GW - ___028___

ABOVE GROUND TANK SCHEDULE

DATE:

01/14/09

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Thursday, December 01, 2011 7:15 AM
То:	'Moore, Darrell'; Krueger, Pamela; Tsinnajinnie, Leona, NMENV; Cobrain, Dave, NMENV
Cc:	Dade, Randy, EMNRD; Lackey, Johnny; Spence, Richard (Trampas); VonGonten, Glenn, EMNRD
Subject:	RE: TK-401 Leak
Attachments:	API 653.pdf; listing_of_standards_and_practices.pdf; AST Repair.doc

Darrell:

The propose method of tank repair does not appear to be consistent with API-653 and/or other applicable professional AST guidelines for tank repairs based on the type and volume of refinery tank. In addition, the repairs shall comply with the requirements stipulated in the OCD discharge permit (GW-028) for retrofitting or upgrading the tank to acceptable standards.

Please find attached some references to acceptable practices for tank repairs and provide the agencies with reference to the proper guidelines that the tank will be repair to. Once the repairs are completed, provide the schematic with references of the reconstructed tank for the OCD's tank records.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Moore, Darrell [mailto:Darrell.Moore@hollyfrontier.com]
Sent: Tuesday, November 29, 2011 10:41 AM
To: Chavez, Carl J, EMNRD; Krueger, Pamela; Tsinnajinnie, Leona, NMENV; Cobrain, Dave, NMENV
Cc: Dade, Randy, EMNRD; Lackey, Johnny; Spence, Richard (Trampas)
Subject: RE: TK-401 Leak

Carl et al,

Typically, there are no engineering drawings done for tank repairs. Obviously, when a new tank is built, there will be engineered drawings to build the tankbut not for repairs. The lower floor will be repaired using cork and silicon to seal the holes. Four (4) inches of gravel will then be added on top of the lower floor. A brand new steel floor will then be welded into place on top of the gravel. Weep holes (tattle tales) will be added between the two floors for leak detection.

After the new floor has been welded into place, the tank will be hydrotested with fresh groundwater to ensure mechanical integrity. The tank will then be placed back into service.

Materials and crews have been ordered to start this work Monday, December 5, 2011. If there are any questions about this approach, please call me at 575-746-5281 or at my email address.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Tuesday, November 22, 2011 4:30 PM
To: Krueger, Pamela; Moore, Darrell; Tsinnajinnie, Leona, NMENV; Cobrain, Dave, NMENV
Cc: Dade, Randy, EMNRD
Subject: RE: TK-401 Leak

Pam and Darrell:

I think NMED can respond to the AOC; active remediation based on the chemicals of concern; and/or monitoring downgradient from the tank in question.

OCD requests and engineering drawing to determine how the tank will actually be repaired, since it seems like patch work is the plan bases on the LEL and safety concerns. OCD thinks there needs to be competent lower plate, LDS, with another well designed plate above the LDS with an MIT that verifies no leakage to the LDS in order to restore the tank to working order.

Based on the above, the operator can propose an alternative to the above to the agencies.

I'll be back in next Tuesday, November 29, 2011 at 6:30 a.m. NMED should respond tomorrow before the holiday, and if not, maybe by November 28, 2011.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Krueger, Pamela [mailto:pam.krueger@arcadis-us.com]
Sent: Tuesday, November 22, 2011 2:52 PM
To: Moore, Darrell; Chavez, Carl J, EMNRD; Tsinnajinnie, Leona, NMENV
Cc: Dade, Randy, EMNRD
Subject: RE: TK-401 Leak

Tank 401 is already included in the Permit under AOC3 – Southeast Tank Farm. That AOC is included in AOC Group 1. MW-28 is on the downgradient side of the Southeast Tank Farm, almost due east of Tank 401. This well is sampled semiannually and the analyte list includes GRO, DRO, Volatiles, metals and cyanide. **Pamela R. Krueger** | Senior Project Manager | <u>pam.krueger@arcadis-us.com</u> ARCADIS U.S., Inc. | 2929 Briarpark Dr. Suite 300 | Houston, TX 77042 T. 713.953.4816 | M. 713.249.8548 | F. 713.977.4620 <u>www.arcadis-us.com</u> ARCADIS, Imagine the result

From: Moore, Darrell [mailto:Darrell.Moore@hollyfrontier.com]
Sent: Tuesday, November 22, 2011 3:32 PM
To: Chavez, Carl J, EMNRD; Tsinnajinnie, Leona, NMENV
Cc: Dade, Randy, EMNRD; Krueger, Pamela
Subject: RE: TK-401 Leak

Et al

We have gotten into this tank and are having problems with LEL levels. The LEL levels are making it unsafe to do any cutting of the floor so that we could perform the path forward delineated below. Obviously, there is some amount of contamination below the tank. Since we cant cut the floor safely, even using water, we would like to propose a modified path forward.

- 1) We will plug all holes in the current floor of the tank. This should isolate whatever contamination is under the tank and allow us to get the LEL's down to a safe level.
- 2) We will then cover the floor with 4" of pea gravel and install a new steel floor in the tank.
- 3) The below path forward mentions MW-99 as being a monitor well to watch. That monitor well is actually WEST of TK 401 and will probably not be relevant to this issue. That was my mistake. However, MW-28 is about 300 ft due east of TK-401 and we can monitor that well for any trends in VOC's. MW-66 is also east of TK-401, but just south of due east.

Since we cant safely approach this any other way, this may be a candidate to be included in our postclosure permit as an Area of Concern (AOC).

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Thursday, November 10, 2011 7:48 AM
To: Tsinnajinnie, Leona, NMENV
Cc: Moore, Darrell; Dade, Randy, EMNRD
Subject: FW: TK-401 Leak

Leona:

I spoke with Darrell Moore this morning about the leak and a path forward as requested in his e-mail on 11/8.

The path forward is:

1) Remove the section where the double pinhole leak is located (NW Quadrant of Tank within 3 ft. of cement ring wall (note: no liner exists beneath the tank) and hand auger down to 10 ft. and assess cuttings and PID readings for gross contamination assessment. A bottom hole sample collected using EPA QA/QC and DQO protocols will be analyzed for TPH and VOCs.

2) The closest MW (MW-99) is located about 300 yds E-NE of Tank will be evaluated for increasing trends of VOCs.

3) The Prax-Aire monitoring was implemented about a year ago and there were no indications of a leak at that time according to Darrell. Prax-Aire was called out recently again and detected a leak, but it was the stained soils from the tattle-tale leak leak detection system in the concrete ringwall beneath the tank that indicated that there was a leak.

4) The operator will notify the NMED and OCD before the augering is to be performed. Based on this work, the agencies will need to determine whether active remediation and another MW positioned down gradient is warranted. Darrell indicated that this area was not in a SWMU.

Please chime in if you have comments and/or recommendations at this time. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Chavez, Carl J, EMNRD Sent: Tuesday, November 08, 2011 7:24 AM To: Tsinnajinnie, Leona, NMENV Subject: FW: TK-401 Leak

Leona:

I'm wondering if this is the tank with the liner connected to the inner ring-wall of the tank concrete base? Also, I though Navajo had a liquid level alarm to detect product loss or some method to gauge the tanks for possible loss?

I'm reading up on napthas now to see about contaminant hydrogeology and monitoring..... I'll get back with you soon to discuss.

Thanks.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Moore, Darrell [mailto:Darrell.Moore@hollyfrontier.com] Sent: Tuesday, November 08, 2011 7:00 AM To: Chavez, Carl J, EMNRD; Tsinnajinnie, Leona, NMENV Subject: TK-401 Leak

Carl and Leona

Ive attached the C-141 and a few photos of a leak we had in a gasoline tank (Tk-401). This C-141 and the pictures were sent to OCD and NMED on October 7, 2011. We have emptied the tank and found a small hole in the floor in the northwest quadrant and that will be repaired. We have cleaned up the part of the spill that can be reached. Obviously we cant clean up the spill that is under the tank. So Im looking for guidance from OCD and NMED about a path going forward. Do we put this area on the AOC list in our post-closure permit and deal with it that way?

Darrell Moore

Environmental Manager for Water and Wastec The Holly Frontier Companies Navajo Refining Company, LLC 501 E Main PO Box 159 Artesia NM 88211-0159 Phone: 575-746-5281 Cell: 575-703-5058 CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged and confidential. If you received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates. Nothing herein is intended to constitute the offering or performance of services where otherwise restricted by law.

ŀ

List of Frequently Utilized Storage Tank Standards and Practices

Below is a list of frequently used storage tank standards and practices from organizations that are referenced in 25 PA Code, Chapter 245. There may be other applicable standards. The current (or most recent) edition/revision of a publication should be used.

	American Petroleum Institute
Number (ID)	Title &/or Description
Construction Star	idards:
API Spec 12D	Specifications for Field Welded Tanks for Storage of Production Liquids
API Spec 12F	Shop Welded Tanks for Storage of Production Liquids
API Spec 12P	Specifications for Fiberglass Reinforced Plastic Tanks
API Std 620	Design and Construction of Large, Welded, Low Pressure Storage Tanks
API Std 650	Welded Steel Tanks for Oil Storage (Replaced several API 12 series Spec's)
API Std 2000	Venting Atmospheric and Low-pressure Storage Tanks
API Std 2610	Design, Construction, Operation, Maintenance, and Inspection of Terminal & Tank Facilities
	rds: (Includes Construction Alteration, and Reconstruction Standards)
API Std 510	Pressure Vessel Inspection Code (Maintenance Inspection, Rating, Repair and Alteration)
API Std 570	Inspection, Repair, Alteration, and Rerating of In-Service Piping Systems
API Std 653	Tank Inspection, Repair, Alteration, and Reconstruction
API Std 2015	Requirements for Safe Entry & Cleaning of Petroleum Storage Tanks
Recommended Pr	
API RP 12H	Installation of New Bottoms in Old Storage Tanks
API RP 12R	Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service
API RP 574	Inspection Practices for Piping System Components
API RP 575	Inspection of Atmospheric and Low Pressure Storage Tanks
API RP 580	Risk Based Inspection
API RP 651	Cathodic Protection of Aboveground Petroleum Storage Tanks
API RP 652	Lining of Aboveground Petroleum Storage Tank Bottoms
API RP 1107	Pipeline Maintenance Welding Practices
API RP 1110	Pressure Testing of Liquid Petroleum Pipelines
API RP 1604	Closure of Underground Petroleum Storage Tanks
API RP 1615	Installation of Underground Petroleum Storage Systems
API RP 1626	Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Service Stations
API RP 1627	Storing and Handling of Gasoline-Methanol/Cosolvent Blends at Distribution Terminals and Service Stations
API RP 1631	Interior Lining and Periodic Inspection of Underground Storage Tanks
API RP 1632	Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems
API RP 1637	Using the API Color-Symbol System to Mark Equipment and Vehicles for Product Identification at Gasoline Dispensing Facilities and Distribution Terminals
API RP 2003	Protection Against Ignitions Arising Out of Static, Lightning and Stray Currents
API RP 2016	Guidelines for Entering and Cleaning Petroleum Storage Tanks

	American Petroleum Institute
Number (ID)	Title &/or Description
API RP 2027	Ignition Hazards Involved in Abrasive Blasting of Atmospheric Storage Tanks in Hydrocarbon Service
API RP 2350	Overfill Protection for Storage Tanks in Petroleum Facilities
Other Publication	IS:
API – 334	A Guide to Leak Detection for Aboveground Storage Tanks
API Pub 2009	Safe Welding, Cutting and Hot Work Practices in the Petroleum and Petrochemical Industries
API Pub 2200	Repairing Crude Oil, Liquefied Petroleum Gas, and Product Pipelines
API – 2207	Preparing Tank Bottoms for Hot Work
API Pub 2217A	Guidelines for Work in Inert Confined Spaces in the Petroleum Industry

•

	Petroleum Equipment Institute
Number (ID)	Title &/or Description
Recommended P	ractices:
PEI RP 100	Recommended Practices for Installation of Underground Liquid Storage Systems
PEI RP 200	Recommended Practices for Installation of Aboveground Storage Systems for Motor Vehicle Fueling

	National Leak Prevention Association
Number (ID)	Title &/or Description
Recommended P	ractices:
NLPA Std 631	Entry, Cleaning, Interior Inspection, Repair and Lining of Underground Storage Tanks

Number (ID)	NACE International – The Corrosion Society Title &/or Description
Inspection Standa	ards:
NACE TM 01-01	Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Tank Systems
NACE TM 04-97	Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems
Recommended P	ractices:
NACE 1/SSPC- SP5	Steel Structures Painting Council: "White Metal Blast Cleaning"
NACE 2/SSPC- SP10	Steel Structures Painting Council: "Near White Metal Blast Cleaning"
NACE 3/SSPC- SP6	Steel Structures Painting Council: "Commercial Blast Cleaning"
NACE 4/SSPC- SP7	Steel Structures Painting Council: "Brush Off Cleaning"
NACE 10/SSPC- PA6	Steel Structures Painting Council: "Fiberglass-Reinforced Plastic (FRP) Linings Applied to Bottoms of Carbon Steel Aboveground Storage Tanks"
NACE RP 0169	Control of External Corrosion on Underground or Submerged Metallic Piping Systems

NACE International – The Corrosion Society	
Number (ID)	Title &/or Description
NACE RP 0172	Surface Preparation of Steel and Other Hard Materials by Water Blasting Prior to Coating or Recoating
NACE SP 0177	Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems
NACE RP 0178	Design, Fabrication, and Surface Finish of Metal Tanks and Vessels to be Lined for Chemical Immersion Service
NACE RP 0184	Repair of Lining Systems
NACE RP 0187	Design Considerations for Corrosion Control of Reinforcing Steel in Concrete
NACE SP 0188	Discontinuity (Holiday) Testing of New Protective Coatings on Conductive Substrates
NACE RP 0193	External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms
NACE RP 0275	Application of Organic Coatings to the External Surface of Steel Pipe for Underground Service
NACE RP 0285	Corrosion Control of Underground Storage Tank Systems by Cathodic Protection

	National Fire Protection Association
see also 37 PA	A Code Chapters 11 and 13, Flammable & Combustible Liquids Handbook
Number (ID)	Title &/or Description
Construction Star	ndards:
NFPA 70 (NEC)	National Electric Code®
NFPA 30	Flammable and Combustible Liquids Code
NFPA 30A	Motor Fuel Dispensing Facilities and Repair Garages
NFPA 303	Marinas and Boatyards
Recommended P	ractices:
NFPA 77	Static Electricity
NFPA 326	Safeguarding Tanks and Containers for Entry, Cleaning or Repair

Underwriters Laboratories			
Number (ID)	Title &/or Description		
Construction Stan	Construction Standards:		
UL Std 58	Standards for Steel Underground Tanks for Flammable and Combustible Liquids		
UL Std 142	Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids		
UL Std 567	Standard for Emergency Breakaway Fittings, Swivel Connectors and Pipe- Connection Fittings for Petroleum Products and LP-Gas		
UL Std 842	Standard for Valves for Flammable Fluids		
UL Std 860	Standard for Pipe Unions for Flammable and Combustible Fluids and Fire		
UL Std 971	Standard for Nonmetallic Underground Piping for Flammable Liquids		
UL Std 1316	Glass-Fiber-Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohol and Alcohol-Gasoline Mixtures		
UL Std 1746	Standard for External Corrosion Protection Systems for Steel Underground Storage Tanks		
UL Std 2085	Standard for Protected Aboveground Tanks for Flammable and Combustible Liquids		
UL Std 2245	Standard for Below-grade Vaults for Flammable Liquid Storage Tanks		

	American National Standards Institute
Number (ID)	Title &/or Description
Construction Sta	ndards:
ASME B31.3	American Society of Mechanical Engineers: "Process Piping"
ASME B31.4	American Society of Mechanical Engineers: "Liquid Transportation Systems for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia and Alcohols"
Recommended P	ractices:
ASSE Z117.1	American Society of Safety Engineers: "Safety Requirements for Confined Spaces"

<u>,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	American Society for Testing and Materials
Number (ID)	Title &/or Description
Construction Star	ndards:
ASTM A182/A182M	Standard Specification for Forged or Rolled Alloy Stainless Steel Pipe Flanges, Forged Fittings and Valves and Parts for High-Temperature Service
ASTM D2996	Standard Specification for Filament-Wound Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe
ASTM D4097	Standard Specification for Contact-Molded Glass-Fiber-Reinforced Thermoset Resin Corrosion Resistant Tanks
ASTM D5685	Standard Specification for Fiberglass (Glass-Fiber-Reinforced Thermosetting- Resin) Pressure Pipe Fittings
Recommended P	ractices:
ASTM E797	Standard Practice for Measuring Thickness by Manual Ultrasonic Pulse-Echo Contact Method
ASTM D2794	Standard Test Method for Resistance of Organic Coatings on the Effects of Rapid Deformation (Impact)

	Steel Tank Institute	
Number (ID)	Title &/or Description	
Construction Stan	dards:	
STI P3	Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks	
STI F841	Standard for Dual Wall Underground Steel Storage Tanks	
STI F894	Act-100® Specification For External Corrosion Protection of FRP Composite Steel USTs (See also Association of Composite Tanks)	
STI F921®	F921® Standard for Aboveground Tanks with Integral Secondary Containment	
STI F922	Specification for Permatank®	
STI F941	Standards for Fireguard® Thermally Insulated Aboveground Storage Tanks	
STI R951	Specification for Tanks Using Low Levels of Pressure in the Tanks Interstice	
STI F961	ACT-100U Specification for External Corrosion Protection of Composite Steel Underground Storage Tanks	
Inspection Standa	rds:	
STI SP001	Standard for Inspection of In-Service Shop Fabricated Aboveground Tanks for Storage of Combustible and Flammable Liquids	
Recommended Pr	actices:	
STI SP031	Standard for Repair of In-Service Shop Fabricated Aboveground Tanks for Storage of Combustible & Flammable Liquids	

Steel Tank Institute		
Number (ID)	Title &/or Description	
STI R821	sti-P3 Installation Instructions	
STI R891	RP for Hold Down Strap Isolation	
STI R892	RP for Corrosion Protection of Underground Piping Networks Associated with	
	Liquid Storage and Dispensing Systems	
STI R912	Installation Instructions for Shop Fabricated Aboveground Storage Tanks for	
	Flammable, Combustible Liquids	
STI R913	Act-100® Installation Instructions	
STI R923	Permatank® Installation Instructions	
STI R931	F921® Installation Instructions	
STI R942	Fireguard® Installation & Testing Instructions for Thermally Insulated,	
	Lightweight, Double Wall Fireguard Aboveground Storage Tanks	
STI R971	ACT-100-U® Installation Instructions	
STI R972	RP for the Addition of Supplemental Anodes to sti-P3® USTs	

and the second second

	Steel Structures Painting Council
	see also NACE International
Number (ID)	Title &/or Description
Recommended P	ractices:
	SSPC Painting Manual volume I
	SSPC Painting Manual volume II

Association of Composite Tanks				
Number (ID)	Title &/or Description			
Construction Sta	ndards:			
ACT 100	Specification for the Fabrication of FRP Clad Underground Storage Tanks			

	Fiberglass Petroleum Tank and Pipe Institute
Number (ID)	Title &/or Description
Recommended Pra	actices:
FPTP 1	Fiberglass Piping Systems Installation Check List for Underground Petroleum Pipe
FTPI RP T-95-02	Remanufacturing of Fiberglass Reinforced Plastic (FRP) Underground Storage Tanks

	American Concrete Institute	
Number (ID)	Title &/or Description	
Recommended P	ractices:	
ACI 350	Environmental Engineering Concrete Structures	

· •

BODY OF KNOWLEDGE API-653 ABOVEGROUND STORAGE TANK INSPECTOR CERTIFICATION EXAMINATION

November 2007 (Replaces November 2006)

API Authorized Aboveground Storage Tank Inspectors must have a broad knowledge base relating to tank inspection and repair of aboveground storage tanks. The API Aboveground Storage Tank Inspector Certification examination is designed to identify individuals who have satisfied the minimum qualifications specified in API Standard 653, <u>Tank Inspection, Repair</u>, <u>Alteration, and Reconstruction</u>.

The examination consists of two parts. The closed book part tests the candidate on knowledge and tasks requiring everyday working knowledge of API Standard 653 and the applicable reference documents. The open book portion of the examination requires the use of more detailed information that the inspector is expected to be able to find in the documents, but would not normally be committed to memory.

REFERENCE PUBLICATIONS:

A. API Publications

API Recommended Practice 571, Damage Mechanisms Affecting Equipment in Refining Industry **API Recommended Practice 577**, Welding Inspection and Metallurgy

API Recommended Practice 575, *Inspection of Atmospheric and Low-Pressure Storage Tanks* **API Standard 650**, *Welded Steel Tanks for Oil Storage*

API Recommended Practice 651, Cathodic Protection of Aboveground Petroleum Storage Tanks

API Recommended Practice 652, *Lining of Aboveground Petroleum Storage Tank Bottoms* **API Standard 653**, *Tank Inspection, Repair, Alteration, and Reconstruction*

B. ASME Publications

American Society of Mechanical Engineers (ASME) Boiler & Pressure Vessel Code: Section V, Nondestructive Examination Section IX, Welding and Brazing Qualifications

Note: Refer to the Publications Effectivity Sheet in the application package for a list of which editions, addenda, and supplements of the reference publications are effective for your exam.

11/07 Page 1

I. CALCULATIONS & TABULAR EVALUATIONS FOR EVALUATING THICKNESS MEASUREMENTS, WELD SIZES, AND TANK INTEGRITY

(NOTE: Paragraph references for all formulas and calculations listed here should be checked for accuracy to the edition, addenda, or supplement for the examination you plan to take per the Publication Effectivity Sheet in the API Examination Application.)

- NOTE: Candidates are expected to be able to understand SI units (metric system) and the US customary units (inches, feet, PSI, etc.) and to use both system formulas.
- A. Calculation questions will be oriented toward existing tanks, not new tanks. API Authorized AST Inspectors should be able to check and perform calculations included in the following categories:

1. CORROSION RATES AND INSPECTION INTERVALS (API-575, Paragraph 7.6)

The Inspector should be able to take inspection data and determine the internal and external inspection intervals. These calculations could be in either the "open book" or "closed book" portion of the exam. The Inspector must be able to calculate:

- a. Metal Loss (including corrosion averaging API-653, Section 4)
- b. Corrosion Rates
- c. Remaining Life
- d. Remaining Corrosion Allowance (API-653, Section 6)
- e. Inspection Interval (API-653, Section 6)

Remaining life (years) = $t_{actual} - t_{minimum}$

corrosion rate [inches (millimeters per year]

Where:

t_{actual} = the thickness, in inches (millimeters), recorded at the time of inspection for a given location or component.

t minimum = minimum allowable thickness, in inches (millimeters), for a given location or component.

 $Corrosion rate = t_{previous} - t_{actual}$

years between t actual and t previous

 $t_{previous} =$ the thickness, in inches (millimeters), recorded at the same location as t_{actual} measured during a previous inspection.

The formulas for performing the above calculations and rules for setting the inspection intervals may be "closedbook" during the exam. The inspector should also be able to compensate for the corrosion allowance. (Add or subtract based on requirements from the exam problem.)

2. JOINT EFFICIENCIES

The inspector must be able to determine the joint efficiency, "E", of a tank weld. Inspector should be able to determine:

a. Joint Types (API-653 Section 4, Table 4-2)

- b. Type and extent of radiography performed (API 653, Table 4-2, Section 12; API 650, Section 6.1, Figure 6-1)
- c. Joint efficiency by reading API-653, Table 4-2

Determining joint efficiency may be part of a minimum thickness or maximum fill height problem since joint efficiency, "E", is used in the formulas for determining required thickness. (API-653, 4.3.3.1)

3. MAXIMUM FILL HEIGHT (HYDROSTATIC TESTING)

The inspector should be able to determine the maximum liquid height for a tank. To determine the height, the "t $_{min}$ " formula in API-653 is rearranged as follows. This formula will be provided in the exam. The inspector is <u>NOT</u> expected to derive this formula by using transposition.

a. Calculate the minimum allowable thickness per Section 4 of API 653 or the maximum fill height in the localized corroded area per:

$$H = \left(\frac{S \times E \times t \min}{2.6 \times D \times G}\right)$$

b. Calculate the minimum allowable thickness per Section 4 of API 653 or the maximum fill height for an entire shell course per:

$$H = \left(\frac{S \times E \times t \min}{2.6 \times D \times G}\right) + 1$$

4. WELD SIZES FOR SHELL & ROOF OPENINGS

The inspector should be familiar with determining the sizes and spacing of welds for shell openings to the extent of being able to use the information in the following Figures and Tables:

- a) API-650, Figures 3-4A, 3-4B, 3-5, 3-6, 3-9, 3-11, 3-13, 3-14, 3-16, 3-17, 3-18
- b) API-650, Tables 3-6, 3-7, 3-9
- c) API-653, Figures 9-1, 9-2, 9-3A, 9-3B

5. HOT TAPPING

- a) The Inspector should be familiar with the Hot Tapping requirements. (API-653, Paragraph 9.14)
- b) The inspector should be able to calculate the minimum spacing between an existing nozzle and a new hot tap nozzle. (API-653 Paragraph 9.14.3)

6. SETTLEMENT EVALUATION

The Inspector should be able to calculate the maximum allowed settlement for the following:

- a) Edge Settlement (API-653 Appendix B.2.3, fig. B-5)
- b) Bottom Settlement Near the Tank Shell (API-653, Appendix B.2.4, Figures B-6, B-7, B-9 B-10, B-11, B-12)
- c) Localized Bottom Settlement Remote from the Tank Shell (API-653, B.2.5, Fig. B-8)
- 7. NUMBER OF SETTLEMENT POINTS

11/07 Page 3 a) The inspector should be able to calculate the number of survey points for determining tank settlement. (API-653 12.5.1.2, Appendix B, Figure B-1, Figure B-2)

8. IMPACT TESTING

The inspector should understand the importance of tank materials having adequate toughness. The inspector should be able to determine:

- a) Tank design metal temperature (API-650, 2.2.9.3 & Figure 2-2)
- b) Material Group Number for a plate (API-650, Tables 2-3a and 2-3b)
- c) If impact testing is required (API-650, Figure 2-1)
- d) If impact test values are acceptable (API-650, Table 2-4)

9. EXISTING TANK SHELL - MINIMUM THICKNESS

- a) Calculate "S", allowable stress (API-653, 4.3.3.1 & 4.3.4.1)
- b) Determine "E", Joint efficiency (API-653, 4.3.3.1, 4.3.4.1 & Tables 4-2 & 4-3)
- c) Determine "H", liquid height (API-653, 4.3.3.1 & 4.3.4.1)
- d) Calculate- minimum acceptable thickness (API-653, 4.3.3.1 & 4.3.4.1)
- e) Calculate the thickness required for continued service (API-653, 4.3.3.1 & 4.3.4.1)

10. RECONSTRUCTED TANK SHELL - MINIMUM THICKNESS

The inspector should be able to determine the minimum thickness of the shell of a reconstructed tank. The inspector should be able to:

- a) Determine "S_d", allowable stress for design condition (API-650, table 3-2, API-653, 8.4.2)
- b) Determine "St", allowable stress for hydrostatic test condition (API-650, Table 3-2, API-653, 8.4.3)
- c) Calculate "t_d", design shell thickness (API-650, 3.6.3.2, for tanks of 200 foot diameter and smaller)
- d) Calculate " t_i ", hydrostatic test shell thickness (API-650, 3.6.3.2)

11. TANK SHELL - CORRODED AREA

The inspector should be able to determine if a tank shell corroded area is acceptable for continued service. The inspector should be able to:

- a) Select "t₂", minimum thickness exclusive of pits for a corroded area (API-653, 4.3.2.1.a & Figure 4-1)
- b) Calculate "L", critical length for a corroded area (API-653, 4.3.2.1.b & Figure 4-1)
- c) Determine "t₁", average thickness for a corroded area (API-653, 4.3.2.1.c, 4.3.2.1.d, Figure 4-1)
- d) Determine "t_{min}" for the corroded area "H", height and "E", joint efficiency will be based on corroded area (API-653, 4.3.3.1)
- e) Determine if " t_1 " and " t_2 " are acceptable (API-653, 4.3.3.1.a & .b)

12. TANK SHELL - PITTING

The inspector should be able to evaluate a pitted area. The inspector should be able to:

- a) Calculate maximum acceptable pit depth (API-653, 4.3.2.2.a)
- b) Determine the maximum length of pits in any 8" vertical length (API-653, 4.3.2.2.b & Figure 4-2)

13. BOTTOM PLATE MINIMUM THICKNESS

The inspector should be able to determine if the bottom thickness is acceptable for continued service. The inspector should be able to:

Calculate "MRT₁" & "MRT₂", minimum remaining thickness at the next inspection. (API-653, 4.4.7.1) Calculate "O", maximum period of operation. These formulas will be provided in the exam.

14. REPLACEMENT PLATES

a) The inspector should be able to determine the minimum dimensions for a replacement plate. (API-653, Figure 9-1)

15. LAP WELDED PATCH PLATES

Per API-653, Paragraph 9.3 the inspector should be able to determine:

- a) The minimum thickness
- b) The minimum weld size
- c) The allowable size of the patch plate
- B. Typical code calculations and requirements that candidates will <u>NOT</u> be expected to know for purposes of the certification examination.
 - 1. Required thickness calculations for wind, earthquake, and small internal pressures;
 - 2. Nozzle calculations for external loads;
 - 3. Flange calculations;
 - 4. Brazing requirements;
 - 5. Calculating venting requirements;
 - 6. Ladder, stairway, and other structural type calculations;
 - 7. Calculations for bottoms supported by grillage;
 - 8. Variable point method calculations

II. WELDING ON ATMOSPHERIC ABOVEGROUND STORAGE TANKS

ASME Section IX, Welding and Brazing Qualifications

(NOTE: Candidiates should be familiar with the basic requirements for <u>welding</u> qualifications for procedures and <u>welding</u> personnel contained in ASME Section IX. Brazing is <u>NOT</u> covered on the examination.)

A. The inspector should have the knowledge and skills required to review a Procedure Qualification Record and a Welding Procedure Specification or to answer questions requiring the same level of knowledge and skill. Questions covering the specific rules of Section IX will be limited in complexity and scope to the SMAW and SAW welding processes.

- 1) Questions will be based on:
 - a) No more than one process
 - b) Filler metals limited to one
 - c) Essential, non-essential, variables only will be covered
 - d) Number, type, and results of mechanical tests
 - e) Base metals limited to P1
 - f) Additional essential variables required by API-650 or API-653
- 2) The following are specifically excluded:
 - a) Dissimilar base metal joints
 - b) Supplemental powdered filler metals and consumable inserts
 - c) Special weld processes such as corrosion-resistant weld metal overlay, hard-facing overlay, and dissimilar metal welds with buttering
 - d) Charpy impact requirements and supplementary essential variables
 - e) Any PQR and WPS included on the examination will not include heat treatment requirements.

B. The inspector should know that the WPS must reference the applicable PQR and that the PQR must be signed and dated.

- C. API-650 and API-653: General welding requirements:
 - 1) API Standard 650, *Welded Steel Tanks for Oil Storage:* The inspector should be familiar with and understand the general rules for welding in API-650, Section 7 and other rules for welding in API-650 such as those for:
 - a) typical joints and definitions
 - b) weld sizes
 - c) restrictions on joints
 - d) maximum allowable reinforcement
 - e) inspection requirements
 - 2) API Standard 653, *Tank Inspection, Repair, Alteration, and Reconstruction:* The inspector should be familiar with and understand the general rules for welding in API-653, Section 11.

III. NONDESTRUCTIVE EXAMINATION

ASME Section V, Nondestructive Examination

NOTE: The examination will cover only the main body of each referenced Article, except as noted:

- A. Article 1, General Requirements: The inspector should be familiar with and understand:
 - 1) The Scope of Section V,
 - 2) Rules for use of Section V as a referenced Code,
 - 3) Responsibilities of the Owner / User, and of subcontractors,
 - 4) Calibration,
 - 5) Definitions of "inspection" and examination",
 - 6) Record keeping requirements.
- B. Article 2, Radiographic Examination: The inspector should be familiar with and understand:
 - 1) The Scope of Article 2 and general requirements,
 - 2) The rules for radiography as typically applied on butt welded AST horizontal and vertical seams such as, but not limited to:
 - required marking type, selection, number, and placement of IQIs, allowable density control of backscatter radiation location markers
 - 3) Records

C. Article 6, Liquid Penetrant Examination, Including Mandatory Appendix II: The inspector should be familiar with and understand:

- 1) The Scope of Article 6,
- 2) The general rules for applying and using the liquid penetrant method such as but not limited to:
- a) procedures
- b) contaminants
- c) techniques
- d) examination
- e) interpretation
- f) documentation
- g) record keeping
- D. Article 7, Magnetic Particle Examination (Yoke and Prod techniques only, excluding paragraphs T-765 and T-766):

The inspector should be familiar with and understand the general rules for applying and using the magnetic particle method such as but not limited to:

- 1) The Scope of Article 7,
- 2) General requirements such as but not limited to requirements for:
- a) procedures
- b) techniques (Yoke and Prod only)
- c) calibration
- d) examination

- . e) interpretation
- 3) Documentation and record keeping

E. Article 23, Ultrasonic Standards, Section SE–797 only – Standard practice for measuring thickness by manual ultrasonic pulse-echo contact method:

The inspector should be familiar with and understand;

- 1) The Scope of Article 23, Section SE-797,
- 2) The general rules for applying and using the Ultrasonic method
- 3) The specific procedures for Ultrasonic thickness measurement as contained in paragraph 7.

F. API-650 and API-653: General nondestructive examination requirements:

- 1) API Standard 650, *Welded Steel Tanks for Oil Storage:* The inspector should be familiar with and understand the general rules for NDE in API-650, Section 6.
- 2) API Standard 653, *Tank Inspection, Repair, Alteration, and Reconstruction:* The inspector should be familiar with and understand the general rules for NDE in API-653, Section 12

IV. PRACTICAL KNOWLEDGE - GENERAL

A. The following topics may be covered:

- 1) Organization and Certification Requirements.
- 2) Types and Definitions of Inspections.
- 3) Types Corrosion and Deterioration.
- 4) Materials and Fabrication Problems.
- 5) Welding.
- 6) Nondestructive Examination (NDE) Methods
- 7) Corrosion and Minimum Thickness Evaluation.
- 8) Estimated Remaining Life.
- 9) Inspection Interval Determination and Issues Affecting Intervals.
- 10) Inspecting Relief Devices.
- 11) Inspection Safety Practices.
- 12) Inspection Records and Reports.
- 13) Repairs / Alterations.
- 14) Disassembly and Reconstruction.
- 15) Hydro Testing,
- 16) Pneumatic Testing

More information relevant to each of these categories is contained in section "V. PRACTICAL KNOWLEDGE - SPECIFIC" where each reference publication applicable for study for the examination has been listed with the relevant topics that may be covered on the examination.

- B. Typical code requirements that candidates will <u>NOT</u> be expected to know for purposes of this certification examination.
 - 1) Required thickness calculations for wind, earthquake, and small internal pressures
 - 2) Nozzle calculations for external loads;
 - 3) Flange calculations;
 - 4) Brazing requirements;
 - 5) Calculating venting requirements;
 - 6) Ladder, stairway, and other structural type calculations;
 - 7) NDE requirements for acoustic emission, eddy current, and motion radiography per ASME Section V, Article 9
 - 8) Technical interpretations of API & ASME Codes and Standards
 - 9) Welding process requirements other than shielded metal arc welding (SMAW) and submerged arc welding (SAW)
 - 10) API-650, Appendix S
 - 11) API-650 Appendix E
 - 12) API-650, Appendix R
 - 13) API-650, Appendix V
 - 14) API-650, Appendix D
 - 15) API-650, Appendix P
 - 16) API-650, Appendix C
 - 17) API-650, Appendix K

11/07 Page 9

V. PRACTICAL KNOWLEDGE - SPECIFIC

A. Each reference publication relative to study for the examination is listed below. A list of topics, which may be covered, is listed for each publication. Some topics may be listed under more than one publication. For example; ASME Section IX is the basic document for welding requirements as referenced by API-650 and API-653. The referencing API documents contain additional welding requirements and exceptions or additions to those contained in ASME Section IX. Therefore, welding requirements may be listed under all three documents and all three documents may be listed under the general heading of "Welding on Tanks".

API RP 571, Damage Mechanisms Affecting Fixed equipment in the Refining Industry

ATTN: Inspectors are not required to memorize the definitions of terms included in Section 3 (Definitions of Terms and Abbreviations), but are expected to be familiar with the common terms and abbreviations and be able to find definitions, if needed in the solution of a test question.

Test questions will be based on the following mechanisms only:

- 4.2.7 Brittle Fracture
- 4.2.16 Mechanical Fatigue
- 4.3.2 Atmospheric Corrosion
- 4.3.3 Corrosion under insulation (CUI)
- 4.3.8 Microbiologically Induced Corrosion (MIC)
- 4.3.9 Soil Corrosion
- 4.3.10 Caustic Corrosion
- 4.5.1 Chloride Stress Corrosion Cracking (Cl-SCC)
- 4.5.3 Caustic Stress Corrosion Cracking (Caustic Embrittlement)
- 5.1.11 Sulfuric Acid Corrosion

API Recommended Practice 575, Inspection of Atmospheric and Low-Pressure Storage Tanks

NOTE: API RP-575 is a Recommended Practice and contains many general statements that are not strict requirements. Some questions on the examination related to RP-575 may contain phrases such as "it is best to" or "an inspector would normally" when information or statements from RP-575 are covered. In these cases it is important to be familiar with the content of RP-575 and to be able to pick the *best* answer of those given. All of RP-575 is applicable to the examination unless specifically excluded.

A. The inspector should have a practical understanding and be familiar with the information contained in RP-575 (excluding Appendix C) as related to:

- 1) types of tanks covered
- 2) procedures to perform internal and external inspection
- 3) the types of external and internal inspections
- 4) procedures to determine suitability for continued service
- 5) evaluation change-of-service effects on suitability for continued service
- 6) evaluation and general condition of:
 - a) distortions, flaws, windgirders, stiffeners, welds, and nozzles
 - b) tank bottoms
 - c) tank foundations
 - d) causes of corrosion, leaks, cracks, and mechanical deterioration
 - e) auxiliary equipment.
 - f) anchor bolts, pipe connections, ground connections
 - g) insulation.

h) shells and roofs

API RP 577, Welding Inspection and Metallurgy

- 1. Definitions
- 2. Welding Inspection
- 3. Welding Processes
- 4. Welding procedure.
- 5. Welding Materials
- 6. Welder qualifications
- 7. Non-destructive examination
- 8. Metallurgy
- 9. Refinery and Petrochemical Plant Welding Issues
- 10. Terminology and symbols
- 11. Actions to Address improperly made production welds
- 12. Welding procedure review
- 13. Guide to common filler metal selection
- 14. Example report of RT results

API Standard 653, *Tank Inspection, Repair, Alteration, and Reconstruction* and the related portions of **API Standard 650**, Welded Steel Tanks for Oil Storage (NOTE: all of API-653 is applicable to the examination unless specifically excluded.)

A. Tank Inspection, NDE, and Testing

- 1) The inspector should have a practical understanding and be familiar with the information contained in API-653 related to general inspection practices such as:
 - a) types of tanks covered
 - b) applicable inspection tasks for internal and external inspection (e.g., API Standard 653, Appendix C, Checklist for Tank Inspection).
 - c) safe working practices
 - d) thickness and dimensional measurements and tolerances
 - e) requirements of external and internal inspections
 - f) frequencies and intervals for external and internal inspection
 - g) alternatives to the required internal inspection intervals
 - h) NDE procedures and NDE personnel qualification requirements
 - i) types of roofs and seals and types of deterioration
 - j) reasons for inspection and causes of deterioration of storage tanks
 - k) procedures to check or test storage tanks for leaks
 - 1) tools and equipment for tank inspection
 - m) failure assessment and deterioration of auxiliary equipment
 - n) suitability for continued service.
 - o) change-of-service effects on suitability for continued service
 - p) evaluation of tank bottom conditions
 - q) evaluate tank foundation conditions
 - r) risk of failure due to brittle fracture
 - s) evaluate the causes of corrosion, leaks, cracks, and mechanical deterioration.
 - t) evaluate the condition of anchor bolts, pipe connections, ground connections, and insulation

- The inspector should have an understanding and be able to perform calculations related to: (See also previous section on "CALCULATIONS FOR EVALUATING THICKNESS MEASUREMENTS AND TANK INTEGRITY")
 - a) actual and minimum required thickness for shell plates
 - b) maximum allowable fill height
 - c) required thickness for hydrotesting and for elevated temperatures
 - d) evaluation of corroded areas and pits on shell plates
 - e) t min, corrosion rate, inspection interval and remaining corrosion allowance
 - f) distortions, flaws, welds, and nozzles.
 - g) minimum thickness for tank bottoms and annular plate rings and shell rings
 - h) evaluate the effects of tank bottom settlement and acceptable limits
 - i) evaluate the condition of tank shells and roofs.
 - j) weld size at roof-to-shell and bottom-to-shell junctions per design requirements
- 3) The inspector should have an understanding of the requirements for performing repairs and alterations such as:
 - a) definitions of repairs and alterations
 - b) repairs to foundations, shell plates, welds, tank bottoms, nozzles & penetrations, roofs, seals,
 - c) knowledge of the repair/alteration material and toughness requirements
 - d) use of unidentified materials for repairs/alterations
 - e) hot tap requirements and procedures
 - f) inspection and NDE requirements for repairs and alterations
 - g) hydrostatic and leak testing requirements
 - h) lap welded patch plates (API-653, 9-3)
 - i) new bottoms supported by grillage API-650, Appendix I, Excluding calculations)
 - 4) The inspector should have an understanding of the requirements for recording the inspection data and records related to inspection, repairs, and alterations such as:
 - a) nameplate requirements
 - b) record-keeping requirements
 - c) reports for inspection, repair and alterations

API Recommended Practice 651, Cathodic Protection of Aboveground Petroleum Storage Tanks

NOTE: Only Sections 1, 2, 3, 4, 5, 6, 8, and 11 will be covered on the examination.

A. The inspector should have a practical understanding and be familiar with the information contained in RP-651 related to:

- 1) Corrosion of Aboveground Steel Storage Tanks
- 2) Determination of Need for Cathodic Protection
- 3) Methods of Cathodic Protection for Corrosion Control
- 4) Operation and Maintenance of Cathodic Protection Systems

B. Information contained in RP-651 which the inspector will not be examined on:

- 1) design of cathodic protection systems
- 2) sources, detection, and control of interference currents

API Recommended Practice 652, Lining of Aboveground Petroleum Storage Tank Bottoms

A. The inspector should have a practical understanding and be familiar with the information contained in RP-652 related to:

- 1) types of tank bottom linings and advantage and disadvantages of each
- 2) considerations for recommending tank bottom linings
- 3) causes of tank bottom lining failures
- 4) types of tank bottom lining materials
- 5) surface preparation requirements for the installation of tank bottom linings
- 6) issues affecting the application of a tank bottom lining

Storage Tank Basic Facts

Storage tanks are an essential element in the production, refining, transportation, and marketing of petroleum products. API maintains several documents that address the design, fabrication, operation, inspection, and maintenance of aboveground (AST's) and underground (UST's) storage tanks.

API storage tank standards are developed by committees of experienced tank designers, fabricators, owners, and operators that bring a wealth of accumulated knowledge from their respective companies. Although API standards cover many aspects of AST and UST design and operation, they are not all-inclusive. There are several organizations that publish standards on tank design, fabrication, installation, inspection, and repair that may be more appropriate in some instances than API standards Please refer to the following organizations for additional requirements and specifications:

- American Society of Mechanical Engineers (ASME) <u>www.asme.org</u>
- American Society for Testing and Materials (ASTM) <u>www.astm.org</u>
- American Water Works Association (AWWA) <u>www.awwa.org</u>
- Building Officials and Code Administrators International (BOCA) -<u>www.bocai.orq</u>
- NACE International (Corrosion Engineers) www.nace.org
- National Fire Protection Association (NFPA) <u>www.nfpa.org</u>
- Petroleum Equipment Institute (PEI) www.pei.org
- Steel Tank Institute (STI) <u>www.steeltank.com</u>
- Underwriters Laboratories (UL) ulstandardsinfonet.ul.com
- International Fire Code Institute (Uniform Fire Code) www.ifci.com

OTHER RESOURCES

Basis of Seismic Design Provisions for Welded Steel Oil Storage Tanks (1.3 MB) By R. S. Wozniak and W. W. Mitchell, Presented at 43rd API Midyear Refining, May 7, 1978 (To download: Right-click on link and select "Save Target As...") USGS Earthquake Hazards Program

The <u>Independent Liquid Terminals Association</u> - Provides a listing of equipment and services available to the Bulk Liquid Terminals Industry. It's express purpose is to provide terminal and tank farm owners with a quick and easy reference for locating valuable and needed services parts & equipment. <u>U.S. Environmental Protection Agency</u> TANKS emission estimation software and information.

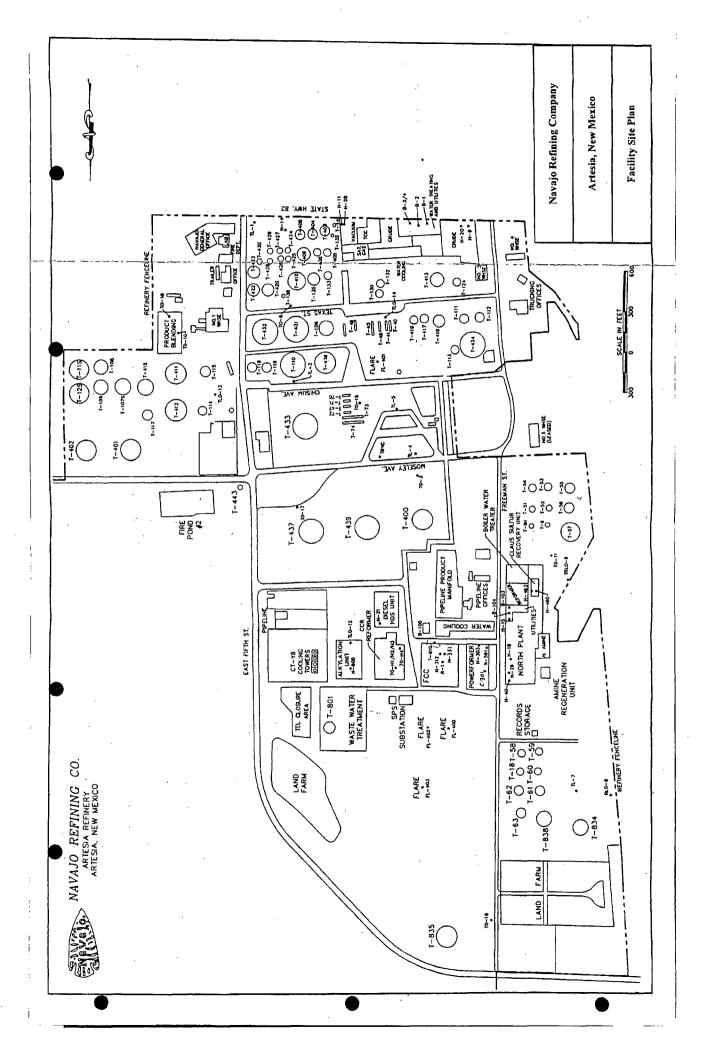
STORAGE TANK FAQ'S

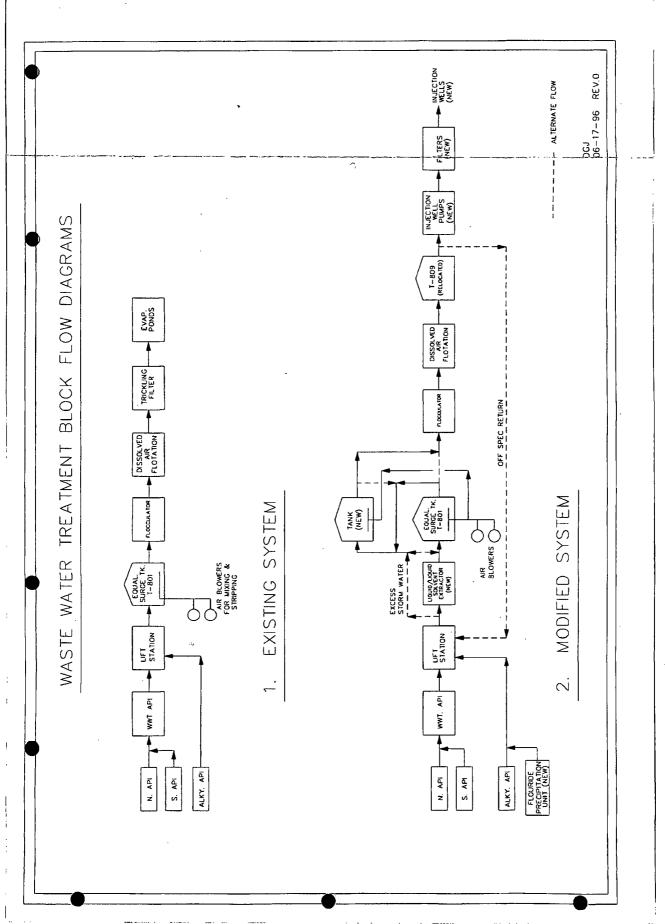
- Q: Where are storage tanks used in the petroleum industry?
- A: Storage tanks are found in most sectors of the petroleum industry. These include Exploration & Production, Refining, Marketing, and Pipelines.
- Q: What are the different types of storage tanks?
- A: Storage tanks can be divided into two basic types: aboveground (AST) and underground (UST). AST's are used in production, refining, marketing, and pipeline operations. UST's are typically used in the marketing of gasoline at retail service stations.
- Q: What are the most recent editions of API 620, 650, and 653?
- API 620: 10th Edition, February 2002; API 650: 10th Edition, March 1998, including Addenda #1 (2000) and #2 (2001); API 653: 3rd Edition December 2001. More information on past editions can be found at Past Editions of API Tank Design Standards 12C and 650.
- Q: What are the API standards for construction of new UST's?
- A: API does not publish standards for construction of UST's. See <u>Underwriters Laboratories</u> UL58, 1316, or 1746, and the <u>Steel Tank</u> <u>Institute's</u> F841-91.
- Q: What are the API standards for construction of new AST's?
- A: <u>Spec. 12B</u>, Bolted Tanks for Storage of Production Liquids; <u>Spec. 12D</u>, Field Welded Tanks for Storage of Production Liquids; <u>Spec. 12F</u>, Shop Welded Tanks for Storage of Production Liquids; <u>Spec. 12P</u>, Fiberglass Reinforced Plastic Tanks; <u>API 620</u>, Design and Construction of Large, Welded, Low-Pressure Storage Tanks; <u>API 650</u>, Welded Steel Tanks for Oil Storage.
- Q: What is the difference between tanks constructed to the API 12 series specifications for production operations and API 650 tanks?

A: Production tanks are usually much smaller than API 650 tanks and are often subject to different operating conditions.

Q: What size tanks are covered by API refining, marketing, and pipeline standards?

- A: Generally, the minimum size is 1100 gallons (4164 liters). API design standards for AST's in refining, marketing, and pipeline facilities do not specify a maximum size.
- Q: What are the API standards for the inspection and repair of AST's currently in-service?
- A: <u>Spec. 12R1</u>, Setting, Maintenance, Inspection, Operation, and Repair of Tanks in Production Service; <u>API 653</u>, Tanks Inspection, Repair, Alteration, and Reconstruction. You also should consider the <u>Steel</u> <u>Tank Institute's</u> SP001-00 standard for shop fabricated tanks.
- Q: Does API certify tank manufacturers?
- A: No.


i


- Q: Does API issue a certificate to verify that a tank has been built to API 620 or 650?
- A: No. The manufacturer is responsible for certifying that the tank has been constructed in accordance with API 650 (see API 650, Section 8.3)
- Q: How do I get my tank certified by API to Standard 620 or 650?
- A: API does not certify tanks built to API 620 and 650. You may see older 650 tanks with an API stamp or monogram, however, the <u>Monogram Program</u> was removed from API 650 with the release of the sixth edition in 1977. The Monogram Program does include tanks built to API Specifications 12B, 12D, and 12F for exploration and production operations..
- Q: Can API provide assistance or consultation on tank design or inspection?
- A: No. API does not act as a consultant on specific engineering problems or on the general application of its standards. API will provide an

interpretation of the requirements in the standard and will address suggested changes based on new data or technology. Please refer to API 620, Appendix J; API 650, Appendix D; or API 653, Appendix E for further information in interpretations.

Q: Does API provide nameplates for API 650 tanks?

- A: No. The tank manufacturer typically provides the nameplate for a new tank (see API 650, Section 8.1).
- Q: Does API certify companies to do tank repair?
- A: No. API only certifies inspectors to API 653.
- Q: Where can a find an API 653 certified inspector?
- A: A list of companies that employ certified inspectors can be found on the <u>API Inspector Certification</u> website.
- Q: Does API publish procedures on hydrostatic testing?
- A: Although API 650 and 653 have requirements on <u>when</u> a hydrostatic test must be performed, they do not have detailed procedures on <u>how</u> a hydrostatic test is performed. There is information available in API 650, Appendix S, Section S.4.10 specific to stainless steel tanks. API 620, Section 7.18.4 (Section 5.18.4 in the ninth edition) does have a procedure for low-pressure storage tanks.
- Q: Where can I find a list of technical interpretations?
- A: API Publication 850 is a compilation of interpretations for API standards 620, 650, and 653 from 1987 through 1997. More recent inquiries can be found on the API website.

(*) (* () OBQ

0

Chavez, Carl J, EMNRD

From: Sent: To: Cc: Subject: Moore, Darrell [Darrell.Moore@hollycorp.com] Wednesday, June 29, 2011 2:11 PM Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV Monzeglio, Hope, NMENV RE: NRS Detailed Area Piping Plan Drawings

Carl

The area we are talking about is the wastewater area. The tanks in that area are waste water tanks so they are not on the tank schedule.

The designation "D" for drum is not really a tank. Its also not a 55 gal drum. Its refinery slang for a steel, welded, process pressure vessel. All the vessels with the "D" designation are on concrete.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Thursday, June 23, 2011 1:58 PM
To: Moore, Darrell; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: RE: NRS Detailed Area Piping Plan Drawings

Darrell:

I was also using the tank schedule that Navajo submitted to look for the tank numbers I listed and did not see them on the spreadsheet.

Could you please double check the above grade tank tank inspection schedule spreadsheet to make sure it includes all tanks. Also, and drums that you are using as above ground storage containers, i.e., designation "D" from your past correspondences. The drums could be added into a separate column area on the spreadsheet. Please provide the update by the date the OCD requested that the new tanks be added to the spreadsheet and submitted to the OCD. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

File: OCD Online "Tank Schedule"

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Thursday, June 23, 2011 1:25 PM
To: Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: RE: NRS Detailed Area Piping Plan Drawings

Carl

The only new tanks are TK 829 and TK 830 (plot plan attached) which you approved on May 3, 2011. All the other tanks are already constructed and have been constructed for years. The "Frac Tank" is just a temporary tank that was there when the consultant drew up the plot plan.

The 300 gallon polymer mix tank is part of Veolia's (Formerly ScalTech) process and is on a concrete pad. It too has been there for years.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Thursday, June 16, 2011 11:19 AM
To: Moore, Darrell; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: RE: NRS Detailed Area Piping Plan Drawings

Darrell:

The OCD is in receipt of the engineering pipeline drawings for the waste water system. The OCD approved the tank upgrades with conditions on May 3, 2011.

Based on the attached drawings, the new tanks appear to be: Tk-0829, Tk-836, Tk-49 (solvent extraction tank), Frac Tank (Dwg: 80-1-201-D-04), Tk-803, Tk-804, Tk-1, Tk-2, Tk-3, Tk-4, Tk-807,.....

Dwg: 80-1-201-D-02 depicts a 300 GALLON POLYMER MIX TANK, which must also meet the design and construction requirements of the permit.

OCD requests that Navajo provide the listing of all new tanks (which include Frac Tanks?) installed at the facility so the OCD can inspect the locations for compliance with the permit.

Thank you.

File: GW-028: "Inspections" and "Permit Modification" Thumbnails

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com] Sent: Wednesday, June 15, 2011 9:39 AM To: Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV Cc: Monzeglio, Hope, NMENV Subject: FW: NRS Detailed Area Piping Plan Drawings

Carl, Dave and Hope

Attached, please find detailed piping and other drawings for our upgrade of our Waste Water System. We had sent you the drawings for the tanks for this system a few weeks ago.

To: Moore, Darrell **Cc:** McKee, Michael; Meeks, Jimmy; Evans, Jason **Subject:** FW: NRS Detailed Area Piping Plan Drawings

From: Holmes, Don P. [holmesdp@cdm.com]
Sent: Thursday, June 09, 2011 5:18 PM
To: Siwek, Janusz; Cline, Jim; Davis, Gary
Cc: Christiansen, John A.
Subject: NRS Detailed Area Piping Plan Drawings

Please find attached the 16 drawings noted above. These drawings are not complete, but do define where all the equipment is located and how about 85% of the piping is located. These should be useful on your OCD permit request.

Lagenia, Please send an office transmittal to document this and post these drawing on the e-Room. Do not attach these drawings again to the official Transmittal.

Don P. Holmes, P.E. Sr. Project Manager **CDM, Inc.** 3050 Post Oak Blvd., Site 300 Houston, Texas 77056 direct (713) 423-7318 Cell (713) 208-6847

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

Chavez, Carl J, EMNRD

From: Sent: To: Cc: Subject: Chavez, Carl J, EMNRD Thursday, June 23, 2011 1:58 PM 'Moore, Darrell'; Cobrain, Dave, NMENV Monzeglio, Hope, NMENV RE: NRS Detailed Area Piping Plan Drawings

Darrell:

I was also using the tank schedule that Navajo submitted to look for the tank numbers I listed and did not see them on the spreadsheet.

Could you please double check the above grade tank tank inspection schedule spreadsheet to make sure it includes all tanks. Also, and drums that you are using as above ground storage containers, i.e., designation "D" from your past correspondences. The drums could be added into a separate column area on the spreadsheet. Please provide the update by the date the OCD requested that the new tanks be added to the spreadsheet and submitted to the OCD. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

File: OCD Online "Tank Schedule"

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Thursday, June 23, 2011 1:25 PM
To: Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: RE: NRS Detailed Area Piping Plan Drawings

Carl

The only new tanks are TK 829 and TK 830 (plot plan attached) which you approved on May 3, 2011. All the other tanks are already constructed and have been constructed for years. The "Frac Tank" is just a temporary tank that was there when the consultant drew up the plot plan.

The 300 gallon polymer mix tank is part of Veolia's (Formerly ScalTech) process and is on a concrete pad. It too has been there for years.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Thursday, June 16, 2011 11:19 AM
To: Moore, Darrell; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: RE: NRS Detailed Area Piping Plan Drawings

Darrell:

The OCD is in receipt of the engineering pipeline drawings for the waste water system. The OCD approved the tank upgrades with conditions on May 3, 2011.

Based on the attached drawings, the new tanks appear to be: Tk-0829, Tk-836, Tk-49 (solvent extraction tank), Frac Tank (Dwg: 80-1-201-D-04), Tk-803, Tk-804, Tk-1, Tk-2, Tk-3, Tk-4, Tk-807,.....

Dwg: 80-1-201-D-02 depicts a 300 GALLON POLYMER MIX TANK, which must also meet the design and construction requirements of the permit.

OCD requests that Navajo provide the listing of all new tanks (which include Frac Tanks?) installed at the facility so the OCD can inspect the locations for compliance with the permit.

Thank you.

File: GW-028: "Inspections" and "Permit Modification" Thumbnails

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Wednesday, June 15, 2011 9:39 AM
To: Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: FW: NRS Detailed Area Piping Plan Drawings

Carl, Dave and Hope

Attached, please find detailed piping and other drawings for our upgrade of our Waste Water System. We had sent you the drawings for the tanks for this system a few weeks ago.

From: Siwek, Janusz
Sent: Thursday, June 09, 2011 9:49 PM
To: Moore, Darrell
Cc: McKee, Michael; Meeks, Jimmy; Evans, Jason
Subject: FW: NRS Detailed Area Piping Plan Drawings

From: Holmes, Don P. [holmesdp@cdm.com]
Sent: Thursday, June 09, 2011 5:18 PM
To: Siwek, Janusz; Cline, Jim; Davis, Gary
Cc: Christiansen, John A.
Subject: NRS Detailed Area Piping Plan Drawings

Please find attached the 16 drawings noted above. These drawings are not complete, but do define where all the equipment is located and how about 85% of the piping is located. These should be useful on your OCD permit request. Lagenia, Please send an office transmittal to document this and post these drawing on the e-Room. Do not attach these drawings again to the official Transmittal.

. .

1

~ * *

Don P. Holmes, P.E. Sr. Project Manager **CDM, Inc.** 3050 Post Oak Blvd., Site 300 Houston, Texas 77056 direct (713) 423-7318 Cell (713) 208-6847

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

Chavez, Carl J, EMNRD

From: Sent: To: Cc: Subject: Chavez, Carl J, EMNRD Thursday, June 16, 2011 11:19 AM 'Moore, Darrell'; Cobrain, Dave, NMENV Monzeglio, Hope, NMENV RE: NRS Detailed Area Piping Plan Drawings

Darrell:

The OCD is in receipt of the engineering pipeline drawings for the waste water system. The OCD approved the tank upgrades with conditions on May 3, 2011.

Based on the attached drawings, the new tanks appear to be: Tk-0829, Tk-836, Tk-49 (solvent extraction tank), Frac Tank (Dwg: 80-1-201-D-04), Tk-803, Tk-804, Tk-1, Tk-2, Tk-3, Tk-4, Tk-807,.....

Dwg: 80-1-201-D-02 depicts a 300 GALLON POLYMER MIX TANK, which must also meet the design and construction requirements of the permit.

OCD requests that Navajo provide the listing of all new tanks (which include Frac Tanks?) installed at the facility so the OCD can inspect the locations for compliance with the permit.

Thank you.

File: GW-028: "Inspections" and "Permit Modification" Thumbnails

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com] Sent: Wednesday, June 15, 2011 9:39 AM To: Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV Cc: Monzeglio, Hope, NMENV Subject: FW: NRS Detailed Area Piping Plan Drawings

Carl, Dave and Hope

Attached, please find detailed piping and other drawings for our upgrade of our Waste Water System. We had sent you the drawings for the tanks for this system a few weeks ago.

From: Siwek, Janusz
Sent: Thursday, June 09, 2011 9:49 PM
To: Moore, Darrell
Cc: McKee, Michael; Meeks, Jimmy; Evans, Jason
Subject: FW: NRS Detailed Area Piping Plan Drawings

From: Holmes, Don P. [holmesdp@cdm.com] Sent: Thursday, June 09, 2011 5:18 PM	· .
To: Siwek, Janusz; Cline, Jim; Davis, Gary Cc: Christiansen, John A.	
Subject: NRS Detailed Area Piping Plan Drawings	
Please find attached the 16 drawings noted above. These d located and how about 85% of the piping is located.	Irawings are not complete, but do define where all the equipment is
These should be useful on your OCD permit request.	
Lagenia, Please send an office transmittal to document this again to the official Transmittal.	and post these drawing on the e-Room. Do not attach these drawings
Don P. Holmes, P.E. Sr. Project Manager	
CDM, Inc. 3050 Post Oak Blvd., Site 300	
Houston, Texas 77056 direct (713) 423-7318 Cell (713) 208-6847	

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

2

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

		7
	DACAMAGE FRANKING COMPACH MAVALO REMUNG COMPANY , MORPED TAKEN (EM TERI MORET	
ATTACHMENT 2, January 2009	Navyo Rathing Company Page 1 d 1 ARTESA	

4

ŧ

Chavez, Carl J, EMNRD

From:Chavez, Carl J, EMNRDSent:Friday, June 10, 2011 10:42 AMTo:Monzeglio, Hope, NMENV; Moore, DarrellCc:Cobrain, Dave, NMENV; Tsinnajinnie, Leona, NMENV; Lackey, JohnnySubject:RE: NCL Tank 815

Yeah, the OCD DP requires fluids not to be allowed to pool for 72 hours before evacuation I believe....

NMED confirmed that it is precipitation and city water that is pooling and would not be tainted with any contaminants from that area and/or addressed by evaporation and phyto remediation anyway.....

So, if the refinery addresses this permit issue, OCD is ok.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Monzeglio, Hope, NMENV
Sent: Friday, June 10, 2011 10:35 AM
To: Moore, Darrell
Cc: Cobrain, Dave, NMENV; Tsinnajinnie, Leona, NMENV; Lackey, Johnny; Chavez, Carl J, EMNRD
Subject: RE: NCL

Darrell ⁻

NMED does not object with managing the water as described below. NMED also spoke with OCD who also does not foresee any issue with this.

Hope

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Monday, June 06, 2011 4:02 PM
To: Monzeglio, Hope, NMENV
Cc: Cobrain, Dave, NMENV; Tsinnajinnie, Leona, NMENV; Lackey, Johnny
Subject: RE: NCL

Hope

Attached, please find an aerial photo of the NCL. I have added a general drawing of what we would like to add to the East berm of the landfarm. As you know, water pools up on the east side of the landfarm. We would add two pipes (with valves) thru the dike that would allow us to drain the water into the dike area of Tk 815 where it could evaporate. If the water got to be too much we would send our vacuum truck and suck it up and put it thru our Waste Water treatment system.

It's a pretty simple fix and we think it would work very well.

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us]
Sent: Monday, June 06, 2011 9:09 AM
To: Moore, Darrell
Cc: Cobrain, Dave, NMENV; Tsinnajinnie, Leona, NMENV; Lackey, Johnny
Subject: NCL

Darrell

See attached emails. Please update me on the status of the NCL survey plat and details to address the vegetation by **Friday June 10, 2011**. Navajo must seek NMED approval before changes can be made to the vegetative cover on the NCL.

Let me know if you have any questions.

Hope

Hope Monzeglio Petrie Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> Hazardous Waste Bureau

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

Chavez, Carl J, EMNRD

From:Chavez, Carl J, EMNRDSent:Tuesday, May 03, 2011 1:57 PMTo:'Moore, Darrell'; Monzeglio, Hope, NMENVCc:Lackey, Johnny; Siwek, Janusz; Davis, Gary; Dade, Randy, EMNRDSubject:RE: Navajo Refining Company, Artesia Refinery (GW-028) Tank Drawings for Waste Water
Tank Upgrades

Darrell et al.:

Good afternoon.

Approved with the conditions specified in the OCD Discharge Permit provided below. Navajo Refining Company shall provide an updated spreadsheet with tank specifications, info., etc., and tank diagram of tanks with identification numbers for the tank integrity program within 3 months of tank construction.

Please provide at least 72 hours advance notice of tank construction schedule so the agencies may witness the construction of the liner system, concrete ring, leak detection system, etc. You may recall the tank ring that developed cracks because the tank was not centered in the middle of the concrete ring; consequently, I'm sure the construction will ensure that the tank circumference is centered on the tank ring for the construction. Also, the OCD observes that liner specifications were not provided in the engineering diagrams. The discharge permit requires LLDPE; however, if HDPE is used, in order to overcome its stress crack nature, the mil thickness must be increased to a minimum of 60-mil. The OCD expects the liner to be properly tied into the tank ring structure beneath the tank and the liner seams to be properly tested to ensure a good seal exists during and after construction.

Per Section 9 of the Discharge Permit:

9. Above Ground Tanks:

All new and existing above ground tanks containing chemicals must be placed or retrofitted over an impermeable pad (40mil LLDPE reinforced liner with leak detection system) or liner system within a bermed secondary containment area approved by the OCD. The bermed areas shall be constructed to contain a volume of at least one and one-third (1+1/3) greater than the total volume of the largest tank and/or all interconnected tanks within a bermed containment area. Alternative secondary containment designs must be approved by the OCD.

The owner/operator shall submit a spreadsheet or table identifying all tanks with a work schedule to address this provision (Tank ID #, type of tank, new/used, volume, chemical stored, tank age, last Integrity test date, planned retrofit date and/or construction date, etc.) to the OCD for approval. The owner operator shall prioritize existing tanks for retrofit based on the toxicity and solubility (contaminant transport potential) of chemicals (BTEX, JP4, etc.) and site-specific threats to public health, safety, fresh water, and the environment. A work schedule with a phased approach extending beyond the standard 5-Year permit period may be approved by the OCD if the table is submitted within 3 months of permit issuance. The table(s) shall be considered approved if the OCD does not respond within 30 days of receipt of the table and work schedule.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>) From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Tuesday, May 03, 2011 11:02 AM
To: Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV
Cc: Lackey, Johnny; Siwek, Janusz; Davis, Gary
Subject: Tank Drawings for Waste Water Upgrade

Carl and Hope

Attached are drawings for two tanks that we will be building as part of our Waste Water System Upgrade. This project was discussed at the meeting we held in Santa Fe at OCD's offices in March, 2011. We are asking for approval to build these tanks. They are located just north of current waste water tank 836 and will have a liner under each tank with PVC Tattle Tales thru the ring wall to detect any leaks.

If you have any questions, please contact me at 575-746-5281. We would like to start construction by the end of this week if possible. Your attention to this matter is greatly appreciated.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

Please consider the environment before printing this e-mail.

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

Chavez, Carl J, EMNRD

From: Sent:	Moore, Darrell [Darrell.Moore@hollycorp.com] Tuesday, May 03, 2011 11:02 AM
To:	Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV
Cc:	Lackey, Johnny; Siwek, Janusz; Davis, Gary
Subject:	Tank Drawings for Waste Water Upgrade
Attachments:	T829 Ringwall FDN.PDF; T-0830 RING WALL FDN.PDF; Plots Tanks Location.pdf

Carl and Hope

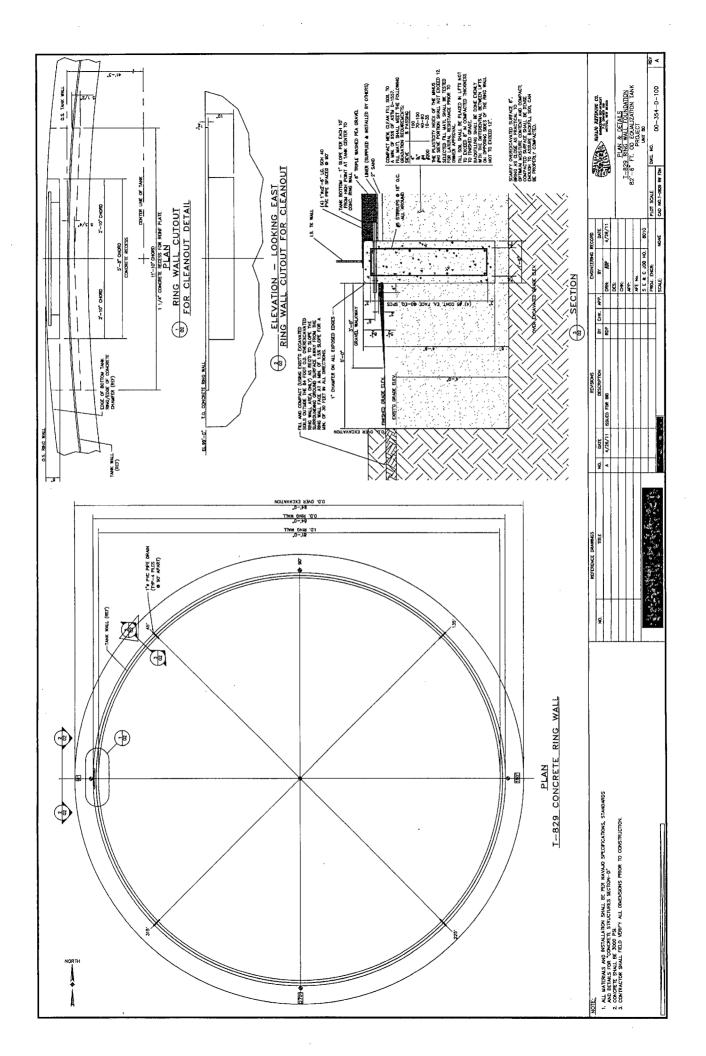
Attached are drawings for two tanks that we will be building as part of our Waste Water System Upgrade. This project was discussed at the meeting we held in Santa Fe at OCD's offices in March, 2011. We are asking for approval to build these tanks. They are located just north of current waste water tank 836 and will have a liner under each tank with PVC Tattle Tales thru the ring wall to detect any leaks.

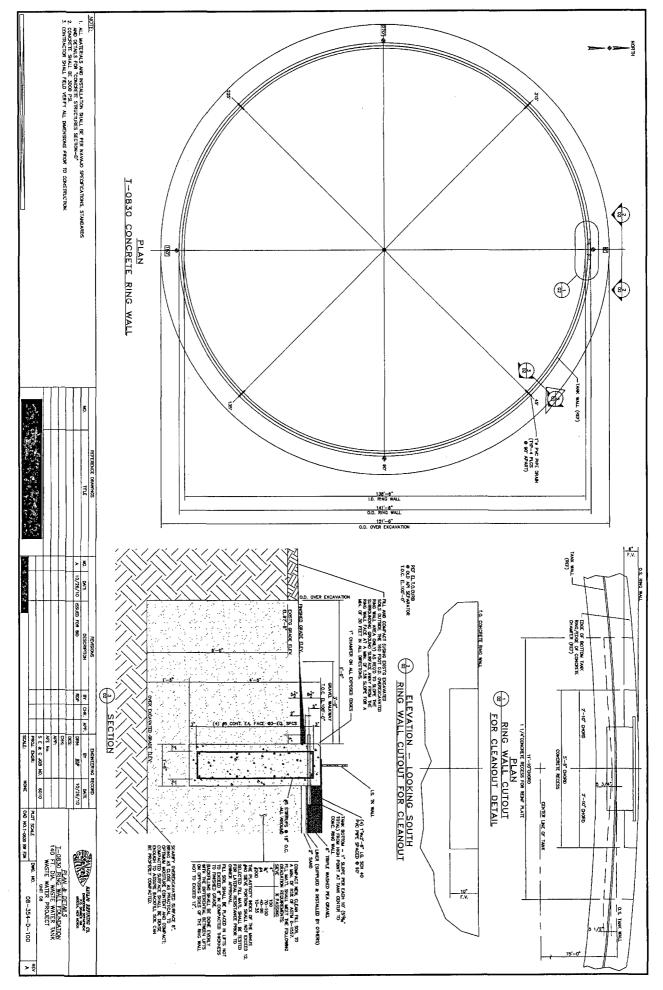
If you have any questions, please contact me at 575-746-5281. We would like to start construction by the end of this week if possible. Your attention to this matter is greatly appreciated.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.



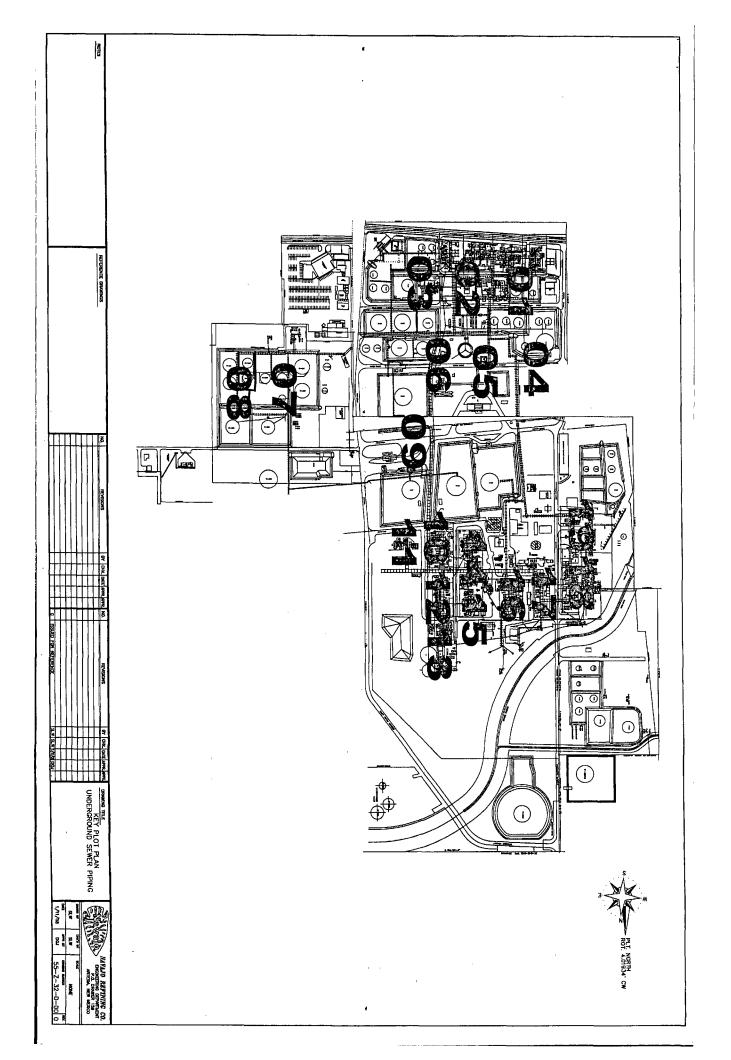

Please consider the environment before printing this e-mail.

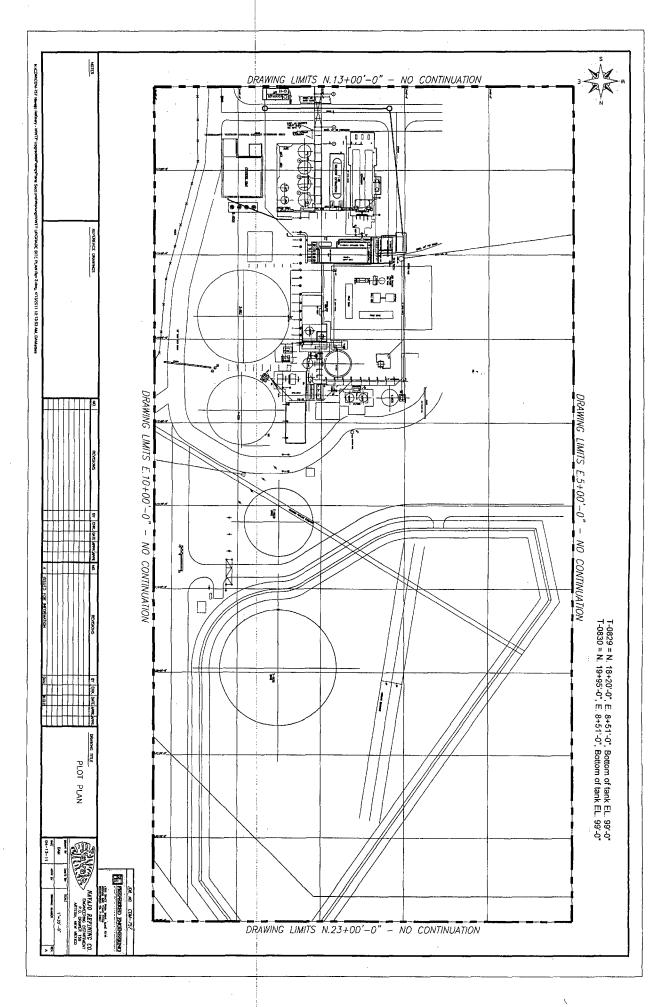
CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

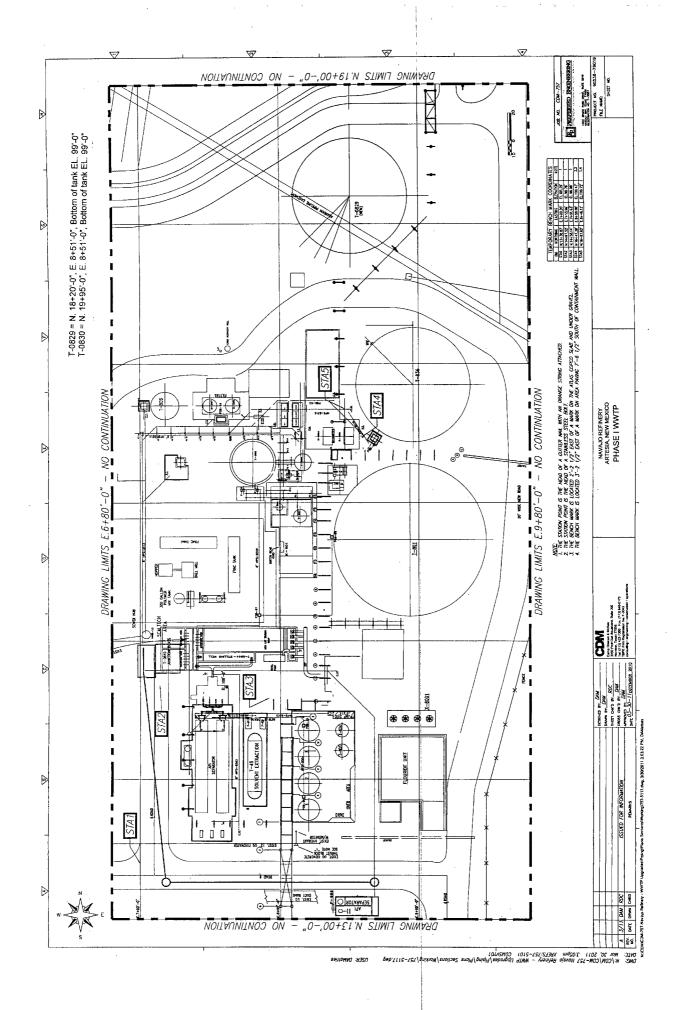
received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

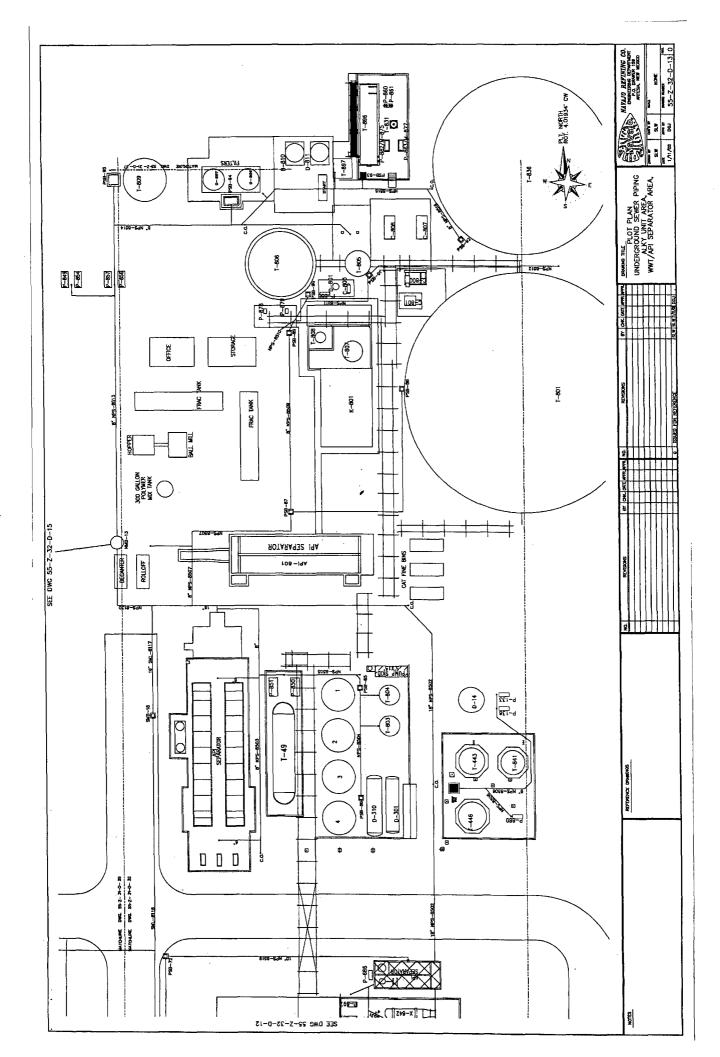
ATTACHMENT 2, January 2009


Navejo Refining Company Page 1011 ARTESIA


DISCHARIGE PERMIT JOW 4261 NAVAJO REFINING COMPANY PROPOSED TRACER LEAK TEST PROJECT


	101	r	г	r	m			m	r		r-	m	;			m	Γ				-		~~~		m	~			m		r
	3		ちにっていた	8	11	35	8	5	35	New.	New	55													1						
			States 24	2	8	2	8	20	2005	1992	19561	4	Out of																		The second se
	Č.		1.13													~														.,	u vo da anno u
			YEAR WUN	1. 	5.0	e.	61×	612	668 :	322	65.	5.0.8	517											-						,	
			04: 3P	350	500	302	361	200	- 987 %	300	500	200	203																		The second
	Printy 6	2007	TOULDON .	8	61	*	4	ç.	*	10	×	3	22																		······································
			24.96	VFR	8.5	445	1:1	422	2.1	VER	da?>	ray.	ŧ,																		
	1917 1918 1918 1918 1918 1918 1918 1918		\$20460				ð	20.4	No *	- <u>16</u> ×	1	tre -	~					-					"								· · · · · · · · · · · · · · · · · · ·
	200 C		TPACAL NAMES	040	See S	Case Ca	AUXE: Bak	ACNA: BLA	Carbon Black Of	POUN BUN	W ALLEY	Waste We	Case Chi															E Tanks			
			Mat. 63 12		~	Į	-		Į	ļ	ļ	ļ	ļ				surgestions.							-			Summer annual	1.81	~		and the second second second
			ALC: N	104	241	271	1.59	1 63	58-1	1.35	26-1	1.96.1	4		-						-		÷				······				
		Ĩ	1	Ľ.		~								-													5		2		
			WU PAR STREET SAL DA		2006	2002	1006	100	2002	S New	5005		5002										Ì								
			ANT THAT	1			ľ		Y.	50	8 ···							in the second					1		1 	ì	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:			*****
			VEAR BUR T		\$73	5.5	279	979.	1 578	1	14	52	C.6					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	245					1. N. S.		5 Are 1 Dequite		1.1.1.1	1	at i se ve	
		CARL STORES	17	1	19 ··· ···		1		C2815	N. 17	10 - A - A	1		1.12			1.5								201 - 2		1			÷	
	E Astronia	2011	WALLARY - MARS	40 000	61.000	53 000	78 430	11 103	200	85 250	007.55	21 300	10, 00							*	-	2			100 A			200			
	Ĩ	£	ĥ	ŀ	a	н Н	r.			2 × 1	a			1.7.4.1 A.	1	0.1				1257		1.1		1. 1. See	ŀ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			and the second
			24.44		SIN EFR.	1	25 AC 10	£÷.	APV.	1		10.4 ·····	Ľ.		1	1.1.1.1				10.000							W				***********************
		() () () () () () () () () () () () () (CHARLES CONDER THE DAY AL	NAN T	10101	eres.	Artes.	10%00	Devidence	Angers . 100	Labor .	Confidence.	Citra Cyrie OK			10.10							:								Province And Price
		-220-9	ALC N LY	Direct	Der	Deta	Part	ð	240	Č.	TRO.	Parent .	C KWHO			1.4.		······		4		and a state	• 	. W			···· 20 / 10	10 Tartes			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNER OWNER OWNER OWNER OWNE OWNER OWNER
		1. S.S.P.S.	1404 6 V	Ľ	5	32				C 1 1 1 1 4 2 1	1 973	14:3				-			2	-								10			
		3		2.		1	10.00		1981	6	1	4.	1. 1.63					1.0						100	2000				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	s S	
		ľ	1.5			•											ľ														
			and the particular	1832	2002	1282	24	88	55	:82	ŝ	1011	2061		2002																
~~			341 2																ļ									~~		~	
	18. A. X.		PLAN BUR	0261-	126.5	52812	3:6;	12.R.	: 96 :	22632	61973	61913	2/61-	1002	1961		·														and the second s
	1999 (M		ANE (DOD) .	1 2021	12 400-	3.800	0000	85 200	300	13,800	300	8 4 8	10.500	15 000	5 200										-			~			· · · · · · · · · · · · · · · · · · ·
	Promy 2	2016	1. 153, 146	 	•					ļ	-			-				-													
			***		4			8.13	ļ	a,		ļ.	Red A		***						~										A CONTRACTOR AND A CONTRACT AND A CO
			60 57 D-96 D	Ę	MA.	141	8	ð	Nachtas	s.		140	V.AL	Ate:	H. Mart																
	2		FYPICAL LIGAND STORAD	auder:	PLAN	Mapr	ð	Conte	-NOR-N	Cost.	See.	Central	- More	20.2	Wester Drawn													12 Tauks			and the second second
	1		-			5	uh.	-	-	•	o,			0	2				· ~ .							••••		22	~~	~	and a second second
			1445	122.2		8	14	1	1.57	1	Ĩ.	1.45	4	1.8	1															~	· · · · · · · · · · · · · · · · · · ·
	2	3	a Dam	1. N.	2 X	1. 1. 1. X.	2.2.2	1.1.1.1	5 V 7 2																						
		S	· JAN BAN	2002	Best 1	2002	2002	- 2002		2206	2002	2002	÷.,	2	2305		2002	2002			ĥ		1.6.72		200-		1.1.1.60		1		
~~	2.5	100 March	Y	(11) AXXX (11)	. 20. 20 No.	<1 901 C. F.		*:#73 · : £79:*	: { [÷		San			-: -: -:	1.42					-		- 8 VAN 6.	-	V				100 million (100		
		1000000	YEAR WE	1. <1974. "	···· **925.001 (00.00 .001998.000	~1 99 F		£283.>	:19622	<:8:3	1281	5.S. *	8	1352	(#6)	· (1931	(E: >	1851	2. 11 11 14 10 11 12 12 12 12 12 12 12 12 12 12 12 12		1 Jacon			Cor. D	· · ·						
		144 C (15)	1000 30			22, 900	22 100	32,820	÷ 200	1001 22	- 0C#	200	88	53.020	51,000	88	1	30.000		manager Second	Sector States		-	-	100 V. 10	Contraction of the second s					ļ.
	Priority 1	3009	1004	24 600	2	13	N	32	•	1	10 800	SSE 6	2		1	2		Ŀ	The arts and marked a State of a			×	1. a	NAV	1. 20000000 11 12 12	S	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5140	- 1 - 1	· · · · · · ·	
	\$ & 32		- 14 M	6.0	н На 19 10 10 10 10 10 10 10 10 10 10 10 10 10	87.5k	8.8		8 5	14	435	E	EFR	213	EFF.	813	520	EFR	- 4 - ¹ -1	1	•		in the second	16 A	No. of Street, No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 1. V. V	1. S. C. S. S.	1 1 1 1		
		1	10460	222				Gasolmen	Garstotres		Gasotnes VSR	Hall	10 C 10 P 10	1. 1. 1. Saber 1			A Day were											Sec. 11. 12	•		A second
	1.2.2.2.1 2020000000000000000000000000000000000	is and the local statements where the second statements where the second statements is the second second second	TANK RD TYPRCAL LIGUED STORED TYPE] VOLUME BOOK TEAR RUST LAUMANANA. DAM	Ganderes	Georgines	Gassiferen	Gaschnes	Gacolines	Consultation.	Gagoines	Gasouras	Carbones.	Converse .	Cascine was	Gancher	Garagenes	T.412 Gateconte	Control Control	ALL THE ALL ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	A STATE OF ST		and the second se		The second se				1		1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	1.2.2.2	5%%); \$	Service 1		4										ð	- · · · ·	· · 6· · · ·		Strate of the second		1.1.1.1.			Ļ				191	1		
	- 22 - 32		AVA &	1.19	1.103	W2 + 1	8	171	1.120	21.72	218-1	127 427	141.112 W	100-21-2	201 1 11	**T.435. 5	2:11.	1.150	1			~		100 I. I. I.				1.00	1. 1. 1.	ļ	

LOVINGTON
9


Constrained First First <th></th> <th></th> <th></th> <th>118</th> <th></th> <th></th>				118		
Registration EFA 3000 6473 Calabra EFA 3000 6433 Farabara EFA 3	WAY D	TYPECAL LOCATE STORED	A HE	ACR. WALE INSID	YAAR WAL	Led stangers Les Day
Bangaroo Control Contro Control <thcontrol< th=""> <th< td=""><td>BIC:</td><td>Entertry we a</td><td>EFR</td><td>000.02 3</td><td>1473</td><td>1995</td></th<></thcontrol<>	BIC:	Entertry we a	EFR	000.02 3	1473	1995
Constraid First First Sector First Sector First Sector First Sect	10,219	STREET RUN GAMMA	i terai si	25.000	\$242	2002
Control Cont First 1.5,200 1013 Para Device Virth 20,200 1013 Para Device Para Device 1013 1013 Para Device Virth 20,200 1013 Para Device Virth 1013 1013 Para Device Virth	1.0014	Crist Of	558	325 125	1763	500
Res V/R 2000 101 Res Version V/R 2000 101 Res Version Version 101 101 Res Version Version 101 101 Res Version Version 101 101 Res Res 100 101 101 Res Res	810.T	C-4-S	E.	154.500	1263	- 255.8
Ran Deteri V/F V/O	10.1	330 X a	ais	20 200	\$253	1331
Trans. Data V/18	1238	R IN Clesses	457	20000	£361	(65)
Tento Unit Unit <thunit< th=""> Unit Unit <th< td=""><td></td><td>NANC ME</td><td>VER</td><td>13,350</td><td>5/61</td><td>1991</td></th<></thunit<>		NANC ME	VER	13,350	5/61	1991
Trans. Say Viel 2020 1990 mean_Say Viel 2020 1990 Mill 200 1980 1911 Mill 200 1920 1900 Mill 200 1920 1930 Mill 200 1930 1931 Mill 2000 1931 1930 Mill 2000 1931 1931 Mill 2000 1931 1931 Mill 2000 1931 1931	22.24	Crafe Cle	a de	321.325	2462	2002
mark file 2000 1900 1911 Mark 1	-121	state Sup	15 H	20000	0363	2006
Math. Col.	\$123-	deary Sean	VFR	20,000	3861	2062
Mark L. (2015) Amery J. (2015) Mark J	1221	Leger Step Of	83)	2 - 13 804	:373.	2005
R. Anteriore Example Example <thexample< th=""></thexample<>	Size 5:	1	- Prince		387 X X X X X X X	Land Integraly Tour Date
Among Cons (2) Partial Cons (2) <td>NCO.</td> <td>PLAN KINDAN</td> <td>a.12</td> <td>15 000</td> <td>· 5264</td> <td>3333</td>	NCO.	PLAN KINDAN	a.12	15 000	· 5264	3 3 33
Parameter Parameter <t< td=""><td>1223</td><td>Atmos Gas QA</td><td>なた</td><td>33 800</td><td>1,133</td><td>2006</td></t<>	1223	Atmos Gas QA	なた	33 800	1,133	2006
Press/Galacity V/46 [10] [10] Press/Galacity V/46 [10] [10] Press/Galacity V/46 [10] [10] Application [10] [10] [10	1004	R ne Carpente	VER	15.000	\$184	1631
Treny, textor des 70, barra, description Will William Will William Will William Will William William	640:	Attract Gas Off	d d	15 360	1973	1381
Unit 1.1 <td>5323</td> <td>HTTAN VANKIN GAN DE</td> <td>¥.1></td> <td>30.709</td> <td>C.es</td> <td>3062</td>	5323	HTTAN VANKIN GAN DE	¥.1>	30.709	C.es	3062
Ligram UB 1000 1973 1 Answers UB 1000 1973 1 Answers UB 2000 1973 1 Massers UB 2000 1973 1 Massers UB 2000 1973 1 Answers UB 3.346 1973 1 21 Latas 21 Latas 1 1 1 1	12.2%	Actives Game CH.	a a a	91:120 9	1973.	2362
1913 (1918 - 1913) (1919 - 1919) (1919 - 1919) (1919 - 1919) (1919 - 1919) (1919 - 1919 - 1919) (1919 - 191	1203	10000	à i i	18,020	\$15	Out of Service.
Vicia 21,000 (1973) Final 21,000 (1973) Final 21,000 (1973)	2402	Vietos Venter	410	97 300	-5261	14m 2003
	20.00	Waste Willer	437	37 300	E 161	2007.
	1208	Wastern after	Ę	2.55	1.61	. 2004
	T	23 1 anks				
					1	

THE SET PRAXAIR

Praxair Services, Inc.

 3755 N. Business Center Drive Tucson, Arizona 85705
 Toll Free (800) 989-9929
 Tel: (520) 888-9400
 Fax: (520) 293-1306

Tracer Tight® Leak Test

10 Above Ground Storage Tanks

Navajo Artesia Refinery 501 E. Main St. Artesia, NM 88210

Praxair Job No. 10152753

<u>Prepared for:</u> Navajo Artesia Refinery

Jeff Schmidlen

501 E. Main St. Artesia NM 88210 Tel: (575) 746-5310

Submitted by:

Praxair Services, Inc. Alan Harris – Commercial Operations Manager

E-Mail: alan_harris@ praxair.com Website: http://www.praxair.com/services

Site Location: Navajo Artesia Refinery

Inoculation Information:

	Inoculation:	Sampling:
Start Date: Completion Date:	August 18, 2009 Sept 21, 2009	August 14, 2009 Sept 24, 2009
	Job Completion Date:	Sept 25, 2009

Notes:

Annual Testing Results:

Facility:	System:	Type:	Diameter:	Product:	Tracer:	Result:
Navajo Artesia Refinery	Tank 108	AST	67'	Alky (H)	A	Pass
Navajo Artesia Refinery	Tank 411	AST	90'	Casinghead	A	Pass
Navajo Artesia Refinery	Tank 415	AST	67'	Alky (L)	A	Pass
Navajo Artesia Refinery	Tank 450	AST	120'	Naphtha (S)	A	Pass
Navajo Artesia Refinery	Tank 11	AST	90'	Reformate	A	Pass
Navajo Artesia Refinery	Tank 12	AST	90'	Reformate	Α	Pass
Navajo Artesia Refinery	Tank 106	AST	67'	Slop Diesel	A	Pass
Navajo Artesia Refinery	Tank 107	AST	67'	Casinghead	A	Pass
Navajo Artesia Refinery	Tank 109	AST	67'	Alky (H)	А	Pass
Navajo Artesia Refinery	Tank 117	AST	50'	Naphtha (H)	Α	Pass

Alan Harris

Alan Harris- Commercial Operational Manager Date: 09/25/09

Praxair Services, Inc. hereby certifies that the above listed systems(s) have been tested by means of Tracer Tight[®], which has been evaluated by a third party according to protocols issued and approved by the United States Environmental Protection Agency (EPA) as being able to detect a leak at a rate of 0.05 gallons per hour with a Probability of Detection (PD) of 0.97 and a Probability of False Alarm (PFA) of 0.029. If you have any guestions or concerns, please call Praxair Services, Inc. at 800-989-9929 ext.232.

.

3755 N. Business Center Drive Tucson, Arizona 85705 Toll Free (800) 989-9929 Tel: (520) 888-9400 Fax: (520) 293-1306

Tracer Tight ® Leak Test

March 2008 Testing

Three Aboveground Storage Tanks Terminal City, ST

Praxair Job No. 10000000

Prepared for:

Client 1111 Business Street City, ST 11111

Tel: 512-555-1111

Attention: First Last Name

Submitted by:

Praxair Services, Inc. **Project Manager**

E-Mail: Todd_Waltz @ Praxair.com Website: http://www.praxair.com/services

UCISCO.

Industrial Gas Services

Mechanical Cleaning Services

Pipeline Services

Tracer Research

Leak Detection Services Environmental Sampling Services

Corrocon.

Cathodic Protection Services Environmental Directional Drilling

Inoculation and Sampling Information:

	Inoculation:	Sampling:
Start Date:	Month 6, 2008	Month 6, 2008
Completion Date:	Month 13, 2008	Month 13, 2008
	Job Completion Date:	Month 13, 2008

Testing Results:

Facility:	System:	Туре:	Diameter:	Product:	Tracer:	Result:
BP	Tank 1	AST	50 ft	Diesel	A	Passed
BP	Tank 3	AST	50 ft	Diesel	A	Passed
BP	Tank 7	AST	65 ft	Unleaded	A	Passed
				Gasoline		

- Project Manager Date: MO/26/2008

Praxair Services, Inc. hereby certifies that the above listed systems(s) have been tested by means of Tracer Tight[®], which has been evaluated by a third party according to protocols issued and approved by the United States Environmental Protection Agency (EPA) as being able to detect a leak at a rate of 0.05 gallons per hour with a Probability of Detection (PD) of 0.97 and a Probability of False Alarm (PFA) of 0.029. Tracer concentrations are report in micrograms per liter (ug/L). The Tracer Tight[®] non-volume metric test and does not report in gallons per hour. If you have any questions or concerns, please call Praxair Services, Inc. at 800-989-9929 ext.234.

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Friday, September 03, 2010 7:51 AM
То:	'Moore, Darrell'; 'Lackey, Johnny'
Cc:	Dade, Randy, EMNRD; Hill, Larry, EMNRD; VonGonten, Glenn, EMNRD
Subject:	Artesia (GW-028) and Lovington (GW-014) Refineries and Praxair Services, Inc. (Praxair) Report(s) Request

Darrell and Johnny:

Good morning. OCD is writing to request all Praxair reports associated with services rendered at the above refineries after the current discharge permits were issued at each facility. Please submit the reports by Tuesday, COB October. 5, 2010.

Also, please make OCD aware of any major discoveries from the Praxair investigations. OCD notices that the February 2010 discovery of a small leak at T-413 from the Praxair method and this may help provide proof that the method is effective.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

REFINING COMPANY, LLC

FAX 2009 IAN 15 PM 1 (575) 746-5283 DIV. ORDERS IAN 15 PM 1 (575) 746-5481 TRUCKING 501 (575) 746-5458 PERSONNEL

11 1 18 501 EAST MAIN STREET • P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159 TELEPHONE (575) 748-3311 FAX (575) 746-5419 ACCOUNTING (575) 746-5451 ENV/PURCH/MKTG (575) 746-5421 ENGINEERING

January 14, 2009

FedEx Overnight Delivery

Wayne Price Environmental Bureau Chief Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Re: Navajo Refining Company, L.L.C., Discharge Permit (GW-028) Proposals

Dear Mr. Price:

Enclosed pursuant to your August 20, 2008 letter to Darrell Moore regarding the Navajo Refining Company-Artesia Refinery (GW-028) Discharge Permit Approval are the required schedules, drawings and plot plans as follows:

Attachment 1: Drum Storage Site Diagram. (GW-028, Section 7).

Attachment 2: Above Ground Tanks, Leak Detection Retrofit Schedule for OCD approval. (GW-028, Section 9).

Attachment 3: Sanitary Waste Water Proposal for OCD approval. (GW-028, Section 17 iv).

Attachment 4: Underground Process/Wastewater Lines listing. (GW-028, Section 13A).

Attachment 5: Underground tanks sumps, pits. (GW-028, Section 21C).

Please contact me at 575-746-5490 or Darrell Moore at 575-746-5281 if you have any questions.

Sincerely,

Johnny Lackey Environmental Manager

Attachments

Cc (w/attachments):

Navajo Refining: JER OCD: Carl Chavez, 1220 South St. Francis Dr., Santa Fe, NM 87505

Electronic cc (w/attachments): Environmental Files: DGM REF.ART.08-4.E.03 (Artesia Discharge Permit)

An Independent Refinery Serving . . . NEW MEXICO • ARIZONA • WEST TEXAS • NORTHERN MEXICO

Attachment 1

• •

Attachment 2

ATTACHMENT 2, January 2009

Navajo Refining Company Page 1 of 1 ARTESIA

DISCHARGE PERMIT (GW-028) NAVAJO REFINING COMPANY PROPOSED TRACER LEAK TEST PROJECT

	50	Contraction of the second	Contraction of the second second	ALC: NOT ALC: NOT		Priority 2	12	A CONTRACT OF A CONTRACT OF			Pric	Priority 3					9	Priority 4		
Mail Mail <th< th=""><th>AED TYPE FFR FFR FFR FFR FFR FFR FFR FFR FFR FF</th><th></th><th></th><th></th><th></th><th>2010</th><th></th><th></th><th></th><th></th><th>2</th><th>011</th><th></th><th></th><th></th><th></th><th></th><th>2012</th><th></th><th></th></th<>	AED TYPE FFR FFR FFR FFR FFR FFR FFR FFR FFR FF					2010					2	011						2012		
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	IFR IFR IFR IFR IFR IFR IFR IFR IFR IFR	H		TANK ID .	TYPICAL LIQUID STORED	F	F	-		TYPICAL LIQUID STORED	TYPE	VOLUME (bbi)	YEAR BUILT	Last Integrity Test Date	TANK ID	TYPICAL LIQUID STORED		VOLUME (bbi)		Last Integrity Test Date
	IFR IFR IFR IFR IFR IFR IFR IFR IFR IFR	-		T-111	Naphthas	FR	-	\vdash		Distillates	EFR	40,000	1967	2006	T-400	Gas Oils	VFR	96,300	1983	2003
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	R R R R R R R R R R R R R R R R R R R			T-112	Naphthas	FR	_		T-835	Distillates	EFR	61,000	<1973	2006	T-433	Gas Oils	VFR	79,900	<1973	2003
	FR FR FR FR FR FR FR FR FR FR FR FR FR F			T-56	Napthas	FR			T-432	Distillates	VFR	55,000	<1972	2002	T-438	Gas Oils	VFR	54,200	1978	2005
	IFR IFR IFR IFR CFR EFR			T-439	Crude Oil	FR	-		T-434	Distillates	VFR	78,400	1979	2006	T-59	Carbon Black Oil	VFR	5,100	<1973	2006
FK 200 193 200 193 200 193 200 193 2000 193 <td>IFR IFR IFR IFR EFR</td> <td>-</td> <td></td> <td>T-437</td> <td>Crude Oil</td> <td>EFR</td> <td>-</td> <td></td> <td>T-55</td> <td>Distillates</td> <td>VFR</td> <td>11,300</td> <td>1979</td> <td>2007</td> <td>T-63</td> <td>Carbon Black Oil</td> <td>VFR</td> <td>10,700</td> <td><1973</td> <td>2005</td>	IFR IFR IFR IFR EFR	-		T-437	Crude Oil	EFR	-		T-55	Distillates	VFR	11,300	1979	2007	T-63	Carbon Black Oil	VFR	10,700	<1973	2005
	IFR VFR EFR EFR EFR			T-57	Naphthas	EFR	-		T-58	Distillates	VFR	5,000	<1973	2007	T-65	Carbon Black Oil	VFR	96,300	1999	2005
	VFR EFR EFR			T-418	Distillates	VFR			T-815	Distillates	VFR	85,250	2005	2005 New	T-75	Carbon Black Oil	VFR	18,900	2003	2003 New
	EFR FR			T-419	Distillates	VFR			T-838	Distillates	VFR	29,400	1977	2006	T-836	Waste Water	VFR	30,500	1998	1998 New
	EFR SFR SFR SFR SFR			T-422	Distillates	VFR			T-413	Distillates	IFR	21,900	1960	2004	T-801	Waste Water	VFR	54,200	1987	1999
	EFR			T-423	Distillates	VFR	-		T-61	Light Cycle Oil	VFR	10,500	<1973	2009	T-409	Gas Oils	VFR	25,100	<1973	Out of Service
	2 2 2 2			T-802	Sour water	EFR														
				T-435	Water Draws	EFR	-													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EFR																			
	EFR																			
Image: Sector	EFR																			
Image: state stat																				
Image: state stat																				
					12 Tanks					10 Tanks						10 Tanks				
																			-	

		Pri	Priority 1	Section Section	
			2013		
FANK ID	TYPICAL LIQUID STORED	TYPE	VOLUME (bbi)	YEAR BUILT	Last Integrity Test Date
T-101B	Raw Naphtha	EFR	70,000	1973	1995
T-102B	Straight Run Gasoline	EFR	35,000	1973	2002
T-1201A	Crude Oil	EFR	154,500	1973	2005
T-1201B	Crude Oil	EFR	154,500	1973	2008
T-103A	Raw Diesel	VFR	30,000	1973	1991
T-103B	Raw Diesel	VFR	30,000	1973	1991
T-1204	Raw Diesel	VFR	43,860	1973	1991
T-1202	Crude Oil	EFR	108,130	1973	2002
T-1214	Heavy Slop	VFR	20,000	1980	2006
T-1215	Heavy Slop	VFR	20,000	1980	2002
T-1207	Light Slop Oil	FR	10,800	1973	2006
		Priority	y 2		Last Integrity Test Date
-102A	Raw Kerosene	EFR	35,000	1973	1991
-1203	Atmos Gas Oil	EFR	53,800	1973	2008
T-104A	Raw Kerosene	VFR	15,000	1973	1991
T-104B	Atmos Gas Oil	VFR	15,000	1973	1991
T-1205	Heavy Vacuum Gas Oil	VFR	30,700	1973	2005
T-1206	Atmos Gas Oil	VFR	97,180	1973	2002
T-1209	Light Slop Oil	EFR	18,000	1973	Out of Service
1201C	Waste Water	VFR	97,000	1973	New 2005
1201D	Waste Water	VFR	000'26	1973	2007
T-1208	Wastewater	IFR	5,380	1973	2004
	21 Tanks				

Attachment 3

ATTACHMENT 3, January 2009

Navajo Refining Company

Navajo Refinery in Artesia New Mexico currently has five operating areas separated by geographic area. With the current refinery expansion, a sixth operating area will be added in 2009 to accommodate new process units. Each of the operating areas includes both DCS (i.e. Control Board) and Field Operators. Current and future operating areas are listed below:

- 1. CCR Area:
- 2. FCC Area
- 3. North Plant (NP) Area
- 4. South Plant (SP) Area
- 5. Oil Movements Area
- 6. MHC Area (Pending completion of refinery expansion)

Within the existing operating areas there are eight (8) septic holding tanks in various stages of service. For the holding tanks that are in service, the practice is to empty the tanks via vacuum truck and haul the waste material to a septic waste handling facility. The tanks have been used primarily to service field operating crews while performing duties in and around several buildings provided for environmental shelter. The following are the locations / descriptions of the existing holding tanks and their current status. Please refer to attached aerial photograph drawing:

	EXISTING ENVIR	RONMENTAL SHELTERS WITH HOLDING TANK	(S
No.	Location	Current Operator Service	Holding Tank Status
1	Central Control Room	 FCC, NP and CCR DCS Operators CCR Field Operators 	In Service
2	FCC Operator Shelter	FCC Field Operators	In Service
3	Pipeline Office Building	NP Field OperatorsSupervisor Offices	In Service
4	North Plant Operator Shelter	North Plant Tool and Supply Storage	In Service
5	Blender Control Room	 Oil Movement DCS Operators Oil Movement Field Operators 	In Service
6	TCC Operator Shelter	South Plant Tool and Supply Storage	Out of Service
7	South Plant Control Room	South Plant DCS OperatorsSouth Plant Field Operators	In Service
8	Old South Plant Control Room	South Plant Tool and Supply Storage	Out of Service

Navajo is currently in the engineering phase to add new environmental shelters and reconfigure utilization of existing buildings to accommodate refinery expansion and addition of the new MHC operating area. The

overall plan will include installation of 2 new buildings thereby providing environmental shelters for all field operating personnel. Upon completion of the project, use of the septic holding tanks will be discontinued. The following table describes the future services for the new and existing shelters and the future status of the septic holding tanks:

	FUTURE EN	VIRONMENTAL SHELTER CONFIGURATION	······
No.	Location	Future Operator Service	Holding Tank Status
1	Central Control Room	 FCC, NP, CCR, and MHC DCS Operators FCC, CCR Field Operators 	Out of Service
2	FCC Operator Shelter	FCC Tool and Supply Storage	Out of Service
3	Pipeline Office Building	General Storage	Out of Service
4	North Plant Operator Shelter	NP Tool and Supply Storage	Out of Service
5	Blender Control Room	 Oil Movement DCS Operators Oil Movement Field Operators 	Out of Service
6	TCC Operator Shelter	South Plant Tool and Supply Storage	Out of Service
7	South Plant Control Room	South Plant DCS OperatorsSouth Plant Field Operators	Out of Service
8	Old South Plant Control Room	South Plant Tool and Supply Storage	Out of Service
9	New Operator Shelter #1 (OS#1)	MHC Field Operators	Not Applicable
10	New Operator Shelter #2 (OS#2)	NP Field Operators	Not Applicable

Relative to the elimination of the septic holding tanks, the project includes provisions to utilize existing septic sewer lines currently routed through the refinery that were recently upgraded and re-commissioned on 11/26/08 in conjunction with the re-routing of the City of Artesia's sewer line. Refer to the attached aerial photograph drawing for general locations of new and existing facilities:

- 1. Purchase and install two (2) new modern operator shelters to accommodate MHC and NP Field Operators.
- 2. Install sewer lines from lavatory facilities in the New Operator Shelter #1 running East along Adams Drive and tie into the main line running North/South along East 5th Street.
- 3. Install sewer lines from lavatory facilities in the New Operator Shelter #2 running south along Freeman Avenue and tie into the lateral line running East/West along Moseley Avenue.
- 4. Renovate the Central Control Room to accommodate MHC DCS operators and FCC field operators in addition to the operators currently using the building for environmental shelter.
- 5. Install a sewer line from the lavatory facilities in the Central Control Room running South adjacent to TK 400 and tie into the lateral line running East/West along Moseley Avenue.

- 6. Install sewer line from the lavatory facilities in the Blender Control Room running West past the Maintenance Office Building and tie into the main line running North/South along East 5th Street.
- 7. Install sewer line from the lavatory facilities in the South Plant Control Room running East along Texas Avenue and tie into the main line running North/South along East 5th Street.
- 8. Decommission all abandoned lavatory facilities.
- 9. Decommission the holding tanks to eliminate future use following NMED Guidelines for removal or in place decommissioning of the below ground sanitary waste water closed tank systems.

Navajo anticipates that the project to install and/or renovate operator shelters and install new sewer lines to eliminate the holding tanks will be complete on or before 09/11/2010 which is 24 months after Artesia's completion of the new sewer line as required in Discharge Permit GW-028 Sec17 iv.

Extensive excavation inside the refinery boundary will be required to install the necessary piping to connect to the city of Artesia's sewer system. If during construction, underground piping or unforeseen obstructions prevent Navajo from completing the above described tie-ins to the city of Artesia's sanitary sewer system; Navajo will tie-in to the refinery oil/water sewer system to treat and/or dispose of all sanitary waste water effluent through the refinery waste water treatment system and permitted UIC Class 1 Injection Wells east of the refinery.

gon he

Attachment 4

ATTACHMENT 4, January 2009 Navajo Refining Company

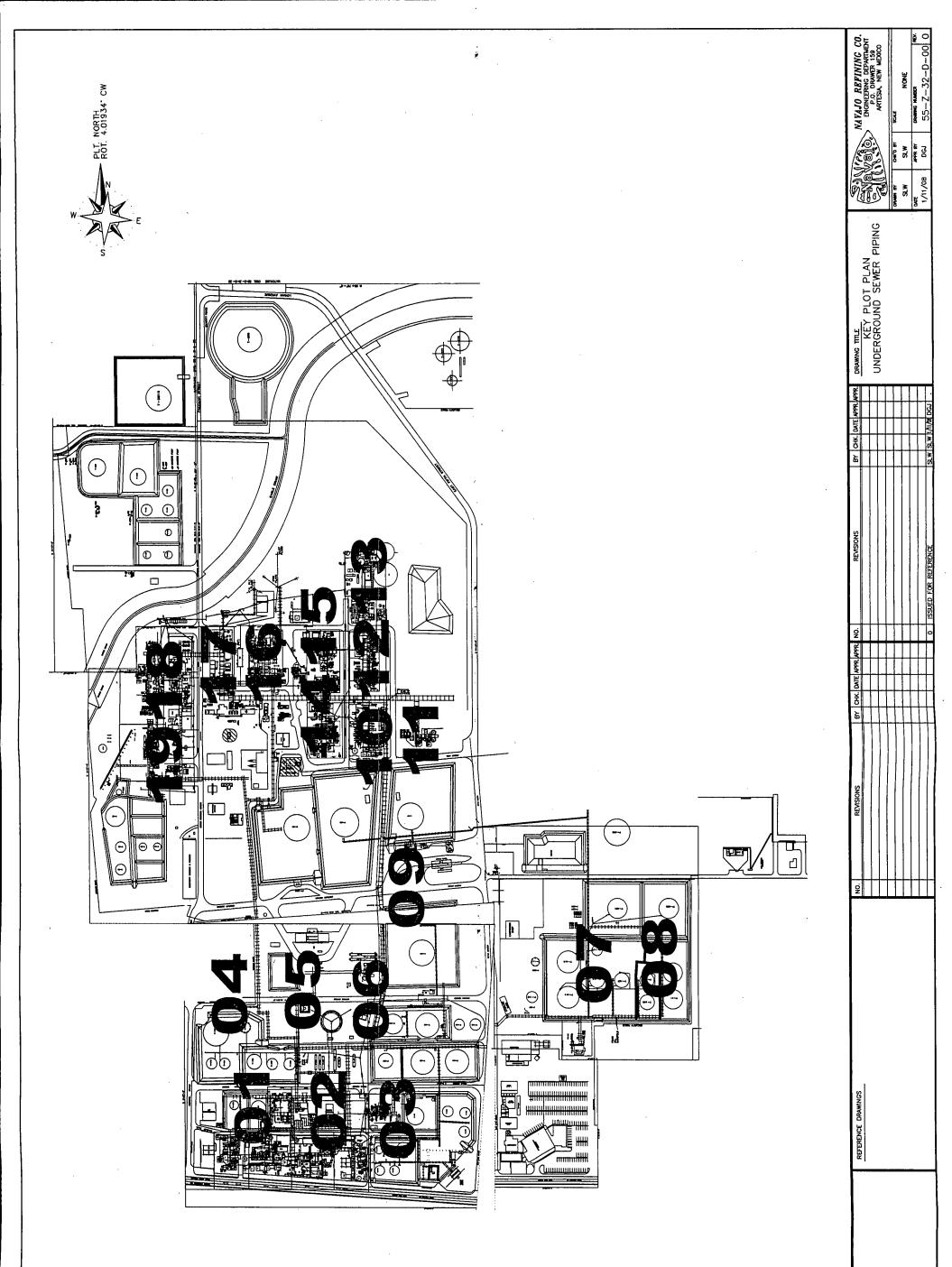
NAVAJO REFINING COMPANY ARTESIA REFINERY LISTING OF UNDERGROUND PROCESS/WASTEWATER LINES

Page 1 of 1

Description	Equipment	Unit Code	Priority	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	3	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	1	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	3	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	1	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	1	
UNDERGROUND LINE INTEGRITY TESTING	29-BLENDING	29	1	
UNDERGROUND LINE INTEGRITY TESTING	29-BLENDING	29	1	
UNDERGROUND LINE INTEGRITY TESTING	29-BLENDING	29	1	
UNDERGROUND LINE INTEGRITY TESTING	29-BLENDING	29	1	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	1	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	1	
UNDERGROUND LINE INTEGRITY TESTING	08-TANKAGE	08	3	
UNDERGROUND LINE INTEGRITY TESTING	29-BLENDING	29	1	

Attachment 5

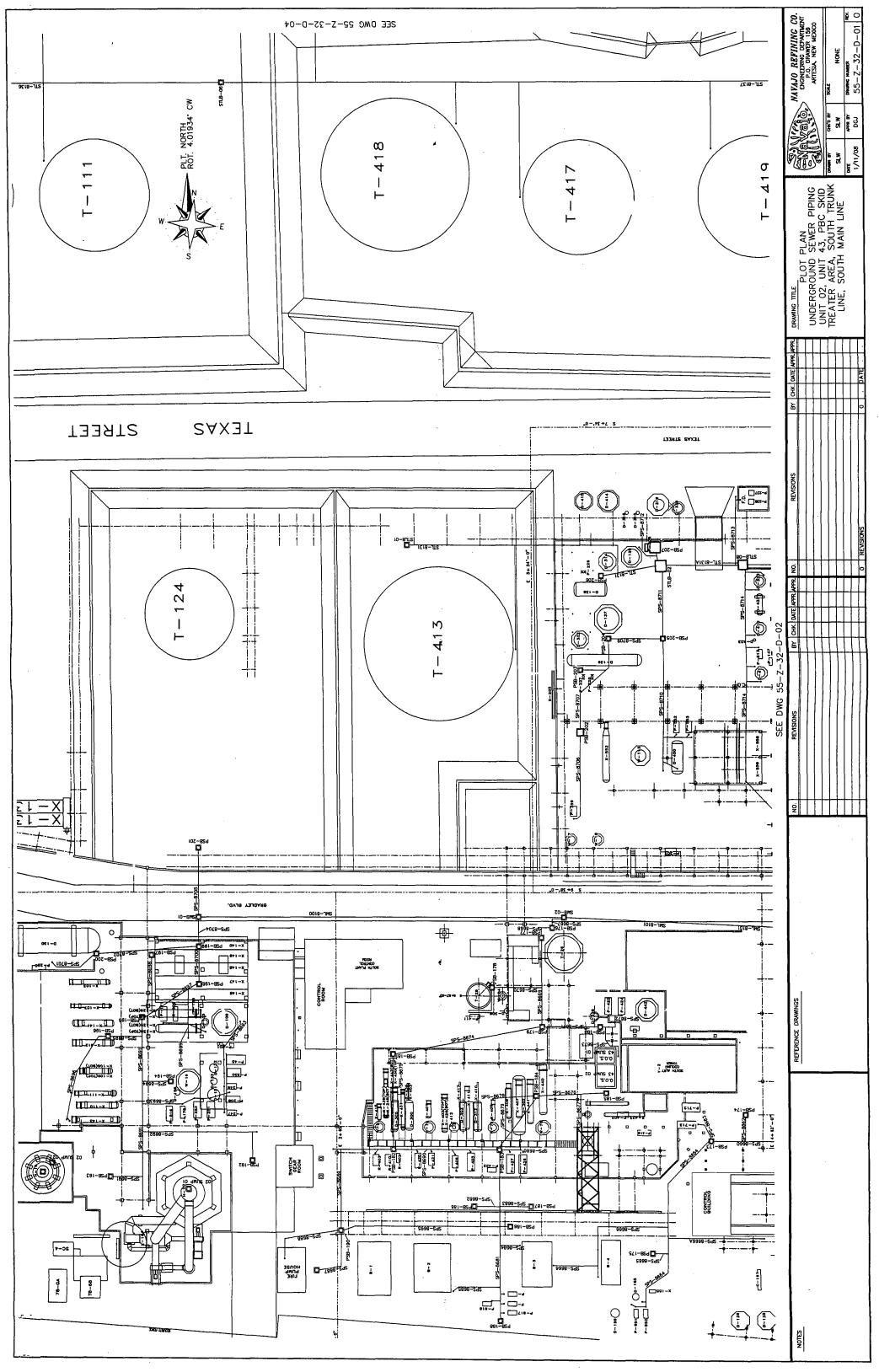
ATTACHMENT 5, January 2009

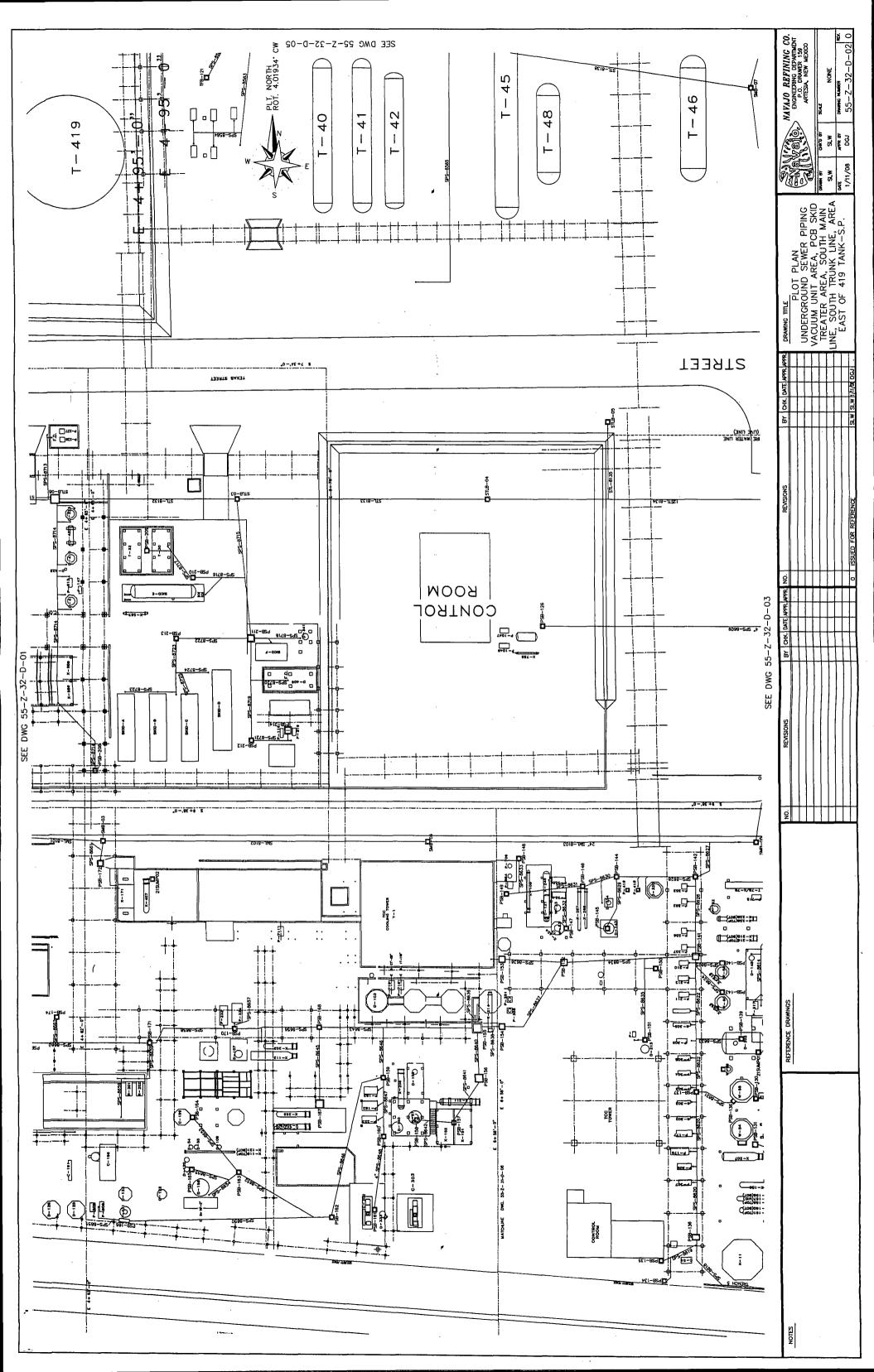

. 2

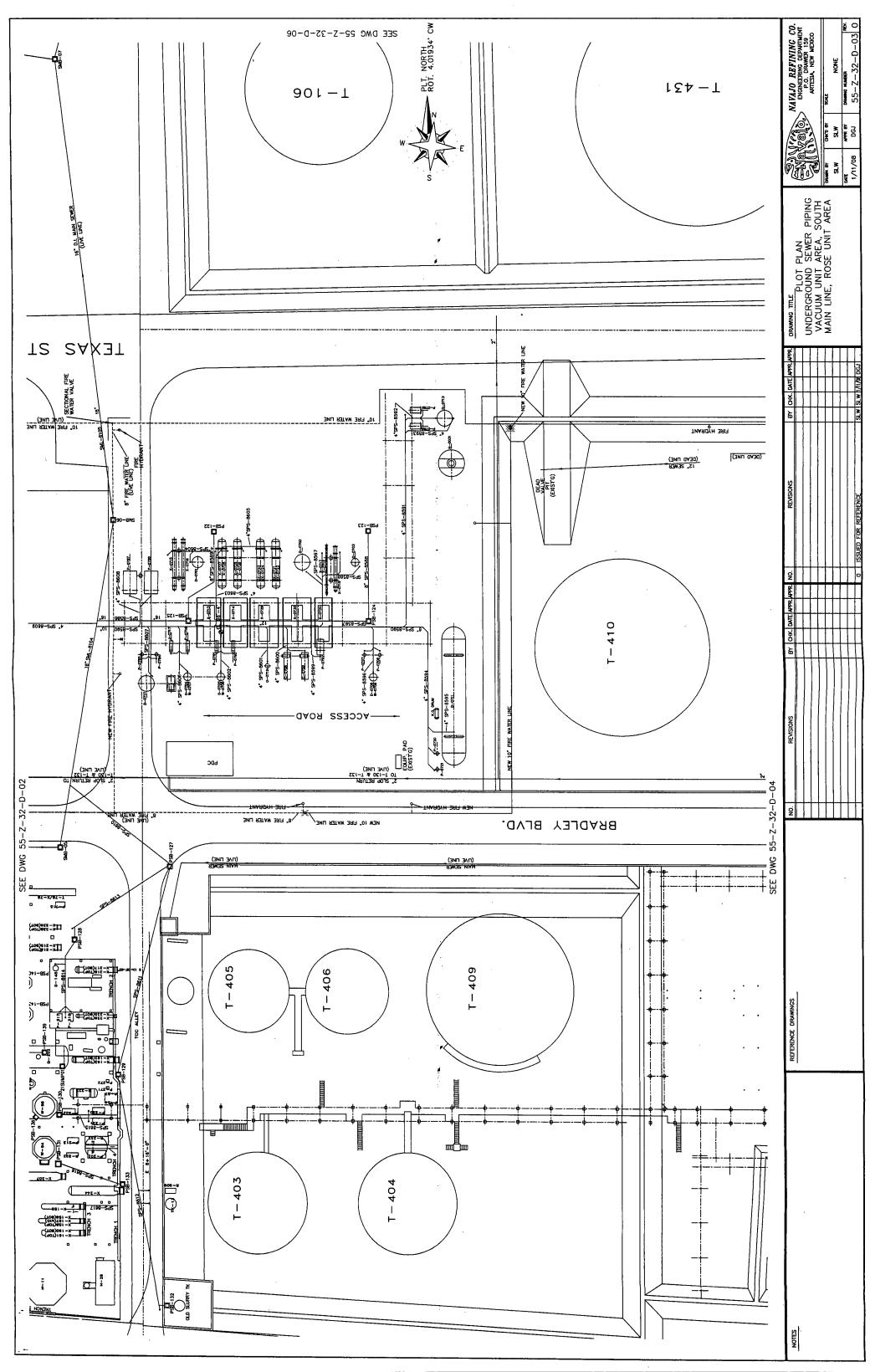
-** L

Navajo Refining Company

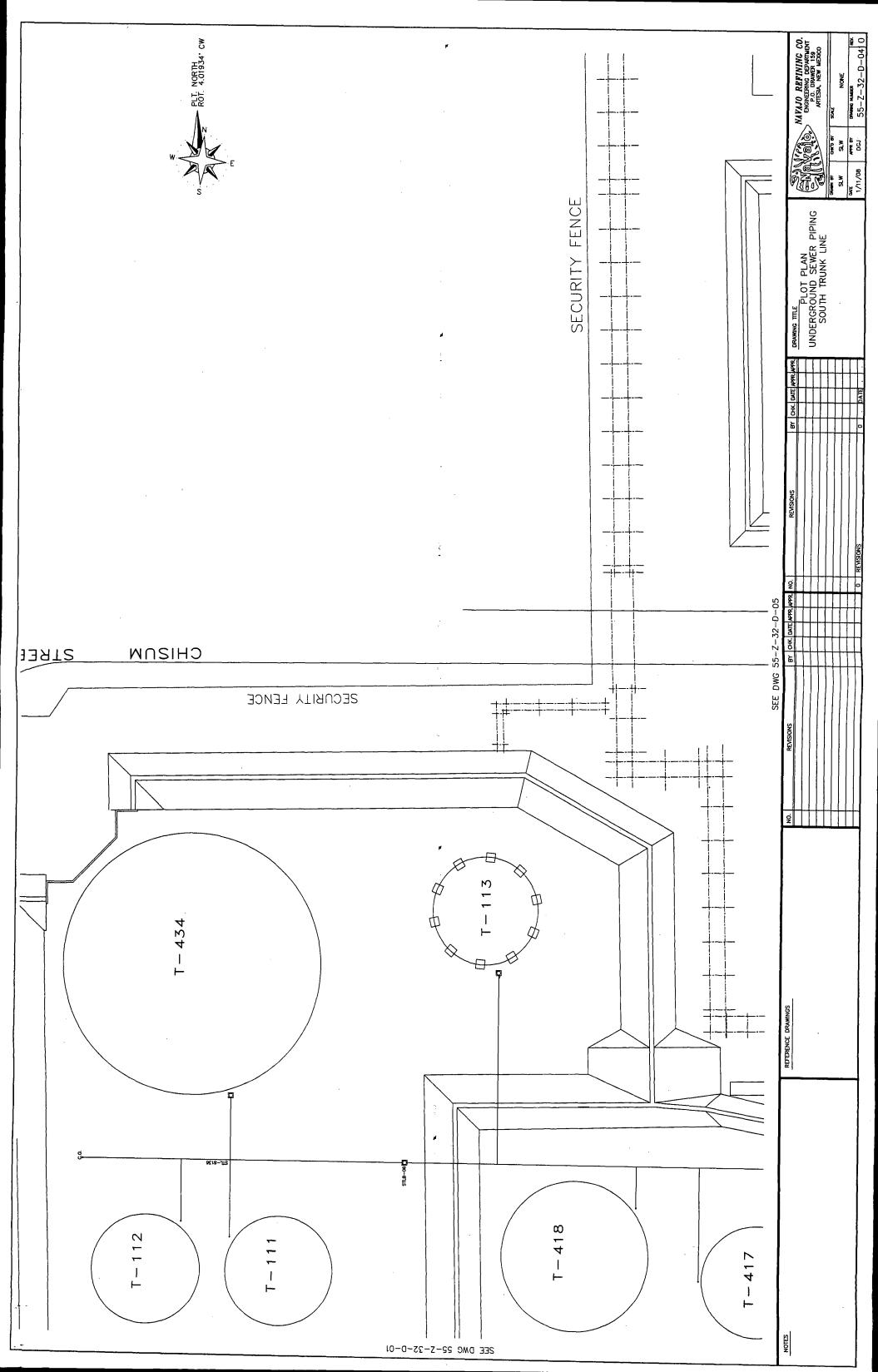
NAVAJO REFINING COMPANY ARTESIA REFINERY

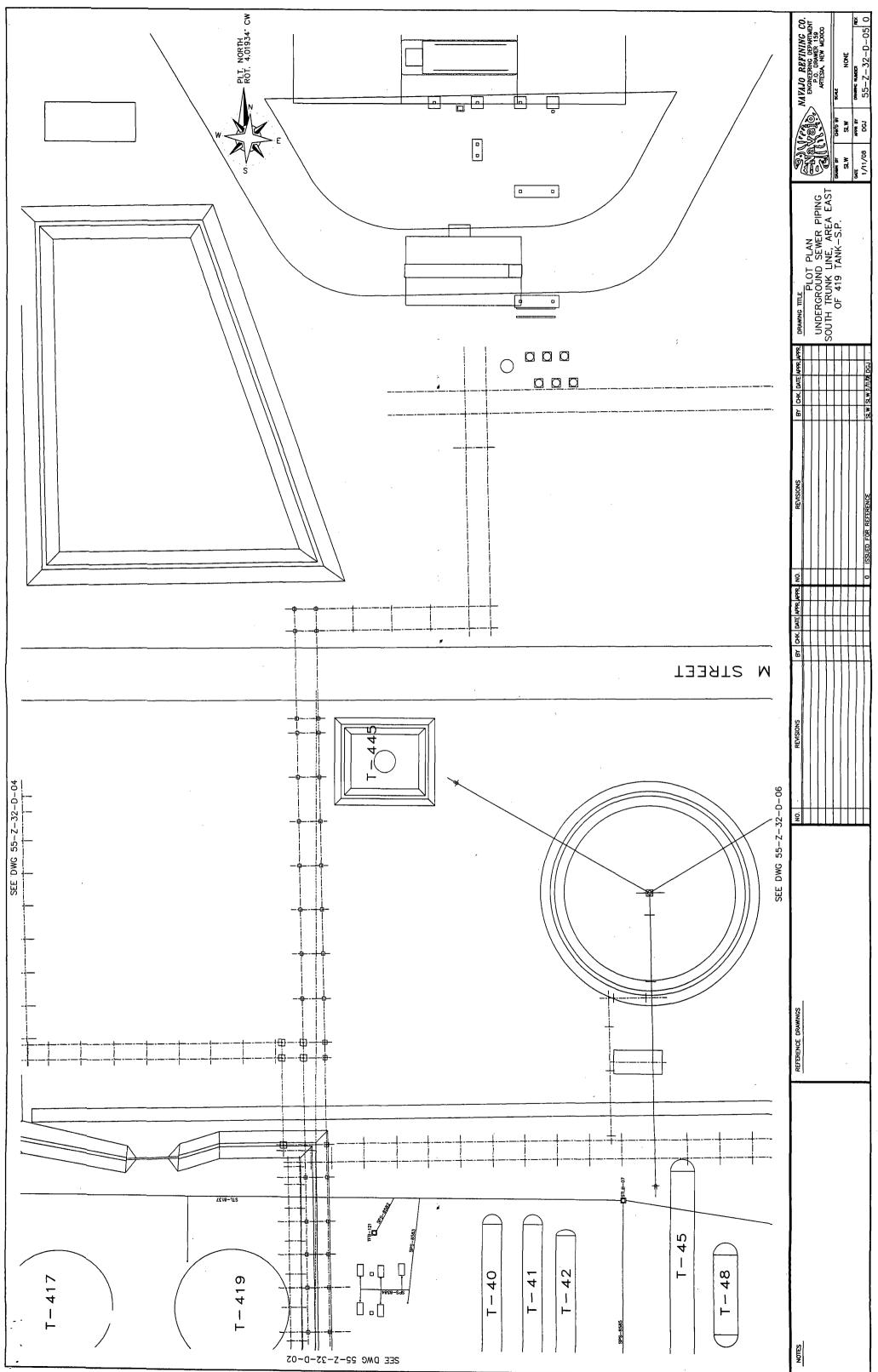

THIS SUMP WILL BECOME PSB WHEN NEW H2 UNIT IS BUILT					8/1/2010	a/1/2005	3'-0" x 3'-0" x 4'-3" D	CONCRETE BOX	NORTHSIDE OF HYDROGEN UNIT	63SUMP01
"NEW ADDITION" REQUIRES ADDED TO DRAWING					2012	NEW 10/07		CONCRETE BOX	CHE	46SUMP17
"NEW ADDITION" REGUIRES ADDED TO DRAWING					2012	NEW 10/07		CONCRETE BOX	CHEMICAL STORAGE AREA, NORTH OF WAREHOUSE	48SUMP18
					2010		4' x 4' (approx)	CONCRETE BOX	SAM	46SUMP15
		HYDRO/LEVEL CHECK	GILES, INC	PASS	9/4/2013	9/4/2008	5'x 5' x 5'	CONCRETE BOX	NOR	46SUMP13
		HYDROLEVEL CHECK	GILES, INC.	PASS	9/5/2013	9/5/2008	NA	U/G STEEL TANK	NW C	46SUMP12
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	5/11/2009	5/11/2004	3' x 3' x 3'	CONCRETE BOX	EAST	46SUMP11
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	9/4/2013	9/4/2008	4" x 2"-9" x 3"	Ĩ	-	46SUMP10
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	6/9/2009	6/9/2004	3' x 3' x 3'	CONCRETE BOX	-	46SUMP09
NOT A SUMP - TIED TO SEWER LINE (SEE SEWER DWGS)	-		GILES, INC.	PASS	7/13/2009	7/13/2004	50' x 3' x 3'-6"	CONCRETE BOX W/ BAFFLE	-	46SUMP08
			GILES INC	2240	8/19/111	8/08/0008	17 V V V V			4030141200
			GILES INC	0000	5107.02.0	8000/02/02	71 21 - 21 21 - 21 - 21 - 21 - 21 - 21 -		+-	40001000
		HYDRON EVEL CHECK	GILES INC	DACC	2/10/1012	8000/18/16	16' 0 ° 0 1 0"		+	1000000
NOT A SUMP - TIED TO SEWER LINE (SEE SEWER DWGS)			GI PS INC	PASS	7/14/2009	- 7/14/2004	50'5'2'4'5" 		+	4000mmus
		HYDROLEVEL CHECK	GILES INC.	PASS	2/7/7/14 2.002.101.10	5000/V/B	10" × X' X 1-0"	FIREDA ASS	╉	4000MP02
		HYDRO/LEVEL CHECK	GILES INC.	PASS	9/10/2019	9/10/2004	3' Y Y Y-A	CONCRETE BOX	+	ARCI MDD
		HYDROILEVEL CHECK	GILES, INC.	PASS	5/20/2009	5/20/2004	2' × 2' × 2'	CONCRETE BOX	_	46SUMP01
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	10/28/2012	10/29/2007	2"-8" x 2"-8" x 2"-0" D	CONCRETE BOX	-+	44SUMP16
OUT OF SERVICE					NA +	NA	10'-0" x 8'-0" x 6'-6" D	CONCRETE BOX	÷	43SUMP02
OUT OF SERVICE					NA	WA	6-0" x 8-0" x 6-6" D	CONCRETE BOX	-	43SUMP01
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	10/28/2012	10/29/2007	1'-6" x 1'-6" x 15" D	CONCRETE BOX	_	21SUMP02
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	10/28/2012	10/29/2007	2'-8' X 2'-8'' X 2'-8'' D	CONCRETE BOX	_	21SUMP01
REPAIRED WITH CONCRETE PATCH		HYDRO/LEVEL CHECK	GILES, INC.	PASS	11/2/2012	11/3/2007	4'-0" x 4'-0" x 3' D	CONCRETE BOX		10SI MADA
		HYDRO/LEVEL CHECK	GILES, INC.	FAIL		10/25/2007	4"-0" x 4"-0" x 3" D ;	CONCRETE BOX	\rightarrow	10SUMP04
		HYDRO/LEVEL CHECK	GILES, INC	PASS	10/24/2012	10/25/2007	4'-0" × 4'-0" × 4' D	CONCRETE BOX	FLUE GAS SCRUBBER - FCCU	10SUMP03
LOCATED IN NORTH PLANT NW OF OLD COMFORT STATION			-		Ranlace as regid	NA	NIA	1/2 - 55 GALLON STEEL DRUM	SI LIDRY BARDEL ON NORTH PLANT SOLUTH OF	
LOCATED IN NORTH PLANT NW OF OLD COMFORT STATION					Replace as regid	WA	NA	1/2 - 55 GALLON STEEL DRUM	_	10SLIMP01
REPAIRED WITH CONCRETE PATCH		HYDRO/LEVEL CHECK	GILES, INC	PASS	10/26/2012	10/27/2007	4'-0" x 4'-0" x 3' D	CONCRETE BOX	+	10411500
		HYDRO/LEVEL CHECK	GILES INC	FAIL	100000	10/25/2007	4'-0" v 4'-0" v 7' D	CONORTE BOX	_	
	l E	HYDRO/LEVEL CHECK	GLES. INC	PASS	12/5/2013	12/5/2008	5º x 4	METAL BOX	A FOUR CONTROL STATION "HED"	DRSUMPLA
		HYDROVLEVEL CHECK	GILES, INC.	PASS	12/5/2013	12/5/2008	52 4 4	METAL BOX	-+-	08-010-000
			GIES INC	DACC I	10/2/01	17/2/000	2	METAL BOX	<u>n</u> p	
		HYDROM EVEL CHECK	GILES INC	PASS	12/5/2013	12/5/2008	5 4 4 4	METAL BOX	<u>p</u> p	DOGOMP34
		HYDROA EVEL CHECK		DASS	10/6/013	12/0/1008	27×47×20		A ELENSO STATION	
REPLACE METAL BOY OR INSTALL CONCRETE SUMP		HYDRON EVEL CHEOX		EAU -	17/0/01	ANUSICE	5 5 3 5 4 7 1	WO SIEEL JAWA		UBSUMP32
LUCA IEU UNDERNEA IH UUUHUUSE AT RACA			GILES, INC.	PASS	8007/81/7	//16/2004	2,×8-2,×2	CONCRETE BOX	SOUTH ASPHALT LOADING RACK	08SUMP31
		HYDROALEVEL CHECK	GILES, INC.	PASS	6/10/2009	6/10/2004	5" × 8" × 7-5"	CONCRETE BOX	+	08SUMP30
HOLLY ENERGY PARTNERS		HYDRO/LEVEL CHECK	GILES, INC.	PASS	1 1/15/2009	11/15/2004	6' DIAMETER × 4' DEEP	U/G STEEL TANK	19 LIFT STATION @ FILTER MANIFOLD S. OF LPG LOADING RACH	08SUMP39
		HYDRO/LEVEL CHECK	GILES. INC.	PASS	10/13/2009	10/13/2004	NA	U/G STEEL TANK		08SUMP28
HOLLY ENERGY PARTNERS		HYDRO/LEVEL CHECK	GILES, INC.	PASS	9/2/2013	9/2/2008	2"×2"-6"×2"	CONCRETE BOX	+	06SUMP27
HOLLY ENERGY PARTNERS		HYDRO/LEVEL CHECK	GILES, INC.	PASS	9/21/2013	9/21/2008	2" × 2'-6" × 2'	CONCRETE BOX	SPILL RETENTION SUMPS @ GASOLINE LOADING RACK	08SUMP26
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	8/26/2013	8/26/2008	NA	U/G STEEL TANN	1	08SUMP25
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	10/12/2009	10/12/2004	NA	U/G STEEL TANK		08SUMP24
OUT OF SERVICE					"NA	NA	20" × 40" × 3"	CONCRETE BOX	-	08SUMP23
OUT OF SERVICE, REMOVED BY ENG. PROJECTS JAN. 2008				- 1	NA	WA	* 20' x 40' x 3'	CONCRETE BOX	⊢	- 08SUMP22
		HYDRO/LEVEL CHECK	GILES, INC	PASS	9/20/2009	9/20/2004	4' x 4' x 4'	CONCRETE BOX	_	0BSUMP21
		HYDRO/LEVEL CHECK	GILES, INC	PASS	8/27/2013	8/27/2008	3' x 3' x 3'	CONCRETE BOX		08SUMP20
	;	HYDRO/LEVEL CHECK	GILES, INC	PASS	9/21/2009	9/21/2004	3' × 3' × 3'	CONCRETE BOX	-	08SUMP19
		HYDRO/LEVEL CHECK	GILES, INC	PASS	12/13/2009	12/13/2004	8' x 6' x 6' DEEP	CONCRETE BOX	-	08SUMP18
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	9/29/2009	9/29/2004	3' × 3' × 4'	CONCRETE BOX	7 WEST SIDE OF 450 TANK	08SUMP17
		HYDRO/LEVEL CHECK	GILES INC.	PASS	10/11/2009	10/11/2004	3' X 8' X 8'	CONCRETE BOX	-+	0RSUMP16
NORTH OF BLENDER BILLI DING			GILLS INC	PASS	\$100/7/10	8/77/1000	0 - C X V'+ X 0-D			
				DACC			C. C. L. K. C. C. C. L. K. K. C. C. C. K. K. K.	SUPER BOX	3 SLURRT SCINGER SLUUGE FIL	CLAMPCR
OUT OF SERVICE					NA	NA	- 8'X7'X5	STEEL BOX	2 SLURRY SLINGER SLUDGE PIT	08SUMP12
OUT OF SERVICE					NA	WA	9'x7'x5'	STEEL BOX	1 SLURRY SLINGER SLUDGE PIT	08SUMP11
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	8/3/2009	8/2/2004	9'-8" x 5'-8" x 2'-6"	CONCRETE BOX	0 WATER DRAW PIT EAST SIDE OF 835 TANK	08SUMP10
LOCATED IN NE CORNER OF DIKE - OUT OF SERVICE					N/A .	NA	18'x 9'x 7	CONCRETE BOX	9 839 TANK WATER DRAW PIT	09SUMP09
		HYDRO/LEVEL CHECK	GILES INC.	PASS	2/14/2010	2/14/2005	NA	U/G STEEL TANK	-	80dWDS80
		HYDRO/LEVEL CHECK	GILES INC	PASS	9/28/2009	9/28/2004	NA	55 GALLON STEEL DRUM	WATER ORAW NORTH SIDE OF 324 TANK	08SLIMP07
		HYDROALEVEL CHECK	GILES INC.	PASS	600C/B/D	9/6/2004	2 7 7 7 7 7 0 7 0 7 0 0	CONCRETE BOX		0851 MDDa
			GILES INC	PASS	6002/0/1/8	8/12/2004	8'x6'x8'	CONCRETE BOX	4 CBO BETWEEN TRUCK RACK & RAILROAD (NORTH)	08SUMP04
		HYDROVLEVEL CHECK	GILES INC.	PASS	9/7/2009	9/7/2004	2' × 2' × 2'	STEEL BOX	+	COdWDS80
	ľ	HYDRO/LEVEL CHECK	GILES, INC.	PASS	9/7/2009	9/7/2004	2 4 2 4 2	STEEL BOX	-	08SUMP02
		HYDRO/LEVEL CHECK	GILES, INC.	PASS	a/25/2013	8/25/2008	7'-6" L x 4'-6" W x 3'-0" D	CONCRETE BOX	-	08SUMP01
					6/1/2010	ē/1/2005	2'-6" x 2'-6" x 15" D	CONCRETE BOX		02SUMP02
					6002		2'-0' × 2'-0" × 3'-0" D	CONCRETE BOX	UNDER 11-20	2
COMMENT	METHOD	METHOD	BY	PASS / FAIL	TEST DUE	TEST DATE	DIMENSIONS	DESCRIPTION	LOCATION	SUMPS ID #
	REPAIR	TEST	TESTED	TEST	NEXT	LAST	APPROX			
JAN 13. 2008				- contro					ALL SUMPS SHOWN ON DRAWING 55-7-32-0-01	REVISION 46
					LISTING OF ALL SUMPS					•
				FINERY	ARTESIA RE					

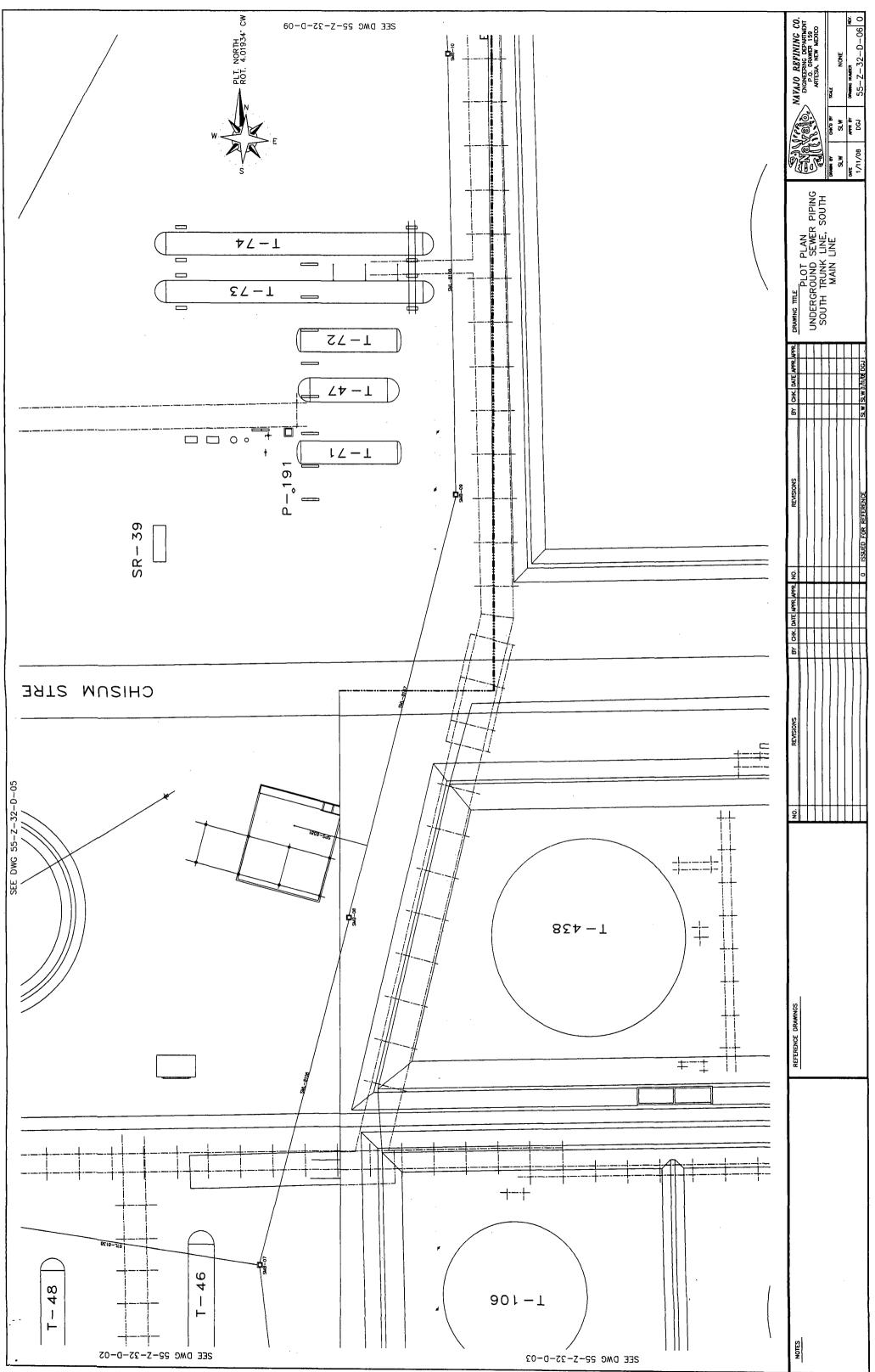

.

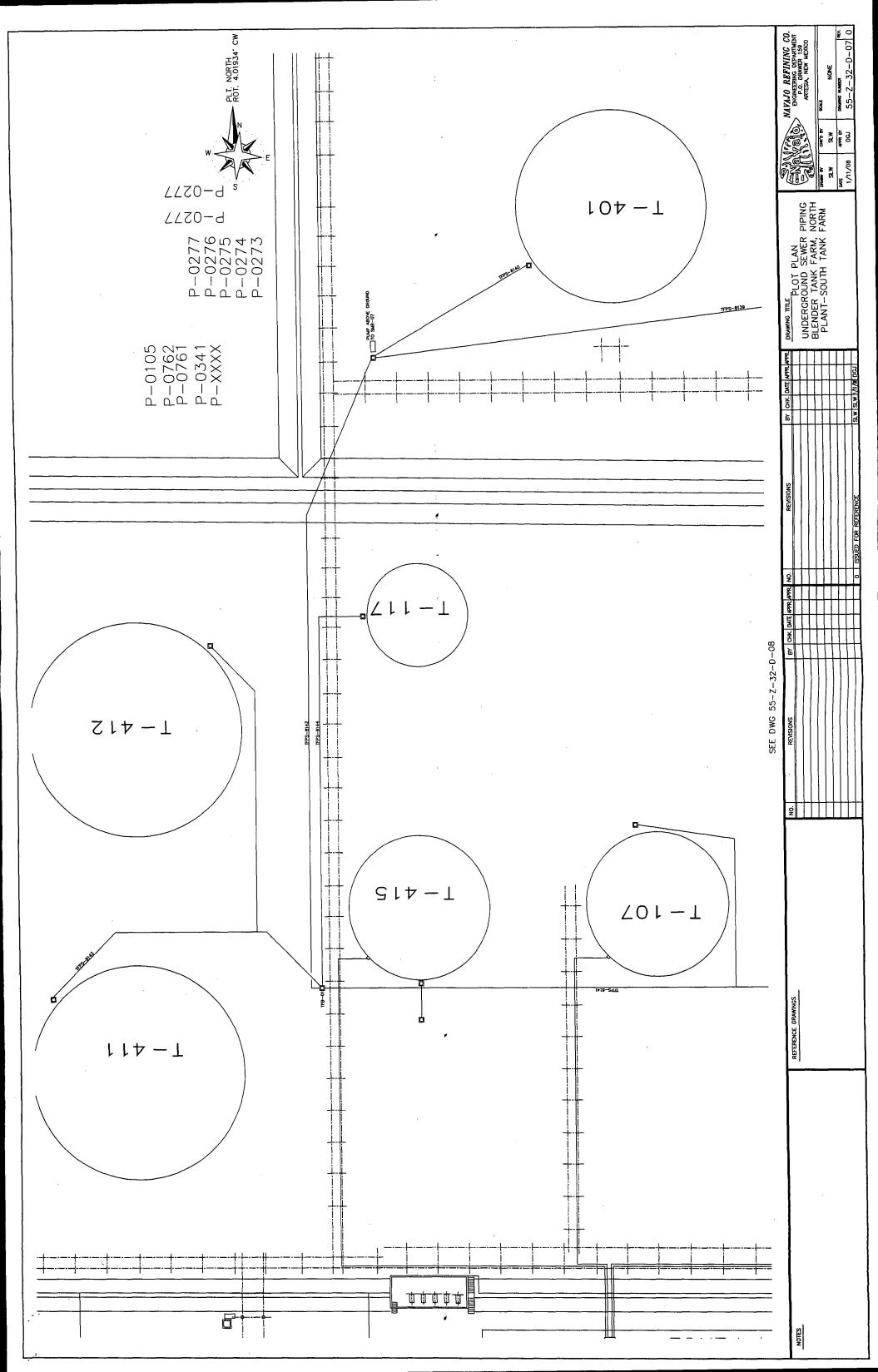

4

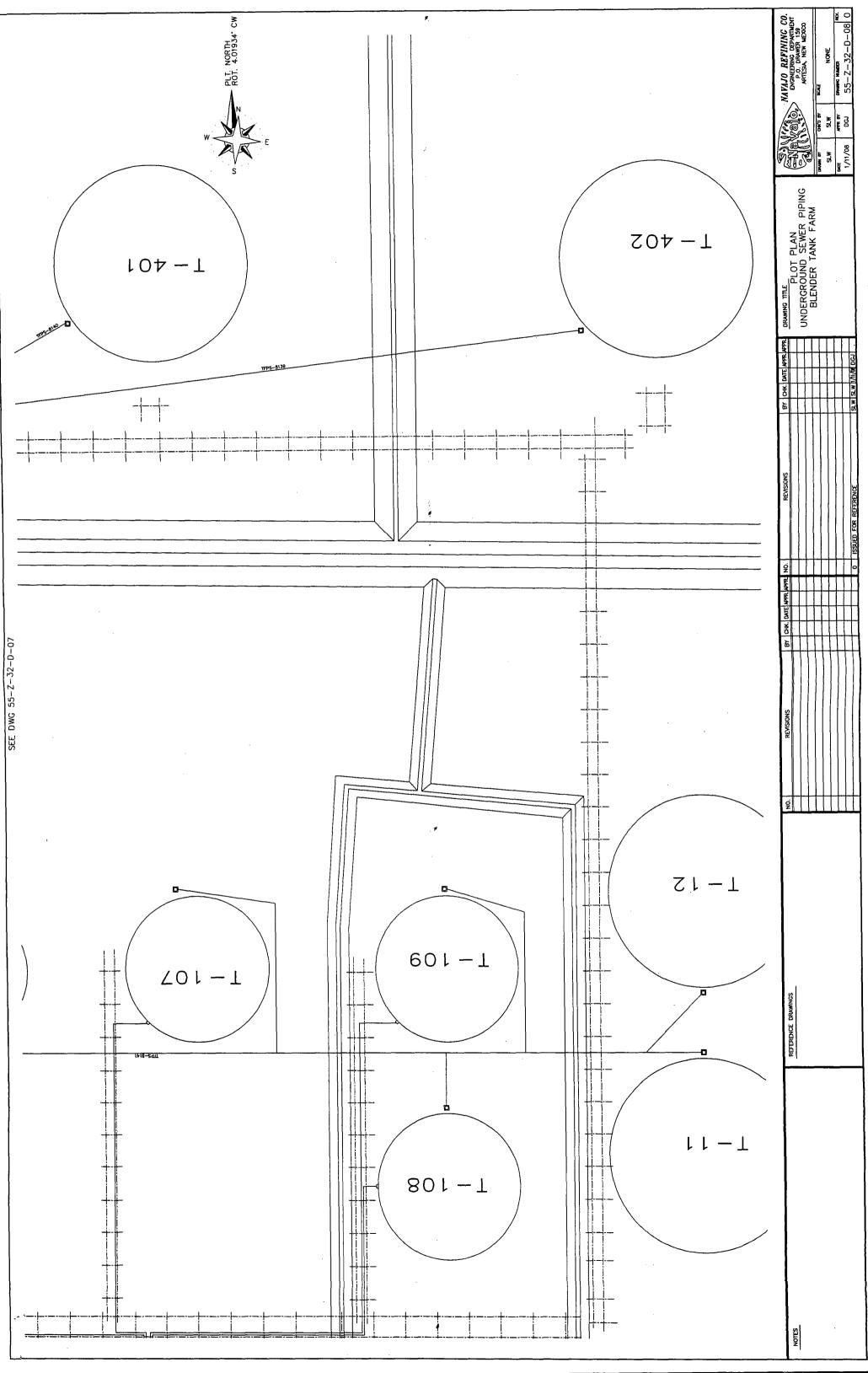
NOTES

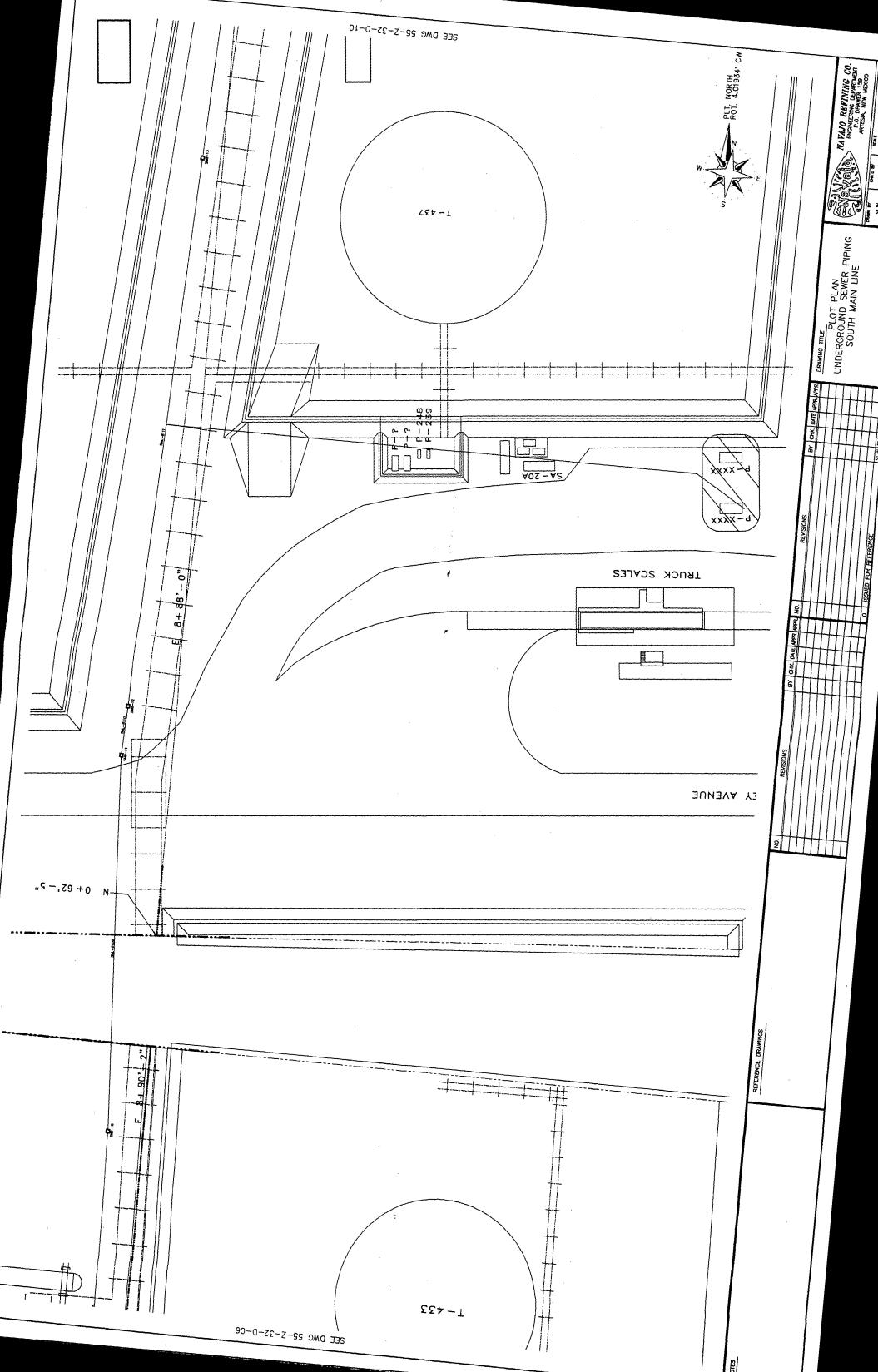

and an and a second second

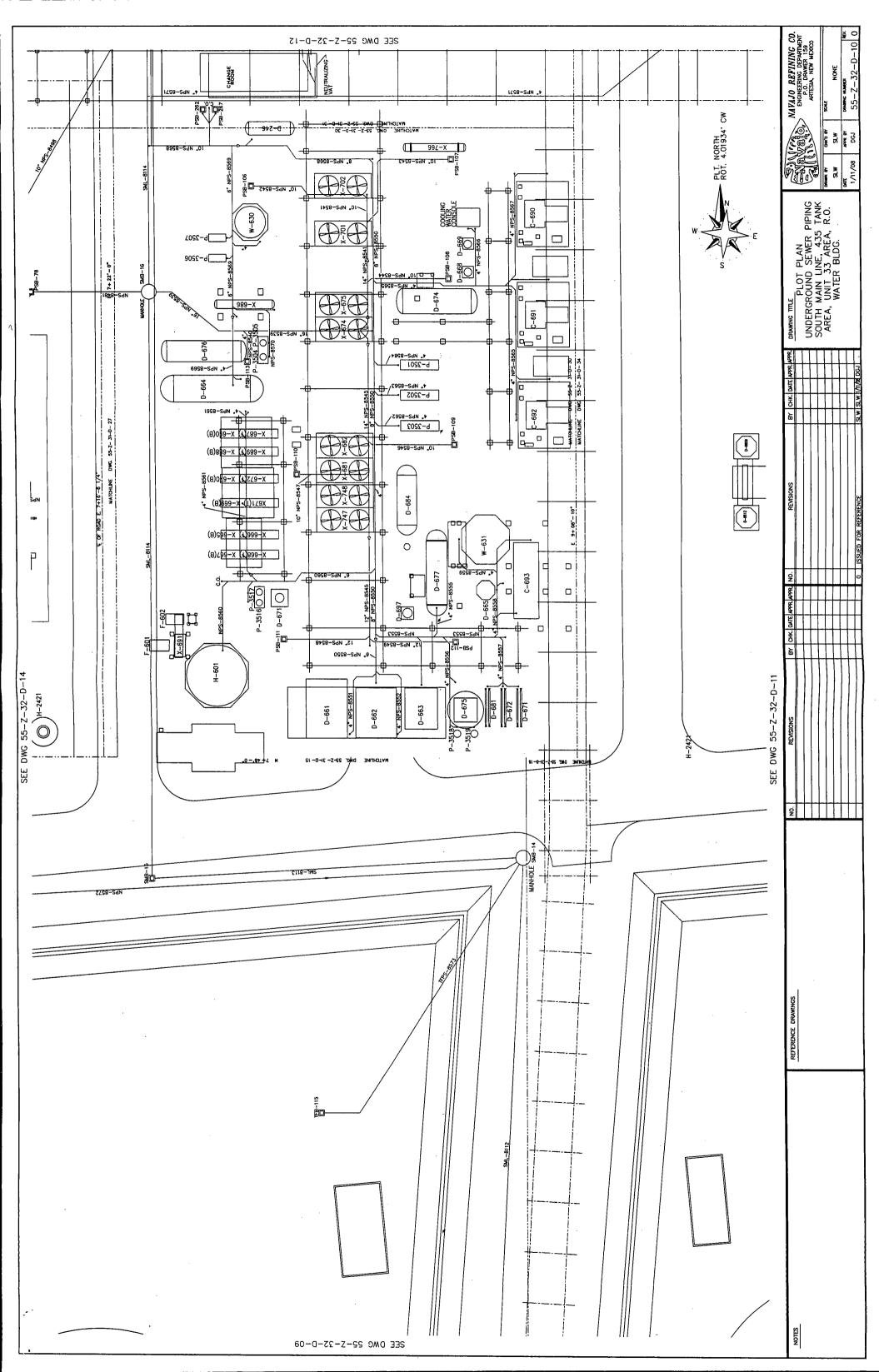


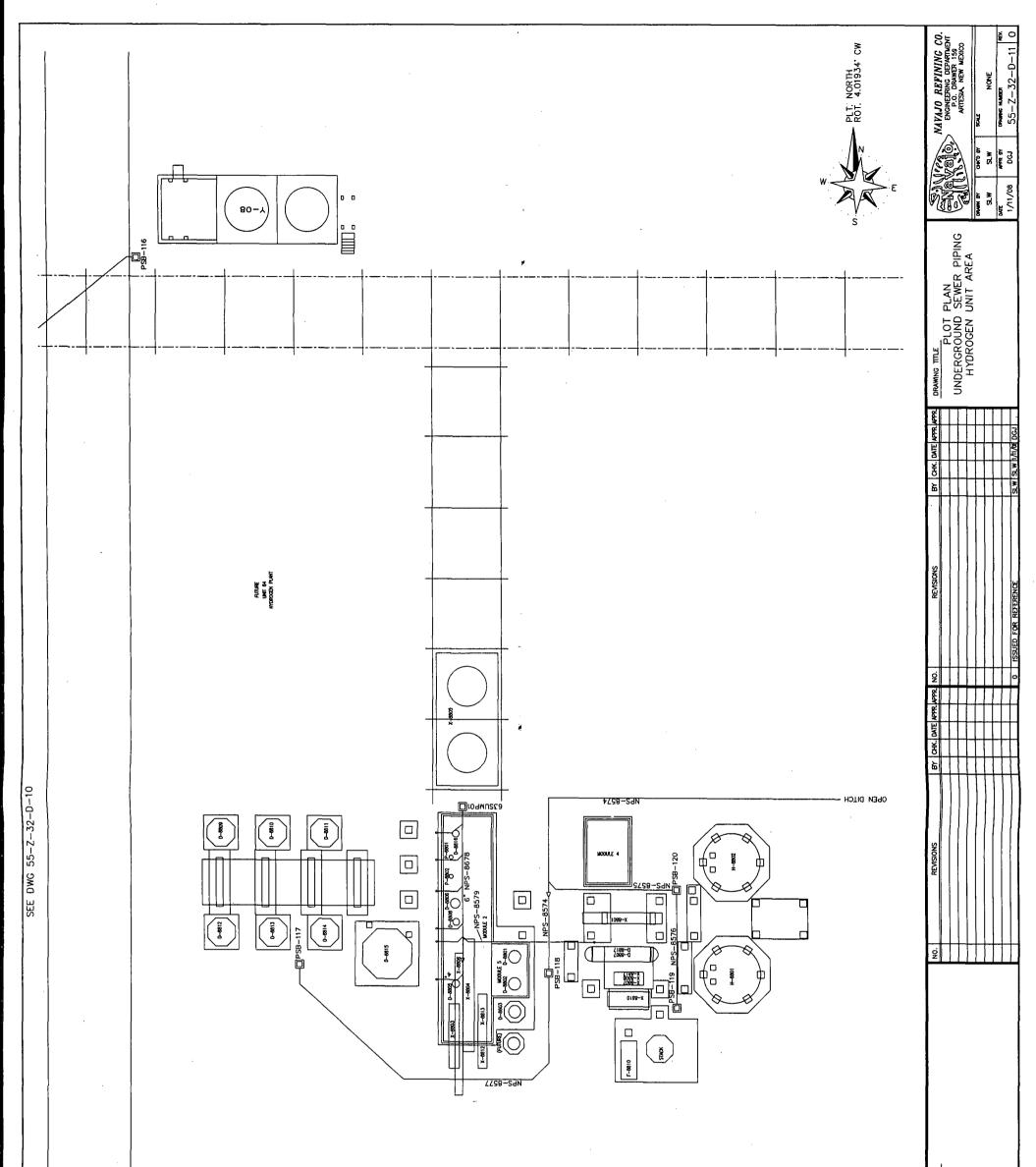


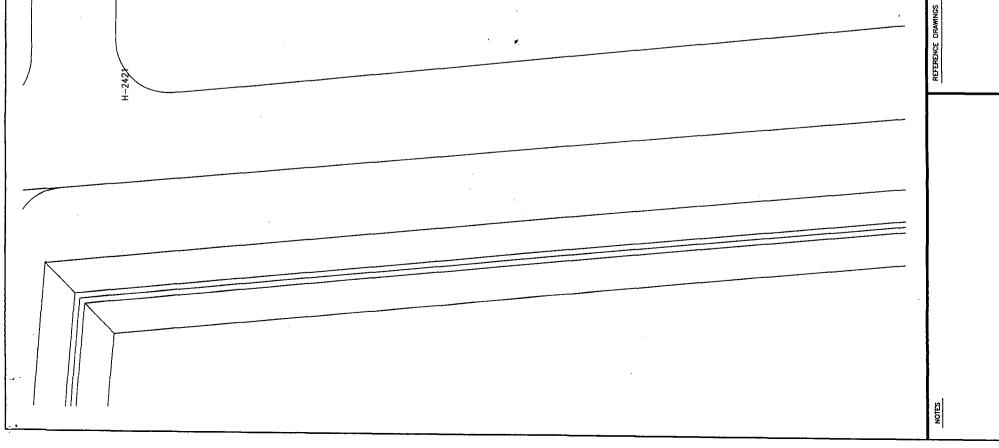

the attact of analysis was been a closed and entering address of the store is the annual 46.46 to the store of the store


and the second s

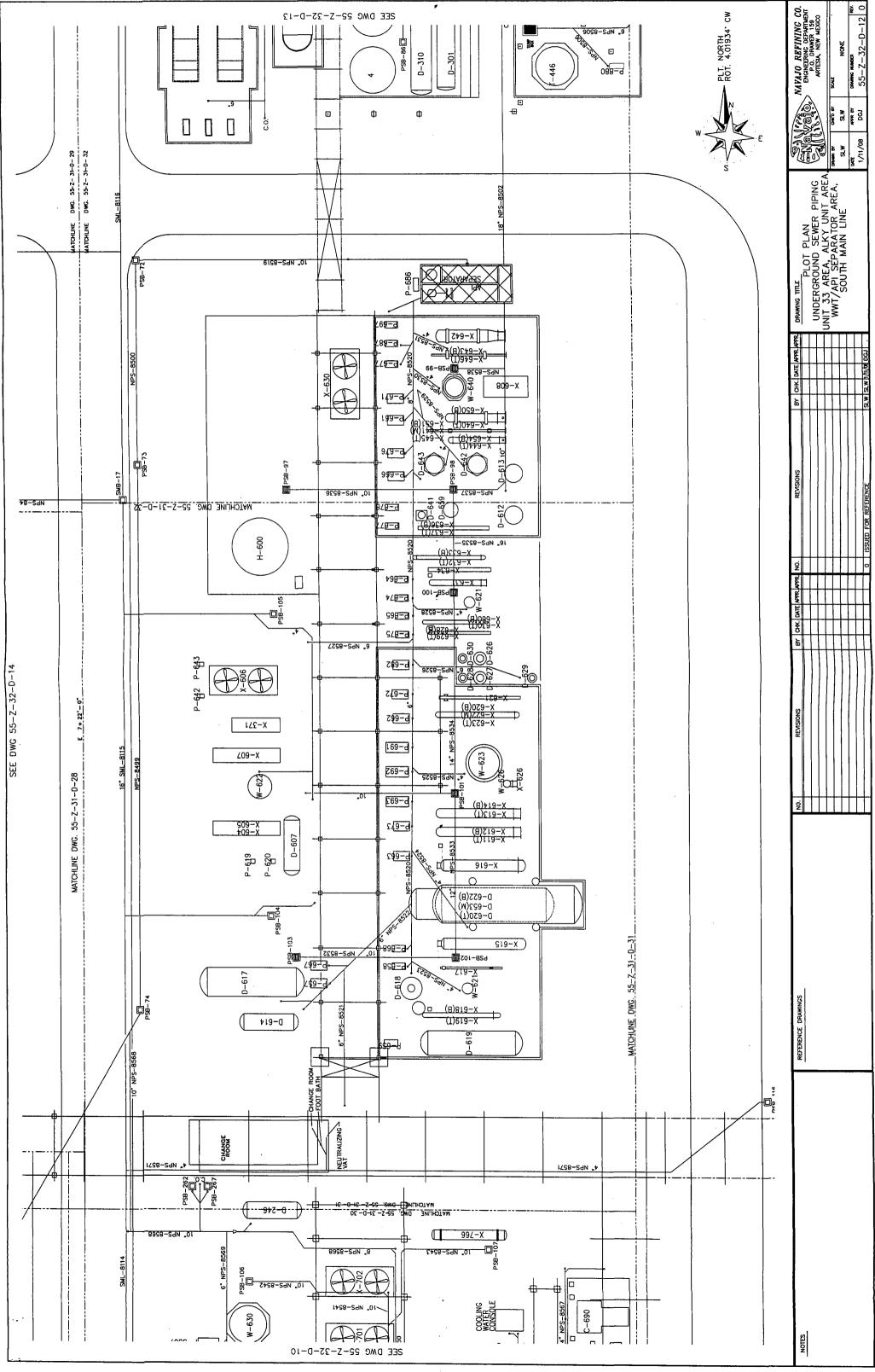


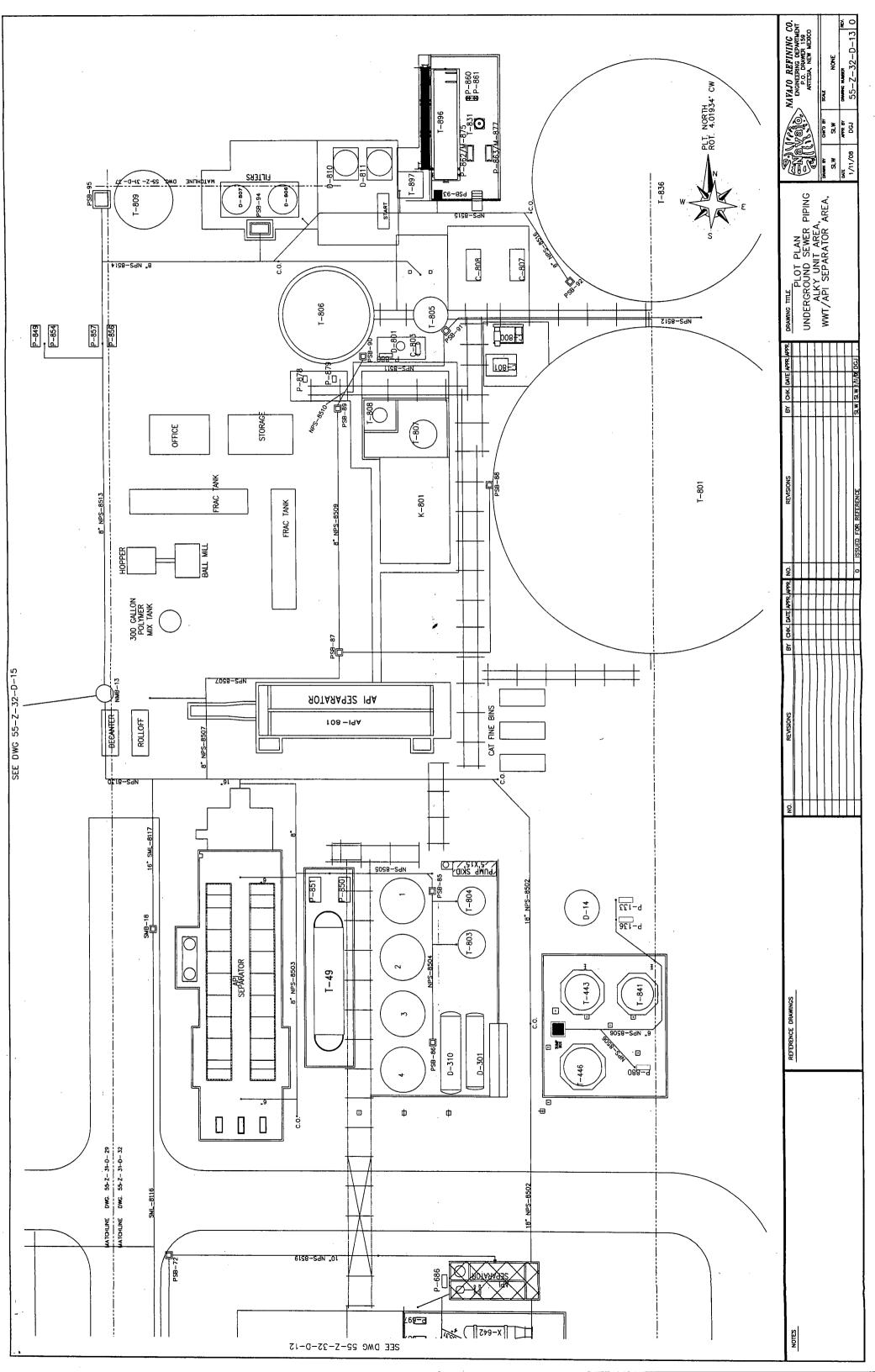


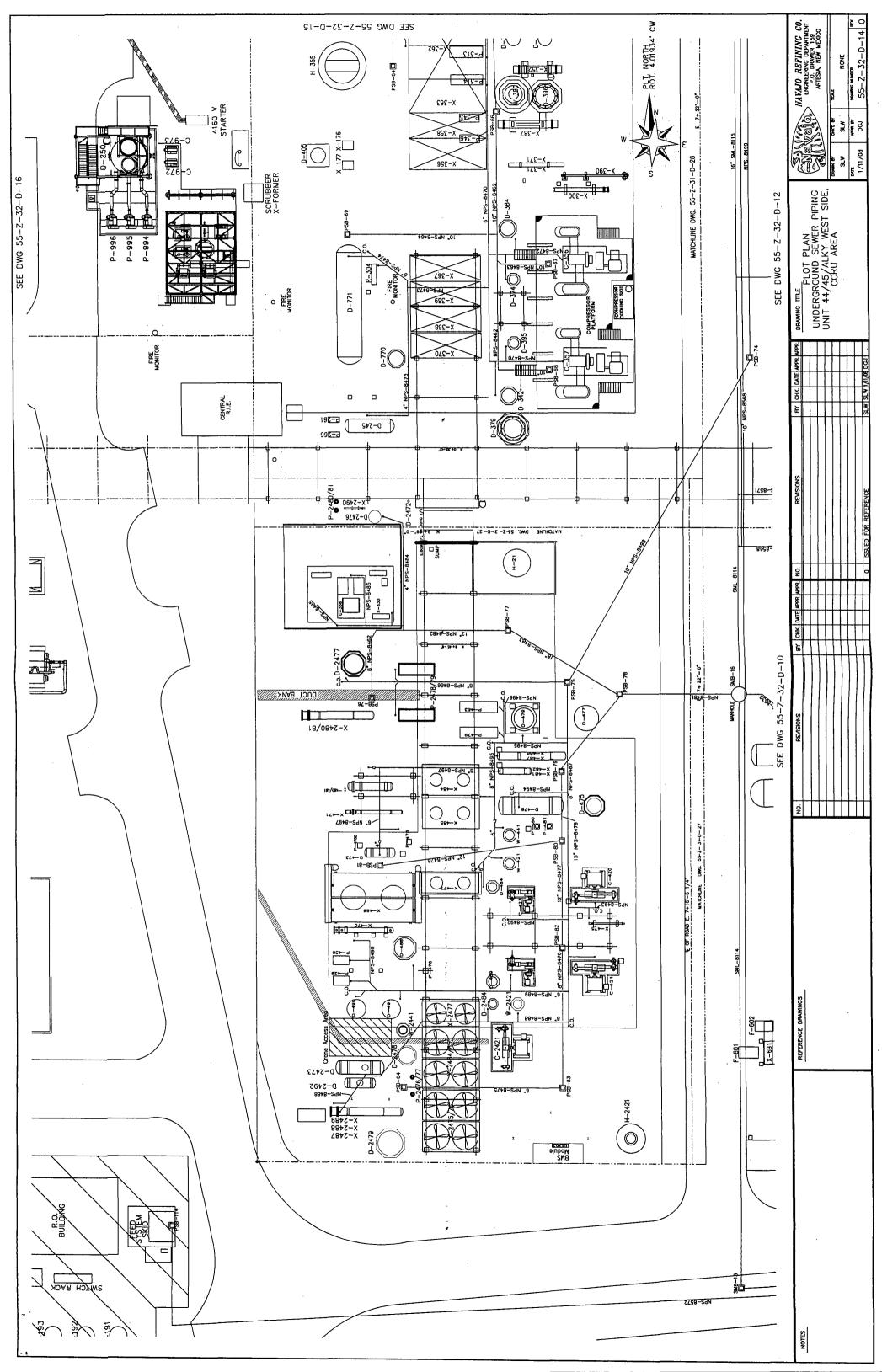



A STATE OF A

CONTRACT OF THE SECOND OF THE SECOND CONTRACT OF THE SECOND OF THE SECON

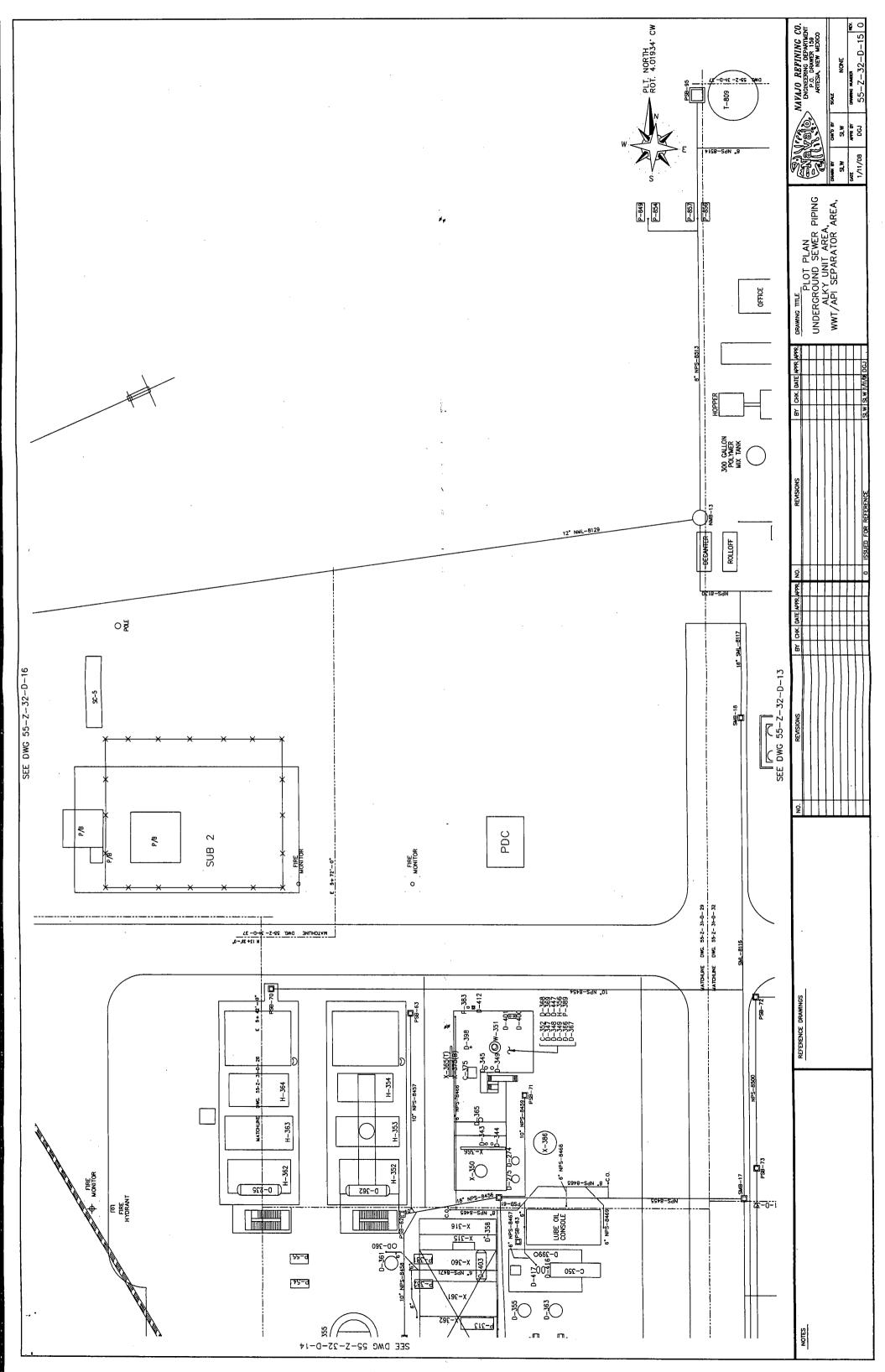


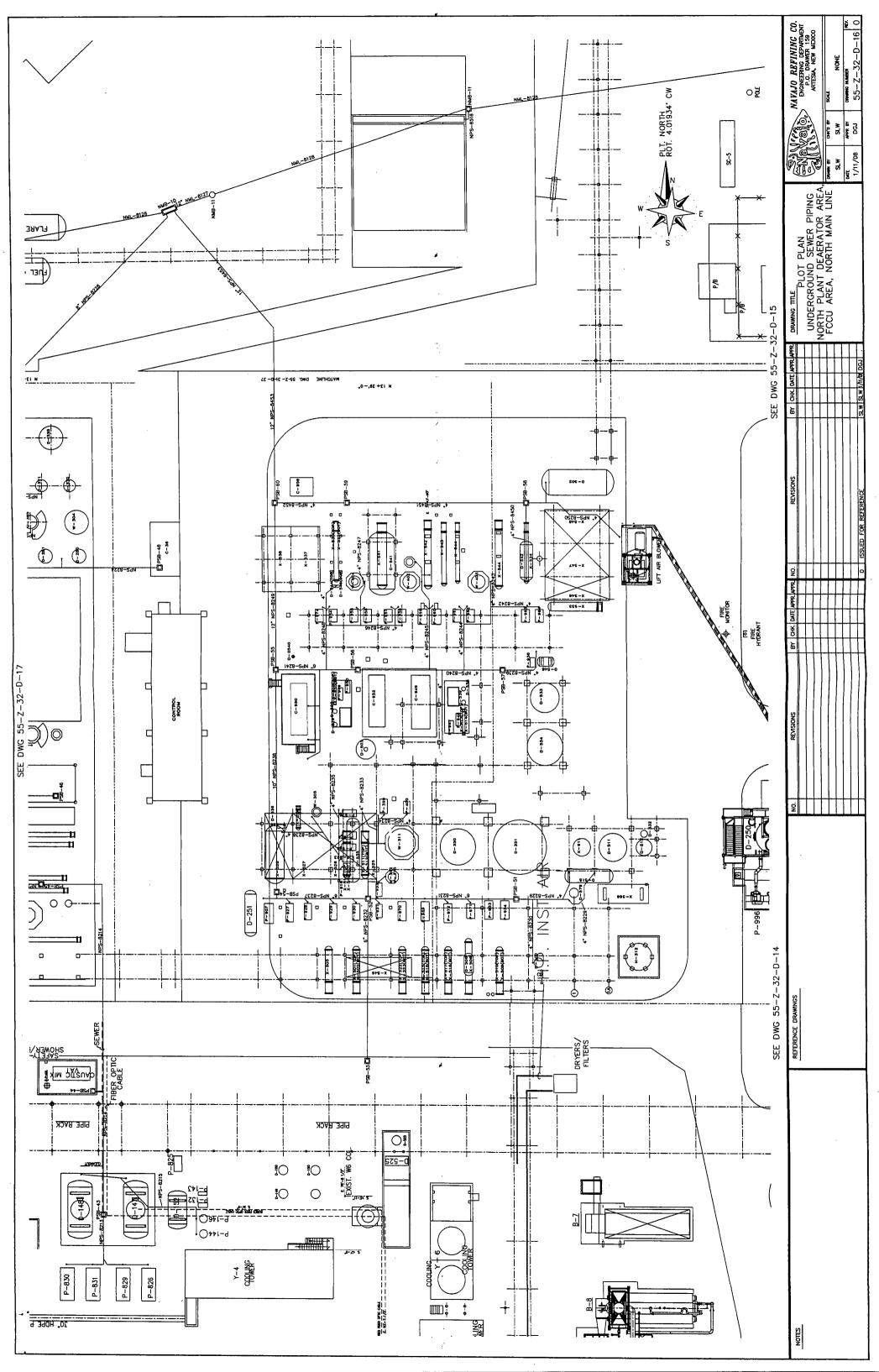




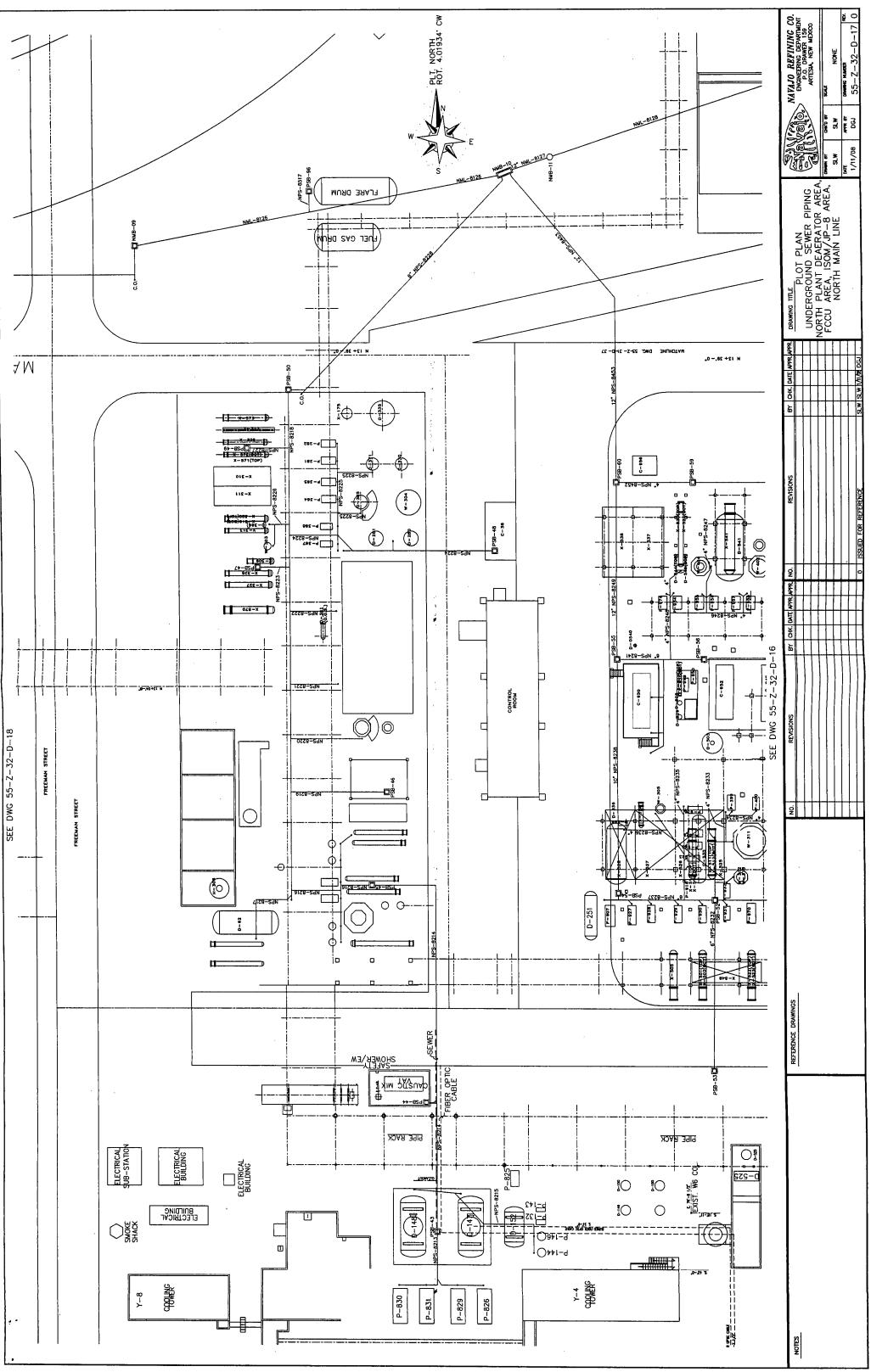
ALC: THE REPORT OF A REPORT OF A

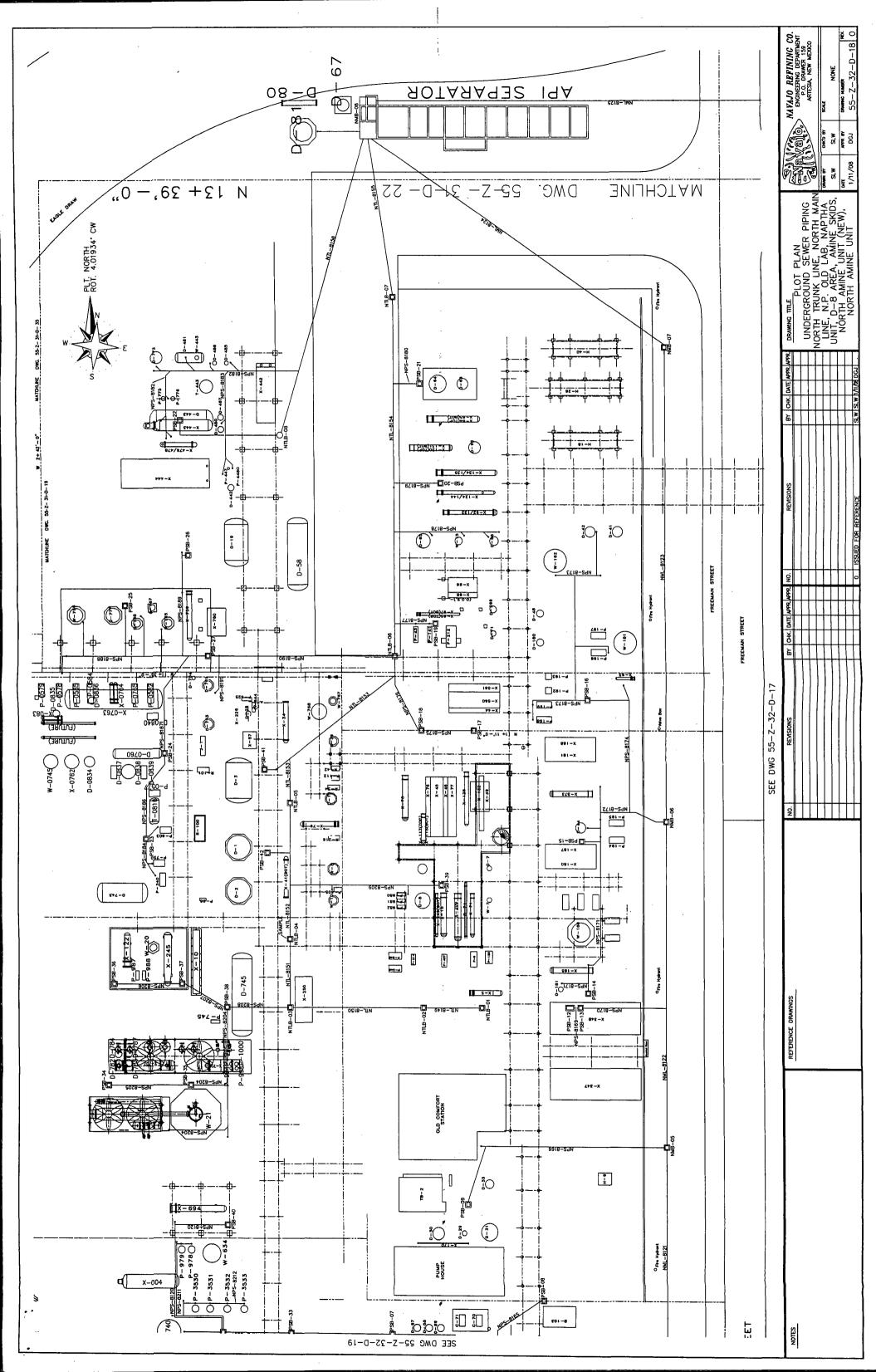
T THE CARLING REAL AND A DEPARTMENT OF

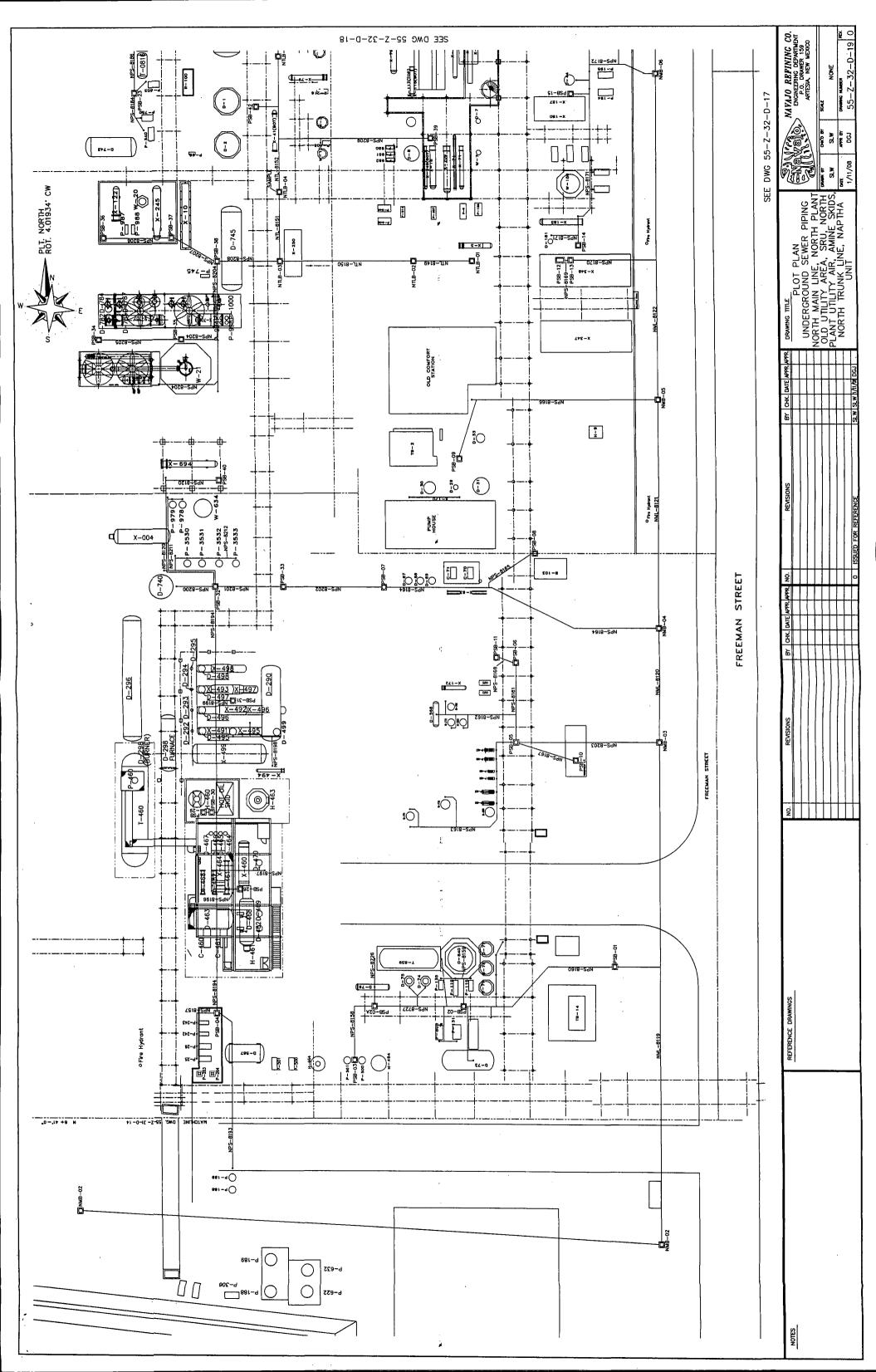



ATTACK AND A DESCRIPTION OF A DESCRIPTION OF A DATA AND A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESC

1 A CONSTRUCTION MADE IN A DESCRIPTION AND ADDRESS


AND AND A CARD AND A REAL AND A


2 A SPECIAL PROPERTY AND A SPECIAL PROPERT



2017 1212(1917)(1918年4月),1918年3月18日1月1日1月1日(1918年1月)(1918年1月)(1918年1月)(1918年4月)(1918年4月)(1918年4月)(1918年4月)(1918年1月)

AR THE REPORT OF THE REPORT OF THE ATT AND THE ATT

