GW - 190

MONITORING REPORTS

DATE: 2000 - 195

10F 64

BROWN AND CALDWELL

Suite 2500, 1415 Louisiana, Houston, TX 77002 TRANSMITTAL MEMORANDUM (713) 759-0999 • (713) 308-3886 Date: April 12, 2000 Job No: 12988-015 Wayne Price New Mexico Oil Conservation Division Subject: BJ Services Company, U.S.A., Artesia, NM Facility Certified Mail Registration #: P076 598 816 2040 South Pacheco Street Santa Fe, New Mexico 87505 **Equipment No:** Spec. Ref: Submittal No: WE ARE SENDING: ≺Attached Under separate cover via Certified Mail the following items: Samples Shop Drawings Prints Plans Specifications ⊠Other: <u>Report</u> Copy of letter Change Order THESE ARE TRANSMITTED AS CHECKED BELOW: SUBMITTAL REVIEW ACTIONS: ☐ Second submittal ■ No exceptions taken Make revisions For approval Amend and resubmit Ter review and comment Rejected--see Remarks ☐ With submittal review action noted None Copies Date No. Description

1 4/11/00 Annual Groundwater Sampling and Analysis Report, Artesia, New Mexico, BJ Services Company, U.S.A.

REMARKS:

RECEIVED

APR 1 7 2000

Oil Conservation Division

cc: Tim W. Gum, New Mexico Oil Conservation Division Jo Ann Cobb, BJ Services Company, U.S.A. Mike Wiggins, BJ Services Company, U.S.A. Brown and Caldwell Project File Transmittal File w/o attachments Client File w/o attachments

Timothy L. Jehkins

ANNUAL GROUNDWATER SAMPLING AND **ANALYSIS REPORT** ARTESIA, NEW MEXICO BJ SERVICES COMPANY, U.S.A.

APRIL 11, 2000

Environmental Bureau Oil Conservation Division

ANNUAL GROUNDWATER SAMPLING AND ANALYSIS REPORT ARTESIA, NEW MEXICO BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 11211 FM 2920 Tomball, Texas 77375

BC Project Number: 12988.015

RECEIVED

APR 17 2000

Environmental Bureau Oil Conservation Division

Timothy Jenkins Project Manager

April 11, 2000

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

[&]quot;This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

CONTENTS

1.0	EXECUTIVE SUMMARY
2.0	BACKGROUND2
3.0	FIELD ACTIVITIES
4.0	ANALYTICAL RESULTS5
5.0	CONCLUSIONS AND RECOMMENDATIONS
FIGU	
1 2 3	Site Location Map Site Plan Map Potentiometric Surface Map for January 25, 2000
TABL	LES
1 2	Groundwater Elevation Data Cumulative Analytical Results
APPE	ENDICES
A B C D	Relevant Correspondence and Telephone Conversation Logs with the NMOCD Groundwater Sampling and Analysis Plan: January 21, 2000 Groundwater Sampling Field Data Sheets Laboratory Analytical Report

1.0 EXECUTIVE SUMMARY

Brown and Caldwell conducted the second of two scheduled annual groundwater sampling events at the BJ Services Company, U.S.A. (BJ Services) District Facility in Artesia, New Mexico on January 25, 2000. Groundwater samples were submitted to an analytical laboratory to determine the concentration of benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater at the former Fuel Island Area of the site. There were no exceedences of New Mexico Water Quality Control Commission (NMWQCC) standards in any of the former Fuel Island Area wells. Brown and Caldwell recommends closure of the former Fuel Island Area according to Discharge Plan GW-190 for the BJ Services Artesia, New Mexico facility that was approved by the New Mexico Oil Conservation Division (NMOCD) on June 15, 1995.

2.0 BACKGROUND

The BJ Services Artesia District Facility is located in Eddy County, in the SE/4, Section 32, Township 16 South, Range 26 East. The facility address is 2401 Sivley, Artesia, New Mexico. A site location map and site plan map are attached as Figures 1 and 2, respectively.

BJ Services performed excavation of impacted soil from the former Fuel Island Area from November 18 through 22, 1997. Excavation activities were summarized in a January 8, 1998 letter from Brown and Caldwell to Mr. Mark Ashley of the NMOCD.

Subsequent to the November 1997 field activities, Brown and Caldwell conducted a soil and groundwater assessment at the facility from January 21-23, 1998. This soil and groundwater assessment was performed to further characterize impact resulting from the operation of the former fuel island at the facility. On January 22, 1998, Brown and Caldwell completed three soil borings at the facility, as requested in NMOCD correspondence dated January 21, 1998. Soil borings SB-FIA-1, SB-FIA-2, and SB-FIA-3 were completed as monitor wells MW-5, MW-7, and MW-6, respectively. Groundwater samples and groundwater elevation data were collected from the monitor wells on January 23, 1998. On March 24, 1998, the Soil and Groundwater Assessment Report for the former Fuel Island Area was submitted to the NMOCD. In May 1998, NMOCD verbally accepted the report and requested that two years of annual sampling be performed.

On January 20, 1999, Brown and Caldwell conducted the first of two scheduled annual groundwater sampling events at the former Fuel Island Area of the BJ Services facility in Artesia, New Mexico. The results of the January 1999 annual groundwater sampling event were provided to NMOCD on April 1, 1999. This report presents the results of the second of these two scheduled sampling events.

3.0 FIELD ACTIVITIES

Brown and Caldwell conducted the second of two scheduled annual groundwater sampling events at the BJ Services District Facility in Artesia, New Mexico on January 25, 2000. Correspondence and telephone conversation logs regarding the agreement to perform two years of annual groundwater sampling agreement are included as Appendix A. The following subsections describe the field activities during which the groundwater from monitor wells MW-5, MW-6, and MW-7 was sampled in accordance with the above-referenced NMOCD agreement. Field activities were performed in accordance with the Groundwater Sampling and Analysis Plan (GWSAP) dated January 21, 2000. The GWSAP is included as Appendix B.

3.1 Water Level Measurement and Groundwater Gradient

Water level measurements were collected from the three monitor wells at the site on January 25, 2000 to determine groundwater flow direction in the southern portion of the site. The depth-to-groundwater measurements were used in conjunction with the top of casing elevations for each monitor well to compute the relative groundwater elevations. The groundwater elevation calculations are presented in Table 1. These data were used to create the January 25, 2000 potentiometric surface map presented as Figure 3. Groundwater flow in the Fuel Island Area is to the east-southeast.

3.2 Monitor Well Purging and Sampling Procedures

Each of the monitor wells (MW-5, MW-6, and MW-7) was purged with a submersible pump. A minimum of three well casing volumes was purged from each monitor well prior to collection of groundwater samples. Temperature, pH, conductivity, and oxidation-reduction potential were measured using a YSI-600XL device during purging of the monitor wells. Groundwater samples were collected from the discharge tube from the pump when these parameters stabilized. Refer to the Groundwater Sampling Field Data Sheets in Appendix C for well purging documentation.

Groundwater samples were transferred to laboratory-supplied containers, labeled, and immediately placed on ice in an insulated cooler for shipment. At the conclusion of sampling, the samples were delivered with completed chain-of-custody documentation to the analytical laboratory. The laboratory analytical report is included as Appendix D.

3.3 Decontamination Procedures

Field sampling equipment was decontaminated prior to use at each well location by washing with a laboratory grade detergent, rinsing with potable water, and completing a final rinse with distilled water.

3.4 Sample Analysis

The groundwater samples were analyzed for BTEX by EPA Method 8021 B.

4.0 ANALYTICAL RESULTS

Analytical results for groundwater samples collected during the January 1998 and January 1999 sampling events are summarized in Table 2. Analytical results for groundwater samples collected during the January 2000 sampling event are also presented in Table 2, along with a summary of NMWQCC Standards.

Laboratory analysis of groundwater samples collected during the January 2000 sampling event indicated that benzene, toluene, ethylbenzene and xylenes were not detected in any of the former Fuel Island monitor wells (MW-5, MW-6, and MW-7). Detection limits were less than applicable NMWQCC Standards for all parameters in these wells.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Laboratory results for the groundwater samples were compared to NMWQCC Groundwater Standards. There were no exceedences of NMWQCC groundwater standards among the groundwater samples.

5.2 Recommendations

Brown and Caldwell recommends final closure of the former Fuel Island Area at the BJ Services Artesia, New Mexico facility, in accordance with the requirements of Discharge Plan GW-190 for the facility.

DISTRIBUTION

Annual Groundwater Sampling and Analysis Report Artesia, New Mexico BJ Services Company, U.S.A.

April 11, 2000

1 copy to: New Mexico Oil Conservation Division

2040 South Pacheco Street Santa Fe, New Mexico 87505

Attention: Mr. Wayne Price

1 copy to: New Mexico Oil Conservation Division

811 South 1st Street

Artesia, New Mexico 88211

Attention: Mr. Tim W. Gum

1 copy to: BJ Services Company, U.S.A.

11211 FM 2920

Tomball, Texas 77375

Attention: Ms. Jo Ann Cobb

1 copy to: BJ Services Company, U.S.A.

2401 Sivley

Artesia, New Mexico 88210

Attention: Mr. Mike Wiggins

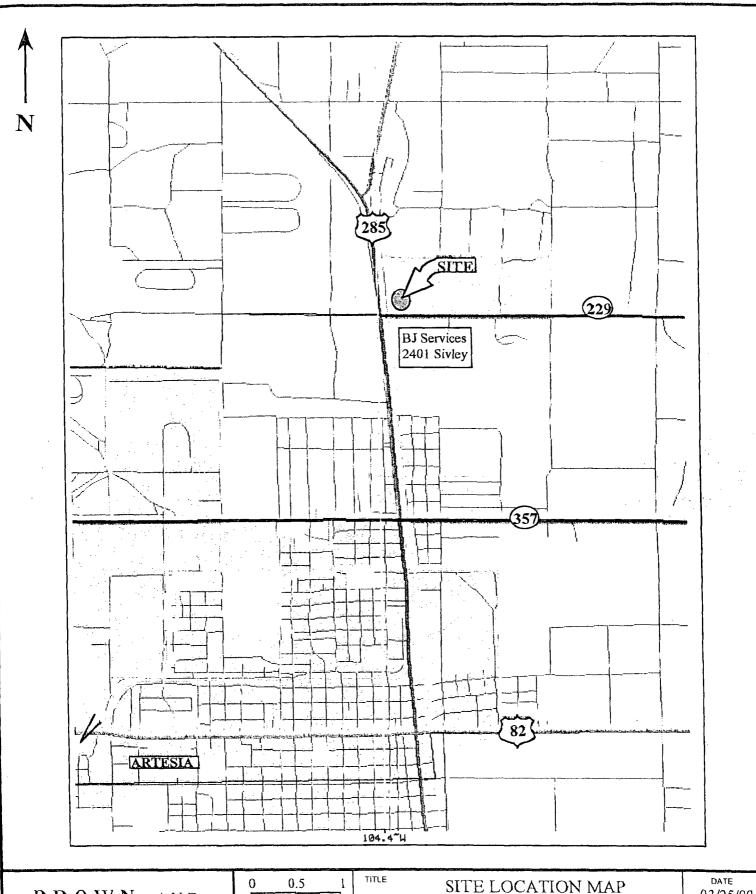
Brown and Caldwell

File

QUALITY CONTROL REVIEWER:

Richard L. Rexroad

Principal in Charge


TLJ/uak

1 copy to:

FIGURES

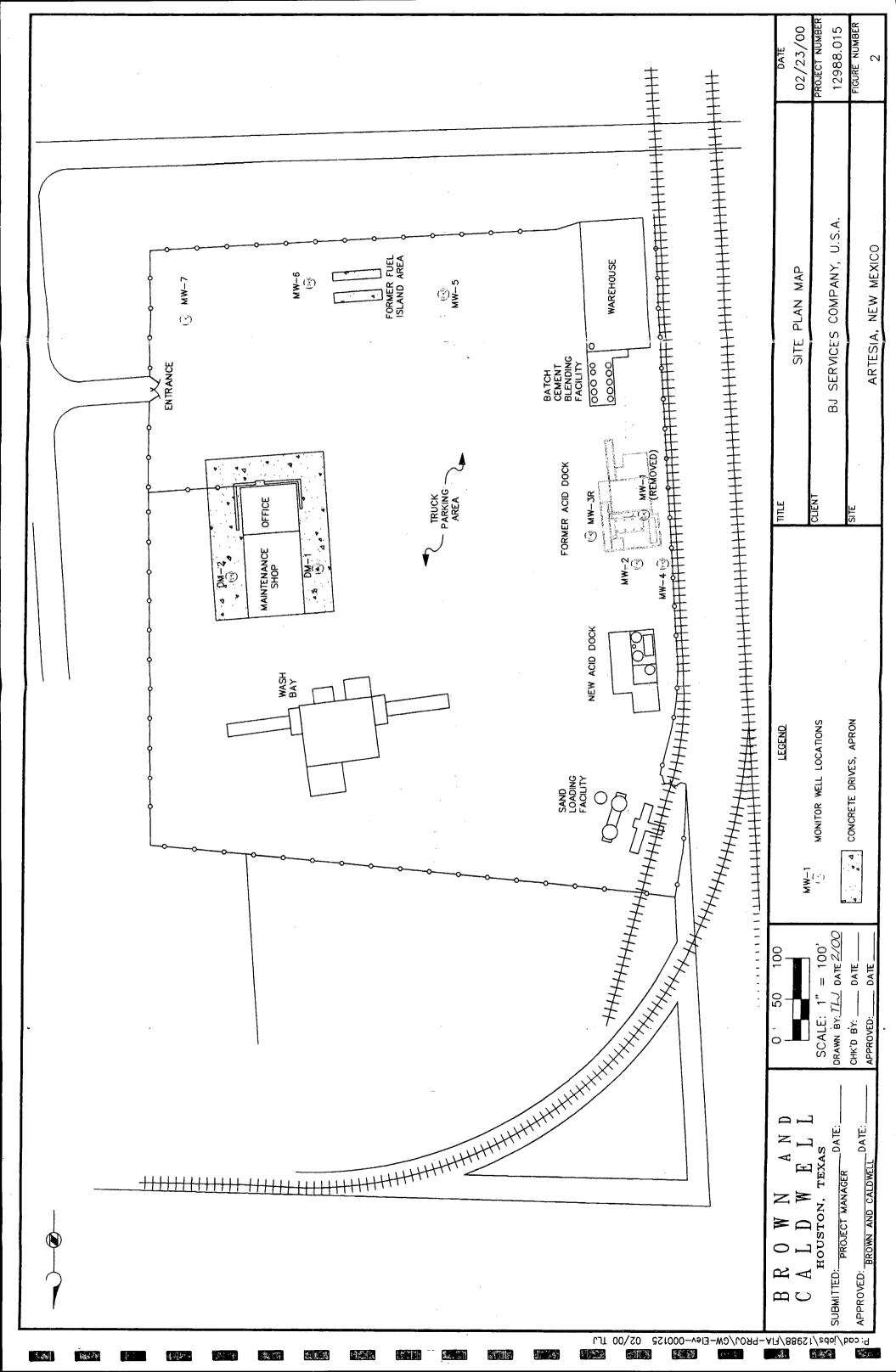
\\BCHOU01\PROJECTS\Wp\BJSERV\12988\079r.doc

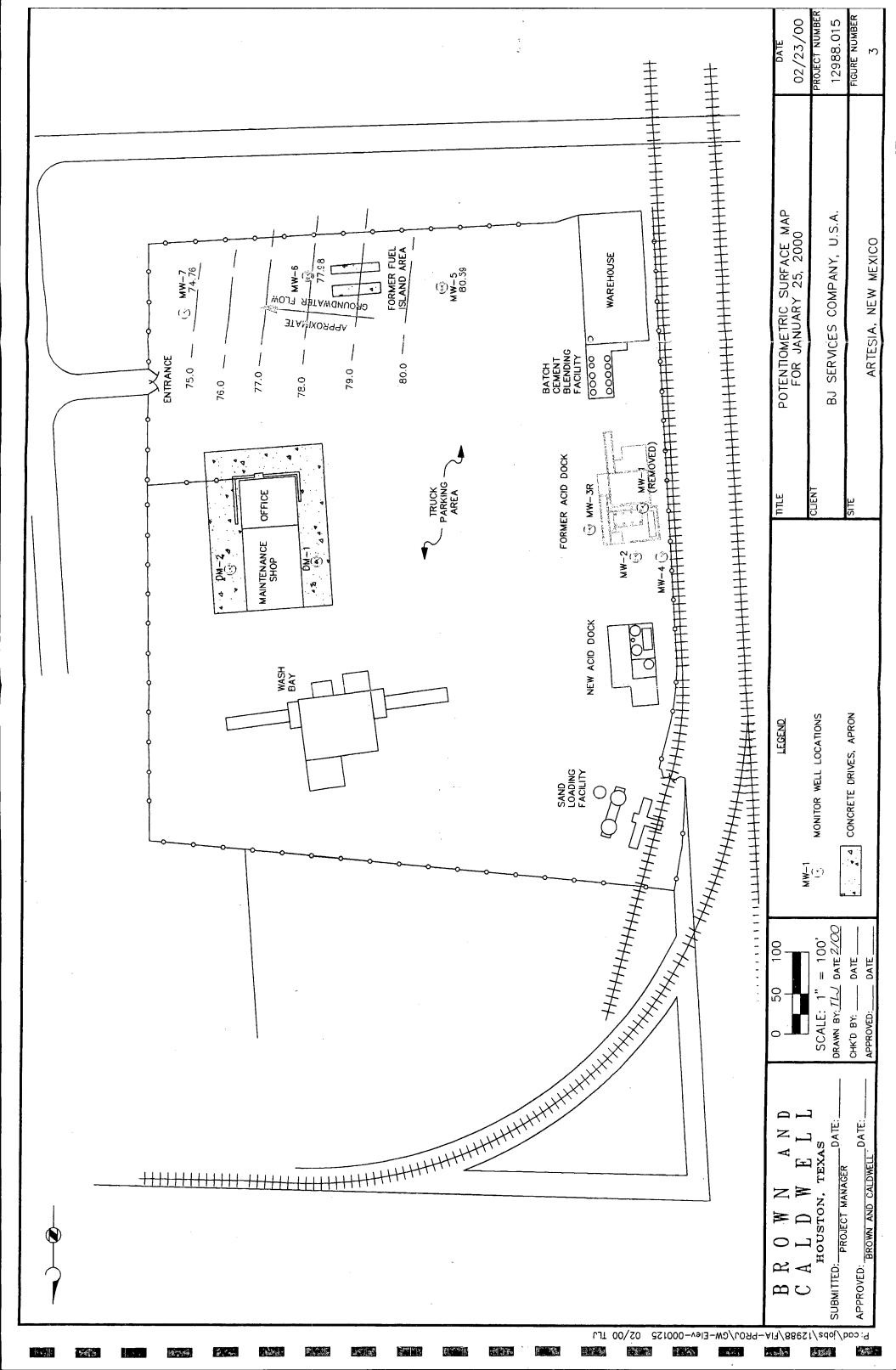
Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

BROWN AND
CALDWELL
HOUSTON, TEXAS

CLIENT BJ SERVICES COMPANY, U.S.A.

SITE LOCATION MAP


03/25/99


PROJECT NO.
12988-014

SITE LOCATION MAP

03/25/99

ARTESIA, NEW MEXICO
1

TABLES

\\BCHOU01\PROJECTS\Wp\BJSERV\12988\079r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

Table 1

Groundwater Elevation Data BJ Services Company, U.S.A. Artesia, New Mexico

Monitor Well	Top of Casing (Relative Elevation)	Measurement Date	Depth to Water (feet)	Groundwater Elevation ⁽¹⁾
MW-5	99.10	1/23/98	13.38	85.72
		1/20/99	17.81	81.29
		1/25/00	18.51	80.59
MW-6	69.76	1/23/98	14.00	83.69
		1/20/99	18.54	79.13 (2)
		1/25/00	19.71	77.98
MW-7	97.61	1/23/98	15.51	82.10
		1/20/99	20.34	77.27
		1/25/00	22.85	74.76

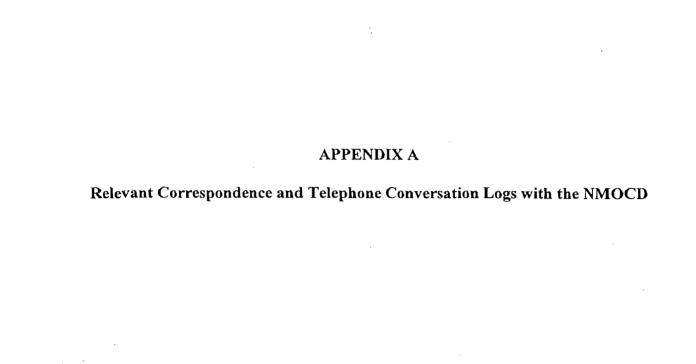
⁽¹⁾ Elevations of well casings were established relative to the office building slab, which was assigned an arbitrary elevation of 100.00 feet.

⁽²⁾ Elevation corrected to account for phase separated hydrocarbons present at a thickness of 0.03 ft. in this monitor well. Correction assumes specific gravity of product is 0.8.

Cumulative Analytical Results⁽¹⁾ BJ Services Company, U.S.A. Artesia, New Mexico Table 2

	NMWQCC ⁽²⁾		MW-5			9-WW			MW-7	
Analytical Farameters	Groundwater Standards	Jan-98	Jan-99	Jan-00	Jan-98	Jan-99	Jan-00	Jan-98	Jan-99	Jan-00
VOLATILES by Method 8020 (mg/L)	(mg/L)									
Benzene	0.01	< 0.0010	< 0.0010	< 0.001	< 0.0010	0.0040	< 0.001	0.0021	<0.0010	< 0.001
Toluene	0.75	< 0.0010	0.0022	< 0.001	< 0.0010	< 0.0010	< 0.001	< 0.0010	0.0019	< 0.001
Ethylbenzene	0.75	< 0.0010	< 0.0010	< 0.001	0.0080	0.019	< 0.001	< 0.0010	< 0.0010	< 0.001
Total Xylenes	0.62	< 0.0010	0.0022	< 0.001	< 0.0010	0.0011	< 0.001	< 0.0010	0.0037	< 0.001
PAHs by Method 8310 (mg/L)										
Fluorene	NL ⁽³⁾	< 0.0003	0.0001 B ⁽⁴⁾	NA ⁽⁵⁾	0.008	0.38	NA	< 0.0030	0.001 B	NA
Phenanthrene	Ŋ	< 0.0001	0.0001 B	NA	0.011	0.088	NA	0.003	0.002 B	NA
Naphthalene	0.03 (6)	0.0004	0.0001 B	NA	0.002	<0.0020	NA	0.001	0.0006 B	NA
Pyrene	Ŋ	< 0.0001	<0.0001	NA	<0.0020	0.011	NA	<0.0001	0.0004	NA
Benzo (k) fluoranthene	Ę	< 0.0001	<0.0001	NA	<0.0020	0.002	NA	<0.0001	<0.0001	NA
Acenaphthene	ź	< 0.0003	<0.0001	NA	<0.0060	<0.0020	NA	< 0.0030	0.002 B	NA
Chrysene	뉟	< 0.0001	<0.0001	NA	<0.0020	<0.0020	NA	<0.0001	0.0002	NA
Benzo (a) anthracene	Ę	< 0.0001	<0.0001	NA	<0.0020	<0.0020	NA	<0.0001	0.002	NA
RCRA Metals by Method 3010A/3020A/601)B/7000 Series (mg/L	g/L)							-
Arsenic		< 0.005	< 0.005	AN	0.005	0.008	NA	< 0.005	0.007	NA
Barium	1.0	0.027	600.0	NA	. 0.195	0.125	NA	0.012	0.053	NA
Cadmium	0.01	< 0.005	< 0.005	NA	< 0.005	< 0.005	NA	< 0.005	< 0.005	NA
Chromium	0.05	< 0.01	< 0.01	NA	0.02	<0.01	NA	< 0.01	< 0.01	NA
Mercury	0.002	< 0.0002	< 0.0002	NA	< 0.0002	< 0.0002	NA	< 0.0002	0.0003	NA
Lead	0.05	0.014	<0.005	NA	0.011	<0.005	NA	9000	9000	NA
Selenium	0.05	900.0	0.026	NA	< 0.005	0.010	NA	< 0.005	0.010	NA
Silver	0.05	< 0.01	< 0.01	NA	< 0.01	< 0.01	NA	< 0.01	< 0.01	NA

⁽¹⁾ Chemicals reported at concentrations less than applicable Practical Quantitation Limit (PQL) are not listed.
(2) NMWQCC = New Mexico Water Quality Control Commission


⁽³⁾ NL - Not listed
(4) B indicates that constituent was detected in the laboratory method blank.

⁽⁵⁾ NA - Not analyzed (6) Value is for PAHs: total naphthalene plus monomethylnaphthalenes.

APPENDICES

P:\Wp\BJSERV\12988\079r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

NEW MIEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL COMBERVATION DIVISION 2040 South Proheco Street Sente Fo, New Mexico 27645 (505) 827-1131

April 2, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-268-259-049

Ms. Jo Ann Cobb BI Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas 77381

Post-it" Fax Note 7671 To Bob Co/Dept. Phono s	Dube 4 × 8 Pages / From 50 Ann
Fexit	Phone w
	Fax W

Fuel Island Soil and Ground Water Assessment Artesia Facility Eddy County, New Mexico

OWNOWNED

APR 07 1998

Dear Ms. Cobb:

The New Mexico Oil Conservation Division (OCD) has completed a review of the BJ Services Company, U.S.A. (BI) "Final Soil and Ground Water Assessment Report" dated March 24, 1998. This report was submitted by Brown and Caldwell on behalf of BJ. It contains a summary of activities performed to date and a request for final closure at the former fuel island area.

The above referenced report is approved with the following condition:

At future discharge plan renewals MW-5, MW-6 and MW-7 will be sampled for BTEX 1. using EPA approved methods.

Please be advised that OCD approval does not relieve BJ of liability if contamination exists which is beyond the scope of the report or if the activities failed to adequately determine the extent of contamination related to BI's activities. In addition, OCD approval does not relieve BI of responsibility for compliance with any other federal, state or local laws and/or regulations.

If BI has any questions, please call me at (505) 827-7155.

Sincerely,

Mark Ashley

Geologist

OCD Artesia Office XC:

April 21, 1998

Mr. Mark Ashley
State of New Mexico
Energy, Minerals, and Natural Resources Department
Oil Conservation Division
2040 South Pacheco
Santa Fe, New Mexico 87505

2988-09

Subject:

BJ Services Facility - Artesia, New Mexico Fuel Island Soil and Groundwater Assessment

Dear Mr. Ashley:

Thank you for reviewing BJ Services "Final Soil and Groundwater Assessment Report" of March 24, 1998, and your subsequent letter response dated April 2, 1998. In your letter response, the NMOCD granted closure of the Fuel Island Area on the condition that groundwater monitoring be conducted for MW-5, MW-6, and MW-7 at the time of each discharge plan renewal (approximately once every 5 years). As an alternative to this time frame, which appears to be unlimited in scope, Brown and Caldwell suggests that a groundwater monitoring program be performed annually for two years, with the first event scheduled for January 1999 (approximately one year from the initial sampling event). As requested in the NMOCD letter of April 2, 1998, groundwater samples collected during these annual events would be analyzed for BTEX by EPA Method 8020. Pending results of these groundwater monitoring events, BJ Services would propose either final closure of the Fuel Island Area or continued monitoring.

Thank you for considering this alternate plan for groundwater monitoring. If you have any questions, please do not hesitate to contact me at (713) 646-1138.

Very truly yours,

BROWN AND CALDWELL

Timothy L. Jenkins Associate Engineer

cc: NMOCD Artesia District Office

Jo Ann Cobb, BJ Services Company, U.S.A. Rick N. Johnson, BJ Services Company, U.S.A.

BROWN AND CALDWELL

RECORD OF TELEPHONE CONVERSATION

DATE: 05/14/98	JOB/DESCRIPTION: BJ Artesia -	Former Fuel Island Area
INDIVIDUAL	ORGANIZATION	TELEPHONE NO.
FROM: Tim Jenkins	Brown and Caldwell	713-646-1138
TO: Mark Ashley	NMOCD	505-827-7155

SUBJECT: Monitoring Wells and Proposed Sampling Events – FIA

GOALS OF THE CONVERSATION:

- 1) Determine whether proposed sampling of FIA wells twice over next two years is acceptable
- 2) Verify conclusions and procedures for future correspondence

NOTES:

- 1. The letter from BJ Services to the NMOCD proposing monitor well sampling once a year for the next two years has been verbally agreed upon. This would allow sampling to be performed twice prior to discharge plan renewal (the current Discharge Plan will expire on June 13, 2000).
- 2. Future activities will be performed as requested by the OCD and approved by BI Services. Only upon receipt of written approval shall these activities be scheduled and performed. All approvals and proposed actions will be followed up with official letter correspondence.

ACTION REQUIRED:

- 1) Tentatively plan a sampling event for January 1999 and January 2000 for MW-5 through MW-7.
- 2) Await OCD correspondence with suggestions and recommendations for these activities.

INITIALS:

ROUTING: FILE

Robert N. Jennings Richard Rexroad

APPENDIX B

Groundwater Sampling and Analysis Plan January 21, 2000

GROUNDWATER SAMPLING AND ANALYSIS PLAN FORMER FUEL ISLAND AREA BJ SERVICES COMPANY, U.S.A. ARTESIA, NEW MEXICO

JANUARY 21, 2000

GROUNDWATER SAMPLING AND ANALYSIS PLAN FORMER FUEL ISLAND AREA BJ SERVICES COMPANY, U.S.A. ARTESIA, NEW MEXICO

Prepared for

BJ Services Company, U.S.A. 11211 FM 2920 Engineering Bldg., Rm. 2006 Tomball, TX 77375

Project Number: 12988-015

Timothy L. Jenkins

Project Manager

Richard Rexroad

Principal-in-Charge

January 21, 2000

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

\\BCHOU01\PROJECTS\Gen\BJSERV\12988-artesia\Task-015\GWSAP-000121-rev.DOC

"This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

CONTENTS

1.0	INTRODUCTION	1
2.0	REQUIRED EQUIPMENT	2
3.0	GROUNDWATER SAMPLING PROCEDURES	3
	3.1 Groundwater Level Measurements	
	3.2 Well Purging	4
	3.3 Groundwater Sampling	
4.0	SAMPLE MANAGEMENT	6
5.0	ANALYTICAL PARAMETERS	8
	5.1 Analytical Requirements	8
	5.2 QA/QC Samples	
6.0	DECONTAMINATION AND WASTE MANAGEMI	ENT9
	6.1 Decontamination	· ·
	6.2 Waste Management	9

FIGURES

- 1 Site Location Map
- 2 Monitor Well Location Map

APPENDICES

- A Site-Specific Health and Safety Plan (SSHP)
- B Field Data Sheets
- C NMOCD Letter Dated December 16, 1998

1.0 INTRODUCTION

Groundwater sampling of monitor wells at the former Fuel Island Area (FIA), MW-5, MW-6, and MW-7 will be performed at the BJ Services facility in Artesia, New Mexico. Figure 1 is a map showing the location of the site. Figure 2 is a facility map for the Artesia facility. The Site Safety Health Plan for the site is included as Appendix A.

Prior to commencement of the sampling event, the following personnel will be notified of the upcoming sampling event:

- Brown and Caldwell Client Services Manager (CSM) Bob Jennings
- Brown and Caldwell Principal-in-Charge (PIC) Richard Rexroad
- BJ Services Project Manager Rick Johnson (281-357-2573)
- BJ Services Site Personnel Mike Wiggins (505-746-3140).

This notification will be the responsibility of the Brown and Caldwell project manager, who may designate individual notification responsibilities, as appropriate.

2.0 REQUIRED EQUIPMENT

Following is a partial list of equipment that will be required for the semiannual sampling events to be performed at the BJ Services - Artesia facility.

- Water Level Indicator and Oil/Water Interface Probe
- Decontamination Supplies
- Pump (1.5-inch diameter car battery pump with 60-foot lead) (Geosquirt)
- Groundwater Sampling Forms (i.e., Field Data Sheets, included as Appendix B)
- YSI Flow Cell (600 XL) (pH, specific conductivity, dissolved oxygen, and temperature probes)
- Sample Containers for Required Analytical Parameters (see Section 5.0)
- 9/16-inch wrench, ¾-inch wrench, and a flat head screwdriver
- Pry bar for removing well caps, etc.
- Steel-toed Boots, Hard Hat, Safety Glasses, and Hearing Protection.

3.0 GROUNDWATER SAMPLING PROCEDURES

The following wells will be sampled at the BJ Services Artesia facility during the groundwater sampling event in the order listed, based on historical impact:

- MW-5
- MW-7
- MW-6

3.1 Groundwater Level Measurements

Groundwater level measurements will be obtained from the monitor wells (MW-5 through MW-7) prior to purging and sampling the wells. Additionally, groundwater level measurements will be obtained from other monitor wells at the site, specifically, the two monitor wells located at the maintenance bay area, DM-1 and DM-2. These wells should be gauged last, as they have had product in measurable quantities. They also have product recovery devices that should be removed prior to gauging the product/water level. See Figure 2 for a site plan map showing the location of all the groundwater monitor wells. All groundwater level measurements should be obtained during the same calendar day. The groundwater levels will be measured with a water level indicator and/or an oil/water interface probe to the nearest 0.01 foot and recorded in the field log book. The presence and thickness of PSH and/or sheen, if observed in any monitor wells, will be noted.

The groundwater elevation data will be used to calculate well purge volumes, using the following formula for a 2-inch diameter well:

Well volume (gallons) = 0.163 x thickness (ft) of water column in the well.

3.2 Well Purging

The water level in the well will be verified immediately prior to well purging using a decontaminated water level indicator. The water level indicator will remain in the well during the purging process, if possible, in order to monitor water level throughout the purging process.

The wells will be purged with a 1.5-inch diameter submersible pump. The flow rate of the pump should be adjusted so that the water level in the well is maintained at no less than 80% of the static water level in the well.

Field parameter measurements for pH, specific conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and temperature will be collected using a YSI 600 XL flow cell after each well volume is purged. Field parameter readings will be listed on Field Data Sheets (see Attachment 2). Two consecutive readings within ten percent (or within 0.2 pH units) will be used to indicate that groundwater has stabilized. At least three well volumes will be removed from each well, unless the well pumps dry prior to removal of three well volumes.

Field Data Sheets will be completed, as applicable with water level and purge data. Additionally, general observations concerning water quality will be noted in the space provided. At least three well volumes will be removed from each well, unless the well pumps dry prior to removal of three well volumes.

Water removed from the well during the purging process will be temporarily stored in a drum provided by BJ Services until it can be further managed (see Section 6.2).

3.3 Groundwater Sampling

Upon completion of purging operations, groundwater samples will be using a new disposable bailer, as the parameters to be analyzed include only volatile constituents. Each sample will be

transferred into laboratory-supplied, clean glass or plastic containing the appropriate preservatives, labeled, and placed on ice in an insulated cooler for shipment.

Sample containers should be labeled immediately upon filling in order to avoid possible confusion as to which sample came from which well.

Sprain and the second

Language of the State of the St

William Commence and the second

4.0 SAMPLE MANAGEMENT

Filled and labeled sample containers should be placed in "bubble wrap" as supplied by the analytical laboratory and then sealed within "zip-lock" plastic bags. If the container size is such that the sample container will not seal, place the sample container in the bag with the neck of the sample container extending through the top of the bag.

Place the sample containers in an ice chest containing ice for temporary storage until ready to prepare the samples for shipment. A supply of ice is present at the facility in the locker room adjacent to the dispatcher's office. Therefore, it is not necessary and not advisable to purchase ice for sample preservation.

Samples should be prepared for shipment according to the following procedures:

- Place a previously unused large volume plastic trash bag in the ice chest or cooler.
- Place the sample containers in the plastic bag. The sample containers should be placed upright in the cooler in such a manner that they will not touch during shipment.

 $\frac{\partial f^{*}}{\partial r} e_{r_{ij}} = \frac{1}{2} e e_{ir} = + 1$

- Place inert packing material (e.g., vermiculite, kitty litter, etc.) to partially cover the sample containers (approximately halfway). Place ice or chemical ice (i.e., "blue ice") on top of the sample containers and seal the plastic bag. Ice will be double bagged inside "zip lock" plastic bags.
- Fill the remainder of the cooler with cushioning material.
- Place the completed chain of custody form in a waterproof plastic bag and tape it to the interior lid of the shipping container.
- Tape the drain plug of the ice chest or cooler shut (if present).
- Secure the lid by taping with clear packing/strapping tape at a minimum of two locations.
- Attach the completed shipping label to the top of the cooler. Secure it with clear packing/strapping tape.
- Affix signed and dated custody seals on the front right and back left sides of the shipping container. Cover the seals with clear packing/strapping tape.

If samples are to be delivered to the laboratory on Saturday, arrangements for receipt of the samples by laboratory personnel on Saturday must be made prior to shipment of the samples. The laboratory to be used is Southern Petroleum Labs of Houston, Texas.

5.0 ANALYTICAL PARAMETERS

The following subsections detail analytical requirements for groundwater sampling events at the former Fuel Island Area as well as requirements for QA/QC sample collection.

5.1 Analytical Requirements

Groundwater samples collected from MW-5, MW-6, and MW-7 during the sampling event will be analyzed for the following parameters as per NMOCD directive dated April 2,1998; a letter dated April 21, 1998 summarizing the agreement between the NMOCD and BJ Services is included as Appendix C.

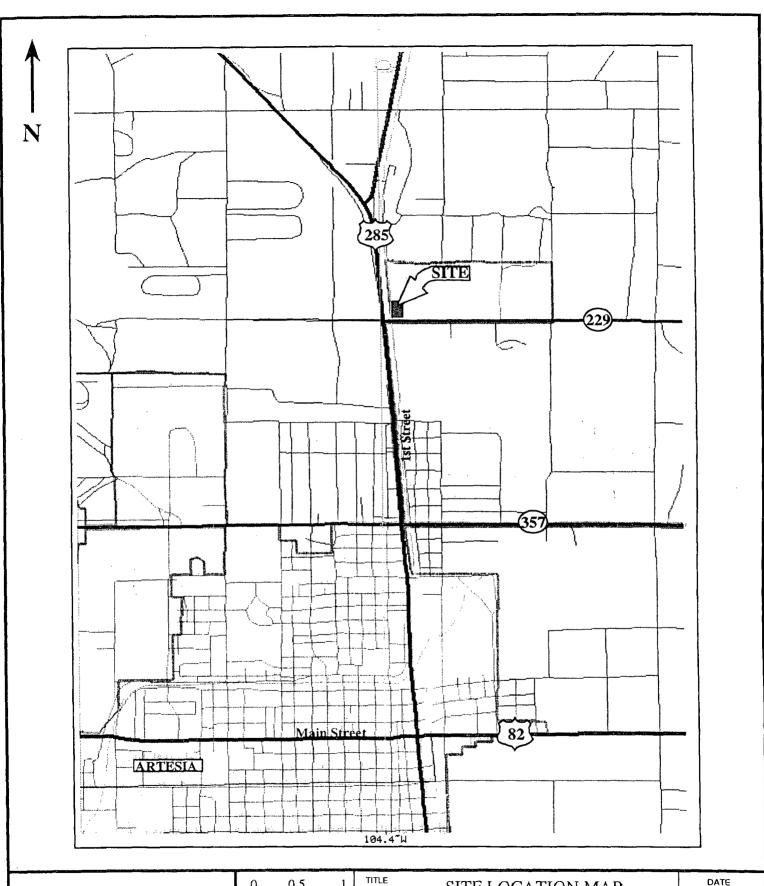
The analytical parameters are:

• Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by EPA Method 8021B.

5.2 QA/QC Samples

A trip blank will also be included in the sample shipment cooler. The trip blank will be analyzed for BTEX (method 8021B). No duplicates will be will be required.

6.0 DECONTAMINATION AND WASTE MANAGEMENT


6.1 Decontamination

The submersible pump and field measurement equipment will be decontaminated prior to and after each use. Decontamination procedures will consist of washing with a laboratory grade detergent, rinsing with tap water, and then rinsing with distilled water.

6.2 Waste Management

Purged water and decontamination water will be placed into a 55-gallon drum to be provided by BJ Services. Water drums will be properly labeled. Any recovered product will be placed separately in the facility's waste oil receptacle.

FIGURES

BROWN AND
CALDWELL
HOUSTON, TEXAS

O 0.5 1 TITLE SITE LOCATION MAP
O3/23/98

CLIENT BJ SERVICES COMPANY, U.S.A. 2988-09
SITE LOCATION MAP
O3/23/98

PROJECT NO. 2988-09
ARTESIA, NEW MEXICO
1

APPENDIX A

Site-Specific Health and Safety Plan

APPENDIX C

Groundwater Sampling Field Data Sheets

FORM GW-1 (Rev 6/8/99 - wah)

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL ID: MUS 7/3 298 5/547

1. PROJ	ECT INFO	NTAMS	NC						
Project 1	Number: 1258	·6	Task Numl	oer: <u>CG</u> 5		Date: 1/25	100		Time: 15 36
Client:_	3J Segu	۱٬۲۰۴۵	1			Personnel:_	Chris	Honge	
Project (ocation: /4 _r	tesia	NM	.		Weather:	Bunny ar	ed Cool	
2. WELL	DATA		t						
Casing (Diameter: 2	inc	hes	Type: 🏖 PV	C 🗆 Stainle	ess 🗖 Galv. S	teel 🗆 Teflon(® 🛘 Other:	
Screen I	Dlameter: C	inc	hes	Type: EPV	C 🛭 Stainle	ess 🚨 Galv. S	teel 🗆 Teflon(8 Q Other:	
Total De	pth of Well:	US fe	eet	From: 🙇 To	p of Well Ca	sing (TOC)	☐ Top of Prote	ective Casing	Other:
Depth to	o Static Water	: 18,50	_feet	From: K.To	p of Well Ca	ising (TOC)	☐ Top of Prote	ective Casing	Other:
	o Product:			From: д To			☐ Top of Prot	ective Casing	Other:
Length (of Water Colu		feet	Well Volum	e: (5) (4) (1)			nterval (from G vell = 0.167 gal/f	/
3. PURG	ΕΠΔΤΔ	1	-, *L				NOIE. 24I CIT W	701 = 0. 107 gai/1	1 4-IIIC11 W⊕II = 0.007 gdi/11
	C) Raile	r Sizašii 🗠	Bladde	er Pump 17	." Submersible	Pump 🛚 4"	' Submersible F	Pump	į
Purge iv	lethod: 🖸 Cent		np □Perist ess & PVC			Pump 🗅 Othe	ər:		Equipment Model(s)
Materia	ls: Pump/Baile	r 🗅 Dedic	cated 🗅 Pre	epared Off-Sit	te D Field C	Cleaned U		1.	
Materia	ls: Rope/Tubin					® □ Other:_ Cleaned □		- 2	
Was we	II purged dry?		No		ng Rate: Ø		ı/min		
Time	Cum. Gallons	На	Temp	Spec:	Eh	Dissolved	T	Other:	Comments
, mne	Removed	<u> </u>		Cond.		Oxygen	Turbidity		Comments
1 4005	0.25	525	18,80	3907,0	153.4	272,1		· · · · · · · · · · · · · · · · · · ·	Circan
1823	1. C	[ag 7]	0 60 4	3876,0	154,5	333	- 4	·	Cleans
1634), H	6.99	2073	3892	ار د د د د د د د د د د د د د د د د د د د	475.9			- Success
1640		5. NE.	20,82	157,04	Holon)	916.9	January		, o line survey
105	57,2	201	12.62	165073	78.6	391,0			Chelo
4. SAM	PLING DA	TΑ						Geo	chemical Analyses
Method	Baller, Si:	ze: [3 Bladder P	ump 2" Su	ıbmersible Pu	ımp 🛚 4" Sul	bmersible Pum	ip Ferro	ous Iron:mg/L
Matorio	uls: Pump/Baile	c Pump u	inemai um	Pumb 😐 Oin	er:			75	Justion:mg/c,
B			Jaiea a ri	epalea Olifai		Cleaned U		DO:	mg/L
Materio	als: Tubing/Rop	Dedk	cated DF	Prepared Off-	Site 🗆 Fleld	Cleaned C	☐ Disposable	- Nitro	rte:mg/L
	to Water at Tin							Sulfo	ate:mg/L
	10: 1/1 - 3					# of Conto	ainers: 🥩	_ Alka	ılinity:mg/L
Duplico	ate Sample Co	ollected?	☐ Yes 🚉	No ID:					
5. CON	MENTS	Disso	re Oxy	gen Do	es iva	Appear	to be En	nctionie	
	*******		7		1	11 ===			
Atati		-b						;	
Note: Includ	le comments suc	en as well o	condition, c	aor, presenc	e of NAPL, of	other items r	or on the field	agta enéet.	<u>'</u>
							. /	//\ / .	1/

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL ID: MW-12

1. PROJ	ECT INFO	RMATI	ЙC		_		/		
Project	Number: [29	<u>68</u>	Task Num	ber:_ <i>005</i>		Date:	5/100		Time: <u>1536</u>
Client:_	BJ Serr	رزده				Personnel:_	Chris	Ang el	<u>, </u>
Project	Location: A	rlesia	NM			Weather:	Sunng	Angel	
2. WELL	DATA								
Casing	Diameter:	inc	hes	Type: 炬 PV	'C 🗆 Stainle	ess 🛭 Galv. St	teel 🗆 Teflor	n® 🛛 Other:	
.	Diameter:			Type: 🖒 PV	C 🗆 Stainle	ess 🗆 Galv. S	teel D Teflor	n® 🗆 Other:	·
Total De	epth of Well:	<u>50, 16, fe</u>	eet	From: 🔑 To	op of Well Co	ising (TOC)	☐ Top of Pro	tective Casing	Other:
Depth t	o Static Water	19.71	_feet	From: .tr	op of Well Co	ising (TOC)	☐ Top of Pro	tective Casing	Other:
Depth t	o Product:	fee		From: - to To		asing (TOC)	☐ Top of Pro	tective Casing	O Other:
. Length	of Water Colu	mn: <u>(C</u> (feet	Well Volum	ie: 1,50			nterval (from G well = 0.167 gal/f	, — · · · · · · · · · · · · · · · · · ·
	SE DATA								
Purge N	∕lethod: ☐ Baile	r, Size: trifugal Pun	. D Bladdon D Peris	ər Pump 💥 2 tattlc Pump 🕻	!" Submersible I Inertial Lift F	Pump 🗀 4" Pump 🗀 Othe	Submersible r:	Pump 	Equipment Model(s)
ľ	ıls: Pump/Baile	🔲 Stainle	ess 🕱 PVC	☐ Teflon@	Other:_				
1		D Detroit		_ `		Cleaned 💷 l ® 🖪 Other:			
.	als: Rope/Tubin	^{'9} ☐ Dedic	ated DP	repared Off-S	ite 🗆 Field	Cleaned 🛚			
Was we	ell purged dry?	Yes	₩ No	Pumpi	ng Rate: 0),40 ga	ıt/min	3	
Time	Cum. Gallons Removed	На	Temp	Spec. Cond.	Eh	Dissolved Oxygen	Turbidity	Other:	Comments
1756	9,25	7.11	19,40	49/4	72.8	21,29			Clear
1800	2.0	6.50	20,9	2488	-6317	21.82			
1806	4.0	دات دا	26,40	7- 29	-274.b	30.16			
1212	60		20,2)	2003		0,00			
1 201									
4 SAM	PLING DA	TA		<u></u>	<u> </u>		<u></u>	Geo	chemical Analyses
Method	Bailer, Si.	ze: 0	3 Bladder P	ump 🏂 2" S∪	ıbmersible Pu	ump 🚨 4" Sut	omersible Pun	nn	·
ł	Yeristalti	C+ii		Pump 🖵 Oth					ous Iron: mg/L
Materio	als: Pump/Baile	" 🗖 Djedk	cated 🚨 Pr	epared Off-Si	te ਤੁਈ Field (Cleaned 🗆	Disposable	DO:	mg/L
Materio	als: Tubing/Rop	pe di Dedi	cated 🗆 F	Polypropyle Prepared Off-	site 🗆 Field	189 LI Other:_ Cleaned <u>E</u>	isposable	— Nitro	rte:mg/L
1	to Water at Tin	_				ed?□ Yes	No_	Sulfo	ite:mg/L
Sample	e ID: <u> Mui - l</u>	لين_	Sample 1	lime:	15	# of Conto	iners:3_	ـ مالام	linity: ma/L
Duplico	ate Sample Co	ollected?	☐ Yes ☐	No ID:				Aiku	linity:mg/L
5. CON	MENTS	W.II	Cap No	Las We	Sha	en Seen	مم ذلا	. Wal-	rinthe
Ma.	nole.	Diss	olvedo	Kumon	motor	_	Not a	,	be Punchaning
				77			·	<i>'</i>	7
Note: Includ	de comments suc	ch as well o	condition, c	dor, presenc	e of NAPL, or	other items n	ot on the fjeld	d data shee//	//
							_/in	in/i	//
FORM GW	-1 (Rev 6/8/99 -	wah)					Signature	r X-1	·

BROWN AND CALL DWELL

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL ID: MU-7

1. PROJE	CT INFO	NTAMS	NC	<u>, , , , , , , , , , , , , , , , , , , </u>		the second of th			
	lumber: 129			ber: 00 5	-	Date: 1/2	5/00		Time: 15-47
	B.J Servi					Personnel:_	1,	11	
	.ocation: Ar		NIM			Weather:		, , , , , , , , , , , , , , , , , , ,	
2. WELL									
		•		True prov	C D Stainle	ess 🗆 Galv. St	real 17 Teffon	(a) (1) Other:	
	Diameter:								
	Diameter:				·	ess Galv. St		tective Casing	D Othor:
	pth of Well:								
	Static Water			From: MT				tective Casing	
		,		From: 🍇 to			<u>.</u>	tective Casing	
Length C	of Water Colu	mn: <u></u>	2_1 feet	weii volum	e:			nterval (from G vell = 0.167 gal/fl	,
3. PURG			, ox					***************************************	
Purge M	lethod: 🖸 Balle	r, Size:	Bladd	er Pump 2/2	" Submersible	Pump 0 Othe	Submersible	Pump	,
1		CI Stainle		C D Teflon®		unp u ome			Equipment Model(s)
Material	ls: Pump/Baile ·					Cleaned 🗆 (Disposable	1	
Material	ls: Rope/Tubin	g 🗅 Polyet 🖸 🗅 Dedic	hylene 🖼 ated 💷 P	Folypropyler repared Off-S	ie 🔾 Teflon iite 🗘 Field	® □ Other:_ Cleaned □	Disposable	 2. : **-	
Was wel	ll purged dry?	Q Yes	No No	Pumpi	ng Rate: 0	125 ga	l/min	3	
Time,	Cum. Gallons Removed	·рН	Temp	Spec. Cond.	Eh	Dissolved Oxygen	.Turbidity	Other	Comments
1722	0,25	ري . ي	20,00	4418	164.8	22,00			Clouds
1028	1.25	6.72		4433	161.8	23.76			21
17.33	2,5	6.1	20,65	1 1	1588	24.36			(veg
1730	3.75	\$.72	ì `	4476	158.1	29.31			11.
1 S/C	7	\(\frac{1}{2}\),\(\frac{1}{2}\)	ر ما ,ملن	1100	1961	11.3			CA date
1 0 1 1 4 5		Τ.Δ	<u> </u>		<u> </u> 				
4. SAIVIF	PLING DA		3. Diametei e e D	X 211 S.	la an a seila la Di	ımp □ 4" Sut		1	chemical Analyses
Method		cPump 🗅	Inertial Lift	Pump 🚨 Oth	er:	imp u 4° sur	omersible Pun	np Ferro	ous Iron: mg/L
Materia	ils: Pump/Baile	Dedic	cated 🗅 Pr	j'	te 🚨 Field (Cleaned 💷 I	Disposable	DO:	mg/L
Materia	ıls: Tubing/Rop	pe 🚨 Polye D Dedik	thylene 🙎 cated 💷 F	Polypropyle Prepared Off-	ne 🗖 Teflor Site 🗖 Field	n® 🛭 Other:_ I Cleaned 🗀	1 Disposable	— Nitra	rte:mg/L
Depth to	o Water at Tin						1	Sulfa	tto: ma/!
	10: 11/W -			lime:	4.1	# of Conta	• .	Sulla	ite:mg/L
ł	ite Sample Co	•					· · ·	Alka	linity:mg/L
5. COM	IMENTS	Disp	الدرااء	2110-1	nu-lh-	1)] 12	~ 1 1	Workian
		<u> </u>	riped (exygen	megus	Does in	+ Appa	a to be	working
							· · · · · · · · · · · · · · · · · · ·	. /	
Note: Include	e comments suc	ch as well o	condition, c	dor, presenc	e of NAPL, or	r other items n	ot on the field	d data sheet.	
							11.	linker !	//
FORM GW-	(Rev 6/8/99 -	wah)					Signature	7	

APPENDIX D

Laboratory Analytical Report

Case Narrative for: Brown & Caldwell

Certificate of Analysis Number:

00010652

Report To:

Brown & Caldwell

Tim Jenkins

1415 Louisiana

Suite 2500

Houston

TX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Project Name:

BJ Services-Artesia #12899.005

Site:

BJ Services-Artesia

Site Address:

Artesia

NM

PO Number:

State:

New Mexico

State Cert. No.:

N/A

Date Reported:

Any data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

Servadette

2/3/00

Brown & Caldwell

Certificate	of A	Analysis	Number
-------------	------	----------	--------

00010652

eport To: Brown & Caldwell

Tim Jenkins

1415 Louisiana

Suite 2500

Houston

ΤX

Fax To:

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Brown & Caldwell

Tim Jenkins

fax: (713) 308-3886

Project Name:

BJ Services-Artesia #12899.005

Site:

BJ Services-Artesia

Site Address:

Artesia

NM

PO Number:

State:

New Mexico

State Cert. No.:

N/A

Date Reported:

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	Н
W-5	00010652-01	Water	1/25/00 4:49:00 PM	1/27/00 10:00:00 AM	084674	7
W-7	00010652-02	Water	1/25/00 5:44:00 PM	1/27/00 10:00:00 AM	084674	
W-6	00010652-03	Water	1/25/00 6:15:00 PM	1/27/00 10:00:00 AM	084674	
o Blank 1/21/00	00010652-04	Water	1/25/00	1/27/00 10:00:00 AM	084674	

Periodette G. Fm.

2/3/00

Date

Customer Service Manager

Joel Grice Laboratory Director

Ted Yen
Quality Assurance Officer

Client Sample ID MW-5 Collected: 1/25/00 4:49:00 SPL Sample ID: 00010652-01

Analyses/Method	Result	Rep.Limit		Dil. Factor QUAL	Date Analyzed	Analyst	Seq.#
PURGEABLE AROMATICS			MCL	SW8021B	Units: ug/	L	
Benzene	ND	1		1	01/28/00 19:36	WR	174807
Ethylbenzene	ND	1		1	01/28/00 19:36 \	WR	174807
Toluene	ND	1		1	01/28/00 19:36	WR	174807
Xylenes, Total	ND	1		1	01/28/00 19:36	WR	174807
Surr: 1,4-Difluorobenzene	107	% 72-137		1	01/28/00 19:36	WR	174807
Surr: 4-Bromofluorobenzene	105	% 48-156		1	01/28/00 19:36	WR	174807

Client Sample ID MW-7 Collected: 1/25/00 5:44:00 SPL Sample ID: 00010652-02

Analyses/Method	Result	Rep.Limi	t `	Dil. Factor	QUAL	Date Analyzed	Analyst	Seq.#
PURGEABLE AROMATICS			MCL	SW80)21B	Units: ug	3/L	
Benzene	ND	1		1		01/28/00 20:02	WR	174808
Ethylbenzene	ND	1		1		01/28/00 20:02	WR	174808
Toluene	ND	1		1		01/28/00 20:02	WR	174808
Xylenes, Total	ND	1		1		01/28/00 20:02	WR	174808
Surr: 1,4-Difluorobenzene	105	% 72-137		1		01/28/00 20:02	WR	174808
Surr: 4-Bromofluorobenzene	104	% 48-156		1		01/28/00 20:02	WR	174808

Client Sample ID MW-6 Collected: 1/25/00 6:15:00 SPL Sample ID: 00010652-03

Analyses/Method	Result	!	Rep.Limit		Dil. Factor	QUAL	Date Analyzed	Analyst	Seq.#
PURGEABLE AROMATICS				MCL	SW8021B		Units: ug/L		
Benzene	ND		1		1		01/28/00 20:28	WR	174809
Ethylbenzene	ND		1		1		01/28/00 20:28	WR	174809
Toluene	ND		1		1		01/28/00 20:28	WR	174809
Xylenes, Total	ND		1		1		01/28/00 20:28	WR	174809
Surr: 1,4-Difluorobenzene	105	%	72-137	····· ·	1		01/28/00 20:28	WR	174809
Surr: 4-Bromofluorobenzene	104	%	48-156		1		01/28/00 20:28	WR	174809

Client Sample ID Trip Blank 1/21/00 Collected: 1/25/00 SPL Sample ID: 00010652-04

Analyses/Method	Result		Rep.Limit	Di	II. Factor QUAL	Date Analyzed	Analyst	Seq. #
PURGEABLE AROMATICS				MCL	SW8021B	Units: ug/L		
Benzene	ND		1		1	01/28/00 19:10	WR	174799
Ethylbenzene	ND		1		1	01/28/00 19:10	WR'	174799
Toluene	ND		1		1	01/28/00 19:10	WR	174799
Xylenes, Total	ND		1		1	01/28/00 19:10	WR	174799
Surr: 1,4-Difluorobenzene	105	%	72-137		1	01/28/00 19:10	WR	174799
Surr: 4-Bromofluorobenzene	106	%	48-156		1	01/28/00 19:10	WR	174799

Quality Control Documentation

Quality Control Report

Brown & Caldwell

BJ Services-Artesia #12899.005

nalysis: ethod:

nalysis Date:

Purgeable Aromatics

SW8021B

WorkOrder:

00010652

Lab Batch ID:

R8348

Method Blank

HP N 000128A-174796 01/28/2000 17:26

Units:

Analyst:

ug/L WR

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

00010652-01A 00010652-02A

MW-5 MW-7

00010652-03A

MW-6

00010652-04A

Trip Blank 1/21/00

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
Xylenes, Total	ND	1.0
Surr: 1,4-Difluorobenzene	103.9	72-137
Surr: 4-Bromofluorobenzene	105.5	48-156

Laboratory Control Sample (LCS)

RunID:

Analysis Date:

HP_N_000128A-174795

Units:

ug/L

01/28/2000 17:00 Analyst: WR

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	50	53	106	61	119
Ethylbenzene	50	52	103	70	118
Toluene	50	54	108	65	125
Xylenes,Total	150	164	109	72	117

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

00010652-01

RunID:

HP_N_000128A-174797

Units:

ug/L

Analysis Date:

01/28/2000 17:52

Analyst:

WR

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
enzene	ND	20	23	114	20	23	112	1.50	21	32	164
Ethylbenzene	ND	20	23	112	20	22	111	0.869	19	52	142
<u>T</u> oluene	ND	20	23	115	20	23	115	0.0659	20	38	159
ylenes,Total	ND	60	68	113	60	68	113	0	18	53	144

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

Chain of Custody And Sample Receipt Checklist

351 Workender Noc	1001065/ page 1 of 1	Requested Analysis											11.7047	•	Temp	Special Detection Limits (specify):	OUT.	2. Received lay:	4. Received by:	6. Received by Lathoratory. (100, 1/27,000	500 Ambaccador Cafforr Partway Scott 1. A 70583 (318) 237-4775
	stody Record	size pres.	,=	02 16= 12504 0 12504 0	8=8 3=H 3=H	1 3	40 1 3	40 1 2	1 03							Raw Data Special Detect	Level 4 CC	30 100/20/1013	date time	date time	100 A Lange
S	Analysis Request & Chain of Custody Record	matrix bottle s	= soil)=other: = amber glass = vial	O egbuls A sissi V sssi	2F=8 D=b	(w av	>	1 60	W QV 4	3	-			Laboratory remarks:		Fax Results 🔀 Ra	Level 3 QC	Ð	7	ਚ	
	Analysis Reques	25.	Actesta	Now Mexico	DATE TIME ONE	1260 1649 PM	ļ									Special Reporting Requirements	Standary OC 1	1. Retinguished by Samplet.	3. Rolinquished by:	5. Relinquished by:	10 Table 1 Depart 1 State
			sien ikien	tion: Arkesia	Lavoice To: 1 1/11/11 (CONK) 125 SAMPLE ID D.	1/10-5-1/2		1/10-6	1	1				Client/Consultant Remarks:		Requested TAT Speci	4	24hr 77hr 1.Re	43hr Standard [3. fg.	Other 5. Re	N

(1) 459-Hughes Drive, Traverse City, MI 49684 (616) 947-5777

Sample Receipt Checklist

Workorder:	00010652		Received by:		Stelly, D'Anna
Date and Time Received:	1/27/00 10:00:00 AM		Carrier name:		FedEx
Temperature:	3				
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on ship	pping container/cooler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on sam	ple bottles?	Yes 🗌	No 🗆	Not Present	\checkmark
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed whe	en relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with	sample labels?	Yes 🗸	No 🗆		
Samples in proper container	/bottle?	Yes 🗸	No 🗆		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌		
All samples received within h	nolding time?	Yes 🗹	No 🗌	4.5	
Container/Temp Blank temp	erature in compliance?	Yes 🗹	No 🗌	· 191	
Water - VOA vials have zero	headspace?	Yes 🗹	No 🗌	Not Present	
Water - pH acceptable upon	receipt?	Yes 🗸	No 🗌		. *

BROWN AND CALDWELL

Suite 2500, 1415 Louisiana, Houston, TX 77002 (713) 759-0999 • (713) 308-3886

TRANSMITTAL MEMORANDUM

1.107.100.0										
To: Mr. W	ayne Price			Date: April 1, 1999 Job No: 12988.01						
New N	Mexico Oil Co	nservation Di	vision	Subject: Artesia, New Mexico, BJ Services						
2040 S	South Pacheco	Street		Contract No:						
Santa	Fe, Mexico 8	7505		Equipment No:						
	<u>-</u> -			Spec. Ref:						
_				Submit	tal No:	 "				
WE ARE SE	NDING:	Attached	d Un	der sepa	rate cover via 1st Clas	s Mail t	he following items:			
Shop Drawii	Prints	Pla	ıns	Samples		Specifications				
Copy of lette	er	<u> L</u> Change	Order 🗵 Ot	<u>ner:</u> Fir	nal_Report					
☐ For app ☑ For you ☐ As requ ☐ For revi	roval r use		BELOW:		SUBMITTAL REN No except Make revis Amend an Rejected None	ions take sions id resubn	en nit			
Copies	Date	No.			Description					
1	4/1/99	12988.014		indwater Sampling and Analysis Report, Artesia, New Services Company, U.S.A.						

REMARKS:

cc: Mr. Tim W. Gum (NMOCD – Artesia, NM)

Jo Ann Cobb (BJ Services Company, U.S.A. - Houston)

Mr. Mike Wiggins (BJ Services Company, U.S.A. – Artesia, NM)

Brown and Caldwell File

Transmittal File w/o attachment

Timothy L. Jenkins

ANNUAL GROUNDWATER SAMPLING AND ANALYSIS REPORT ARTESIA, NEW MEXICO BJ SERVICES COMPANY, U.S.A.

APRIL 1, 1999

APR 0 1999

Environmental Bureau
Oil Conservation Division

ANNUAL GROUNDWATER SAMPLING AND ANALYSIS REPORT ARTESIA, NEW MEXICO BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 8701 New Trials Drive The Woodlands, Texas 77381

BC Project Number: 12988.014

Timothy Jenkins Associate Engineer

April 1, 1999

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

"This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

CONTENTS

1.0	EXECUTIVE SUMMARY	1									
2.0	INTRODUCTION										
3.0	FIELD ACTIVITIES										
	 3.1 Water Level Measurement and Groundwater Gradient. 3.2 Monitor Well Purging and Sampling Procedures. 3.3 Decontamination Procedures. 3.4 Sample Analysis. 	3 4									
4.0	ANALYTICAL RESULTS	5									
5.0	CONCLUSIONS AND RECOMMENDATIONS	6									
	5.1 Conclusions										
DIST	RIBUTION AND QA/QC REVIEWER'S SIGNATURE										
FIGU	RES										
1 2 3	Site Location Map Site Plan Map Potentiometric Surface Map for January 20, 1999										
TABL	LES										
1 2 3	Groundwater Elevation Data Analytical Results for January 1998 Groundwater Sampling Event Analytical Results for January 1999 Groundwater Sampling Event										
APPE	ENDICES										
A B C	Relevant Correspondence and Telephone Conversation Logs with the NMOCD Groundwater Sampling Field Data Sheets Laboratory Analytical Report										

[&]quot;Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

1.0 EXECUTIVE SUMMARY

Brown and Caldwell conducted the first of two scheduled annual groundwater sampling events at the BJ Services Company, U.S.A. (BJ Services) District Facility in Artesia, New Mexico on January 20, 1999. Groundwater samples were submitted to an analytical laboratory to determine the concentration of organics and metals in groundwater at the former Fuel Island Area of the site. There were no exceedences of New Mexico Water Quality Control Commission (NMWQCC) standards in any of the former Fuel Island Area wells. A thin layer of phase-separated hydrocarbons (PSH) was detected in monitor well MW-6. Brown and Caldwell recommends performing the second scheduled annual sampling event in January 2000 for the former Fuel Island Area. We also propose testing the well for PSH while onsite for other activities in April 1999. If PSH is present in MW-6 at that time, Brown and Caldwell recommends the installation of a hydrophobic hydrocarbon recovery filter to recover PSH.

2.0 INTRODUCTION

The BJ Services Artesia District Facility is located in Eddy County, in the SE/4, Section 32, Township 16 South, Range 26 East. The facility address is 2401 Sivley, Artesia, New Mexico. A site location map and site plan map are attached as Figures 1 and 2, respectively.

Brown and Caldwell conducted a soil and groundwater assessment at the facility from January 21-23, 1998. This soil and groundwater assessment was performed to determine what, if any, impact may have occurred from the operation of a former fuel island at the facility. Excavation of impacted soil from the former Fuel Island Area was performed from November 18 through 22, 1997. Excavation activities were summarized in a January 8, 1998 letter from Brown and Caldwell to Mr. Mark Ashley of the New Mexico Oil Conservation Division (NMOCD).

On January 22, 1998, Brown and Caldwell completed three soil borings at the facility as requested in NMOCD correspondence dated January 21, 1998. Soil borings SB-FIA-1, SB-FIA-2, and SB-FIA-3 were completed as monitor wells MW-5, MW-7, and MW-6, respectively. Groundwater samples and groundwater elevation data were collected from the monitor wells on January 23, 1998. On March 24, 1998, the Final Soil and Groundwater Assessment Report for the former Fuel Island Area was submitted to the NMOCD. In May 1998, NMOCD verbally accepted the report and requested two years of annual sampling be performed. This report presents the results of the first of these two scheduled sampling events.

3.0 FIELD ACTIVITIES

On January 20, 1999, Brown and Caldwell conducted the first of two scheduled annual groundwater sampling events at the BJ Services facility in Artesia, New Mexico, as requested by the NMOCD in conversations with Brown and Caldwell. Correspondence and telephone conversation logs regarding the annual groundwater sampling agreement are included as Appendix A. The following subsections describe the field activities during which the groundwater from monitor wells MW-5, MW-6, and MW-7 was sampled in accordance with the above-referenced NMOCD agreement.

3.1 Water Level Measurement and Groundwater Gradient

Water level measurements were collected from the three monitor wells at the site on January 20, 1999 to determine groundwater flow direction in the southern portion of the site. While collecting water level data using an interface probe, the Brown and Caldwell field representative noted a thin layer of product (approximately 0.03 feet) present in MW-6. The appearance of a product layer coincides with a depressed groundwater level as compared to historical groundwater elevation measurements. The depth-to-groundwater measurements were compared with the top of casing elevations for each monitor well to compute a relative groundwater elevation. The groundwater elevation calculations are presented in Table 1. This data was used to create the January 20, 1999 potentiometric surface map presented as Figure 3. Groundwater flow in the Fuel Island Area is to the east-southeast.

3.2 Monitor Well Purging and Sampling Procedures

Each of the monitor wells (MW-5, MW-6, and MW-7) was purged with a submersible pump. A minimum of three well casing volumes was purged from each monitor well prior to collection of groundwater samples. Temperature, pH, conductivity, redox, and dissolved oxygen were measured using a YSI-600XL device during purging of monitor wells MW-5 and MW-7. Groundwater samples were collected when these parameters stabilized. These parameters were not measured

P:\Wp\BJSERV\12988\065r.doc

from MW-6 due to the presence of a thin layer of product which would interfere with the probes. Refer to the Groundwater Sampling Field Data Sheets in Appendix B for well purging documentation.

Groundwater samples were transferred to laboratory-supplied containers, labeled, and immediately placed on ice in an insulated cooler for shipment. At the conclusion of sampling, the samples were delivered with completed chain-of-custody documentation to the analytical laboratory. The laboratory analytical report is included as Appendix C.

3.3 Decontamination Procedures

Field sampling equipment was decontaminated prior to use at each well location by washing with a laboratory grade detergent, rinsing with potable water, and completing a final rinse with distilled water.

3.4 Sample Analysis

The groundwater samples were analyzed for total RCRA metals by SW-846 Method 3010A/3020A/6010/7000 Series, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8310, and BTEX by EPA Method 8020.

4.0 ANALYTICAL RESULTS

Analytical results for groundwater samples collected during the January 1998 sampling event are summarized in Table 2; analytical results for groundwater samples collected during the January 1999 sampling event and the applicable NMWQCC standards are summarized in Table 3.

The groundwater sample collected from MW-6, the monitor well immediately downgradient of the former Fuel Island Area, indicated detectable concentrations of benzene, ethylbenzene, and xylenes below NMWQCC Standards. Various semivolatile constituents and metals were also detected, but none exceeded NMWQCC Standards. Toluene was not detected in this sample.

Groundwater samples were also collected from MW-5 and MW-7, the upgradient and far downgradient wells relative to the former Fuel Island Area, respectively. Laboratory analysis of these groundwater samples indicated that benzene and ethylbenzene were not detected during the January 1999 sampling event. Toluene and xylenes were detected at concentrations below the NMWQCC Standards. Various semivolatile constituents and metals were also detected, but none exceeded NMWQCC Standards.

Naphthalene, acenaphthalene, fluorene, phenanthrene, pyrene, chrysene, benzo(k)fluoranthene, and benzo(a)anthracene (PAHs) were detected in at least one groundwater sample collected from the monitor wells. Detections of naphthalene, acenaphthalene, fluorene, and phenanthrene in MW-5 and MW-7 are questionable, as these constituents were detected in the laboratory method blank.

P:\Wp\BJSERV\12988\065r.doc

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Laboratory results for groundwater samples were compared to NMWQCC Groundwater Standards. There were no exceedences of NMWQCC groundwater standards among groundwater samples. A depressed groundwater level may have caused the increases in concentrations of organics and metals observed in MW-6 groundwater samples relative to the previous sampling event (January 1998). Additionally, the appearance of a thin PSH layer in MW-6 may also be the result of a depressed groundwater level.

5.2 Recommendations

Brown and Caldwell recommends performing the second of two scheduled annual sampling event in January 2000 for the former Fuel Island Area. We also propose testing the well for PSH while onsite for other activities in April 1999. If PSH is present in MW-6 at that time, Brown and Caldwell recommends the installation of a hydrophobic hydrocarbon recovery filter to recover PSH.

P:\Wp\BJSERV\12988\065r.doc

DISTRIBUTION

Annual Groundwater Sampling and Analysis Report Artesia, New Mexico BJ Services Company, U.S.A.

April 1, 1999

1 copy to: New Mexico Oil Conservation Division

2040 South Pacheco Street Santa Fe, New Mexico 87505

Attention: Mr. Wayne Price

1 copy to: New Mexico Oil Conservation Division

811 South 1st Street

Artesia, New Mexico 88211

Attention: Mr. Tim W. Gum

1 copy to: BJ Services Company, U.S.A.

8701 New Trails Drive

The Woodlands, Texas 77381

Attention: Ms. Jo Ann Cobb

1 copy to: BJ Services Company, U.S.A.

2401 Sivley

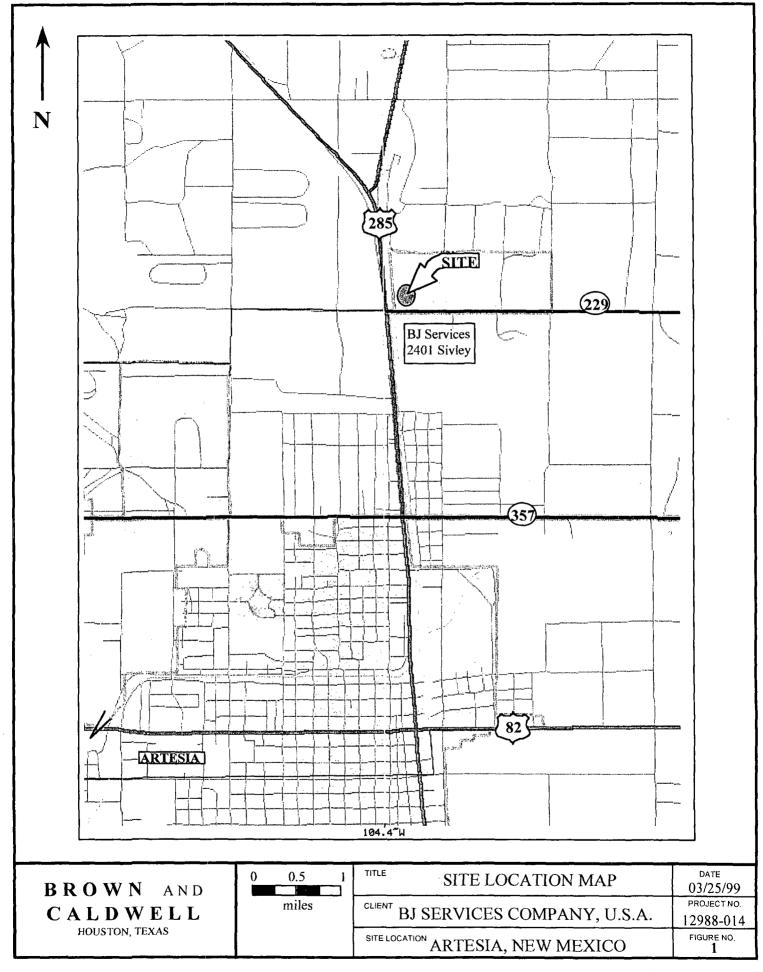
Artesia, New Mexico 88210

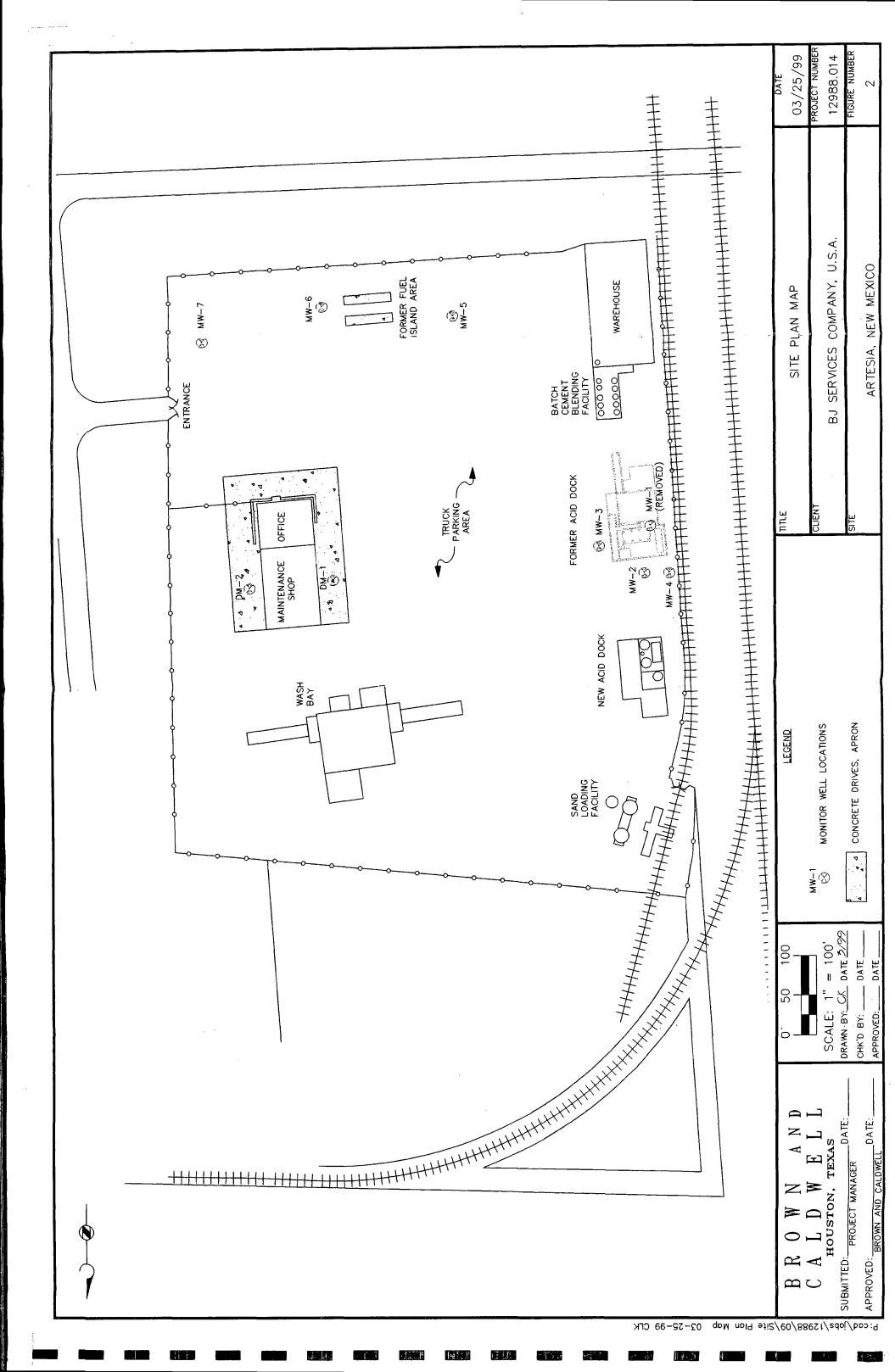
Attention: Mr. Mike Wiggins

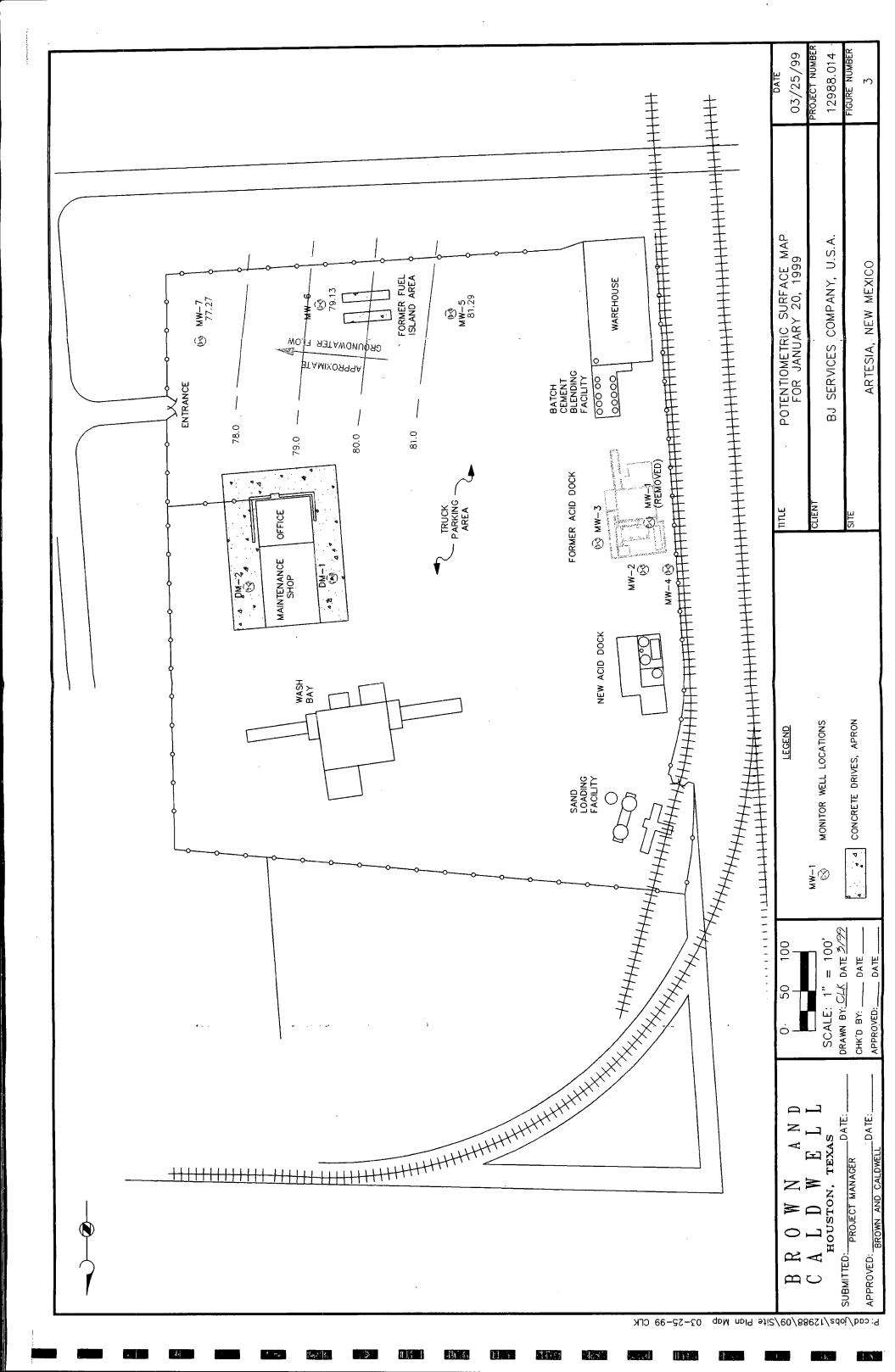
1 copy to: Brown and Caldwell

File

QUALITY CONTROL REVIEWER:


Richard Rexroad Principal in Charge


TLJ/srd


FIGURES

P:\Wp\BJSERV\12988\065r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

TABLES

P:\Wp\BJSERV\12988\065r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

Table 1

Groundwater Elevation Data
BJ Services Company, U.S.A.
Artesia, New Mexico

Monitor Well	Top of Casing (Relative Elevation)	Measurement Date	Depth to Water (feet)	Groundwater Elevation ⁽¹⁾
MW-5	99.10	1/23/98	13.38	85.72
		1/20/99	17.81	81.29
MW-6	97.69	1/23/98	14.00	83.69
		1/20/99	18.54	79.13 ⁽²⁾
MW-7	97.61	1/23/98	15.51	82.10
		1/20/99	20.34	77.27

⁽¹⁾ Elevations of well casings were established relative to the office building slab, which was assigned an arbitrary elevation of 100.00 feet.

⁽²⁾ Elevation corrected to account for phase separated hydrocarbons present at a thickness of 0.03 ft. in this monitor well. Correction assumes specific gravity of product is 0.8.

Table 2 Analytical Results for January 1998 Groundwater Sampling Event BJ Services Company, U.S.A. Artesia, New Mexico

						NMWQCC ^(b) Groundwater
MONITORING WELL	MW-5	MW-6	MW-6D ^(a)	MW-7	Trip Blank	Standards
VOLATILES by Method 802	0 (mg/L)					
Benzene	< 0.0010	< 0.0010	0.0015	0.0021	< 0.001	0.01
Toluene	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.001	0.75
Ethylbenzene	< 0.0010	0.0080	0.0080	< 0.0010	< 0.001	0.75
Total Xylenes	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.001	0.62
PAHs by Method 8310 (mg/L	L) ^(c)					
Fluorene	< 0.0003	0.008	0.008	< 0.0030	NA	NL
Phenanthrene	< 0.0001	0.011	0.010	0.003	NA	NL
Naphthalene	0.0004	0.002	0.002	0.001	NA	0.03 ^(d)
RCRA Metals by Method 30	10A/3020A/60	10B/7000 Serie	s (mg/L)			
Arsenic	< 0.005	0.005	< 0.005	< 0.005	NA	0.1
Barium	0.027	0.195	0.032	0.012	NA	1.0
Cadmium	< 0.005	< 0.005	< 0.006	< 0.005	NA	0.01
Chromium	< 0.01	0.02	< 0.01	< 0.01	NA	0.05
Mercury	< 0.0002	< 0.0002	< 0.0002	< 0.0002	NA	0.002
Lead	0.014	0.011	0.008	0.006	NA	0.05
Selenium	0.006	< 0.005	< 0.005	< 0.005	NA	0.05
Silver	< 0.01	< 0.01	< 0.01	< 0.01	NA	0.05

⁽a) Duplicate sample collected from MW-6

NA - Not analyzed

NL - Not listed

B - Laboratory Method Blank Showed Detectable Concentration of This Constituent

⁽b) NMWQCC = New Mexico Water Quality Control Commission

⁽c) Chemicals with concentrations below Practical Quantitation Limit (PQL) are not listed in this table

 $^{^{(}d)}$ Value is for PAHs: total naphthalene plus monomethylnaphthalenes.

Table 3 Analytical Results for January 1999 Groundwater Sampling Event BJ Services Company, U.S.A. Artesia, New Mexico

					NMWQCC ^(a)
					Groundwater
MONITORING WELL	MW-5	MW-6	MW-7	Trip Blank	Standards
VOLATILES by Method 802	20 (mg/L)				
Benzene	< 0.0010	0.0040	< 0.0010	< 0.0010	0.01
Toluene	0.0022	< 0.0010	0.0019	< 0.0010	0.75
Ethylbenzene	< 0.0010	0.019	< 0.0010	< 0.0010	0.75
Total Xylenes	0.0022	0.0011	0.0037	< 0.0010	0.62
PAHs by Method 8310 (mg/	L) ^(b)				
Fluorene	0.0001 B	0.38	0.001 B	NA	NL
Phenanthrene	0.0001 B	0.088	0.002 B	NA	NL
Naphthalene	0.0001 B	< 0.0020	0.0006 B	NA	0.03 ^(c)
Pyrene	< 0.0001	0.011	0.0004	NA	NL
Benzo (k) fluoranthene	< 0.0001	0.002	< 0.0001	NA	NL
Acenaphthene	< 0.0001	< 0.0020	0.002 B	NA	NL
Chrysene	< 0.0001	<0.0020	0.0002	NA	NL
Benzo (a) anthracene	< 0.0001	< 0.0020	0.002	NA	NL
RCRA Metals by Method 30	10A/6010B/700	00 Series (mg/L	.)		
Arsenic	< 0.005	0.008	0.007	NA	0.1
Barium	0.009	0.125	0.053	NA	1.0
Cadmium	< 0.005	< 0.005	< 0.005	NA	0.01
Chromium	< 0.01	< 0.01	< 0.01	NA	0.05
Mercury	< 0.0002	< 0.0002	0.0003	NA	0.002
Lead	< 0.005	<0.005	0.006	NA	0.05
Selenium	0.026	0.010	0.010	NA	0.05
Silver	< 0.01	< 0.01	< 0.01	NA	0.05

⁽a) NMWQCC = New Mexico Water Quality Control Commission

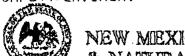
NA - Not analyzed

NL - Not listed

B - Laboratory Method Blank Showed Detectable Concentration of This Constituent

⁽b) Chemicals with concentrations below Practical Quantitation Limit (PQL) are not listed in this table

⁽c) Value is for PAHs: total naphthalene plus monomethylnaphthalenes.


APPENDICES

P:\Wp\BJSERV\12988\065r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

APPENDIX A Relevant Correspondence and Telephone Conversation Logs with the NMOCD P:\Wp\BJSERV\12988\065r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pachago Street Santa Fo, New Mexico 87665 (505) 927-7731

April 2. 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-288-259-049

Ms. Jo Ann Cobb BJ Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas 77381

Post-it* Fax Note 76	671	Duta 4 -8 # of pages
To Bob Co.Dept.		From Jo Ann
Phono #		Co.
FBH #		Phone #
		Fax #

APR 0 7 1998

RE: Fuel Island Soll and Ground Water Assessment Artesia Facility Eddy County, New Mexico

Dear Ms. Cobb:

The New Mexico Oil Conservation Division (OCD) has completed a review of the BJ Services Company, U.S.A. (BJ) "Final Soil and Ground Water Assessment Report" dated March 24, 1998. This report was submitted by Brown and Caldwell on behalf of BJ. It contains a summary of activities performed to date and a request for final closure at the former fuel island area.

The above referenced report is approved with the following condition:

1. At future discharge plan renewals MW-5, MW-6 and MW-7 will be sampled for BTEX using BPA approved methods.

Please be advised that OCD approval does not relieve BI of liability if contamination exists which is beyond the scope of the report or if the activities failed to adequately determine the extent of contamination related to BI's activities. In addition, OCD approval does not relieve BI of responsibility for compliance with any other federal, state or local laws and/or regulations.

If BJ has any questions, please call me at (505) 827-7155.

Sincerely,

Mark Ashley Geologist

xc: OCD Artesia Office

April 21, 1998

Mr. Mark Ashley State of New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

2988-09

Subject: BJ Services Facility - Artesia, New Mexico

Fuel Island Soil and Groundwater Assessment

Dear Mr. Ashley:

Thank you for reviewing BJ Services "Final Soil and Groundwater Assessment Report" of March 24, 1998, and your subsequent letter response dated April 2, 1998. In your letter response, the NMOCD granted closure of the Fuel Island Area on the condition that groundwater monitoring be conducted for MW-5, MW-6, and MW-7 at the time of each discharge plan renewal (approximately once every 5 years). As an alternative to this time frame, which appears to be unlimited in scope, Brown and Caldwell suggests that a groundwater monitoring program be performed annually for two years, with the first event scheduled for January 1999 (approximately one year from the initial sampling event). As requested in the NMOCD letter of April 2, 1998, groundwater samples collected during these annual events would be analyzed for BTEX by EPA Method 8020. Pending results of these groundwater monitoring events, BJ Services would propose either final closure of the Fuel Island Area or continued monitoring.

Thank you for considering this alternate plan for groundwater monitoring. If you have any questions, please do not hesitate to contact me at (713) 646-1138.

Very truly yours,

BROWN AND CALDWELL

Timothy L. Jenkins Associate Engineer

cc: NMOCD Artesia District Office

Jo Ann Cobb, BJ Services Company, U.S.A. Rick N. Johnson, BJ Services Company, U.S.A.

BROWN AND CALDWELL

RECORD OF TELEPHONE CONVERSATION

DATE: 05/14/98	JOB/DESCRIPTION: BJ Artesia -	Former Fuel Island Area
INDIVIDUAL	ORGANIZATION	TELEPHONE NO.
FROM: Tim Jenkins	Brown and Caldwell	713-646-1138
TO: Mark Ashley	NMOCD	505-827-7155

SUBJECT: Monitoring Wells and Proposed Sampling Events – FIA

GOALS OF THE CONVERSATION:

- 1) Determine whether proposed sampling of FIA wells twice over next two years is acceptable
- 2) Verify conclusions and procedures for future correspondence

NOTES:

- 1. The letter from BJ Services to the NMOCD proposing monitor well sampling once a year for the next two years has been verbally agreed upon. This would allow sampling to be performed twice prior to discharge plan renewal (the current Discharge Plan will expire on June 13, 2000).
- 2. Future activities will be performed as requested by the OCD and approved by BJ Services. Only upon receipt of written approval shall these activities be scheduled and performed. All approvals and proposed actions will be followed up with official letter correspondence.

ACTION REQUIRED:

- 1) Tentatively plan a sampling event for January 1999 and January 2000 for MW-5 through MW-7
- 2) Await OCD correspondence with suggestions and recommendations for these activities.

INITIALS:

ROUTING: FILE

Robert N. Jennings Richard Rexroad

APPENDIX B

Groundwater Sampling Field Data Sheets

BROWN AND CALDWELL

WELL ID: MW-7

Groundwater Sampling Field Data Sheet

1.20.59

Project	Number:	17222

Task Number: 014

Date: 140 98

Casing Diameter	Purge Equipment	Geochemical Parameters	
<u>)</u> inches	aump	Ferrous iron:	O mg/l
Total Depth of Well from TOC	pump		_
3J. L feet		Dissolved oxygen:	3 mg/l
Static Water from TOC	Sample Equipment		
20.34 teet	pump	Nitrate:	ライツ mg/l
Product Level from TOC	*		
feet		Alkalinity:	mg/l
Length of Water Column	Analytical Equipment (pH, DO, Redox, filtration, etc.)		,
7.86 feet	YST, Work Fired Kits	Sulfate:	mg/l
Well Volume			
1-64 ga	·	Sample Time:	14:30
Screened Interval (from GS)			
15-30 fee		Note: 2" well= .167 gal/ft.,	4"well=.667gal/ft.

Time	Gallons Removed	pН	Temp	Conductivity	Redox	Dissolved Oxvaen	Visual Description
	_	7.55	2019	3175	1374	9.31	cloudy
	1.0	6.20	2351	3/53	1332	423	Clour
	4.0	6.60	20.89	3221	1254	5-01	clow
	5.0	659	20.55	3257	126.5	5.07	Cla

Comments:						
	5T1610	£ 5.0	TXLS			
	•				-	
						
 				· · · · · · · · · · · · · · · · · · ·		

PPE Worn:	Sampler's Signature:
gloves	
Disposition of Purge Water:	
ii.	and the said of th
drunned ansite	
_ 	

BROWN AND CALDWELL

WELLID: MW-S

Groundwater Sampling Field Data Sheet

Project Number: 1-288 Task Number: 014 Date: 1-20.59

Casing Diameter	Purge Equipment	Geochemical Parameters	
2 inches	pump	Ferrous iron:	ن mg/l
Total Depth of Well from TOC	Ç-	1	r
27.6 leet		Dissolved oxygen:	9-0 mg/1
Static Water from TOC	Sample Equipment		
17.81 feet	pump	Nitrate:	mg/l
Product Level from TOC	•		
leet		Alkalinity:	340 mg/1
	Analytical Equipment (pH, DO, Redox, filtration, etc.)		
9.75 feet	YSIVHALLIFIELD Kits	Sulfate:	mg/l
Well Volume	•		
1.64 gal		Sample Time:	15:30
Screened Interval (from GS)			
13-28 teet		Note: 2" well= .167 gal/ft.,4	l"well=.667gal/ft.

Tirne	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
	_	ブを	20.54	3060	115.8	7.73	cloudy
	2,-6	6.91	23,70	3249	1204	7.64	to con
	4.0	677	23.53	3042	117.0	7.48	cleer
	5.0	6.74	2053	3540	115.5	7.50	clar

Comments:			·
	STABLE P 5-4 TX	165	
			-

PPE Worn:	Sampler's Signature:
Disposition of Purge Water: Drum & Junsite	16/2

BROWN and CALDWELL

Ground	dwater Sam	pling Fie	eld Data		WELL	ID: MW	- 6	
Projec	t Number:	12588	Task	Number:	014	_	Date:	1.20.59
Casing Diar	meter	Purge Equip	ment	·		Geochemical P	arameters	···
	2 inches					Ferrous iron:		mg/
loidi Bapa						Cincelled ares		
Static Wate	r from TOC	Sample Equ	ipment			Dissolved oxyg	jer.	mg/
1	8.81 feet					Nitrate:		mg/
Product Lev	vel from TOC							
18.	. 54 reet					Alkalinity:		mg
3	Vater Column いよう feet		quipment (pH	, DO, Redox, filtra	ation, etc.)	Sulfate:		mg
Well Volum	gal nterval (from GS)					Sample Time:		16:30
15-3						Note: 2" well=	.167 gal/ft.,4	'weli=.667gal/ft.
Time	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual	Description
	·							
Comme	onte:							
Comme		(T Jan	vell!	ع (<i>ن</i> . ن	j _{eæ} t (of diss	î.	
	V		<u> </u>				- · · · · · · · · · · · · · · · · · · ·	
PPE Wom	I: 4		Sampler's	Signature:				

PPE Wom: slaves	Sampler's Signature:
Disposition of Purge Water:	1

APPENDIX C

Laboratory Analytical Report

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

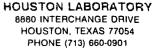
February 5, 1999

Mr. Tim Jenkins BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on January 22, 1999. The sample(s) was assigned to Certificate of Analysis No. (s) 9901939 and analyzed for all parameters as listed on the chain of custody.

The Method Blank associated (Batch ID: 2990126005200) with the analysis run for Polynuclear Aromatic Hydrocarbons method 8310 had detected results for Naphthalene at .18 ppb, Fluorene at .14ppb, Phenanthrene at .13 and Anthracene at .20 ppb. These detected results may be contributed to laboratory contamination. Some of these compounds were detected at low levels in your samples, which could be contributed to laboratory contamination. These results will be "B" flagged.

Any other data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).


If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini

Senior Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 99-01-939

Approved for Release by:

Bernadetté A. Fini, Senior Project Manager

Greg Grandits Laboratory Director

Cynthia Schreiner Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory. The results relate only to the samples tested. Results reported on a Wet Weight Basis unless otherwise noted.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901939-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-5

PROJECT NO: 12988

MATRIX: WATER

DATE SAMPLED: 01/20/99 15:30:00

DATE RECEIVED: 01/22/99

ANALYTIC	AL DATA		•
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	ug/L
TOLUENE	2.2	1.0 P	ug/L
ETHYLBENZENE	ND	1.0 P	ug/L
TOTAL XYLENE	2.2	1.0 P	ug/L
TOTAL BTEX	4.4		ug/L
Surrogate	% Recovery		
1,4-Difluorobenzene	107		
4-Bromofluorobenzene METHOD 5030/8020 *** Analyzed by: LJ Date: 01/26/99	107		
Silver, Total Method 6010B *** Analyzed by: JM Date: 01/25/99 09:26:00	ND	0.01	mg/L
Arsenic, Total Method 6010B *** Analyzed by: EG Date: 01/26/99 11:09:00	ND	0.005	mg/L
Barium, Total Method 6010B *** Analyzed by: JM Date: 01/25/99 09:26:00	0.009	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

⁽P) - Practical Quantitation Limit

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 02/05/99

Certificate of Analysis No. H9-9901939-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT NO: 12988

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-5

MATRIX: WATER DATE SAMPLED: 01/20/99 15:30:00

DATE RECEIVED: 01/22/99

	ANALYTICAL DATA			
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Cadmium, Total Method 6010B *** Analyzed by: JM Date: 01/25/99	09:26:00	ND	0.005	mg/L
Chromium, Total Method 6010B *** Analyzed by: JM Date: 01/25/99	09:26:00	ND	0.01	mg/L
Mercury, Total Method 7470 A*** Analyzed by: AG Date: 01/29/99	14:29:00	ND	0.0002	mg/L
Acid Digestion-Aqueous, Method 3010A *** Analyzed by: MR Date: 01/25/99		1/25/99		
Lead, Total Method 6010B *** Analyzed by: EG Date: 01/26/99	11:09:00	ND	0.005	mg/L
Selenium, Total Method 6010B *** Analyzed by: EG Date: 01/26/99	11:09:00	0.026	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901939-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-5

PROJECT NO: 12988

MATRIX: WATER

DATE SAMPLED: 01/20/99 15:30:00

DATE RECEIVED: 01/22/99

						=
A	NALYTICAL DATA					
PARAMETER	RES	ULTS	PQL*		UNITS	
Naphthalene	0	.1 B	0.1		ug/L	
Acenaphthylene		ND	0.1		ug/L	
Acenaphthene		ND	0.1		ug/L	
Fluorene	0	.1 B	0.1		ug/L	
Phenanthrene	0	.1 B	0.1		ug/L	
Anthracene		ND	0.1		ug/L	
Fluoranthene		ND	0.1		ug/L	
Pyrene		ND	0.1		ug/L	
Chrysene		ND	0.1		ug/L	
Benzo (a) anthracene		ND	0.1		ug/L	
Benzo (b) fluoranthene		ND	0.1		ug/L	
Benzo (k) fluoranthene		ND	0.1		ug/L	
Benzo (a) pyrene		ND	0.1		ug/L	
Dibenzo (a,h) anthracene		ND	0.1	•	ug/L	
Benzo (g,h,i) perylene		ND	0.1		ug/L	
Indeno (1,2,3-cd) pyrene		ND	0.1		ug/L	
SURROGATES	AMOUNT	%		LOWER	UPPER	
	SPIKED		VERY	LIMIT	LIMIT	
1-Fluoronaphthalene	0.50 ug/L	44		50	150	
Phenanthrene d-10	0.50 ug/L		72	50	150	

ANALYZED BY: KA DATE/TIME: 01/27/99 08:56:57 EXTRACTED BY: KL DATE/TIME: 01/25/99 15:00:00

METHOD: 8310 Polynuclear Aromatic Hydrocarbons

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

MI - Matrix Interference.

COMMENTS: B - Compound Was Detected In Method Blank.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901939-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-6

PROJECT NO: 12988

MATRIX: WATER

DATE SAMPLED: 01/20/99 16:30:00

DATE RECEIVED: 01/22/99

ANALYTICA	L DATA		
PARAMETER	RESULTS	DETECTION	UNITS
BENZENE	4.0	LIMIT 1.0 P	ug/L
TOLUENE	ND		ug/L
ETHYLBENZENE	19		ug/L
TOTAL XYLENE	1.1		ug/L
TOTAL BTEX	24.1		ug/L
Surrogate	% Recovery		
1,4-Difluorobenzene	110		
4-Bromofluorobenzene	103		
METHOD 5030/8020 ***			
Analyzed by: LJ			
Date: 01/26/99			
Silver, Total	ND	0.01	mg/L
Method 6010B ***			3 ,
Analyzed by: JM			
Date: 01/25/99 09:26:00			
Arsenic, Total	0.008	0.005	mg/L
Method 6010B ***			٥.
Analyzed by: EG			
Date: 01/26/99 11:09:00			
Barium, Total	0.125	0.005	mg/L
Method 6010B ***			
Analyzed by: JM			
Date: 01/25/99 09:26:00			

⁽P) - Practical Quantitation Limit ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901939-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

PROJECT NO: 12988
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 01/20/99 16:30:00

SAMPLE ID: MW-6

DATE RECEIVED: 01/22/99

	ANALYTICAL	DATA		
PARAMETER		RESULTS	DETECTION	UNITS
Cadmium, Total Method 6010B *** Analyzed by: JM Date: 01/25/99	09:26:00	ND	LIMIT 0.005	mg/L
Chromium, Total Method 6010B *** Analyzed by: JM Date: 01/25/99	00.26.00	ND	0.01	mg/L
Date: 01/25/99	09:26:00		•	
Mercury, Total Method 7470 A*** Analyzed by: AG Date: 01/29/99	14:29:00	ND	0.0002	mg/L
Acid Digestion-Aqueous, Method 3010A *** Analyzed by: MR Date: 01/25/99		01/25/99		
Lead, Total Method 6010B *** Analyzed by: EG Date: 01/26/99	11:09:00	ND	0.005	mg/L
Selenium, Total Method 6010B *** Analyzed by: EG Date: 01/26/99	11:09:00	0.010	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901939-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-6

PROJECT NO: 12988
MATRIX: WATER

DATE SAMPLED: 01/20/99 16:30:00

DATE RECEIVED: 01/22/99

AN.	ALYTICAL DATA				
PARAMETER	RES	ULTS	PQL*		UNITS
Naphthalene		ND	2.0		ug/L
Acenaphthylene		ND	2.0		ug/L
Acenaphthene		ND	50		ug/L
Fluorene		380	50		ug/L
Phenanthrene		88	50		ug/L
Anthracene		ND	2.0		ug/L
Fluoranthene		ND	2.0		ug/L
Pyrene		11	2.0		ug/L
Chrysene		ND	2.0		ug/L
Benzo (a) anthracene		ND	2.0		ug/L
Benzo (b) fluoranthene		ND	2.0		ug/L
Benzo (k) fluoranthene		2	2.0		ug/L
Benzo (a) pyrene		ND	2.0		ug/L
Dibenzo (a,h) anthracene		ND	2.0		ug/L
Benzo (g,h,i) perylene		ND	2.0		ug/L
Indeno (1,2,3-cd) pyrene		ND	2.0		ug/L
SURROGATES	AMOUNT	ૠ		LOWER	UPPER
	SPIKED	RECO	VERY	LIMIT	LIMIT
1-Fluoronaphthalene	$0.50~\mathrm{ug/L}$	Γ)	50	150
Phenanthrene d-10	$0.50~\mathrm{ug/L}$	Ι)	50	150

ANALYZED BY: KA DATE/TIME: 01/27/99 18:51:37 EXTRACTED BY: KL DATE/TIME: 01/25/99 15:00:00

METHOD: 8310 Polynuclear Aromatic Hydrocarbons

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

D - Diluted, control limits not applicable.

COMMENTS:

BBBO INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901939-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-7

PROJECT NO: 12988
MATRIX: WATER

DATE SAMPLED: 01/20/99 14:30:00

DATE RECEIVED: 01/22/99

	ANALYTICAL DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	ug/L
TOLUENE	1.9	1.0 P	ug/L
ETHYLBENZENE	ND	1.0 P	ug/I
TOTAL XYLENE	3.7	1.0 P	ug/I
TOTAL BTEX	5.6		ug/I
Surrogate	% Recovery		
1,4-Difluorobenze	ne 110		
4-Bromofluorobenz METHOD 5030/8020 *** Analyzed by: LJ Date: 01/26/99			
Silver, Total Method 6010B *** Analyzed by: JM Date: 01/25/99	ND 09:26:00	0.01	mg/I
Arsenic, Total Method 6010B *** Analyzed by: EG Date: 01/26/99	0.007	0.005	mg/I
Barium, Total Method 6010B *** Analyzed by: JM Date: 01/25/99	0.053	0.005	mg/]

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

⁽P) - Practical Quantitation Limit

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

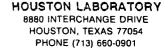
Certificate of Analysis No. H9-9901939-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 02/05/99

PROJECT: BJ-Artesia PROJECT NO: 12988
SITE: Artesia MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 01/20/99 14:30:00


SAMPLE ID: MW-7 DATE RECEIVED: 01/22/99

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Cadmium, Total Method 6010B * Analyzed by: J Date: 0		26:00	ND	0.005	mg/L
Chromium, Total Method 6010B * Analyzed by: J Date: 0	**	26:00	ND	0.01	mg/L
Mercury, Total Method 7470 A* Analyzed by: A Date: 0		29:00	0.0003	0.0002	mg/L
Acid Digestion- Method 3010A * Analyzed by: M Date: 0	**		01/25/99		
Lead, Total Method 6010B * Analyzed by: E Date: 0		:09:00	0.006	0.005	mg/L
Selenium, Total Method 6010B * Analyzed by: E Date: 0	***	:09:00	0.010	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901939-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

02/05/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-7

PROJECT NO: 12988

MATRIX: WATER

DATE SAMPLED: 01/20/99 14:30:00

DATE RECEIVED: 01/22/99

		a			
A	NALYTICAL DATA				
PARAMETER	RES	ULTS	PQL*		UNITS
Naphthalene	0	.6 B	0.1		ug/L
Acenaphthylene		ND	0.1		ug/L
Acenaphthene		2 B	0.1		ug/L
Fluorene		1 B	1.0		ug/L
Phenanthrene		2 B	1.0		ug/L
Anthracene		ND	0.1		ug/L
Fluoranthene		ND	0.1		ug/L
Pyrene		0.4	0.1		ug/L
Chrysene	•	0.2	0.1		ug/L
Benzo (a) anthracene		2	0.1		ug/L
Benzo (b) fluoranthene		ND	0.1		ug/L
Benzo (k) fluoranthene		ND	0.1		ug/L
Benzo (a) pyrene		ND	0.1		ug/L
Dibenzo (a,h) anthracene		ND	0.1		ug/L
Benzo (g,h,i) perylene		ND	0.1		ug/L
Indeno (1,2,3-cd) pyrene		ND	0.1		ug/L
•		_			
SURROGATES	AMOUNT	%		LOWER	UPPER
	SPIKED	RECO		LIMIT	LIMIT
1-Fluoronaphthalene	0.50 ug/L		82	50	150
Phenanthrene d-10	0.50 ug/L	153 I	ΙN	50	150

ANALYZED BY: KA DATE/TIME: 01/27/99 10:13:06 EXTRACTED BY: KL DATE/TIME: 01/25/99 15:00:00

METHOD: 8310 Polynuclear Aromatic Hydrocarbons

NOTES: * - Practical Quantitation Limit ND

ND - Not Detected

NA - Not Analyzed

MI - Matrix Interference.

COMMENTS: B - Compound Was Detected In Method Blank.

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901939-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 02/05/99

PROJECT: BJ-Artesia

PROJECT NO: 12988

SITE: Artesia

MATRIX: WATER

SAMPLED BY: Provided by SPL

DATE SAMPLED: 01/19/99

SAMPLE ID: Trip Blank 1/14/99

DATE RECEIVED: 01/22/99

<u> </u>	ANALYTICAL	DATA	1		
PARAMETER			RESULTS	DETECTION	UNITS
				LIMIT	
BENZENE			ND	1.0 P	ug/L
TOLUENE			ND	1.0 P	ug/L
ETHYLBENZENE			ND	1.0 P	ug/L
TOTAL XYLENE			ND	1.0 P	ug/L
TOTAL BTEX			ND		ug/L
Surrogate		%	Recovery		
1,4-Difluorobenzene			103		
4-Bromofluorobenzene			110		
METHOD 5030/8020 ***					
Analyzed by: LJ					
Date: 01/26/99					

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY CONTROL

DOCUMENTATION

ug/L

Units:

SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: VARE990126021310

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery	(Mandatory) % Recovery Range
мтве	ND	50	48	96.0	72 - 128
Benzene	ND	50	4 <i>7</i>	94.0	61 ~ 119
Toluene	ND	50	48	96.0	65 - 125
EthylBenzene	ND	50	48	96.0	70 - 118
O Xylene	ND	50	48	96.0	72 - 117
M & P Xylene	ND	100	97	97.0	72 - 116

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	_	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery	Result	Recovery <5>	Difference	RPD Max.	Recovery Range
МТВЕ	N D	20	23	115	22	110	4.44	20	39 - 150
BENZENE	ND	20	20	100	21	105	4.88	21	32 - 164
TOLUENE	ND	20	20	100	21	105	4.88	20	38 - 159
ETHYLBENZENE	ND	20	20	100	21	105	4.88	19	52 - 142
O XYLENE	ND	20	21	105	22	110	4.65	18	53 - 143
M & P XYLENE	ND	40	40	100	42	105	4.88	17	53 - 144

Analyst: LJ

Sequence Date: 01/26/99

SPL ID of sample spiked: 9901974-02A

Sample File ID: E A4044.TX0

Method Blank File ID:

Blank Spike File ID: E A4038.TX0 Matrix Spike File ID: E_A4039.TX0

Matrix Spike Duplicate File ID: E_A4040.TX0

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH (SPL ID):

9901939-03A 9901962-01A 9901985-01A 9901A05-03A 9901A05-01A 9901A05-02A 9901977-01A 9901862-06A 9901977-04A 9901939-06A 9901974-02A 9901939-01A

9901939-02A

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL BATCH QUALITY CONTROL REPORT ** Method 8310 ***

Matrix: Units:

Aqueous

ug/L

Batch Id: 2990126005200

LABORATORY CONTROL SAMPLE

SPIKE COMPOUNDS	Method Blank Result <2>	Spike Added <3>	Blank Result	Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range
	(2)	(3)	(1)		* Recovery Range
Naphthalene	0.18	0.50	0.39	78.0	32 - 148
Acenaphthylene	ND	0.50	0.36	72.0	42 - 138
Acenaphthene	0.14	0.50	0.42	84.0	22 - 133
Fluorene	0.13	0.50	0.43	86.0	11 - 148
Phenanthrene	0.20	0.50	0.47	94.0	40 - 121
Anthracene	ND	0.50	0.37	74.0	32 - 121
Fluoranthene	ND	0.50	0.45	90.0	45 - 133
Pyrene	ND	0.50	0.44	88.0	39 - 136
Chrysene	ND	0.50	0.44	88.0	44 - 122
Benzo (a) anthracene	ND	0.50	0.44	88.0	53 - 137
Benzo (b) fluoranthene	ND	0.50	0.46	92.0	62 - 121
Benzo (k) fluoranthene	ND	0.50	0.46	92.0	66 - 128
Benzo (a) pyrene	ND	0.50	0.46	92.0	42 - 120
Dibenzo (a,h) anthracene	ND	0.50	0.44	88.0	59 - 129
Benzo (g,h,i) perylene	ND ·	0.50	0.46	92.0	67 - 124
Indeno (1,2,3-cd) pyrene	ND	0.50	0.46	92.0	65 - 125

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	QC Limits(***) (Advisory)		
	<2>	<3>	Result	Recovery <4>	Result	Recovery	Difference	RPD Max.	Recovery	Range
NAPHTHALENE	ND	0.50	0.34	68.0	0.32	64.0	6.06	30	1 -	122
ACENAPHTHYLENE	ND	0.50	0.35	70.0	0.30	60.0	15.4	30	1 -	124
ACENAPHTHENE	ND	0.50	0.34	68.0	0.35	70.0	2.90	30	1 -	124
FLUORENE	ИD	0.50	0.49	98.0	0.44	88.0	10.8	30	1 -	142
PHENANTHRENE	ND	0.50	0.63	126	0.68	136	7.63	30	1 -	155
ANTHRACENE	N D	0.50	0.38	76.0	0.46	92.0	19.0	30	1 -	126
FLUORANTHENE	ND	0.50	0.61	122	0.79	158 *	25.7	30	14 -	123
PYRENE	ND	0.50	0.58	116	0.77	154 *	28.1	30	1 -	140
CHRYSENE	ND	0.50	0.48	96.0	0.61	122	23.9	30	1 -	199
BENZO (A) ANTHRACENE	ND	0.50	0.46	92.0	0.62	124	29.6	30	12 -	135
BENZO (B) FLUORANTHENE	ND	0.50	0.50	100	0.72	144	36.1 *	30	6 -	150
BENZO (K) FLUORANTHENE	ND	0.50	0.45	90.0	0.58	116	25.2	30	1 -	159
BENZO (A) PYRENE	ND	0.50	0.47	94.0	0.65	130 *	32.1 *	30	1 -	128
DIBENZO (A,H) ANTHRACENE	ND	0.50	0.37	74.0	0.48	96.0	25.9	30	1 -	110
BENZO (G,H,I) PERYLENE	ND	0.50	0.47	94.0	0.63	126 *	29.1	30	1 -	116
INDENO (1,2,3-CD) PYRENE	ND	0.50	0.45	90.0	0.61	122 *	30.2 *	30	1 -	116

SPL BATCH QUALITY CONTROL REPORT ** Method 8310 ***

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units:

Aqueous

ug/L

Batch Id: 2990126005200

Analyst: KA

Sequence Date: 01/27/99

SPL ID of sample spiked: 9901873-01K

Sample File ID: 990128B\003-0301

Method Blank File ID:

Blank Spike File ID: 990126B\020-2001

Matrix Spike File ID: 990128B\004-0401

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = $|(<4> - <5>)| / \{(<4> + <5>) x 0.5] x 100$

(**) = Source: SPL-Houston Historical Data (1st Q '97)

Matrix Spike Duplicate File ID: 990128B\005-0501 (***) = Source: Temporary Limits

SAMPLES IN BATCH (SPL ID):

9901873-05K 9901874-09G 9901874-08G 9901874-07G 9901873-01K 9901873-03K 9901873-02K 9901874-10G 9901874-06G 9901875-12K 9901964-02D 9901964-06D 9901875-11K 9901939-01B 9901939-03B 9901939-02B

9901873-04K

ICP Spectroscopy Method 6010 Quality Control Report

Matrix: Water Units: mg/L

Analyst: JM

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE
HOUSTON, TEXAS 77054
PHONE (713) 660-0901

Date:012599 Time:0926 File Name: 0125PB1

Laboratory Control Sample

Element		True Value		% Recovery	l ower limit	Upper Limit
Silver	ND	2.00	1.93	97	1.60	2.40
Aluminum	ND	2.00	1.00	- 37	1.00	2.40
Arsenic			··			
L	110	2.00	4.00		4.00	2.40
Barium	ND	2.00	1.89	95	1.60	2.40
Beryllium						
Calcium						
Cadmium	ND	2.00	1.93	97	1.60	2.40
Cobalt						
Chromium	ND	2.00	2.01	100	1.60	2.40
Copper						
Iron						
Potassium						
Magnesium						
Manganese						
Sodium						
Nickel						
Lead						
Antimony						
Selenium						
Thallium						
Vanadium						
Zinc						

Work Orders in Batch
Work Order Fractions

99-01-939 01C-03C

Matrix Spike - Spike Duplicate Results Work Order Spiked: 9901962-01B

Sample	Spike	Matr				QCL	imits	Spike	QC
Result	Added	Result	Recovery	Result	Recovery	% Rec	overy	RPD %	Limits %
ND	1.0	1.005	100.5	1.006	100.6	80	120	0.1	20.0
						\mathbf{L}			
0.5222	1.0	1.489	96.7	1.502	98.0	80	120	1.3	20.0
ND	1.0	1.01	101.0	1.016	101.6	80	120	0.6	20.0
ND	1.0	1.014	101.4	1.013	101.3	80	120	0.1	20.0
				1					
									T
					1				
							1		
	 	-	1			1	1		
	Result ND 0.5222 ND	Result Added ND 1.0 0.5222 1.0 ND 1.0	Result Added Result ND 1.0 1.005 0.5222 1.0 1.489 ND 1.0 1.01	Result Added Result Recovery ND 1.0 1.005 100.5 0.5222 1.0 1.489 96.7 ND 1.0 1.01 101.0	Result Added Result Recovery Result ND 1.0 1.005 100.5 1.006 0.5222 1.0 1.489 96.7 1.502 ND 1.0 1.01 101.0 1.016	Result Added Result Recovery Result Recovery ND 1.0 1.005 100.5 1.006 100.6 0.5222 1.0 1.489 96.7 1.502 98.0 ND 1.0 1.01 101.0 1.016 101.6	Result Added Result Recovery Result Recovery % Recovery ND 1.0 1.005 100.5 1.006 100.6 80 0.5222 1.0 1.489 96.7 1.502 98.0 80 ND 1.0 1.01 101.0 1.016 101.6 80	Result Added Result Recovery Result Recovery % Recovery ND 1.0 1.005 100.5 1.006 100.6 80 120 0.5222 1.0 1.489 96.7 1.502 98.0 80 120 ND 1.0 1.01 101.0 1.016 101.6 80 120	Result Added Result Recovery Result Recovery % Recovery RPD % ND 1.0 1.005 100.5 1.006 100.6 80 120 0.1 0.5222 1.0 1.489 96.7 1.502 98.0 80 120 1.3 ND 1.0 1.01 101.0 1.016 101.6 80 120 0.6

Elements Post Spiked: ALL

Checked: Jan 1199

ICP Spectroscopy Method 6010 Quality Control Report

Matrix: Water

Units: mg/L

•

Analyst: EG

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054

PHONE (713) 660-0901

Date:012699 Time:1109 File Name: 0126JM4

Laboratory Control Sample

ace-icp

					Laboratory Control Sample Element Mth. Blank True Value Result % Recovery Lower Limit Upper Limit											
Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit										
Silver																
Aluminum																
Arsenic	ND	4.00	3.85	96	3.20	4.80										
Barium																
Beryllium																
Calcium																
Cadmium																
Cobalt																
Chromium																
Copper																
Iron																
Potassium Magnesium																
Manganese	J				ļ											
Sodium			<u> </u>	<u> </u>												
Nickel			<u> </u>		<u> </u>											
Lead	ND	2.00	1.89	95	1.60	2.40										
Antimony			<u> </u>													
Selenium Thallium	ND	4.00	3.83	96	3.20	4.80										
			<u> </u>	<u> </u>	ļ											
Vanadium	<u> </u>		<u> </u>		ļ <u>.</u>											
Zinc	<u> </u>	<u> </u>	<u>l</u>		<u> </u>	<u> </u>										

Work Orders in Batch Work Order Fractions 99-01-962 01B-03B 99-01-964 02C,06C 99-01-939 01C-03C 99-01-968 01D 99-01-943 01D 99-01-976 01C-04C 99-01-975 01C,02C

Matrix Spike - Spike Duplicate Results

Work Order Spiked: 9901962-01B

Matrix Spike						opineu. 330				
	Sample	Spike	Matr	ix Spike	Matrix Spi	ke Duplicate	QCL	imits	Spike	QC
Element	Result	Added	Result	Recovery	Result	Recovery	% Rec	overy	RPD %	Limits %
Silver										
Aluminum		_								
Arsenic	ND	2.0	1.66	83.0	1.603	80.2	80	120	3.5	20.0
Barium										
Beryllium										
Calcium										
Cadmium										
Cobalt]							J	
Chromium										
Copper										
Iron										
Potassium										
Magnesium										
Manganese										
Sodium										
Nickel										
Lead	ND	1.0	0.9307	93.1	0.9178	91.8	80	120	1.4	20.0
Antimony										
Selenium	ND	2.0	1.987	99.4	1.959	98.0	80	120	1.4	20.0
Thallium										
Vanadium						7				
Zinc		1								
		J								

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 01/29/99

Analyzed on:

01/29/99

Analyst:

AG

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Mercury, Total Method 7470 A***

SPL Sample ID Number	Blank Value ug/L		Measured Concentration ug/L	% Recovery		C Limits ecovery	
LCS	ND	2.0	1.9	95.0	80	- 120	

-9902001

Samples in batch:

9901939-01C	9901939-02C	9901939-03C	9901962-01B
9901962-02B	9901962-03B	9901A36-02F	9901B43-01F
9901B43-02F	9901B43-03F	9901B43-04F	9901B43-05F
_9901B52-06F	9901B52-07F	9901B52-08F	9901B52-09F
9901B52-10F	9901B55-16F	9901B55-17F	

COMMENTS:

LCS= SPL ID# 94-452-49-12

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 01/29/99 Analyzed on: 01/29/99

Analyst: AG

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Mercury, Total Method 7470 A***

SPL Sample	Method	Sample	Spike	Matr	ix Spike	•	ix Spike licate	RPD	QC LIMITS (Advisory)			
ID Number		•		Result Recovery F		Result ug/L	Recovery	(ቴ)	RPD Max	% REC		
9901962-01B	ND	ND	2.0	2.0	100	2.1	105	4.9	20	75 -125		

-9902001

Samples in batch:

9901939-01C	9901939-02C	9901939-03C	9901962-01B
9901962-02B	9901962-03B	9901A36-02F	9901B43-01F
9901B43-02F	9901B43-03F	9901B43-04F	9901B43-05F
9901B52-06F	9901B52-07F	9901B52-08F	9901B52-09F
9901B52-10F	9901B55-16F	9901B55-17F	

COMMENTS:

LCS= SPL ID# 94-452-49-12

CHAIN OF CUSTODY AND SAMPLE RECEIPT CHECKLIST

107281	page 1 of 1	ulysis				· · · · · ·										- 11	Intact OY ON	PIM review (initial):	SIT			0001 65/27
SPL Workander No:	4401434	AW Requested Ans	1 A A		57	312	8-	ru:	7Y 1D	~ %	- >× >=	× ×	*	75			<u> </u>	Special Detection Limits (specify):		2. Received by:	1. Received by:	6. Rocewed by Laboralory:
	ord			ners	9	CO (<u>ر - ک</u>	(2)	છ	×	×<	*						Special Detection		time CC/C/	Lime	Lime
	Analysis Request & Chain of Custody Record	size pres.	lsiv	103 70=	, z o	-7 -91 -5	[[HC 80s	= 8 = 1			,			-		:5:	C	Level 4 &	421.59	date	date
SPL, Inc.	Chain of C	matrix bottle	31855	per {	lios= ljo= ms= siv=	. Y	agbı Sist	= wa = slr selg:	=d TS	3	2	N		,		-	Laboratory remarks:	1	⊒			
SE	Request &								comp grab								Jm-7		menus Fax Results	S. S		
	Analysis								3 TIME	4 15:30	4 16:30	J. 30	6 Miss	5 17:30			MW-6, BM-1, OM-2	CATIL FOR MISSICE CALVER	Special Reporting Requirements Standard QC	1. Retinquished by Sampler	ished by:	ished by:
		PINEL	A A	STENS	なな			2	DATE	1.20.59	1.20.99	1.30.59	123.69	ا.ع، ري			9-MW	S1.47.57	Specoal Ke	1. Relinqu	3. Relinquished by:	5. Relinquished by:
		CALLE ACTION OF CALL BINGELL	Address Property 1015 Loud Selves	Gene Comment The JEN KINS	- Or ARTESTA	14	Project Location: ARTESTA	thm Genkin		F-WM	1412-6	MW-7	1-w0	Ow.7			Girat Consultant Remarks: HOLD	11 July	Requested TAT		Standard []	
Stand in Printlem	No. de State and 10	<u>.</u>	AdorestPhy	City Cont	Project Name	Project Number:	Day Dieg	Envoice To:									Girnt/Cons		RC	24hr	48hr	C Price

10 X

. . . .

. .

8880 Interchange Drive, Houston, TX 77054 (713) 660-0901
 459-Huohes Drive. Traverse City, MI 49684 (616) 947-5777

☐ 500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775

SPL Houston Environmental Laboratory

Sample Login Checklist

Dat	e: Time:			
<u> </u>	1-22-99 10	00		
SPI	, Sample ID:			
J. L.				
Ì	9901939			
			<u>Yes</u>	<u>No</u>
1	Chain-of-Custody (COC) form is pre	sent.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	pping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact			
9	Temperature of samples upon arrival	:	4	C
10	Method of sample delivery to SPL:	SPL Delivery		
	·	Client Delivery		
		FedEx Delivery (airbill #)	8112	3582028
ļ 		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD	·	
		Return to Client		
<u> </u>			_	
Na	me:	Date: / - 2	12-9	\bigcirc

1415 Louisiana, Suite 2500 Houston, TX 77002

Tel: (713) 759-0999 Fax: (713) 308-3886

CERTIFIED MAIL NO. <u>P 076 598 942</u> RETURN RECEIPT REQUESTED

July 2, 1999

Mr. Wayne Price
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
2040 South Pacheco Street
Santa Fe, New Mexico 87505

Subject:

Groundwater Sampling Activities Acid Dock Area: MW-3R BJ Services Artesia Facility Eddy County, New Mexico JUL 0 9 1999
Oil Conservation Division

Dear Mr. Price:

On May 6, 1999, Brown and Caldwell sampled monitor well MW-3R at the subject facility. The results for this sampling event, as summarized in Attachment 1, indicate that the groundwater does not exceed any listed New Mexico Water Quality Control Commission Standards (NMWQCC) for Human Health. Based on these results, we recommend that the former Acid Dock Area be closed with no further action.

Background:

Based on the previous correspondence with your office dated January 23, 1999, Brown and Caldwell installed a replacement well (MW-3R) on February 24, 1999, in the immediate vicinity of the destroyed MW-3 (within 3 feet). This replacement well was designed to act as the downgradient compliance well for the former Acid Dock Area, and to support final closure for the former Acid Dock Area. Based on historical groundwater elevation data, the groundwater gradient in the area is generally toward the east. (See Attachment 2 for a Site Plan Map showing the location of MW-3R relative to the former Acid Dock Area and MW-3). On February 24, 1999, Brown and Caldwell permanently plugged the destroyed MW-3 well after MW-3R was completed. A groundwater sample was collected from MW-3R on May 6, 1999, and was analyzed for parameters described in your letter dated December 16, 1998. The results of this sampling event are summarized below.

Groundwater Sampling Procedures and Parameters Analyzed:

Sampling was performed in accordance with the Brown and Caldwell Work Plan for Groundwater Investigation Activities for the site. Generally, the monitor well was gauged for water level and purged using a Geosquirt-60 pump. During purging, aquifer characteristics were measured using a YSI 600 XL and Flow Cell. Field testing was performed to measure dissolved oxygen, ferrous iron, and alkalinity. Purge water was placed in a labeled drum provided by BJ Services. At least three well volumes of purge water were removed from the monitor well. Purging was considered complete once aquifer parameters stabilized. Stabilization is defined as variation of less than 10% in consecutive readings for temperature, pH, alkalinity, and dissolved oxygen, after removal of each well volume during the purging process.

July 2, 1999 Mr. Wayne Price Page 2

A groundwater sample was obtained from the pump discharge line immediately upon completion of purging activities. Sample bottles were filled completely, tightly closed, labeled, packaged in bubble wrapping, and immediately placed on ice. A chain of custody form was completed to reflect the analysis required. The analysis was performed as requested on the chain of custody form. The groundwater sample was analyzed for:

- Volatile Organic Compounds (VOCs, Method 8260)
- Semi-Volatile Organic Compounds (SVOCs, Method 8270C)
- Polynuclear Aromatic Hydrocarbons (PAHs, Method 8310)
- NMWQCC Metals (Arsenic, Barium, Cadmium, Chromium, Lead, Total Mercury, Selenium, Silver, Copper, and Zinc)
- General Chemistry (pH, TDS, Conductivity, Major Cations, and Major Anions).

Analytical Results:

Analytical results for groundwater sample collected during the May 1999 sampling event and the applicable NMWQCC standards are summarized in Attachment 1. The complete analytical report is enclosed as Attachment 3.

The groundwater sample collected from MW-3R indicated non-detectable concentrations of VOCs by Method 8260 and SVOCs by Method 8270C. Several PAHs (by Method 8310) were detected; these detections were below applicable NMWQCC Standards. Various metals compounds were also detected, but none exceeded NMWQCC Standards.

Analytical testing for pH, bicarbonate, carbonate, total dissolved solids (TDS), and alkalinity determined general chemistry and aquifer characteristics. Additionally, major cations and major anions were analyzed. TDS, chlorides, and sulfates exceeded NMWQCC Domestic Water Supply Standards; these parameters do not apply, as the monitor well is not used for consumption of any kind, including domestic water supply.

Conclusions and Recommendations:

Laboratory results for groundwater samples were compared to NMWQCC Groundwater Standards for Human Health; there were no exceedences of applicable NMWQCC groundwater standards.

Since there were no exceedences to Human Health Standards as listed by the NMWQCC, Brown and Caldwell recommends closure with no further action for the former Acid Dock Area at the BJ Services Artesia District Facility. Note that wells MW-2, MW-4 and MW-3R will be slated for plugging and abandonment if final closure status is granted, based on current and previous analytical results for these wells.

July 2, 1999 Mr. Wayne Price Page 3

If you have any questions regarding the information presented herein, please contact me at (713) 759-0999.

Sincerely,

BROWN AND CALDWELL

BROWN AND CALDWELL

Timothy L. Jenkins
Project Manager

Richard V. Rexroad, P.G. Principal In Charge

TLJ:uak

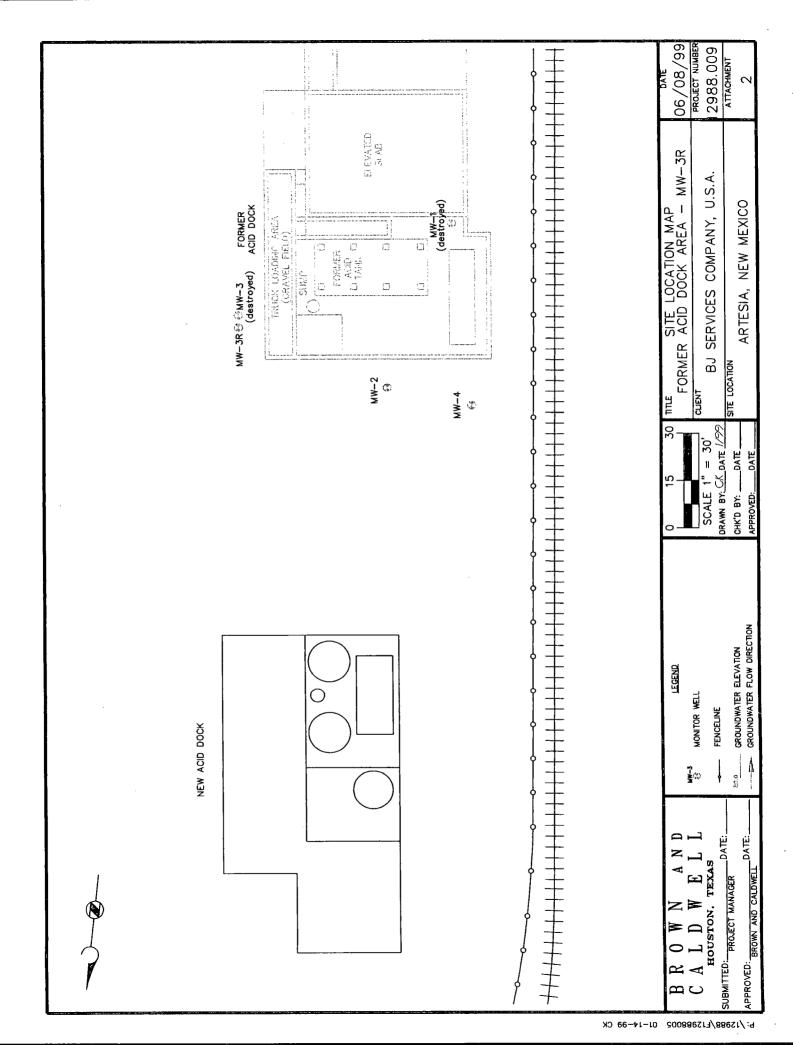
cc: NMOCD - Artesia District Office (w/ Attachments)

Rick N. Johnson (BJ Services Company, U. S. A., w/ Attachments)

ATTACHMENT 1

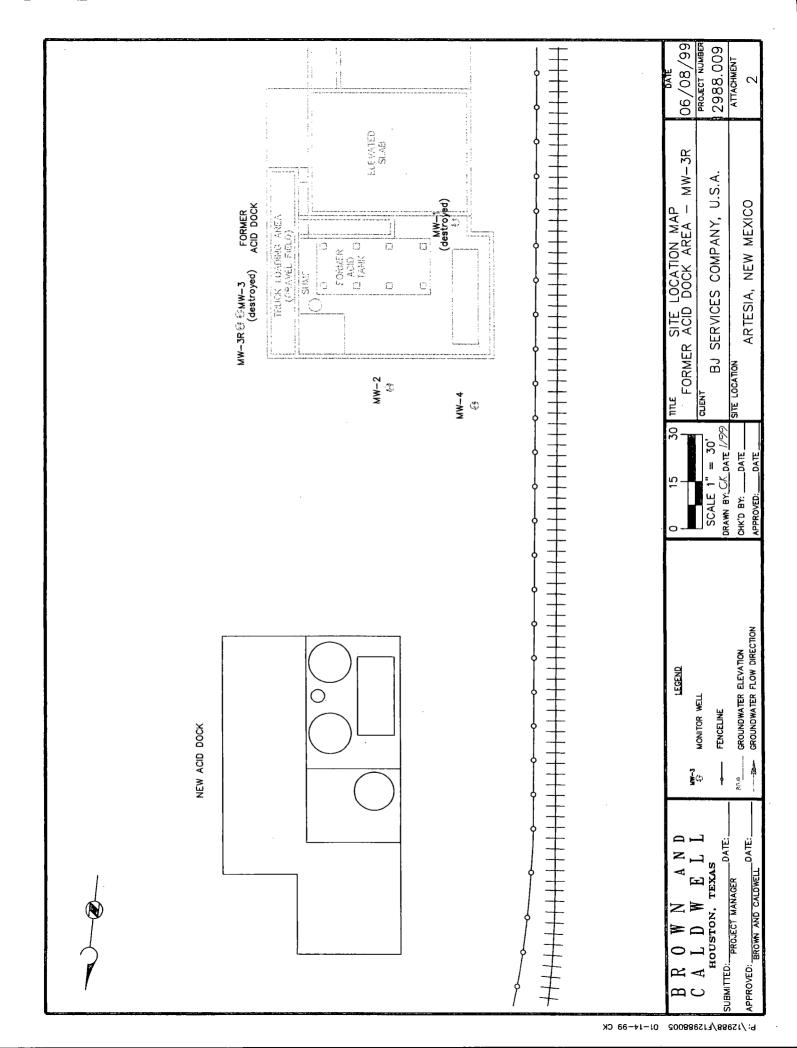
Groundwater Analytical Results Summary - May 6, 1999 Former Acid Dock Area - MW-3R

Attachment 1


Groundwater Analytical Results Summary - May 6, 1999 Former Acid Dock Area - MW-3R

BJ Services Company, U.S.A. Artesia, New Mexico

Analysis	Parameter	Concentration (mg/L)	NMWQCC Standards (mg/L)
Total Metal	s (Series 6010)		
	Silver	<0.01	0.05 Human Health Standards
	Arsenic	0.014	0.1 Human Health Standards
	Barium	0.052	1 Human Health Standards
 	Cadmium	< 0.005	0.01 Human Health Standards
	Chromium	< 0.01	0.05 Human Health Standards
	Mercury	< 0.0002	0.002 Human Health Standards
	Lead	< 0.005	0.05 Human Health Standards
	Selenium	< 0.005	0.05 Human Health Standards
Major Catio	ons and Anions	<u> </u>	
	Calcium	618	NL - None Listed
	Potassium	27	NL - None Listed
1	Magnesium	157	NL - None Listed
ļ	Sodium	261	NL - None Listed
	Copper	< 0.01	1 Domestic Water Supply
!	Zinc	< 0.02	10 Domestic Water Supply
	Chloride	656	250 Domestic Water Supply
}	Nitrate Nitrogen	<0.1	10 Human Health Standards
	Sulfate	1899	600 Domestic Water Supply
General Ch	emistry		
	Total Dissolved Solids	4600	1000 Domestic Water Supply
	рН	6.69	6 < pH < 9 Domestic Water Supply
	Bicarbonate	246	NL - None Listed
	Carbonate	<1	NL - None Listed
İ	Specific Conductance	4800 μmhos/cm	NL - None Listed
Volatile Org	ganics (Method 8260)	·	
	Benzene	< 0.005	0.01 Human Health Standards
	Toluene	< 0.005	0.75 Human Health Standards
1	Ethylbenzene	< 0.005	0.75 Human Health Standards
	Xylenes (total)	<0.005	0.62 Human Health Standards
Semivolatil	e Organics (Method 8270C)		
	Dibenzofuran	< 0.005	NL - None Listed
	2-Methylnaphthalene	< 0.005	NL - None Listed
	4-Methyphenol	< 0.005	NL - None Listed
Polynuclear	Aromatic Hydrocarbons (Mo		
	Naphthalene	0.0007	0.03 Human Health Standards
	Fluorene	0.012	NL - None Listed
	Phenanthrene	0.033	NL - None Listed
	Benzo(a)anthracene	0.004	NL - None Listed
	Benzo(b)fluoranthene	0.0006	NL - None Listed
	Dibenzo(a,h)anthracene	0.0001	NL - None Listed


ATTACHMENT 2

Site Plan Map Former Acid Dock Area - MW-3R

ATTACHMENT 3

Complete Analytical Report Former Acid Dock Area - MW-3R

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

May 25, 1999

Mr. Tim Jenkins BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on May 7, 1999. The sample(s) was assigned to Certificate of Analysis No. (s) 9905237 and analyzed for all parameters as listed on the chain of custody.

Your sample ID: MW-3R (SPL ID: H9-9905237-01) was randomly selected for the use in SPL's Quality Control program for the Total Metals analysis by SW846 method 6010. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were outside of the advisable quality control limits for Calcium, Magnesium and Sodium, due to matrix interference. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable.

Any other data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini

Senior Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 99-05-237

Approved for Release by:

Bernadette A. Fini, Senior Project Manager

Date

Joel Grice Laboratory Director

Idelis Williams
Corporate Quality Assurance Director

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory. The results relate only to the samples tested. Results reported on a Wet Weight Basis unless otherwise noted.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 05/21/99

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT NO: 12988

MATRIX: WATER

SITE: Artesia
SAMPLED BY: Brown and Caldwell

DATE SAMPLED: 05/06/99 15:00:00

SAMPLE ID: MW-3R

PROJECT: BJ-Artesia

DATE RECEIVED: 05/07/99

ANALYTICAL DA	TA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Liquid-liquid extraction SEMIVOLATILES Method 3520C *** Analyzed by: KL Date: 05/08/99 13:00:00	05/08/99	DIMIT	
Silver, Total Method 6010B *** Analyzed by: PB Date: 05/11/99 08:57:00	ND	0.01	mg/L
Arsenic, Total Method 6010B *** Analyzed by: EG Date: 05/11/99 11:08:00	0.014	0.005	mg/L
Barium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99 08:57:00	0.052	0.005	mg/L
Calcium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99 08:57:00	618	0.1	mg/L
Cadmium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99 08:57:00	ND	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 05/21/99

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT: BJ-Artesia

PROJECT NO: 12988

MATRIX: WATER

SAMPLED BY: Brown and Caldwell

DATE SAMPLED: 05/06/99 15:00:00

SAMPLE ID: MW-3R

SITE: Artesia

DATE RECEIVED: 05/07/99

	ANALYTICAL DAT	ra		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Chromium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99	08:57:00	ND	0.01	mg/L
Copper, Total Method 6010B *** Analyzed by: PB Date: 05/11/99	08:57:00	ND	0.01	mg/L
Mercury, Total Method 7470 A*** Analyzed by: AG Date: 05/10/99	12:00:00	ND	0.0002	mg/L
Potassium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99	08:57:00	27	2	mg/L
Magnesium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99	08:57:00	157	0.1	mg/L
Sodium, Total Method 6010B *** Analyzed by: PB Date: 05/11/99	08:57:00	261	0.5	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 05/21/99

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT: BJ-Artesia PROJECT NO: 12988

SITE: Artesia MATRIX: WATER

SAMPLED BY: Brown and Caldwell DATE SAMPLED: 05/06/99 15:00:00

SAMPLE ID: MW-3R DATE RECEIVED: 05/07/99

ANALY	TICAL DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Acid Digestion-Aqueous, ICP Method 3010A *** Analyzed by: MR Date: 05/11/99 07:45:00	05/11/99		
• • •	ND.	0.005	/T
Lead, Total Method 6010B *** Analyzed by: EG	ND	0.005	mg/L
Date: 05/11/99 11:08:00			
Selenium, Total Method 6010B *** Analyzed by: EG Date: 05/11/99 11:08:00	ND	0.005	mg/L
Zinc, Total Method 6010B *** Analyzed by: PB Date: 05/11/99 08:57:00	ND	0.02	mg/L
Chloride Method 325.3 * Analyzed by: CV Date: 05/14/99 10:30:00	656	10	mg/L
Carbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: AB Date: 05/07/99 10:00:00	ND	1	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 05/21/99

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT: BJ-Artesia

PROJECT NO: 12988

SITE: Artesia

MATRIX: WATER

SAMPLED BY: Brown and Caldwell

DATE SAMPLED: 05/06/99 15:00:00

SAMPLE ID: MW-3R

DATE RECEIVED: 05/07/99

	ANALYTICAL	DATA		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Specific Conductance @ Method 120.1 * Analyzed by: AB Date: 05/07/99		4800	10	umhos/cm
Bicarbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: AB Date: 05/07/99		246	1 .	mg/L
Nitrate nitrogen(as N) Method 353.3 * Analyzed by: CV Date: 05/07/99	15:30:00	ND	0.1	mg/L
pH Method 150.1 * Analyzed by: AB Date: 05/07/99	10:00:00	6.69		pH units
Sulfate Method 375.4 * Analyzed by: ELS Date: 05/12/99	11:00:00	1899	100	mg/L
Total Dissolved Solids Method 160.1 * Analyzed by: BEN Date: 05/11/99	14:00:00	4600	100	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

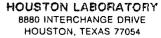
05/21/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown and Caldwell

SAMPLE ID: MW-3R


PROJECT NO: 12988
MATRIX: WATER

DATE SAMPLED: 05/06/99 15:00:00

DATE RECEIVED: 05/07/99

ANALYTIC	CAL DATA		
PARAMETER	RESULTS	PQL*	UNIT
Benzene	ND	5	ug/
Bromobenzene	ND	5	ug/
Bromochloromethane	ND	5	ug/
Bromodichloromethane	. ND	5	ug/
Bromoform	ND	5	ug/
Bromomethane	ND	10	ug/
n-Butylbenzene	ND	5	ug/
sec-Butylbenzene	ND	5	ug/
tert-Butylbenzene	ND .	5	ug/
Carbon tetrachloride	ND	5	ug/
Chlorobenzene	ND	5	ug/
Chlorodibromomethane	ND	5	ug/
Chloroethane	ND	10	ug/
Chloroform	ND	5	ug/
Chloromethane	ND	10	ug/
2-Chlorotoluene	ND	5	ug/
4-Chlorotoluene	ND	5	ug/
1,2-Dibromo-3-chloropropane	ND	5	ug/
1,2-Dibromoethane	ND	. 5	ug/
Dibromomethane	ND	5	ug/
1,2-Dichlorobenzene	ND	5	ug/
1,3-Dichlorobenzene	ND	5	ug/
1,4-Dichlorobenzene	ND	5	ug/
Dichlorodifluoromethane	ND	10	ug/
1,1-Dichloroethane	ND	5	ug/
1,2-Dichloroethane	ND	5	ug/
1,1-Dichloroethene	ND	5	ug/
cis-1,2-Dichloroethene	ND	5	ug/
trans-1,2-Dichloroethene	ND	5	ug/
1,2-Dichloropropane	ND	5	ug/
1,3-Dichloropropane	ND	5	ug/
2,2-Dichloropropane	ND	5	ug/
1,1-Dichloropropene	ND	5	ug/
Ethylbenzene	ND	5	ug/
Hexachlorobutadiene	ND	5	ug/
Isopropylbenzene	ND	5	ug/
p-Isopropyltoluene	ND	5	ug/
Methylene chloride	ND	5	ug/

METHOD: 8260 Water, Volatile Organics (continued on next page)

PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell

SAMPLE ID: MW-3R

ANALY	TICAL DATA	(cont	inued)		
PARAMETER	RESULT		PQL*		UNITS
Naphthalene		ND	5		${\tt ug/L}$
n-Propylbenzene		ND	5		ug/L
Styrene		ND	5		ug/L
1,1,1,2-Tetrachloroethane		ND	5		${\tt ug/L}$
1,1,2,2-Tetrachloroethane	•	ND	5		ug/L
Tetrachloroethene	•	ND	5		ug/L
Toluene		ND	5		ug/L
1,2,3-Trichlorobenzene		ND	5		ug/L
1,2,4-Trichlorobenzene		ND	5		\mathtt{ug}/\mathtt{L}
1,1,1-Trichloroethane		ND	5		ug/L
1,1,2-Trichloroethane		ND	5		ug/L
Trichloroethene		ND	5		ug/L
Trichlorofluoromethane		ND	5		ug/L
1,2,3-Trichloropropane		ND	5		ug/L
1,2,4-Trimethylbenzene		ND	5		ug/L
1,3,5-Trimethylbenzene		ND	5		ug/L
Vinyl chloride	•	ND	10		\mathtt{ug}/\mathtt{L}
Xylenes (total)		ND	5		\mathtt{ug}/\mathtt{L}
1,2-Dichloroethene (total)		ND	5		ug/L
cis-1,3-Dichloropropene		ND	5		ug/L
trans-1,3-Dichloropropene		ND	5		ug/L
Acetone		ND	100		${\tt ug/L}$
2-Butanone	•	ND	20		${\tt ug/L}$
4-Methyl-2-Pentanone		ND	10		ug/L
2-Hexanone		ND	10		\mathtt{ug}/\mathtt{L}
Carbon Disulfide		ND	5		\mathtt{ug}/\mathtt{L}
Vinyl Acetate		ND	10		\mathtt{ug}/\mathtt{L}
2-Chloroethylvinylether		ND	10		ug/L
Methyl t-Butyl Ether		ND	10		ug/L
SURROGATES	AMOUNT	%	•	LOWER	UPPER
	SPIKED	REC	OVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/L		96	80	120
Toluene-d8	50 ug/L		98	88	110
4-Bromofluorobenzene	50 ug/L		106	86	115

DATE/TIME: 05/10/99 18:27:00 ANALYZED BY: LT

METHOD: 8260 Water, Volatile Organics

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

05/21/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown and Caldwell

SAMPLE ID: MW-3R

PROJECT NO: 12988
MATRIX: WATER

DATE SAMPLED: 05/06/99 15:00:00

DATE RECEIVED: 05/07/99

ANALYTIC	CAL DATA		
PARAMETER	RESULTS	PQL*	UNIT
Acenaphthene	ND		ug/
Acenaphthylene	ND	5	ug/
Aniline	ND	5	ug/
Anthracene	ND	5	ug/
Benzo(a)Anthracene	ND	5	ug/
Benzo(b) Fluoranthene	ND	5	ug/
Benzo(k) Fluoranthene	ND	5	ug/
Benzo(a) Pyrene	ND	5	ug/
Benzoic Acid	ND	25	ug/
Benzo(g,h,i)Perylene	ND	5	ug/
Benzyl alcohol	ND	5	ug/
4-Bromophenylphenyl ether	ND	5	ug/
Butylbenzylphthalate	ND	5	ug/
di-n-Butyl phthalate	ND	5	ug/
Carbazole	ND	5	ug/
4-Chloroaniline	ND	5	ug/
bis(2-Chloroethoxy)Methane	ND	5	ug/
bis(2-Chloroethyl)Ether	ND	5	ug/
bis(2-Chloroisopropyl)Ether	ND	5	ug/
4-Chloro-3-Methylphenol	ND	5	ug/
2-Chloronaphthalene	ND		ug/
2-Chlorophenol	ND	5 5	ug/
4-Chlorophenylphenyl ether	ND	5	ug/
Chrysene	ND	5	ug/
Dibenz(a,h)Anthracene	ND	5	ug/
Dibenzofuran	ND	5	ug/
1,2-Dichlorobenzene	ND	5	ug/
1,3-Dichlorobenzene	ND	5	ug/
1,4-Dichlorobenzene	ND	5	ug/
3,3'-Dichlorobenzidine	ND	10	ug/
2,4-Dichlorophenol	ND	5	ug/
Diethylphthalate	ND	5	ug/
2,4-Dimethylphenol	ND	5	ug/
Dimethyl Phthalate	ND	5	ug/
4,6-Dinitro-2-Methylphenol	ND	25	ug/
2,4-Dinitrophenol	ND	25	ug/
2,4-Dinitrotoluene	ND	5	ug/
2,6-Dinitrotoluene	ND	5	ug/

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell

SAMPLE ID: MW-3R

ANALYTICAL DATA (continued)						
PARAMETER	RESULTS	PQL*	UNITS			
1,2-Diphenylhydrazine	ND	5	ug/L			
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L			
Fluoranthene	ND	5	ug/L			
Fluorene	ND	5	ug/L			
Hexachlorobenzene	ND	5	ug/L			
Hexachlorobutadiene	ND	5	$\mathtt{ug/L}$			
Hexachloroethane	ND	5	ug/L			
Hexachlorocyclopentadiene	ND	5	\mathtt{ug}/\mathtt{L}			
Indeno(1,2,3-cd)Pyrene	ND	5	\mathtt{ug}/\mathtt{L}			
Isophorone	ND	5	ug/L			
2-Methylnaphthalene	ND	5	$\mathtt{ug/L}$			
2-Methylphenol	ND	5	ug/L			
4-Methylphenol	ND	5	\mathtt{ug}/L			
Naphthalene	ND	5	ug/L			
2-Nitroaniline	ND	25	$\mathtt{ug/L}$			
3-Nitroaniline	ND	25	\mathtt{ug}/\mathtt{L}			
4-Nitroaniline	ND	25	ug/L			
Nitrobenzene	ND	5	ug/L			
2-Nitrophenol	ND	5	ug/L			
4-Nitrophenol	ND	25	ug/L			
N-Nitrosodiphenylamine	ND	5	ug/L			
N-Nitroso-Di-n-Propylamine	ND	5	\mathtt{ug}/\mathtt{L}			
Di-n-Octyl Phthalate	ND	5	\mathtt{ug}/\mathtt{L}			
Pentachlorophenol	ND	25	$\mathtt{ug/L}$			
Phenanthrene	ND	5	ug/L			
Phenol	ИD	5	\mathtt{ug}/\mathtt{L}			
Pyrene	ND	5	$\mathtt{ug/L}$			
Pyridine	ND	5	ug/L			
1,2,4-Trichlorobenzene	ND	5	ug/L			
2,4,5-Trichlorophenol	ND	10	\mathtt{ug}/\mathtt{L}			
2,4,6-Trichlorophenol	ND	5	ug/L			

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell

SAMPLE ID: MW-3R

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	62	35	114
2-Fluorobiphenyl	50 ug/L	66	43	116
Terphenyl-d14	50 ug/L	50	33	141
Phenol-d5	75 ug/L	16	10	110
2-Fluorophenol	75 ug/L	27	21	110
2,4,6-Tribromophenol	75 ug/L	61	10	123

ANALYZED BY: SC DATE/TIME: 05/10/99 19:44:00 EXTRACTED BY: KL DATE/TIME: 05/08/99 13:00:00

METHOD: 8270C, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

05/21/99

PROJECT: BJ-Artesia

SITE: Artesia

SAMPLED BY: Brown and Caldwell

SAMPLE ID: MW-3R

PROJECT NO: 12988
MATRIX: WATER

DATE SAMPLED: 05/06/99 15:00:00

DATE RECEIVED: 05/07/99

AN	ALYTICAL DATA	A			
PARAMETER	RES	SULTS	PQL*		UNITS
Naphthalene		0.7	0.1		ug/L
Acenaphthylene		ND	0.1		ug/L
Acenaphthene		ИD	2.0		ug/L
Fluorene		12	2.0		ug/L
Phenanthrene		33	2.0		ug/L
Anthracene		ND	2.0		ug/I
Fluoranthene		ND	2.0		ug/I
Pyrene		ND	2.0		ug/I
Chrysene		ND	0.1		ug/I
Benzo (a) anthracene		4	2.0		ug/I
Benzo (b) fluoranthene		0.6	0.1		ug/I
Benzo (k) fluoranthene		ND	0.1		ug/I
Benzo (a) pyrene		ND	0.1		ug/I
Dibenzo (a,h) anthracene		0.1	0.1		ug/I
Benzo (g,h,i) perylene		ND	0.1		ug/I
Indeno (1,2,3-cd) pyrene		ND	0.1		ug/I
SURROGATES	AMOUNT	४		LOWER	UPPER
	SPIKED	RECO	VERY	LIMIT	LIMI
1-Fluoronaphthalene	$0.50~\mathrm{ug/L}$		72	50	150
Phenanthrene d-10	$0.50~{ m ug/L}$	1200	MI	50	150

ANALYZED BY: KA DATE/TIME: 05/17/99 19:32:35 EXTRACTED BY: KL DATE/TIME: 05/08/99 15:00:00

METHOD: 8310 Polynuclear Aromatic Hydrocarbons

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

MI - Matrix Interference.

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

05/21/99

PROJECT: BJ-Artesia

SITE: Artesia

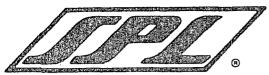
SAMPLED BY: Provided by SPL

SAMPLE ID: Trip Blank 4/30

PROJECT NO: 12988

MATRIX: WATER

DATE SAMPLED: 05/06/99


DATE RECEIVED: 05/07/99

ANALYTICAL DATA						
PARAMETER	RESULTS	PQL*	UNITS			
Benzene	ND	5	ug/L			
Bromobenzene	ND	5	ug/L			
Bromochloromethane	ND	5	ug/L			
Bromodichloromethane	ND	5	ug/L			
Bromoform	ND	5	ug/L			
Bromomethane	ND	10	ug/L			
n-Butylbenzene	ND	5	ug/L			
sec-Butylbenzene	ND	5	ug/L			
tert-Butylbenzene	ND	5	ug/L			
Carbon tetrachloride	ND	5	ug/L			
Chlorobenzene	ND	5	ug/L			
Chlorodibromomethane	ND	5	ug/L			
Chloroethane	ND	10	ug/L			
Chloroform	ND	5	ug/L			
Chloromethane	ND	10	ug/L			
2-Chlorotoluene	ND	5	ug/L			
4-Chlorotoluene	ND	5	ug/L			
1,2-Dibromo-3-chloropropane	ND	5	ug/L			
1,2-Dibromoethane	ND	5	ug/L			
Dibromomethane	ND	5	ug/L			
1,2-Dichlorobenzene	ND	5	ug/L			
1,3-Dichlorobenzene	ND	5	ug/L			
1,4-Dichlorobenzene	ND	5	ug/L			
Dichlorodifluoromethane	ND	10	ug/L			
1,1-Dichloroethane	ND	5	ug/L			
1,2-Dichloroethane	ND	5	ug/L			
1,1-Dichloroethene	ND	5	ug/L			
cis-1,2-Dichloroethene	ND	5	ug/L			
trans-1,2-Dichloroethene	ND	5	ug/L			
1,2-Dichloropropane	ND	5	ug/L			
1,3-Dichloropropane	ND	5	ug/L			
2,2-Dichloropropane	ND	5	ug/L			
1,1-Dichloropropene	ND	5	ug/L			
Ethylbenzene	ND	5	ug/L			
Hexachlorobutadiene	ND	5	ug/L			
Isopropylbenzene	ND	5	ug/L			
p-Isopropyltoluene	ND	5	ug/L			
Methylene chloride	ND	5	ug/L			

METHOD: 8260 Water, Volatile Organics (continued on next page)

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9905237-02

Brown and Caldwell

SAMPLE ID: Trip Blank 4/30

ANALY	TICAL DATA	(cont	inued)		
PARAMETER	RESULTS	3	PQL*		UNITS
Naphthalene		ND	5		${\tt ug/L}$
n-Propylbenzene		ND	5		${\tt ug/L}$
Styrene		ND	5		ug/L
1,1,1,2-Tetrachloroethane		ND	5		${\tt ug/L}$
1,1,2,2-Tetrachloroethane		ND	5		ug/L
Tetrachloroethene		ND	5		${ t ug/L}$
Toluene		ND	5		ug/L
1,2,3-Trichlorobenzene		ND	5		ug/L
1,2,4-Trichlorobenzene		ND	. 5		ug/L
1,1,1-Trichloroethane		ND	5		ug/L
1,1,2-Trichloroethane		ND	5		ug/L
Trichloroethene		ND	5		ug/L
Trichlorofluoromethane		ИD	5		${\tt ug/L}$
1,2,3-Trichloropropane		ND	5		ug/L
1,2,4-Trimethylbenzene		ND	5		ug/L
1,3,5-Trimethylbenzene		ND	5		${\tt ug/L}$
Vinyl chloride		ND	10		${\tt ug/L}$
Xylenes (total)		ND	5		ug/L
1,2-Dichloroethene (total)		ND	5		ug/L
cis-1,3-Dichloropropene		ND	5		ug/L
trans-1,3-Dichloropropene		ND	5		${\tt ug/L}$
Acetone		ИD	100		ug/L
2-Butanone		ND	20		ug/L
4-Methyl-2-Pentanone		ND	10		ug/L
2-Hexanone		ND	10		ug/L
Carbon Disulfide		ND	5		ug/L
Vinyl Acetate		ND	10		${ t ug/L}$
2-Chloroethylvinylether		ND	. 10		${ t ug/L}$
Methyl t-Butyl Ether		ND	10		ug/L
SURROGATES	AMOUNT	ક		LOWER	UPPER
	SPIKED	REC	COVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/L		94	80	120
Toluene-d8	50 ug/L		98	88	110
4-Bromofluorobenzene	50 ug/L		106	86	115

ANALYZED BY: LT DATE/TIME: 05/10/99 14:13:00

METHOD: 8260 Water, Volatile Organics

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

QUALITY CONTROL DOCUMENTATION

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SPL

Contract:

Lab Code:

Case No.: 9905244 SAS No.:

SDG No.:

Matrix Spike - EPA Sample No.: W050699-MF-002

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC #	QC. LIMITS REC.
=======================================	=======	=========	=========	=====	=====
1,1-Dichloroethene	50	71	130	118	61-145
Trichloroethene	50	6	55	98	71-120
Benzene	50	0	51	102	76-127
Toluene	50	98	140	84	76-125
Chlorobenzene	50	0	4.3	86	75-130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC LIMITS RPD REC.	
		=======================================	=====	======	======	_=====
1,1-Dichloroethene	50	130	118	0	14	61-145
Trichloroethene	50	54	96	2	14	71-120
Benzene	50	51	102	0	11	76-127
Toluene	50	150	104	21*	13	76-125
Chlorobenzene	50	44	88	2	13	75-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits due to matrix interference

RPD: 1 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

Data File: /var/chem/l.i/1990510.b/1130711.d

Report Date: 10-May-1999 10:56

SPL Houston Labs

RECOVERY REPORT

Client Name:

Sample Matrix: LIQUID

Client SDG: 1990510

Fraction: VOA

Lab Smp Id: METHSPIKE-8260W/1X

Operator: LT

Level: LOW

Data Type: MS DATA

SampleType: METHSPIKE

SpikeList File: 8260_water.spk

Quant Type: ISTD


Sublist File: 8260 lcs.sub

Method File: /var/chem/l.i/1990510.b/18260aw.m

Misc Info: L130W1/L130B01/L130CW1

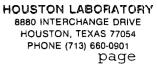
SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
8 1,1-Dichloroethene	50	57	114.00	61-145
29 Trichloroethene	50	50	100.00	71-120
25 Benzene	50	48	96.00	76-127
37 Toluene	50	46	92.00	76-125
45 Chlorobenzene	50	46	92.00	75-130

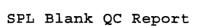
SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 21 1,2-Dichloroethane	50	48	96.00	80-120
\$ 36 Toluene-d8	50	50	100.00	88-110
\$ 56 Bromofluorobenzene	50	54	108.00	86-115

PHONE (713) 660-0901

page

SPL Blank QC Report


Matrix: Aqueous Sample ID: VLBLK Batch: L990510104642 Reported on: 05/13/99 13:59 Analyzed on: 05/10/99 10:51


Analyst: LT

METHOD 8260 L130B01

Compound	Result	Detection Limit	Units
Dichlorodifluoromethane	ND	10	ug/L
Chloromethane	ND	10	ug/L
Vinyl Chloride	ND	10	ug/L
Bromomethane	ND	10	ug/L
Chloroethane	ND	10	ug/L
Trichlorofluoromethane	ND	5	ug/L
Acetone	l ND	100	ug/L
1,1-Dichloroethene	ND	5	ug/L
Methylene Chloride	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	. 5	ug/L
Vinyl Acetate	ND	10	ug/L
2-Butanone	ND	20	ug/L
cis-1,2-Dichloroethene	ND	5	ug/L
1,2-Dichloroethene (total)	ND	5	ug/L
2,2-Dichloropropane	ND	5 5	ug/L
Bromochloromethane	ND	5	ug/L
Chloroform	ND	5	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,1-Dichloropropene	ND	5	ug/L
Benzene	ND	5	ug/L
Carbon Tetrachloride	ND:	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromomethane	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
2-Chloroethylvinylether	ND	10	ug/L
4-Methyl-2-Pentanone	ND	10	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Toluene	ND	5 5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L

Notes

Matrix: Aqueous Sample ID: VLBLK Batch: L990510104642 Reported on: 05/13/99 13:59
Analyzed on: 05/10/99 10:51
Analyst: LT

METHOD 8260 L130B01

Compound	Result	Detection Limit	Units
1,3-Dichloropropane	ND	5	ug/L
2-Hexanone	ND	10	ug/L
Dibromochloromethane	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Tetrachloroethene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
1,1,1,2-Tetrachloroethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Bromoform	ND	5	ug/L
Styrene	ND	5	ug/L
Xylene (Total)	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,2,3-Trichloropropane	ND	5	ug/L
Isopropylbenzene	ND	5	ug/L
Bromobenzene	ND	5	ug/L
N-Propylbenzene	ND	5	ug/L
2-Chlorotoluene 4-Chlorotoluene	ND	5 5	ug/L
11	ND ND	5	ug/L
1,3,5-Trimethylbenzene tert-Butylbenzene	ND		ug/L ug/L
1,2,4-Trimethylbenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND ND	5 5 5	ug/L
sec-Butylbenzene	ND	5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
p-Isopropyltoluene	ND	5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
n-Butylbenzene	ND	5	ug/L
1,2-Dibromo-3-Chloropropan	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
Naphthalene	ND	. 5	ug/L
Hexachlorobutadiene	ND	5	ug/L
1,2,3-Trichlorobenzene	ND	5	ug/L
Methyl t-Butyl Ether	ND	10	ug/L

<u>Notes</u>

SPL Blank QC Report

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

page

Matrix: Aqueous Sample ID: VLBLK

Batch: L990510104642

Reported on: 05/13/99 13:59 Analyzed on: 05/10/99 10:51

Analyst: LT

METHOD 8260 L130B01

Surrogate	Result	QC Criteria	Units
1,2-Dichloroethane-d4	92	88-110	% Recovery
Toluene-d8	96		% Recovery
Bromofluorobenzene	106		% Recovery

Samples in Batch 9905237-01 9905237-02 Not<u>es</u>

3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

SPL

Contract:

Lab Code:

Case No:

990508

SAS No:

SDG No:

Matrix Spike - EPA

Sample No:

BLANK

Level (low/med):

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC
Phenol	75	0	25	33	12-110
2-Chlorophenol	75	0	54	72	27-123
1,4-Dichlorobenzene	50	0	34	68	36-110
N-Nitroso-di-n-propylamine	50	0	46	92	41-116
1,2,4-Trichlorobenzene	50	0	36	72	39- 110
4-Chloro-3-methylphenol	75	0	59	79	23-110
Acenaphthene	50	0	43	86	46-125
4-Nitrophenol	75	0	26	35	25-150
2,4-Dinitrotoluene	50	0	40	80	50-150
Pentachlorophenol	75	0	66	88	9-125
Pyrene	50	0	53	106	26-127

	SPIKE	MSD	MSD	1		
	ADDED	CONCENTRATION	%	%	QC	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RPD	REC
Phenol	75	20	27	20	42	12-110
2-Chlorophenol	75	44	59	20	40	27-123
1,4-Dichlorobenzene	50	28	56	19	28	36-110
N-Nitroso-di-n-propylamine	50	36	72	24	38	41-116
1,2,4-Trichlorobenzene	50	30	60	18	28	39- 110
4-Chloro-3-methylphenol	75	48	64	21	42	23- 110
Acenaphthene	50	38	76	12	31	46-125
4-Nitrophenol	75	23	31	12	50	25-150
2,4-Dinitrotoluene	50	35	70	13	50	50-150
Pentachlorophenol	75	57	76	15	50	9-125
Pyrene	50	44	88	19	31	26-127

Column to be used to flag recovery and RPD values with an asterisk

RPD:

0

out of 11 outside limits

Spike Recovery:

0

out of 22 outside limits

FORM III SV-1

3/90

PHONE (713) 660-0901 page

1

SPL Blank QC Report


Reported on: 05/13/99 13:59 Analyzed on: 05/10/99 16:59

Analyst: SC

Matrix: Aqueous Sample ID: BLANK Batch: E990508042258

METHOD 8270 H128B03

Compound	Result	Detection Limit	Units
Pyridine	ND	5	ug/L
Phenol	ND	5	ug/L
Aniline	ND	5	ug/L
bis(2-Chloroethyl)ether	ND	5	ug/L
2-Chlorophenol	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Benzyl alcohol	ND	5	ug/L
1,2-Dichlorobenzene	ND	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/L
2-Methylphenol	ND	5	ug/L
bis(2-chloroisopropyl)ethe	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
N-Nitroso-di-n-propylamine	ND	5	ug/L
Hexachloroethane	ND	5	ug/L
Nitrobenzene	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Nitrophenol	ND	5	ug/L
2,4-Dimethylphenol	ND	5	ug/L
Benzoic acid	ND	25	ug/L
bis(2-Chloroethoxy)methane	ND	5	ug/L
2,4-Dichlorophenol	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
Naphthalene	ND	5	ug/L
4-Chloroaniline	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
4-Chloro-3-methylphenol	NĎ	5	ug/L
2-Methylnaphthalene	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5	ug/L
2,4,6-Trichlorophenol	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2-Chloronaphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
Dimethylphthalate	ND	5	ug/L
2,6-Dinitrotoluene	ND!	5	ug/L

SPL Blank QC Report

Matrix: Aqueous Sample ID: BLANK Batch: E990508042258 Reported on: 05/13/99 13:59 Analyzed on: 05/10/99 16:59

Analyst: SC

METHOD 8270 H128B03

Compound	Result	Detection Limit	Units
		_	
Acenaphthylene	ND	5	ug/L
3-Nitroaniline	ND	25	ug/L
Acenaphthene	ND	5	ug/L
2,4-Dinitrophenol	ND	25	ug/L
4-Nitrophenol	ND	25	ug/L
Dibenzofuran	ND	5	ug/L
2,4-Dinitrotoluene	ND	5 5 5	ug/L
Diethylphthalate	ND	5	ug/L
4-Chlorophenyl-phenylether	ND	5	ug/L
Fluorene	ND		ug/L
4-Nitroaniline	ND	25	ug/L
4,6-Dinitro-2-methylphenol	ND	25	ug/L
n-Nitrosodiphenylamine	ND	5	ug/L
1,2-Diphenylhydrazine	ND	5 5	ug/L
4-Bromophenyl-phenylether	ND		ug/L
Hexachlorobenzene	ND	5	ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	5	ug/L
Anthracene	ND	5 5 5	ug/L
Carbazole	ND	5	ug/L
Di-n-butylphthalate	ND	5	ug/L
Fluoranthene	ND	5	ug/L
Pyrene	ND	5	ug/L
Butylbenzylphthalate	ND	5	ug/L
3,3'-Dichlorobenzidine	ND	10	ug/L
Benzo[a] anthracene	ND	5	ug/L
Chrysene	ND	- 5	ug/L
bis(2-Ethylhexyl)phthalate	ND'	5	ug/L
Di-n-octylphthalate	ND	5	ug/L
Benzo[b]fluoranthene	ND	5 5 5 5 5	ug/L
Benzo[k]fluoranthene	ND	5	ug/L
Benzo[a]pyrene	ND	5	ug/L
Indeno[1,2,3-cd]pyrene	ND	5 5	ug/L
Dibenz[a,h]anthracene	ND	5	ug/L

Notes

SPL Blank QC Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

page

Matrix: Aqueous Sample ID: BLANK

Batch: E990508042258

Reported on: 05/13/99 13:59
Analyzed on: 05/10/99 16:59
Analyst: SC

METHOD 8270 H128B03

Compound	Result	Detection Limit	
Benzo[g,h,i]perylene	ND	5	ug/L

Surrogate	Result	QC Criteria	Units
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	68 74 76 23 35	43-116 33-141 10-110 21-110	% Recovery % Recovery % Recovery % Recovery % Recovery

Samples in Batch 9905237-01

<u>Notes</u>

SPL BATCH QUALITY CONTROL REPORT **

Method 8310 ***

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous ug/L Batch Id: 2990516002200

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank Spike		QC Limits(**)	
COMPOUNDS	Blank Result <2>	Added <3>	Result	Recovery %	(Mandatory) % Recovery Range	
Naphthalene	ND	0.50	0.33	66.0	32 - 148	
Acenaphthylene	ND	0.50	0.33	66.0	42 - 138	
Acenaphthene	ND	0.50	0.35	70.0	22 - 133	
Fluorene	ND	0.50	0.35	70.0	11 - 148	
Phenanthrene	ND	0.50	0.36	72.0	40 - 121	
Anthracene	ND	0.50	0.30	60.0	32 - 121	
Fluoranthene	ND	0.50	0.36	72.0	45 - 133	
Pyrene	ND	0.50	0.37	74.0	39 - 136	
Chrysene	ND	0.50	0.37	74.0	44 - 122	
Benzo (a) anthracene	ND	0.50	0.36	72.0	53 - 137	
Benzo (b) fluoranthene	ND	0.50	0.38	76.0	62 - 121	
Benzo (k) fluoranthene	ND	0.50	0.37	74.0	66 - 128	
Benzo (a) pyrene	ND	0.50	0.37	74.0	42 - 120	
Dibenzo (a,h) anthracene	ND	0.50	0.39	78.0	59 - 129	
Benzo (g,h,i) perylene	ND	0.50	0.39	78.0	67 - 124	
Indeno (1,2,3-cd) pyrene	ND	0.50	0.39	78.0	65 - 125	

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	QC Limits(***) (Advisory)		
	<2>	<3>	Result <1>	Recovery <4>	Result	Recovery <5>	Difference	RPD Max.	Recovery	Range
NAPHTHALENE	37	0.50	85	NC	. 68	NC	NC	30	1 -	122
ACENAPHTHYLENE	ND	0.50	0.0	0 *	0.0	0 *	0	30	1 -	124
ACENAPHTHENE	ND	0.50	2.2	440 *	1.7	340 *	25.6	30	1 -	124
FLUORENE	ND	0.50	0.96	192 *	0.80	160 *	18.2	30	1 -	142
PHENANTHRENE	ND	0.50	2.2	440 *	0.84	168 *	89.5 *	30	1 -	155
ANTHRACENE	ND	0.50	0.47	94.0	0.44	88.0	6.59	30	1 -	126
FLUORANTHENE	ND	0.50	0.85	170 *	0.64	128 *	28.2	30	14 -	123
PYRENE	DIN	0.50	4.3	860 *	2.5	500 *	52.9 *	30	1 -	140
CHRYSENE	ND	0.50	1.1	220 *	1.1	220 *	0	30	1 -	199
BENZO (A) ANTHRACENE	ND	0.50	1.4	280 *	0.93	186 *	40.3 *	30	12 -	135
BENZO (B) FLUORANTHENE	ND	0.50	0.78	156 *	0.71	142	9.40	30	6 -	150
BENZO (K) FLUORANTHENE	ND	0.50	0.62	124	0.58	116	6.67	30	1 -	159
BENZO (A) PYRENE	ND	0.50	1.0	200 *	0.98	196 *	2.02	30	1 -	128
DIBENZO (A,H) ANTHRACENE	ND	0.50	0.88	176 *	0.71	142 *	21.4	30	1 -	110
BENZO (G,H,I) PERYLENE	DN	0.50	1.2	240 *	1.2	240 *	0	30	1 -	116
INDENO (1,2,3-CD) PYRENE	ND	0.50	0.67	134 *	0.57	114	16.1	30	1 -	116

SPL BATCH QUALITY CONTROL REPORT ** Method 8310 ***

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units:

Aqueous ug/L

Batch Id: 2990516002200

Analyst: KA

Sequence Date: 05/18/99

SPL ID of sample spiked: 9905143-08E Sample File ID: 990515A\101~0101

Method Blank File ID:

Blank Spike File ID: 990517A\LC A0002

Matrix Spike File ID: 990517A\110-0101

Matrix Spike Duplicate File ID: 990517A\111-0101 (***) = Source: Temporary Limits

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9905263-02B 9905151-01A 9905151-02A 9905151-03A 9905153-01D 9905153-02D 9905153-03D 9905263-03B 9905153-04D 9905153-05D 9905153-06D 9905153-07D 9905237-01C 9905263-05B 9905263-06B 9905263-07B

9905263-08B 9905263-01B 9905263-04B

ICP

ICP Spectroscopy Method 6010 Quality Control Report

Matrix: Water

Units: mg/L

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Analyst: PB

Date:051199 Time:0857 File Name: 0511JM6

Laboratory Control Sample

		boratory Co		<u>' </u>		
Element	· · · · · · · · · · · · · · · · · · ·	True Value		% Recovery		
Silver	ND	2.00	1.70	85	1.60	2.40
Aluminum						
Arsenic						
Barium	ND	2.00	1.80	90	1.60	2.40
Beryllium	ND	2.00	1.84	92	1.60	2.40
Calcium	ND	20.00	18.02	90	16.00	24.00
Cadmium	ND	2.00	1.73	87	1.60	2.40
Cobalt	ND	2.00	1.82	91	1.60	2.40
Chromium	ND	2.00	1.80	90	1.60	2.40
Соррег	ND	2.00	1.84	92	1.60	2.40
Iron	ND	2.00	1.81	91	1.60	2.40
Potassium	ND	20.00	18.00	90	16.00	24.00
Magnesium	ND	20.00	18.49	92	16.00	24.00
Manganese						
Sodium	ND	20.00	18.32	92.	16.00	24.00
Nickel	ND	2.00	1.79	89	1.60	2.40
Lead						
Antimony						
Boron	ND	4.00	3.78	95	3.20	4.80
Molybdenum	ND	2.00	1.84	92	1.60	2.40
Vanadium	ND	2.00	1.83	91	1.60	2.40
Zinc	ND	2.00	1.81	91	1.60	2.40

Work Orde	ers in Batch
Work Order	Fractions
99-05-237	01D
99-05-246	01C-07C
	11C,12C
99-05-278	01A
99-05-290	02F
99-05-291	01B
99-05-292	01E
99-05-309	20D

Snike Dunlicate Results

Silver ND 1.0 0.919 91.9 0.9288 92.9 80 120 1.1 Aluminum Arsenic Barium 0.0525 1.0 1.014 96.2 0.9914 93.9 80 120 2.4 Beryllium ND 1.0 0.966 96.6 0.9789 97.9 80 120 1.3 Calcium 618 10.0 609.7 0.0 * 621.3 33.0 * 80 120 200.0 *** Cadrium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 2.8 Cobalt 0.0269 1.0 0.9663 93.9 0.9861 95.9 80 120 2.1 Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.0 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 0.3 Iron 3.148 <th></th> <th colspan="14">rix Spike - Spike Duplicate Results Work Order Spiked: 9905237-01D</th>		rix Spike - Spike Duplicate Results Work Order Spiked: 9905237-01D													
Silver ND 1.0 0.919 91.9 0.9288 92.9 80 120 1.1 Aluminum Arsenic Barium 0.0525 1.0 1.014 96.2 0.9914 93.9 80 120 2.4 1.0 1.0 1.0 0.966 96.6 0.9789 97.9 80 120 1.3 1.0 1.0 0.966 96.6 0.9789 97.9 80 120 2.4 1.3 2.0 2.0 1.3 2.0 2.0 1.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.8 2.0 2.0 2.8 2.0 2.0 2.0 2.8 2.0 2.0 2.0 2.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	QC Limits % 20.0	T	Spike	imits	QC L		ke Duplicate	Matrix Spi			Matı	Spike	Sample		
Aluminum Arsenic Barium O.0525 1.0 1.014 96.2 0.9914 93.9 80 120 2.4 Beryllium ND 1.0 0.966 96.6 0.9789 97.9 80 120 1.3 Calcium 618 10.0 609.7 0.0 621.3 33.0 80 120 200.0 80 Cadmium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 200.0 80 Cobalt 0.0269 1.0 0.9663 93.9 0.9861 95.9 80 120 2.8 Cobalt 0.0269 1.0 0.9338 93.4 0.9528 95.3 80 120 2.1 Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.0 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 0.3 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 2.6 Magnesium 156.6 10.0 162.8 62.0 162.5 59.0 80 120 8.0			RPD %	covery	% Rec		Recovery	Result	/	Recovery		Added	Result	Element	
Arsenic Barium 0.0525 1.0 1.014 96.2 0.9914 93.9 80 120 2.4 Beryllium ND 1.0 0.966 96.6 0.9789 97.9 80 120 1.3 Calcium 618 10.0 609.7 0.0 621.3 33.0 80 120 200.0 ** Cadmium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.1 120 2.1 120 2.1 120 2.1 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0<		П	1.1	120	80		92.9	0.9288	П	91.9	0.919	1.0	ND	Silver	
Barium 0.0525 1.0 1.014 96.2 0.9914 93.9 80 120 2.4 Beryllium ND 1.0 0.966 96.6 0.9789 97.9 80 120 1.3 Calcium 618 10.0 609.7 0.0 * 621.3 33.0 * 80 120 200.0 ** Cadmium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 2.8 Cobalt 0.0269 1.0 0.9663 93.9 0.9861 95.9 80 120 2.8 Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.1 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 2.0 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.0 Magnesium 156.6 10.0 162.8		П				П			П					Aluminum	
Beryllium ND 1.0 0.966 96.6 0.9789 97.9 80 120 1.3 Calcium 618 10.0 609.7 0.0 * 621.3 33.0 * 80 120 200.0 *** Cadmium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 2.8 Cobalt 0.0269 1.0 0.9663 93.9 0.9861 95.9 80 120 2.1 Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.0 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 2.0 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8<		П				П			П					Arsenic	
Calcium 618 10.0 609.7 0.0 * 621.3 33.0 * 80 120 200.0 ** Cadmium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.8 120 2.1 120 2.1 120 2.1 120 2.1 120 2.1 120 2.1 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 120 2.0 2.0 120 2.0 120 2.0 120 2.0 2.0 120 2.0 2.0 2.0 <td>20.0</td> <td>П</td> <td>2.4</td> <td>120</td> <td>80</td> <td>П</td> <td>93.9</td> <td>0.9914</td> <td>П</td> <td>96.2</td> <td>1.014</td> <td>1.0</td> <td>0.0525</td> <td>Barium</td>	20.0	П	2.4	120	80	П	93.9	0.9914	П	96.2	1.014	1.0	0.0525	Barium	
Cadmium ND 1.0 0.9508 95.1 0.9776 97.8 80 120 2.8 Cobalt 0.0269 1.0 0.9663 93.9 0.9861 95.9 80 120 2.1 Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.0 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 0.3 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 3.3 Lead Antimony 1.0 <	20.0	П	1.3	120	80	П	97.9	0.9789	П	96.6	0.966	1.0	ND	Beryllium	
Cobalt 0.0269 1.0 0.9663 93.9 0.9861 95.9 80 120 2.1 Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.0 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 0.3 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony	20.0	**	200.0	120	80	*	33.0	621.3	*	0.0	609.7	10.0	618	Calcium	
Chromium ND 1.0 0.9338 93.4 0.9528 95.3 80 120 2.0 Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 0.3 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony 4 4 0.9934 4 1.0111 95.1 80 120 3.3	20.0	П	2.8	120	80	П	97.8	0.9776	П	95.1	0.9508	1.0	ND	Cadmium	
Copper ND 1.0 1.025 102.5 1.022 102.2 80 120 0.3 Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony Antimony 4.00	20.0	П	2.1	120	80	П	95.9	0.9861	П	93.9	0.9663	1.0	0.0269	Cobalt	
Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony Antimony <td>20.0</td> <td>П</td> <td>2.0</td> <td>120</td> <td>80</td> <td>П</td> <td>95.3</td> <td>0.9528</td> <td>П</td> <td>93.4</td> <td>0.9338</td> <td>1.0</td> <td>ND</td> <td>Chromium</td>	20.0	П	2.0	120	80	П	95.3	0.9528	П	93.4	0.9338	1.0	ND	Chromium	
Iron 3.148 1.0 4.019 87.1 4.042 89.4 80 120 2.6 Potassium 26.72 10.0 36.89 101.7 36.11 93.9 80 120 8.0 Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony Antimony <td>20.0</td> <td>\sqcap</td> <td>0.3</td> <td>120</td> <td>80</td> <td>П</td> <td>102.2</td> <td>1.022</td> <td>П</td> <td>102.5</td> <td>1.025</td> <td>1.0</td> <td>ND</td> <td>Copper</td>	20.0	\sqcap	0.3	120	80	П	102.2	1.022	П	102.5	1.025	1.0	ND	Copper	
Magnesium 156.6 10.0 162.8 62.0 * 162.5 59.0 * 80 120 5.0 Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony Antimony	20.0	П	2.6	120	80		89.4	4.042	П	87.1	4.019	1.0	3.148		
Manganese Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony	20.0	П	8.0	120	80	П	93.9	36.11	П	101.7	36.89	10.0	26.72	Potassium	
Sodium 261.1 10.0 265.1 40.0 * 260.2 0.0 * 80 120 200.0 ** Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony 	20.0	П	5.0	120	80	*	59.0	162.5	1*1	62.0	162.8	10.0	156.6	Magnesium	
Nickel 0.0599 1.0 0.9804 92.1 1.0111 95.1 80 120 3.3 Lead Antimony Antimony Image: Control of the contr		П				П			П					Manganese	
Lead Antimony	20.0	**	200.0	120	80	*	0.0	260.2	*	40.0	265.1	10.0	261.1	Sodium	
Antimony	20.0	\Box	3.3	120	80		95.1	1.0111	П	92.1	0.9804	1.0	0.0599	Nickel	
		\Box							П					Lead	
Roren 0.5962 2.0 2.675 103.9 2.649 102.6 80 120 1.3	<u></u>	П	-						П					Antimony	
DB1011 0.5902 2.0 2.075 103.9 2.076 102.0 105.0 1.0 1.0	20.0	\Box	1.3	120	80		102.6	2.649	\sqcap	103.9	2.675	2.0	0.5962	Boron	
Molybdenum ND 1.0 0.9838 98.4 1.005 100.5 80 120 2.1	20.0	П	2.1	120	80		100.5	1.005	П	98.4	0.9838	1.0	ND	Molybdenum	
Vanadium 0.0106 1.0 0.9873 97.7 1.00 98.9 80 120 1.3	20.0		1.3	120	80		98.9	1.00	П	97.7	0.9873	1.0	0.0106	Vanadium	
Zinc ND 1.0 1.00 100.0 1.026 102.6 80 120 2.6	20.0		2.6	120	80		102.6	1.026	П	100.0	1.00	1.0	ND	Zinc	

^{*} Spike Results Outside Method Limits

Checked: 18 5/2/99

^{**} Spike RPD Outside Method Limits Elements Post Spiked: All

Trace-icp

ICP Spectroscopy Method 6010 Quality Control Report

Matrix: Water

Units: mg/L

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054

PHONE (713) 660-0901

Analyst: EG

Date:051199 Time:1108 File Name: 0511JM4

Laboratory Control Sample

Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit
Silver						
Aluminum						
Arsenic	ND	4.00	3.82	96	3.20	4.80
Barium						
Beryllium						
Calcium						
Cadmium						
Cobalt						
Chromium						
Copper						
Iron						
Potassium						
Magnesium						
Manganese						
Sodium			_			
Nickel						
Lead	ND _	2.00	1.90	95	1.60	2.40
Antimony						
Selenium	ND	4.00	3.88	97	3.20	4.80
Thallium	ND	4.00	3.71	93	3.20	4.80
Vanadium						
Zinc]			

Work Orders in Batch Work Order Fractions 99-05-237 , 01D 99-05-243 01B 99-05-246 01C-07C 11C,12C 99-05-290 02F 99-05-291 01B 99-05-309 20D

Matrix Spike					Work Order Spiked: 9905237-01D					
	Sample	Spike	Mati	rix Spike	Matrix Sp	ike Duplicate	QC Limits		Spike	QC
Element	Result	Added	Result	Recovery	Result	Recovery	% Re	covery	RPD %	Limits %
Silver							7	T	T	
Aluminum										
Arsenic	0.014	2.0	1.699	84.3	1.782	88.4	80	120	4.8	20.0
Barium										
Beryllium										
Calcium										
Cadmium										
Cobalt		_								
Chromium										
Copper										
Iron										1
Potassium										
Magnesium										
Manganese										
Sodium	i									-
Nickel										
Lead	ND	1.0	0.9445	94.5	0.9488	94.9	80	120	0.5	20.0
Antimony										
Selenium	ND	2.0	1.666	83.3	1.767	88.4	80	120	5.9	20.0
Thallium	ND	2.0	1.822	91.1	1.811	90.6	80	120	0.6	20.0
Vanadium					[
Zinc										

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqu

Aqueous

Reported on:

05/10/99

Analyzed on:

05/10/99

Analyst:

AG

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Mercury, Total Method 7470 A***

SPL Sample ID Number	Blank Value ug/L	LCS Concentration ug/L	Measured Concentration ug/L	% Recovery	QC Limits Recovery
LCS	ND	2.00	2.08	104	80 - 120

-9905261

Samples in batch:

9904C08-03E	9905237-01D	9905246-01C	9905246-02C
9905246-03C	9905246-04C	9905246-05C	9905246-06C
9905246-07C	9905246-11C	9905246-12C	9905290-02F
9905291-01B			

COMMENTS:

LCS = SPL ID# 94-452-49-12

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 05/10/99 Analyzed on: 05/10/99

Analyst:

AG

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Mercury, Total Method 7470 A***

SPL Sample	Method	Sample	Spike	Matrix Spike		Matrix Spike Duplicate		RPD	QC LIMITS (Advisory)		
ID Number	Blank ug/L	Result ug/L	Added ug/L	Result ug/L	Recovery %	Result ug/L	Recovery %	(%)	RPD Max	2	& REC
9905237-010	ND	ND	2.00	1.90	95.0	2.05	102	7.1	20	75	- 125

-9905261

Samples in batch:

 9904c08-03E
 9905237-01D
 9905246-01C
 9905246-02C

 9905246-03C
 9905246-04C
 9905246-05C
 9905246-06C

 9905246-07C
 9905246-11C
 9905246-12C
 9905290-02F

9905291-01B

COMMENTS:

LCS = SPL ID# 94-452-49-12

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 05/17/99

Analyzed on: 05/14/99

Analyst:

CV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride Method 325.3 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	% QC Lim covery Recover	
LCS	ND	162	159.5	98.5	94	- 106

-9905427

Samples in batch:

COMMENTS:

9905168-01A	9905168-02A	9905168-03A	9905168-04A
9905168-05A	9905168-06A	9905168-07A	9905168-08A
-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
9905168-09A	9905168-10A	9905168-11A	9905237-01E
9905258-01A	9905371-01C	9905371-02C	9905371-03C
9905371-05C	9905371-06C		

LCS-SPL ID#94453228-24

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 05/17/99 Analyzed on: 05/14/99

Analyst: CV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride Method 325.3 *

SPL Sample	Method	Sample	Spike	Matrix Spike		Matrix Spike Duplicate		RPD		QC LIMITS (Advisory)	
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC	
9905258-01A	ND	5.3	50.0	54.9	99.2	54.9	99.2	0	5	92 -109	

-9905428

Samples in batch:

9905168-06A 9905168-10A 9905168-07A 9905168-11A 9905168-08A

9905168-09A

9905237-01E 9905258-01A

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

05/07/99

Analyzed on:

05/07/99

Analyst:

AB

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Carbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9904B57-01B	ND	ND	0	5

-9905217

Samples in batch:

9904B57-01B

9904B57-02B

9905160-02A

9905236-01A

9905236-02A

9905236-03A

9905237-01E

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

05/07/99

Analyzed on:

05/07/99

Analyst:

AB

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Specific Conductance @ 25°C Method 120.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration Umhos/cm	Duplicate Sample Umhos/cm	RPD	RPD Max.
LCS	4800	4800	0	1.0

-9905220

Samples in batch:

9905237-01E

COMMENTS:

SPL=LCS# 94453217-27

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT ** **

Matrix:

Aqueous

Reported on:

05/07/99

Analyzed on: 05/07/99

Analyst:

AB

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

> Specific Conductance @ 25°C Method 120.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	L Sample ID Original Sample Concentration Umhos/cm		RPD	RPD Max.
9905237-01E	4800	4800	0	1.0

-9905219

Samples in batch:

9905237-01E

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

05/07/99

Analyzed on:

05/07/99

Analyst:

AB

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Bicarbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9904B57-01B	142	144	1.4	5

-9905218

Samples in batch:

9904B57-01B

9904B57-02B

9905160-02A

9905236-01A

9905236-02A

9905236-03A

9905237-01E

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 05/10/99 Analyzed on: 05/07/99

Analyst: CV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Nitrate nitrogen(as N)
Method 353.3 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery	1	Limits covery
LCS	ND	5.0	4.83	96.6	92	- 113

-9905280

Samples in batch:

9905237-01E

COMMENTS:

LCS-SPL ID#94453220-10

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 05/10/99

Analyzed on: 05/07/99 Analyst:

CV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Nitrate nitrogen(as N) Method 353.3 *

SPL Sample	Method	Sample	Spike	Matri	x Spike		ix Spike Licate	RPD		QC LI Advis	
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result mg/L		Result mg/L	Recovery %	(%)	RPD Max	%	REC
9905237-01E	ND	ND	5.0	5.21	104	5.21	104	0	12	84	-125

-9905280

Samples in batch:

9905237-01E

COMMENTS:

LCS-SPL ID#94453220-10

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

05/07/99

Analyzed on:

05/07/99

Analyst:

AB

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

pН

Method 150.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration pH units	Duplicate Sample pH units	RPD	RPD Max.
9904B57-01B	6.20	6.20	0	1.0

-9905214

Samples in batch:

9904B57-01B

9904B57-02B

9905160-02A

9905236-01A

9905236-02A

9905236-03A

9905237-01E

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: A

Aqueous

Reported on: 05/12/99

Analyzed on: 05/12/99

Analyst:

ELS

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate
Method 375.4 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	26.8	25.0	93.3	82 - 111

-9905326

Samples in batch:

9905237-01E 9905336-04B 9905336-01B 9905336-05B 9905336-02B

9905336-03B

9905336-06B

9905336-07B

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 05/12/99

Analyzed on: 05/12/99

Analyst: ELS

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample	Method	Sample	Spike	Matr	ix Spike		ix Spike licate	RPD	L	QC LI Advis	
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result mg/L		Result mg/L	Recovery %	(%)	RPD Max	2	REC
9905336-02B	ND	ND	10.0	9.5	95.0	9.7	97.0	2.1	9.5	84	-120

-9905326

Samples in batch:

9905237-01E 99 9905336-04B 99

9905336-01B 9905336-05B 9905336-02B

9905336-03B

9905336-06B 9905336-07B

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 05/12/99

Analyzed on: 05/11/99

Analyst:

BEN

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Total Dissolved Solids Method 160.1 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	384.4	384.0	99.9	93 - 107

-9905330

Samples in batch:

9905226-04D 9905331-01A 9905237-01E

9905291-01F

9905292-01D

COMMENTS:

LCS# 95535272-11

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 05/12/99

Analyzed on: 05/11/99

Analyst:

BEN

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

> Total Dissolved Solids Method 160.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9905291-01F	3830	4000	4.3	5

-9905330

Samples in batch:

9905226-04D 9905331-01A

9905237-01E

9905291-01F

9905292-01D

COMMENTS:

LCS# 95535272-11

CHAIN OF CUSTODY AND SAMPLE RECEIPT CHECKLIST

				SE	SPL, Inc.	nc.				<u>R</u>		2 2	SPL Workerder No.		08767	673	
		Analysis Request & Chain of Custody Record	eque	st &	Chai) Jo u	ustod	y Reco	rd		2	$\sqrt{}$	/ / <		page /	Jo	
Client Name: Brown & Cale Will				- - -	natrix	bottle	size	pres.		12/10	1456	Redue	A Requested Analysis	nalysi	(A		
Address/Phone: 14 5 (2015) 6.	1351 and #250		5550-552	l :	_	5]922			<u></u>	, -	or 7	9	۲.		-		
Chent Contact: (Trim Jon Kins	35.			1 1	:Iət	Jet:	=0ŧ	ret:		08	S -<	121	λπ	HB			
Project Name: (15) - All Tesico	<u>ئ</u>				lios = {10=	ms=	, zc			rcs			ه سدا	150 Y			
انا					=O ;	=\ =\	[=9] }=#	- O - Z	10O i	- ()	el E	. [,] ၁ ડી	2 C	う、 c ン H			
Project Location:					ter idge					ل- ړ			رب ر	ر کر ر اها			
Invoice To: 1 Fm Jenkins	5-2				= 2] n	glas glas	111 208	H32 HCI		` .∀`)			**	。 フ:			-
SAMPLEID	DATE	TIME	comp	grab	:TS ■M		- 1			cΛ	J		オツ	XX			
M12-3R	5.9.5	15:00			Z						1		×	×			
									1						Ŋ		
										-							
											\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1					
										$\downarrow \downarrow$	\						i i i i i i i i i i i i i i i i i i i
														701-14			
	-	\								i Zu			1				
										- Sell W. 3	7.1						A mellion in the state of
Chent Consultant Remarks: 4 As, Bear, CA.Cr., Pla, He, Se, Az.Cu,	(2) (2) (3)	Ph. Has	B. A.		Laborato	Laboratory remarks:	35							Intad?	Intad?	Z	
7.87	N. K. M	ر جي رچ		١										Temp:	3		
Requested TAT	Special Reporting Requirements	ing Requirem	s nts	Fax Rc	Results	Ø	Raw Data	0	Special Detection Limits (specify):	tection Li	mits (spec	ify):	l	(alaq	PM review (initial)	(initial):	
	Sta	Standard QC 🔯	الشماحة	Level 3 QC	8		Level 4.QC	C ×			ļ				OMF	7	
24hr 🔘 72hr 🔘	1. Relinquished by Sampler:	d by Sampler					date	_=	time	2.1	2. Received by:	y:					
48hr 🔲 Standard 💢	3. Relinquished by:	d by:					date		time	4:	4. Received by:	<u>.</u>					<u> </u>
Other 🔲	5. Relinquished by:	d by:					date		time	.9	6. Hearing by Laborat	W.C		1	217/99	2001	<u> </u>
1 0000	Uton	TV TOTAL (T	7137 660 0	1000	-			500 4 2	haccad	350	Day		A I A	70583	1583 (318) 237 4775	37.4775	7

图 8880 Interchange Drive, Houston, TX 77054 (713) 660-0901 日本 459-Hughes Drive, Traverse City, MI 49684 (616) 947-5777

SPL Houston Environmental Laboratory

Sample Login Checklist

Dat	Time: 5/7/99 /0			
SPI	_ Sample ID:			
	990523	7		
			Yes	<u>No</u>
1	Chain-of-Custody (COC) form is pre	esent.	12	·
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	oping container.		-
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact			
9	Temperature of samples upon arrival	1:	34	C
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	811305	332492
		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD		
		Return to Client		

Name:	Date:
D'anna Stell	5/7/99