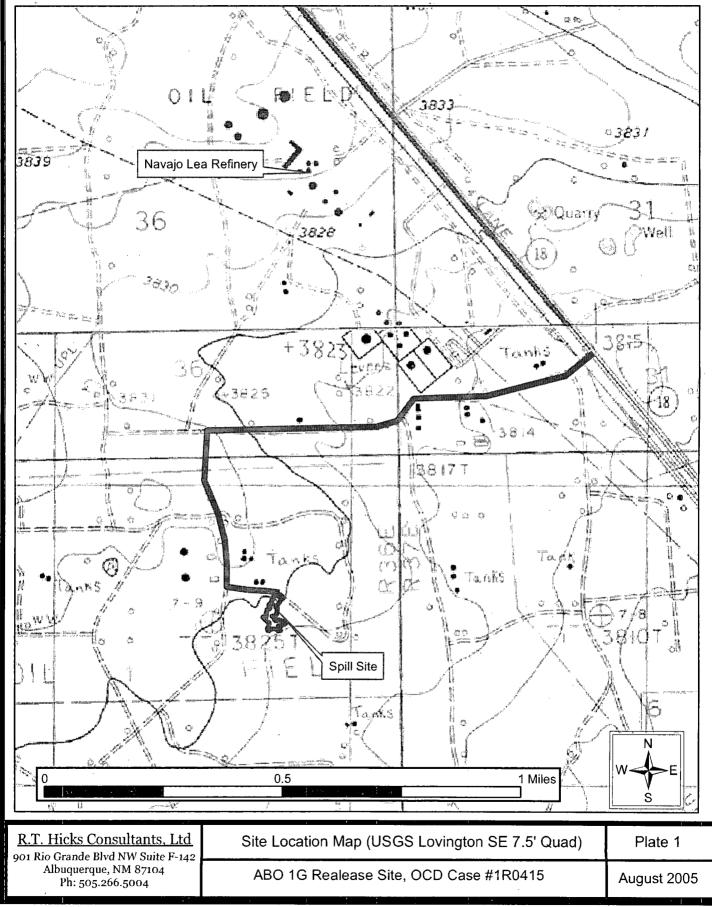
ß

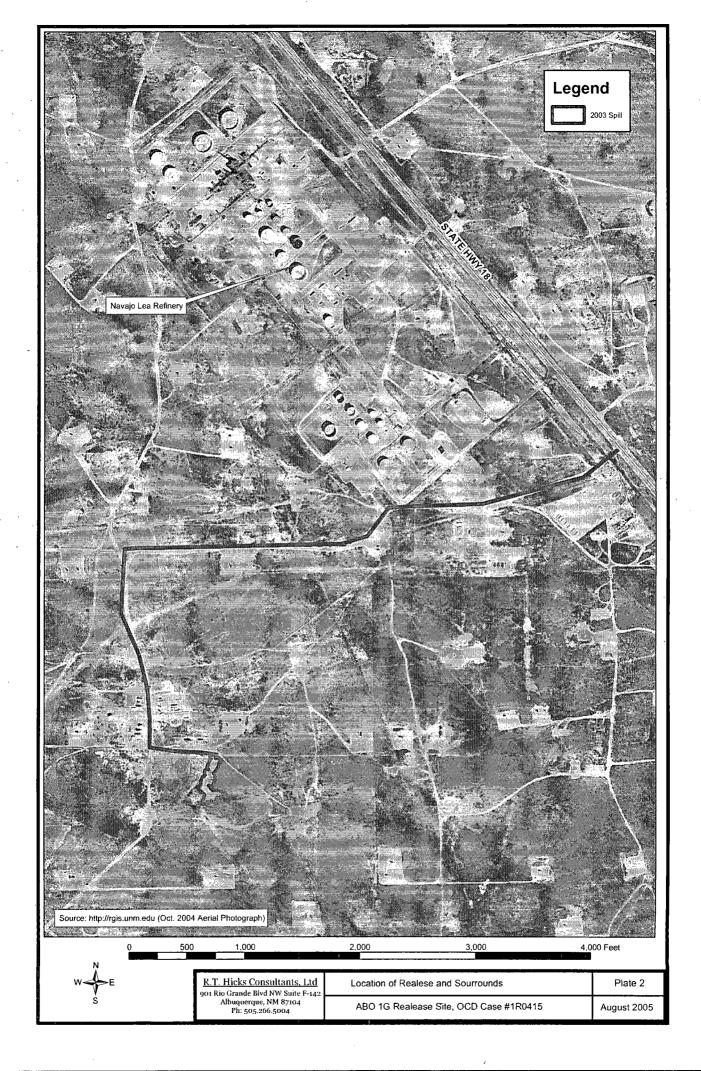
Grid#	Comments	1' bgs Cl-	2' bgs Cl-	3' bgs Cl-	4' bgs Cl-	5' bgs Cl-	
69	not excavated						
70	not excavated						
71	not excavated						
72	not excavated			-			
73	not excavated						
	Initial excavation to 5' bgs					263/	
74	to edge of vegetation					424	no clay
	Initial excavation to 5' bgs					322/	
75	to edge of vegetation					712	no clay
	N. wall excavated to						
76	confirm cl- from #37						

Pile #3 Lab cl-250 Pile #4 Lab cl- 261

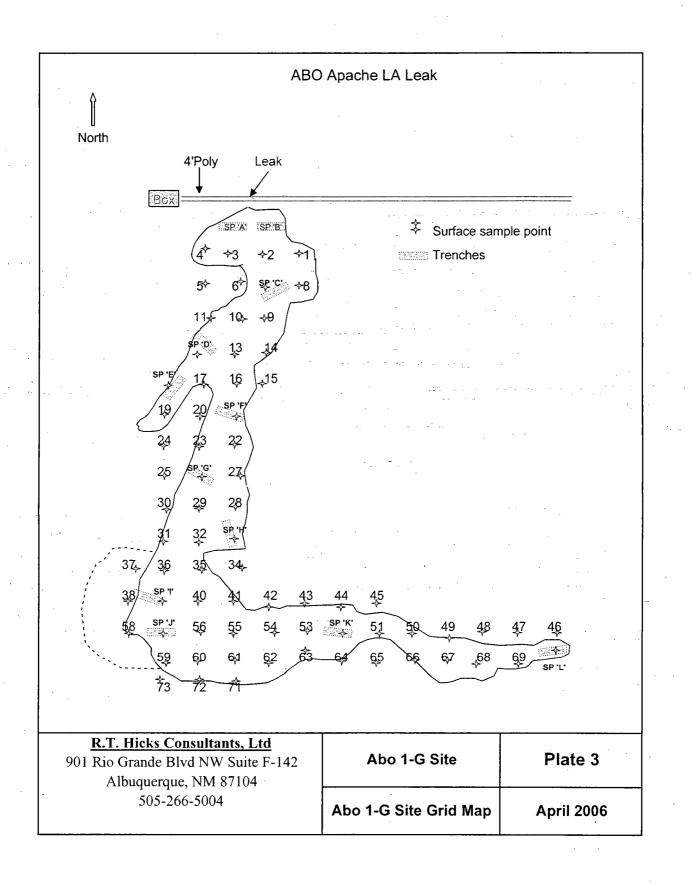
-

A

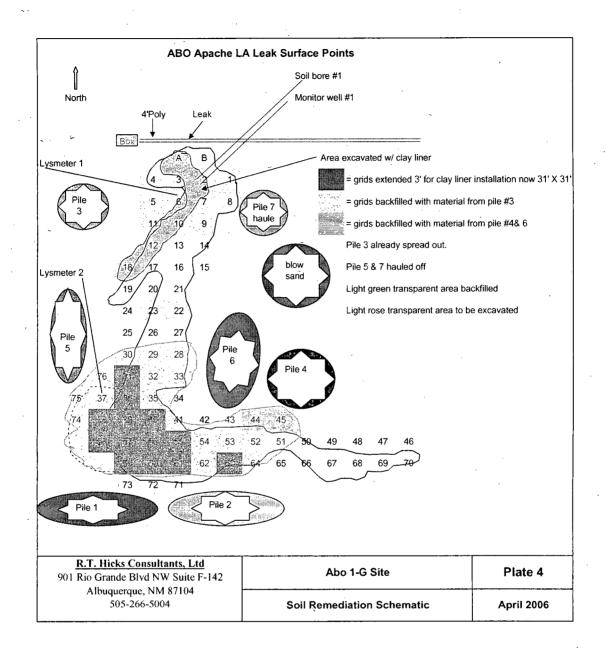

PLATES


₿

0


1

Directions: From Lovington, NM, proceed on Highway 18 for approximatly 5.3 miles. Head southwest on an unnamed dirt road (0.5 miles southeast of the Navajo Lea Refinery. Proceed on the dirt road for approximately 0.8 miles. Head south on an unamed dirt road for approximately 0.3 miles. Head east on an unnamed dirt road immediately south of a tank battery. Proceed east for approximately 550 feet. The spill site is on the south side of the road.



₿

i

Ř

APPENDIX A

B

Appendix A

Lysimeter and Tensiometer Casing Installation at the Abo 1-G Site

Two pan lysimeters were installed by R.T. Hicks Consultants at the site on January 19 and 20, 2006. Lysimeters 1 and 2 were installed in grid numbers 6 and 38 respectively. Grid 6 is within the northern excavated area and grid 38 is within the southern excavated area. With each lysimeter, two casings were installed such that the bottoms of the casings access the vadose zone at depths above and below the lysimeters. These allow installation of a removable tensiometer to measure soil matric potential and hence, soil moisture content. Should retrieval of a sample of vadose zone water be not possible, these moisture contents will explain whether there is a problem with the lysimeter or that there is simply too little moisture to sample.

Grid 6 is approximately 50 feet south of the release origin and 30 feet west of MW-1. Lysimeter 1 was installed in trench dug 8 feet below the excavated ground surface, one foot below the former ground surface.

Grid 38 is approximately 35 feet southwest of SB-3 and was excavated to a depth of 5 feet below ground surface (bgs). Lysimeter 2 was installed in a trench dug 4 feet below the excavated ground surface or 9 feet bgs.

Both lysimeters were installed in vertically oriented 3 inch PVC casing with a sealed cap on the bottom. Six inches above the bottom of the cap is a horizontal extension composed of 2.5 feet of 3 inch diameter PVC casing slotted on its upper diameter exposing half of the casing to vadose zone flow. This lateral extension collects the vadose zone flux and delivers it to the six inch sump. The lysimeters are installed vertically in the six inch sumps.

The sumps and the horizontal extensions were filled with a blended mixture by volume of 30% silica flour and 70% clean fill sifted through a number 30 screen. The fill was field tested to contain 137 mg/kg chloride by ROC personnel.

The trench floors were horizontally excavated to allow the horizontal extension to be positioned laterally underneath the unexcavated vadose zone. After placement of the casing, the space between the casing and the unexcavated trench wall was packed first with the mixture of the silica flour and the screened fill and finally with the screened fill.

An additional 6 inch deep excavation was made in the trench floor to allow placement of the deep 2 inch PVC casing. The bottom of the casing and excavation was packed with the mix of silica flour and screened fill. The shallow casing was placed with its bottom a foot above the lsimeter pan by excavating a slot in the trench wall. The bottom of this casing was also packed with the silica flour and screened fill.

After covering the bottoms of all casings with the clean fill to a depth of one foot, the trenches were backfilled level to the previously excavated surface with the material originally excavated from the trench. A six inch thick bentonite cap was installed around each site's three vertical casings at this elevation with an additional bentonite cap placed around the casings upon backfill of the respective grids to the new ground level.

F

Figure 1: Lysimeter 2 with fill material during installation. Slotted collection pan is in trench dug under intact vadose zone material.

Figure 2 : Detail of Lysimeter 2 showing collection tubes to vertically mounted collection vessel in the capped sump.

B

D

D

Ð

Ð

IJ

h

D

Figure 3: Bentonite being placed around Lysimeter 1 casing and associated Tensiometer casings. MW-1 is visible to the upper right of Lysimeter 1 casings.

Kristin Pope

From: To:	"Price, Wayne, EMNRD" <wayne.price@state.nm.us> "Carolyn Doran Haynes" <cdhriceswd@valornet.com>; "Kristin Pope" <kpope@riceswd.com>; <r@rthicksconsult.com></r@rthicksconsult.com></kpope@riceswd.com></cdhriceswd@valornet.com></wayne.price@state.nm.us>
Cc:	"Sheeley, Paul, EMNRD" <paul.sheeley@state.nm.us>; "Johnson, Larry, EMNRD" <larry.johnson@state.nm.us>; <hsncpbm@leaco.net></hsncpbm@leaco.net></larry.johnson@state.nm.us></paul.sheeley@state.nm.us>
Sent: Subject:	Thursday, May 25, 2006 11:31 AM Abo IG pipeline release OCD Case # 1R0415

OCD is in receipt of the April 27, 2006 "Final Closure Report" requesting acceptance of the work completed as of to date. OCD hereby approves of your request with the following conditions:

Provide OCD and the City of Lovington a final report in April of 2008 with the following information:

color photos demonstrating re-vegetation.

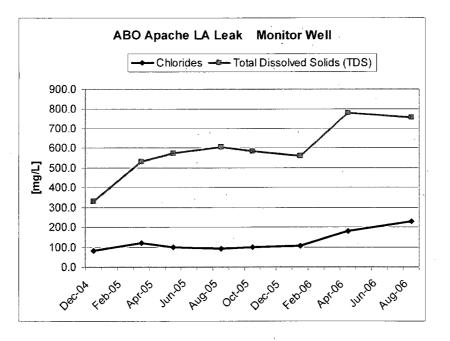
groundwater results from the monitor wells and lysimeters information.

- · Report any exceedance of the groundwater standards.
- Monitoring well plugging proposal.

Please be advised that NMOCD approval of this plan does not relieve the owner/operator of Responsibility should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve the owner/operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Wayne Price Oil Conservation Div. 1220 S. Saint Francis Santa Fe New Mexico 87505

phone: 505-476-3490 fax: 505-476-3462


Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

R. T. Hicks Consultants, Ltd. R@rthicksconsult.com 505-266-5004

Memo

To: Wayne Price
From: Randall Hicks
CC: Carolyn Haynes, Kristin Pope
Date: September 29, 2006
Re: Abo-1G

This submission presents recent data collected from the Abo-1G Release Site (1R0415). As shown below, chloride and TDS concentrations have increased by 100% and 30% percent respectively over the last six months. Chloride and TDS concentrations are approaching WQCC Standards. Based upon the information presented below, we conclude that this sudden increase in ground water chloride concentrations is due to the encroachment of an up gradient source. While calculations, modeling and fluid dynamics support our conclusion, this submission outlines a protocol to collect additional data that we believe will provide substantiation of the conclusion or prove the conclusion incorrect.

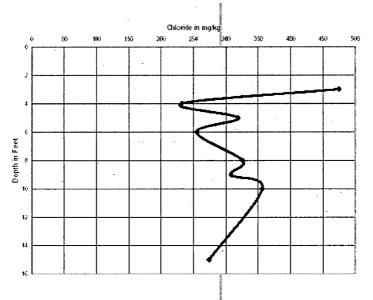
The following data and calculations support a conclusion that the Abo-1G site is not the source of the observed increase in chloride concentration.

- 1. As stated on page 9 of the August 31, 2005 report and illustrated in Plate 9 (attached hereto), at a depth of 35-36 feet a hard caliche layer limits the measured downward migration of the chloride center of mass to less than 1-foot per year. This is a fact supported by site data not a conclusion based upon calculations.
- 2. As shown in Figure 2 of the August 2005 report (copied at the end of this submission), the average chloride concentrations in the vadose zone below the spill is less than 500 mg/kg. NMOCD's highly conservative modeling presented at the Surface Waste Management Hearings, which conforms to our modeling experiments, shows that 1000 mg/kg chloride in the vadose zone poses no threat to ground water quality. The observed subsurface chloride concentrations are a fact. Although the conclusions of NMOCD and Hicks Consultants regarding the 1000 mg/kg chloride concentration are based upon sound science, they are nonetheless, conclusions based upon professional judgment.
- 3. At a measured chloride migration rate of 1- to 2-feet per year, about 30 years are required for chloride concentrations in excess of 1000 mg/kg (depth of 20 feet at MW-1) to migrate to ground water at 92 feet below ground surface. This is a simple arithmetic calculation based upon site data and is not a conclusion; it is a fact.
- 4. Robust, calibrated HYDRUS-1D simulations show that chloride will drain from the vadose zone over the next 20 years and could cause a steady increase in chloride concentrations in ground water. After 20 years, the main mass of chloride migrates to ground water and causes a temporary increase of chloride then ground water quality returns to background conditions by year 60 (see Figure 3 of the August 2005 report, reproduced below). This is our conclusion based upon sound science and field calibration of the model.
- 5. We understand that the City of Lovington recently ceased pumping two production wells located about ¹/₂ mile west (up gradient) from the Abo-1G site. These wells are shown on the western margin of Plate 1(August 2005 Report) as WW. This Plate is attached hereto. With the recent cessation of pumping, the natural southeast ground water gradient would be suddenly re-established. This is a conclusion based upon hearsay.
- 6. The Abo-1G site lies in the center of an oil field where numerous sources of chloride exist. This is a fact.

We propose the following plan of action to test the conclusions listed above.

- I. To test our conclusions that are based upon the results of the predictive modeling, a third series of soil samples will be collected adjacent to MW-1. The attached quality procedure identifies the field protocols for the collection of chloride, soil moisture, and lithologic texture data. These data will be employed to enhance the site calibration of the HYDRUS-1D model.
- II. To test the conclusion that the cessation of pumping at the City of Lovington wells #17 and #21 would allow up gradient sources of chloride to migrate to the Abo-1G site, we propose to obtain and evaluate data from these two wells. Specifically we need the following information on these two wells from the City of Lovington:
 - i. Water production meter readings or production volumes since 2004
 - ii. Water quality data from any samples collected from these wells since 2004
 - iii. Any aquifer test data collected from these wells
 - iv. Well logs showing the well design and lithology of the aquifer.

• Page 2


v. Mapping of potential up gradient chloride sources

vi. Measured depth to ground water in the month of October.

- III. To determine the hydraulic gradient in the absence of pumping at the City of Lovington wells, we will obtain the ground water elevation in three nearby monitoring wells, one up gradient windmill and the two City of Lovington wells.
- IV. Submission of a letter report to NMOCD that summarizes our findings, including
 i. An revised analysis of the migration of subsurface chloride at the Abo-1G site
 - ii. An analysis of the saturated zone transport of chloride to determine the possible up gradient location of a chloride source.
 - iii. If the data do not support our conclusions outlined herein, we will propose additional work that begins with the installation of an up gradient monitoring well.

• Page 3

I

ackground" location, however the this soil boring, the chloride near 4-feet below grade to the total Figure 2. SB-2 Field Chloride concentrations

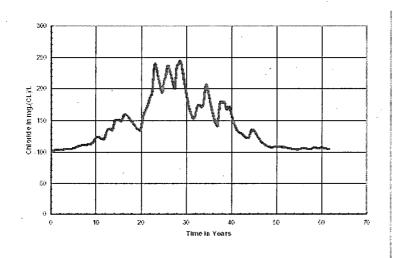


Figure 3. Chloride concentration in the aquifer for the Abo 1G Release Site, averaged chloride load from entire site, togetation, 35% clay cap

I

Ð

D

Ð

Ð

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

February 12, 2007

Wayne Price Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

RE: 2006 Annual Ground Water Monitoring Report G-1 Leak Site (Abo Apache LA), Sec 01, T17S, R36E, Unit "G" NMOCD Case #: 1R0415

Dear Mr. Wayne Price:

R.T. Hicks Consultants, Ltd is pleased to submit the 2006 Annual Ground Water Monitoring Report for the G-1 Leak Site (Abo Apache LA) site located in the Abo Salt Water Disposal System (SWD). This report consists of the following sections:

- 1. A table summarizing all laboratory results, depth to ground water and other pertinent data associated with ground water sampling at the site, including this past year.
- 2. Graphs showing chemical concentration vs. time for chloride and TDS.
- 3. Laboratory data sheets associated with the routine sampling for 2006.

The Final Closure Report was submitted to NMOCD on April 28, 2006. No NMOCD action is necessary at this time.

Thank you for your consideration of this annual summary information. The attached CD contains an electronic copy of the annual report. If you have any questions, please contact us at 505-266-5004, or Kristin Farris Pope at ROC, 505-393-9174.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Hobbs NMOCD office; Rice Operating Company

Table 1: chemistry over time

G-1 Leak Site (Abo Apache LA)

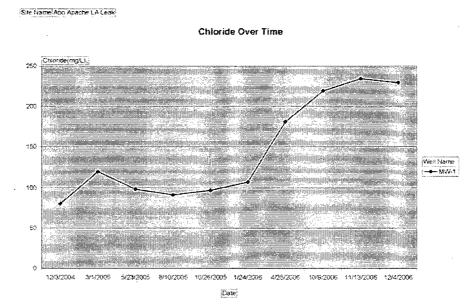
Ø

Ð

8

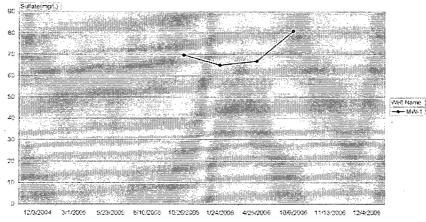
Ø

8


I

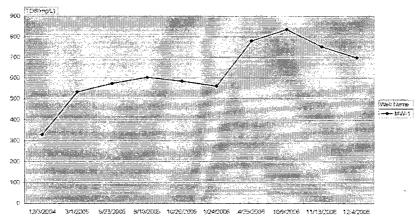
		,									,
Comments					Clear no odor		-	Clear	Clear with no odor	Clear / No Odor	
Total Xylenes (ug/L)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	XXX	xxx	
(mg/L) Benzene (ug/L) Toluene (ug/L) Ethy!Benzene (ug/L) Total Xylenes (ug/L) Comments	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	XXX	XXX	
Toluene (ug/L)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	XXX	XXX	
Benzene (ug/L)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	XXX	XXX	
TDS (mg/L)	329	532	573	603	584	560	780	836	752	698	
Sulfate (mg/L)	-				69.7	65	66.8	80.9	XXX	XXX	
DTW (ft) Chloride (mg/L) Sulfate (mg/L)	80.5	120	98.4	91.5	6.96	107	181	219	234	229	
(IJ) ALLO	92.10	92.10	92.30	92.60	92.88	93.38	93.55	94.61	94.83	95.08	
Date	12/3/2004	3/1/2005	5/23/2005	8/10/2005	10/26/2005	1/24/2006	4/25/2006	10/9/2008	11/13/2008	12/4/2008	
Well Name Date	MW-1	MW-1	MW-1	MW-1	MW-1	1-WM	MW-1	1-WW	MW-1	MW-1	

2

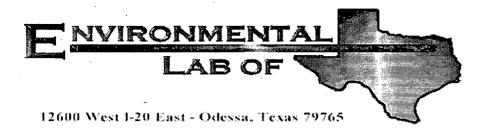

Monday, February 05, 2007

Ground Water Quality at Abo Apache LA Leak

Ste Name Abo Apache LA Leak


Sulfate Over Time

Cate


Site Name Abo Apache LA Leak

TDS Over Time

Date

R.T. Hicks Consultants, Ltd.

I

8

8

8

Analytical Report

Prepared for: Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: Lea County

Lab Order Number: 6A25020

Report Date: 02/01/06

Project: ABO- Apache Leak Rice Operating Co. 122 W. Taylor Project Number: None Given Hobbs NM, 88240

I

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 02/01/06 10:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	 6A25020-01	Water	01/24/06 09:30	01/25/06 13:25

Page 1 of 10

Rice Operating Co.	Project:	ABO- Apache Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	02/01/06 10:10

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6A25020-01) Water									
Benzene	ND	0.00100'	mg/L	1	EA62618	01/26/06	01/27/06	EPA 8021B	
Toluene	ND	0.00100	"	n		"	"	H	
Ethylbenzene	ND	0.00100	"	"		P.		"	
Xylene (p/m)	ND	0.00100				11		n	
Xylene (o)	ND	0.00100				۳ ,	11	*	
Surrogate: a,a,a-Trifluorotoluene	·	89.2 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.8 %	80-12	0	"	"	"	"	

Environmental Lab of Texas

•

ł

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Page 2 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

7

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Reported: 02/01/06 10:10

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting . Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6A25020-01) Water									
Total Alkalinity	152	2.00	mg/Ļ	1	EA62406	01/26/06	01/26/06	EPA 310,1M	,
Chloride	107	5.00	п	10	EA63004	01/30/06	01/30/06	EPA 300.0	
Total Dissolved Solids	560	5.00	n	1	EA63003	01/26/06	01/27/06	EPA 160.1	
Sulfate	65.0	5.00	"	10	EA63004	01/30/06	01/30/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.Project:ABO- Apache LeakFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope02/01/06 10:10

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6A25020-01) Water	×			•					
Calcium	98.2	0.100	mg/L	10	EA62615	01/26/06	01/26/06	EPA 6010B	
Magnesium	14.3	0.0100	•	а					
Potassium	3.79	0.0500		1	n	"	н		
Sodium	39.9	0.100	•	10		e	•		

Environmental Lab of Texas

.

I

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 10

Rice Operating Co.	Project: ABO- Apache Leak								Fax: (505) 397-1471		
122 W Taylor		Project Nu	-						Repo	orted:	
Hobbs NM, 88240				istin Farris-Po	ope				02/01/0	6 10:10	
	0	rganics by		•••							
1		Environm	iental I	Lab of Tex	kas						
	D 1	Reporting		Spike	Source	A/DE/	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EA62618 - EPA 5030C (GC)											
Błank (EA62618-BLK1)				Prepared: 0	1/26/06 A	nalyzed: 01	/27/06				
Benzene	ND	0.00100	mg/L								
Foluene	ND	0.00100	••								
Ethylbenzene	ND	0.00100									
Xylene (p/m)	ND	0.00100	**								
Xylene (0)	ND	0.00100	"								
Surrogate: a,a,a-Trifluorotoluene	38.5		ug/l	40.0		96.2	80-120				
Surrogate: 4-Bromofluorobenzene	42.4		"	40.0		106	80-120		•		
LCS (EA62618-BS1)				Prepared: 0	1/26/06 A	nalyzed: 01	/27/06				
Benzene ,	0.0566	0.00100	mg/L	0.0500		113	80-120				
Foluene	0.0557	0.00100		0.0500		111	80-120				
Ethylbenzene	0.0547	0.00100	**	0.0500		109	80-120				
Xylene (p/m)	0.102	0.00100		0.100		102	80-120		•		
Xylene (0)	0.0538	0.00100		0.0500		108	80-120				
Surrogate: a,a,a-Trifluorotoluene	41.2		ug/l	40.0		103	80-120				
Surrogate: 4-Bromofluorobenzene	32.8		"	40.0		82.0	80-120				
Calibration Check (EA62618-CCV1)				Prepared: 0)1/26/06 A	nalyzed: 01	/28/06		,		
Benzene	51.3		ug/l	50.0		103	80-120				
Foluene	52.5		"	50.0		105	80-120				
Ethytbenzene	54.5			50.0		109	80-120				
Xylene (p/m)	101		**	100		101	80-120			-	
Xylene (0)	55.6			50.0		111	80-120				
Surrogate: a,a,a-Trifluorotoluene	34.3		"	40.0		85.8	80-120				
Surrogate: 4-Bromofluorobenzene	39.5		"	40.0		98.8	80-120				
Matrix Spike (EA62618-MS1)	Sou	rce: 6A24010-	01	Prepared: 0)1/26/06 A	nalyzed: 01	/27/06				
Benzene	0.0559	0.00100	mg/L	0.0500	ND	112	80-120				
Foluene	0.0548	0.00100	••	0.0500	ND	110	80-120				
Ethylbenzene	0.0515	0.00100		0.0500	ND	103	80-120				
Xylene (p/m)	0.0835	0.00100		0.100	ND	83.5	80-120			,	
Xylene (o)	0.0512	0.00100		0.0500	ND	102	80-120				
Surrogate: a,a,a-Trifluorotoluene	37.5		ug/l	40.0		93.8	80-120				
Surrogate: 4-Bromofluorohenzene	34.3		"	40.0		85.8	80-120				

-

Environmental Lab of Texas

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Γ	Rice Operating Co.	Project:	ABO- Apache Leak	 Fax: (505) 397-1471
	122 W. Taylor	Project Number:	None Given	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	02/01/06 10:10

Organics by GC - Quality Control

Environmental Lab of Texas

1 A										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA62618 - EPA 5030C (GC)

B

A

Matrix Spike Dup (EA62618-MSD1)	Sou	Source: 6A24010-01			Prepared: 01/26/06 Analyzed: 01/28/06					
Benzene	0.0482	0.00100	mg/L	0.0500	ND	96.4	80-120	15.0	20	
Toluene	0.0484	0.00100		0.0500	ND	96.8	80-120	12.8	20	
Ethylbenzene	0.0456	0.00100		0.0500	ND	91.2	80-120	12.2	20	
Xylene (p/m)	0.0841	0.00100		0.100	ND	84.1	80-120	0.716	20	
Xylene (o)	0.0448	0.00100		0.0500	ND	89.6	80-120	12.9	20 -	
Surrogate: a.a.a-Trifluorotoluene	33.0		ug/l	40,0		82.5	80-120			
Surrogate: 4-Bromofluorobenzene	32.4		"	40.0		81.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

Rice Operating Co.		Pr	oject: Al	BO- Apache L	eak				Fax: (505)	397-1471		
122 W. Taylor		Project Nu	5						Reno	Reported:		
Hobbs NM, 88240		-		istin Farris-Po	ope				02/01/0			
General	Chemistry Para	ameters by	EPA /	Standard	Method	ls - Qua	lity Con	trol				
		Environm	iental I	lab of Tex	as							
Arabas	Result	Reporting Limit	Units	Spike	Source	%REC	%REC Limits	RPD	RPD	N-4		
Analyte	Kesuii	Limit	Units	Level	Result	%REL.	Limits	RPD	Limit	Notes		
Batch EA62406 - General Preparation	(WetChem)											
Blank (EA62406-BLK1)				Prepared &	Analyzed:	01/26/06						
Fotal Alkalinity	ND	2.00	mg/L									
LCS (EA62406-BS1)				Prepared &	Analyzed:	01/26/06						
Bicarbonate Alkalinity	220		mg/L	200		110	85-115					
Duplicate (EA62406-DUP1)	Sou	rce: 6A19005-	-01	Prepared &	Analyzed:	01/26/06				•		
Fotal Alkalinity	258	2.00	mg/L		256			0,778	20	· .		
Reference (EA62406-SRM1)				Prepared &	Analyzed:	01/26/06						
Fotal Alkalinity	97.0		mg/L	100		97.0	90-110					
Batch EA63003 - General Preparation	(WetChem)											
Blank (EA63003-BLK1)				Prepared: 0	1/26/06 Ai	nalyzed: 01	/27/06					
Fotal Dissolved Solids	ND	5.00	mg/L							•		
Duplicate (EA63003-DUP1)	Sou	гсе: 6А25018-	-01	Prepared: 0	1/26/06 Ai	nalyzed: 01	/27/06					
Fotal Dissolved Solids	2020	5.00	mg/L		2080			2.93	5			
Batch EA63004 - General Preparation	(WetChem)				•							
Blank (EA63004-BLK1)				Prepared &	Analyzed:	01/30/06						
Sulfate	ND	0.500	mg/L									
Chloride	ND	0.500	"									
.CS (EA63004-BS1)				Prepared &	Analyzed:	01/30/06						
	9.61	0,500	mg/L	10.0		96.1	80-120					

Environmental Lab of Texas

R

D

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 7 of 10

Rice Operating Co.		Project	ABO- Apache Leak	Fax: (505) 397-1471
122 W. Taylor		Project Number:	None Given	Reported:
Hobbs NM, 88240		Project Manager:	Kristin Farris-Pope	02/01/06 10:10

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte			• .	Result	Reporting Linut	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA6300	4 - Genera	l Preparation	(WetChe	em)					-				•
Calibration Che	eck (EA6300)4-CCV1)		,			Prepared &	Analyzed	01/30/06				
Sulfate				9.82		mg/L	10.0		98.2	80-120			
Chloride				8.64		"	10.0		86.4	80-120	•		
Duplicate (EA6	3004-DUP1)	•	•	Source	2: 6A25018-	01	Prepared &	Analyzed	01/30/06			·. ·	
Sulfate	٠		•	84.4	25.0	mg/L		88.2			4.40	20	
Chloride				879	25.0 [.]	P .:		886			0.793	20	
•						•					,		
•		•						· · ·					·
· · ·		•				· ·	· · ·		•		· •	1 	 ,
· .		•			• •		· · .			·		•	• • •

Environmental Lab of Texas

Î

1

I

l

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Pr Project Nu Project Mar	mber: Nor						Fax: (505) Repo 02/01/06	rted:
	Total Metals b		andard	Methods	s - Qualit	ty Contr	ol			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA62615 - 6010B/No Digest	ion									
Blank (EA62615-BLK1)				Prepared &	Analyzed:	01/26/06				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	"					•	*	
otassium	ND	0.0500							•	
Sodium	ND	0.0100								

Calibration Check (EA62615-CCV1)	Prepared & Analyzed: 01/26/06								
Calcium	2.12	mg/L	2.00	106	85-115				
Magnesium	1.99	. "	2.00	99.5	85-115				
Potassium	1.88		2.00	94.0	85-115				
Sodium	1.94		2.00	97.0	85-115				

Duplicate (EA62615-DUP1)		Source	e: 6A19005-	-01	Prepared & Analyzed: 01/26/06		
Calcium		224	0,500	mg/L	222	0.897	20
Magnesium	۰.	115 .	0.0500		. 120	4.26	20
Potassium	• • • • • •	14.6	0.500		15.2	4.03	20
Sodium		306	0.500		313	2.26	20

Environmental Lab of Texas

H

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 10

Fax: (505) 397-1471 Project: ABO- Apache Leak Rice Operating Co. 122 W. Taylor Project Number: None Given Reported: Hobbs NM, 88240 Project Manager: Kristin Farris-Pope 02/01/06 10:10 **Notes and Definitions** DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported

Report Approved By:

dry RPD

LCS

MS

Dup

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Sample results reported on a dry weight basis

Relative Percent Difference

Laboratory Control Spike

Matrix Spike

Duplicate

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist

Sandra Sanchez, Lab Tech.

Date

This inaterial is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

Raland K thick

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

2/1/2006

Page 10 of 10

1	1								(eiuberto2-erg) TAT HSU9 TAT brebnerd	_	 \neg				-			_				
					1				(outode2 and) TAT U2110		-	_				-		Alasta d	z	Ç, N		
									·····						-†	-†			z	i i		
												7							D, A	14		
									sbilo2 bevioseiQ letoT	×							.			1 + 0		
			^						.M.A.O.N										2			
, A		2				 	-	,	102										Sample Containers Intact? Labels on container? Custody Seals: <u>Containers</u> Temperature Upon Receipt	ij		
CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST Project Name: <u>ABO Apache Leak</u>	ĺ	Lea County				Analyze For	×	-	BTEX 80219/6030	\times									Sample Containers Intact? Labels on container? Custody Seals: <u>Container</u> Temperature Upon Receir	Comments		
		ပိ				Anal		–	seittelovimeS		 					\dashv			Sample Containers In Labels on container? Custody Seals' Cont Temperature Upon R	ŭ		
Ap Ap		ea				` -		┢╍	Volatiles	 	 ·					-+			onta con seats ure l	୍ର ଅ		
BO						á	: Li		SAR / ESP / CEC		 					-+			ole C s on ody 5 erat	Laboratory		
	 ≆	ן 8				10 10	TOTAL		Anions (Ct, SO4, CO3, HCO3)	×	 				-+	\rightarrow			amp abel usto	abo		
40 A	Project #:	Project Loc:	₩				[┢	Cations (Ca, Mg, Na, K)	X	 	-	-		-+				s _ o ⊢	<u></u>		T
o AN set 3	proj	ojec.							1001 2001 M2108 1.814 H9T		 				+		_			Time		Time
ORI		Pre	•					T	Other (specify):		 		_					, 400.00	_	귀		Time Time
REC F								Æ	lioS		-				\uparrow				шо			
770								Matrix	Sludge		 				\neg	-			ů, d	g		Date
310			1	1	1				TOTBW	×	 				\neg				MS	Date		Date
cn		ļ							Other (Specify)			Ī							ů Č			
о ^г									None (1) 1 Liter HDPE	+									i E B			
AIN	1							ative	°OS²H										ks (
8				471				reservative	HOEN										an			
		Í		397-147				Pre	HCI (S) 40 mi glass vials	2									nfr			
				391					^C ONH			İ							න්			
1		1		ত্র				L	jce	\times									E			
				(50	ι.				No. of Containers	e									ů,			
E				Fax No: (505)					belqms2 emiT	9:30									yalornet			
1800 1713 kpriceswd@valomet.com					9310	X			belqms2 elsCl	1/24/2006	 								O: kpriceswd@valornet.com & mfranks@riceswd.com	Received by:		Received by ELOT:
Phone: 432-563-1800 Fax: 432-563-1713 Tris Pope kprice:	rating Company	tylor Street	w Mexico 88240	9174	sampler Signature: Rozanne Johnson (505) 63/1-9310	valornet.com			FIELD CODE										PLEASE Email RESULTS TO: k	Date Time	126/00 1:25	Date
ager: Kristin Fa	company Name RICE Operating Company	Company Address: 122 W. Taylor Street	city/state/zip: Hobbs, New Mexico 88240	Telephone No: <u>(505) 393-9174</u>	signature: Rozanne	Email: rozanne@valornet.com				Monitor Well #1				 客					ſ			
12600 West 1.20 East Odessa, Texas 79765 Project Man	Comp	Company	City/	Telep	Sampler 5				ALL USE ONLY	10									Special Instructions:	Relinguished by:	Rozanne Johnspa	Relinquished by

Ð

Í

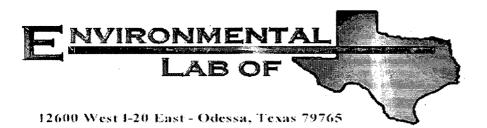
I

I

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Dlient:	Rice Op.
Date/Time:	1/25/06 13:26
Order #:	6A25020
Initials:	Cle

Sample Receipt Checklist -2.5 Yes No Temperature of container/cooler? Shipping container/cooler in good condition? No YES; Custody Seals intact on shipping container/cooler? Not cresent No I ¥=5_ Not present ¥es No Custody Seals intact on sample bottles? No (E) Chain of custody present? Sample Instructions complete on Chain of Custody? No ¥= Chain of Custody signed when relinquished and received? No Yes No Chain of custody agrees with sample label(s) ¥es. No YES Container labels legible and intact? Sample Matrix and properties same as on chain of custody? No Yes No Samples in procer container/bottle? Ves X=5 | No Samples properly preserved? Yas I No Sample bottles intact? Preservations documented on Chain of Custody? Xss No No Containers documented on Chain of Custody? 1 25 No Sufficient sample amount for indicated test? Y=5 1 All samples received within sufficient hold time? No YESI Cas | No | VOC samples have zero headspace? Not Applicable


Other observations:

Variance Documentation:

Contact Person:	Date/Time:	Contacted by:
Regarding:		

.

Corrective Action Taken:

I

H

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Location: Lea County

Lab Order Number: 6D27013

Report Date: 05/04/06

Rice Operating Co.Project:ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope05/04/06 15:30

ANALYTICAL REPORT FOR SAMPLES

1

D

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6D27013-01	Water	04/25/06 14:30	04/27/06 10:30
· .				

Rice Operating Co.Project:ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope05/04/06 15:30

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6D27013-01) Water									
Benzene	ND	0.00100	mg/L	I	ED62807	04/28/06	05/01/06	EPA 8021B	
Toluene	ND	0.00100					"		
Ethylbenzene	ND	0.00100			•		"	"	
Xylene (p/m)	ND	0.00100				n	"	"	
Xylene (o)	ND	0.00100			н			н	
Surrogate: a,a,a-Trifluorotoluene		97.2 %	80-120	<i>;</i>	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	80-120)	"	"	"	"	

Environmental Lab of Texas

Ì

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: ABO-Apache LA Leak Site Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Reported: 05/04/06 15:30

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6D27013-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	130	2.00	mg/L	I	EE60301	05/03/06	05/03/06	EPA 310.1M	
Chloride	181	5.00	**	10	EE60116	05/01/06	05/01/06	EPA 300.0	
Total Dissolved Solids	780	5.00	. "	1	EE60115	04/27/06	04/28/06	EPA 160.1	
Sulfate	66.8	5.00	u	10	EE60116	05/01/06	05/01/06	EPA 300.0	

Environmental Lab of Texas

l

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.Project:ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope05/04/06 15:30

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
. 121	0.500	mg/L	50	ED62719	04/27/06	04/27/06	EPA 6010B	
17.7	0.0100	••	10	н	"	ч	**	
2.39	0.500			"		u.	**	
55.1	0.100	•	"	"		*	*	
	121 17.7 2.39	Result Limit 121 0.500 17.7 0.0100 2.39 0.500	Result Limit Units 121 0.500 mg/L 17.7 0.0100 " 2.39 0.500 "	Result Limit Units Dilution 121 0.500 mg/L 50 17.7 0.0100 10 2.39 0.500 "	Result Limit Units Dilution Batch 121 0.500 mg/L 50 ED62719 17.7 0.0100 10 " 2.39 0.500 " "	Result Limit Units Dilution Batch Prepared 121 0.500 mg/L 50 ED62719 04/27/06 17.7 0.0100 10 " " 2.39 0.500 " " "	Result Limit Units Dilution Batch Prepared Analyzed 121 0.500 mg/L 50 ED62719 04/27/06 04/27/06 17.7 0.0100 10 " " " " 2.39 0.500 " " " " "	Result Limit Units Dilution Batch Prepared Analyzed Method 121 0.500 mg/L 50 ED62719 04/27/06 04/27/06 EPA 6010B 17.7 0.0100 " 10 " " " 2.39 0.500 " " " " "

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

1

Blank (ED62807-BLK1) Benzene I Toluene I Ethylbenzene I Xylene (p/m) I Xylene (o) I Surrogate: a, a, a-Trifluorotolnene I Surrogate: 4-Bromofluorobenzene I LCS (ED62807-BS1) Benzene Benzene 0.05 Tolnene 0.05 Surrogate: a, a, a-Trifluorotolnene I Sylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a, a, a-Trifluorotolnene I Surrogate: t-Bromofluorobenzene I Surrogate: t-Bromofluorobenzene I Surrogate: t-Bromofluorobenzene I Benzene S	4D 4D 4D 4D 4D 4D 4D 7.7 7.2 99 80 51	•ganics by Environm Reporting Limit 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100			Source Result 4/28/06 A	107 106	80-120 80-120	RPD	RPD Limit	Notes
Batch ED62807 - EPA 5030C (GC) Blank (ED62807-BLK1) Benzene Toluene Itoluene Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: a.a.a-Trifluorotolnene Surrogate: 4-Bromofluorobenzene LCS (ED62807-BS1) Benzene 0.05 Toluene 0.05 Surrogate: a.a.a-Trifluorotoluene 0.05 Surrogate: 4-Bromofluorobenzene 4 LCS (ED62807-BS1) 0.05 Surrogate: a.a.a-Trifluorotoluene 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: a.a.a-Trifluorotoluene 5 Benzene 5	ult 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D	Reporting Limit 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	Units mg/L " ug/l " mg/L	Spike Level Prepared: 0 40.0 40.0 Prepared: 0 0.0500	Source Result 4/28/06 A	nalyzed: 04 107 106 nalyzed: 04	Limits /30/06 80-120 80-120 /30/06	RPD		Notes
Batch ED62807 - EPA 5030C (GC) Blank (ED62807-BLK1) Benzene Toluene Itoluene Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: a.a.a-Trifluorotolnene Surrogate: 4-Bromofluorobenzene LCS (ED62807-BS1) Benzene 0.02 Toluene 0.05 Stylene (o) 0.10 Xylene (o) 0.05 Surrogate: a.a.a-Trifluorotoluene 4 LCS (ED62807-BS1) 0.05 Surrogate: 4-Bromofluorobenzene 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: t-Bromofluorobenzene 4 Surrogate: t-Bromofluorobenzene 4 Surrogate: t-Bromofluorobenzene 4 Surrogate: t-Bromofluorobenzene 5 Benzene 5	4D 4D 4D 4D 2.7 2.2 99 80 51	Limit	mg/L " " " " " " " " " " " " " " "	Level Prepared: 0 40.0 40.0 Prepared: 0 0.0500	Result	nalyzed: 04 107 106 nalyzed: 04	Limits /30/06 80-120 80-120 /30/06	RPD		Notes
Blank (ED62807-BLK1) Benzene I Toluene I Ethylbenzene I Xylene (p/m) I Xylene (o) I Surrogate: a, a, a-Trifluorotolnene I Surrogate: 4-Bromofluorobenzene I LCS (ED62807-BS1) Benzene Benzene 0.05 Tolnene 0.05 Surrogate: a, a, a-Trifluorotolnene I Sylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a, a, a-Trifluorotolnene I Surrogate: t-Bromofluorobenzene I Surrogate: t-Bromofluorobenzene I Surrogate: t-Bromofluorobenzene I Benzene 5	ID ID ID 2.7 2.2 99 80 51	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	" " " " " " " " " " " "	40.0 40.0 Prepared: 0 0.0500		107 106 nalyzed: 04	80-120 80-120 /30/06			
Benzene I Toluene I Ethylbenzene I Xylene (p/m) I Xylene (o) I Surrogate: a.a.a-Trifluorotolnene 4 Surrogate: 4-Bromofluorobenzene 4 LCS (ED62807-BS1) I Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Surrogate: a.a.a-Trifluorotolnene 4 Sylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a.a.a-Trifluorotolnene 4 Surrogate: 4-Bromofluorobenzene 4 Surrogate: 4-Bromofluorotolnene 5 Surrogate: 4-Bromofluorotolnene 5 Benzene 5	ID ID ID 2.7 2.2 99 80 51	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	" " " " " " " " " " " "	40.0 40.0 Prepared: 0 0.0500		107 106 nalyzed: 04	80-120 80-120 /30/06			
Toluene I Ethylbenzene I Xylene (p/m) I Xylene (o) I Surrogate: a,a,a-Trifluorotolnene I Surrogate: 4-Bromofluorobenzene I LCS (ED62807-BS1) I Benzene 0.05 Toluene 0.05 Stylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a,a,a-Trifluorotolnene I Systeme (p/m) 0.1 Systeme (p/m) 0.15 Surrogate: a,a,a-Trifluorotolnene I Surrogate: a,a,a-Trifluorotolnene I Surrogate: a,a,a-Trifluorotolnene I Surrogate: 4-Bromofluorobenzene I Surrogate: 4-Bromofluorobenzene I Surrogate: 4-Bromofluorobenzene I Benzene 5	ID ID ID 2.7 2.2 99 80 51	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	" " " " " " " " " " " "	40.0 Prepared: 0 '0.0500	4/28/06 A	106 nalyzed: 04	80-120 /30/06			
Ethylbenzene I Xylene (p/m) I Xylene (o) I Surrogate: a,a,a-Trifluorotolnene I Surrogate: 4-Bromofluorobenzene I LCS (ED62807-BS1) I Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Surrogate: a,a,a-Trifluorotoluene I Sylene (p/m) 0.16 Surrogate: a,a,a-Trifluorotoluene I Surrogate: 4-Bromofluorobenzene I Calibration Check (ED62807-CCV1) Benzene Benzene 5	4D 4D 4D 2.7 2.2 99 80 51	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	mg/L	40.0 Prepared: 0 '0.0500	4/28/06 A	106 nalyzed: 04	80-120 /30/06			
Xylene (p/m) I Xylene (o) I Surrogate: a.a.a-Trifluorotolnene I Surrogate: 4-Bromofluorohenzene I LCS (ED62807-BS1) I Benzene 0.05 Tolnene 0.05 Ethylbenzene 0.05 Sylene (p/m) 0.15 Surrogate: a.a.a-Trifluorotolnene I Sylene (o) 0.05 Surrogate: a.a.a-Trifluorotolnene I Surrogate: 4-Bromofluorobenzene I Calibration Check (ED62807-CCV1) Benzene	ND ND 2.7 2.2 99 80 51	0.00100 0.00100 0.00100 0.00100 0.00100	mg/L	40.0 Prepared: 0 '0.0500	4/28/06 A	106 nalyzed: 04	80-120 /30/06			
Xylene (o) I Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 LCS (ED62807-BS1) 0.05 Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: a.a.a-Trifluorotoluene 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Surrogate: 4-Bromofluorobenzene 5 Calibration Check (ED62807-CCV1) 5	ND 2.7 2.2 99 80 51	0.00100	mg/L	40.0 Prepared: 0 '0.0500	4/28/06 A	106 nalyzed: 04	80-120 /30/06			
Surrogate: a,a,a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 LCS (ED62807-BS1) Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a,a,a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) Benzene 5	2.7 2.2 99 80 51	0,00100	mg/L	40.0 Prepared: 0 '0.0500	4/28/06 A	106 nalyzed: 04	80-120 /30/06			
Surrogate: 4-Bromofluorobenzene 4 LCS (ED62807-BS1) 1 Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5	2.2 99 80 51	0.00100	mg/L	40.0 Prepared: 0 '0.0500	4/28/06 A	106 nalyzed: 04	80-120 /30/06			
LCS (ED62807-BS1) Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5	99 80 51	0.00100	mg/L	Prepared: 0 -0.0500	4/28/06 A	nalyzed: 04	/30/06			
Benzene 0.05 Toluene 0.05 Ethylbenzene 0.05 Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a,a,a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5	80 51	0.00100		0.0500	4/28/06 A	•				
Toluene 0.05 Ethylbenzene 0.05 Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a,a,a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5	80 51	0.00100				120	80-120			
Ethylbenzene 0.05 Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5	51		**	0.0500						
Xylene (p/m) 0.1 Xylene (o) 0.05 Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5		0.00100		0.0500		116	80-120			
Xylene (o) 0.05 Surrogate: a,a,a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) 5 Benzene 5	20		•	0.0500		110	80-120			
Surrogate: a.a.a-Trifluorotoluene 4 Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) Benzene 5		0.00100		0.100		120	80-120			
Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) Benzene 5	96	0.00100	٠	0,0500		119	80-120			
Surrogate: 4-Bromofluorobenzene 4 Calibration Check (ED62807-CCV1) Benzene 5	3.0		ug/l	40.0		108	80-120			
Benzene 5	2.2		"	40.0		106	80-120			
				Prepared: 0	4/28/06 A	nalyzed: 05	/01/06			
Tohiene 5	5.0		ug/l	50,0		110	80-120			
	3.0			50.0		106	80-120			
Ethylbenzene 5	5.9		*	50.0		112	80-120			
Xylene (p/m)	10			100		110	80-120			
Xylene (o) 5	5.9		. *	50.0		112	80-120			
Surrogate: a,a,a-Trifluorotoluene 3	2.0	······	"	40.0		97.5	80-120			
Surrogate: 4-Bromofluorobenzene 3	9.1		"	40.0		97.8	80-120			
Matrix Spike (ED62807-MS1)	Sour	rce: 6D27008-	01	Prepared: 0	4/28/06 A	nalyzed: 05	/01/06			
Benzene 0.05	76	0.00100	mg/L	0.0500	ND	115	80-120			
Toluene 0.05	68	0.00100		0.0500	ND	114	80-120			
Ethylbenzene 0.05	87	0.00100	**	0.0500	ND	117	80-120			
Xylene (p/m) 0.1	20	0.00100	*	0.100	ND	120	80-120			
Xylene (o) 0.06	00	0.00100	P	0.0500	ND	120	80-120			
Surrogate: a,a,a-Trifluorotoluenc 4	1.7		ug/l	4 0.0		104	80-120			

Environmental Lab of Texas

Ø

0

0

Ø

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 10

٢

Rice Operating Co.Project:ABO-Apache LA Leak SiteFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Fatris-Pope05/04/06 15:30

Organics by GC - Quality Control

Environmental Lab of Texas

Reporting Spike Source %	
	EC RPD
Analyte Result Result Limit Units Level Result %REC Li	its RPD Limit Notes

Batch ED62807 - EPA 5030C (GC)

Matrix Spike Dup (ED62807-MSD1)	Sou	Source: 6D27008-01				nalyzed: 0:	5/01/06			
Benzene	0.0597	0.00100	mg/L	0.0500	ND	119	80-120	3.42	20	
Toluene	0.0579	0.00100		0.0500	ND	116	80-120	1.74	20	
Ethylbenzene	0.0585	0.00100		0.0500	ND -	117	80-120	0.00	20	
Xylene (p/m)	0.120	0,00100		0.100	ND	120	80-120	0.00	20	
Xylene (0)	0.0598	0.00100		0.0500	ND	120	80-120	0.00	20	
Surrogate: a,a,a-Trifluorotoluene	43.5		ug/l	40,0		109	80-120			
Surrogate: 4-Bromofluorobenzene	46.4		n	40.0		116	80-120			

Environmental Lab of Texas

l

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Nu	mber: No	BO-Apache L one Given ristin Farris-P		e			Fax: (505) Repo . 05/04/0	rted:
General Cl	nemistry Para	meters by Environm				ls - Qua	lity Con	trol		
······································		Reporting	:	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE60115 - General Preparation (V	VetChem)							a .		
Blank (EE60115-BLK1)				Prepared: ()4/27/06 A	nalyzed: 04	/28/06			
Fotal Dissolved Solids	ND	5.00	mg/L							
Duplicate (EE60115-DUPI)	Sou	rce: 6D27015-	•01	Prepared: 0)4/27/06 A	nalvzed: 04	/28/06			
Total Dissolved Solids	3020	5.00	mg/L		3040	⁻		0.660	5	
Blank (EE60116-BLK1)				Prepared &	Analyzed	05/01/06				
Chloride	ND	0.500	mg/L	•						
Sulfate	ND	0.500	"							
LCS (EE60116-BS1)				Prepared &	Analyzed:	05/01/06				
Sulfate	9.47	0.500	mg/L	10.0		94.7	80-120			
Chloride	9.71	0.500	н	10.0		97.1	80-120			
Calibration Check (EE60116-CCV1)				Prepared &	Analyzed:	05/01/06				
Chloride	9.86		mg/L	10.0		98.6	80-120			
Sulfate	8.11		•	10.0		81.1	80-120			
Duplicate (EE60116-DUP1)	Sour	rce: 6D27008-	01	Prepared &	: Analyzed:	05/01/06				
Sulfate	80.0	2.50	mg/L		79.2			1.01	20	
Chloride	49.3	2.50			49.0			0.610	20	
Batch EE60301 - General Preparation (V	VetChem)		,							

Total Alkalinity

ND

2.00 mg/L

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

J

-

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/04/06 15:30

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	- Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			01113	Devel	rtestin					- Hote:
Batch EE60301 - General Preparatio	n (WetChem)									
LCS (EE60301-BS1)				Prepared &	Analyzed:	05/03/06				
Bicarbonate Alkalinity	214		mg/L	200		107	85-115			
Duplicate (EE60301-DUP1)	Sour	e: 6D26006-	01	Prepared &	Analyzed:	05/03/06				•
Total Alkalinity	29.0	2.00	mg/L		28.0			3.51	20	
Reference (EE60301-SRM1)			,	Prepared &	Analyzed:	05/03/06				
Total Alkalinity	96,0		me/L	100		96.0	90-110			

Environmental Lab of Texas

1

Ð

Į

l

l

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 10

Rice Operating Co.	Project: ABO-Apache LA Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/04/06 15:30

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

			remtar i							
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED62719 - 6010B/No Digestion										
Blank (ED62719-BLK1)				Prepared &	Analyzed:	04/27/06				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	a							
Potassium	ND	0.0500								
Sodium	ND	0.0100	"							
Calibration Check (ED62719-CCV1)				Prepared &	Analyzed:	04/27/06			÷ *	
Calcium	2.08		mg/L				85-115			
Magnesium	2.16						85-115			
Potassium	1.94						85-115			
Sodium	1.96		"				85-115			
Duplicate (ED62719-DUP1)	Sou	rce: 6D26006-	-01	Prepared &	Analyzed:	04/27/06				
Calcium	0.0366	0.0100	mg/L		0,0367			0.273	20	
Magnesium	ND	0.00100			NĎ				. 20	
Potassium	0.275	0.0500	"		0.275			0.00	20	

12.1

7.17

20

13.0

0.100

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

l

l

Sodium

Rice Oper 122 W. Ta Hobbs NN	aylor	Project Number:	ABO-Apache LA Leak Site None Given Kristin Farris-Pope	Fax: (505) 397-1471 Reported: 05/04/06 15:30
	· · · · · · · · · · · · · · · · · · ·	Notes and De		
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reporting limit			
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS .	Matrix Spike			
Dup	Duplicate			

Report Approved By:

Raland Krines

5/4/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

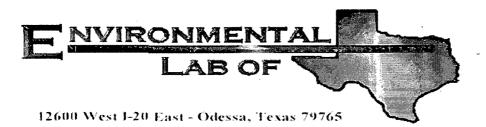
`								,	(91ubəriə2-ərd) TAT Brd TAT		×		_					7					
												Ì									z		
															_		\square	_			X		
]			Ì								\dashv	-		_	\rightarrow			_		Ø JA	;	
	¥								sbilo2 bevloss	A.A.O.N I IstoT	_×	-		-+								I	
	Lee						-		······································	BCI BCI				\neg	-+	-+	-	-+	+		Di ja		
F	Project Name: ABO - Apache LA Leak		₹				Analyze For	<	10518/2030		×			+	-†			-†			Sample Containers Intact? Labels on container? Custody Seals containers Jemperature Upon Receipt:	nts	
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	- já	1	Lea County	1			laiyz		səlüsh	ovime2											Sample Containers Im Labels on container? Custody Seals Conta Temperature Upon Re	Láboratory Comments	
REQ	Aps		a a				₹∏	1	\$	Volatile								_			ntair conta sals: re Uj	S S	
SIS	õ		ات ا						2 pH d9 10 b0 e8 pA sA					_			_		_		e Co on c by Se	ator	
46.Y	Ā		اير				TCLP						-	_			_		-+		ampl abels ustoc	abor	
AN	ame	Project #:	Project Loc:	на Н					(CI' 204' CO3' HCO3) : (C9' Mô' N9' K)		××			-	_						<u>အိမ်ာင်မို</u>	<u> </u>	
AND	ect N	Proj	oject	_					1001 2002 1002 100				-+	-				+				Time	Time
ORD	roje	_	Ę					+	(sbeci type):					-		-	-		+	-		Time	
ECC	μ							Ę		lioS			\neg				-				c		P
оYя								Matrix		appula							-	-†			nos	le le	
sroi				1		1				1916W	×										,d.	Date	
ŝ			1	Ì					(Specify)	Other											Sesv		<u>> ``</u>
I OF								a.	390H tail t (t)		-		-+		-+		_	_	_		rice		
HAIN					~			vetiv		°OS²н			_		_		-				8		夏夏
5	1]	397-147			Preservative	sisiv 22610 im 04 (HOWN	5		\dashv	-		\rightarrow			\rightarrow		х Ч		
					-76			٦Č	algin and in the	^{\$} ONH	_		-+	\neg	-			-+			lfra		
										eal	×		-+	-				-†	┽		2 95		
					(505)		`	and the second	f Containers	0.0N	3			اند - م ا			-		-	10000010	E		5
					Fax No: (~	balqme2		14:30							-†			swd.co	MLCar	(0)
	E	,	ĺ		æ	1	- All	2	halome?	ami⊺	14:										@rice:	2	3
	kpope@riceswd.com					310		X	belqme2	Date	4/25/2006										PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com	Received by:	James Johnson Received by ELOT
F TEXAS 432-563-1800 432-563-1713	kpope@	pany		88240		sampler signature: Rozanne Johnson (505) 631-9310	ш														RESULTS	Time F	Time 70, 50
Environmental Lab of Texas 12600 West 1-20 East Phone: 432-563-1713 Ddessa, Texas 79765 Fax: 432-563-1713	s Pope	Company Name RICE Operating Company	company Address: 122 W. Taylor Street	clty/state/zip: Hobbs, New Mexico 88240	174	hnson (Email: <u>rozanne@valornet.com</u>			FIELD CODE											Email	Date 1/77/51	e. l
CC CC CC CC CC CC CC CC CC CC CC CC CC	Project Manager: Kristin Farris Pope	Copera	W. Tayl	bs, New	Telephone No: (505) 393-9174	anne Jo	nne@va			FIELD	#1										LEASE		
Č,	er: Krist	me RICI	ss: 122	ip: Hob	4a: <u>(505</u>	re: Roz;	ail: <u>roza</u>				Monitor Well #1											ĮΛ	he sh
() ()	anag	y Na	ddre	ate/2	l anc	natu	Ë				Mor				_{							NI	15
Environm 12600 West I-20 East Odessa, Yexas 79765	ct M	npan	ny A	ty/St	vydej	r Sig				્રક્ર								3	剡		ous:		
1-20 (as 7	٩	Соп	mpai	ច	Tel	nple			Gowa	AB:# (lab use only)											Special Instructions:		eropresen /
fest Te			Ŝ			Sat			18. 19 -38	, de	-1										Instr	Reiningtisheet by:	Relinquished by:
00 M			1							≓ #	Y			劉		淵							inna quist
g <u>3</u>										ಶ₹											Spe	[版]\	Relin
																	A -					T	2
					•						• •											•	~

Ø

₿

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

ent	Rice Op.	
ste/Time:	<u> 4/27/α010:30</u>	
	6027013	
tials:	CK	


Sample Receipt Checklist

mperature of container/cooler?	Yes	No 1	20	C
ipping container/cooler in good condition?	Yes	No I	······	
stody Seals intact on shipping container/cooler?	1 Ses	No	Not present	
stody Seals intact on sample bottles?	1 735	No	Not present	
ain of custody present?	1 Yes	No		
mple Instructions complete on Chain of Custody?	Yes.	No		
ain of Custody signed when relinguished and received?		No		
ain cf custody agrees with sample label(s)	1 Xes	No		
ntainer labels legible and intact?	1450	No		
mple Matrix and properties same as on chain of custody?	Yes	No		
meles in procer container/bottle?	Yes	No		
mpies properly preserved?	TYA .	No I		
mole boltles intact?	1	No		
eservations documented on Chain of Custody?	Pes	No I		
ntainers documented on Chain of Custody?	TK	No I		
flicient sample amount for indicated test?	125	No I	· · · · · · · · · · · · · · · · · · ·	
samples received within sufficient hold time?	103	No I	······	
C samples have zero headspace?	109	No	Not Applicabl	ie

ther observations:

Nariance Documentation: ntact Person: -_____ Date/Time: ______ Contacted by: _____ egarding: _____ prrective Action Taken: _____

____ _____

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: Lea County

Lab Order Number: 6H18012

Report Date: 08/30/06

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Ì

Project: ABO- Apache Leak

Fax: (505) 397-1471

Project Number: None Given

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6H18012-01	Water	08/15/06 13:30	08-18-2006 10:20

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H18012-01) Water		-							
Benzene	ND	0.00100	mg/L	1	EH62121	08/21/06	08/22/06	EPA 8021B	
Toluene	ND	0.00100	•	н	P		"		
Ethylbenzene	ND	0.00100		"		"		"	
Xylene (p/m)	ND	0.00100		"		"		*	
Xylene (0)	ND	0.00100	••				"	. н	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-12	0	"	π	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-12	0	"	"	"	17	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H18012-01) Water									
Total Alkalinity	180	2.00	mg/L	. 1	EH62128	08/21/06	08/21/06	EPA 310,1M	
Chloride	228	5.00	"	10 -	EH62101	08/21/06	08/21/06	EPA 300.0	
Total Dissolved Solids	756	10.0	"	. 1	EH62303	08/18/06	08/22/06	EPA 160.1	
Sulfate	91.5	5.00		10	EH62101	08/21/06	08/21/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

н Р

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: ABO- Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (61118012-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	132	4.05	mg/L	50	EH62313	08/23/06	08/23/06	EPA 6010B	
Magnesium	19.3	0.360		10		"			
Potassium	2.32	0.600	11		Þ			"	
Sodium	53.3	0.430		•				**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

Page 4 of 10

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471 -

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62121 - EPA 5030C (GC)										
Blank (EH62121-BLK1)				Prepared: 0	8/21/06 A	nalyzed: 08	/22/06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	н						1	
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100	"							
Xylene (0)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	40.3		ug/l	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	36.7		"	40.0		91.8	80-120			
LCS (EH62121-BS1)				Prepared &	Analyzed	08/21/06				
Benzene	0.0460	0,00100	mg/L	0.0500		92.0	80-120			
Toluene	0.0503	0.00100	. "	0.0500		101	80-120			
Ethylbenzene	0.0463	0.00100		0.0500		92.6	80-120			
Xylene (p/m)	0.113	0.00100		0.100		113	80-120			
Xylene (o)	0.0565	0.00100		0.0500		113	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.7		ug/l	40.0		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	45.0		"	40.0		112	80-120			
Calibration Check (EH62121-CCV1)				Prepared: 0	8/21/06 A	nalyzed: 08	/22/06			
Benzene	48.7		ug/l	50.0		97.4	80-120			
Toluene	52.3			50.0		105	80-120			
Ethylbenzene	57.3			50.0		115	80-120			
Xylene (p/m)	114			100		114	80-120			
Xylene (o)	57.6			50.0		115	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.7		"	40.0		112	80-120			
Surrogate: 4-Bromofluorohenzene	38.3		"	40.0		95.8	80-120	,	. •	
Matrix Spike (EH62121-MS1)	Sou	rce: 6H18007-	01	Prepared: 0	8/21/06 A	nalyzed: 08	/22/06			
Benzene	0.0464	0.00100	mg/L	0.0500	ND	92.8	80-120			
Toluene	0.0550	0.00100		0.0500	ND	110	80-120			
Ethylbenzene	0.0554	0.00100	*	0.0500	ND	111	80-120			
Xylene (p/m)	0.117	0.00100	•	0.100	ND	117	80-120			
Xylene (o)	0.0575	0.00100	ir	0.0500	ND	115	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/l	40.0		104	80-120		· · · · <u>-</u>	
Surrogate: 4-Bromofluorobenzene	46.5		"	40.0		116	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lah of Texas.

•

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
A	nalyte Resu	lt Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62121 - EPA 5030C (GC)

Matrix Spike Dup (EH62121-MSD1)	Sou	rce: 6H18007-	-01	Prepared: 08	8/21/06 A	8/22/06				
Benzene	0.0473	00100.0	mg/L	0.0500	ND	94.6	80-120	1.92	20	
Toluene	0.0535	0.00100		0.0500	ND	107	80-120	2.76	20	
Ethylbenzene	0.0549	0.00100	"	0.0500	ND	110	80-120	0.905	20	
Xylene (p/m)	0.120	0.00100		0.100	ND	120	80-120	2,53	20	
Xylene (o)	0.0583	0.00100		0.0500	ND	117	80-120	1.72	20	
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	40.0		. 107	80-120			
Surrogate: 4-Bromofluorohenzene	46.4		u	40.0		116	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62101 - General Preparation (V	VetChem)					-				
Blank (EH62101-BLK1)				Prepared &	Analyzed:	08/21/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EH62101-BS1)	Prepared & Analyzed: 08/21/06									
Sulfate	8.51	0.500	mg/L	10.0		85.1	80-120			
Chloride	10.0	0.500	"	10.0		100	80-120			
Calibration Check (EH62101-CCV1)				Prepared &	Analyzed:	08/21/06				
Sulfate	8.34		mg/L	10.0		83.4	80-120			
Chloride	10.2		"	10.0		102	80-120			
Duplicate (EH62101-DUP1)	Sourc	e: 6H18007-	01	Prepared &	Analyzed:	08/21/06				
Sulfate	76.3	5.00	mg/L		65.9			14.6	20	
Chloride	105	5.00	H		98.9			5.98	20	
Duplicate (EH62101-DUP2)	Sourc	e: 6H18013-	04	Prepared &	Analyzed:	08/21/06				
Sulfate	331	5.00	mg/L		336			1.50	20	
Chloride	138	5.00			136			1.46	20	
Matrix Spike (E1162101-MS1)	Sourc	e: 6H18007-	01	Prepared &	Analyzed:	08/21/06				
Sulfate	172	5.00	mg/L	100	65.9	106	80-120			
Chloride	210	5.00	"	100	98.9	111	80-120			
Matrix Spike (EH62101-MS2)	Sourc	e: 6H18013-	04	Prepared &	Analyzed:	08/21/06				
Sulfate	422	5.00	mg/L	100	336	86.0	80-120			
Chloride	224	5.00		100	136	88.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project:ABO- Apache LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	· ·	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62128 - General Preparatio	on (WetChem)									
Blank (EH62128-BLK1)				Prepared &	Analyzed:	08/21/06				
Total Alkalinity	ND	2.00	mg/L							
` LCS (E1162128-BS1)				Prepared &	Analyzed	08/21/06				
Total Alkalinity	178		mg/L	200		89.0	85-115			
Duplicate (EH62128-DUP1)	Sourc	re: 6H18007-	-01	Prepared &	Analyzed	08/21/06				
Total Alkalinity	186	2.00	mg/L		186			0.00	20	
Reference (EH62128-SRM1)				Prepared &	Analyzed:	08/21/06				
Total Alkalinity	248		mg/L	250		99.2	90-110			
Batch EH62303 - Filtration Preparat	ion									
Blank (EH62303-BLK1)				Prepared: 0)8/18/06 A	nalyzed: 08	3/22/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EH62303-DUP1)	Sourc	ce: 6H18007-	-01	Prepared: 0	08/18/06 A	nalyzed: 08	/22/06			
Total Dissolved Solids	556	10.0	mg/L		526			5.55	5	R
Duplicate (EH62303-DUP2)	Sourc	re: 6H18013-	04	Prepared: 0	08/18/06 A	nalyzed: 08	/28/06			R
Fotal Dissolved Solids	878	10.0	mg/L		930			· 5.75	5	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak

Fax: (505) 397-1471

Project Manager: Kristin Farris-Pope Total Metals by EPA / Standard Methods - Quality Control

Project Number: None Given

Environmental Lab of Texas

		LIVAOIII	ientar i		445						
· · · · · · · · · · · · · · · · · · ·	D K	Reporting		Spike	Source	N/DEC	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EH62313 - 6010B/No Digestion											
Blank (EH62313-BLK1)				Prepared &	Analyzed:	08/23/06					
Calcium	ND	0.0810	mg/L								
Magnesium	ND	0.0360	в								
Potassium	ND 0.0600 . "										
Sodium	ND	0.0430	"						ς		
Calibration Check (EH62313-CCV1)				Prepared &	Analyzed:	08/23/06					
Calcium	1,96		mg/L	. 2.00		98.0	85-115				
Magnesium	2.01		"	2.00		100	85-115				
Potassium	1.76		*	2.00		88.0	85-115				
Sodium	1.96		"	2.00		98.0	85-115				
Duplicate (EH62313-DUP1)	Sou	rce: 6H15005	-04	Prepared &	. Analýzeď	08/23/06					
Calcium	44.4	0.810	mg/L		45.9			3.32	20	-	

Calcium	44.4	0.810 mg/L	45.9	3.32 20
Magnesium	48.1	0.360 "	49.3	2.46 20
Potassium	42.9	0,600 "	42.6	0.702 20
Sodium	44.4	0.430 "	43.5	2.05 20

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

122 W. T	rating Co. 'aylor M, 88240	Project Number:	ABO- Apache Leak None Given Kristin Farris-Pope	 Fax: (505) 397-1471	
		Notes and De	finitions		
R5	RPD is outside of historic values				
DET	Analyte DETECTED				·
ND	Analyte NOT DETECTED at or above the reporting limit				
NR	Not Reported				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				
LCS	Laboratory Control Spike		·		
MS	Matrix Spike				
Dup	Duplicate				

Report Approved By:

Raland K Juli Date:

8/30/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 10 of 10

CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST	Project Name: <u>Abo - Apache Leak</u>	Project #:	Project Loc: Lea County	PO#:			TCLP: Analyze For:		Cations (Ca, Mg, Na, K) Anions (C), SO4, CO3, HCO3) SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg 5 Semivolatiles BTEX 8021846030 ACI Fotal Dissolved Solids Total Dissolved Solids FUSH TAT (Pre-Schedute Standard TAT Standard TAT	x x x x x x							Sample Containers Intact? (* N Labels on container? (* N Cuisticity Seals: <u>containers) (cools</u> Temperature Upon Re ceipt	Laboratory Comments: $\mathscr{M} \mathcal{O}$	
ORD AN	Project	ŭđ	Proje					ę	Cher (specify): Other (specify):									Time 5.31	10. T
TODY REC	1	I	1		ł	ļ		Matrix	Soil Sludge Water	X							 1.com	B-1B-06	Date (S(OC)
F CUS	ļ								Other (Specify)	*	 						 eswc	<u>~~</u>	S≪ √
O NIP								ative	None (1) 1 Liter HDPE								 ® ric		
CH					471			Preservative	HOPN					$ \rightarrow$			 lks(
					97-1			ď	HCI (S) 40 ml dises vials	2	 		_	_	 -	_	 frar		
					93					×		-					 E	1	
		ľ			505			arces	No. of Containers	6							ШÖ		
	E	-			Fax No: (505) 397-1471				bəlqmɛ2 əmiT	13:30							 pope@riceswd.com;	le les	100 (CC
	kpope@riceswd.com					9310	Job Contract		beiqma8 słaG	8/15/2006							× 1	Received by:	Japper Jahres Chr. Received by ELOT
Environmental Lab of Texas 12600 West 1-20 East Odessa, Texas 79765	Project Manager: Kristin Farris Pope	company Name RICE Operating Company	company Address: 122 W. Taylor Street	city/state/zip: Hobbs, New Mexico 88240	Telephone No: (505) 393-9174	sampter signature: Rozanne Johnson (505) 631-9310	Emali: rozanne@valornet.com		FIELD CODE								PLEASE Email RESULTS TO: rozanne@valornet.com	C rado 5:30	Time 10, 20
Imenta ^{East}	it Manager: <u>Kri</u>	pany Name RIC	y Address: 12	//State/Zip: HO	yphone Na: <u>(5C</u>	Signature: RO	Email: <u>roz</u>		s	Monitor Well #1							:su	1 - La	Amen.
Environm 12600 West I-20 East Odessa, Texas 79765	Project	Comp	Compan	City	Tele	Sampler			AB# flab use only								Special Instructions:	Relibouisted by:	Relinquished by: Relinquished by:
						· .	· .	:	ters to see a sector	:					 			13	D,

15 A

-

k

ŀ

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

	Variance/ Corrective Action
Client:	Rice DP-
Date/ Time:	8/18/de 10:20
ab ID # :	"eH18012
nitials:	

Sample Receipt Checklist

A				С	lient Initials
‡1 ‡2	Temperature of container/ cooler?	Yes	No	4.0 °C	
#2	Shipping container in good condition?	Xes	No		
_ ‡ 3_	Custody Seals intact on shipping container/ cooler?	tes	No	Not Present	
14 15	Custody Seals intact on sample bottles/ container?	Yas	No	Not Present	
±5	Chain of Custody present?	Yes	No		
46	Sample instructions complete of Chain of Custody?	Ye3	No		
1 :7	Chain of Custody signed when relinquished/ received?	Yes	No		
:7 :8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	1
:9	Container label(s) legible and intact?	Yes	No	Not Applicable	
10	Sample matrix/ properties agree with Chain of Custody?	Xes.	No		
11	Containers supplied by ELOT?	Yes	No		
12	Samples in proper container/ bottle?	Yes	No	See Below	
13	Samples properly preserved?	Yes	No	See Below	
14	Sample bottles intact?	Xes	No		
15	Preservations documented on Chain of Custody?	Yes	No		
16	Containers documented on Chain of Custody?	Yes	No		
17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
18	All samples received within sufficient hold time?	Yes	No	See Below	
19	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

		Contacted by:	Date/ Time:
egarding:			
orrective Action Taken:			
heck all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with Cooling process had begun shortly after sampling	
	لب		, 270
A			· · ·

Analytical Report

Prepared for: Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: T19S-R36E- Sect1G. Lea County, NM

Lab Order Number: 6113001

Report Date: 09/19/06

Project: ABO- Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6113001-01	Water	09/12/06 17:07	09-13-2006 07:50

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6113001-01) Water									
Benzene	ND	0.00100	mg/L	1	E161318	09/13/06	09/14/06	EPA 8021B	_
Toluene	ND	0.00100			"	н	"		
Ethylbenzene	ND	0.00100		"			"	n .	
Xylene (p/m)	ND	0.00100		•		"	"	**	•
Xylene (0)	ND	0.00100			۳	"	"	•	
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-12	0	"	"	"	".	
Surrogate: 4-Bromofluorobenzene		84.0 %	80-12	0	"	"	"	**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples - received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6113001-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	178	2.00	mg/L	1	EI61412	09/14/06	09/14/06	EPA 310.1M	
Chloride	221	5.00	-	10	EI61815	09/15/06	09/19/06	EPA 300.0	
Total Dissolved Solids	788	10.0		i	E161502	09/13/06	09/14/06	EPA 160.1	
Sulfate	80.7	5.00	"	10	EI61815	09/15/06	09/19/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6113001-01) Water									
Calcium	128	4.05	mg/L	50	EI61402	09/14/06	09/14/06	EPA 6010B	
Magnesium	20.9	0.360	"	10	"	и	"	'n	
Potassium	2.79	. 0.600	"		"	*1		"	
Sodium	59.9	0.430	*	**			"	"	

Environmental Lab of Texas

Į

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project:ABO- Apache LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch El61318 - EPA 5030C (GC)										
Blank (El61318-BLK1)				Prepared: 0	9/13/06 Ai	nalyzed: 09	/15/06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	39.4		ug/l	40.0		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	32.5		"	40.0		81.2	80-120			
LCS (E161318-BS1)				Prepared: 0	9/13/06 A	nalyzed: 09	/14/06			
Benzene	0.0559	0.00100	mg/L	0.0500		112	80-120			
Toluene	0.0461	0.00100	"	0.0500		92.2	80-120			
Ethylbenzene	0.0435	0.00100	"	0.0500		87.0	80-120			
Xylene (p/m)	0.0992	0.00100	"	0.100		99.2	80-120			
Xylene (0)	0.0509	. 0.00100	•	0.0500		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/l	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	40.6		. "	40.0		102	80-120			
Calibration Check (EI61318-CCV1)				Prepared: 0	9/13/06 Ai	nalyzed: 09	/14/06			
Benzene	0.0490		mg/L	0.0500		98.0	80-120			
Toluene	0.0438		"	0.0500		87.6	80-120			
Ethylbenzene	0.0442		~ "	0.0500		88.4	80-120			
Xylene (p/m)	0.0890		11	0.100		89.0	80-120			
Xylene (o)	0.0437		14	0.0500		87.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.8		ug/l	40.0		99.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.5		"	40.0		83.8	80-120			
Matrix Spike (El61318-MS1)	Sou	irce: 6113001-0)1	Prepared: 0	9/13/06 Ai	nalyzed: 09	/15/06			
Benzene	0,0544	0.00100	mg/L	0.0500	ND	109	80-120			
Toluene	0.0466	0.00100		0.0500	ND	93.2	80-120			
Ethylbenzene	0.0476	0.00100		0.0500	ND	95.2	80-120			
Xyłene (p/m)	0.101	0.00100	•	0.100	ND	101	80-120			
Xylene (o)	0.0509	0.00100		0.0500	ND	102	80-120			
Surrogate: a,a,a-Trifluorotoluenc	38.4		ug/l	4 0.0		96.0	80-120			
Surrogate: 4-Bromofluorobenzene	38.7		"	40.0		96.8	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

<u>.</u>

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control

Environmental Lab of Texas

······································										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch E161318 - EPA 5030C (GC)

Matrix Spike Dup (El61318-MSD1)	Sou	rce: 6113001-()1	Prepared: 09	9/13/06 A	nalyzed: 09	9/15/06			
Benzene	0.0551	0.00100	mg/L	0.0500	ND	110	80-120	0.913	20	
Tolucne	0.0451	0.00100	"	0.0500	ND	90.2	80-120	3.27	20	
Ethylbenzene	0.0452	0.00100		0.0500	ND	90.4	80-120	5.17	20	
Xylene (p/m)	0.0940	0.00100	"	0.100	ND	94.0	80-120	7,18	20	
Xylene (o)	0.0492	0.00100	"	0.0500	ND	98.4	80-120	3.59	20	
Surrogate: a,a,a-Trifluorotoluene	38.2		ug/l	40.0		95.5	80-120			
Surrogate: 4-Bromofluorobenzene	39.5		"	40.0		98.8	80-120			•

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		·		· · · · · · · · · · · · · · · · · · ·				-		
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD .	Limit	Notes
Batch El61412 - General Preparation	(WetChem)									
Blank (E161412-BLK1)				Prepared &	: Analyzed:	09/14/06				
Total Alkalinity	ND	2.00	mg/L							
LCS (El61412-BS1)				Prepared &	Analyzed:	09/14/06				
Total Alkalinity	190	2.00	mg/L	200		95.0	85-115			
Duplicate (EI61412-DUP1)	Sou	rce: 6111006-()1	Prepared &	Analyzed:	09/14/06				
Total Alkalinity	192	2.00	mg/L		194			1.04	20	
Reference (El61412-SRM1)				Prepared &	Analyzed:	09/14/06				
Total Alkalinity	244		mg/L	250		97.6	90-110			
Batch E161502 - Filtration Preparatio	n									
Blank (El61502-BLK1)				Prepared: ()9/13/06 A	nalyzed: 09	0/14/06			
Total Dissolved Solids	ND	10,0	mg/L							
Duplicate (E161502-DUP1)	Sou	rce: 6113001-()1	Prepared: (9/13/06 A	nalyzed: 09	9/14/06	,		
Total Dissolved Solids	808	10.0	mg/L		788			2.51	5	
Duplicate (E161502-DUP2)	Sou	rce: 6113003-(02	Prepared: (9/13/06 A	nalyzed: 09	9/15/06			
Total Dissolved Solids	918	10.0	. mg/L		2890			104	5	
Batch El61815 - General Preparation	(WetChem)									
Blank (El61815-BLK1)				Prepared: (9/15/06 A	nalyzed: 09	9/19/06			
Chloride	ND	0.500	mg/L							

ND

0.500

...

Sulfate

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project:ABO- Apache LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte ·	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch El61815 - General Preparation (V	VetChem)									
LCS (E161815-BS1)				Prepared: (09/15/06 A	nalyzed: 09	/19/06			
Sulfate	10.1	0.500	mg/L	10.0		101	80-120			
Chloride	9.83	0.500	"	10.0		98.3	80-120			
Calibration Check (El61815-CCV1)				Prepared: (09/15/06 A	nalyzed: 09	/19/06			
Sulfate	10.2		mg/L	10.0		102	80-120			
Chloride	9.86			10.0		98.6	80-120			
Duplicate (EI61815-DUP1)	Sou	rce: 6113001-0)1	Prepared: 0	09/15/06 A	nalyzed: 09	/19/06			
Sulfate	80.6	5.00	mg/L	•	80.7			0.124	20	
Chloride	223	5.00			221			0.901	20	
Duplicate (E161815-DUP2)	Sou	-ce: 6114014-()2	Prepared: ()9/15/06 A	nalyzed: 09	/19/06			
Sulfate	306	12.5	mg/L		306			0.00	20	
Chloride	547	12.5			- 546	-		0.183	20	
Matrix Spike (El61815-MS1)	Sou	rce: 6113001-0)1	Prepared: 0	9/15/06 A	nalyzed: 09	/19/06			
Sulfate	185	5.00	mg/L	100	80.7	104	80-120			
Chloride	331	5.00		100	221	110	80-120			
Matrix Spike (El61815-MS2)	Sou	rce: 6114014-()2	Prepared: ()9/15/06 A	nalyzed: 09	9/19/06			
Sulfate	579	12.5	mg/L	250	306	109	80-120			
Chloride	829	12.5		250	546	113	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch El61402 - 6010B/No Digestion										
Blank (El61402-BLK1)				Prepared &	Analyzed:	09/14/06				
Calcium	ND	0.0810	mg/L							
Magnesium -	ND	0.0360								
Potassium	ND	0.0600	"							
Sodium	ND	0.0430	"							
Calibration Check (E161402-CCV1)				Prepared &	Analyzed:	09/14/06				
Calcium	2.18		mg/L	2.00		109	85-115			
Magnesium	2.18			2.00	-	109	85-115			
Potassium	1,84		"	2.00		92.0	85-115			
Sodium	1.91		".	2.00		95.5	85-115			
Duplicate (El61402-DUP1)	Sour	Source: 6111006-01 Prepared & Analyzed: 09/14/06								
Calcium	51.8	0.810	mg/L		51.8			0.00	20	
Magnesium	29.0	0.360			29.0			0.00	20	
Potassium	5.34	0.600	"		5.64			5.46	20	

75.0

3.94

20

0.430

72.1

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Sodium

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K Juli

9/19/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Page 10 of 10

		1								TAT base		×													
									-	(siubsric2-snq) TAT H	เรกษ	_					_								
				Lea County NM														-+	\downarrow	_		z z			
				≩						······································		\rightarrow	\rightarrow				-+	-+				\mathcal{A}	$oldsymbol{arphi}_{i}$		
				ľ				-		sbito2 bavlossi($\overline{\times}$	-			-+	-	\rightarrow				30 P	0		
				0 U					· · · ·		.9.0.N	4	-+									်ပြီ	2		
				le.							BCI	┥		\neg	+			-				t? 915 /	्राः		
	F	·		ບັ				Analyze For		805/8/2030		×	-		-+			-+				Sample Containers Intact? Labels on container? Custody Seals-Containers / Cooler	Tèmperature Upon Receipt:-	SE .	
	JES	ABO-Apache Leak		T19S-R36E-Sec1G,	[el yzt		olatiles	vime2		Í									Sample Containers I Labels on container? Custody Seals- <u>Con</u>	onF	Laboratory Comments	
	EQ	e		Ŷ				¥		Sə	Volati											ontain	e Up	5 S	
	IS R	act		- El						S BH dH 10 b0 68 6A sA :	Metals											Cor On Cor	etun	C Co	
	۲YS	Å	1	Ř				TCLP	TAL:	ESP / CEC	1 AA2	_		·								nple sels stody	nper	ocra	
	4NA	ģ		9S			ĺ	Ŭ		s (CI, SO4, CO3, HCO3)	enoinA	×										C BC	T.		
UD-7	GN	AE		μ	ł					is (Ca, Mg, Va, K)	noiteO	×												0~	Time D 75C
	Å Q						-			001 9001 WS108 1.814	⊧:HqT													Time 5.'01	Time D 7.57
	COR									(sbeciţh):		_													-
لي ا	RE(er:						Matrix		lios	$ \downarrow$	-+					\rightarrow				ε		2	8
an i	λac	ame	quu	ö	i. a		1	•	Σ		Spnis							\rightarrow				Ö		Date 73-0	Date 7 - /3 - C
	CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST	Project Name:	Project Number:	Project Loc:	PO Number:				F	Contraction of the second s	Water	\times		_								tpope@riceswd.com;		Date 9-13-00	Date 9 - 13 - CG
	- 2	ojet	ojeć	<u>o</u>	ž					(Specify)					_	_						PSA		<u> </u>	
ma	õ z	۹.	ق	ءً ا	۳. ا				e	(1) 1 Liter HOPE		-						\dashv				ŭ			
	HAI					-			vati	·····	OS ² H HO®N	-+	-	-			_	-	_	~		ġ		<u>ک</u>	
	<i>,</i> 0					47			Preservative	sleiv sselg im 05 (S		2										л¥.			3
-						-76			ā		TONH			-								fra			
						č				<u>.</u>	801	$\overline{\times}$		-								E			}
						202				of Containers		0									-	E			
						୍ଞ	2	$\langle \rangle$	I					_								<u>5</u>		8 A	M
						Fax No: (505) 397-147	. \	\mathbb{N}				5								1		MC			
					ļ	Бa	ų	And I	5	bəlqms2 e	-Time	17:07										l S		2	
_			j		1			1														i.			もら
I		E					\frown		\mathcal{T}	·····)ec			দ্র বি
IJ		- C - C							P			006										log		ρλ	DUC
		SV					^	J.	A.	belqme2 s	Date	9/12/2006									-	- 25		edb	armes Jonnson aceived by ELO
		- ici					10		100			9/1										ا <u>ت</u> ا	r	Received	Received
B		ē					-93		}	<u> </u>												S S S S S S S S S S S S S S S S S S S		<u>n</u>	<u>α <⇒</u>
_	() ~ ~	kpope@riceswd.com					31.				ļ	ĺ										JL1 net.		e o	757 0757
		ġ	- Maria		24(5) 6	_														alor		Time 5 : 0 0	Time 75
IJ	Texas 32-563-1800 32-563-1713		ğ		88		50	Щ Шо														₩ĝ	ĺ		
		ø	company Name RICE Operating Company	company Address: 122 W. Taylor Street	city/state/zip: Hobbs, New Mexico 88240		sampler Signature: Rozanne Johnson (505) 631-9310	Email: rozanne@valornet.com														PLEASE Email RESULTS TO: rozanne@valornet.com	l	Date	Date 9-13-06
		Ы	D	δ	7ex	4	JSO				FIELD CODE											En Toza		Date 113/0	Date
IJ	fax	2	ati	흿	3	917	Ч	Val Val			ů Q											ш S		a	6.
	លី	ar	le	Ца	2 N	č	e L	ĝ			핕											ΪĂ			
		ΠF	0	≥	SC,) Se	nne	nne			-	ŧ	İ												
	6	rist	Ö	53	q	<u> 3</u>	0Z)za			1	Vell						Į						$ \Lambda $	2
	्रीस्टी इन्द्र	×[۳ اي	÷-	ΞĮ	ନ୍ତ୍ର	Ŕ	2				2 20							l					$ \rangle$	main
R	ð	ager	łame	ress	v/Zip	e No	ture	mail				Monitor Well #1											(11	2
	55 55	Man	iny h	Add	State	hone	igna	ឃ័		N NEW CONTRACTOR	2138230	<mark>ک</mark> ⊲⊳∛	2.25	25	1943)	25	1.80	4.0	1960 -	125	34			HV	
	Environmental Lab of 12600 West I-20 East Phone: 4 Odessa, Texas 79765 Fax: 4	Project Manager: Kristin Farris Pope	mpa	any	λų.	Telephone No: (505) 393-9174	er S				(Âu	藰	10							協		Special Instructions:	\cap	11/	
	t I-2 Xas	Proj	ပိ	dmc	J	Ĩ	Įdmi			6	Ise											truc		N S	
IJ	Vill Vest v. Te			ŏ			ŝ			1	ab.	$\overline{\mathcal{O}}$									[]]	list		and a	shed
	00									1 COOL	LAB # (lab use only)	9	劉									scial	\	Relined by	Relinguished by:
Ø	ğ ş Ш									1 March Control Control	š s							溪				Spe		[]]	Reil 7
U												•		• :											
							· .*			and a second second	• • •	·		. e			44.	· · . [*]		·					

-

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Variance/Corrective Action
Date/ Time: Lab ID # :	a 13/06 n:50 67/3001
nitials:	<u>UL</u>

Ð

Sample Receipt Checklist

		_		C	lient Initials
#1	Temperature of container/ cooler?	Yes	No	2.0 °C	······
¥2	Shipping container in good condition?	Yes	No		
‡ 3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
1 4	Custody Seals intact on sample bottles/ container?	Ves	No	Not Present	
‡ 5	Chain of Custody present?	Yes	No		
<i>‡</i> 6	Sample instructions complete of Chain of Custody?	Yes	No		
ŧ7	Chain of Custody signed when relinquished/ received?	Yes	No		
ŧ8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	· · · · · ·
£9	Container label(s) legible and intact?	Yes	No	Not Applicable	
10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
:10 :11	Containers supplied by ELOT?	Wes	No		
:12	Samples in proper container/ bottle?	Yes	No	See Below	
13	Samples properly preserved?	Yes	No	See Below	
14 15	Sample bottles intact?	Yes	No		
15	Preservations documented on Chain of Custody?	Yes	No		
16	Containers documented on Chain of Custody?	Yes	No		
17 18	Sufficient sample amount for indicated test(s)?	Ves	No	See Below	
18	All samples received within sufficient hold time?	Yes	No	See Below	
:19	VOC samples have zero headspace?	Yes	No	Not Applicable	
<u>.19</u>	voc samples have zero neauspace?	- <u>L_(B</u>		1 Not Applicable 1	

Variance Documentation

iontact:		Contacted by:	Date/ Time:	
egarding:	÷			
orrective Action Taken:				
heck all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with Cooling process had begun shortly after sampling		
B			· .	
1		- · · · · · · · · · · · · · · · · · · ·		;

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: T19S-R36E-Sec.1G, Lea County, NM

Lab Order Number: 6J12012

Report Date: 10/24/06

. .

Project: ABO- Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6J12012-01	Water	10/09/06 16:20	10-12-2006 16:00

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6J12012-01) Water				· · ·					
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/16/06	EPA 8021B	
Toluene	ND	0.00100		.:	"	"		"	
Ethylbenzene	ND	0.00100			"	м	"	"	
Xylene (p/m)	ND	0.00100		"		**	"		
Xylene (o)	ND	0.00100				н	0		
Surrogate: a,a,a-Trifluorotoluene		82.2 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-12	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6J12012-01) Water								<u> </u>	
Total Alkalinity	194	2.00	mg/L	I	EJ61311	10/13/06	10/13/06	EPA 310.1M	
Chloride	219	5.00		10	EJ61403	10/19/06	10/19/06	EPA 300.0	
Total Dissolved Solids	836	10.0	•	1	EJ61404	10/14/06	10/15/06	EPA 160.1	
Sulfate	80.9	5.00		10	EJ61403	10/19/06	10/19/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6J12012-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	133	4.05	mg/L	50	EJ61604	10/13/06	10/16/06	EPA 6010B	
Magnesium	20.6	0.360		10	"	•	"	"	
Potassium	2.72	0.600	· ••	"			"	**	
Sodium	48.0	2.15		50		•	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		. Pr	oject: Al	3O- Apache I	.eak				Fax: (505)	397-1471
122 W. Taylor		Project Nu						e		
Hobbs NM, 88240				istin Farris-P	ope					
· · · ·	0	rganics by	GC - Q	Quality Co	ontrol					
		Environm	iental I	Lab of Tex	kas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61407 - EPA 5030C (GC)										
Blank (EJ61407-BLK1)				Prepared: I	0/14/06 A	nalyzed: 10	0/15/06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	*							
Ethylbenzene	ND	0.00100	и							
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100	. "							
Surrogate: a,a,a-Trifluorotoluene	33.5		ug/l	40.0		83.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.0		"	40.0		87.5	80-120			
LCS (EJ61407-BS1)				Prepared: 1	0/14/06 A	nalyzed: 10)/15/06			
Benzene	0.0451	0.00100	mg/L	0.0500		90.2	80-120			
Toluene	0.0430	0.00100		0.0500		86.0	80-120			
Ethylbenzene	0.0513	0.00100		0.0500		103	80-120			
Xylene (p/m)	0.0929	0.00100	41	0.100		92.9	80-120			
Xylene (o)	0.0423	0.00100	**	0.0500		84.6	80-120			
Surrogate: a,a,à-Trifluorotoluene	34.4		ug/l	40.0		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	43.8		"	40.0		110	80-120			
Calibration Check (EJ61407-CCV1)				Prepared: 1	0/14/06 A	nalyzed: 10)/17/06			
Benzene	49.9		ug/ł	50.0		99.8	80-120			
Foluene	43.1		**	50.0		86.2	80-120			
Ethylbenzene	42.0		•	50.0		84.0	80-120			
Xylene (p/m)	83.7			100		83.7	80-120			
Xylene (o)	41.2		•	50.0		82.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.1		"	40.0		90.2	80-120			
Surrogate: 4-Bromofluorohenzene	34.3		"	40.0		85.8	80-120			
Matrix Spike (EJ61407-MS1)	Sou	irce: 6J12015-0	01	Prepared: I	0/14/06 A	nalyzed: 10	/17/06			
Benzene	0.0501	0.00100	mg/L	0.0500	ND	100	80-120			
Foluene	0.0440	0.00100		0.0500	ND	88.0	80-120			
Ethylbenzene	0.0416	0.00100		0.0500	ND	83.2	80-120			
Xylene (p/m)	0.0914	0.00100		0.100	ND	91.4	80-120			
Xylene (0)	0.0427	0,00100		0.0500	ND	85.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.5	· · · · · · · · · · · · · · · · · · ·	ug/l	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzenc	40.2		"	40.0		100	80-120			

-

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61407 - EPA 5030C (GC)

Matrix Spike Dup (EJ61407-MSD1)	Sou	Prepared: 1	0/14/06 Å						
Benzene	0.0502	0.00100	mg/L	0.0500	ND	100	80-120	0.00	20
Toluene	0.0442	0.00100	"	0.0500	ND ⁻	88.4	80-120	0.454	20
Ethylbenzene	0.0412	0.00100		0.0500	ND	82.4	80-120	0.966	20
Xylene (p/m)	0.0913	0.00100	"	0,100	ND	91.3	80-120	0.109	20
Xylene (0)	0.0437	0.00100	"	0.0500	ND	87.4	80-120	2.31	20
Surrogate: a,a,a-Trifluorotoluene	35.4		ug/l	. 40,0		88.5	80-120		
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

0. 0

Rice Operating Co.
122 W. Taylor
Hobbs NM, 88240

Project: ABO- Apache Leak Project Number: None Given Fax: (505) 397-1471

Project Manager: Kristin Farris-Pope General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61311 - General Preparation (V	VetChem}			-						
Blank (EJ61311-BLK1)				Prepared &	Analyzed:	10/13/06				
Total Alkalinity	ND	2.00	mg/L							
Carbonate Alkalinity	ND	0.100								
Bicarbonate Alkalinity	ND	2.00	"							
Hydroxide Alkalinity	ND	0.100	•							
LCS (EJ61311-BS1)				Prepared: 1	0/13/06 A	nalyzed: 10	/20/06			
Bicarbonate Alkalinity	196	2.00	mg/L	200		98.0	85-115			
Duplicate (EJ61311-DUP1)	Sou	Prepared &	Analyzed:	10/13/06						
Total Alkalinity	238	2.00	mg/L	242				1.67	20	
Reference (EJ61311-SRM1)				Prepared &	Analyzed:	10/13/06				
Total Alkalinity	250		mg/L	250		100	90-110			
Batch EJ61403 - General Preparation (V	VetChem)									
Blank (EJ61403-BLK1)				Prepared &	Analyzed	10/19/06				
Chloride	· ND	0.500	mg/L							
Sulfate	ND	0.500	*							
LCS (EJ61403-BS1)				Prepared &	Analyzed:	10/19/06				
Sulfate	9.55	0.500	mg/L	10.0		95.5	80-120			
Chloride	9.62	0.500		10.0		96.2	80-120			
Calibration Check (EJ61403-CCV1)				Prepared &	Analyzed:	10/19/06				
· · · · ·	10.1		mg/L	10.0	-	101	80-120			
Sulfate	10.1									

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EJ61403 - General Preparation (Wet	Chem)									
Duplicate (EJ61403-DUP1)	Sou	rce: 6J12011-	01	Prepared &	Analyzed:	10/19/06				
Sulfate	291	25.0	mg/L		308		·	5.68	20	
Chloride	1430	25.0	"		1430			0.00	20	
Duplicate (EJ61403-DUP2)	Sou	Prepared &	2 Analyzed:	10/19/06						
Sulfate	236	12.5	mg/L		237			0.423	20	
Chloride	690	12.5	"		692			0.289	20	
Matrix Spike (EJ61403-MS1)	Sou	rce: 6J12011-(- Prepared &	Analyzed:	10/19/06					
Chloride	2040	25.0	mg/L	500	1430	122	80-120			. S-(
Sulfate	781	25.0	•	500	308	94.6	80-120			
Matrix Spike (EJ61403-MS2)	Sou	rce: 6J12016-0	02	Prepared &	Analyzed:	10/19/06				
Sulfate	476	12.5	mg/L	250	237	95.6	80-120			
Chloride	979	12.5		250	692	115	80-120			
Batch EJ61404 - Filtration Preparation										
Blank (EJ61404-BLK1)				Prepared: 1	10/14/06 A	nalyzed: 10	/15/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EJ61404-DUP1)	Sour	rce: 6J12011-6	01	Prepared: 1	10/14/06 A	nalyzed: 10	/15/06			
Total Dissolved Solids	3380	10.0	mg/L		3260			3.61	5	
Duplicate (EJ61404-DUP2)	Sou	rce: 6J12016-0	92	Prepared: I	10/14/06 A	nalyzed: 10	/15/06			
Total Dissolved Solids	1850	10.0	mg/L		1900			2.67	5	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 10

Project: ABO- Apache Leak

Project Number: None Given Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61604 - 6010B/No Digestion

Blank (EJ61604-BLK1)				Prepared: 10/13/	06 Analyzed: [0/16/06			
Calcium	ND	0.0810	mg/L						
Magnesium	ND	0.0360							
Potassium /	ND	0.0600	"						
Sodium	ND	0.0430	"						
Calibration Check (EJ61604-CCV1)				Prepared: 10/13/					
Calcium	1.99		mg/L	2.00	99.5	85-115			
Magnesium	2.20			2.00	110	85-115			
Potassium	1.94			2.00	97.0	85-115			
Sodium `	1.79		"	2.00	89.5	85-115			
Duplicate (EJ61604-DUP1)	Sour	ce: 6J12001-	04	Prepared: 10/13/	06 Analyzed: 1	0/16/06			
Calcium	0.426	0.0810	mg/L	0.4	\$27		0.234	20	
Magnesium	0.432	0.0360	"	0.4	\$22		2.34	20	
Potassium	0.596	0.0600	"	0.:	582		2,38	20	
Sodium	0.890	0.0430	"	0.5	366		2.73	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operat 122 W. Tay Hobbs NM,	lor	Project Number:	ABO- Apache Leak None Given Kristin Farris-Pope		•			Fax: (505) 397-1471		71
		Notes and De	finitions							
S-07	Recovery outside Laboratory historical or method pr	escribed limits.						. ·		
DET	Analyte DETECTED									
ND	Analyte NOT DETECTED at or above the reporting limit			. '						
NR	Not Reported	· · · · · ·								
dry	Sample results reported on a dry weight basis									
RPD	Relative Percent Difference		· .	•	•			•		•

Report Approved By:

LCS

MS

Dup

Laboratory Control Spike

Matrix Spike

Duplicate

Raland K Sweet

10/24/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

						1		1714.117 ¹¹⁴	(.	alubado2-a	n q) TAT H TAT bret		×	 	, 								
			County NM											 		•					N N N		
			Lea Co					· · · · ·		dids.	.M. DS bevlozei(ALC IN I ISTOTI	<u>~</u>									۹ ۲	
ST	ž						26 FOI:	×			0005/81202	RUEX RUEX	×	 							Sample Containers Intect? Labels on container? Intect? Cúalody Seasis: Containas? Temperature Upon Receipt:	ente:	
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	ABO-Apache Leak		T19S-R36E-Sec1G				Analyze	_			23 23	VokoV Vime		 					-		Samola Containers intact? Labela on container? Cúatody Seala: Container Temperature Upon Necelp	Laboratory Commente:	
r ysis i	Apac		-R36					TGLP; OTAL:	35	^መ ዘ ቁታን ድር	030/983		_			_					iple Col els on c tody Se peratur	Dratory	
D ANAI	- BQ-		18S					101 101		03" HCO3)	s (تكر للاي 1 ب (تا, 504, (×××	 						-	Cubi Tem Tem		
INF CS	· •••1	I	-1		l				910	01 9001 M	GLOB L'81.6	Hichl		 								Time.	A TIME
RECOR	,	L							itrix 1		(Ayneds)	Nigil Bando					+	-	<u> </u>				and the second se
TODY	Name:	Mumbe	Loci	lber:	1	1	1		Matri			Epings 2023AD	×	 					-	,		Dale	N17100
F CUS	Project Name:	Project Number:	Projact Loc:	PO Number:							r (Specary) ; (1) 1 1 (200 H								1	1	DW66		X
HAIN O	<u>م</u>	. e	•	•					rative T			DS ² H	-	 _									
ប៊					397-1471				Preservat	sister at	4 2) 409 (24 Ch34	NARADON HACTA (3				-			┼	nka		
) 397						£	HUNO 106	×				_		1		a fre		
					(505)			۱ ۱.		SX	of Containe		6								com		
					Fax No:	ç	$\left \right $			ſ	e Sample	miT.	16:20								riceswd.		NW ST
	kpope@riceswd.com					310		CA SUC			oalqms2 e	ybC	10/9/2006	 							TO: kpope@riceswd.com; mfranks@riceswd.com	Received by:	Received by ELOT
3-1713 3-1713	kpope@	pany		38240		05) 631-9:			the second secon	7											Email RESULTS T rozanne@valornet.com	1m s	
-ab of Texas Phone: 432-563-1500 Fex: 432-563-1713	arris Pope	company Name RICE Operating Company	Company Address: 122 W. Taylor Street	city/state/zip: Hobbs, New Mexico 88240	3-9174	ธลmpler 8Ignature: <u>Rozanne Johnson (505)</u> 631-9310	Suspered on					FIELD CODE									PLEASE Email RESULTS TO: rozanne@valornet.com	Date Iv/12/06	Date
Ľ P P	Project Maneger: Kristin Farris Pope	eme RICE O	авы : <u>122 W.</u>	Izip: Hobbs,	Telephons No: (505) 393-9174	ure: Rozann	ondervi Ha						Monitor Well #1								bre .	Λ	
Environmental I 12600 West I-20 East Oddeese, Texae 78788	Project Mane	Company Ne	Company Addre	City/State/	Telephone	Sampler Bignatı				Ś		AB # (Iab use only)	- D/ Mo								Special Instructions:	Reuthon John By:	Relinquished by:

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In .

e it	Rive Op.
∦ Time:	10/12/de 4:00
ID # :	6512012
- 15:	<u>U4</u>

Sample Receipt Checklist

				Client Initials
re of container/ cooler?	Yes	No	2.0 .	c
ontainer in good condition?	(#es	No		
eals intact on shipping container/ cooler?	Fes	No	Not Present	
eals intact on sample bottles/ container?	Yes	No	Not Present	
ustody present?	Yes	No		
structions complete of Chain of Custody?	∦∕æş	No		
ustody signed when relinquished/ received?	Yes	No		
ustody agrees with sample label(s)?	Xes	No	ID written on Cont./ Li	d
label(s) legible and intact?) es	No	Not Applicable	
natrix/ properties agree with Chain of Custody?	Yes	No		
s supplied by ELOT?	Yes	No		
in proper container/ bottle?	Yes	No	See Below ·	
properly preserved?	Yes	No	See Below	
ottles intact?	Yes	No		
ions documented on Chain of Custody?	Yes	No		
s documented on Chain of Custody?	YES,	No		
sample amount for indicated test(s)?	Yes	No	See Below	
es received within sufficient hold time?	Ves	No	See Below	
ples have zero headspace?	Yes	No	Not Applicable	
	are of container/ cooler? ontainer in good condition? eals intact on shipping container/ cooler? eals intact on sample bottles/ container? ustody present? structions complete of Chain of Custody? ustody signed when relinquished/ received? ustody agrees with sample label(s)? label(s) legible and intact? natrix/ properties agree with Chain of Custody? is supplied by ELOT? in proper container/ bottle? properly preserved? ottles intact? ions documented on Chain of Custody? is documented on Chain of Custody? sample amount for indicated test(s)? es received within sufficient hold time? oples have zero headspace?	ontainer in good condition?Yeseals intact on shipping container/ cooler?Yeseals intact on sample bottles/ container?Yesustody present?Yesstructions complete of Chain of Custody?Yesustody signed when relinquished/ received?Yesustody agrees with sample label(s)?Yeslabel(s) legible and intact?Yesnatrix/ properties agree with Chain of Custody?Yesin proper container/ bottle?Yesproperly preserved?Yesottles intact?Yesions documented on Chain of Custody?Yess documented on Chain of Custody?Yessample amount for indicated test(s)?Yeses received within sufficient hold time?Yes	ontainer in good condition?YesNoeals intact on shipping container/ cooler?YesNoeals intact on sample bottles/ container?YesNoustody present?YesNostructions complete of Chain of Custody?YesNoustody signed when relinquished/ received?YesNoustody agrees with sample label(s)?YesNolabel(s) legible and intact?YesNonatrix/ properties agree with Chain of Custody?YesNos supplied by ELOT?YesNoin proper container/ bottle?YesNoproperly preserved?YesNoottles intact?YesNos documented on Chain of Custody?YesNos ample amount for indicated test(s)?YesNosample amount for indicated test(s)?YesNo	ontainer in good condition? Yes No eals intact on shipping container/ cooler? Yes No Not Present eals intact on sample bottles/ container? Yes No Not Present ustody present? Yes No Not Present ustody present? Yes No Not Present ustody signed when relinquished/ received? Yes No Not Applicable ustody agrees with sample label(s)? Yes No Not Applicable ustody agrees with sample label(s)? Yes No Not Applicable hatrix/ properties agree with Chain of Custody? Yes No Not Applicable in proper container/ bottle? Yes No See Below properly preserved? Yes No See Below ottles intact? Yes No See Below ions documented on Chain of Custody? Yes No See Below s ample amount for indicated test(s)? Yes No See Below sample amount for indicated test(s)? Yes No See Below

Variance Documentation

Contact:	Contacted by:	Date/ Time:	
Regarding:			
		· · · · · · · · · · · · · · · · · · ·	
Corrective Action Taken:			
······			
	Cas attached a mail/fax		

Check all that Apply:

 See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

> -4

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: T19S R37E Sec.1 G- Lea County, NM

Lab Order Number: 6K15004

Report Date: 11/22/06

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6K15004-01	Water	11/13/06 09:40	11-15-2006 08:10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

1 1

Project:ABO- Apache LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6K15004-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	234	5.00	mg/L	10	EK61507	11/15/06	11/15/06	EPA 300.0	
Total Dissolved Solids	752	10.0	"	ł	EK61611	11/15/06	11/16/06	EPA 160.1	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Ì.

k

l

Ï

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61507 - General Preparation (WetChem)									
Blank (EK61507-BLK1)				Prepared &	Analyzed:	11/15/06				
Chloride	ND	0.500	mg/L							
LCS (EK61507-BS1)		•		Prepared &	Analyzed:	: 11/15/06				
Chloride	11.1	0.500	mg/L	10.0		111	80-120			
Calibration Check (EK61507-CCV1)				Prepared &	Analyzed:	: 11/15/06				
Chloride	10.7		mg/L	10.0		107	80-120			
Duplicate (EK61507-DUP1)	Sour	rce: 6K15004	-01	Prepared &	Analyzed:	: 11/15/06				
Chloride	232	5.00	mg/L		234			0.858	20	
Duplicate (EK61507-DUP2)	Sour	rce: 6K15006	-07	Prepared &	Analyzed	: 11/15/06				
Chloride	37.9	5.00	mg/L		43.7			14.2	20	
Matrix Spike (EK61507-MS1)	Sou	rce: 6K15004	-01	Prepared &	Analyzed:	: 11/15/06				
Chloride	345	5.00	mg/L	-100	234	111	80-120			
Matrix Spike (EK61507-MS2)	Sou	rce: 6K15006	-07	Prepared &	Analyzed:	: 11/15/06				
Chloride	142	5.00	mg/L	100	43.7	98.3	80-120			
Batch EK61611 - Filtration Preparation										
Blank (EK61611-BLK1)				Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EK61611-DUP1)	Sou	rce: 6K15001	-01	Prepared:	11/15/06 A	nalyzed: 11	1/16/06			
Total Dissolved Solids	14000	10.0	mg/L		13200			5.88	5	QR

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 5

Project:ABO- Apache LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK61611 - Filtration Preparation										
Duplicate (EK61611-DUP2)	Sou	гсе: 6К15005-	-03	Prepared: 1	1/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	586	10.0	mg/L		622			5.96	5	QR-03

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.
 Page 4 of 5

Rice Oper 122 W. Ta	•		Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope							
Hobbs NN	•									
		Notes and De	finitions							
QR-03	The RPD value for the sample dupli accepted based on LCS and/or LCSI		acceptance limits due to matrix interfer	ence. QC batch						
DET	Analyte DETECTED									
ND	Analyte NOT DETECTED at or above the	ne reporting limit								
NR	Not Reported									
iry	Sample results reported on a dry weight	basis								
RPD	Relative Percent Difference									
LCS	Laboratory Control Spike									
MS	Matrix Spike									
Dup	Duplicate									

Report Approved By:

Raland K Jutur Date:

11/22/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12800 West I-20 East Phone: 432-663-1800 Odessa, Texas 79765 Fax: 432-563-1713	Aanager: Kristin Farris Pope kpope@riceswd.com	y Name RICE Operating Company	y Address: 122 W. Taylor Street Project Loc: T19S R37E Sec1 G ~ Lea County New Mexico	e/Zip: Hobbs, New Mexico 88240	ne No: (505) 393-9174 DrPDES (505) 397-1471 Report Format: 🔟 Standard 🗌 TRRP 🗍 NPDES				עסהם (ד געפר אטריב) ד (ר) פרטאריב Other (Specify) סעים אזניי צניי צניי געפי	11/13/2006 9:40 1 X 1 GW 1 X X				ase email to : kpope@riceswd.com mfranks@riceswd.com rozanne@valornet.com Sample Containers.inact?	Received by Received by Date Time James upployment for 20:01	Ę
Environmental	Project Manager: Kris	Company Name RIC	Company Address: 122	City/State/Zip: Hob	Telephone No: (50	Sampler Signature: Roza	(lab use only)	ORDER #: /////////		O		·		Special Instructions: Please email to :	Betrarulish ert by Construction Betrarulish er by Construction Rozanne Johnson	Representation by: Active Construction of the

IJ

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

lient:	Live Op.
≀ate/ Time:	11/15/06 8:10
ab ID # :	6K15004
nitials:	CK

Sample Receipt Checklist

Client Initiale

				V	ment initiata
1	Temperature of container/ cooler?	Yes	No	0.5 °C]
2	Shipping container in good condition?	Xes	No		
3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
4	Custody Seals intact on sample bottles/ container?	Xes	No	Not Present	-
5	Chain of Custody present?	Yeş	No		
6	Sample instructions complete of Chain of Custody?	Yes	No		
7	Chain of Custody signed when relinquished/ received?	Yes	No		
8	Chain of Custody agrees with sample label(s)?	Yêş	No	ID written on Cont./ Lid	
9	Container label(s) legible and intact?	¥,es	No	Not Applicable	
:10	Sample matrix/ properties agree with Chain of Custody?	Yeş	No		-
:11	Containers supplied by ELOT?	Yes	No		
:12	Samples in proper container/ bottle?	Yes	No	See Below	
:13	Samples properly preserved?	Yes	No	See Below	
14	Sample bottles intact?	Yes	No		
:15	Preservations documented on Chain of Custody?	Yes	No		
:16	Containers documented on Chain of Custody?	Yes	No		
:17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
:18	All samples received within sufficient hold time?	Yes	No	See Below	
:19	Subcontract of sample(s)?	Yes	No	Not Applicable	
:20	VOC samples have zero headspace?	Yes	No	Not Applicable,	

Cooling process had begun shortly after sampling event

Analytical Report

Prepared for: Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO- Apache Leak Project Number: None Given Location: T19S R37E Sec. 1G- Lea County, NM

Lab Order Number: 6L07011

Report Date: 12/11/06

Project: ABO- Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6L07011-01	Water	12/04/06 08:05	12-07-2006 10:50

Page 1 of 4

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

I

i ann an

- 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 197

ľ

žąt.

- - -

. عبر تحديد

- **6** - 21 - 11

Project: ABO- Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6L07011-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	229	5.00	mg/L	10	EL60801	12/07/06	12/07/06	EPA 300.0	
Total Dissolved Solids	698	10.0		1	EL60803	12/07/06	12/08/06	EPA 160.1	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

1.1

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60801 - General Preparation (W	etChem)									
Blank (EL60801-BLK1)				Prepared &	Analyzed	12/08/06				
Chloride	ND	0.500	mg/L	· · ·						
LCS (EL60801-BS1)				Prepared &	Analyzed:	12/08/06				
Chloride	10.0	0.500	mg/L	10.0		100	80-120			
Calibration Check (EL60801-CCV1)				Prepared &	Analyzed:	12/08/06				
Chloride	10.4		mg/L	10.0		104	80-120			
Duplicate (ÉL60801-DUP1)	Sour	rce: 6L07005-	01	Prepared &	Analyzed	12/08/06				
Chloride	129	2.50	mg/L		130			0.772	20	
Matrix Spike (EL60801-MS1)	Sour	-ce: 6L07005-	01	Prepared &	Analyzed	12/08/06				
Chloride	189	2.50	mg/L	50.0	130	118	80-120			
Batch EL60803 - Filtration Preparation										
Blank (EL60803-BLK1)				Prepared: 1	2/07/06 A	nalyzed: 12	/08/06			
Fotal Dissolved Solids	ND	10.0	mg/L							
Duplicate (EL60803-DUP1)	Sou	rce: 6L07005-	01	Prepared: 1	2/07/06 A	nalyzed: 12	/08/06			
Fotal Dissolved Solids	266	10.0	nıg/L		246			7.81	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

122 W. T	erating Co. Faylor M, 88240	Project Number:	ABO- Apache Leak None Given Kristin Farris-Pope	Fax: (505) 397-1471
		Notes and De	efinitions	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reporting limit			
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike		14	
Dup	Duplicate			•

Report Approved By:

.

Raland K Juli

12/11/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

		- 91 -						ų	A			W	A		9		R	H		T	R				
Environmental	nenta		-	Texas							CHA	IN OF	cusı	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	RECOR	NY CI	DAN	ar ysk	REQ	UEST					
									1260 Odes	12600 West I-20 East Odessa, Texas 79765	st I-20 exas 7	l East 79765						â. Ľ	Phone: 432-563-1800 Fax: 432-563-1713	432-563-1800 432-563-1713	53-18 53-17	8 E			
Project Manager:		Kristin Farris Pope	ope	직	ope(kpope@riceswd.com	u								Proje	Project Name:	i j	ABO.	Apa(Apache Leak	ak				
Company Name	•	RICE Operating Company	g Con	upan										1	L.	Project #:	 ¥≟							Í	
Company Address:		122 W. Taylor Street	Stree											,	Pro	ject Le		Project Loc: 1195 R37E Sec1 G	E Sec	16~	ea C	ounty	~ Lea County New Mexico	Mexic	
City/State/Zip:		Hobbs, New Mexico 88240	exico	8824	Ð		0									PO #:	. #								
Telephone No:		(505) 393-9174	**		Ì	J	Fax No:	9	(505) 3	397-147	1471			- Re	Report Format:	ormat:		X Standard	ard		TRRP	đ.		NPDES	នួ
Sampler Signature:		Rozanne Johnson (505)631-9310	05)631-{	3310		VW Y	e-mail:	Q	zanr	<u>16</u>	valor	rozanne@valornet.com	<u>Lio</u>		l										I
				ļ				ļ											Analyze	e For:					
~	LANA 1.				H								i		<u></u>			TOTAL		+				Pilvenne Pilvenne	
ORDER #:	201			۱ ۱ 						Freservi	ation & # o	Preservation & # of Containers	<u> </u>	Matrix	891 2					09				162 1	
(Vino esu dai) # 8AJ	FIELD CODE	CODE	······································	ritqəQ gninnigə8	epth	balqms2 atsD	belqms2 emiT	Field Filtered Total #. of Containers	-UNH 80)	HCI HNO ^J	HOEN *OS ² H	^{COZS²PN HOPN}	None (1) 1 Liter HDPE Other (Specify)	Dianting Varies Second Parameter Grand Parameter Second Solid	nadyD yiloaqg ≘aldeo 9.4acM≥9.M	TPH: TX 1005 TX 1006	Catlons (Ca, Mg, Na, K) Anions (Cl, SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Semivolatiles BTEX 80218/5030 or BTEX 826	גכו	и.с.я.м. Total Dissolved Solids		the composition TAT H2118	8), Ki (electrochedule), Ki (Ruchardora), Ki (Ruchard Ruchard) TAT Dirabination
Monitor Well #1	(ell #1					12/4/2006	8:05	-	×				-	0 M	۷ ا							×	X		×
a																									
																						_			
					_																			_	
				-									_					_			_			-	
													_			_	-								
															-	4						-+			
			-		-								-+-		-+-	+				_		-+-			
													_ _			-			1			+-	1		1
Special Instructions:	ns: Please email to	o: kpope@riceswd.com	swd.co	Ε		mfranks@riceswd.com	d.com	roz	anne	rozanne@valornet.com	ornet.	moo.	-	4		1	Laboratory Sample Cor	Laboratory Comments: Sample Containers Intact?	Comments tainers Intac	nts: ntact?	1 🛞				
Elemented by:	N	Date		Time		Received by:					ĺ		þ	Date		Time	Custoc	Labels on container(s) Custody seals on container(s)	tainer(s) s) ntaine	(\$)		Æ	ZŢ	
Relinquished by:		Date		Time		Received by:							ſ	Date	<u>"</u>	Time	Custoc	Custody seals on cooler(s)	on co Delive	oler(s) red			×.		7
		-		ļ										1		1	ភ្នំភ្ន	by Counter?	D)/Client Rep.	n'	2HL	Ű		~	Ĭ,
Relinquished by:	 {	Date	0	Time		Received by ELOT:	20)). Tr	X	r.				12/17	ale 1 D(0	11 () ()	SC .	Temperal Mot	Temperature Upon Receipt: Mort มีกระกา	e Upon F	teceip		1	×,	N,	
					4			ľ				1	ł					1				ł	l.		

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client	Rive Dp.	_
Date/ Time:	12/1/04 10:50	_
Lab ID #	<u>ulonon</u>	-
Initials:	CK	_

Sample Receipt Checklist

h				Client	Initials
#1	Temperature of container/ cooler?	Yes	No	-2.0 °C	
#2	Shipping container in good condition?	र्रल्ड	No		
#3	Custody Seals intact on shipping container/ cooler?	Fes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	(es	No	Not Present	
#5	Chain of Custody present?	Xes	No		
#6	Sample instructions complete of Chain of Custody?	Ves	No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No.		
#8	Chain of Custody agrees with sample label(s)?	Ykes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Es	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Xes	No		
##11	Containers supplied by ELOT?	ves,	No		
#12	Samples in proper container/ bottle?	Yes	, No	See Below	
#13	Samples properly preserved?	Yes	No	See Below	
#14 #15	Sample bottles intact?	Fes	No		
#15	Preservations documented on Chain of Custody?	Ves	No		
#16	Containers documented on Chain of Custody?	Yes	No		
₩17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#17 #18	All samples received within sufficient hold time?	109	No	See Below	
7 \$19	Subcontract of sample(s)?	Yes	No	Not Applicable	
20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

		Contacted by:	Date/ Time:	
egarding:			· · · · · · · · · · · · · · · · · · ·	
Corrective Action Taker	1.			
neck all that Apply:		See attached e-mail/ fax Client understands and would like to pro	need with analysis	· · · · · · · ·
G h		Cooling process had begun shortly after		

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

January 24, 2008

Wayne Price Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

RE: 2007 Annual Ground Water Monitoring Report G-1 Site (Abo Apache LA), Sec 01, T17S, R36E, Unit "G" NMOCD Case #: 1R0415

Dear Mr. Wayne Price:

R.T. Hicks Consultants, Ltd is pleased to submit the 2007 Annual Ground Water Monitoring Report for the G-1 Site (Abo Apache LA) site located in the Abo Salt Water Disposal System (SWD). This report consists of the following sections:

- 1. A table summarizing all laboratory results, depth to ground water and other pertinent data associated with ground water sampling at the site, including this past year.
- 2. Graphs showing chemical concentration over time for chloride, TDS, and sulfate.
- 3. Laboratory data sheets associated with the routine sampling for 2007.

A Final Closure Report was submitted to NMOCD on April 28, 2006. NMOCD granted conditional approval on May 25, 2006. Revegetation and soil moisture monitoring is ongoing. We plan to submit a Final Closure Report in the spring of 2008.

Thank you for your consideration of this annual summary information. The attached CD contains an electronic copy of this report. If you have any questions, please contact us at 505-266-5004, or Kristin Farris Pope at ROC, 505-393-9174.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Hobbs NMOCD office; Rice Operating Company

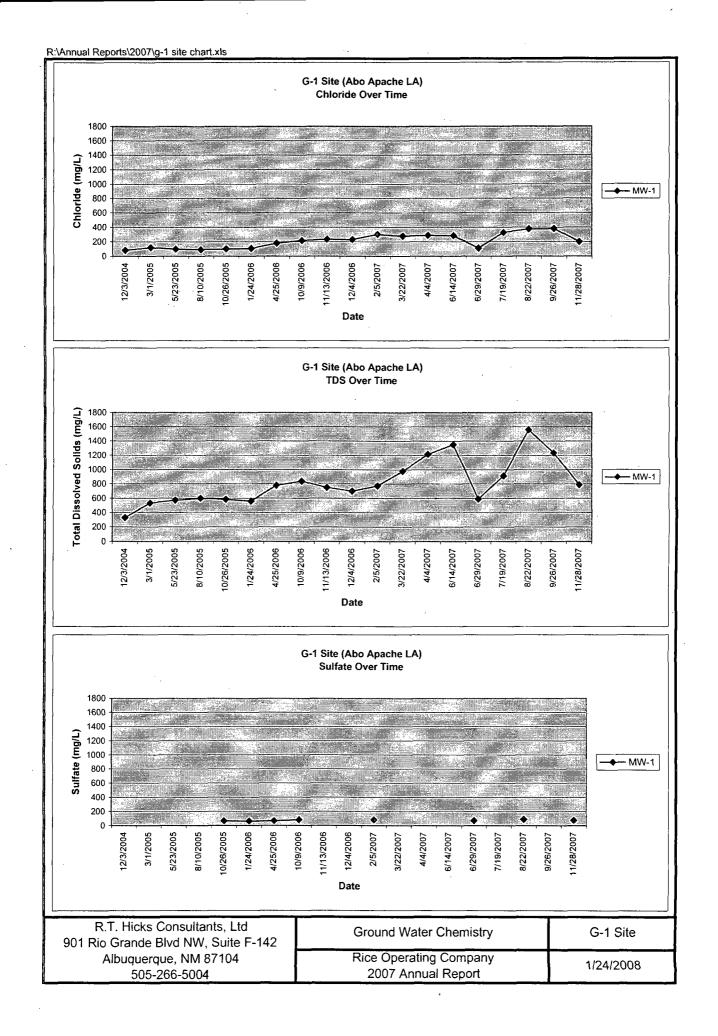
Incl Diff Chunik media Submeter Desc Diff Chunik media Submeter Desc Diff Chunik media Submeter Desc Chunik media Chunik media	Site (Abt	G-1 Site (Abo Apache LA)	(Y '		Table 1	: chemis	Lable 1: chemistry over time	ıe			
120206 610 630 601 601 601 1/1705 610 730 730 601 601 601 601 1/1705 820 924 7 923 601 601 601 601 1/25205 820 915 7 920 601 601 601 601 1/25205 820 910 910 910 910 910 601 601 1/25205 820 910 910 910 910 910 601 601 1/25205 810 910 910 910 910 910 910 1/25206 910 910 910 910 910 910 910 1/25207 910 910 910 910 910 910 910 1/25207 910 910 910 910 910 910 910 1/25201 910 910 910	Vame	Date	(II) ALLA	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)		Toluene (mg/L)	EthylBenzene (mg/L)	Total Xylenes (mg/L)	Comments
yiddeuddeddfddfddfddfyiddegdgdgdgdfgdfgdfgdfyiddegdggdgdgdfgdfgdfgdfyiddegdggdggdggdggdfgdfgdfyiddegdggdggdggdggdggdfgdfyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdggdggdggdggdggdggdgyiddegdg <td< th=""><th>5</th><th>12/3/2004</th><th>92.10</th><th>80.5</th><th></th><th>329</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th></th></td<>	5	12/3/2004	92.10	80.5		329	<0.001	<0.001	<0.001	<0.001	
32203023004040040040040040040910205240015010010010010010102040249010010010010010010010102040249190100100100100100101020402491901001001001001001010204024924024024024024024024024024010204024924024024024024024024024024010204024024024024024024024024024010204024024024024024024024024024010204024024024024024024024024010204024024024024024024024010204024024024024024024024010204024024024024024024024010204024024024024024024024010204024024024024024024024010204024024024024024024024010204024024024024024024024010204	11	3/1/2005	92.10	120		532	<0.001	<0,001	<0.001	<0.001	
H10205 200 01 010 010 010 010 1020305 280 99 91 91 91 91 901 901 901 1242050 819 191 619 910 910 910 910 910 1242050 819 191 610 710 910 910 910 910 1742050 819 210 819 72 910 910 910 910 1742050 819 210 810 72 910 910 910 910 1742050 819 210 810 72 910 910 910 910 1742050 810 210 72 72 72 72 72 72 1742050 810 72 910 910 910 910 910 910 1742050 810 72 72 72 72 72 72	1-7	5/23/2005	92.30	98.4		573	<0.001	<0.001	<0.001	<0.001	
10580052866106106106106106106101342006843101646464646464641422088451064646464646464143208845242464646464646411120068452424646464646464111200484324242464646464641112048422424246464646464111204842242424246464646411120484224242424242424242424111204843842424242424242424241112048432424242424242424242411120484384242424242424242411120484384424242424242424111204843844242424242424111204843844242424242424111204844844242424242424<	۷-1	8/10/2005	92.60	91.5		603	<0.001	<0.001	<0.001	<0.001	
14.4.7066.3(1)6.6(30)(30)(30)(30)4.259.5(1)6.6787007007007004.259.5(1)6.67870070070070070011.139.42.42.4727270070070070011.139.42.42.4727270070070070011.139.42.42.472727007007007002.40009.62.472727007007007002.220015.12.57007007007007007004.42005.12.6707107007007007004.42005.12.67007007007007007004.42005.12.67007007007007004.42005.12.67007007007007004.42005.12.67007007007007004.42005.17.17.17.17.17.17.14.42005.17.17.17.17.17.14.42005.17.17.17.17.17.14.42005.17.17.17.17.17.14.42005.17.17.17.17.17.1 </td <td>۲-1 ۲-۱</td> <td>10/26/2005</td> <td>92.88</td> <td>6.96</td> <td>69.7</td> <td>584</td> <td><0.001</td> <td>¢0.001</td> <td><0.001</td> <td><0.001</td> <td>Clear</td>	۲-1 ۲-۱	10/26/2005	92.88	6.96	69.7	584	<0.001	¢0.001	<0.001	<0.001	Clear
455706 515 11 615 780 610 </td <td>N-1</td> <td>1/24/2006</td> <td>93.38</td> <td>107</td> <td>65</td> <td>560</td> <td>¢0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td></td>	N-1	1/24/2006	93.38	107	65	560	¢0.001	<0.001	<0.001	<0.001	
961 219 803 600 600 600 600 943 24 XX 72 XX XX XX XX 943 24 XX 72 XX XX XX XX 964 229 XX 690 XX XX XX XX 964 219 X1 610 610 701 701 701 964 219 XX 610 701 701 701 701 964 210 XX 130 XX XX XX XX 964 12 74 58 701 701 701 964 210 XX 140 701 701 701 964 210 XX 140 701 701 701 964 210 210 201 201 701 701 701 964 210 210 210 <	MW-1	4/25/2008	93.55	181	66.8	780	<0.001	<0.001	<0.001	<0.001	
11.1.1.200661.82.4XXXXXXXXXX 12.47206 61.02.9XX61.0XXXXXXXX 12.47207 61.02.9XX61.07.20.0140.0140.01 2.52207 61.02.9X7.20.017.0XXXX 2.52207 61.02.9XX17.27.1 1.7 7.1 1.7 2.52207 61.02.9XX12.9XXXXXXXX 4.4207 61.22.9XX12.9XXXXXXXX 4.4207 61.22.9XX12.9XXXXXXXX 4.4207 61.22.9XX12.9XXXXXXXX 4.4207 61.22.9XX12.9XXXXXXXX 4.4207 61.22.9XX12.9XXXXXXXX 1.4207 61.92.9YXYXYXYXYXYX 1.7207 61.92.92.92.02.002.002.002.002.00 1.7207 61.92.9YXYXYXYXYXYXYX 1.7207 61.92.97.07.07.07.07.07.0 1.7207 61.92.97.17.17.1YXYXYXYX 1.7207 61.92.97.17.1	N-1	10/9/2006	94.61	219	80.9	836	<0.001	<0.001	<0.001	<0.001	Clear
1244206 566 224 XX XX XX XX 255207 651 301 631 772 6001 6001 6001 6001 322207 578 278 27 27 2 2001 6001 6001 322207 510 278 XX 179 7 2 2 44207 5510 280 XX 120 130 XX XX XX 44207 551 285 XX 130 XX XX XX XX 44207 551 255 XX 1350 XX XX XX XX 44207 551 112 74 550 XX XX XX XX 144207 551 131 135 XX XX XX XX XX 119207 554 131 560 2001 2001 2001 2001 2001 2001 2	N-1	11/13/2006	94.83	234	XXX	752	XXX	XXX	XXX	XXX	Clear with no odor
J42001 613 301 81 772 6001 6001 6001 6001 J222001 278 7 978 7 7 7 7 7 J422001 810 209 XX 1210 1210 XX XX XX J412007 810 285 XX 1350 XX XX XX J412007 812 285 XX 1350 XX XX XX J112007 951 112 74 586 -001 -001 -001 -001 J112007 954 315 YX XX XX XX XX J11207 954 954 911 156 005 -002 -001 -001 J120207 954 316 155 XX XX XX XX J120207 954 956 701 702 -002 -006 J120207 958 959	N-1	12/4/2008	95.08	229	XXX	698	XXX	XXX	XXX	XXX	Clear / No Odor
JZZZ007 Z78 Y78 Y77	N-1	2/5/2007	95.12	301	83.1	772	<0.001	<0.001	<0.001	<0.001	Clear/
44.2007 55.10 290 XX 1210 XX XX XX XX 61.412.007 55.12 285 XX 1350 XX XX XX XX 62.912.007 55.12 112 74.4 586 <0.01	V-1	3/22/2007		278		978					
014207 051 255 XX 150 XX XXX XXX XXX	V-1	4/4/2007	95.10	290	XXX	1210	XXX	XXX	XXX	XXX	clear with no odor
6/29/2007 95.12 112 74 588 <001 <001 <001 <001 7/19/2007 95.40 328 XXX 95 XXX XX XXX 8/20/2007 95.49 376 97.1 1559 0.005 <0.02	۲-1	6/14/2007	95.12	285	XXX	1350	XXX	XXX	XXX		clear
719/2007 95.40 328 XXC XXC XXC XXC XXC 81/22/2007 95.46 376 91.1 1556 0.006 <0.02	۷-1	6/29/2007	95.12	112	74.4	588	<0.001	<0.001	<0.001	<0.001	Clear No Odor
Bi222007 95.46 376 91.1 156 0.005 <0.02 <0.06 <0.06 926/2007 65.61 380 XXX 132 XXX XXX XXX XXX 11/28/2007 65.68 200 76.6 791 <0.001	N-1	7/19/2007	95.40	328	XXX	912	XXX	XXX	XXX	XXX	Clear Slight Odor
9/26/2007 85.61 380 XXX 1232 XXX XXX XXX XXX 11/28/2007 85.88 200 76.6 791 <0.001 <0.001 <0.001 <0.003	v-1	8/22/2007	95.46	376	91.1	1556	0.006	<0.002	<0.002	<0.008	Clear No Odor
11/28/2007 95.88 200 76.6 791 <0.001 <0.001 <0.001 <0.003	-1	9/26/2007	95.61	380	XXX	1232	XXX	XXX	XXX	XXX	Clear with Slight Odor
	ы	11/28/2007	95,88	200	76.6	167	<0.001	<0.001	<0.001	<0,003	Clear Slight odor

. -

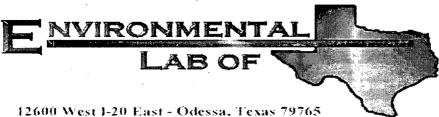
Table 1: chemistry over time

9

R


B

B


Ì

Thursday, January 24, 2008

X:\Base_Maps\R0C\R0C_GD.mdb

H

A Xenco Laboratories Company

1 H H

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO Apache Leak Project Number: None Given Location: T19S R37E Sec1 G ~ Lea County New Mexico

Lab Order Number: 7D05010

Report Date: 04/11/07

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: ABO Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well # 1	7D05010-01	Water	04/04/07 19:20	04-05-2007 13:20

Page 1 of 4

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Anałyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well # 1 (7D05010-01) Water						. <u>-</u>			
Chloride	290	5.00	mg/L	10	ED71003	04/10/07	04/10/07	EPA 300.0	
Total Dissolved Solids	1210	10.0		1	ED71008	04/05/07	04/06/07	EPA 160.1	

Environmental Lab of Texas A Xenco Laboratories Company

2.6.4

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED71003 - General Preparation	(WetChem)										
Blank (ED71003-BLK1)				Prepared	&	Analyzed:	04/10/07				
Chloride	ND	0.500	mg/L			-					
LCS (ED71003-BS1)				Prepared	&	Analyzed:	04/10/07				
Chloride	12.0	0.500	mg/L	10.0			120	80-120			
Calibration Check (ED71003-CCV1)				Prepared	&	Analyzed:	04/10/0 7				
Chloride	9.00		mg/L	10.0			90.0	80-120	•		
Duplicate (ED71003-DUP1)	Sour	ce: 7D0500	9-01	Prepared	&	Analyzed:	04/10/07				
Chloride	1590	25.0	mg/L			1940			19.8	20	
Duplicate (ED71003-DUP2)	Sour	ce: 7D0501	4-05	Prepared	&	Analyzed:	04/10/07			-	
Chloride	1390 .	50.0	mg/L			1410			1.43	20	
Matrix Spike (ED71003-MS1)	Sour	ce: 7D0500	9-01	Prepared	&	Analyzed:	04/10/07				
Chloride	2080	25.0	mg/L	500		1940	28.0	80-120			
Matrix Spike (ED71003-MS2)	Sour	ce: 7D0501	4-05	Prepared	&	Analyzed:	04/10/07				
Chloride	2480	50,0	mg/L	1000		1410	107	80-120			
Batch ED71008 - General Preparatior	(WetChem)						-				
Blank (ED71008-BLK1)				Prepared	04	/05/07 A	nalyzed:	04/06/07			
Total Dissolved Solids	ND	10.0	mg/L								
Duplicate (ED71008-DUP1)	Sour	ce: 7D0500	9-01	Prepared:	04	/05/07 A	nalyzed:	04/06/07			
Total Dissolved Solids	3700	10.0	mg/L	· · ·		3070			18.6	20	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Notes and Definitions

DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

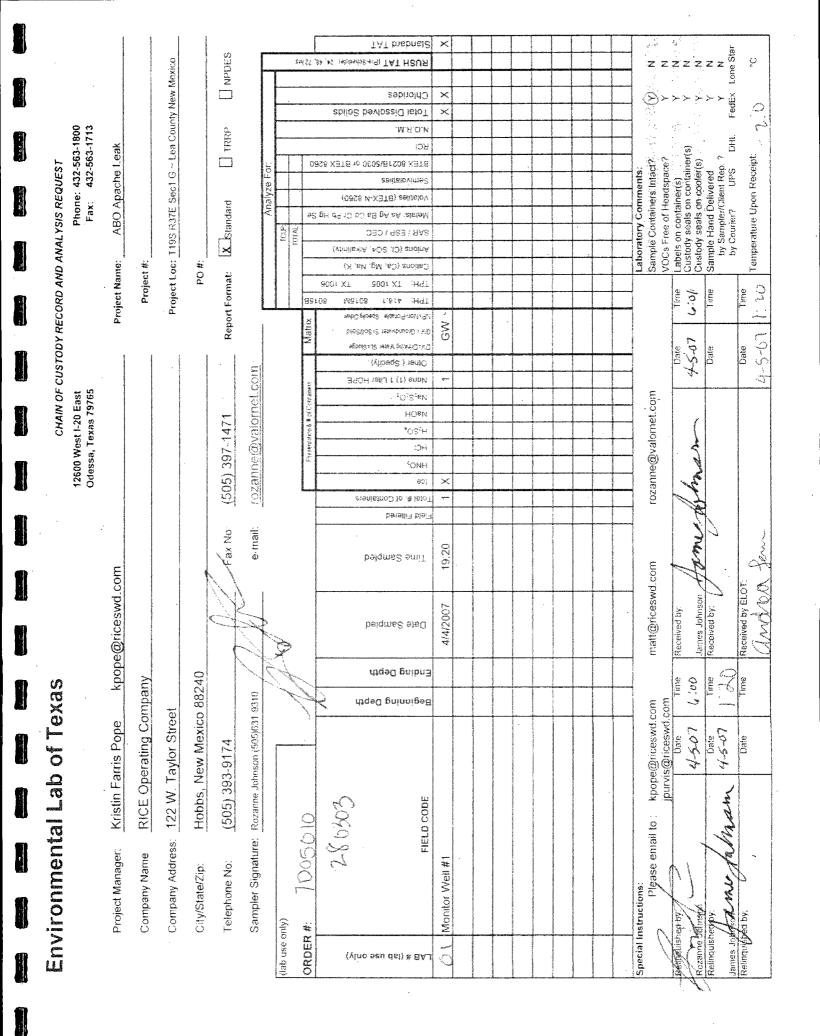
Report Approved By:

s: _____

Date: 4/11/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

Environmental Lab of Texas

lient:	Fire
)ate/ Time:	4-5-07 1:20
ab 1D # 1	7005010
hitials:	GL

Variance/ Corrective Action Report- Sample Log-In

Sample Receipt Checklist

				Client ir	nitials
1	Temperature of container/scooler?	Tes	No	2 0 ° C	
n [:] 2	Shipping container in good condition?	Yes	No		
t3	Custody Seals intact on shipping container/ cooler?	(Tes)	No	Not Present	
14	Custody Seals intact on sample bottles/ container?	(Tes)	No	Not Present	
. 5	Chain of Custody present?	Yes	No		1
-6	Sample instructions complete of Chain of Custody?	Xes)	No		
:7	Chain of Custody signed when relinquished/ received?	Yes	No		
:8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
9	Container label(s) legible and intact?	Tes	No	Not Applicable	
10	Sample matrix/ properties agree with Chain of Custody?	cres	No		
111	Containers supplied by ELOT?	Yes	No		
p :12	Samples in proper container/ bottle?	(Yes ·	No	See Below	
£13	Samples properly preserved?	(Yes)	No	See Below	
14	Sample bottles intact?	(Yes)	No		
n ^{£15}	Preservations documented on Chain of Custody?	YES	No	•	
¢16	Containers documented on Chain of Custody?	(Yes)	No		
U #17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
\$18	All samples received within sufficient hold time?	Yes	No	See Belew	
19	Subcontract of sample(s)?	Yes	No	Not Applicable	
:20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:	Contacted by:	Date/ Time:	
Regarding:			
Dorrective Action Taken:			,
<u> </u>			

Check all that Apply:

 \square

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

6 1.7 m

A Xenco Laboratories Company

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO Apache Leak

Project Number: None Given

Location: T19S R36E Sec1 G ~ Lea County New Mexico.

Lab Order Number: 7F06016

Report Date: 06/26/07

and a second

10-2-5

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well # 1	7F06016-01	Water	05/31/07 07:30	06-06-2007 12:51
· · · · · · · · · · · · · · · · · · ·			-	

Page 1 of 10

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well # 1 (7F06016-01) Wate	er				-				
Benzene	0.00237	0.00100	mg/L	1	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	. ND	0.00100	н		"	**	"	**	•
Ethylbenzene	ND	0.00100	11	"	"	"	"		
Xylene (p/m)	ND	0.00100		4		"	n		
Xylene (o)	ND	0.00100		"	"	"	"	u .	
Surrogate: a.a.a-Trifluorotoluene	•	113 %	80-12	0	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		98.6 %	80-12	0'	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well # 1 (7F06016-01) Wate	er								
Total Alkalinity	224	2.00	mg/L	1	EF71309	06/13/07	06/13/07	EPA 310.1M	
Chloride	334	5.00	"	10	EF71204	06/12/07	06/12/07	EPA 300.0	
Total Dissolved Solids	1210	10.0	"	1	EF71110	06/06/07	06/11/07	EPA 160.1	
Sulfate	83.8	5.00	• • • • •	10	EF71204	06/12/07	06/12/07	EPA 300.0	

Environmental Lab of Texas

A Xenco Laboratories Company

ļ

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 10

Project:ABOApacheLeakProjectNumber:NoneGivenProjectManager:Kristin.Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well # 1 (7F06016-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	179	4.05	mg/L	50	EF70807	06/08/07	06/08/07	EPA 6010B	
Magnesium	24.6	0.360	"	10			. *	*	
Potassium	2.97	0.600	•			**	"	**	
Sodium	60.8	2.15	"	50	"	*	**		

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 10

1

2232T

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF70802 - EPA 5030C (GC)	-			•						
Blank (EF70802-BLK1)				Prepared	& Analyze	ed: 06/08/01	7			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	۳							
Xylene (o)	ND	0.00100	"							
Surrogate: a.a.a-Trifluorotoluene	54.1		ug/l	50.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	45.4		"	50.0		90.8	80-120			
LCS (EF70802-BS1)				Prepared	& Analyze	ed: 06/08/03	7			
Benzene	0.0548	0,00100	mg/L	0.0500		110	80-120			
Tolucne	0.0556	0.00100	"	0.0500		111	80-120			
Ethylbenzene	0.0543	0.00100	*	0.0500		109	80-120	·		
Xylene (p/m)	0.101	0.00100	"	0.100		101	80-120			
Xylene (o)	0.0569	0.00100	**	0.0500		114	80-120			
Surrogate: a,a,a-Trifluorotoluene	54.6	· ·	ug/l	50.0		109	80-120			
Surrogate: 4-Bromofluorobenzene	51.7		"	. 50.0		103	80-120			
Calibration Check (EF70802-CCV1)				Prepared:	06/08/07	Analyzed:	06/09/07		• .	
Benzene	0.0576		mg/L	0.0500		115	80-120			
Toluene	0.0567		"	0.0500		113	80-120			
Ethylbenzene	0.0537		"	0.0500		107	80-120			
Xylene (p/m)	0.0999		*	0.100		99.9	80-120			
Xylene (0)	0.0573		-	0.0500		115	80-120			
Surrogate: a,a,a-Trifluorotoluene	57.9		ng/l	50.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	53.0		"	50.0		106	80-120			
Matrix Spike (EF70802-MS1)	So	urce: 7F06019	-03	Prepared:	06/08/07	Analyzed:	06/09/07			
Benzene	0.0598	0.00100	mg/L	0.0500	ND ·	120	80-120			
Toluene	0.0593	0.00100	"	0.0500	ND	119	80-120			
Ethylbenzene	0.0584	0.00100		0.0500	ND	117	80-120			
Xylene (p/m)	0.107	0.00100		0.100	ND	107	80-120			
Xylene (o)	0.0614	0.00100	"	0.0500	ND	123	80-120			
Surrogate: a.a.a-Trifluorotoluene	58.4		ug/l	50.0		117	80-120			
Surrogate: 4-Bromofluorobenzene	56.2		. "	50.0		112	80-120			

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

20 20

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF70802 - EPA 5030C (GC)			•							
Matrix Spike Dup (EF70802-MSD1)	Source:	7F06019	-03	Prepared:	06/08/07	Analyzed:	06/09/07			
Benzene	0.0565	0.00100	mg/L	0.0500	ND	113	80-120	6.01	20	
Toluene	0.0566	0.00100	*	0.0500	ND	113	80-120	5.17	20	
Ethylbenzene	0.0556	0.00100	"	0,0500	ND	111	80-120	5.26	20	

Xylene (p/m)	0.102	0.00100		0.100	ND	102	80-120	4,78
Xylene (0)	0.0584	0.00100		0.0500	ND	117	80-120	5.00
Surrogate: a.a.a-Trifluorotoluene	 58.3		ug/l	50.0		117	80-120	
Surrogate: 4-Bromofluorohenzene	54.2		"	50.0		108	80-120	

· · ·

11 A 11

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Hobbs NM, 88240		Project Ma		ristin Farris-	rope					
Gene	ral Chemistry Para		•			Methods	- Quali	ty Con	itrol	
	ŀ	Snvironm	iental	Lab of	Texas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF71110 - General Pre	paration (WetChem)									
Blank (EF71110-BLK1)				Prepared:	06/07/07	Analyzed:	06/11/07			
Fotal Dissolved Solids	ND	10.0	mg/L							
Duplicate .(EF71110-DUP1)	Sourc	e: 7F06016	-01	Prepared:	06/07/07	Analyzed:	06/11/07			
Fotal Dissolved Solids	1270	10.0	mg/L		1210			4.84	20	
Duplicate (EF71110-DUP2)	Sourc	e: 7F06019	-03	Prepared:	06/07/07	Analyzed:	06/11/07			
Fotal Dissolved Solids	7020	10.0	mg/L		6900		· · ·	1.72	20	
Batch EF71204 - General Pre	paration (WetChem)						•			
Blank (EF71204-BLK1)				Prepared	& Analyz	ed: 06/12/07	1		,	
Sulfate	ND	0.500	mg/L	2				- ·		
Chloride	ND	0.500	**							
LCS (EF71204-BS1)			¢	Prepared	& Analyz	ed: 06/12/07	,			,
Sulfate	10.0	0.500	mg/L	10.0		100	80-120			
Chloride	10.8	0.500	"	10.0		108	80-120			
Calibration Check (EF71204-CCV)	l)			Prepared	& Anałyz	ed: 06/12/07	t .			
Sulfate	10.0		mg/L	10.0		100	80-120			
Chloride	10.8		"	10.0	,	108	80-120			
Duplicate (EF71204-DUP1)	Sourc	e: 7F06020	-03	Prepared	& Analyz	ed: 06/12/07				
Sulfate	4550	250	mg/L		4670			2.60	20	
Chloride	17500	250			18100			3.37	20	
Matrix Spike (EF71204-MS1)	Sourc	e: 7F06020	-03	Prepared	& Analyz	ed: 06/12/07				
Chloride	21100	250	mg/L	5000	18100	60.0	80-120			QM
Sulfate	- 7770									

Environmental Lab of Texas

A Xenco Laboratories Company

F.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF71309 - General Preparation	n (WetChem)										
Blank (EF71309-BLK1)				Prepared	&	Analyzed:	06/13/07				
Fotal Alkalinity	ND	2.00	mg/L								
Carbonate Alkalinity	ND	0.100	"								
Bicarbonate Alkalinity	ND	2.00									
Hydroxide Alkalinity	ND	0.100	"								
LCS (EF71309-BS1)				Prepared	&	Analyzed:	06/13/07				
Bicarbonate Alkalinity	174	2.00	mg/L	200			87.0	85-115			
Duplicate (EF71309-DUP1)	Sour	ce: 7F06017	-02	Prepared	&	Analyzed:	06/13/07				
Fotal Alkalinity	348	2.00	mg/L			348			0.00	20	
Reference (EF71309-SRM1)				Prepared	&	Analyzed:	06/13/07				
Fotal Alkalinity	250	•	mg/L	250		<u></u>	100	90-110			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: ABO Apache Leak Project Number: None Given

Project Manager Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		
		Reporting		Spike	Source		%REC	0.00	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF70807 - 6010B/No Digestion										
Blank . (EF70807-BLK1)				Prepared	& Analyzed	I: 06/08/07				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	*							
Potassium	ND	0.0600	**						,	
Sodium	ND	0.0430	"							
Calibration Check (EF70807-CCV1)				Prepared	& Analyzed	I: 06/08/07				
Calcium	1.78		mg/L	2.00		89.0	85-115			
Magnesium	1.83		w	2.00		91.5	85-115			
Potassium	2.28		*	2.00		114	85-115			
Sodium	1.82		"	2.00		91.0	85-115			
Duplicate (EF70807-DUP1)	Sourc	e: 7F05011	-03	Prepared	& Analyzed	ł: 06/08/07				
Calcium	139	4.05	mg/L		139			0.00	20	
Magnesium	29.5	0.360	*		29.8			1.01	20	
Potassium	6.37	0.600			6.57			3.09	20	
Sodium	121	2.15	•		124			2.45	20	

Environmental Lab of Texas

2. - Jan 1.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 10

122 W. T	vrating Co.Project: ABO Apache LeakFax: (505) 397TaylorProject Number: None GivenM, 88240Project Manager: Kristin Farris-Pope	7-1471
	Notes and Definitions	
QM-10	LCS/LCSD were analyzed in place of MS/MSD.	
MI	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS)."	
DET	Analyze DETECTED	
ND	Analyte NOT DETECTED at or above the reporting limit	
NR	Not Reported	
dry	Sample results reported on a dry weight basis	
RPD	Relative Percent Difference	
LCS	Laboratory Control Spike	
MS	Matrix Spike	
Dup	Duplicate	

Report Approved By:

Brond Burrow

ceport Approved by: _

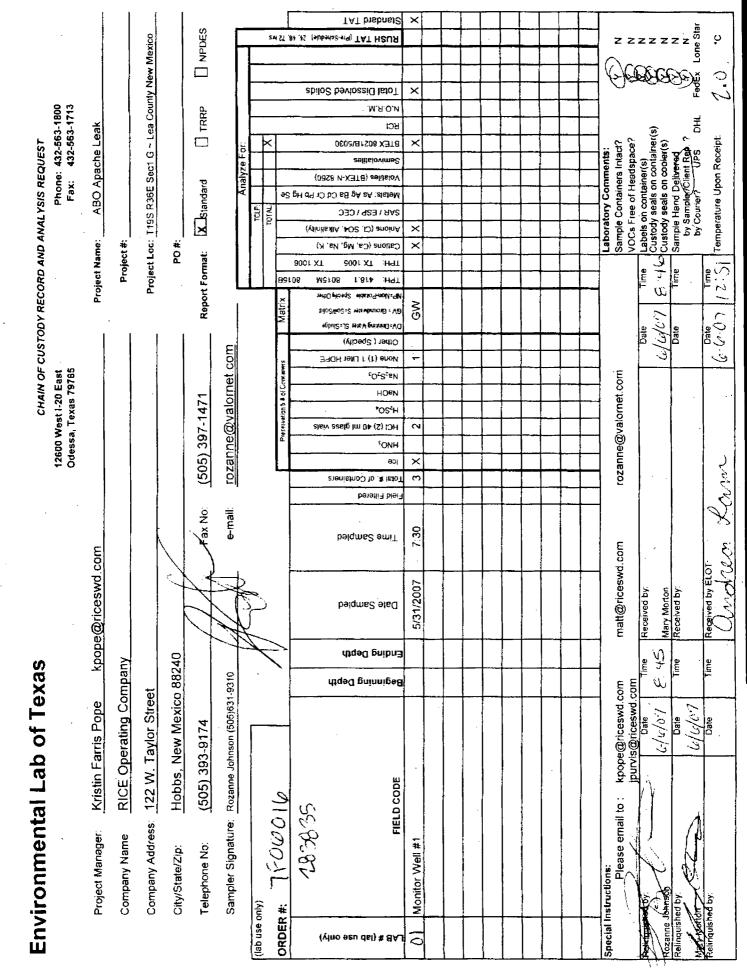
Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

6/26/2007

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas


A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Date:

H

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Rice	
Date/ Time:	6.6.07	12:51
Lab ID # :	7F06016	
Initials:	al	·

Sample Receipt Checklist

				Client Initia
#1	Temperature of container/ cooler?	Yes	No	20°C
#2	Shipping container in good condition?	Ves	No	
#3	Custody Seals intact on shipping container/ cooler?	(Yes	No	Not Present
# 4	Custody Seals intact on sample bottles/ container?	Kes	No	Not Present
#5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	res	No	
# 7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	-Chain of Custody agrees with sample label(s)?	Nes_	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	(es)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(Xes)	No	
#11	Containers supplied by ELOT?	Ves	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	Yes'	No	See Below
#14	Sample bottles intact?	Yes)	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes'	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Tes	No	Not Applicable

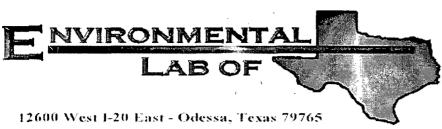
Variance Documentation

Check all that Apply:

 \Box

See attached e-mail/ fax

Client understands and would like to proceed with analysis


Cooling process had begun shortly after sampling event

hook all the

22.87

5 Y. 24

時代の

ł

l

A Xenco Laboratories Company

Analytical Report

Prepared for: Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: ABO Apache Leak Project Number: None Given Location: T19S R37E Sec1 G ~ Lea County New Mexico

Lab Order Number: 7F14021

Report Date: 06/20/07

Rice Operating Co. 122 W. Taylor

I

Hobbs NM, 88240

Project: ABO Apache Leak Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well # 1	7F14021-01	Water	06/14/07 07:10	06-14-2007 13:45
			-	۰.
	r			

Page 1 of 4

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co. 122 W. Taylor

100

Hobbs NM, 88240

 Project:
 ABO
 Apache
 Leak

 Project
 Number:
 None
 Given

 Project
 Manager:
 Kristin
 Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well # 1 (7F14021-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	285	5.00	mg/L	- 10	EF71803	06/18/07	06/20/07	EPA 300.0	
Total Dissolved Solids	1350	10.0		`1	EF72004	06/18/07	06/20/07	EPA 160.1	

Environmental Lab of Texas

ł

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

•		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF71803 - General Preparatio	on (WetChem)	·								
Blank (EF71803-BLK1)				Prepared:	06/18/07	Analyzed:	06/20/07			
Chloride	ND	0.500	mg/L							
LCS (EF71803-BS1)				Prepared:	06/18/07	Analyzed:	06/20/07			
Chloride	9.87	0.500	.mg/L	10.0		98.7	80-120			
Calibration Check (EF71803-CCV1)				Prepared:	06/18/07	Analyzed:	06/20/07			
Chloride	8.94		mg/L	10.0		89.4	80-120			
Duplicate (EF71803-DUP1)	Source	e: 7F14003	-06	Prepared:	06/18/07	Analyzed:	06/20/07			
Chloride	8400	100	mg/L		6670		-	23.0	20	R
Matrix Spike (EF71803-MS1)	Source	e: 7F14003	-06	Prepared:	06/18/07	Analyzed:	06/20/07			
Chloride	9860	100	mg/L	2000	6670	160	80-120			QM-I
Batch EF72004 - General Preparatio	on (WetChem)	-						-		
Blank (EF72004-BLK1)				Prepared:	06/18/07	Analyzed:	06/20/07			
Total Dissolved Solids	ND	10.0	mg/L			,				
Duplicate (EF72004-DUP1)	Source	e: 7F14003	-01	Prepared:	06/18/07	Analyzed:	06/20/07			
Total Dissolved Solids	3220	10.0	mg/L		3180			1.25	20	
Duplicate (EF72004-DUP2)	Source	e: 7F14020	-03	Prepared:	06/18/07	Analyzed:	06/20/07			
Total Dissolved Solids	526	10.0	mg/L		534			1.51	20	

A Xenco Laboratories Company

-Environmental Lab of Texas

100

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

· 12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Ope 122 W. Hobbs NI	Faylor	Project: ABO Apache Leak Project Number: None Given Project Manager: Kristin Farris-Pope	Fax: (505) 397-1471
		Notes and Definitions	
R2	The RPD exceeded the acceptance limit.		
QM-10	LCS/LCSD were analyzed in place of MS/MS).	
DET	Analyte DETECTED	~	-
ND	Analyte NOT DETECTED at or above the reporting	limit	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate		· · ·

Report Approved By:

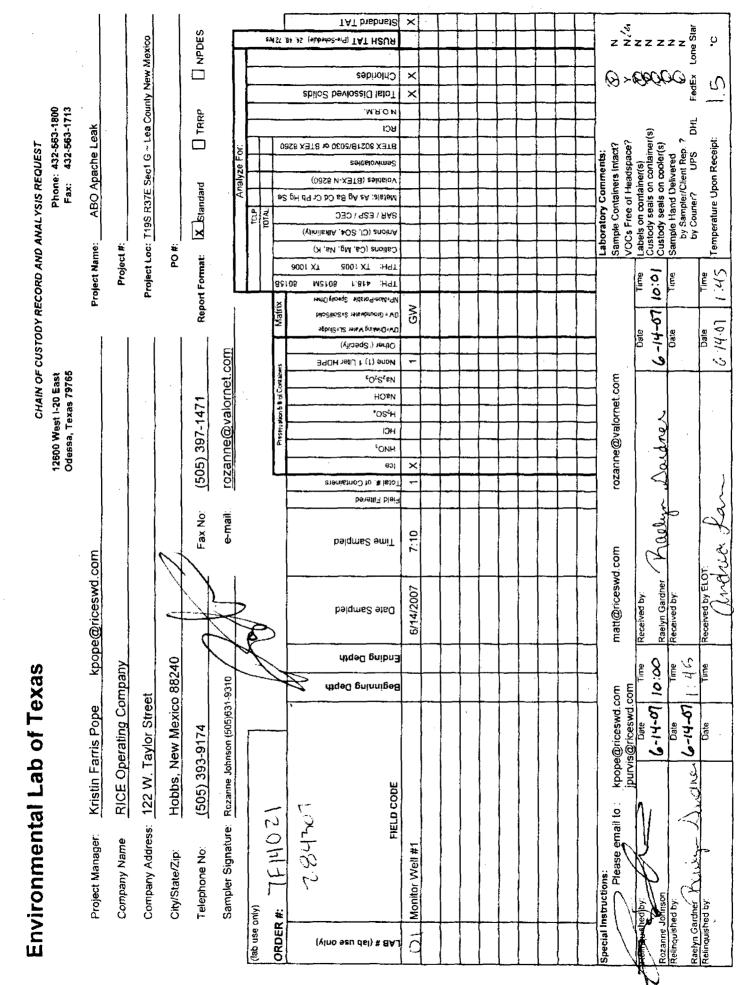
Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

6/20/2007

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

Date:

If you have received this material in error, please notify us immediately at 432-563-1800.


Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 4 of 4

1

I

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Rice
Date/ Time.	6/14/07 1:45
Lab ID #	1F14071
Initials:	UL

Sample Receipt Checklist

				Client Initial
#1	Temperature of container/ cooler?	Yes	No	1 1.5 °C
#2	Shipping container in good condition?	(Ter	No	
#3	Custody Seals intact on shipping container/ cooler?	Tes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	C es	No	
#6	Sample instructions complete of Chain of Custody?	(ট্ট)	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	(Constant)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	E	No	
#12	Samples in proper container/ bottle?	(es)	No	See Below
#13	Samples properly preserved?	(es)	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	tes	No	
#16	Containers documented on Chain of Custody?	Xes	No	
#17	Sufficient sample amount for indicated test(s)?	Xes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes.	No	Not Applicable

Variance Documentation

Contact:	Contacted by:	Date/ Time:
Regarding:		
Corrective Action Taken;	· ·	
		· · · · · · · · · · · · · · · · · · ·

Check all that Apply:

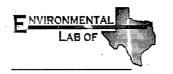
21-17-17

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 285440

5 F 4


for

Rice Operating Co.

Project Manager: Kristin Pope

ABP Apache Leak

12-JUL-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

NELAC certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

12-JUL-07

Project Manager: Kristin Pope Rice Operating Co. 122 West Taylor Hobbs, NM 88240

Reference: XENCO Report No: 285440 ABP Apache Leak Project Address: T 19 S R37E Sec 1G ~ Lea County, NM

Kristin Pope:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 285440. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 285440 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron Odessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

XENCO Laboratorics

- 4 L B

F

I

:

Sample Cross Reference 285440

Rice Operating Co., Hobbs, NM

ABP Apache Leak

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Monitor Well # 1	W	Jun-29-07 07:05		285440-001

Page 3 of 10

Total dissolve solids

Certificate of Analysis Summary 285440

Rice Operating Čo., Hobbs, NM

Project Name: ABP Apache Leak

Project Id: Date Received in Lab: Jul-03-07 05:05 pm **Report Date:** 12-JUL-07 Contact: Kristin Pope Project Location: T 19 S R37E Sec 1G ~ Lea County, NM **Project Manager:** Brent Barron, Il Lab Id: 285440-001 Analysis Requested Field Id: Monitor Well # 1 Depth: WATER Matrix: Sampled: Jun-29-07 07:05 Jul-10-07 11:54 Extracted: BTEX by EPA 8021B Analyzed: Jul-10-07 17:12 Units/RL: mg/L RL 0.0010 Benzene ND ND 0.0010 Toluene 0.0010 Ethylbenzene ND m,p-Xylene ND 0.0020 o-Xylene ND 0.0010 Total Xylenes ND Total BTEX ND Extracted: Bicarbonate, Alkalinity by EPA Jul-06-07 15:00 Analyzed: 310.1 Units/RL: mg/L RL Alkalinity, Bicarbonate 240 4.00 Extracted: **Inorganic Anions by EPA 300** Analyzed: Jul-09-07 18:09 Units/RL: mg/L RL Chloride 112 5.00 Sulfate 74.4 5.00 Extracted: Metals per ICP by SW846 6010B Analyzed: Jul-11-07 14:37 Units/RL: mg/L RL 0.100 Calcium 114 13.1 0.010 Magnesium Potassium 2.65 0.500 Sodium 47.2 0.500 Extracted: Residue, Filterable (TDS) by EPA Analyzed: Jul-06-07 15:15 160.1 Units/RL: mg/L RL

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

588

5.00

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(201) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555

كمعلك

Form 2 - Surrogate Recoveries

Project Name: ABP Apache Leak

Jork Order #: 285440 Lab Batch #: 700105	Sample: 285371-018 S / I	MS Ba	Project II tch: ¹ Matri			
Units: mg/L		SU	RROGATE RE	rix: Water Recovery %R [D] Control Limits %R [D] 97 80-120 rix: Water Recovery STUDY Recovery %R [D] 80-120 rix: Water Recovery %R [D] 80-120 rix: Water Recovery STUDY Recovery STUDY Recovery %R [D] 80-120 rix: Water Recovery STUDY Recovery %R [D] 80-120 rix: Water Recovery %R [D] %R 10 106 80-120 rix: Water Recovery Control Limits %R 10] %R 10 106 80-120 rix: Water Recovery %R 10] %R 10 106 80-120 rix: Water Recovery %R 10] %R 10 106 80-120	Ì	
BTEX by EP.		Amount Found [A]	True Amount [B]	%R	Limits	Flags
4-Bromofluorobenzene		0.0483	0.0500	97	80-120	
Lab Batch #: 700105	Sample: 285371-018 SD				STUDY	
Units: mg/L		SU	RROGATE RE			
BTEX by EP.		Amount Found [A]	True Amount [B]	%R	Limits -	Flags
Analyte	28		0.0500		00.100	
4-Bromofluorobenzene	· · ·	0.0504	0.0500	101	80-120	
Lab Batch #: 700105	Sample: 285440-001 / SN	AP Ba	tch: 1 Matri	x: Water		
Units: mg/L		SURROGATE RECOVERY STUDY				
BTEX by EP.	A 8021B	Amount Found [A]	True Amount B]	%R	OVERY STUDY Recovery %R [D] Control Limits %R 97 80-120 Water Control Limits %R [D] 101 80-120 Water Control Limits %R [D] 101 80-120 Water Control Limits %R [D] 83 80-120 Water Control Limits %R [D] 0VERY STUDY Recovery %R [D] Control Limits %R 106 80-120 Water OVERY STUDY Recovery %R [D] Control Limits %R 106 80-120 Water OVERY STUDY %R Control Limits %R 106 80-120	Flags
Analyte	es	1		[D]		
4-Bromofluorobenzene		0.0413	0.0500	83	80-120	
Lab Batch #: 700105	Sample: 496996-1-BKS /	BKS Ba	tch: ¹ Matri	x: Water		
Units: mg/L		Amount Found [A]True Amount [B]Recovery %R [D]Control Limits %R0.04830.05009780-120SD / MSDBatch:1Matrix: WaterSURROGATE RECOVERY STUDYAmount Found [A]True (B]Recovery %R (D]0.05040.050010180-120/ SWPBatch:1Matrix: WaterSURROGATE RECOVERY STUDYAmount Found [A]True (B]Recovery %R (D]Amount Found [A]True (B]Recovery %R (D]Amount Found [A]True (B]Recovery %R (D]Amount Found [A]True (B]Recovery %R (D]Amount Found [A]True (B]Recovery %R (D]Amount Found [A]True (B]Recovery %R (D]Amount [A]True (B]Recovery %R (D]Amount [A]True (B]Recovery %R (D]Amount [A]True (B]Recovery %R (D]Amount [A]True (B]Recovery %R (D]LK / BLK [A]Batch:1Matrix: (A]WaterSURROGATE RECOVERY STUDYAmount [A]True (B]SURROGATE RECOVERY STUDYAmount [A]Recovery %R (D][B]%R %R (D][B]%R %R (D]				
BTEX by EP Analyte		Found	Amount	%R	Limits	Flags
4-Bromofluorobenzene		0.0531	0.0500	106	80-1 <u>2</u> 0	
Lab Batch #: 700105	Sample: 496996-1-BLK /	BLK Ba	tch: 1 Matri	x: Water		
Units: mg/L	•	SU	RROGATE RE	ECOVERY	STUDY	
BTEX by EP.		Found	Amount	%R	Limits	Flags
Analyte	es					-
4-Bromofluorobenzene		0.0484	0.0500	97	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: ABP Apache Leak

Work Order #: 285440		Pr	oject ID:			
Lab Batch #: 700105	Sample: 496996	I-BKS		x: Water		
Date Analyzed: 07/10/2007 Date P	repared: 07/10/2		-	st: CELK		
Reporting Units: mg/L	Batch #: 1	BLANK /I	BLANK SPI	KE REC	COVERY S	STUDY
BTEX by EPA 8021B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Benzene	ND	0.0500	0.0482	96	70-125	
Toluene	ND	0.0500	0.0508	102	70-125	
Ethylbenzene	ND	0.0500	0.0562	112	71-129	
m,p-Xylene	ND	0.1000	0.1006	101	. 70-131	
o-Xylene	ND	. 0.0500	0.0549	110	71-133	
Lab Batch #: 700048 Date Analyzed: 07/06/2007 Date P	Sample: 700048 repared: 07/06/2			ix: Water st: WRU		
Reporting Units: mg/L	Batch #: 1	BLANK /I	BLANK SPI	KE REC	OVERY S	STUDY
Bicarbonate, Alkalinity by EPA 310.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Alkalinity, Bicarbonate	ND	200	174	87	80-120	
Date Analyzed:07/09/2007Date P	Sample: 699973 repared: 07/09/2 Batch #: 1	007		x: Water st: LATC KE REC		STUDY
Inorganic Anions by EPA 300 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride	ND	10.0	9.80	98	90-110	·
Sulfate	ND	10.0	9.58	96	90-110	

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

Form 3 - MS Recoveries

Project Name: ABP Apache Leak

Work Order #: 285440 **Project ID:** Lab Batch #: 699973 07/09/2007 Analyst: LATCOR Date Analyzed: 07/09/2007 Date Prepared: QC- Sample ID: 285440-001 S l Batch #: Water Matrix: Reporting Units: mg/L MATRIX / MATRIX SPIKE RECOVERY STUDY **Inorganic Anions by EPA 300** Parent Spiked Sample Control Sample Spike Flag Result %R Limits Result Added |C|[D] %R [A] **[B]** Analytes Chloride 112 100 206 94 90-110 . Sulfate 74.4 169 95 90-110 100

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

. . . .

Project Name: ABP Apache Leak

Work Order #: 285440 Lab Batch ID: 700105 Date Analyzed: 07/11/2007 Reporting Units: mg/L

Project ID: Batch #: 1 Matrix:

Batch #: 1 Matrix: Water Analyst: CELKEE

QC- Sample ID: 285371-018 S Date Prepared: 07/10/2007 Flag

		M	ATRIX SPIKI	E / MAT	RIX SPII	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	IE RECC	VERY	STUDY		
BTEX by EPA 8021B	Parent Sample		Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	
Analytes	Result [A]	Added [B]		%Ř [D]	Added [E]	Added Result [F]	[G] %	%	%К	%RPD	
Benzene	DN .	0.0500	0.0509	102	0.0500	0.0494	66	3	70-125	25	
Toluene	DN	0.0500	0.0516	103	0.0500	0.0500	100	Э	70-125	25	
Ethylbenzene	DN	0.0500	0.0553	111	0.0500	0.0537	107	4	71-129	25	
ın,p-Xylene	ND	0.1000	0.0972	97	0.1000	0.0946	95	2	70-131	25	
o-Xvlene	QN	0.0500	0.0536	107	0.0500	0.0524	105	2	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(D-G)(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected. J = Present Below Reporting Limit. B = Present in Blank, NR = Not Requested. I = Interference. NA = Not ApplicableN = See Narrative. EQL = Estimated Quantitation Limit

. . .

1 **1** 1

Sample Duplicate Recovery

Project Name: ABP Apache Leak

Work Order #: 285440

	Batch #:	06/2007 I / SAMPLE	Matr	v st: WRU ix: Water	OVERY
Bicarbonate, Alkalinity by EPA 310.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Bicarbonate	210	210	0	20	
Alkalinity, Carbonate	ND	ND	NC	20	
	repared: 07/0 Batch #: 1	09/2007	·	st: LATCO	
Reporting Units: mg/L	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	112	111	1	20	
Sulfate	74.4	74.1	0	20	
· .	Batch #: 1		Matr	st: LATCOF	R
	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Metals per ICP by SW846 6010B Analyte	SAMPLE Parent Sample Result [A]		DUPLIC RPD	ATE REC Control Limits %RPD	OVERY Flag
7	Parent Sample Result	Sample Duplicate Result		Control Limits	
Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	
Analyte	Parent Sample Result [A] 659	Sample Duplicate Result [B] 653	RPD 1	Control Limits %RPD 25	
Analyte Calcium Magnesium	Parent Sample Result [A] 659 85.0	Sample Duplicate Result [B] 653 88.8	RPD 1 4	Control Limits %RPD 25 25	
Analyte Calcium Magnesium Potassium Sodium Lab Batch #: 699879 Date Analyzed: 07/06/2007	Parent Sample Result [A] 659 85.0 21.2 4180 repared: 07/0 Batch #: 1	Sample Duplicate Result [B] 653 88.8 20.4 4190	RPD 1 4 4 0 Analy Matr	Control Limits %RPD 25 25 25 25 25 25 st: IRO ix: Water	Flag
Analyte Calcium Magnesium Potassium Sodium Lab Batch #: 699879 Date Analyzed: 07/06/2007 QC- Sample ID: 285440-001 D	Parent Sample Result [A] 659 85.0 21.2 4180 repared: 07/0 Batch #: 1	Sample Duplicate Result [B] 653 88.8 20.4 4190 06/2007	RPD 1 4 4 0 Analy Matr	Control Limits %RPD 25 25 25 25 25 25 st: IRO ix: Water	Flag

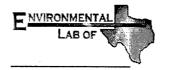
.

.

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Analytical Report 286347

for


I

Rice Operating Co.

Project Manager: Kristin Pope

ABO Apache Leak

27-JUL-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

NELAC certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

27-JUL-07

Project Manager: Kristin Pope Rice Operating Co. 122 West Taylor Hobbs, NM 88240

Reference: XENCO Report No: 286347 ABO Apache Leak Project Address: T19S R37E Sec 1 G ~ Lea County New Mexico

Kristin Pope:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 286347. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 286347 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron Odessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

l

. .

Sample Cross Reference 286347

Rice Operating Co., Hobbs, NM

ABO Apache Leak

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Monitor Well # 1	W	Jul-19-07-09:35		286347-001

Page 3 of 10

Certificate of Analysis Summary 286347 Ð Rice Operating Co., Hobbs, NM Project Name: ABO Apache Leak J J

1

ł

Project Location: T19S R37E Sec 1 G ~ Lea County New M Contact: Kristin Pope

Project Id:

2 Report Date: 27-JUL-07 Brant Rai Drainet Mar

		-	Project Manager: Brent Barron, II	Brent Barron, II	
	Lab Id:	286347-001		-	
Analysis Danuadad	Field Id:	Monitor Well # 1		•	
naisanhay sistimuy	Depth:				
	Matrix:	WATER			
	Sampled:	Jul-19-07 09:35			
Inorganic Anions by EPA 300	Extracted:				
	Analyzed:	Jul-22-07 01:11			
	Units/RL:	mg/L RL			
Chloride		328 5.00			
Residue. Filterable (TDS) by EPA	Extracted:				
	Analyzed:	Jul-25-07 16:30			
	Units/RL:	Units/RL: mg/L RL			
Total dissolved solids		912 5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this margingiral report resters the best prognent or XENCO Laboratories. XENC O Laboratories assumes to responsibility and makes no warrany: on the end use of the data hereby presented. Our liability is limited to the amount invoired for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Odessa Laboratory Director Brént Barron

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

	Phone	Fax
11381 Meadowglen Lanc Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(201) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555

Project Name: ABO Apache Leak

Work Order #: 286347

J

Project ID:

Lab Batch #: 700978 Date Analyzed: 07/21/2007	Sample: 700978- Date Prepared: 07/21/2			ix: Water st: IRO		
Reporting Units: mg/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY
Inorganic Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	ĺ
Chloride	ND	10.0	10.3	103	90-110	

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

Form 3 - MS Recoveries

Project ID:

Project Name: ABO Apache Leak

Work Order #: 286347 Lab Batch #: 700978 Date Analyzed: 07/21/2007

Date Analyzed: 07/21/2007	Date Prepared:	07/21/2007	7	Analyst:	IRO	
QC- Sample ID: 286343-001 S	Batch #:	1		Matrix:	Water	
Reporting Units: mg/L	MAT	'RIX / MA	TRIX SPIKE	E RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[41]		·		
Chloride	661	250	907	98	90-110	

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

1.1

- 57

Sample Duplicate Recovery

Project Name: ABO Apache Leak

Work Order #: 286347

	-p	1/2007	Project l Analy	ID: yst: IRO	
QC- Sample ID: 286343-001 D	Batch #: 1		Matr	rix: Water	
Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	CATE REC	OVERY
Inorganic Anions by EPA 300 Analyte	Parent Sample Result [Å]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	661	663	0	20	
Lab Batch #: 701044			_ <u>.</u>	<u> </u>	·····
Date Analyzed: 07/25/2007 Date Pr	epared: 07/2	5/2007	Analy	yst: IRO	
QC- Sample ID: 286343-001 D	Batch #: 1		Matr	rix: Water	
Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	CATE REC	OVERY
Residue, Filterable (TDS) by EPA 160.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids	2090	2160	3	30	
Lab Batch #: 701044	<u>.</u>			<u>،</u>	I <u>.</u>
	epared: 07/2	5/2007	Analy	yst: IRO	
•	Batch #: 1		Matr	rix: Water	
Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	CATE REC	OVERY
Residue, Filterable (TDS) by EPA 160.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids	2560	2580	1	30	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 1-20 East 832-563-1800 xas 79765 Fax: 432-563-1713	Project Name: ABO Apache Leak	Project #:	Project Loc: T19S R37E Sec1 G ~ Lea County New Mexico	PO#:	Report Format: X Standard CTRRP CNPDES		Analyze For:	101AL:	03 95	ир-Кат-Ровые Speck-Other ТРН: 418.1 8015M 80 ТРН: 7X 1005 ТХ 1005 Сайолс (Са. Мд. Иа. К) Католс (Са. Католс (Са. Католс) Католс (Laboratory Comments:			Sample Hand Delivered by Sampler/Client Rep. 7	Time Temperature Upon Receipt: -2.5 °C	Net Grozen
CHAIN OF CUSTODY RI 12600 West I-20 East Odessa, Texas 79765					(505) 397-1471	il: rozanne@valornet.com			Preservation & # of Containers Matrix	Field Filtered GW = Groundwater S=SovSold Mone (1) 1 Liter HDPE Nacy Nacy HUC ₃ Other (Specify) Concold Macy M	1 X GW						Jurson 7. 20 - 4.7	Date	Low 7.20-67	
xas	kpope@riceswd.com	mpany	et	0 88240	A No:	-9310/	11/1	NrXIV	0	rbqəD pertin FridaD Bertin Date Sampled Date Sampled	<u> </u>					-	Time Received by: G.20 James Johnsof Control	$ \mathcal{H} \leq $ Received by \mathcal{O}	Time Received by ELOT	
Environmental Lab of Texas	Project Manager: Kristin Farris Pope	Company Name RICE Operating Company	Company Address: 122 W. Taylor Street	City/State/Zip: Hobbs, New Mexico 88240	Telephone No: (505) 393-9174	Sampler Signature: Rozanne Johnson (505)631-9310		~	ORDER #: 250541	(tino seu dst) * BAJ E C C O D M M	OI Monitor Weil #1				Special Instructions: Diase amail to Proceeding of	~		ne letman?	Relinque of by Date	

l

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Rice	
Date/_Time:	1.45 TO 05 T	
Lab ID #	286347	
Initials	al	
··· · · · · · ·		

4.

Sample Receipt Checklist

					lient Initia
#1	Temperature of container/ cooler?	Tes	No	- <u>Z.O</u> °C	Not Frozer
#2	Shipping container in good condition?	des)	No		
#3	Custody Seals intact on shipping container/ cooler?	tes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	(es)	No	-	
#6	Sample instructions complete of Chain of Custody?	Yes	No		
#7	Chain of Custody signed when relinquished/ received?	Xes	No		
#8	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	YES	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(es)	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	les	No	See Below	
#13		Yes	No	See Below	
#14	Sample bottles intact?	Yes	No		
#15	Preservations documented on Chain of Custody?	Ves	No		
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	Yes	No	See Below	
#1 9	Subcontract of sample(s)?	Yes	No	Net Applicable	
#20	VOC samples have zero headspace?	CYOS	No	Not Applicable	· · · ·

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:	. <u></u>		·
Corrective Action Taken:			·
		· · · · · · · · · · · · · · · · · · ·	
theck all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with a Cooling process had begun shortly after sampling e	

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 11/30/07 Reporting Date: 12/07/07 Project Number: NOT GIVEN Project Name: ABO APACHE LEAK Project Location: T19S-RE-SEC1 G~LEA COUNTY, NM Sampling Date: 11/28/07 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: HM/KS

	Na	Са	Mg	к	Conductivity	T-Alkalinity
LAB NUMBER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mgCaCO ₃ /L)
ANALYSIS DATE:	12/04/07	12/04/07	12/04/07	12/04/07	12/04/07	12/04/07
H13806-1 MONITOR WELL #1	87	125	21.8	4.41	1,207	236
	··· · · · · · · · · · · · · · · · · ·	40.0		0.00		
Quality Control	NR	49.2	50.8	2.88	1,423	NR
True Value QC	NR	50.0	50.0	3.00	1,413	NR
% Recovery	NR	98.5	102	96.0	101	NR
Relative Percent Difference	NR	< 0.1	1.6	12.4	1.1	NR
METHODS:	SM3	3500-Ca-D	3500-Ma E	8049	120.1	310.1

		CI_	SO4	CO₃	HCO ₃	pН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DA	ATE:	12/06/07	12/04/07	12/04/07	12/04/07	12/04/07	12/03/07
H13806-1	MONITOR WELL #1	200	76.6	0	288	7.36	791
	<u> </u>						· · · · · · · · · · · · · · · · · · ·
Quality Contro)	500	28.0	NR	988	7.05	NR
True Value QC	<u> </u>	500	25.0	NR	1000	7.00	NR
% Recovery		100	112	NR	98.8	101	NR
Relative Perce	ent Difference	< 0.1	5.8	NR	1.2	0.1	NR
METHODS:	····	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

usta Inploto

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service thin actions including those for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (325) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

CTUVI

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 11/30/07 Reporting Date: 12/03/07 Project Number: NOT GIVEN Project Name: ABO APACHE LEAK Project Location: T19S-RE-SEC1 G ~ LEA COUNTY, NM Sampling Date: 11/28/07 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: AB

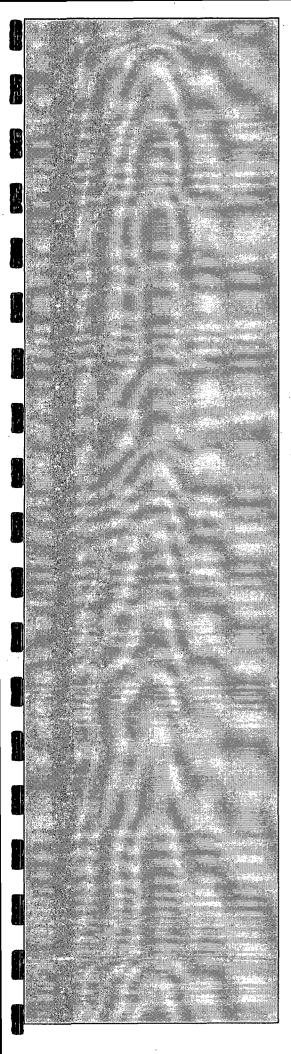
TOTAL

LAB NUMBE	R SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS D	ATE	11/30/07	11/30/07	11/30/07	11/30/07
H13806-1	MONITOR WELL #1	<0.001	<0.001	< 0.001	< 0.003
Quality Contr	ol	0.107	0.096	0.095	0.300
True Value C	C	0.100	0.100	0.100	0.300
% Recovery		107	96	95	100
Relative Perc	ent Difference	1.7	3.4	3.3	4.1

METHOD: EPA SW-846 8021B

& Coshy

4/03/0


Date

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. The applicable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

| -1471 | 35) CHA
 | 35)
10B/200.7
0 | 35)
10B/200.7
Circle or
Circle or | 35) LAB Order ID #
10B/200.7 Circle or Specify | CHAIN-OF-CUSTODY AND
LAB Order ID #
(Circle or Specify Meth | CHAIN-OF-CUSTODY AND ANA LAB Order ID # (Circle or Specify Method No.
 | CHAIN-OF-CUSTODY AND ANALYS
LAB Order ID #
ANALYSIS REQUEST
(Circle or Specify Method No.) | CHAIN-OF-CUSTODY AND ANALYSIS RI
LAB Order ID #
(Circle or Specify Method No.) | Fax #:
(E0E)207 1171 | in Farris-Pope, Project Scientist
(Street, City, Zip)
Taylor Street ~ Hobbs, New Mexico 88240 | (17) (19) (19) (19) (19) (19) (19) (19) (19 | 1 ajusi Surect - Houss, Ivew Interno 00240 Fax #:
Fax #:
1 200 0474 | | |) 393-9174 Project Name: | Abo Apache Leak | ocation:
S_RE-Sec1 G ~ Lea County - New Mexico | S-RE-Sec1 G ~ Lea County - New Mexico | ocation:
S-RE-Sec1 G ~ Lea County - New Mexico | B # FIELD CODE (C) Name:
B # FIELD CODE (C) Name:
B # FIELD CODE (C) Name:
COUC) SY - 147 (C) (SUC) SY - | Abo Apache Leak
S-RE-Sec1 G ~ Lea County - New Mexico
(G)rab or (C)omp
CONTAINERS
WATER
SOIL
AIR
SLUDGE
HCL (2 40ml VOA)
HNO ₃
NaHSO ₄
H ₂ SO ₄
ICE (1-1Litter HDPE)
NONE
DATE (2007)
TIME | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | J33-91/4 Project Name: Abo Apache Leak Abo Apache Leak S-RE-Sec1 G ~ Lea County - New Mexico S-RE-Sec1 G ~ Lea County - New Mexico IV IV | J39-91/4 Project Name:
Abo Apache Leak S-RE-Sec1 G ~ Lea County - New Mexico Sampler Santus:
rozanne Johnson (505)631:83:10 S-RE-Sec1 G ~ Lea County - New Mexico MATRIX FIELD CODE MATRIX USE IC IVY FIELD CODE IVY
 G 3 X AIR SOIL AIR HNO3 AIR ICE (1-1Litter HDPE) NONE ICE (1-1Litter HDPE) NONE ICE (2007) TIME | S-RE-Sec1 G ~ Lea County - New Mexico
USE
FIELD CODE
ILY
ILY
ILY
ILY
ILY
ILY
ILY
ILY | 333-9174 Project Name:
Abo Apache Leak S-RE-Sec1 G ~ Lea County - New Mexico Sampler Senarue Joinson (505)531-9310
rozanne @valormet.com S-RE-Sec1 G ~ Lea County - New Mexico rozanne @valormet.com FIELD CODE MATRIX PRESERVATIVE
METHOD USE riel Containers IVY Monitor Well #1 IVY G IVY SOIL IVY AIR IVY Matrix PRESERVATIVE Nonitor Well #1 IVY G IVY AIR IVY IVX IVX IVX <t< th=""><th>Subscription Subscription S</th><th>(303/397/14 Project Name:
Abo Apache Leak S-RE-Sec1 G ~ Lea County - New Mexico
S-RE-Sec1 G ~ Lea County - New Mexico
USE Sampler Signifuture
rozanne@Valiomet.com B #
FIELD CODE MATRIX
G (G)rab or (C)omp MATRIX
PRESERVATIVE
Rozanne@Valiomet.com WATER MATRIX
SOIL PRESERVATIVE
METHOD SAMPLING V 4 4 4 4 V - MATRIX PRESERVATIVE
METHOD SAMPLING V - - MATRIX PRESERVATIVE
METHOD SAMPLING V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - -</th><th>$\begin{array}{ c c c c c } \hline \begin{array}{ c c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \\ \hline$</th><th>SRE-Sec1 G ~ Lea County - New Mexico
SRE-Sec1 G ~ Lea County - New Mexico
FIELD CODE
FIELD CODE
FI</th><th>Societion: Abo Apache Leak SrRE-Sect G ~ Lea County - New Mexico rozanne Johnson (505)631-3310 SrRE-Sect G ~ Lea County - New Mexico matrix PRESERVATIVE
Statute Rozanne Johnson (505)631-3310 USE riel D code matrix PRESERVATIVE
Statute Sampler Statute USE riel D code matrix PRESERVATIVE
Matrix Sampler Statute USE riel D code matrix PRESERVATIVE
Matrix Sampling
Statute USE riel D code g 3 X V g 3 X SoliL IV g g g g g IV g g g</th><th>Mathematical State Couplet Name: Abo Apache Leak Abo Apache Leak Abo Apache Leak County - New Mexico rozanne@valornet.com IS## FIELD CODE MATRIX PRESERVATIVE Sampler State SUSE FIELD CODE MATRIX PRESERVATIVE Sampler State SUSE FIELD CODE MATRIX PRESERVATIVE Sampler State SUSE FIELD CODE (G)rab or (C)omp MATRIX PRESERVATIVE Sampler State SUSE G # CONTAINERS MATRIX PRESERVATIVE Sampler State VLY G G # CONTAINERS METHOD Sampler State VLY G G # CONTAINERS METHOD Sampler State VLY G G # CONTAINERS AIR SLUDGE SoliL VLY G G X X SoliL NAIRSO4 I VLY H HNO3 H H HNO3 I I I VLY Date I I I I I I I</th><th>Bit Abo Apache Leak (300)397-1471 Abo Apache Leak County - New Mexico roganne@valormet.com IS-RE-Sec1 G ~ Lea County - New Mexico Marrix PRESERVATIVE
METHOD Sample Segure
Method Marrix PRESERVATIVE
METHOD Samplu Segure
Samplus USE FIELD CODE (G) rab or (C) omp
(G) rab or (C) omp
METHOD Marrix PRESERVATIVE
METHOD Samplung USE FIELD CODE (G) rab or (C) OMP
(G) rab or (C) ONTAINERS Matrix PRESERVATIVE
METHOD Samplung USE FIELD CODE (G) rab or (C) OMP
(G) rab or (C) ONTAINERS Matrix PRESERVATIVE
METHOD Samplung USE FIELD CODE (G) rab or (C) ONTAINERS Matrix METHOD Samplung USE FIELD CODE (G) rab or (C) ONTAINERS AIR Date (2007) Image: G USE Date: Time: Date: Time: Date: Time: USE Date: Time: Date: Time: Date: Time:</th><th>Image: Section of the section of
the section of th</th><th>Subory 1.4 Subory 1.4 Abo Apache Leak Abo Apache Leak Sample September Rozanne Johnson (505)631-8310 RE-Sec1 G ~ Lea County - New Mexico Marrix RE-Sec1 G ~ Lea County - New Mexico Marrix RESERVATIVE Marrix Marrix <th< th=""><th>B# Frige Name
Abo Apache Leak (JUD) J97-1411 reame Johnson (505)531-3310 GS-RE-Sec1 G ~ Lea County - New Mexico Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Condition MATRIX PRESERVINUE
PRESERVINUE
(Comment Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Condition MATRIX PRESERVINUE
PRESERVINUE
(Sample Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition <</th></th<></th></t<> | Subscription S | (303/397/14 Project Name:
Abo Apache Leak S-RE-Sec1 G ~ Lea County - New Mexico
S-RE-Sec1 G ~ Lea County - New Mexico
USE Sampler Signifuture
rozanne@Valiomet.com B #
FIELD CODE MATRIX
G (G)rab or (C)omp MATRIX
PRESERVATIVE
Rozanne@Valiomet.com WATER MATRIX
SOIL PRESERVATIVE
METHOD SAMPLING V 4 4 4 4 V - MATRIX PRESERVATIVE
METHOD SAMPLING V - - MATRIX PRESERVATIVE
METHOD SAMPLING V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - V - - - - - - | $ \begin{array}{ c c c c c } \hline \begin{array}{ c c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \\ \hline$ | SRE-Sec1 G ~ Lea County - New Mexico
SRE-Sec1 G ~ Lea County - New Mexico
FIELD CODE
FIELD CODE
FI | Societion: Abo Apache Leak SrRE-Sect G ~ Lea County - New Mexico rozanne Johnson (505)631-3310 SrRE-Sect G ~ Lea County - New Mexico matrix PRESERVATIVE
Statute Rozanne Johnson (505)631-3310 USE riel D code matrix PRESERVATIVE
Statute Sampler Statute USE riel D code matrix PRESERVATIVE
Matrix Sampler Statute USE riel D code matrix PRESERVATIVE
Matrix Sampling
Statute USE riel D code g 3 X V g 3 X SoliL IV g g g g g IV g g g | Mathematical State Couplet Name: Abo Apache Leak Abo Apache Leak Abo Apache Leak County - New Mexico rozanne@valornet.com IS## FIELD CODE MATRIX PRESERVATIVE Sampler State SUSE FIELD CODE MATRIX PRESERVATIVE Sampler State SUSE FIELD CODE MATRIX PRESERVATIVE Sampler State SUSE FIELD CODE (G)rab or (C)omp MATRIX PRESERVATIVE Sampler State SUSE G # CONTAINERS MATRIX PRESERVATIVE Sampler State VLY G G # CONTAINERS METHOD Sampler State VLY G G # CONTAINERS METHOD Sampler State VLY G G # CONTAINERS AIR SLUDGE SoliL VLY G G X X SoliL NAIRSO4 I VLY H HNO3 H H HNO3 I I I VLY Date I I I I I I I | Bit Abo Apache Leak (300)397-1471 Abo Apache Leak County - New Mexico roganne@valormet.com IS-RE-Sec1 G ~ Lea County - New Mexico Marrix PRESERVATIVE
METHOD Sample Segure
Method Marrix PRESERVATIVE
METHOD Samplu Segure
Samplus USE FIELD CODE (G) rab or (C) omp
(G) rab or (C) omp
METHOD Marrix PRESERVATIVE
METHOD Samplung USE FIELD CODE (G) rab or (C) OMP
(G) rab or (C) ONTAINERS Matrix PRESERVATIVE
METHOD Samplung USE FIELD CODE (G) rab or (C) OMP
(G) rab or (C) ONTAINERS Matrix PRESERVATIVE
METHOD Samplung USE
 FIELD CODE (G) rab or (C) ONTAINERS Matrix METHOD Samplung USE FIELD CODE (G) rab or (C) ONTAINERS AIR Date (2007) Image: G USE Date: Time: Date: Time: Date: Time: USE Date: Time: Date: Time: Date: Time: | Image: Section of the section of th | Subory 1.4 Subory 1.4 Abo Apache Leak Abo Apache Leak Sample September Rozanne Johnson (505)631-8310 RE-Sec1 G ~ Lea County - New Mexico Marrix RE-Sec1 G ~ Lea County - New Mexico Marrix RESERVATIVE Marrix Marrix <th< th=""><th>B# Frige Name
Abo Apache Leak (JUD) J97-1411 reame Johnson (505)531-3310 GS-RE-Sec1 G ~ Lea County - New Mexico Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Condition MATRIX PRESERVINUE
PRESERVINUE
(Comment Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Condition MATRIX PRESERVINUE
PRESERVINUE
(Sample Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition <</th></th<> | B# Frige Name
Abo Apache Leak (JUD) J97-1411 reame Johnson (505)531-3310 GS-RE-Sec1 G ~ Lea County - New Mexico Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Condition MATRIX PRESERVINUE
PRESERVINUE
(Comment Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Condition MATRIX PRESERVINUE
PRESERVINUE
(Sample Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition METHOD VE
PRESERVINUE
(Sample Condition MATRIX METHOD VE
PRESERVINUE
(Sample Condition < |

---|--|--|--|--
--|---|--|---|---|---|---|-----------|--------------|--------------------------|-----------------|---|---------------------------------------|---
---|---|--|---|---|--
--
---|---|---
--|--|---|---|---
---|--|---|
| LL TO Company: PO# ICE Operating Company Adress: (Street, City, Zip) 2 W Taylor Street ~ Hobbs, New Mexico 88240 Phone# Fax#: Phone# Phone# Fax#: 05) 393-9174 (505) 393-9174 (505) 393 77-1471 Fax#: Fax#: 05 Sampler Stellartyce Rozanne Johnson (505)6: TER L DGE PRESERVATIVE VOA) C3 SQ4 PRESERVATIVE 03 SQ4 Filler 1-1Litter HDPE) NETHOD | ICE (1-1Liter HDPE) Vir al 0 (5) 50 (3) Vir al 0 (5) Vir al 0 (5) <t< td=""><td>ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) NONE ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)</td><td>ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) NONE ICE (1-1Liter HDPE) IDATE (2007) ICE (1-1Liter HDPE)<</td><td>ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)<</td><td>ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)<</td><td>ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)<</td><td>ICLE (1-1Liter HDPE) Vm 50 <td< td=""><td>ICE (1-1Litter HDPE) ICE (1-1Litter HDPE) <td< td=""><td>□ □ (G)rab or (C)omp □ □ □ □ 0<!--</td--><td>122 W Taylor Str
Phoi
(505) 393-9</td><td>(505) 393-9
)397-1471</td><td>)397-1471</td><td>1141-1801</td><td>معمع متصريحي</td><td></td><td>mes</td><td></td><td>Ç</td><td></td><td>WATER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Nigd by:</td><td>Niged by:</td><td>By</td><td>By Pr</td><td>ived By: (Labor</td></td></td<></td></td<></td></t<> | ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) NONE ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) | ICE (1-1Liter HDPE) ICE (1-1Liter HDPE) NONE ICE (1-1Liter HDPE) IDATE (2007) ICE (1-1Liter HDPE)< | ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)< | ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)< | ICE (1-1Liter HDPE) ICE (1-1Liter HDPE)< | ICLE (1-1Liter HDPE) Vm 50
 50 <td< td=""><td>ICE (1-1Litter HDPE) ICE (1-1Litter HDPE) <td< td=""><td>□ □ (G)rab or (C)omp □ □ □ □ 0<!--</td--><td>122 W Taylor Str
Phoi
(505) 393-9</td><td>(505) 393-9
)397-1471</td><td>)397-1471</td><td>1141-1801</td><td>معمع متصريحي</td><td></td><td>mes</td><td></td><td>Ç</td><td></td><td>WATER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Nigd by:</td><td>Niged by:</td><td>By</td><td>By Pr</td><td>ived By: (Labor</td></td></td<></td></td<> | ICE (1-1Litter HDPE) ICE (1-1Litter HDPE) <td< td=""><td>□ □ (G)rab or (C)omp □ □ □ □ 0<!--</td--><td>122 W Taylor Str
Phoi
(505) 393-9</td><td>(505) 393-9
)397-1471</td><td>)397-1471</td><td>1141-1801</td><td>معمع متصريحي</td><td></td><td>mes</td><td></td><td>Ç</td><td></td><td>WATER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Nigd by:</td><td>Niged by:</td><td>By</td><td>By Pr</td><td>ived By: (Labor</td></td></td<> | □ □ (G)rab or (C)omp □ □ □ □ 0 </td <td>122 W Taylor Str
Phoi
(505) 393-9</td> <td>(505) 393-9
)397-1471</td> <td>)397-1471</td> <td>1141-1801</td> <td>معمع متصريحي</td> <td></td> <td>mes</td> <td></td> <td>Ç</td> <td></td> <td>WATER</td> <td></td> <td>Nigd by:</td> <td>Niged by:</td> <td>By</td> <td>By Pr</td> <td>ived By: (Labor</td> | 122 W Taylor Str
Phoi
(505) 393-9 | (505) 393-9
)397-1471 |)397-1471 | 1141-1801 | معمع متصريحي | | mes | | Ç | | WATER | | | | |
 |
 | | |
 | | | Nigd by: | Niged by: | By
 | By Pr | ived By: (Labor |
| 2 40ml VOA)
2 40ml VOA)
2 40ml VOA)
PO#
PO#
PO#
PO#
PO#
PO#
PO#
PO# | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35)
 | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35) | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35) | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35) | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35) | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35)
 | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35) | -1Liter HDPE)
(2007)
SAMPLOTING
8021B/602
8021B/602
18 1/TX 1005 F xtended (C35) | GE × | reet ~ Hobbs, N
ine#:
 174 |)174 | | | -) love | and the second | er Signat | | IATRIX | |
 | AIR
SLUD | AIR
SLUD | AIR
SLUD | AIR
SLUD | AIR
SLUD | AIR
SLUD

 | AIR
SLUD | AIR
SLUD | | AIR
SLUD | |
 | | | | |
| (1-1Liter HDPE)
VE
E (2007) | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35)
 | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35) | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35) | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35) | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35) | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35)
 | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35) | Image: Let (1-1Litter HDPE) Vision (G00) 50(5) (397, 74) ONE Valio (G00) 931, 74) ATE (2007) SAMPLING 931, 74) ME Image: Log (G00) 931, 74) ME Image: Log (G00) 147, 1 ME Image: Log (G00) 147, 1 TBE 8021B/602 148, 1/(X, 1005, 1, X, 1005, Extended (C, 35) | | lew Mexico 882 | | | | ~ | | Rozanne Jo | | PRESERVA
METHO | | NO₃
aHSO,
 | HI
Na | HI
Na | HI
Na | HI
Na | HI
Na | HI
Na

 | HI
Na | HI
Na | HI | HI | HI | Date:
 | HI
Date: | Date: | Date: | Date: |
| | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35)
 | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35) | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35) | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35) | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35) | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35)
 | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35) | E 8021B/602
418 1/TX1005 / TX1005 Extended (C35) | (1-1Liter HDPE)
VE
E (2007) | ⁴⁰
^{Fax#:}
(505)397 | (505)397 | (| | | | Minson (505)6: | | | | (1-1L
VE
 | ICE
NOM | → ICE
NON | → ICE
NOM | → ICE
NOM | ICE NOM | ICE NON

 | ICE NON | → ICE | → ICE | → ICE | ICE NON | Time: → ICE NON
 | | | | |
| | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C PAH
 | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles Q | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 FCLP Metals Ag As Ba Cd Cr Pb Se Hg Cr TCLP Volatiles Cr Cr TCLP Semi Volatiles Cr Cr TCLP Pesticides Cr Cr | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg Order ID TCLP Volatiles Order ID TCLP Semi Volatiles Order ID TCLP Pesticides Order ID RCI GC/MS Vol. 8260B/624 | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C CHAIN-OF Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Circle or Specify Metals Circle or Specify Metals TCLP Volatiles Circle or Specify Metals Circle or Specify Metals TCLP Pesticides Circle of Specify Metals Patrice of Specify Metals RCI GC/MS Vol. 8260B/624 Metals GC/MS Semi. Vol. 8270C/625 Semi. Vol. 8270C/625 Metals | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides, 8081A/608 | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles
 TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8081A/608 BOD, TSS, pH | TPH 418.1/TX1005 / TX1005 Extended (C35) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content | | ······ | | | | | | | | | |
 | 4 | × | × | × | × | ×
 | ×
 | × | × | × | × | Phone Results | X X <t< td=""><td>X X
X X <t< td=""><td>REMAR</td><td>REMAR AR</td></t<></td></t<> | X X <t< td=""><td>REMAR</td><td>REMAR AR</td></t<> | REMAR | REMAR AR |
| |
 | TCLP Metals Ag As Ba Cd Cr Pb Se Hg G G G TCLP Volatiles G G G | TCLP Volatiles Image: Constraint of the sector of the se | TOLAI INTEGRIS AG AS Ba Cd Cr Pb Se Hg 60/10B/200.7 Image: Constraint of the set | TOLAR INTEGRILS AG AS BA CG CF PD Se Hg 601005/200.7 TOLAR INTEGRILS AG AS BA CG CF PD Se Hg 601005/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg Ci rele of Se Hg 01005/200.7 TCLP Volatiles Ci rele of Se Hg 01005/200.7 TCLP Semi Volatiles Ci rele of Se Hg 01005/200.7 TCLP Pesticides Se Hg 01005/200.7 RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 Hg 01005/200.7 | TOLAR INTEGRIS AG AS BA CG CF PD Se Hg 60/108/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 | Total mietals Ag As Ba Cd Cr Pb Se Hg 60106/200.7 TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH
 | Total metals Ag As Ba Cd Cr Pb Se Hg Image: Contempose Hg Image: Contempose Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg Image: Contempose Hg Image: Contempose Hg TCLP Volatiles Image: Contempose Hg Image: Contempose Hg Image: Contempose Hg TCLP Volatiles Image: Contempose Hg Image: Contempose Hg Image: Contempose Hg Image: Contempose Hg TCLP Volatiles Image: Contempose Hg Image: Contempose | PAH 8270C | | | | | | | | | | 70C | PAH 827 | | | | |
 |
 | | |
 | | | Results | sults | Results
 | Results | Results to: |
| 418 1/TX1005 / TX1005 Extended (C35) | TCLP Semi Volatiles TCLP Pesticides TCLP Pesticides TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content × Cations (Ca, Mg, Na, K)
 | RCI SS SI REQUEST GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Method No.) Pesticides 8081A/608 No.) BOD, TSS, pH Moisture Content X Cations (Ca, Mg, Na, K) | GC/MS Vol. 8200D/024 AND ANALYSIS GC/MS Semi. Vol. 8270C/625 Method No. PCB's 8082/608 ANALYSIS Pesticides 8081A/608 No. BOD, TSS, pH Moisture Content X Cations (Ca, Mg, Na, K) | PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content X Cations (Ca, Mg, Na, K) | BOD, TSS, pH
Moisture Content
X Cations (Ca, Mg, Na, K) | Moisture Content S X Cations (Ca, Mg, Na, K)
 | Addition GC/MS Semi. Vol. 8270C/625 OD AVAIL Image: Strain Stra | | | | ·····- | | | | | <u>)</u> | | | | the second second second second second second second second second second second second second second second s
 | | | | | |

 | | | | | |
 | | | | |
| 418 1/TX1005 / TX1005 Extended (C35) | TCLP Semi Volatiles TCLP Pesticides TCLP Pesticides TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 Method No. PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content × Cations (Ca, Mg, Na, K) × Cations (Cl, SO4, CO3, HCO3) × Total Dissolved Solids Solids
 | RCI SPECISION SPECIAL GC/MS Vol. 8260B/624 Method No. GC/MS Semi. Vol. 8270C/625 Method No. PCB's 8082/608 No. Pesticides 8081A/608 No. BOD, TSS, pH Moisture Content X Cations (Ca, Mg, Na, K) X Anions (Cl, SO4, CO3, HCO3) X Total Dissolved Solids | GC/MS Vol. 8200D/024 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content × Cations (Ca, Mg, Na, K) × Anions (Cl, SO4, CO3, HCO3) × Total Dissolved Solids | PCB's 8082/608 AAL Pesticides 8081A/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content Anions (Ca, Mg, Na, K) Anions (Cl, SO4, CO3, HCO3) X Total Dissolved Solids | BOD, TSS, pH Moisture Content X | Moisture Content S R X Cations (Ca, Mg, Na, K) X X Anions (Cl, SO4, CO3, HCO3) X Total Dissolved Solids
 | × Cations (Ca, Mg, Na, K) × Anions (Cl, SO4, CO3, HCO3) × Total Dissolved Solids | Anions (Cl, SO4, CO3, HCO3) | | | | | | | | | <u> </u> | | |
 | - | | | | |

 | | 1 | - | | |
 | | | | |
| X 8021B/602
418.1/TX1005 / TX1005 Extended (C35)
8270C
I Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7
P Metals Ag As Ba Cd Cr Pb Se Hg
P Volatiles
P Semi Volatiles
P Pesticides
MS Vol. 8260B/624
MS Semi. Vol. 8270C/625
's 8082/608
icides 8081A/608
p, TSS, pH
sture Content
Cons (Ca, Mg, Na, K)
ons (Cl, SO4, CO3, HCO3)
I Dissolved Solids | TCLP Semi Volatiles TCLP Pesticides TCLP Pesticides TCLP Pesticides RCI GC/MS Vol. 8260B/624 GC/MS Semi. Vol. 8270C/625 TCLP Semi Vol. 8270C/625 PCB's 8082/608 Pesticides 8081A/608 BOD, TSS, pH Moisture Content × Cations (Ca, Mg, Na, K) × Total Dissolved Solids Chlorides Chlorides
 | | | | |
 | | | | | | | | | | | | | | -
 | | | | | |

 | | | | | |
 | | | | |

ß

U

Appendix B:

Field Data

R. T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. Suite F-142

Albuquerque, NM 87501

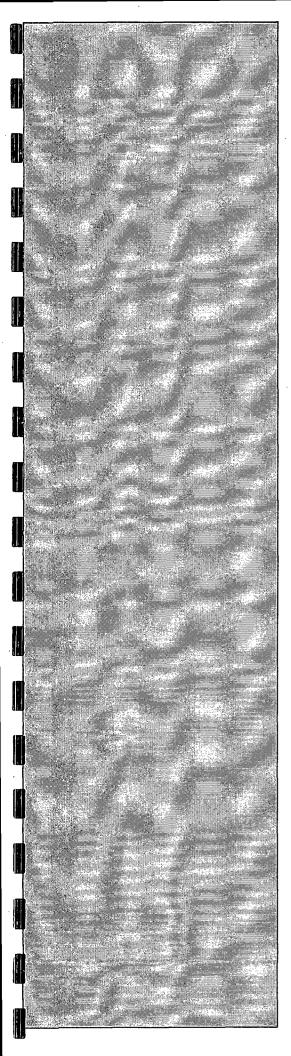
	Logger:	David Hamilto	n	Client:	•		Well ID:		
	Driller:	Eades Drilling			ROC				
	g Method:	Air Rotary		Project Name:					
	Start Date:	11/5/2004		+ · · · · · · · · · · · · · · · · · · ·	e LA 1-G Rele	ase Site			
	End Date:	11/6/2004		Location:	470 005 11			MW-1	
				Section 1	, 17S, 36E, Ur				
Depth								Field data	
(feet)	Des	cription	Lithology	Comments	Well Con	struction	Depth	Chloride mg/kg	PID
0.0	Surface	, 0 - 0.5 feet		Hard drilling		Cement, 0-			
2.0		d, clay, 0.5 - 3 feet, tan				3 feet	. I	•	
<u>4.0</u> 6.0		che, 3 - 5 feet, tan						1015	6.0
8.0		nd, silt, some caliche, 5 -					6.0	1245	6.3
10.0	Very fine grained sa	nd, silt, little caliche, 10 -	and the second second				11.0	553	7.3
12.0		eet, tan	Q: 750 477						
14.0		liche, 15 - 17 feet					· -		
16.0		nd, silt, little caliche, 17 -	na santa Santa	-			16.0	1307	5.2
18.0 20.0			n an				21.0		
20.0	Thin caliche layer	s in sand, 20 - 22 feet					21.0	905	8.2
24.0									
26.0		and, silt, 22 - 33 feet, tan					26.0	741	1.1
28.0	with re	ddish tinge		Samples fell out of spoon, collected					
30.0				with shovel			31.0	493	0.8
32.0						· · .			
34.0 36.0	Very fine arained or	and, silt, caliche , 33 -44					36.0	566	0.8
	feet, light tan. Well in	durated caliche layer from							0.0
40.0	35 t	o 36 feet.		-			41.0	126	3.3
42.0						Hydrated			
44.0			n net		1990 - 19900 - 19900 - 19900 - 1990 - 1990 - 19900 - 1990 - 1990 - 1990	bentonite, 3-			
46.0 48.0	Very fine grained sa	and, silt, 44 - 53 feet, tan				87 feet	46.0	83	2.0
50.0							51.0	49	1.0
52.0	·····						51.0	45	- 1.0
54.0		d, silt, some caliche, 53 -							
56.0	60	feet, tan	1.5 1. 1. 1. 1.						
58.0									
60.0 62.0	Very fine grained sa	and, silt, 60 - 67 feet, tan	ar e caret i riv	·			61.0	59	2.4
64.0									
66.0	Indurated sar	d, silt, 67 - 68 feet		Hard drilling					
68.0			al tracil it.						
70.0			e e se se de la tra				71.0	50	2.9
72.0									
76.0									
78.0	•	· ·							
80.0							81.0	59	3.7
82.0		nd, silt, 68 - 100 feet tan.	lande grikene di	1			l T		
84.0	Signtly redd	er below 83 feet.	i i i i i i i i i i i i i i i i i i i						
86.0 88.0					47 C				
90.0							91.0	55	2.7
92.0			n i geronnia.						
94.0			$ f \leq 4 f + \frac{1}{4}$						1
96.0 98.0			- 1. Mil (Soil moist at 100 feet					1
100.0									
102.0			apara di si Reference						
104.0						Sand, 87-			
106.0			ali selle terri Res ilian			122 feet			
108.0			lan tan ilain	Hole was drilled	. ⊢ ! ''				
110.0 112.0	Very fine grained s	and, silt, 100 - 122 feet	10.4	with water below 100 feet due to					
114.0				borehole collapse					l
116.0			an an an an an an an an an an an an an a						
118.0			H III II						
120.0									1
122.0			i de la composición de la composición de la composición de la composición de la composición de la composición d	L		<u> </u>			1
	DT 11:	s Consultante 1 +d			· · · · · ·				
		<u>s Consultants, Ltd</u> le Blvd NW Suite F-142		ROC	Abo 1-G Site			Appendix B	
		erque, NM 87104		R#===14=	ring Well Bor	ina		March 2005	
		5-266-5004		ΙΜΟΠΙΙΟ	und well Bor	000		March 2005	

•

.

-

	Logger:	David Hamilton		Client:			Boring ID:	
	Driller:	Harrison Cooper Drill	ing		ROC			
Drillin	g Method:	Air Rotary		Project Nar	ne:]	
	Start Date:	12/12/2006		Ab	o Apache 1-G	Site	-	
	End Date:	12/12/2006		Location:			SBB	
				Section	n 1, 17S, 36E, I	Unit 1G		
ĺ					Chi	oride in m	a/ka	
Depth							5	
(feet)		Description	Lithology	0	50	100	150	200
			Lithology	0	· · · · · · · · · · · · · · · · · · ·			
0.0		Surface, 0 - 2 feet		8				
2.0	Frac. calich	e, sand, clay, 2 to 5 feet, tan						
6.0	Von fine main-4	and all come collete 5 11 fact		5				
8.0	very line grained	sand, silt, some caliche, 5 - 11 feet, tan						
10.0				10		\leftarrow		
12.0	Very fine grained	sand, silt, little caliche, 11 - 16 feet,	2 M 19					
14.0		tan	1112	15				
16.0	indura	ed caliche, 16 - 17 feet)	
18.0		and, silt, little caliche, 17 - 20 feet				· · /		
20.0				20		🕇	· · · · · · · · · · · · · · · · · · ·	
22.0							\	
24.0			2 - 21 	25			}	
26.0		sand, silt, some thin caliche layers, eet, tan with reddish tinge						
28.0	20 - 33 1	eer, tan with reduish linge						
30.0			1.1	30		1		
32.0						(
34.0				35		×		
36.0	Vory fine grained	sand, sitt, caliche , 33 -45 feet, light						
38.0		ed caliche layer from 35 to 37 feet.		40				
40.0							ノ	
42.0								
44.0				45				
46.0	Very fine grai	ned sand, silt, 44 - 50 feet, tan	2 A 12		1			
48.0				50				
50.0	<u></u>							
		Hicks Consultants, Ltd		ROC	Abo Apache 1	-G Site	Append	ix B
		Trande Blvd NW Suite F-142						
	All	ouquerque, NM 87104	•	s	BB Boring Sit	e	November	2007
		505-266-5004		L	······································			


į.

	Logger:	David Hamilto	on	Client:				Boring	ID:	
	Driller:	Harrison Cooper I	Drilling		RC)C		_		
Drillin	g Method	Air Rotary		Projec	t Name:					
	Start Date:	12/12/2006			Abo Apach	ne 1-G Si	te			
	End Date:	12/12/2006		Locati	on:				SBE-2	
				Se	ection 1, 17S	, 36E, Ur	nit 1G			
		-	-	·		_				
	•									
	10 (D. 1997).									
						Chlo	ride in m	g/kg		
Depth										
(feet)		Description	Lithology	0	200	400	600	800	1000	1200
0.0		Fill, 0 - 4 feet		1 ° [· · · · · · · · · · · · · · · · · · ·	······	····			
2.0										
4.0	Von fino ar	ained sand, silt, some caliche, 5 -								
6.0	very line gra	11 feet, tan								
8.0				10						
10.0	Very fine ara	ained sand, silt, little caliche, 11 -								
12.0	very line gre	16 feet, tan	Tr - T							
14.0		· · · · · · · · · · · · · · · · · · ·								
16.0	V fine grained	d sand, silt, some caliche, 17 - 20								
18.0		feet		20 -						
20.0										
22.0					· /					l
24.0 26.0	Very fine gra	ined sand, silt, some thin caliche	<u></u>		T					
28.0	layers, 20	- 33 feet, tan with reddish tinge								
30.0				30						
32.0						1		}		
34.0										
36.0	Ven, fine or	ained sand, silt, caliche , 33 -45					l	l		
38.0		an. Well indurated caliche layer			1					
40.0	-	from 36 to 37 feet.		40	1					
42.0										
44.0			59 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		}		1			
46.0	Very fine gra	ained sand; silt, 45 - 50 feet, tan			 +					
48.0				50]]
50.0				50	•					
		T. Hicks Consultants, Ltd		Di	OC Abo Ap	ache 1-0	Site		ppendix	, R
		io Grande Blvd NW Suite F-14	2					^		
		Albuquerque, NM 87104			SBE-2 Bo	oring Site	}	No	wember 2	2007
		505-266-5004		<u> </u>			- 			

Ņ

·

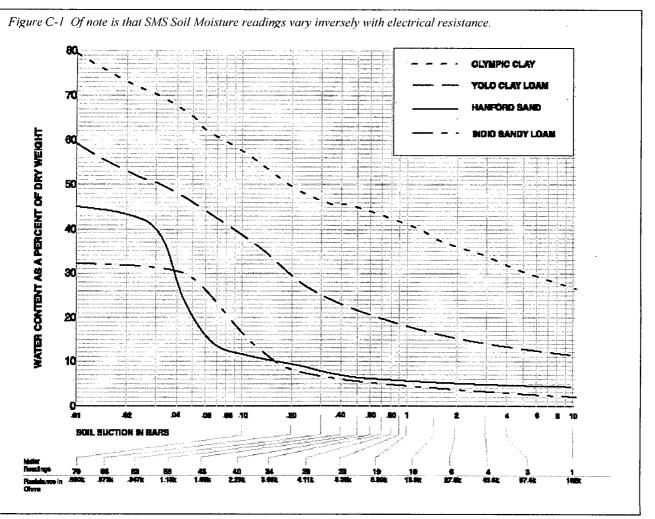
Į

Appendix C:

Analysis of Chloride Migration

R. T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. Suite F-142

Albuquerque, NM 87501


Appendix C: Soil Moisture Monitoring

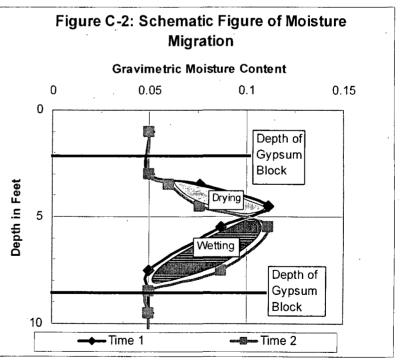
Soil Moisture Monitoring Methods

P

Soil moisture monitoring occurs at two locations within the Abo 1-G site by measuring the electrical resistance of gypsum blocks which are in direct contact with the surrounding vadose zone material. Higher electrical resistance correlates to lower soil moisture. The blocks are installed below the soil horizon, about 7 and 9 feet below grade at each location. The northern location measures soil moisture below the sub-surface clay cap while the clay cap does not cover the southern location. Plate 3 of the 2008 Closure Report shows the locations of the soil moisture monitoring sites.

Table 1 of this appendix shows resistance measured in the gypsum blocks. These resistance readings have been correlated with water content as a percentage of dry weight for different soil types by the manufacturer (link to the SMS website: <u>http://www.soilmoisture.com/prod_details.asp?prod_id=346&cat_id=10</u> for detailed information on the use of these devices). Figure C-1 shows the relationship between electrical resistance of the gypsum block, the meter reading, and moisture contents of various soil textures. At the Abo-1G site, we believe the sandy caliche of the upper vadose zone will behave similar to a mixture of the Indio Sandy Loam and the Hanford Sand.

Summary of Observations


- 1. In November 2007, SMS meter readings at the northern measuring ports (nearest the monitoring well) were 88 at the deep installation (9.8 feet) and 71 at the shallow installation (7.4 feet). At the southern measuring ports, which are about 250 feet to the south and not covered by the clay cap, meter readings are 71 and 48 for the deep (9.1 feet) and shallow (7.4 feet) ports respectively. Soil moisture is also greater at the northern location for other dates shown in Table 1.
- 2. At both locations, there is decreasing soil moisture content at the depth of the shallow ports. At the southern location, the decrease in meter readings from 72 (12/15/06) to 48 (11/16/07) is larger than the 83 to 71 decrease observed at the northern location for the same dates. Beneath the clay cap, the shallow soil is drying slower than the soil at the southern location.
- 3. At both locations, soil moisture adjacent to the deeper ports (9.8 feet and 9.1 feet in depth) is greater than moisture in the soil at the 7.4 foot horizon. Also, soil moisture below the clay cap at the deeper monitoring horizon is greater than that observed at the southern monitoring location.
- 4. At both locations, the shallow soil is drying while the deeper soil is gaining moisture.

Conclusions

Soil Moisture Measurements Show Chloride Migration Less Than 3 Feet/Year

At both locations, the decreasing moisture content of the shallow port with the increasing moisture content of the deep port suggests a moisture pulse (flux) from the shallow zone to the deeper zone. Because the chloride

is within the pore water, chloride migrates at the same rate as the moisture flux. The downward moisture (and chloride) migration cannot be greater than the distance between the measuring points over the time of observations. This is 2.5 feet in 11 months (less than 3) feet per year) at the northern location and 1.7 feet in 11 months (less than 2 feet per year) at the southern location. Figure C-2 explains the logic supporting this conclusion. At Time 1, the center of mass of chloride (and pore water) is below the upper gypsum block moisture probe. At Time 2, which could represent 11 months later, the center of mass has migrated downward. As the moisture and chloride move downward, portions of the vadose zone above the center of mass dry while the vadose zone below the center of mass gains moisture due to

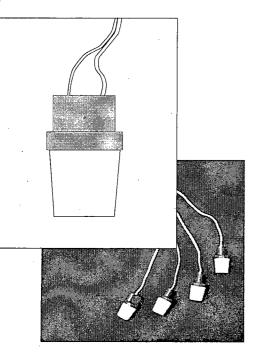
the migration – as shown in the figure. In this example, the migration of the chloride and moisture center of mass is small relative to the distance between the measuring points.

At the southern soil moisture monitoring locations, the rate is less than at the northern monitoring location. This is because the soil is dryer at the southern location and the hydraulic conductivity of the material is therefore lower.

Since the duration of the monitoring has not been sufficiently long to observe a pulse of moisture passing through the instrumented depth interval, the actual rate of moisture movement is may be less than the calculated rates above.

With establishment of vegetation at the site, there will be a further reduction in moisture content of the upper vadose zone. Redistribution of the moisture below this will result in lowered hydraulic conductivities and decreased fluxes throughout the vadose zone.

Table 1: Gypsum Block Moisture Content (gravimetric) Measurements at the Abo 1-G Site.


			North Moni	toring Ports		
		Deep		S	hallow	
Depth (feet)		9.835			7.375	
	SMS Soil Meter Resistance	Cont	ent Moisture ent (SMS sion Graph)	SMS Soil Meter Resistance	Conter	t Moisture It (SMS on Graph) Indio
	Measurement	Hanford Sand	Indio Sandy Loam	Measurement	Hanford Sand	Sandy Loam
Date						
12/15/2006 (installation)	78	> 0.12	> 0.16	83	> 0.12	> 0.16
5/21/2007	81	> 0.12	> 0.16	77	> 0.12	> 0.16
7/12/2007	86	> 0.12	> 0.16	77	> 0.12	> 0.16
11/15/2007	88	> 0.12	> 0.16	71	> 0.12	> 0.16
		Deep	South Moni	toring Ports	hallow	
Depth (feet)		9.08			7.375	
	SMS Soil Meter Resistance Measurement	Equivale Conte Convers	ent Moisture ent (SMS sion Graph) Indio Sandy Loam	SMS Soil Meter Resistance Measurement	Equivalen Conten	
Date				·		
12/15/2006 (installation)	82	> 0.12	> 0.16	72	0.12	0.16
5/21/2007	70	0.12	0.16	50	0.06	0.055
7/12/2007	71	0.12	0.16	50	0.06	0.055
11/15/2007	71	0.12	0.16	48	0.06	0.05

<u>5201F1</u>

OPERATING INSTRUCTIONS

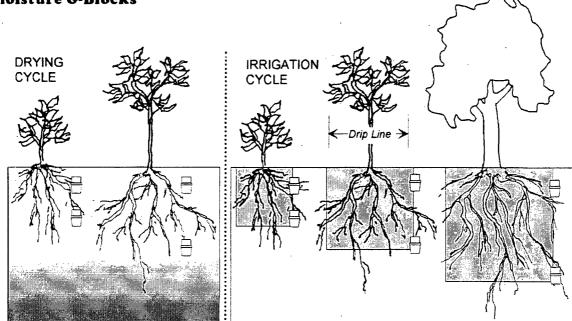
5201F1 Soilmoisture G-Blocks

January 2000

The new Soilmoisture G-Blocks are an evolution in design. They provide quick response and true sensitivity to conditions where moisture remains relatively high. All Soilmoisture G-Blocks are wetted and checked for speed of response and ability to maintain overall consistency from block to block prior to shipping. The new design of electrode spacing ensures a sensitive response to changing moisture conditions below 2 bars of matric suction with overall operation range to 10 bars of matric suction. The new Soilmoisture G-Blocks should provide significant improvements over any competitive blocks or older Soilmoisture blocks.

To properly use the new Soilmoisture G-Blocks, it is important that you reference the new look up tables and formulas at the end of these instructions.

How To Optimize Water Usage Using Soilmoisture G-Blocks Limits Method of Monitoring


There are several methods that can be used to optimize water using Soilmoisture G-Blocks. The first, and easiest, method is the Limits Method of water management. This simple, but effective, method requires that you determine the limits to which you want water to migrate. The plant maturity rooting depth, rooting patterns, and the system of irrigation will help you to determine these limits. Older and less effective irrigation, such as flood or furrow, will have a broader range of water limits. Shallow rooting and precision applicators will have a narrower limit band. Soilmoisture G-Blocks are placed at the minimum water level (also known as minimum refill point) and at the maximum water level (also know as maximum refill point) for irrigation cycles. Frequently, another G-block is placed at a depth past the maximum refill point to ensure irrigation water does not exceed the set minimum maximum limits. Minimum limits may be set as shallow as 3 inches in young or sensitive shallow-rooted plants, and maximums can vary from 12 inches in young plants to 6-8 feet in mature orchards where flood irrigation is practiced. Look for the existing rooting patterns of the plant in question and use the 75% Rule for both vertical depth and lateral distances.

When using this or any other water monitoring system 75% of the rooting volume will be responsible for 95% of the plant's uptake of water and nutrients. Therefore, be careful not to place the Soilmoisture G-Blocks at the deepest possible rooting depth, but more accurately at depths that represent 75-80% of the maximum rooting depth. Rooting volumes and uptake will develop in the areas of specific wetting associated with drippers or spitters. It is, therefore, very important to ensure that 75% of rooted volume will receive sufficient subsurface wetting necessary for its livelihood and maintenance.

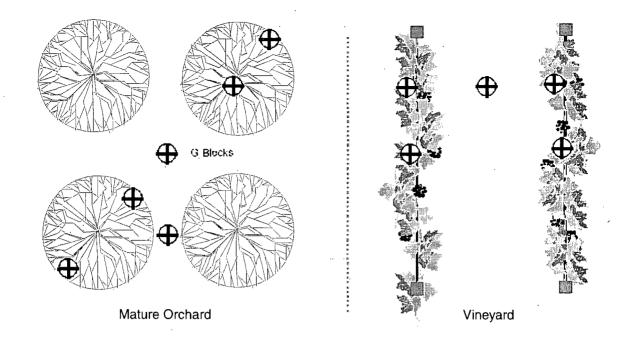
SOILMOISTURE EQUIPMENT CORP. 1 P.O. Box 30025, Santa Barbara, California 93105 USA Phone: (805) 964-3525 · Fax: (805) 683-2189 e-mail: sales@soilmoisture.com · Web: http://www.soilmoisture.com

How to Optimize Water Usage Using Soilmoisture G-Blocks

The first illustration shows the depletion of water from the soil profile due to root uptake and evaporation at the soil surface. This would be typical of drying, accelerated or depressed due to day time temperatures, soil surface conditions, winds, rain, etc. The second illustration shows wetting fronts as they progress from younger to older rooting patterns. Water moving as a wetting front from the surface to some vertical depth is consistent with the time interval that water is applied in the irrigation cycle.

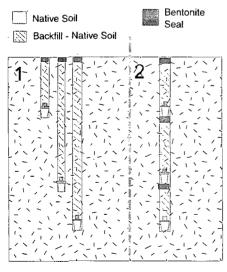
As you can see in the above illustrations, placement of the Soilmoisture G-Blocks is important in achieving best overall results. Not only do you want to place blocks to provide the 75% depth requirement, but you must also consider the lateral extent of rooting. Rule of thumb is that roots commonly do not extend laterally beyond the drip line of the tree or shrub. The drip line is a theoretical maximum diameter equivalent to the largest leaf area from which rain will drip from the overhead leaf canopy of the plant. Once the blocks are in place, you can monitor the wetting front as it passes the limit blocks. Irrigation practices are optimized as you limit timing and, therefore, areas watered to rooting areas only. You will also want to consider modifying less effective irrigation practices such as furrow to drip. You will irrigate based on what the conditions are at near surface and at deepest rooting depths. If, for instance, minimum level blocks show a low moisture content and maximum level blocks show continuing wet conditions, you wouldn't need to irrigate to full depth. You would only need to irrigate to the minimum level depth, or slightly beyond, to refill moisture in upper regions, which means running shorter irrigation cycles. Determination of the time needed to fully refill the profile to minimum level refill point is an important tool in overall water management. The goal is to keep plants within tolerable limits of stress (matric suction), by providing water to most roots (not all) in a scheduled program of full recharge of the soil profile as determined by the limit blocks; and partial recharge of the soil profile to replace shallow drying and root uptake effects.

Matrix/Segmental Method of Monitoring


The Matrix/Segmental Method of monitoring is simply an extension of the Limits concept. By adding additional Soilmoisture G-Blocks between the minimum-maximum limits, you are able to more accurately monitor subsurface moisture due to root uptake, evaporation, and the water release characteristics of different soil types. This added information can be used to more accurately determine the precise level required for partial recharges. Besides the incremental measuring at different depths, you extend a pattern of monitoring points horizontally in a matrix to capture the lateral extent of wetting fronts and to access root withdrawal areas. Placement of Soilmoisture G-Blocks in a matrix of points at defined depth segments can be very useful in optimizing water application systems, such as drip and subsurface emitters, for maximum efficiency.

SOILMOISTURE EQUIPMENT CORP. P.O. Box 30025, Santa Barbara, California 93105 USA Phone: (805) 964-3525 · Fax: (805) 683-2189

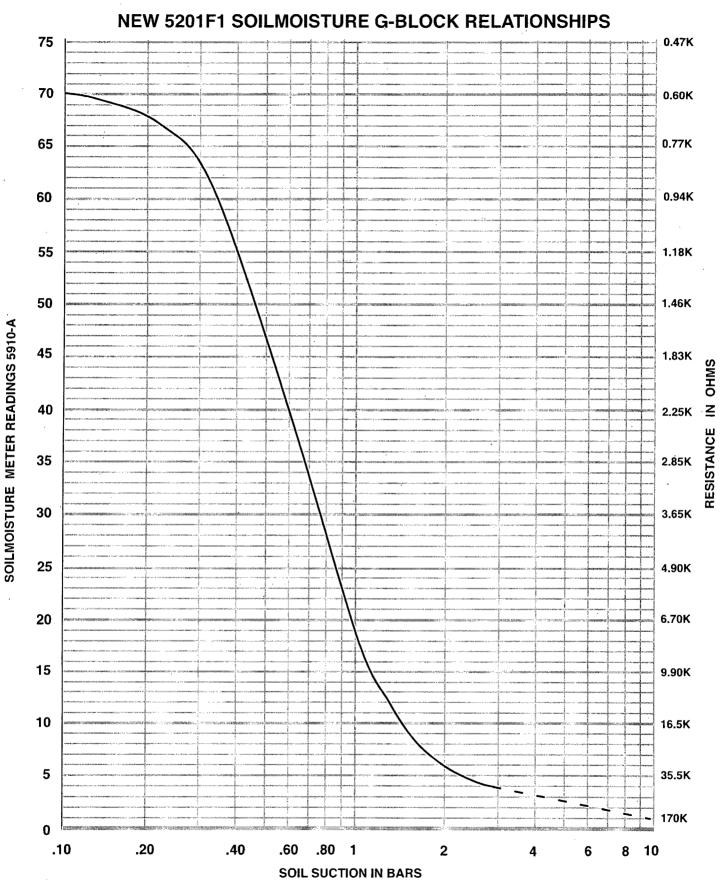
2


e-mail: sales@soilmoisture.com · Web: http://www.soilmoisture.com

In the illustrations above are two typical installations shown in overhead view. In the first case, an orchard with mature trees using spitters, one would want to provide a defined lateral spacing of sensors consistent with spitter spacing, tree spacing, and canopy size. Each sensor spot measures sequential depths of 1 foot, 3 feet, and 6 feet. The matrix pattern of sensors in both vertical and horizontal aspects is used to monitor uniformity of water distribution under the tree, to check for shadow effects from wind, trunk obstructions, or pressure differentials. You will notice that sensing between the trees addresses precise determination of water migration in the subsurface areas beyond the drip line and to assess the residual water content from rain or snow. The second illustration shows sensor placement in a vineyard with the first set of sensors situated along the row at a drip emitter and half way between drippers. Sensors are placed in vertical profile at each location to ensure that a wetting ball is established at drippers and that there is adequate subsurface water migration for all rooted areas. A sensor placed in between rows is used to monitor residual moisture due to rain and/or snow. Soilmoisture G-Blocks used in this prescribed manner can provide a wealth of information, improving irrigation practices, and saving on water and energy costs.

INSTALLATION

In the illustration to the left there are two approaches to installing Soilmoisture G-Blocks. First, there is the school of thought that blocks cannot be situated in the same hole and only placed in separate holes that are close in proximity, best represents the surrounding native soil conditions. The other school of thought is to make a slightly larger hole and that stacking blocks is acceptable, provided a bentonite (swelling clay) cap or heavy compacted clay "seals" each hole.


Steps

- Auger a hole slightly larger than the Soilmoisture G-Blocks to be ina. stalled.
- b. Soak blocks prior to installation for at least ten minutes.
- Prepare a small slurry of native soil and water. c.
- d. Pour slurry into hole.
- Using a broom handle or long pole gently push blocks into the slurry e at the bottom of the hole.
- f. Cover blocks with native soil backfill tamping lightly as you refill hole.
- g. Cap hole with a Bentonite seal or other highly compacted clay plug.
- h. Four to six hours later the hole will be ready for the first reading.

SOILMOISTURE EQUIPMENT CORP.

The relationship between Soilmoisture meter readings and impedance in Ohms is based on a 350 mV step pulse having a frequency of approximately 60 cycles/second. The impedance values in Ohms, as shown, represent a signal/response relationship and that may vary with alternative sources of signal excitation.

.

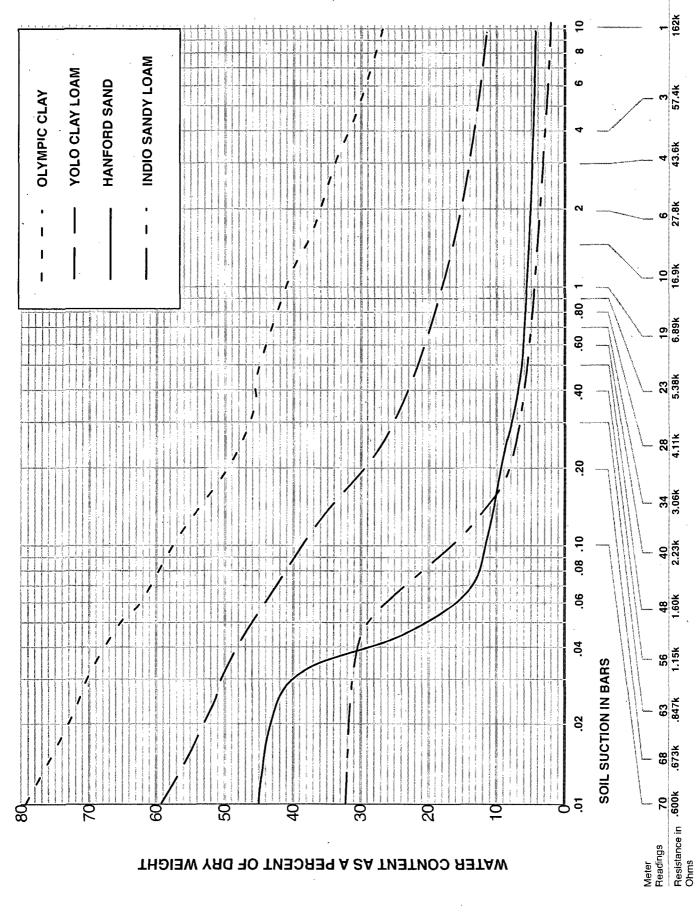
ľ

ł

l

l

I


i

l

Į

I

ł

J

l

l

|--|--|

WITH DEALERS THROUGHOUT THE WORLD, YOU HAVE CONVENIENCE OF PURCHASE AND ASSURANCE OF AFTER-SALES SERVICE.

© Copyright 2000 All rights reserved

l

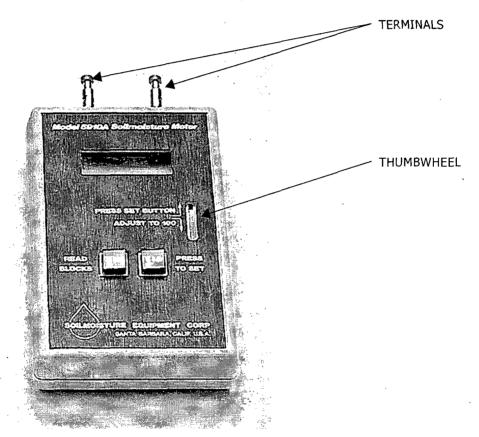
ł

I

I

SOILMOISTURE EQUIPMENT CORP.

6 P.O. Box 30025, Santa Barbara, California 93105 USA Phone: (805) 964-3525 · Fax: (805) 683-2189 e-mail: sales@soilmoisture.com · Web: http://www.soilmoisture.com


0898-5201F1.P65 (1/2000)

TEST PROCEDURE SOIL MOISTURE METER 5910A

- 1. PRESS THE "PRESS TO SET" BUTTON AND ADJUST THUMBWHEEL TO GET A READING OF 100 ON LCD.
- 2. PUT A SHORT ACROSS TERMINALS AND PRESS "READ BLOCKS" BUTTON.
- 3. READING ON LCD MUST BE 102 (+/- 2)
- 4. PUT A RESISTANCE OF 2,870 Ω ACROSS TERMINALS AND PRESS "READ BLOCKS" BUTTON
- 5. READING ON LCD MUST BE 35 ON LCD (+/- 2)

- 6. IF ABOVE TEST DOES NOT MEET THE REQUIRED RESULTS, THE METER NEEDS TO BE RECALIBRATED AT SOILMOISTURE EQUIPMENT CORP.
- 7. REQUEST A RMA FOR RETURNING THE METER BY CALLING 805-964-3525 EXT 248

Soilmoisture Equipment Corp. P.O. Box 30025 Santa Barbara CA 93130

X

I

Phone: 805-964-3525 Fax: 805-683-2189 e-mail: sales@soilmoisture.com