AP - 96

ANNUAL MONITORING REPORT

YEAR(S): 2002

Basin Environmental Consulting, LLC

2009 MAR 30 PM 1 32

2800 Plains Highway P. O. Box 381 Lovington, New Mexico 88260 cibryant@basin-consulting.com Office: (575) 396-2378

Fax: (575) 396-1429

2008 ANNUAL MONITORING REPORT

LOVINGTON GATHERING WTI SE 1/4 NE 1/4 SECTION 6, TOWNSHIP 17 SOUTH, RANGE 37 EAST LATITUDE 32°, 51', 56.0" NORTH, LONGITUDE 103°, 17', 07.2" WEST LEA COUNTY, NEW MEXICO PLAINS SRS NUMBER: 2006-0142 **NMOCD REF: 1RP-838**

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET, SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

BASIN ENVIRONMENTAL CONSULTING, LLC

P. O. Box 381 Lovington, New Mexico 88260

March 2009

Project Manager

2008 MAR 30 PM 1 31

March 23, 2009

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe. New Mexico 87505

Re:

Plains All American - 2008 Annual Monitoring Reports

2 Sites in Lea County, New Mexico 1 Site in Eddy County, New Mexico

Dear Mr. Hansen:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

Lovington Gathering WTI	1RP-838 AP-96	Section 06, T17S, R37E, Lea County
Vacuum 10-Inch to Jal	1RP-0385	Section 20, T19S, R37E, Lea County
Ballard Grayburg 5-Inch	2R-0053	Section 10, T18S, R29E, Eddy County

Basin Environmental Consulting, LLC (Basin) prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American, I have personally reviewed the documents and interviewed Basin personnel in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above facilities.

If you have any questions or require further information, please contact me at (575) 441-1099.

Sincerely,

Jason Henry

Remediation Coordinator

Plains All American

CC: Larry Johnson, NMOCD, Hobbs, NM

Enclosures

TABLE OF CONTENTS

INTRODUCTION1
SITE DESCRIPTION AND BACKGROUND INFORMATION1
FIELD ACTIVITIES
LABORATORY RESULTS
SUMMARY5
ANTICIPATED ACTIONS
LIMITATIONS6
DISTRIBUTION7
FIGURES Figure 1 – Site Location Map Figure 2A – Inferred Groundwater Gradient Map – March 11, 2008 Figure 2B – Inferred Groundwater Gradient Map – June 14, 2008 Figure 2C– Inferred Groundwater Gradient Map – September 17, 2008 Figure 2D – Inferred Groundwater Gradient Map – December 2, 2008 Figure 3A – Groundwater Concentration Map – March 11, 2008
Figure 3B – Groundwater Concentration Map – June 14, 2008 Figure 3C – Groundwater Concentration Map – September 17, 2008 Figure 3D – Groundwater Concentration Map – December 2, 2008
TABLES Table 1 – Groundwater Elevation Data Table 2 – Concentrations of Benzene and BTEX in Groundwater Table 3 – Concentrations of Poly Aromatic Hydrocarbons in Groundwater
APPENDICES Appendix A – Laboratory Reports Appendix B - Release Notification and Corrective Action (Form C-141

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Marketing, L.P., (Plains), prepared this annual report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2008 only. Site activities and remedial work are summarized in several letters and reports previously submitted to the NMOCD. For reference, the Site Location Map is provided as Figure 1.

At the request of the NMOCD, initial groundwater monitoring was conducted during the 4th quarter of 2006 to assess any potential groundwater impact from dissolved phase benzene, toluene, ethylbenzene, and xylene (BTEX) constituents. The groundwater monitoring event consisted of measuring static water levels in the monitoring wells, checking of the presence of phase-separated hydrocarbons (PSH) on the water column, and purging and sampling of each well exhibiting sufficient recharge. Based on the results of the initial monitoring and sampling event, Plains placed this site on a quarterly groundwater monitoring program.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is SE¼, NE¼ Section 6, Township 17 South, Range 37 East. The site latitude is 32°, 51, 56.0" North and the site longitude is 103°, 17, 07.2" West. On April 21, 2006, Basin responded to the pipeline release on behalf of Plains to repair the pipeline and excavate the impacted soil. The Lovington Gathering WTI Pipeline was repaired utilizing a pipeline clamp and the visually stained soil was excavated and placed on plastic sheeting to mitigate any further hydrocarbon impact to the underlying soil. Approximately 12 barrels of crude oil was released from the Plains pipeline and 8 barrels were recovered resulting in a net loss of 4 barrels of crude oil. The excavated area was fenced and is characterized by a Plains pipeline right-of-way adjacent to an idled Plains pump station, the release occurred in a pasture containing various oil and gas production facilities. The release resulted in a visibly surface stained area covering approximately 30 feet in length by 27 feet in width. Excavation activities conducted during the initial response and subsequent remediation of the site covered an area approximately 30 feet in length by 27 feet in width and ranged from approximately 5 to 6 feet in depth. Excavated soil was placed on a 6-mil ploy-liner for future remedial action. Utilizing olfactory, visual and photo ionization detector (PID) technology it was determined Volatile Organic Compounds (VOCs) remained in the sidewalls and floor of the excavation.

In July 2006, a soil investigation was conducted to further delineate the horizontal and vertical extent of the on-site hydrocarbon impact, eleven (11) soil borings were advanced to a depth of thirty (30) to seventy-five (75) feet below ground surface (bgs). Based on the laboratory results of the soil samples collected during advancement of the soil borings; three (3) groundwater monitor wells (MW-1, MW-2 and MW-3) were installed to evaluate the status of the groundwater.

Based on the laboratory results from the initial groundwater sampling event (October 5, 2006), four (4) additional monitoring wells were installed in November 2006. During the installation of the groundwater monitor wells (MW-1 through MW-7); there was no visual evidence of PSH in any of the collected soil samples. The analytical results of the selected soil samples did not indicate BTEX or total petroleum hydrocarbon (TPH) concentrations above the laboratory method detection limit (MDL) with the exception of soil samples collected from monitor well MW-3, which exhibited a TPH concentration of 2,080 mg/Kg and 121 mg/Kg, at fifty-five (55) and seventy-five (75) feet bgs, respectively.

The analytical results of groundwater sampling at monitor well MW-7 indicated additional monitor wells were required to fully delineate the down gradient boundary of the dissolved phase plume. On February 7, 2007, monitor well MW-8 was installed down gradient of monitor well MW-7. The analytical results of soil samples collected during the installation of monitor well MW-8 indicated benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard of 10 mg/Kg and 50 mg/Kg for benzene and BTEX, respectively. The analytical results indicate TPH concentrations were less than the MDL and NMOCD regulatory standard of 100 mg/Kg for soil samples collected at ten (10) and twenty-five (25) feet bgs. Soil samples collected at fifty (50) and seventy-five (75) feet bgs exhibited a TPH concentration of 14 mg/Kg (below NMOCD standard) and 101 mg/Kg, respectively.

On August 13, 2007, monitor well MW-9 was installed to further delineate the down gradient boundary of the dissolved phase plume. The analytical results of the soil samples collected during the installation of monitor well MW-9 indicated benzene, BTEX and TPH concentrations were less than the MDL and NMOCD regulatory standard in the five (5) laboratory submitted soil samples.

Currently, there are nine (9) groundwater monitoring wells on-site, MW-1 which is up gradient, MW-4 and MW-5, which are cross gradient, and MW-2, MW-3, MW-6 through MW-9, which are down gradient of the release point.

FIELD ACTIVITIES

No PSH was detected in any of the site monitor wells during the 2008 reporting period.

The site monitoring wells were gauged and sampled March 11, June 14, September 17 and December 2, 2008. During these sampling events, the monitoring wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer mounted polystyrene tank and disposed at an NMOCD approved disposal in Monument, New Mexico.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from the measurements collected during the 2008 quarterly sampling events, are depicted on Figures 2A through 2D. The 2008 groundwater elevation data is provided as Table 1.

The Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.0008 feet/foot to the south-southeast as measured between groundwater monitor wells MW-5 and MW-9. The corrected groundwater elevation ranged between 3,726.78 and 3,722.91 feet above mean sea level, in monitor well MW-1 on March 11, 2008 and in monitor well MW-9 on June 14, 2008, respectively.

LABORATORY RESULTS

Groundwater samples were collected from the groundwater monitoring wells (MW-1 through MW-9) during the quarterly monitoring event were delivered to Xenco Laboratories, formerly Environmental Laboratory of Texas, Odessa, Texas for determination of benzene, toluene, ethylbenzene and xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. Pursuant to an NMOCD request, the groundwater monitoring wells were sampled annually for concentrations of Poly Aromatic Hydrocarbons (PAH) utilizing EPA Method SW 8270C. A summary of BTEX constituent concentrations and PAH constituent concentrations for 2008 are presented in Table 2 and Table 3, respectively. The laboratory reports are provided as Appendix A.

Monitor well MW-1 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from less than the MDL and NMOCD regulatory standard during the 1st and 2nd quarters to 0.035 mg/L during the 4th quarter of 2008. Benzene concentrations were above NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Toluene, ethylbenzene and total xylene concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Monitor well MW-2 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from 0.003 mg/L during the 2nd quarter to 0.159 mg/L during the 3rd quarter of 2008. Benzene concentrations were above the NMOCD regulatory standard during the 1st, 3rd and 4th quarters of the reporting period. Toluene concentrations ranged from <0.002 mg/L during the 1st, 2nd and 3rd quarters to 0.002 mg/L during the 4th quarter of 2008. Toluene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the reporting period. Ethylbenzene concentrations were less than the MDL and NMOCD regulatory standard during all four (4) quarters of the reporting period. Total xylene concentrations ranged from the MDL during the 2nd quarter to 0.008 mg/L during the 4th quarter of 2008. Total xylene concentrations were less than the NMOCD regulatory standard during all four (4) quarters of the reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-3 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from 0.024 mg/L during the 4th quarter to 1.159 mg/L during the 1st quarter of 2008. Benzene concentrations were above NMOCD regulatory standards for all four (4) quarters of the reporting period. Toluene concentrations ranged from <0.002 mg/L during the

3rd and 4th quarters to 0.107 mg/L during the 1st quarter of 2008. Toluene concentrations were less than NMOCD regulatory standard during all four (4) quarters of the reporting period.

Ethylbenzene concentrations ranged from <0.001 mg/L during the 3rd and 4th quarters to 0.177 mg/L during the 1st quarter of 2008. Ethylbenzene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the reporting period. Total xylene concentrations ranged from 0.002 mg/L during the 3rd quarter to 0.205 mg/L during the 1st quarter of 2008. Total xylene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-4 is sampled on a quarterly schedule and analytical results indicate concentrations of benzene, ethylbenzene and total xylene were less than the MDL and NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Toluene concentrations ranged from <0.002 mg/L during the 1st, 2nd and 3rd quarters to 0.006 mg/L during the 4th quarter of 2008. Toluene concentrations were less than the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-5 is sampled on a quarterly schedule and analytical results indicate BTEX constituent concentrations were less than the MDL and NMOCD regulatory standard for each BTEX constituent during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-6 is sampled on a quarterly schedule and analytical results indicate BTEX constituent concentrations were less than the MDL and NMOCD regulatory standard for each BTEX constituent during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-7 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from 0.036 mg/L during the 4th quarter to 0.353 mg/L during the 3rd quarter of 2008. Benzene concentrations were above NMOCD regulatory standard for all four (4) quarters of the reporting period. Toluene and ethylbenzene concentrations were less than the MDL and NMOCD regulatory standard for all four (4) quarters of the 2008 reporting period. Total xylene concentrations ranged from 0.003 mg/L during the 1st and 3rd quarters to 0.016 mg/L during the 2nd quarter of 2008. Total xylene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-8 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from <0.001 mg/L during the 1st quarter to 0.568 mg/L during the 3rd quarter of 2008. Benzene concentrations were above the NMOCD regulatory standard during the

3rd and 4th quarters of the reporting period. Toluene concentrations ranged from <0.002 mg/L during the 1st and 2nd quarters to 0.046 mg/L during the 4th quarter of 2008. Toluene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the reporting period. Ethylbenzene concentrations ranged from <0.001 mg/L during the 1st and 2nd quarters to 0.008 mg/L during the 4th quarter of 2008. Ethylbenzene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the reporting period. Total xylene concentrations ranged from <0.002 mg/L during the 1st and 2nd quarters to 0.054 mg/L during the 4th quarter of 2008. Total xylene concentrations were less than the NMOCD regulatory standard for all four (4) quarters of the reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Monitor well MW-9 is sampled on a quarterly schedule and analytical results indicate BTEX constituent concentrations were less than the MDL and NMOCD regulatory standard for each BTEX constituent during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of the reporting period.

Laboratory analytical results obtained during the 4th quarter groundwater sampling event in December 2008 indicate benzene and BTEX constituent concentrations were less than the MDL for groundwater monitor wells MW-5, MW-6 and MW-9. Analytical results indicate benzene concentrations were above the NMOCD regulatory standard for groundwater monitor wells MW-1, MW-2, MW-3, MW-7 and MW-8 at 0.035 mg/L, 0.050 mg/L, 0.024 mg/L, 0.036 mg/L and 0.234 mg/L, respectively. However, toluene, ethylbenzene and total xylene concentrations were less than the NMOCD regulatory standard.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

SUMMARY

Based on the depth of hydrocarbon impact at this site, the NMOCD requested quarterly groundwater sampling events be conducted at this site. No PSH was detected in any of the site monitor wells during the 2008 reporting period.

Currently, there are nine groundwater monitoring wells (MW-1 through MW-9) on-site. The Groundwater Gradient Map Figure 2D, indicates a general gradient of approximately 0.0008 feet/foot to the south-southeast as measured between groundwater monitor wells MW-5 and MW-9.

Laboratory analytical results obtained during the 4th quarter groundwater sampling event in December 2008 indicate benzene and BTEX constituent concentrations were less than the MDL for groundwater monitor wells MW-5, MW-6 and MW-9. Analytical results indicate benzene concentrations were above the NMOCD regulatory standard for groundwater monitor wells MW-1, MW-2, MW-3, MW-7 and MW-8 at 0.035 mg/L, 0.050 mg/L, 0.024 mg/L, 0.036 mg/L

and 0.234 mg/L, respectively. However, toluene, ethylbenzene and total xylene concentrations were less than the NMOCD regulatory standard.

On August 18, 2008, a Stage 1 and Stage 2 Abatement Plan was submitted to the NMOCD Santa Fe Office. As of the date of publication of this report no response has been received from the NMOCD as to the status of this Abatement Plan.

ANTICIPATED ACTIONS

Quarterly monitoring and groundwater sampling will continue in the reporting year 2009.

LIMITATIONS

Basin has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin and/or Plains.

DISTRIBUTION

Copy 1: Edward Hansen

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Edwardj.hansen@state.nm.us

Copy 2: Larry Johnson

New Mexico Oil Conservation Division

1625 N. French Drive Hobbs, New Mexico 88240 Larry.Johnson@state.nm.us

Copy 3: Jeff Dann

Plains Marketing, L.P.

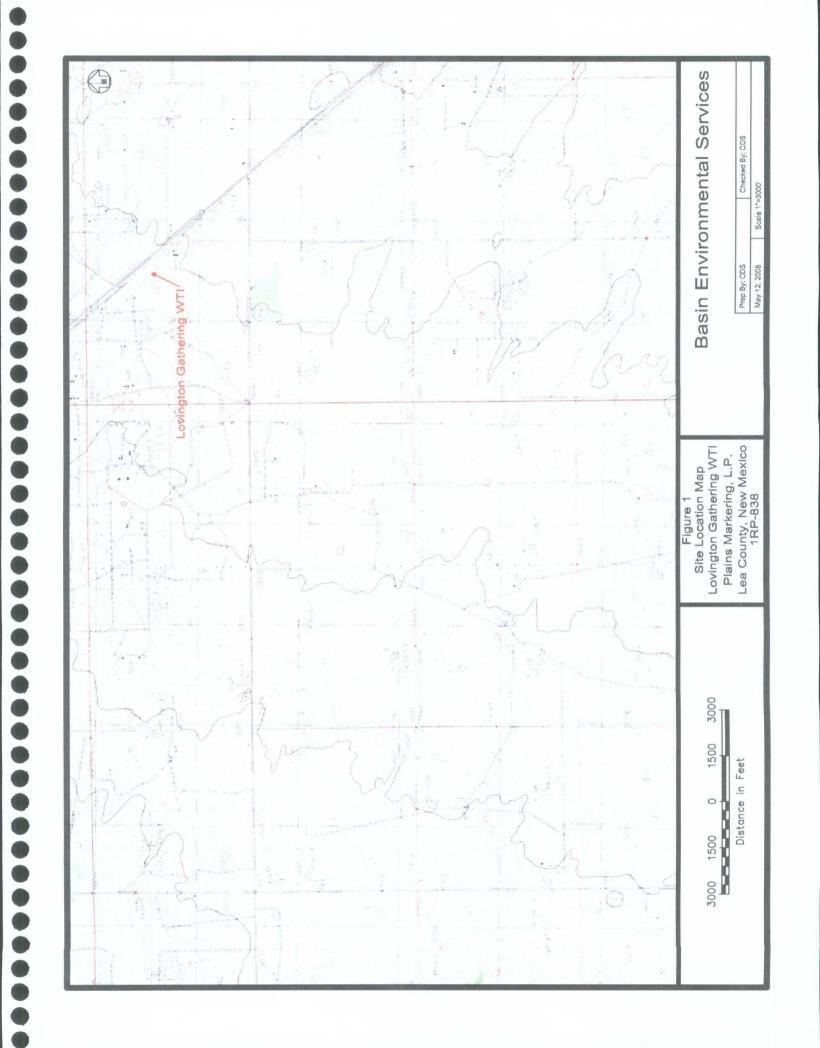
333 Clay Street Suite 1600

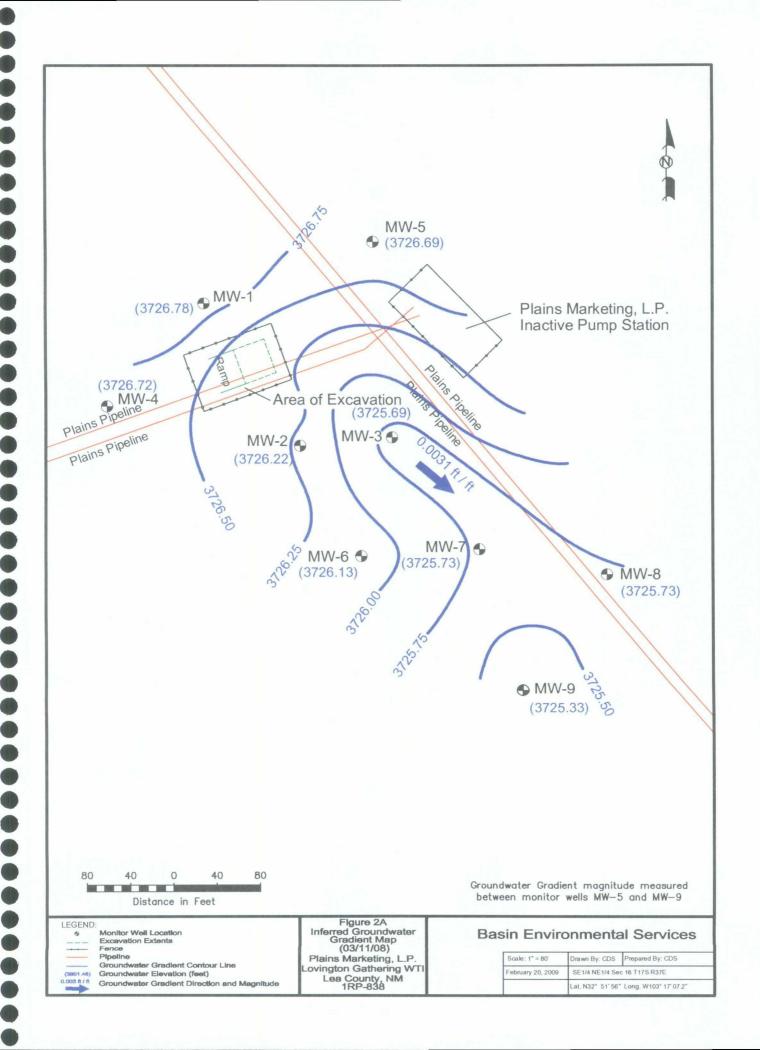
Houston, Texas 77002 jpdann@paalp.com

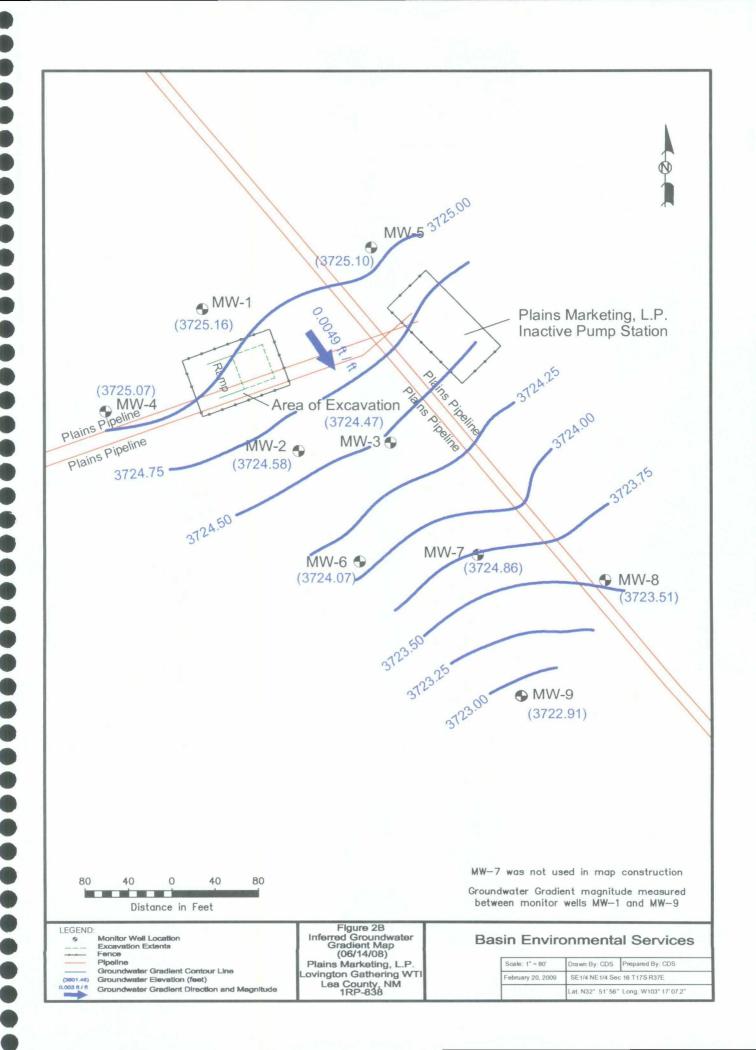
Copy 4: Jason Henry

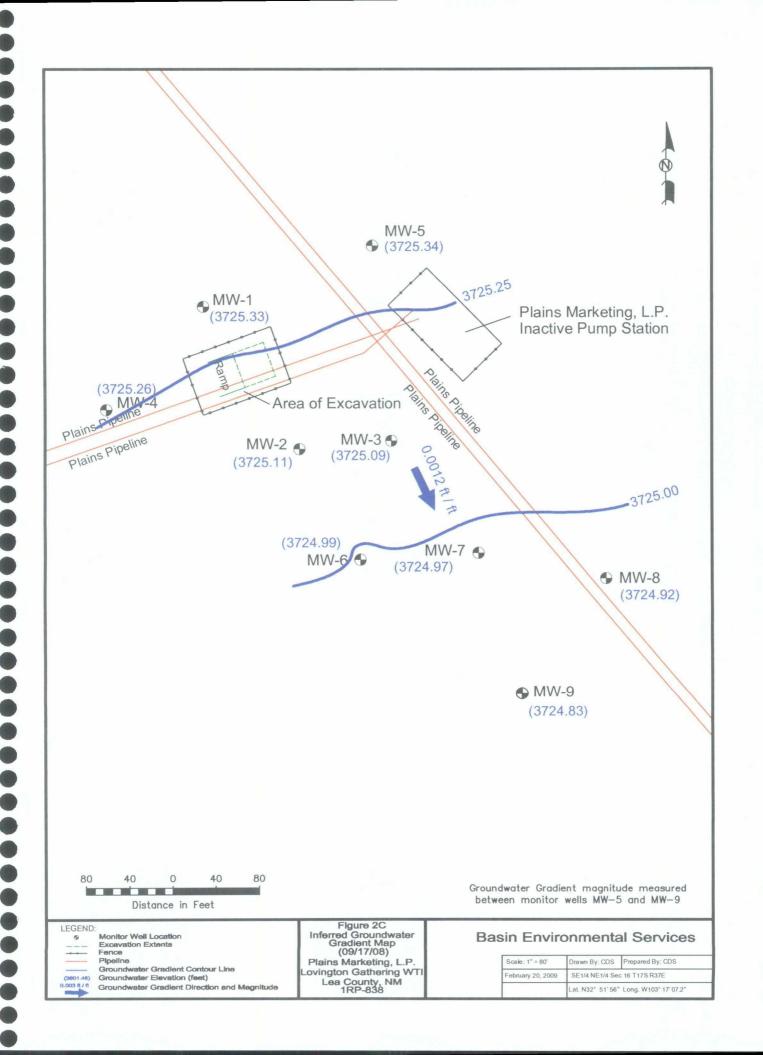
Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323

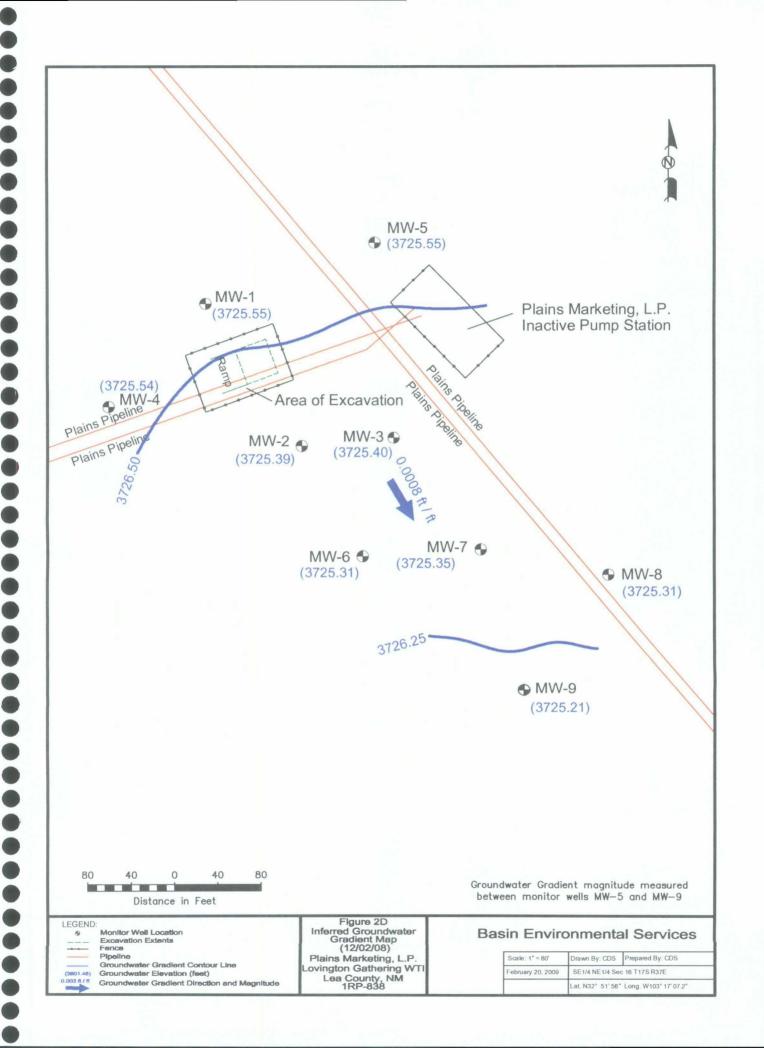
jhenry@paalp.com

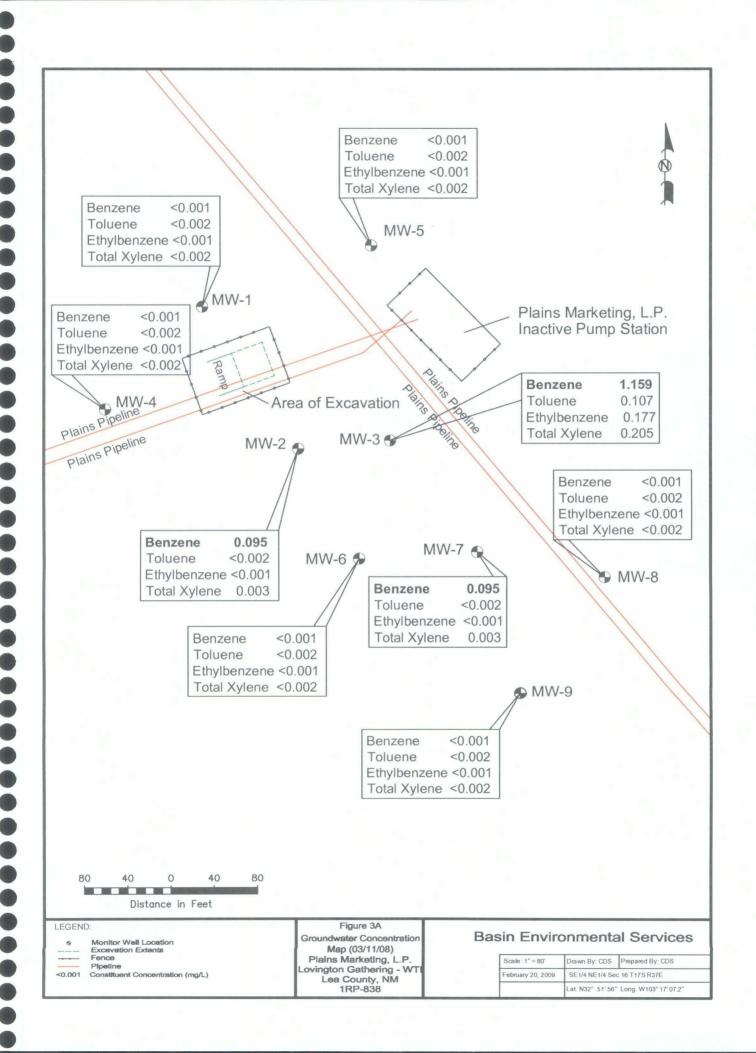

Copy 5: Basin Environmental Consulting, LLC

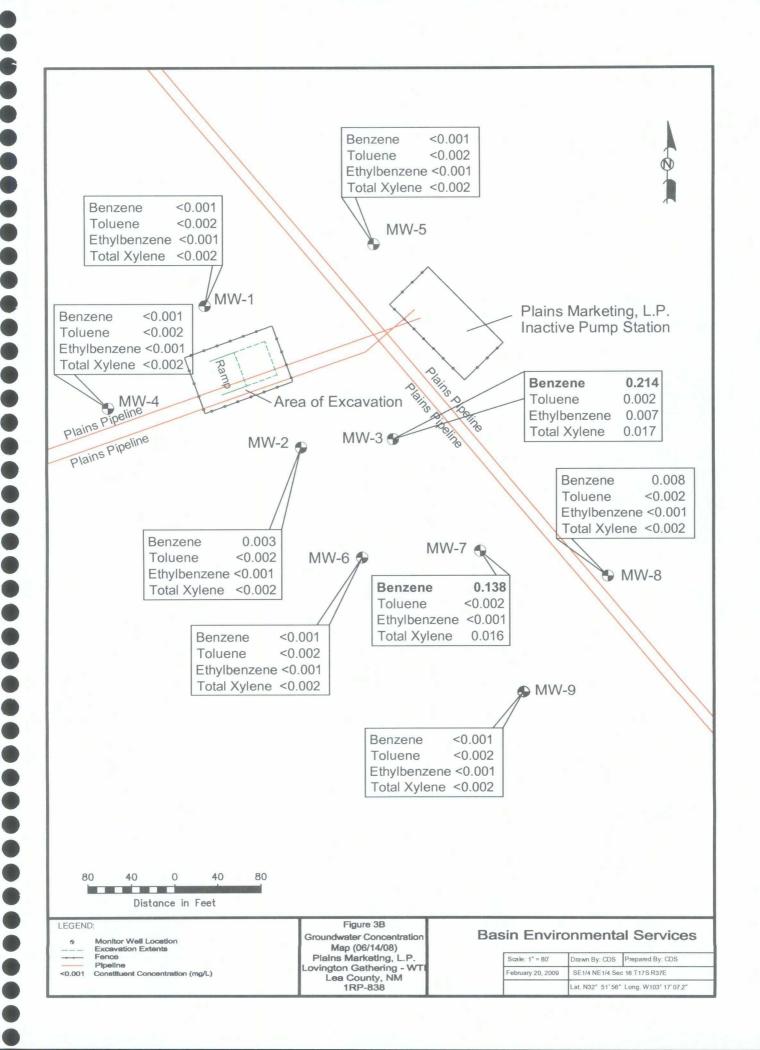

P. O. Box 381

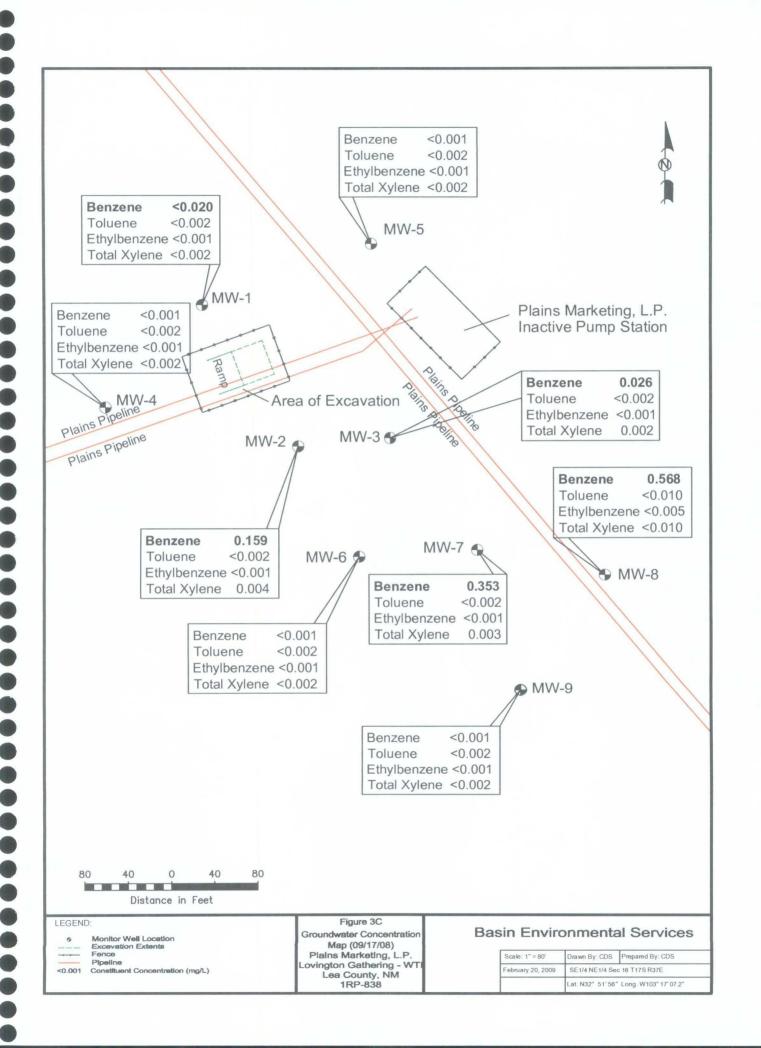

Lovington, New Mexico 88260 cjbryant@basin-consulting.com

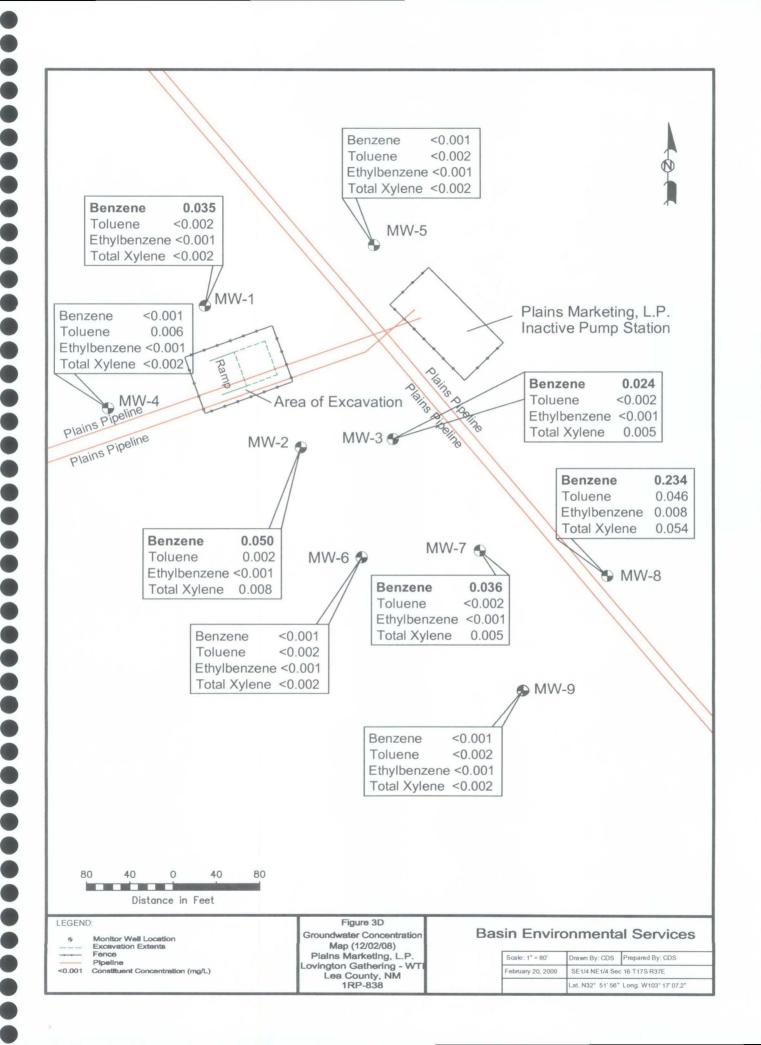

Copy Number:


Figures









Tables

TABLE 1

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2006-142

NMOCD REF NO: 1RP-838

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	03/11/08	3,806.60	-	79.82	0.00	3,726.78
	06/14/08	3,806.60	-	81.44	0.00	3,725.16
	09/17/08	3,806.60	-	81.27	0.00	3,725.33
	12/02/08	3,806.60	-	81.05	0.00	3,725.55
· *.						
MW-2	03/11/08	3,806.31	-	80.09	0.00	3,726.22
	06/14/08	3,806.31	-	81.73	0.00	3,724.58
	09/17/08	3,806.31	-	81.20	0.00	3,725.11
	12/02/08	3,806.31	-	80.92	0.00	3,725.39
MW-3	03/11/08	3,806.19	-	80.50	0.00	3,725.69
	06/14/08	3,806.19	-	81.72	0.00	3,724.47
·	09/17/08	3,806.19	_	81.10	0.00	3,725.09
	12/02/08	3,806.19	-	80.79	0.00	3,725.40
MW-4	03/11/08	3,806.67	-	79.95	0.00	3,726.72
	06/14/08	3,806.67	-	81.60	0.00	3,725.07
	09/17/08	3,806.67	-	81.41	0.00	3,725.26
	12/02/08	3,806.67	_	81.13	0.00	3,725.54
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				, A		
MW-5	03/11/08	3,806.30	-	79.61	0.00	3,726.69
-	06/14/08	3,806.30	-	81.20	0.00	3,725.10
	09/17/08	3,806.30	-	80.96	0.00	3,725.34
	12/02/08	3,806.30	_	80.75	0.00	3,725.55
(45)						(1) Ya
MW-6	03/11/08	3,806.08	-	79.95	0.00	3,726.13
	06/14/08	3,806.08	-	82.01	0.00	3,724.07
	09/17/08	3,806.08	_	81.09	0.00	3,724.99
	12/02/08	3,806.08	-	80.77	0.00	3,725.31
MW-7	03/11/08	3,806.05	-	80.32	0.00	3,725.73
	06/14/08	3,806.05	-	81.19	0.00	3,724.86
	09/17/08	3,806.05	-	81.08	0.00	3,724.97
	12/02/08	3,806.05		80.70	0.00	3,725.35
				and the state of the		

TABLE 1

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2006-142

NMOCD REF NO: 1RP-838

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-8	03/11/08	3,805.89	-	80.16	0.00	3,725.73
	06/14/08	3,805.89	•	82.38	0.00	3,723.51
	09/17/08	3,805.89	-	80.97	0.00	3,724.92
	12/02/08	3,805.89	•	80.58	0.00	3,725.31
				• 1		,
MW-9	03/11/08	3,806.02	-	80.69	0.00	3,725.33
	06/14/08	3,806.02	-	83.11	0.00	3,722.91
	09/17/08	3,806.02	-	81.19	0.00	3,724.83
	12/02/08	3,806.02	_	80.81	0.00	3,725.21
	- 73.4					

TABLE 2

CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2006-142

NMOCD REF NO: 1RP-838

- · · · · - · · · · - ·				METHODS:	EPA SW 846	6-8021B, 5030)
SAMPLE	SAMPLE	DATE	DENZENE	TOLUENE	ETHYL-	M,P-	0-
LOCATION	DATE	ANALYZED			BENZENE	XYLENES	XYLENES
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1	03/11/08	03/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	06/14/08	06/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
-	09/17/08	09/22/08	0.020	<0.002	<0.001	<0.002	<0.001
	12/02/08	12/05/08	0.035	<0.002	<0.001	<0.002	<0.001
:24.	15 1 3 2 7 3		76 Jan 18 18 18				
MW-2	03/11/08	03/17/08	0.095	<0.002	<0.001	0.003	<0.001
	06/14/08	06/17/08	0.003	<0.002	<0.001	<0.002	<0.001
	09/17/08	09/22/08	0.159	<0.002	<0.001	0.004	< 0.001
	12/02/08	12/05/08	0.050	0.002	<0.001	0.007	0.001
* 1 1 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4					The section of		
MW-3	03/11/08	03/17/08	1.159	0.107	0.177	0.066	0.139
	06/14/08	06/17/08	0.214	0.002	0.007	0.012	0.005
	09/17/08	09/22/08	0.026	<0.002	<0.001	0.002	<0.001
	12/02/08	12/05/08	0.024	<0.002	<0.001	0.004	0.001
1 5,411				15.1.1.1.1.1			
MW-4	03/11/08	03/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
· · · · · · · · · · · · · · · · · · ·	06/14/08	06/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	09/17/08	09/22/08	<0.001	<0.002	<0.001	<0.002	<0.001
	12/02/08	12/05/08	<0.001	0.006	<0.001	<0.002	<0.001
		The state of the s	And the second second		3 444		
MW-5	03/11/08	03/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	06/14/08	06/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	09/17/08	09/22/08	<0.001	<0.002	<0.001	<0.002	<0.001
-	12/02/08	12/05/08	<0.001	<0.002	<0.001	<0.002	<0.001
			(3.75° ·	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
MW-6	03/11/08	03/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	06/14/08	06/17/08	< 0.001	<0.002	< 0.001	<0.002	<0.001
	09/17/08	09/22/08	<0.001	<0.002	<0.001	<0.002	<0.001
	12/02/08	12/05/08	<0.001	<0.002	<0.001	<0.002	<0.001
		产数分类。					J. 3.
MW-7	03/11/08	03/17/08	0.095	<0.002	<0.001	0.003	<0.001
	06/14/08	06/17/08	0.138	<0.002	<0.001	0.016	<0.001
	09/17/08	09/22/08	0.353	<0.002	<0.001	0.003	<0.001
	12/02/08	12/05/08	0.036	<0.002	<0.001	0.003	0.002
7		CONTRACTOR					
MW-8	03/11/08	03/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	06/14/08	06/17/08	0.008	<0.002	<0.001	< 0.002	<0.001
	09/17/08	09/22/08	0.568	<0.010	<0.005	<0.010	<0.005
······································	12/02/08	12/05/08	0.234	0.046	0.008	0.041	0.013
* .		Mark Strain	445				

TABLE 2

CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2006-142 NMOCD REF NO: 1RP-838

			<u> </u>	METHODS:	EPA SW 846	5-8021B, 5030)
SAMPLE LOCATION	SAMPLE DATE	DATE ANALYZED	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O- XYLENES (mg/L)
MW-9	03/11/08	03/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	06/14/08	06/17/08	<0.001	<0.002	<0.001	<0.002	<0.001
	09/17/08	09/22/08	<0.001	<0.002	<0.001	<0.002	<0.001
	12/02/08	12/05/08	<0.001	<0.002	<0.001	<0.002	<0.001
			1		45.5	ø	,
NMOCD CRIT	MOCD CRITERIA		0.01	0.75	0.75	0.€	2

TABLE 3

CONCENTRATIONS OF POLY AROMATIC HYDROCARBONS IN GROUNDWATER

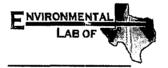
PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2006-142 NMOCD REF NO: 1RP-838

	Ругепе	< 0.005		<0.005		<0.005		< 0.005		< 0.005		<0.005		<0.005		<0.005	<0.005
	Phenanthrene	<0.005	,	<0.005		<0.005	,	<0.005		<0.005		<0.005		<0.005	·	<0.005	<0.005
	Saphthaline Naphthaline	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
	2-Methylnaphthalene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
	I-Methylnaphthalene	<0.005	, 6	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
	ənəny9(b,2-£,2,1)onəbn1	<0.005		<0.005	. 3 ² -	<0.005		<0.005		<0.005		<0.005	* * * * * * * * * * * * * * * * * * * *	<0.005		<0.005	<0.005
	Fllnorene	<0.005		<0.005	*	<0.005		<0.005		<0.005		<0.005	45 J. 3	<0.005		<0.005	<0.005
8270C	Fluoranthene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
SW 846 8270C	Dibenz(a,h)Anthracene	<0.005		<0.005	10,40	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
): EPA	Chrysene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
METHOD:	Benzo(g,h,i)perylene	<0.005		<0.005	4	<0.005		<0.005		<0.005	-	<0.005		<0.005	·	<0.005	<0.00>
N	Benzo(k)fluoranthene	<0.005		<0.005		<0.005		<0.005	٠,	<0.005		<0.005		<0.005		<0.005	<0.005
	Benzo(b)fluoranthene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
	Benxo(a)pyrene	<0.005		<0.005	* *	<0.005		<0.005		<0.005	. i .	<0.005		<0.005		<0.005	<0.005
	Benzo(a)anthracene	<0.005	* *	<0.005	, a ,	<0.005		<0.005		<0.005		<0.005		<0.005		< 0.005	<0.005
	Апьэвтиля	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
	Acensphthylene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	<0.005
	Асепарһtһепе	<0.005		<0.005	1.4.1	<0.005		<0.005	-	<0.005	, . 	<0.005	;* .	<0.005	ţ	<0.005	<0.005
	SAMPLE DATE	12/02/08		12/02/08		12/02/08		12/02/08		12/02/08		12/02/08		12/02/08		12/01/08	12/02/08
	SAMPLE LOCATION	MW-1		MW-2		MW-3		MW-4		MW-5		9-MM	7	MW-7		8-WM	WW-9

Appendices

Appendix A Laboratory Reports

Analytical Report 299636


for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

Lovington Gathering WTI 2006-142

19-MAR-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

19-MAR-08

Project Manager: Camille Reynolds
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 299636

Lovington Gathering WTI

Project Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 299636. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 299636 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 299636

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Mar-11-08 13:25		299636-001
MW-4	W	Mar-11-08 14:00		299636-002
MW-5	W	Mar-11-08 14:40		299636-003
MW-6	W	Mar-11-08 15:15		299636-004
MW-8	W	Mar-11-08 15:50		299636-005
MW-9	W	Mar-11-08 16:40		299636-006
MW-2	W	Mar-12-08 08:00		299636-007
MW-7	W	Mar-12-08 09:00		299636-008
MW-3	W	Mar-12-08 10:00		299636-009

0000

Certificate of Analysis Summary 299636

PLAINS ALL AMERICAN EH&S, Midland, TX

Contact: Camille Reynolds Project Location: Lea County, NM

Project Id: 2006-142

Project Name: Lovington Gathering WTI

Date Received in Lab: Fri Mar-14-08 12:10 pm Report Date: 19-MAR-08

					Project Manager: Brent Barron, II	srent Barron, II		
	Lab Id:	299636-001	299636-002	299636-003	299636-004	299636-005	299636-006	90
Amalusis Bonnostad	Field Id:	MW-1	MW-4	MW-5	MW-6	MW-8	WW-9	
Anniysis itequesica	Depth:							
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	
	Sampled:	Mar-11-08 13:25	Mar-11-08 14:00	Mar-11-08 14:40	Mar-11-08 15:15	Mar-11-08 15:50	Mar-11-08 16:40	0+:9
BTEX by EPA 8021B	Extracted:	Mar-17-08 08:42	Mar-17-08 08:42	Mar-17-08 08:42	Mar-17-08 08:42	Mar-17-08 08:42	Mar-17-08 08:42	8:42
	Analyzed:	Mar-17-08 15:39	Mar-17-08 15:58	Mar-17-08 16:16	Mar-17-08 16:34	Mar-17-08 16:53	Mar-17-08 17:48	7:48
	Units/RL.	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L	RL
Benzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	S	0.0000
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	QN.	ND 0.0020
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	QZ	ND 0.0010
m,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	g	0.0020
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	Ð	0.0010
Xylenes, Total		Ð	Ð	S	R	S	QN.	
Total BTEX		Ð	Ð	Ð	8	QN	QN.	

This analytical report, and the entire data package it represents, has been made for your exclusive and contridential use. The interpretations and results expressed throughout this analytical report represent the two judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data herdry presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

Certificate of Analysis Summary 299636 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Project Id: 2006-142

Contact: Camille Reynolds Project Location: Lea County, NM

Date Received in Lab: Fri Mar-14-08 12:10 pm

Report Date: 19-MAR-08
Project Manager: Brent Barron, II

					I ofer Manager. Divin Dallon, in	Lent Darlon, II	
	Lab Id:	299636-007	299636-008	299636-009			
haboune Donneth	Field 1d:	MW-2	MW-7	MW-3			
naisanhay sistimuv	Depth:						
	Matrix:	WATER	WATER	WATER			
	Sampled:	Mar-12-08 08:00	Mar-12-08 09:00	Mar-12-08 10:00			
BTEX by EPA 8021B	Extracted:	Mar-17-08 08:42	Mar-17-08 08:42	Mar-18-08 10:28			
	Analyzed:	Mar-17-08 18:06	Mar-17-08 18:25	Mar-18-08 15:00			
;	Units/RL:	mg/L RL	mg/L RL	mg/L RL			
Benzene		0.0055 0.0010	0.0437 0.0010	1.159 0.0050			
Toluene		ND 0.0020	ND 0.0020	0.1073 0.0100			
Ethylbenzene		ND 0.0010	ND 0.0010	0.1775 0.0050			1111111
m.p-Xylenes		0.0032 0.0020	0.0150 0.0020	0.0662 0.0100			
o-Xylene		ND 0.0010	ND 0.0010	0.1393 0.0050			
Xylenes, Total		0.0032	0.015	0.2055			
Total BTEX		0.0987	0.0587	1.6493			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential user. The interpretations and results expressed throughout this analytical report represent the best judgement of XENXOL laboratories. XENXOL abova assumes no responsibility and makes no warranty to the end use of the data threby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

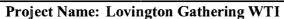
Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.


A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone Fax 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0692 (281) 589-0695 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3334 (210) 509-3335 (813) 620-2000 2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2033 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 (770) 449-8800 (770) 449-5477 6017 Financial Dr., Norcross, GA 30071

Form 2 - Surrogate Recoveries

Work Order #: 299636

Project ID: 2006-142

Lab Batch #: 717332

Sample: 299559-001 S / MS

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY :	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0307	0.0300	102	80-120	
4-Bromofluorobenzene	0.0347	0.0300	116	80-120	

Lab Batch #: 717332

Sample: 299559-001 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	, ,	, ,	[D]		
1,4-Difluorobenzene	0.0334	0.0300	111	80-120	
4-Bromofluorobenzene	0.0356	0.0300	119	80-120	

Lab Batch #: 717332

Sample: 299636-001 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0333	0.0300	111	80-120	
4-Bromofluorobenzene	0.0338	0.0300	113	80-120	

Lab Batch #: 717332

Sample: 299636-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L BTEX by EPA 8021B Analytes	SURROGATE RECOVERY STUDY					
	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags	
						1,4-Difluorobenzene
4-Bromofluorobenzene	0.0341	0.0300	114	80-120		

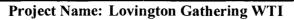
Lab Batch #: 717332

Sample: 299636-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0329	0.0300	110	80-120	
4-Bromofluorobenzene	0.0338	0.0300	113	80-120	


^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{***} Poor recoveries due to dilution

Work Order #: 299636

Project ID: 2006-142

Lab Batch #: 717332

Sample: 299636-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0328	0.0300	109	80-120		
4-Bromofluorobenzene	0.0344	0.0300	115	80-120		

Lab Batch #: 717332

Sample: 299636-005 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount B	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0329	0.0300	110	80-120		
4-Bromofluorobenzene	0.0337	0.0300	112	80-120		

Lab Batch #: 717332

Sample: 299636-006 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0327	0.0300	109	80-120		
4-Bromofluorobenzene	0.0338	0.0300	113	80-120		

Lab Batch #: 717332

Sample: 299636-007 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0311	0.0300	104	80-120		
4-Bromofluorobenzene	0.0310	0.0300	103	80-120		

Lab Batch #: 717332

Sample: 299636-008 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1.4-Difluorobenzene	0.0310	0.0300	103	80-120		
4-Bromofluorobenzene	0.0328	0.0300	109	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 299636

Project ID: 2006-142

Lab Batch #: 717332

Sample: 505989-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes		,	[D]				
1,4-Difluorobenzene	0.0303	0.0300	101	80-120			
4-Bromofluorobenzene	0.0355	0.0300	118	80-120			

Lab Batch #: 717332

Sample: 505989-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L SURROGATE RECOVERY STU				STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		'-,	[D]		
1,4-Difluorobenzene	0.0331	0.0300	110	80-120	:
4-Bromofluorobenzene	0.0342	0.0300	114	80-120	

Lab Batch #: 717332

Sample: 505989-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found A}	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0302	0.0300	101	80-120		
4-Bromofluorobenzene	0.0330	0.0300	110	80-120		

Lab Batch #: 717545

7545

Sample: 299636-009 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			{D}			
1,4-Difluorobenzene	0.0298	0.0300	99	80-120		
4-Bromofluorobenzene	0.0277	0.0300	92	80-120		

Lab Batch #: 717545

Sample: 299685-002 S / MS

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	"-"	[2]	[D]	/•••		
1,4-Difluorobenzene	0.0339	0.0300	113	80-120		
4-Bromofluorobenzene	0.0360	0.0300	120	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 299636

Project ID: 2006-142

Lab Batch #: 717545

Sample: 299685-002 SD / MSD

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			D		
1,4-Difluorobenzene	0.0342	0.0300	114	80-120	
4-Bromofluorobenzene	0.0356	0.0300	119	80-120	

Lab Batch #: 717545

Sample: 506115-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	,,	'-'	[D]	, , , ,		
1,4-Difluorobenzene	0.0301	0.0300	100	80-120		
4-Bromofluorobenzene	0.0329	0.0300	110	80-120		

Lab Batch #: 717545

Sample: 506115-1-BLK / BLK

Batch: 1

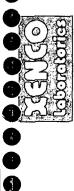
Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0328	0.0300	109	80-120	
4-Bromofluorobenzene	0.0337	0.0300	112	80-120	

Lab Batch #: 717545

Sample: 506115-1-BSD / BSD

Batch: 1


Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0300	0.0300	100	80-120	
4-Bromofluorobenzene	0.0307	0.0300	102	80-120	

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 299636

Analyst: SHE

Date Prepared: 03/17/2008

Date Analyzed: 03/17/2008 **Project ID:** 2006-142

Sample: 505989-1-BKS Lab Batch ID: 717332

Batch #: 1

Matrix: Water

Units: mg/L		bLAIN	K / BLAINK	FIKE / E	SLAINKS	BLAINK/BLAINK SPIKE/BLAINK SPIKE DUPLICATE KECOVERY STUDY	ICALE I	KECOVE	KYSIUD	Ţ	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD	Control Limits	Control Limits %RPD	Flag
Analytes		<u>e</u>	[2]	<u>e</u>	a	Result [F]	[2]				
Benzene	Ð	0.1000	0.0980	86	0.1	0.0942	94	4	70-125	25	
Toluene	QN	0.1000	0.0979	86	0.1	0.0943	94	4	70-125	25	
Ethylbenzene	Ω	0.1000	0.1001	100	0.1	0.0967	16	3	71-129	25	
m,p-Xylenes	Ð	0.2000	0.2009	001	0.2	0.1930	6	4	70-131	25	
o-Xylene	QN	0.1000	0.1073	107	0.1	0.1022	102	5	71-133	25	

Analyst: SHE

Lab Batch ID: 717545

Date Prepared: 03/18/2008

Batch #: 1

Matrix: Water

Date Analyzed: 03/18/2008

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Sample: 506115-1-BKS Units: mg/L

Units: ""g/"						THE TOTAL MECOLOGICAL MECOLOGICAL MECOLOGICAL	י מושטוי		TO IC IN	4	
BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control	Flag
Analytes	[A]	[B]	Kesuit [C]	[D]	[3]	Duphcate Result [F]	[G %	<u> </u>	%oK	%KFD	
Benzene	QN	0.1000	0.0886	68	0.1	0.0913	91	6	70-125	25	
Toluene	Q.	0.1000	0.0883	88	0.1	8060.0	91	3	70-125	25	
Ethylbenzene	QN	0.1000	9060.0	91	0.1	0.0927	93	2	71-129	25	
m,p-Xylenes	QN	0.2000	0.1814	16	0.2	0.1850	93	2	70-131	25	
o-Nylene	QN	0.1000	0.0967	16	0.1	0.0982	86	2	71-133	25	

Relative Percent Difference RPD = 200*(D-F)/(D+F)Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 299636

Date Analyzed: 03/17/2008 Lab Batch ID: 717332

QC-Sample ID: 299559-001 S

Project ID: 2006-142

Matrix: Water SHE Analyst: Batch #: Date Prepared: 03/17/2008

Reporting Units: mg/L		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E / MAT	RIX SPIF	KE DUPLICA'	TE RECO	VERY S	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	00 00	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Kesuit [A]	Added [B]	<u>[]</u>	W. [U]	Added [E]	Result [F]	% [G]	%	%K	%RPD	
Вепzепе	0.0054	0.1000	0.0873	82	0.1000	0.0839	79	4	70-125	25	
Toluene	ND	0.1000	0.0893	68	0.1000	0.0849	85	5	70-125	25	
Ethylbenzene	ND	0.1000	0.0935	94	0.1000	0.0885	68	5	71-129	25	
m,p-Xylenes	ND	0.2000	0.1856	93	0.2000	0.1753	88	9	70-131	25	
o-Xylene	ND	0.1000	0.0971	6	0.1000	0.0913	91	9	71-133	25	

Date Analyzed: 03/18/2008 Lab Batch ID: 717545

QC-Sample ID: 299685-002 S Date Prepared: 03/18/2008

Matrix: Water Batch #: Analyst:

Flag Limits %RPD Control 25 25 25 25 25 Control Limits %R 70-125 71-133 70-125 70-131 71-129 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD **∞** Ś 3 Spiked Dup. %R [G] 83 8 84 88 92 Duplicate Spiked Sample Result [F] 0.0953 0.0838 0.1758 0.0893 0.0921 Spike Added 0.1000 0.1000 0.1000 0.2000 0.1000 Spiked Sample %R [D] 80 82 82 11 88 Spiked Sample Result 0.0889 0.0853 0.1693 0.0884 0.0801 0.1000 Spike Added 0.1000 0.1000 0.2000 0.1000 Parent Sample Result [A] 0.0120 Ð S £ Ð BTEX by EPA 8021B Analytes Reporting Units: mg/L Ethylbenzene m,p-Xylenes o-Xylene Toluene Benzene

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Environmental Lab of Texas

0

□ NPDES \$34 22 Project Name: LOVINGTON GATHERING WTI Phone: 432-563-1800 Fax: 432-563-1713 TRRP CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12500 West 1:20 East Phones: 423-563-1600 Obsses, foras 19765 TCLP PO #: PAA - C. J. Reynolds Project Loc: Lea County, NM Report Format: X Standard Project #: 2006-142 kdutton@basinenv.com (505) 396-1429 Fax No: e-mail: PAGE 01 OF Basin Environmental Service Technologies, LLC Lovington, NM 88260 Company Address: P. O. Box 301 Ken Dutton Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip:

(lab use only)

_		TAT brisbrist2	×	<u>×</u>	×	×	×	×	×	<u>×</u>	_×	_	l '		ğ	
	.62	AS (olubedos-erg TAT HEUR)	Н	-	-4	_	-	4	_	-4	\dashv	_	ZZ	2 Z Z	Lone Sta	ပ္
_	_			4	_	\dashv	_	_	_	_	_	_		_	2 ہے	_
_					_		_	_	_	\Box			(D) (C)	<i>35</i> 6	ফ্রন্সর	S, C
_	_	<u> </u>	Щ	_	_		\vdash		_	_		ļ	4		ı.	(()
		M.O.R.	Ш			_		_		_			1		پ	
_		8CI								_	Щ	<u></u>	. ~	ξ,	¥,	نيد
×	09	K8 X318 to 0E02/81508 X318	×	×	×	×	×	×	×	×	×		Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	Labels on container(s) Custody seals on container(s) Custody seals on conter(s)	mple Hand Delivered by Sampler/Client Rep. 3 by Courier? UPS	Temperature Upon Receipt:
	L	Sociationings		_		Ш						_	Laboratory Comments: Sample Containers Intac VOCs Free of Headspac	£82€	Sample Hand Delivered by Sampler/Client Re by Counter? UPS	æ
_	L	Volables											E S S	9 2 2	충흥	ž
	aş	Metals: As Ag Ba Ca Cr Pb Hg 5											일률호	588	12 8 5 E	⊃
TOTAL	L	SAR / ESP / CEC				•							[ខ្មីនិទ្ធ	8 8 8	T E	흁
2		Anions (Cl. SO4, Alkahnty)											S 5 2	\$ 5 B	200	. <u>\$</u>
		Calions (Ca, Mg, Na, K)											\$ 8 E	555	Sa _	25
	Г	3001 XT 2001 XT :H9T							Ì							
	85	108 M2108 1,815 HQT											1		<u>g</u>	2
	ū	NP - Non-Potable Specify Offi	Н	$\overline{}$		\vdash	_	\neg		т	\vdash	Т	1	「ら		[2
į	Matrix	CW - Croundwater 5- Soluson	ĕ	GW	ĞΚ	Š	ĞΨ	§.	ĞΜ	GW	Š	l	l			S 14.08 12:10
-	2	DW-DHAKING Water SL-Sudg	١٦	اکا	ا ا	٦	اکا		ľ	اتا	٦	l	1	° ₹	2	<u>•</u> 3
	۲	Other (Stecily)						$\overline{}$		\vdash	$\overline{}$	Г	1	3.77.00	Date	2 de C
į	Preservation & # of Containers	anon	_		Н	\vdash	П		_	_	\vdash	<u> </u>	1	3,	1	(1)
ı	ő	cO _s 2 _s aN	<u> </u>	Н	Н	1	Н	Н	Н		\vdash	H	1		t	
ı	οfC	HOEN		-	Н	-	Н	H	\vdash	-	\vdash		ł			
	7.8	*OS*H	-	-	Н	-	-	Н		-	\vdash	┝	1		1	
	ő		L	-	L	٦	L.	_		-		⊢	-	1		
	Š		×	×	×	×	×	×	×	×	×	-	4		1	١
	ş	*ONH	_	L.								_			l	-
	٥	***	×	×	×	×	×	×	X	×	×			i '	Ì	İ
		Total #. of Containers	2	2	2	2	2	2	2	2	2]			١
		Field Fittered	I		П								1	2	Į.	12
		bəlqmıs2 əmiT	1325	1400	1440	1515	1550	1640	080	0060	1000			Hali	,	- A
		b∋lqms2 əisQ	11-Mar-08	11-Mar-08	11-Mar-08	11-Mar-08	11-Mar-08	11-Mar-08	12-Mar-08	12-Mar-08	12-Mar-08			Received by:	Received by: /	Received by ELOT:
		Ending Depth													~	_
		Beginning Depth		-		Н	-	-		H	-	┢	1		5-1-7-25 (2) - 10	Tim8
		dend principal	<u> </u>	_	_	L	L	L.,	_	<u> </u>	-	 -	-	ē	200	
						ĺ					١,	l		Date MARINE	* 3	Date
						L								° 3	B →	ط
												i	ı	2	>	L
											1	1	1	1	[
, <)	×				ا ا					1	1	1	,	\	
700770	$\hat{\ }$	FIELD CODE	1	₩ V	MV-5	MW-6	MW-8	WW-9	MW-2	5	2	ı	!	0	1	1
/.	Ċ	e l	MW-1	ş	ş	ž	S	ş	≨	MW-7	WW.3			1	ł	
~	9	쁜	-	-	-	-	-	-	_	-	-		l			
Ų,						l						ĺ	1	13	[💲	1
2	1			ı	1		l					l	l.,	7	13	1
, ,	V	1	1			١.						[ទី	1/2	12	
									1		l	1	Ē	[50A]	$^{2}\mathcal{L}$	i.
	ij.	1	ł	l '	ı				l		1	l	뚩	118	8//	Ę
	监			(,,	7			· ·		5	=	T	녆	£ . 7	E 3	Ś
	ORDER #:	(kino sau dai) € GA.	Q	01	c3	Ξ	05	20	ō	ĝ,	3	1	Special instructions:	₽ √2	3 K	Relinquished by
	Ō	L	Ĺ	L	Ĺ		ـــــا	ــَــا	Ĺ		لَــا	L	क्रि	\$ 10	2	8

TAT brishnet2 X X X X X X X X X

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

		repert comp	<u></u>	1
Client	Plains			
Date/ Time:	3-14-08 12710			
Lab ID#:	277636			
Initials:	ac			
	Sample Recei	pt Checklist		
#1 Tempera	ature of container/ cooler?	Yes	No	I
#2 Shipping	container in good condition?	(es)	No	ſ
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14:31	4.1	Ŧ

				c	lient initials
#1	Temperature of container/ cooler?	Yes	No	5.0 °C	
#2	Shipping container in good condition?	(es)	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	(es	No		
#6	Sample instructions complete of Chain of Custody?	Yes	No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#11	Containers supplied by Et.OT?	Yes	No		
#12	Samples in proper container/ bottle?	Yes	No	See Below	
#13	Samples properly preserved?	Yes	No	See Below	
#14	Sample bottles intact?	Yes	No		
#15	Preservations documented on Chain of Custody?	Yes	No	1	
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	Yés)	No	See Below	
#18	All samples received within sufficient hold time?	Yes	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:	
Regarding:				
Corrective Action Taken):			
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proce Cooling process had begun shortly after sa		

Analytical Report 305940

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

Lovington Gathering WTI 2006-142

19-JUN-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

19-JUN-08

Project Manager: Camille Reynolds PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 305940
Lovington Gathering WTI
Project Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305940. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305940 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Jun-14-08 13:00		305940-001
MW-4	W	Jun-14-08 13:15		305940-002
MW-5	W	Jun-14-08 13:30		305940-003
MW-6	W	Jun-14-08 13:45		305940-004
MW-8	W	Jun-14-08 13:55		305940-005
MW-9	W	Jun-14-08 14:10		305940-006
MW-2	W	Jun-14-08 14:20		305940-007
MW-7	W	Jun-14-08 15:30		305940-008
MW-3	W	Jun-14-08 15:50		305940-009

Project Name: Lovington Gathering WTI

Project Location: Lea County, NM

Contact: Camille Reynolds

Project Id: 2006-142

Date Received in Lab: Mon Jun-16-08 05:05 pm Report Date: 19-JUN-08

Brent Barron

					Project Manager: Brent Barron, II	srent Barron, Il	
	Lab Id:	305940-001	305940-002	305940-003	305940-004	305940-005	305940-006
Analysis Donnastod	Field Id:	MW-i	MW-4	MW-5	MW-6	MW-8	WW-9
naisanhay sistinut	Depth:					-	
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	Sampled:	Jun-14-08 13:00	Jun-14-08 13:15	Jun-14-08 13:30	Jun-14-08 13:45	Jun-14-08 13:55	Jun-14-08 14:10
BTEX by EPA 8021B	Extracted:	Jun-17-08 16:15	Jun-17-08 16:15	Jun-17-08 16:15	Jun-17-08 16:15	Jun-17-08 16:15	Jun-17-08 16:15
	Analyzed:	Jun-17-08 19:26	Jun-17-08 19:50	Jun-17-08 20:14	Jun-17-08 20:38	Jun-17-08 21:02	Jun-17-08 21:26
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL
Benzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	0.0087 0.0010	ND 0:0010
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
m,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Total Xylenes		S	S	S.	S	£	QN
Total BTEX		ON.	Ð	£	R	0.0087	QN

This analytical report, and the onlire data package it represents, has been made for your exclusive and contridential use. The interpretations and respect the proposal this markoal protected the best alignment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

000

Project Id: 2006-142

Project Name: Lovington Gathering WTI

Contact: Camille Reynolds Project Location: Lea County, NM

Date Received in Lab: Mon Jun-16-08 05:05 pm Report Date: 19-JUN-08

Project Manager: Brent Barron, II

					,
	Lab Id:	305940-007	305940-008	305940-009	
Annual Donnestad	Field Id:	MW-2	MW-7	MW-3	
nareathan eredinare	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Jun-14-08 14:20	Jun-14-08 15:30	Jun-14-08 15:50	
BTEX by EPA 8021B	Extracted:	Jun-17-08 16:15	Jun-17-08 16:15	Jun-17-08 16:15	
	Analyzed:	Jun-17-08 21:49	Jun-17-08 22:13	Jun-17-08 22:37	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Benzene		0.0033 0.0010	0.1388 0.0010	0.2148 0.0010	
Toluene		ND 0.0020	ND 0.0020	0.0025 0.0020	
Ethylbenzene		0100:0 QN	0100.0 QN	0.0071 0.0010	
m,p-Xylenes		ND 0.0020	0.0166 0.0020	0.0123 0.0020	
o-Xylene		ND 0.0010	ND 0.0010	0.0059 0.0010	
Total Xylenes		Ð	0.0166	0.0182	
Total BTEX		0.0033	0.1554	0.2426	

This analytical report, and the entire data package it represents, has been made for your exclusive and contidential use. The interpretent the best judgment of XENOO Laboratories. XENOO Laboratories assumes no responsibility and makes no warranty to the end use of the data bretchy presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

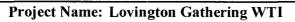
Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.


Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone Fax (281) 589-0692 (281) 589-0695 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (214) 351-9139 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (210) 509-3334 (210) 509-3335 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 5757 NW 158th St, Miami Lakes, FL 33014 (770) 449-8800 (770) 449-5477 6017 Financial Dr., Norcross, GA 30071

Work Order #: 305940

Lab Batch #: 725775

Sample: 305940-001 / SMP

Project ID: 2006-142

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	11	[2]	[D]			
1,4-Difluorobenzene	0.0350	0.0300	117	80-120		
4-Bromofluorobenzene	0.0291	0.0300	97	80-120		

Lab Batch #: 725775

Sample: 305940-001 S / MS

Batch:

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		, ,	[D]			
1,4-Difluorobenzene	0.0290	0.0300	97	80-120		
4-Bromofluorobenzene	0.0333	0.0300	111	80-120		

Lab Batch #: 725775

Sample: 305940-001 SD / MSD

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	, , ,	'	[D]			
1,4-Difluorobenzene	0.0284	0.0300	95	80-120		
4-Bromofluorobenzene	0.0321	0.0300	107	80-120		

Lab Batch #: 725775

Sample: 305940-002 / SMP

Batch:

Matrix: Water

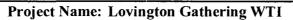
Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		1-3	{D			
1,4-Difluorobenzene	0.0346	0.0300	115	80-120		
4-Bromofluorobenzene	0.0301	0.0300	100	80-120		

Lab Batch #: 725775

Sample: 305940-003 / SMP

Batch: |

Matrix: Water


Units: mg/L	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			{D}				
I,4-Difluorobenzene	0.0339	0.0300	113	80-120			
4-Bromofluorobenzene	0.0316	0.0300	105	80-120			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 305940

Project ID: 2006-142

Lab Batch #: 725775

Sample: 305940-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0341	0.0300	114	80-120		
4-Bromofluorobenzene	0.0295	0.0300	98	80-120		

Lab Batch #: 725775

Sample: 305940-005 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		, ,	[D]			
1,4-Difluorobenzene	0.0332	0.0300	111	80-120		
4-Bromofluorobenzene	0.0286	0.0300	95	80-120		

Lab Batch #: 725775

Sample: 305940-006 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0340	0.0300	113	80-120		
4-Bromofluorobenzene	0.0309	0.0300	103	80-120		

Lab Batch #: 725775

Sample: 305940-007 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0345	0.0300	115	80-120		
4-Bromofluorobenzene	0.0296	0.0300	99	80-120		

Lab Batch #: 725775

25775

Sample: 305940-008 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount B	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0340	0.0300	113	80-120		
4-Bromofluorobenzene	0.0251	0.0300	84	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 305940

Project ID: 2006-142

Lab Batch #: 725775

0

Sample: 305940-009 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0278	0.0300	93	80-120		
4-Bromofluorobenzene	0.0297	0.0300	99	80-120		

Lab Batch #: 725775

Sample: 510817-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			{D			
1,4-Difluorobenzene	0.0287	0.0300	96	80-120		
4-Bromofluorobenzene	0.0328	0.0300	109	80-120		

Lab Batch #: 725775

Sample: 510817-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0345	0.0300	115	80-120	
4-Bromofluorobenzene	0.0299	0.0300	100	80-120	

Lab Batch #: 725775

Sample: 510817-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes			121		
1,4-Difluorobenzene	0.0282	0.0300	94	80-120	
4-Bromofluorobenzene	0.0318	0.0300	106	80-120	

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 305940

Analyst: SHE

Sample: 510817-1-BKS Lab Batch ID: 725775

Date Prepared: 06/17/2008

Batch #: 1

Project ID: 2006-142

Date Analyzed: 06/17/2008 Matrix: Water

Units: mg/L

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike Pecult	Blank Spike	Spike Added	Blank Spike	BIK. Spk Dup.	RPD %	Control Limits	Control Limits	Flag
Analytes	E	[B]	[C]	<u> </u>	E	Result [F]	<u>[6</u>	₹	W0/	T NO	
Вепzene	QN	0.1000	0.0926	66	0.1	0.0827	83	11	70-125	25	
Toluene	QN	0.1000	0.0970	26	0.1	0.0853	85	13	70-125	25	
Ethylbenzene	Q	0.1000	0.1118	112	0.1	0.0979	86	13	11-129	25	
m,p-Xylenes	QN	0.2000	0.2288	114	0.2	0.2010	101	13	70-131	25	
o-Xylene	QN	0.1000	0.1153	115	0.1	0.1016	102	13	71-133	25	

Relative Percent Difference RPD = 200*(D-F)/(D+F)Blank Spike Recovery [D] = 100*(C)/(B]Blank Spike Duplicate Recovery [G] = 100*(F)/(E]All results are based on MDL and Validated for QC Purposes

Project Name: Lovington Gathering WTI

Work Order #: 305940

Lab Batch ID: 725775

Date Analyzed: 06/18/2008

Project ID: 2006-142

Batch #: Analyst:

QC-Sample ID: 305940-001 S

Matrix: Water SHE

Flag Control Limits %RPD 25 25 25 25 25 Control Limits 70-125 71-133 70-125 71-129 70-131 %R MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD Ξ 6 6 9 6 Spiked Dup. %R [G] 100 95 76 81 84 Duplicate Spiked Sample Result [F] 0.0814 0.0835 0.0948 0.1934 0.0995 Spike Added 0.1000 0.1000 0.1000 0.2000 0.1000 Spiked Sample %R [D] 106 601 104 8 35 Spiked Sample Result 0.0919 0.1040 0.2115 0.1090 0.0895 $\overline{\mathbf{c}}$ Date Prepared: 06/17/2008 0.1000 Spike Added [B] 0.1000 0.2000 0.1000 0.1000 Parent Sample Result [A] 9 S R B B BTEX by EPA 8021B Analytes Reporting Units: mg/L Ethylbenzene m,p-Xylenes o-Xylene Toluene Benzene

Matrix Spike Percent Recovery [D] = 100° (C-A)/B Relative Percent Difference RPD = 200° (D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimatéd Quantitation Limit

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 West 1-20 East Phone: 422-563-1800 Chasses Town 30384

The company of the	å	Manager Manager	1													3		į	į		į	į	:			
Project Excitation NM 82280 Proj	ī	Project Manager:	Curt Stanley		PAGE	01 OF	5							ı	ş	2 5	ë	3	وَ	S S	H		\$	_		-1
Project Doc Learning on National Property Project Doc Learning on National Property Project Doc Learning on National Property Project Doc Learning on National Project Learning o	ပိ	empany Name	Basin Environmental Se	wice Tech	hnologies	, ILC					1	ł		1	-	roje Sep	*	9	42		Ì					
Post Park C. J. Reynolds Park No. (309) 395-1439 Post Park C. J. Reynolds	ပိ	ımpany Address:	. P. O. Box 301					İ			İ			i	ď	ect I	96:	Š	t a	¥	Ì			- [ĺ
Park	ā	y/State/Zip:	Lovington, NM 88260							l				1		ă	#	¥.	-	Reyric	8					
The control of the	Ę.	ephone No:	(302) H1-2544			ļ	Fax No:	의	100	6-142	6			ž	A PO	E.	ىد	8	ndarc			RRP		ž	Ų,	S
100 100	SS	mpler Signature.	1 7 7		4		e-mail:	ŭĮ	stan	9	pasi	Den.	Š	٤	L	İ	- 1		F		- Į			١		Γ
MW4	ab use only.		465												11	\mathbf{I}		OTAL PAL	1	<u> </u>	×			-		\$10 22
HWW-5 The Secretary Decreases of Control	ORDER #:	505	170					i	å	servas	13 noi	of Cor	itainer	Н	m	Ļ	L	L	99	┞	01		_			'n
MW-4	(yino esu dai) # 8A.i		1D CODE		Ending Depth	balqma2 staQ					*os4H			DW Drinking water St Sludg					Metals: As Ag Ga Cd Cr Pb Hg 5					·		PS (#indext-sent) TAT HRUR TAT brothnat?
MW-5 6/14/2008 1315 2 X X GW	0	•	MW-1		1/9	4/2008	1300	-	_	<u>~</u>	_			ew Cw	_		-		-		×			_		×
MW-6 6/14/2008 1345 2 x x x CW x x X X	20		MW-4		6/1	4/2008	1315	7	_	Ť		Ц		Š			Н			Н	×	Н		Ц		
MW-6 6/14/2006 1355 2 X X CW	S	-	MW-5		6/1	4/2008	1330	2		×		-		¥.	_				-	Н	×	\vdash		_		
MW-9 6/14/2006 1455 2 X X GW	ठ	-	MW-6		6/1	4/2008	1345	7		×		\dashv		₹	닉				П		×	_		_		×
MW-2 Givariance Givarianc	\mathcal{Z}		MW-8		2	4/2008	1355	7	_	×				S	_					4	×			\dashv		
HW-7 Gradual 1420 2 X X GW X GW GW	οjO		MW-9		1,9	4/2008	1410	2		×		\Box		№	\dashv		Н			-	×	_		_		×
HW-3	ره	-	MW-2		6/1	4/2008	1420	7		<u>×</u>				8	_		-	\equiv			×	_				×
HW-3	89		MW-7		6/1	4/2008	1530	7		×				₩.	\vdash				-	4	×	-				×
ctions: It results to cetanley@basinenv.com & cjreynolds@paaip.com Laboratory Comments Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Continues intact Sample Part Continues Co	8		MW-3		6/1	4/2008	1550	7		<u>~</u>		_		₹	-					_	×		_	-		_
I results to cetanlay@basinenv.com & cjreynolds@pasip.com Sampe Cominata: Samp					\dashv	_		4		_			Ⅎ	_	┥	\exists	-		۲,	4	\exists	4	┪	4		
Date Time Received by: Date Time Date Time Date Time Date Time Date	Apecial Instru	uctions: iail results to ce	stanley@basinenv.com	& cjrey	nolds@t	завір.сот												a Poge Poge	유합을	ment rs (nts adspa	्ट स्ट इ.स.		·(3) >	ለሰ		zz
Date Time Received by Sample Variation Sample Hand Dativered by Sample Variation Rea, 2 by Sample Variation Rea, 2 by Sample Variation Rea, 2 by Sample Variation Rea, 2 by Sample Variation Rea, 3 by Sample Variation Rea, 2 by Sample Variation Rea, 3 by Sample Variation Rea, 3 by Sample Variation Readily Date Variation Readily Variatio	sinbu e	2) Date	1	\Box	ved by:							Γ)ale	F	1	Custe B	dy se	als on	(S) (S)	liner(s		9 -29 2	CC)		zz
Date Time Receipt To Temperature Upon Receipt:	lekinguished k			_	,	ved by							Γ	ate	}	7	Same	8 2 3	8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	COOR iverse ent Ru		=	7 2 2 2	0		dzz#
	peysinbula;),	Date	Ē	<u>«</u>	Wed by ELOT	4	1 (Π)ate	F 1	, ž	e di	rate.	و ج	, &	, ,		4	در		ပ္

Environmental Lab of Texas

Variance/ Corrective Action Rep	ort- Sample	Log-In		
Client: BUSIN ENU PRIMS				
Date/Time: 6-14-08 17:05				
ab ID#: 305A40				
itials:				
Sample Receipt	Checklist		Client I	nitials
1 Temperature of container/ cooler?	Yes	No	3.5 °C	
2 Shipping container in good condition?	Yes	No		
3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
Chain of Custody present?	Yes)	No		
Sample instructions complete of Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished/ received?	Yes	No		
B Chain of Custody agrees with sample label(s)?	(es)	No	ID written on Cont./ Lid	
9 Container label(s) legible and intact?	(es)	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
11 Containers supplied by ELOT?	(es)	No		
12 Samples in proper container/ bottle?	y es	No	See Below	
13 Samples properly preserved?	⊁es	No	See Below	
14 Sample bottles intact?	Yes	No		
15 Preservations documented on Chain of Custody?	Yes	No		\neg
16 Containers documented on Chain of Custody?	Yes)	Νo		
17 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
18 All samples received within sufficient hold time?	Yes	No	See Below	
19 Subcontract of sample(s)?	Yes	No	Not Applicable	\neg
20 VOC samples have zero headspace?	(Yes)	No	Not Applicable	
Variance Document Contact Contacted by: Regarding:	nentation		Date/ Time:	
Corrective Action Taken:				
Check all that Apply: See attached e-mail/ fax Client understands and woul Cooling process had begun			=	

Analytical Report 312889

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

Lovington Gathering WTI 2006-142

25-SEP-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215 - Odessa/Midland, TX T104704215-08-TX

Florida certification numbers:

Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 14

25-SEP-08

Project Manager: Camille Reynolds
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 312889
Lovington Gathering WTI
Project Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 312889. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 312889 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 312889

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-5	W	Sep-17-08 14:15		312889-001
MW-1	W	Sep-17-08 14:45		312889-002
MW-4	W	Sep-17-08 15:10		312889-003
MW-6	W	Sep-17-08 15:30		312889-004
MW-9	W	Sep-17-08 15:50		312889-005
MW-2	W	Sep-17-08 16:15		312889-006
MW-8	W	Sep-17-08 16:40		312889-007
MW-7	W	Sep-17-08 17:00		312889-008
MW-3	W	Sep-17-08 17:30		312889-009

Contact: Camille Reynolds Project Location: Lea County, NM

Project Name: Lovington Gathering WTI

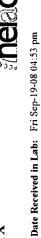
Date Received in Lab: Fri Sep-19-08 04:53 pm

Report Date: 25-SEP-08

Project Manager: Brent Barron, II

					rioject manager. Diene Danon, in	Ment Dailon, 11		
	Lab Id:	312889-001	312889-002	312889-003	312889-004	312889-005	312889-006	9(
And Inches Danish	Field Id:	MW-5	MW-1	MW4	MW-6	6-WW	MW-2	
Analysis requesieu	Depth :							
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	
	Sampled:	Sep-17-08 14:15	Sep-17-08 14:45	Sep-17-08 15:10	Sep-17-08 15:30	Sep-17-08 15:50	Sep-17-08 16:15	5:15
BTEX by EPA 8021B	Extracted:	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	80:9
Control of the contro	Analyzed:	Sep-23-08 01:37	Sep-23-08 01:59	Sep-23-08 02:22	Sep-23-08 02:45	Sep-23-08 03:07	Sep-23-08 03:30	3:30
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L	RL
Benzene		ND 0.0010	0.0200 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	0.1590 0.0010	0.0010
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	Q.	0.0020
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	0100:0 CN	ND 0.0010	Q.	0.0010
m,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	0.0044	0.0020
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	S S	ND 0.0010
Total Xylenes		R	Q	Ð	£	N N	0.0044	
Total BTEX		Q.	0.02	Ð	Ð	Ð	0.1634	

This analytical report, and the entire data package it represents, has been made for your exclusive and contridential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data interdy presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.


Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

Project Name: Lovington Gathering WTI

Project Id: 2006-142

Contact: Camille Reynolds Project Location: Lea County, NM

Report Date: 25-SEP-08

Project Manager: Brent Barron, II

	Lab Id:	312889-007	312889-008	312889-009	
Amalusic Dominated	Field Id:	MW-8	MW.7	MW-3	
Huniyas Nequesian	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-17-08 16:40	Sep-17-08 17:00	Sep-17-08 17:30	
BTEX by EPA 8021B	Extracted:	Sep-23-08 15:00	Sep-22-08 16:08	Sep-23-08 15:00	
	Analyzed:	Sep-23-08 16:26	Sep-23-08 04:15	Sep-23-08 17:11	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Benzene		0.5689 0.0050	0.3535 0.0010	0.00266 0.0010	
Toluene		ND 0.0100	ND 0.0020	ND 0.0020	
Ethylbenzene		ND 0.0050	ND 0.0010	0100.0 CIN	
m,p-Xylenes		ND 0.0100	0.0036 0.0020	0.0022 0.0020	
o-Xylene		ND 0.0050	ND 0.0010	ND 0.0010	
Total Xylenes		N ON	0.0036	0.0022	
Total BTEX		0.5689	0.3571	0.0288	

This smalytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and treatile sepressed throughout this smalytical report represent the best judgment of XENOO Laboratories. XENOO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austín - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Project Name: Lovington Gathering WTI

Work Orders: 312889,

Project ID: 2006-142

Lab Batch #: 734916

Sample: 312880-001 S / MS

Batch:

Matrix: Water

Units: mg/L	SU	IRROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			{D}		
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0248	0.0300	83	80-120	

Lab Batch #: 734916

Sample: 312880-001 SD / MSD

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0276	0.0300	92	80-120	
4-Bromofluorobenzene	0.0252	0.0300	84	80-120	

Lab Batch #: 734916

Sample: 312889-001 / SMP

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0360	0.0300	120	80-120	
4-Bromofluorobenzene	0.0264	0.0300	88	80-120	

Lab Batch #: 734916

Sample: 312889-002 / SMP

Batch:

Matrix: Water

Units: mg/L	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount B	Recovery %R [D]	Control Limits %R	Flags		
Analytes			(5)				
1,4-Difluorobenzene	0.0330	0.0300	110	80-120			
4-Bromofluorobenzene	0.0226	0.0300	75	80-120	**		

Lab Batch #: 734916

Sample: 312889-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0364	0.0300	121	80-120	**	
4-Bromofluorobenzene	0.0260	0.0300	87	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 312889,

Project ID: 2006-142

Lab Batch #: 734916

Sample: 312889-004 / SMP

Batch: 1 Matrix: Water

Units: mg/L	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes		'-'	[D]				
1,4-Difluorobenzene	0.0365	0.0300	122	80-120	**		
4-Bromofluorobenzene	0.0256	0.0300	85	80-120			

Lab Batch #: 734916

Sample: 312889-005 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]	İ		
1,4-Difluorobenzene	0.0364	0.0300	121	80-120	**	
4-Bromofluorobenzene	0.0262	0.0300	87	80-120		

Lab Batch #: 734916

Sample: 312889-006 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0254	0.0300	85	80-120		
4-Bromofluorobenzene	0.0147	0.0300	49	80-120	**	

Lab Batch #: 734916

16

Sample: 312889-008 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0217	0.0300	72	80-120	**	
4-Bromofluorobenzene	0.0095	0.0300	32	80-120	**	

Lab Batch #: 734916

4916

Sample: 516098-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0279	0.0300	93	80-120		
4-Bromofluorobenzene	0.0243	0.0300	81	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 312889,

Project ID: 2006-142

Lab Batch #: 734916

Sample: 516098-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0362	0.0300	121	80-120	**	
4-Bromofluorobenzene	0.0259	0.0300	86	80-120		

Lab Batch #: 734916

Sample: 516098-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L SURROGATE RECOVERY STU			STUDY		
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

Lab Batch #: 735018

Sample: 312889-007 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found A	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]		!		
1,4-Difluorobenzene	0.0262	0.0300	87	80-120			
4-Bromofluorobenzene	0.0105	0.0300	35	80-120	**		

Lab Batch #: 735018

Sample: 312889-009 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0351	0.0300	117	80-120			
4-Bromofluorobenzene	0.0227	0.0300	76	80-120	**		

Lab Batch #: 735018

Sample: 312889-009 S / MS

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0294	0.0300	98	80-120		
4-Bromofluorobenzene	0.0259	0.0300	86	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 312889,

Project ID: 2006-142

Lab Batch #: 735018

Sample: 312889-009 SD / MSD

Batch: 1 Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		'.'	[D]		
1,4-Difluorobenzene	0.0298	0.0300	99	80-120	<u> </u>
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

Lab Batch #: 735018

Sample: 516175-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	-
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		-	[D]		
1,4-Difluorobenzene	0.0288	0.0300	96	80-120	
4-Bromofluorobenzene	0.0248	0.0300	83	80-120	

Lab Batch #: 735018

Sample: 516175-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount {B	Recovery %R [D]	Control Limits %R	Flags
Analytes			101		
1,4-Difluorobenzene	0.0370	0.0300	123	80-120	**
4-Bromofluorobenzene	0.0262	0.0300	87	80-120	

Lab Batch #: 735018

Sample: 516175-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0250	0.0300	83	80-120	

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 312889

Lab Batch ID: 734916 Analyst: ASA

Date Prepared: 09/22/2008

Project ID: 2006-142

Date Analyzed: 09/22/2008 Matrix: Water

Sample: 516098-1-BKS

Batch #: 1

Flag Control Limits %RPD 25 25 25 25 25 BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Control Limits %R 70-125 70-125 71-133 71-129 70-131 RPD Blk. Spk Dup. %R [G] 103 100 104 66 96 Blank Spike Duplicate Result [F] 0.1034 0.0990 0.1002 0.2085 0.0961 Spike Added Ξ 0.1 0.1 0.1 0.2 0.1 Blank Spike %R [D] 102 106 105 101 16 Blank Spike Result [C] 0.1052 0.1005 9960.0 0.1021 0.2121 0.1000 0.1000 Spike Added 0.1000 0.1000 0.2000 æ Blank Sample Result R M Ð £ 2 見 BTEX by EPA 8021B Units: mg/L Analytes Ethylbenzene m,p-Xylenes Toluene o-Xylene Benzene

Analyst: ASA

Date Prepared: 09/23/2008

Date Analyzed: 09/23/2008 Matrix: Water

Lab Batch ID: 735018

Sample: 516175-1-BKS

Batch #: 1

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/L

BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[w]	[B]	(C)	(D)	[E]	Dupncare Result [F]	70N [G]	70	70K	70M D	
Вепгене	QN	0.1000	0.1034	103	0.1	0.1089	109	5	70-125	25	
Toluene	ON	0.1000	9660.0	100	0.1	0.1049	105	5	70-125	25	
Ethylbenzene	ON.	0.1000	0.1016	102	0.1	0.1071	107	5	71-129	25	
m,p-Xylenes	QN.	0.2000	0.2104	105	0.2	0.2220	111	5	70-131	25	
o-Xylene	ND	0.1000	0.0948	95	0.1	0.1014	101	7	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MIDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 312889

Date Analyzed: 09/23/2008 Lab Batch ID: 734916

Project ID: 2006-142

Batch #:

QC-Sample ID: 312880-001 S Date Prepared: 09/22/2008

Matrix: Water ASA Analyst:

Reporting Units: mg/L		M	ATRIX SPIKI	. / MAT	RIX SPIF	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TE RECO	VERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[v]	(B)	2	ē	FE]	[x] wesaw	16 16	•	V 0/		.,
Benzene	QN	0.1000	0.0910	91	0.1000	0.1002	100	6	70-125	25	
Toluene	QN	0.1000	0.0858	98	0.1000	0.0939	94	6	70-125	25	
Ethylbenzene	ΩN	0.1000	0.0855	98	0.1000	0.0936	94	6	71-129	25	
m,p-Xylenes	QN	0.2000	0.1770	68	0.2000	0.1937	26	6	70-131	25	
o-Xylene	ND	0.1000	0.0833	83	0.1000	0.0912	16	6	71-133	25	

Date Analyzed: 09/23/2008 Lab Batch ID: 735018

QC- Sample ID: 312889-009 S Date Prepared: 09/23/2008

Matrix: Water ASA Batch #:

Analyst:

Reporting Units: mg/L		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	/ MAT	RIX SPIF	CE DUPLICA'	TE REC	VERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result Sample [C] %R	Spiked Sample %R	e P	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	8	_	<u> </u>	=		<u>5</u>				
Вепzепе	0.0266	0.1000	0.1289	102	0.1000	0.1344	108	9	70-125	25	
Toluene	QN	0.1000	0.0979	86	0.1000	0.1012	101	3	70-125	25	
Ethylbenzene	ND	0.1000	0.0965	26	0.1000	0.1010	101	4	71-129	25	i
m,p-Xylenes	0.0022	0.2000	0.2011	66	0.2000	0.2100	104	5	70-131	25	
o-Xylene	ND	0.1000	0.0926	93	0.1000	0.0972	76	4	71-133	25	

Matrix Spike Percent Recovery $[D] = 100^{*}(C.4)/B$ Relative Percent Difference RPD = $200^{*}((C-F)/(C+F))$

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Environmental Lab of Texas

•

•

0

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 West L20 East Phone: 432-563-1800 Odessa, Toxas 79765

Environmental Lab of Texas

Client Initials

° C

	Environmental La	ID OF LEX	as	
	Variance/ Corrective Action Rep	oort- Sampl	e Log-Ir	1
Client: BaSi	n Em. / Plains			
Date/ Time. 91	9.08 16:53			
Lab ID # :	31 z889			
Initials.	<u>al</u>			
	Sample Receipt	Checklist		
#1 Temperature of conta	iner/ cooler?	Yes	No	45 °C
#2 Shipping container to		Yes	No	
#3 Custody Seals intact	on shipping container/ cooler?	Yes	No	Not Present
#4 Custody Seals Intact	on sample bottles/ container?	Yes	No	Not Present
#5 Chain of Custody pre	sent?	Yes	No	
#6 Sample instructions	omplete of Chain of Gustody?	Ves	No	
#7 Chain of Custody sig	ned when relinquished/ received?	%es	No	
#8 Chain of Custody ago	ees with sample label(s)?	Yes	No	ID written on Cont / Lid
#9 Container label(s) leg		(es	No	Not Applicable
#10 Sample matrix/ prop	erties agree with Chain of Custody?	(res)	No	
#11 Containers supplied	by ELOT?	(res	No	
#12 Samples in proper of	ontainer/ bottle?	(es	No	See Below
#13 Samples properly pr	eserved?	(es)	No	See Below
#14 Sample bottles intac	t?	Yes	No	
#15 Preservations docur	nented on Chain of Custody?	(Yes)	No	
#16 Containers docume	nted on Chain of Custody?	Yes	No	
#17 Sufficient sample ar	nount for indicated test(s)?	(es	No	See Below
#18 All samples receive	within sufficient hold time?	Yes	No	See Below
#19 Subcontract of sam		Yes	No	-Not Applicable
#20 VOC samples have	zero headspace?	Yes	No	Not Applicable

Variance Documentation

Contact:	·	Contacted by:	Date/ Time:	
Regarding:				
Corrective Action Taker	ľ.			
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with Cooling process had begun shortly after sampling	•	

Analytical Report 319271

for

PLAINS ALL AMERICAN EH&S

Project Manager: Daniel Bryant

Lovington Gathering WTI 2006-142

09-DEC-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers:
Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers:

Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

09-DEC-08

Project Manager: **Daniel Bryant PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 319271
Lovington Gathering WTI

Project Address: Lea County, NM

Daniel Bryant:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 319271. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 319271 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 319271

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-5	W	Dec-02-08 08:35		319271-001
MW-4	W	Dec-02-08 08:55		319271-002
MW-6	W	Dec-02-08 09:25		319271-003
MW-9	W	Dec-02-08 09:45		319271-004
MW-1	W	Dec-02-08 10:10		319271-005
MW-3	W	Dec-02-08 10:30		319271-006
MW-2	W	Dec-02-08 12:40		319271-007
MW-8	W	Dec-02-08 13:00		319271-008
MW-7	W	Dec-02-08 13:15		319271-009

Certificate of Analysis Summary 319271 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Project Id: 2006-142

Contact: Daniel Bryant

Date Received in Lab: Dec-03-08 09:17 am

Report Date:

09-DEC-08 Brent Barron, II

Project Location: Lea County, NM		Project Manager: Brent Barron, II							
	Lab Id:	319271-0	100	319271-0	002	319271-0	003	319271-0	04
Analysis Requested	Field Id:	MW-5		MW-4	ļ	MW-6		MW-9	
•	Depth:				Í				
	Matrix:	WATE	R]	WATE	R	WATE	R	WATE	R]
	Sampled:	Dec-02-08	08:35	Dec-02-08	08:55	Dec-02-08	09:25	Dec-02-08 ()9:45
BTEX by EPA 8021B	Extracted:	Dec-04-08	16:05	Dec-04-08	16:05	Dec-04-08	16:05	Dec-04-08	16:05
	Analyzed:	Dec-05-08	03:24	Dec-05-08	03:47	Dec-05-08	04:11	Dec-05-08 ()4:34
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Toluene		ND	0.0020	0.0062	0.0020	ND	0.0020	ND	0.0020
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
m,p-Xylenes		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total Xylenes		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total BTEX		ND	0.0010	0.0062	0.0010	ND	0.0010	ND	0.0010
SVOA PAHs List by EPA 8270C	Extracted:	Dec-04-08	10:33	Dec-04-08	10:36	Dec-04-08	10:39	Dec-04-08 10:42	
	Analyzed:	Dec-04-08 2	21:06	Dec-04-08	21:50	Dec-04-08 22:34		Dec-04-08 23:18	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Acenaphthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Acenaphthylene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(a)anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(a)pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(b)fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(k)fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(g,h,i)perylene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Chrysene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Dibenz(a,h)Anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Fluorene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Indeno(1,2,3-c,d)Pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
1-Methylnaphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
2-Methylnaphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Naphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Phenanthrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

Certificate of Analysis Summary 319271 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Project Id: 2006-142

Date Received in Lab:

Dec-03-08 09:17 am

Contact: Daniel Bryant Project Location: Lea County, NM

Report Date: 09-DEC-08 Project Manager:

Brent Barron, II

Lab Id: 319271-005 319271-007 319271-008									
Analusia Parasatal	Lab Id:					319271-007		319271-008	
Analysis Requested	Field Id:	MW-I		MW-3	'	MW-2		MW-8	
	Depth:		_						
	Matrix:	WATE	1	WATER		WATER		WATER	
	Sampled:	Dec-02-08		Dec-02-08		Dec-02-08		Dec-02-08	
BTEX by EPA 8021B	Extracted:	Dec-04-08		Dec-04-08		Dec-04-08		Dec-04-08	
	Analyzed:	Dec-05-08		Dec-05-08	05:21	Dec-05-08	05:45	Dec-05-08	12:01
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.0358	0.0010	0.0249	0.0010	0.0503	0.0010	0.2345	0.0050
Toluenc		ND	0.0020	ND	0.0020	0.0026	0.0020	0.0468	0.0100
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	0.0085	0.0050
m,p-Xylenes		ND	0.0020	0.0040	0.0020	0.0073	0.0020	0.0419	0.0100
o-Xylene		ND	0.0010	0.0019	0.0010	0.0014	0.0010	0.0135	0.0050
Total Xylenes		ND	0.0010	0.0059	0.0010	0.0087	0.0010	0.0554	0.0050
Total BTEX		0.0358	0.0010	0.0308	0.0010	0.0616	0.0010	0.3452	0.0050
SVOA PAHs List by EPA 8270C	Extracted:	Dec-04-08	10:45	Dec-04-08 10:48		Dec-04-08	10:51	Dec-04-08 10:54	
, 21.102.00	Analyzed:	Dec-05-08	00:02	Dec-05-08 00:47		Dec-05-08 02:47		Dec-05-08 03:31	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Acenaphthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Acenaphthylene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(a)anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(a)pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(b)fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(k)fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(g,h,i)perylene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Chrysene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Dibenz(a,h)Anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Fluoranthene	71-7	ND	0.005	ND	0.005	ND	0.005	ND	0.005
Fluorene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Indeno(1,2,3-c,d)Pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
I-Methylnaphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
2-Methylnaphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Naphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Phenanthrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
P									

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Certificate of Analysis Summary 319271 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Project Id: 2006-142

Project Location: Lea County, NM

Contact: Daniel Bryant

Date Received in Lab: Dec-03-08 09:17 am

Report Date:

09-DEC-08

Project Manager:

Brent Barron, II

	Lab Id:	319271-0	09			
Analysis Requested	Field Id:	MW-7				
'	Depth:					
	Matrix:	WATE	₹			
	Sampled:	Dec-02-08	13:15			
BTEX by EPA 8021B	Extracted:	Dec-05-08	12:55			
	Analyzed:	Dec-06-08 (05:31			
	Units/RL:	mg/L	RL	_		
Benzene		0.0364	0.0010			
Toluene		ND	0.0020			
Ethylbenzene		ND	0.0010			
m,p-Xylenes		0.0039	0.0020			
o-Xylene		0.0025	0.0010			
Total Xylenes		0.0064	0.0010			
Total BTEX		0.0428	0.0010	_		
SVOA PAHs List by EPA 8270C	Extracted:	Dec-04-08	10:57			
SVORTAINS Elst by E1 A 02/00	Analyzed:	Dec-05-08 (04:16			
)	Units/RL:	mg/L	RL			
Acenaphthene		ND	0.005			
Acenaphthylene		ND	0.005		 	
Anthracene		ND	0.005	_		
Benzo(a)anthracene		ND	0.005			
Benzo(a)pyrene		ND	0.005			
Benzo(b)fluoranthene		ND	0.005			
Benzo(k)fluoranthene		ND	0.005			
Benzo(g,h,i)perylene	-	ND	0.005	 	·-	
Chrysene		ND	0.005			
Dibenz(a,h)Anthracene		ND	0.005	 		
Fluoranthene		ND	0.005		 •	
Fluorene	·	ND	0.005	,		
Indeno(1,2,3-c,d)Pyrene		ND	0.005			
I-Methylnaphthalene		ND	0.005			
2-Methylnaphthalene		ND	0.005			
Naphthalene		ND	0.005			
Phenanthrene		ND	0.005			
Pyrene		ND	0.005			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742525

Sample: 319271-001 / SMP

Matrix: Water Batch: 1

Units: mg/L	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0337	0.0300	112	80-120			
4-Bromofluorobenzene	0.0209	0.0300	70	80-120	**		

Lab Batch #: 742525

Sample: 319271-001 S / MS

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY S	COVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount B	Recovery %R	Control Limits %R	Flags				
Analytes	""	[~]	[D]	, , , ,					
1,4-Difluorobenzene	0.0276	0.0300	92	80-120					
4-Bromofluorobenzene	0.0278	0.0300	93	80-120					

Lab Batch #: 742525

Sample: 319271-001 SD / MSD

Batch:

Matrix: Water

Units: mg/L	SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0277	0.0300	92	80-120				
4-Bromofluorobenzene	0.0283	0.0300	94	80-120				

Lab Batch #: 742525

Sample: 319271-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount B}	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0347	0.0300	116	80-120				
4-Bromofluorobenzene	0.0206	0.0300	69	80-120	**			

Lab Batch #: 742525

Sample: 319271-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount B	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0343	0.0300	114	80-120	
4-Bromofluorobenzene	0.0201	0.0300	67	80-120	**

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742525

Sample: 319271-004 / SMP

Matrix: Water Batch: 1

Units: mg/L	SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes	''	',	{D					
1,4-Difluorobenzene	0.0332	0.0300	111	80-120				
4-Bromofluorobenzene	0.0202	0.0300	67	80-120	**			

Lab Batch #: 742525

Sample: 319271-005 / SMP

Matrix: Water Batch:

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount {B	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0329	0.0300	110	80-120	
4-Bromofluorobenzene	0,0186	0.0300	62	80-120	**

Lab Batch #: 742525

Sample: 319271-006 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0203	0.0300	68	80-120	**	
4-Bromofluorobenzene	0.0209	0.0300	70	80-120	**	

Lab Batch #: 742525

Sample: 319271-007 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0329	0.0300	110	80-120		
4-Bromofluorobenzene	0.0207	0.0300	69	80-120	**	

Lab Batch #: 742525

Sample: 319271-008 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]	E		
1,4-Difluorobenzene	0.0301	0.0300	100	80-120		
4-Bromofluorobenzene	0.0225	0.0300	75	80-120	**	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742525

Sample: 520624-1-BKS / BKS

Matrix: Water Batch:

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]	<u> </u> 		
1,4-Difluorobenzene	0.0289	0.0300	96	80-120		
4-Bromofluorobenzene	0.0272	0.0300	91	80-120		

Lab Batch #: 742525

Sample: 520624-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0336	0.0300	112	80-120		
4-Bromofluorobenzene	0.0280	0.0300	93	80-120		

Lab Batch #: 742525

Sample: 520624-1-BSD / BSD

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount B	Recovery %R	Control Limits %R	Flags	
Analytes		}	[D]			
1,4-Difluorobenzene	0.0303	0.0300	101	80-120		
4-Bromofluorobenzene	0.0290	0.0300	97	80-120		

Lab Batch #: 742793

Sample: 319271-009 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		İ	[D]			
1,4-Difluorobenzene	0.0306	0.0300	102	80-120		
4-Bromofluorobenzene	0.0174	0.0300	58	80-120	*	

Lab Batch #: 742793

Sample: 319397-002 S / MS

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0264	0.0300	88	80-120		
4-Bromofluorobenzene	0.0184	0.0300	61	80-120	*	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742793

Sample: 319397-002 SD / MSD

Batch: 1 Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes						
1,4-Difluorobenzene	0.0263	0.0300	88	80-120		
4-Bromofluorobenzene	0.0181	0.0300	60	80-120	*	

Lab Batch #: 742793

Sample: 8406040-1-BKS / BKS

Batch: | Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0302	0.0300	101	80-120		
4-Bromofluorobenzene	0.0263	0.0300	88	80-120		

Lab Batch #: 742793

Sample: 8406040-1-BLK / BLK

Batch: 1 Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		l	{D}			
1,4-Difluorobenzene	0.0336	0.0300	112	80-120		
4-Bromofluorobenzene	0.0178	0.0300	59	80-120	*	

Lab Batch #: 742793

Sample: 8406040-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0299	0.0300	100	80-120		
4-Bromofluorobenzene	0.0265	0.0300	. 88	80-120		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742468

Sample: 319271-001 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.037	0.050	74	43-116		
2-Fluorophenol	0.018	0.050	36	21-100		
Nitrobenzene-d5	0.033	0.050	66	35-114		
Phenol-d6	0.010	0.050	20	10-94		
Terphenyl-D14	0.035	0.050	70	33-141		
2,4,6-Tribromophenol	0.048	0.050	96	10-123		

Lab Batch #: 742468

Sample: 319271-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
2-Fluorobiphenyl	0.037	0.050	74	43-116		
2-Fluorophenol	0.019	0.050	38	21-100		
Nitrobenzene-d5	0.033	0.050	66	35-114		
Phenol-d6	0.012	0.050	24	10-94		
Terphenyl-D14	0.037	0.050	74	33-141		
2,4,6-Tribromophenol	0.046	0.050	92	10-123		

Lab Batch #: 742468

Sample: 319271-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			IDI			
2-Fluorobiphenyl	0.037	0.050	74	43-116		
2-Fluorophenol	0.019	0.050	38	21-100		
Nitrobenzene-d5	0.033	0.050	66	35-114		
Phenol-d6	0.011	0.050	22	10-94		
Terphenyl-D14	0.036	0.050	72	33-141		
2,4,6-Tribromophenol	0.046	0.050	92	10-123		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742468

Sample: 319271-004 / SMP

Batch: 1 Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.038	0.050	76	43-116		
2-Fluorophenol	0.019	0.050	38	21-100		
Nitrobenzene-d5	0.033	0.050	66	35-114		
Phenol-d6	0.011	0.050	22	10-94		
Terphenyl-D14	0.037	0.050	74	33-141		
2,4,6-Tribromophenol	0.045	0.050	90	10-123		

Lab Batch #: 742468

Sample: 319271-005 / SMP

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.036	0.050	72	43-116		
2-Fluorophenol	0.017	0.050	34	21-100		
Nitrobenzene-d5	0.032	0.050	64	35-114		
Phenol-d6	0.010	0.050	20	10-94		
Terphenyl-D14	0.033	0.050	66	33-141		
2,4,6-Tribromophenol	0.037	0.050	74	10-123		

Lab Batch #: 742468

Sample: 319271-006 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.037	0.050	74	43-116		
2-Fluorophenol	0.017	0.050	34	21-100		
Nitrobenzene-d5	0.032	0.050	64	35-114		
Phenol-d6	0.009	0.050	18	10-94		
Terphenyl-D14	0.038	0.050	76	33-141	•	
2,4,6-Tribromophenol	0.042	0.050	84	10-123		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742468

Sample: 319271-007 / SMP

Batch: 1 Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount B	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.037	0.050	74	43-116	··· <u>·</u> ·····	
2-Fluorophenol	0.016	0.050	32	21-100		
Nitrobenzene-d5	0.032	0.050	64	35-114		
Phenol-d6	0.009	0.050	18	10-94		
Terphenyl-D14	0.034	0.050	68	33-141	_	
2,4,6-Tribromophenol	0.037	0.050	74	10-123		

Lab Batch #: 742468

(P)

Sample: 319271-008 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.038	0.050	76	43-116		
2-Fluorophenol	0.014	0.050	28	21-100		
Nitrobenzene-d5	0.034	0.050	68	35-114		
Phenol-d6	0.009	0.050	18	10-94		
Terphenyl-D14	0.035	0.050	70	33-141	_	
2,4,6-Tribromophenol	0.039	0.050	78	10-123		

Lab Batch #: 742468

Sample: 319271-009 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount B	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.038	0.050	76	43-116		
2-Fluorophenol	0.018	0.050	36	21-100		
Nitrobenzene-d5	0.033	0.050	66	35-114		
Phenol-d6	0.011	0.050	22	10-94		
Terphenyl-D14	0.035	0.050	70	33-141		
2,4,6-Tribromophenol	0.041	0.050	82	10-123		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Orders: 319271,

Project ID: 2006-142

Lab Batch #: 742468

Sample: 520591-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.038	0.050	76	43-116		
2-Fluorophenol	0.026	0.050	52	21-100		
Nitrobenzene-d5	0.034	0.050	68	35-114		
Phenol-d6	0.019	0.050	38	10-94		
Terphenyl-D14	0.038	0.050	76	33-141		
2,4,6-Tribromophenol	0.041	0.050	82	10-123		

Lab Batch #: 742468

Sample: 520591-1-BLK / BLK

Batch: 1

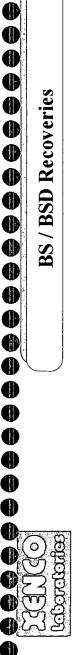
Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.036	0.050	72	43-116		
2-Fluorophenol	0.027	0.050	54	21-100		
Nitrobenzene-d5	0.032	0.050	64	35-114		
Phenol-d6	0.021	0.050	42	10-94		
Terphenyl-D14	0.040	0.050	80	33-141		
2,4,6-Tribromophenol	0.043	0.050	86	10-123	······································	

Lab Batch #: 742468

Sample: 520591-1-BSD / BSD

Batch:


Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
SVOA PAHs List by EPA 8270C Analytes	Amount Found A	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.039	0.050	78	43-116		
2-Fluorophenol	0.028	0.050	56	21-100		
Nitrobenzene-d5	0.035	0.050	70	35-114		
Phenol-d6	0.020	0.050	40	10-94		
Terphenyl-D14	0.039	0.050	78	33-141		
2,4,6-Tribromophenol	0.042	0.050	84	10-123		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

000

Project Name: Lovington Gathering WTI

Work Order #: 319271

Analyst: BHW

Date Prepared: 12/04/2008

Batch #: 1

Date Analyzed: 12/05/2008 **Project ID: 2006-142**

Matrix: Water

Sample: 520624-1-BKS Lab Batch ID: 742525

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

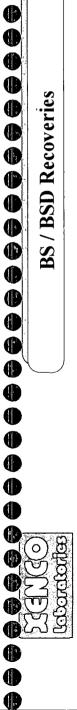
Units: mg/L		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPI	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		<u>e</u>	[C]	<u>e</u>	3	Result [F]	5				
Вепzепе	Ð	0.1000	0.1003	100	0.1	0.1030	103	3	70-125	25	
Toluene	Ð	0.1000	0.0928	93	0.1	0.0953	95	3	70-125	25	
Ethylbenzene	QV	0.1000	0.0994	66	0.1	0.1027	103	3	71-129	25	
m,p-Xylenes	QN	0.2000	0.1998	100	0.2	0.2061	103	3	70-131	25	
o-Xylene	N Q	0.1000	0.0951	95	0.1	0.0978	86	3	71-133	25	

Analyst: ASA

Lab Batch ID: 742793

Date Prepared: 12/05/2008

Batch #: 1


Sample: 8406040-1-BKS

Matrix: Water

Date Analyzed: 12/06/2008

Units: mg/L		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPL	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits	Control Limits %RPD	Flag
Analytes		<u>e</u>	[2]	[<u>D</u>]	<u>a</u>	Result [F]	<u>5</u>				
Benzene	Ð	0.1000	0.1089	109	0.1	0.1100	110	1	70-125	25	
Toluene	2	0.1000	0.0995	100	0.1	0.1002	100	1	70-125	25	
Ethylbenzene	QN	0.1000	0.1041	104	0.1	0.1055	106	-	71-129	25	
m,p-Xylenes	Q.	0.2000	0.2083	104	0.2	0.2109	105	1	70-131	25	
o-Xylene	Q.	0.1000	0.0991	66	0.1	0.1006	101	2	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

•

Project Name: Lovington Gathering WTI

Work Order #: 319271

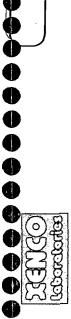
Analyst: KAN

Lab Batch ID: 742468

Sample: 520591-1-BKS

Date Prepared: 12/04/2008

Batch #: 1


Project ID: 2006-142 Date Analyzed: 12/04/2008

Matrix: Water

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Units: mg/L		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / E	LANKS	PIKE DUPI	CICATE I	RECOVE	RY STUD	Y	
SVOA PAHs List by EPA 8270C	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[a]	2	<u>[a]</u>	্বি	Nesau [r]	5				
Acenaphthene	Ð	0.050	0.046	92	0.05	0.048	96	4	54-114	25	
Acenaphthylene	Ð	0.050	0.046	92	0.05	0.048	96	4	53-113	25	
Anthracene	£	0.050	0.048	96	0.05	0.050	100	4	56-116	25	
Benzo(a)anthracene	Ð	0.050	0.047	94	0.05	0.049	86	4	59-116	25	
Benzo(a)pyrene	£	0.050	0.050	100	0.05	0.052	104	4	58-118	25	:
Benzo(b)fluoranthene	Ð	0.050	0.049	86	0.05	0.052	104	9	54-123	25	
Benzo(k)fluoranthene	£	0.050	0.050	100	0.05	0.052	104	4	52-122	25	
Benzo(g,h,i)perylene	Ð	0.050	0.050	100	0.05	0.052	104	4	47-129	25	
Chrysene	£	0.050	0.047	94	0.05	0.049	86	4	58-116	22	
Dibenz(a,h)Anthracene	Ð	0.050	0.050	100	0.05	0.051	102	2	46-131	25	
Fluoranthene	Ð	0.050	0.049	86	0.05	0.051	102	4	55-120	25	
Fluorene	B	0.050	0.049	86	0.05	0.050	100	2	56-114	25	
Indeno(1,2,3-c,d)Pyrene	Ð	0.050	0.051	102	0.05	0.053	106	4	44-132	25	
1-Methylnaphthalene	QN	0.050	0.046	76	0.05	0.048	96	4	47-113	25	
2-Methylnaphthalene	QV.	0.050	0.051	102	0.05	0.054	108	9	57-106	25	Н
Naphthalene	QN	0.050	0.045	06	0.05	0.048	96	9	53-110	25	
Phenanthrene	Q.	0.050	0.048	96	0.05	0.050	100	4	56-116	25	
Pyrene	Ð	0.050	0.048	%	0.05	0.050	100	4	57-119	25	

Relative Pervent Difference RPD = 200*[(C-F)/(C+F)]Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Project Name: Lovington Gathering WTI

Work Order #: 319271

Lab Batch ID: 742525

Date Analyzed: 12/05/2008

Batch #:

Project ID: 2006-142

Analyst:

QC- Sample ID: 319271-001 S Date Prepared: 12/04/2008

Matrix: Water BHW

Reporting Units: mg/L		M	ATRIX SPIKI	3/MAT	RIX SPII	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TE REC	OVERY S	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits	Control Limits %RPD	Flag
Benzene	N N	0.1000	0.1021	102	0.1000	0.1026	103	-	70-125	25	
Toluene	ND ND	0.1000	0.0927	93	0.1000	0960.0	96	3	70-125	25	
Ethylbenzene	ND	0.1000	0.0972	26	0.1000	0.1059	106	6	71-129	25	
m,p-Xylenes	ND	0.2000	0.1954	86	0.2000	0.2025	101	3	70-131	25	
o-Xylene	ND	0.1000	0.0945	95	0.1000	0.0987	66	4	71-133	25	

Date Analyzed: 12/06/2008 Lab Batch ID: 742793

QC- Sample ID: 319397-002 S Date Prepared: 12/05/2008

Matrix: Water ASA Batch #:

Reporting Units: mg/L

Analyst:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTFV by FDA 8021B	Parent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
	Sample		Result	Sample	Spike	Spiked Sample	Dup.	RPD	Limits	Limits	Flag
Analytes	Result [A]	Added [B]	[c]	WR [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD)
Benzene	0.0733	0.1000	0.1467	73	0.1000	0.1500	77	~	70-125	25	
Toluene	Ð.	0.1000	0.0643	64	0.1000	0.0655	99	ю	70-125	25	×
Ethylbenzene	0.0014	0.1000	0.0636	62	0.1000	0.0653	64	е	71-129	25	×
m,p-Xylenes	ND	0.2000	0.1267	63	0.2000	0.1308	65	3	70-131	25	×
o-Xylene	ND	0.1000	0.0596	09	0.1000	0.0617	62	3	71-133	25	×

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit

exas
Te
b of
Lab
ntal
me
<u>5</u>
Env

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 Wost 1-20 East Phone 422-562-1800 Odossa, Texas 78765 Fax: 432-563-1713

•

0

0

•

0000

Q

u,	Project Manager:	Curt Stanley			PAGE 01 OF	10	İ			1			ı	ā	dect N	EE.	Š	B	Gath	Project Name: Lovington Gathering WTI	٤		-	
0	Company Name	Basin Environmental Service Technologies, LLC	rvice Te	chnot	ogles, LLC				ļ				1		Proj	Project #: 2006-142	2008	2						
U	Company Address:	P. C. Box 301		İ				ł		1	ŀ	- 1	1	۵	Project Loc: Lea County, NM	Š,	2	Š	3		- 1			- 1
J	City/State/Zip:	Lowngton, NM 88260											1		_	* 0	į	PO #: PAA - D.M. Bryant	yarı				- [
-	Tetaphone No:	1505) H1-2244		İ		Fax No:	श	(505) 396-1429	-1429	1				Report Format:	Ferm		्र इरा	X Standard		TRRP	ą.		NPDES	- 63
S	Sampler Signature:	17 PM	d	1		e-mail:	ଞ୍ଜ	tanle	œX	nasin	cstanley@basinenv.com	S	1	-			ı		ı					
(ab use only)	<i>b</i>	7														١	ġ	L	Analyze For	Ĺ	\vdash	L	Ť	-
								ł									TOTAL		L	×	_		A4 21	
ORDER #	17161	- II		1				Ē	evese.	tlon &	Preservation & # of Containers	ntaine	Ц	Matrix	99		-	-			_	_	.69	-
(vino esu dai) % 8A.	₩	HELD CODE	rirgəD griirinigə6	rided galba	Date Sampled	Time Sampled	Perio Fill pred Remember 1 Li Consamers	Lifer deniber, 2 VOA's	нио,	⊮'80* HCI	HOBH 40.8.84	anoN	одног (грансту) Одног (грансту)	ME - CIGROPHAGES - 306CHA OTHE	8108 M2108 1,814 H97	Callons (Ca. Mg. Na. K)	SAR / ESP / CEC	Actobs: As Ag the Cd Cr Pb Hg S	colleto: calibidovimen	31EX 8021949030 or BTEX 8280	MR 8270		AS (authorities art) TAT HRUS	The femoments and the
ō		MW-5		<u> </u>	12/2/2008	835	-	×		×	╁		-	₹	-	-	┈				+		4	
10		MW-4			12/2/2008	855	ļ.,	×		×				₹	-		H			×	×		-	1
5.0		MW-6			12/2/2008	925	-	3 X		×	_		-	GW	Н		H			×	×			
- to		MW-9			12/2/2008	945		×		×	-		٥	GW	_	_				×	×			
0,2		MW-1	_		12/2/2008	1010	-	×		×	_		_	ĞW						Į×.	×			
30	-	MW-3	_		12/2/2008	1030	•	X E		×	\dashv		4	š	\dashv		-			×	×		Ц	
01	-	MW-2	_		12/2/2008	1240		<u>×</u>	^	×	\dashv		٥	Š			_			×	×	_	_	
કુ		MW-8			12/2/2008	1300	3	×		×	\dashv		٦	š	\dashv			\dashv		×	×			
চ		MW-7			12/2/2008	1315	-	×		×	\dashv		4	δW	-					×	×		-	
								_						_										
Special Instructions	Iructions:															Same	aton Se Co	Com: tainer	Laboratory Comments Sample Containers Intact?	Laboratory Comments \(\lambde{\epsilon}\) \(\lambde{\epsilon}\) Sample Containers Intract?	9 -	SAC TON TO SO	G _Z z	122
Through the	J. C. J.	aled CT	1 ~	Tme / - 7	Received by:		l						Date	_	Ě	200	20.00	is on	Labels on container(s) Custody seals on container(s)		_ •	(P)(P)>	z z (
Relinquished by.	fay.	Ē	:[<u> </u>	Received by:								Date	Γ.	E E	Sem	y Sam Fa	Sample Hand Delivered by Sampler/Citert Re	nole Hand Delivered by Sampler/Clifert Res	ا ئ	•	9z z ()z z '	`
Relinquished by:	by:	Date	<u> </u>	line	Received by ELOT		ĺ		l	١	l	1	400	1	Ē	_	3		2	Š		<u> </u>	2	ž

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client: 13	isin Eili.	Planes		ū		
Sample Final Sample Final Sample Final Sample Final Sample Final Sample Final Sample Final Sample Final Sample Final Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Instructions complete of Chain of Custody Seals intact on sample Sample Sample Instructions complete of Chain of Custody Sample Sample Instructions complete of Chain of Custody Sample Sample Instructions complete of Chain of Custody Sample Sample Instructions complete of Chain of Custody Picture Sample Instructions complete of Chain of Custody Picture Sample Instructions occurrent Sample Sample Instructions occurrent Sample Sample Sample Supplied by ELOT? Samples in proper container bottle? Samples properly preserved? Samples properly preserved? Sample Southers documented on Chain of Custody? Sample Supple Sample S						
Lab ID # :	Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on sample tottles container? Chain of Custody present? Chain of Custody signed when relinquished/ receive Chain of Custody agrees with sample label(s)? Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Fontainers documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance Contact: Contacted by: Corrective Action Taken:					
Initials	Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container (cooler) Custody Seals intact on sample bottlest container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrixl properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Samples properly preserved? Samples properly preserved? Sample bottles intact? Servations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? Subcontract of sample(s)? Voc samples have zero headspace? Contact: Contacted by: Corrective Action Taken:					
			Chaaklint			
		Sample Receipt	CHECKISE		i	Client Initials
	Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on sample tottles container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receives container label(s) legible and intact? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Kontainers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by:			No	2.C °C	
	Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/ cooler? Custody Seals intact on sample forties container? Custody Seals intact on sample forties container? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ received container label(s) legible and intact? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Mall samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by: Legarding:			No		
	Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample fortle⊮ container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receive Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Samples bottles intact? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Vor samples have zero headspace? Variance contact: Contacted by:			No	Not Present	
#4 Custody Seals	Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/ cooler? Custody Seals intact on sample tottles container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receives container label(s) legible and intact? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Samples bottles intact? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Mall samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by:			_No	Not Present	
Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on sample footles container? Custody Seals intact on sample footles container? Custody Seals intact on sample footles container? Custody Seals intact on sample footles container? Chain of Custody present? Chain of Custody signed when relinquished/ receives container label(s) legible and intact? Container label(s) legible and intact? Container supplied by ELOT? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Containers documented on Chain of Custody?			Yes	No		
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample fortlew container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Containers documented on Chain of Custody? Containers documented on Chain of Custody? All samples received within sufficient hold time? Subcontract of sample(s)? Voc samples have zero headspace? Variance Contact: Contacted by: Corrective Action Taken:			Yes	No		
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample bottles container? Custody Seals intact on sample bottles container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Sample bottles intact? Freservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance Contacted by: Regarding: Corrective Action Taken:		elinquished/ received?	Yes	- No		
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample fortles container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when rekinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Samples bottles intact? Freservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? Sufficient sample amount for indicated test(s)? Subcontract of sample(s)? VoC samples have zero headspace? Variance Corrective Action Taken:		mple label(s)?	Yes	No	ID written on Cont./ Lid	
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample footligs container? Custody Seals intact on sample footligs container? Custody Seals intact on sample footligs container? Chain of Custody present? Chain of Custody signed when relinquished/ receive the container label(s) legible and intact? Container label(s) legible and intact? Sample malni/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? Mall samples received within sufficient hold time? Subcontract of sample(s)? Variance Contacted by: Corrective Action Taken: Check all that Apply: See attached e-mail. Client understands a		act?	Yes	No	Not Applicable	
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample footligs/ container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receive Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples in proper container/ bottle? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by:			Yes	No		
Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample footles/ container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receive Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Samples bottles intact? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Containers documented on Chain of Custody? All samples received within sufficient hold time? Subcontract of sample(s)? Voc samples have zero headspace? Variance			Yes	No		
Custody Seals intact on sample Cottle® container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when rekinquished/ receive Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Containers supplied by ELOT? Sample matrix/ properties agree with Chain of Cust Containers supplied by ELOT? Samples in proper container/ bottle? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? Subscentract of sample(s)? VoC samples have zero headspace? Variance			Tes	No	See Below	
Custody Seals intact on sample Cottlew container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/receiver Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Containers supplied by ELOT? Samples matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Stiffcient sample amount for indicated test(s)? Subcontract of sample(s)? VoC samples have zero headspace? Variance			(Ýes	No	See Below	
#14 Sample bottle	es intact?		Yes	No		
Custody Seals intact on shipping container (Cooler) Custody Seals intact on sample Cottlew container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when rekinquished/receivers Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples properly preserved? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Containers documented on Chain of Custody? All samples received within sufficient hold time? Subcontract of sample(s)? VoC samples have zero headspace? Variance			Yes	No		
Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample foottlest container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/receiver Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matnx/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples properly preserved? Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Samples properly within sufficient hold time? All samples received within sufficient hold time? Subcontract of sample(s)? Variance			Yes	No		T
Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample footles/ container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when rekinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by:			Yes.	No	See Below	
Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample footles/ container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when rekinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by:			Yes	No	See Below	
Custody Seals intact on sample Cottlew container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/received Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? Subsontract of sample(s)? VoC samples have zero headspace? Variance			Yes	No	Not Applicable	
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample footles container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receives Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT? Samples in proper container/ bottle? Samples properly preserved? Sample bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? VoC samples have zero headspace? Variance Contacted by: Corrective Action Taken:		pace?	⊁ €9	No	Not Applicable	
	Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/cooler? Custody Seals intact on sample_cottles/ container? Custody Seals intact on sample_cottles/ container? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receival container label(s) legible and intact? Container label(s) legible and intact? Container supplied by ELOT? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Vor samples have zero headspace? Variance legarding:					
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on sample fottles container? Chain of Custody present? Cohain of Custody signed when relinquished/ receive Cohain of Custody agrees with sample label(s)? Container label(s) legible and intact? Container supplied by ELOT? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples bottles intact? Samples properly preserved? All samples properly preserved? Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance Contact: Contacted by: Corrective Action Taken:		Contacted by:		_	Date/ Time:	
Sample R Temperature of container/ cooler? Shipping container in good condition? Custody Seals intact on shipping container/ cooler? Chain of Custody present? Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ receive the container label(s) legible and intact? Chain of Custody agrees with sample label(s)? Chain of Custody agrees with sample label(s)? Container label(s) legible and intact? Sample matrix/ properties agree with Chain of Custody? Samples in proper container/ bottle? Samples properly preserved? Samples bottles intact? Preservations documented on Chain of Custody? Sufficient sample amount for indicated test(s)? All samples received within sufficient hold time? Subcontract of sample(s)? Variance contact: Contacted by: Corrective Action Taken:				_		
Regarding:	· · · · · · · · · · · · · · · · · · ·					
Corrective Action	Taken:					
Oh II II - II - II - II - II - I		San attached a mail for				
Check all that App	, —		ıld lika ta ass	cood with	analysis	
					•	
	L	Soomid bioness uso pedan	anorny anter	admining	+ c.A.C.III	
					•	

0

0

0

0

•

Appendix B Release Notification and Corrective Action (Form C-141)

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II

1000 Rio Brazos Road, Aztec, NM 87410

District IV

facility- PPACO611638437 Inri hand-nPACO611638542

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr.

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back

Ì	220 S. St. Fran	cis Dr., Sant	a Fc, NM 8750:	5	. —	-	e, NM 875	05			`	vidi Kaic	side of form	
)_	<u> جي ۽ يو ڪني پي جي وي وي وي وي</u>	······································	فاستعدون المرجوب الأ	Rele	ease Notific	باستسمورناء		نبور الأبدر والمساولات الزياد والساك	ction	}				
)							OPERA				al Report		Final Repo	ort
١	Name of Co	mpany Pl	ains Pipeline	 ;				nille Reynolds		. A	и корол		- And Adopt	
			Hwy 82, Lo		VM 88260		Telephone N	No. 505-441-09	65					
	Facility Nar	ne Loving	ton Gatherin	g WTI			Facility Typ	e 6"Steel Pipel	ine					
	Surface Ow	ner Rober	t Rice		Mineral C	wner				Lease 1	No.			
					LOCA	OITA	N OF REI	LEASE						
ſ	Unit Letter	Section	Township	Range	Feet from the		/South Line	Feet from the	East/V	Vest Line	County		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	· H	6	17S	37E							Lea			
L	11-0	J	Letitud	le 32° 51	' 56 O''	L	I ongitude	103° 17' 07.2	,,		l	-		
			130 Catta	<u> </u>		ים כחו שי	OF RELI							
Г	Type of Relea	ase Crude ()il		14A1	URCE		Release 12 barre	ls	Volume I	Recovered	8 barrels		7
r	Source of Re				····			our of Occurrence			Hour of D			٦
-	Was Immedia	An Nigelia d	2:0				4-21-2006 If YES, To			4-21-200	6 @ 13:15			4
	was immedia	ne notice (Yes [No 🔲 Not Ro	equired					,	0223	24.25	
r	By Whom? C		nolds					lour 4-21-2006 @	2 15:35		100	\Lean	24 25 26 2	-
	Was a Water	course Read		. w. 157	1 37		If YES, Vo	lume Impacting	he Wate	ercourse.	200			$\sqrt{\epsilon}$
Was a Watercourse Reached? ☐ Yes ☑ No If YES, Volume Impact											/80	A Pro		겝
1	If a Watercou	use was Im	pacted, Descr	ibe Fully.	•						131415167	HOO!		3
ł											15 A	OCOSS	e ^Q ,	7
											165	•	d.	
					n Taken Internal c									7
					tine. The pressu The line was ap					e gravity o	t the sweet	crude on	liwas 34.	
			2		•		-	o	•					
L			- : -:		4 77%									4
	approximately		and Cleanup A	Action Tak	en.* The impacte	ed soil v	vas excavated	and stockpiled of	ı piastic.	. Aeriai ex	tent of surf	ace impa	ict was	
	, ,	,, -												
ļ														
1	Thombs:	G. shat the	m 60	van ak	ic true and	late to	he heat of	knowledge and	ndow	ad that	nomé és NE	MOCD -	las and	4
					is true and comp d/or file certain re									
	public health	or the envi	ronment. The	acceptance	e of a C-141 repo	ort by th	ne NMOCD ma	arked as "Final R	eport" d	loes not reli	ieve the op	erator of	liability	
					investigate and retained of a C-141									
			ws and/or regu											
		1		()	/	,		OIL CON	SERV	<u>ATION</u>	DIVISI	<u>ON</u>		
	Signature:	_am	Jelle	179	imold	4								
	Printed Name	: Camille I	Revnolds	1	U		Approved by	District Supervis	or:					
Γ	Title: Remedi						Approval Date	e·		Expiration 1	Date:			\exists
+	THE MEHICU	ation Com	GARIAROI							CAPHALION I	Jacc.			\dashv
H	E-mail Addre	ss: cjreyno	lds@paalp.co	m			Conditions of				Attache	dП		
	Date: 4/26/20				Phone:505-441	-	- /I - A	tion - ppA	PAL	111,20	1/7	~ L		
1	La 1.41	- APA	7COG116	38437		5	ifflicat	ion - prt	CVV	11436	xe/			i
	at it it ki.Ml.	/ 11	•	ı	1		•	1						