Basin Environmental Consulting, LLC

2800 Plains Highway
P. O. Box 381
Lovington, New Mexico 88260
cdstanley@basin-consulting.com

Office: (575) 396-2378 Fax: (575) 396-1429

Effective Solvania (2009)

HAY

HOBBSOCO

HOBB

REMEDIATION SUMMARY AND PROPOSED SOIL CLOSURE STRATEGY

PLAINS PIPELINE, L.P. (231735)
E.K. Queen Pearce 6-Inch
Lea County, New Mexico
Plains SRS # 2008-113
UNIT LTR "O" (SW ½/SE ½), Section 16, Township 18 South, Range 34 East
Latitude 32° 44' 31.2" North, Longitude 103° 33' 46.6" West
NMOCD Reference # 1RP-1853

Prepared For:

Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By:
Basin Environmental Consulting, LLC
2800 Plains Highway
Lovington, New Mexico 88260

May 2009

Curt D. Stanley

Project Manager

TABLE OF CONTENTS

INTRODUCTION BACKGROUND INFORMATION1
NMOCD SITE CLASSIFICATION1
SUMMARY OF SOIL REMEDIATION ACTIVITIES2
SUMMARY OF GROUNDWATER REMEDIATION ACTIVITIES4
PROPOSED SOIL CLOSURE ACTIVITIES5
REPORTING6
LIMITATIONS6
DISTRIBUTION7
FIGURES
Figure 1 – Site Location Map Figure 2 – Site and Sample Location Map Figure 3 – Inferred Groundwater Gradient Map Figure 4 – Proposed SVE Well Location Map
TABLES
Table 1 – Concentrations of Benzene, BTEX and TPH in Soil Table 2 – Concentrations of Benzene, BTEX, TPH, Chlorides and Total Dissolved Solids in Groundwater Table 3 – Groundwater Elevation Data
APPENDICES
Appendix A – Soil Boring and Monitor Well Logs Appendix B – Analytical Reports Appendix C - Photographs Appendix D – SVE Technical Information, Efficiency Curves and SVE Photographs Appendix E - Release Notification and Corrective Action (Form C-141)

INTRODUCTION AND BACKGROUND INFORMATION

Basin Environmental Consulting, LLC (Basin), on behalf of Plains Pipeline, L.P. (Plains), has prepared this Remediation Summary and Proposed Soil Closure Strategy for the release site known as E.K. Queen Pearce 6-Inch (SRS # 2008-113). The legal description of the release site is Unit Letter "O" (SW ¼ SE ¼), Section 16, Township 18 South, Range 34 East, in Lea County, New Mexico. The property affected by the release is owned by The State of New Mexico and is administered by the State Land Office (ROE-1706). The release site GPS coordinates are 32° 44′ 31.2" North and 103° 33′ 46.6" West. Please reference Figure 1 for a Site Location Map and Figure 2 for a Site and Sample Location Map. The Release Notification and Corrective Action (Form C-141) is provided as Appendix E.

On May 6, 2008, Plains discovered a crude oil release from a six (6)-inch steel gathering pipeline. The cause of the release was attributed to internal corrosion of the pipeline and was reported to the New Mexico Oil Conservation Division (NMOCD) on May 6, 2008. During initial response activities, Plains installed a temporary pipeline clamp on the pipeline to mitigate the release. Approximately ten (10) barrels of crude oil was released from the pipeline, with no recovery. General photographs of the site are provided as Appendix C.

NMOCD SITE CLASSIFICATION

According to data obtained from the New Mexico Office of the State Engineer (NMOSE), depth to groundwater is estimated to be 110 feet below ground surface (bgs). The depth to groundwater in this area results in a score of zero (0) being assigned to the site based on the NMOCD depth to groundwater criteria.

The water well database, maintained by the NMOSE, indicated there are no water wells less than 1,000 feet from the release, resulting in zero (0) points being assigned to this site as a result of this criteria.

There is a dry playa located less than 200 feet to the south of the release. Based on the NMOCD ranking system twenty (20) points will be assigned to the site as a result of the criteria.

The NMOCD guidelines indicate the E.K. Queen Pearce 6-Inch release site has an initial ranking score of twenty (20). Based on this score, the soil remediation levels for a site with a ranking score of twenty (20) points are as follows:

- Benzene 10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH 100 mg/Kg (ppm)

On February 25, 2009, the NMOCD Hobbs District Office approved a modified remediation standard of:

- Benzene 10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH -5,000 mg/Kg (ppm)

SUMMARY OF SOIL REMEDIATION ACTIVITIES

On May 15, 2008, following initial response activities, excavation of the hydrocarbon impacted soil began at the site. Excavated soil was stockpiled on-site on a plastic liner to mitigate the leaching of contaminants into the vadose zone. The initial excavation of impacted soil was completed on June 10, 2008.

On June 10, 2008, a soil sample (Floor @ 17') was collected from the floor of the excavation at approximately seventeen (17) feet bgs. The analytical results indicated the total petroleum hydrocarbon (TPH) concentration was 24,840 mg/Kg.

On July 25, 2008, four (4) soil borings (SB-1, SB-2, SB-3 and SB-4) were advanced at the release site to vertically investigate the extent of soil impact. Soil boring logs are provided as Appendix A. Soil samples were collected at five (5) foot drilling intervals and field screened using a Photo-Ionization Detector (PID). Selected soil samples were submitted to the laboratory for determination of concentrations of benzene, toluene, ethyl-benzene and xylene (BTEX) and total petroleum hydrocarbon (TPH) using EPA SW-846 8021b and SW-846 8015M, respectively.

Soil boring SB-1 was located southeast of the excavation and was advanced to a total depth of approximately forty (40) feet bgs. The laboratory analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory method detection limit (MDL) in the soil sample collected at ten (10), twenty (20), thirty (30) and forty (40) feet bgs, with the exception of the soil sample collected at thirty (30) bgs, which exhibited a TPH concentration of 20 mg/Kg. Table 1 summarizes the Concentrations of Benzene, BTEX and TPH in Soil. Analytical reports are provided as Appendix B.

Soil boring SB-2 was located northwest of the excavation and was advanced to a total depth of approximately thirty (30) feet bgs. The laboratory analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL in the soil samples collected at ten (10), twenty (20) and thirty (30) feet bgs.

Soil boring SB-4 was located south of the release point, on the excavation floor at approximately seventeen (17) feet bgs. The soil boring was advanced to a total depth of approximately one hundred (100) feet. Soil samples collected at ten (10), twenty (20), thirty (30), forty (40), fifty (50), sixty (60), seventy (70), eighty (80), ninety (90) and one hundred (100) feet were submitted to the laboratory. The laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL of 0.0011 mg/Kg in the soil samples collected at ninety (90) and one hundred (100) feet to 19.62 mg/Kg in the soil sample collected at ten (10) feet. The laboratory analytical results indicated BTEX constituent concentrations ranged from 0.0071 mg/Kg in the soil sample collected at ninety (90) feet to 701.08 mg/Kg in the soil sample collected at ten (10) feet. The laboratory analytical results indicated TPH concentrations ranged from 76 mg/Kg in the soil sample collected at fifty (50) feet to 85,350 mg/Kg in the soil sample collected at ten (10) feet.

Soil boring SB-4 was advanced from the excavation floor at approximately seventeen (17) feet bgs. Adjusting the depth of the soil boring, in relation to the ground surface, results in an actual soil boring depth of approximately one hundred seventeen (117) feet bgs. During the

advancement of the soil boring, groundwater was encountered at approximately ninety three (93) feet drilling depth or approximately one hundred ten (110) feet bgs. A temporary casing was installed in the soil boring to allow a "preliminary" groundwater sample to be collected for analysis. Following the collection of the groundwater sample, the soil boring was plugged with two (2) bags of cement and twenty (20) bags of bentonite, as required by the NMOSE. A description of the analytical results of the collected groundwater sample (Prelim GW) is included in the Summary of Groundwater Remediation Activities below.

On October 23, 2008, eight (8) excavation sidewall soil samples (N-1 S/W, E-1 S/W, W-1 S/W, E-2 S/W, S-1 S/W, N-2 S/W, S-2 S/W and W-2 S/W) were collected and submitted to the laboratory for analysis. The analytical results indicated benzene and BTEX concentrations were less than the appropriate laboratory MDL in soil samples N-1 S/W, E-2 S/W, S-1 S/W, N-2 S/W, S-2 S/W and W-2 S/W. The analytical results indicated TPH concentrations ranged from less than the laboratory MDL in soil samples N-1 S/W, S-1 S/W, N-2 S/W and S-2 S/W to 1,456 mg/Kg in soil sample W-1 S/W.

On November 7, 2008, heavy equipment was mobilized to the release site to excavate a hard caliche layer beneath and immediately south of the release point. The excavated impacted material was added to the existing stockpile. A total of approximately 8,500 cubic yards of soil was stockpiled on-site pending final disposition.

On January 6 through January 8, 2009, three (3) groundwater monitor wells (MW-1 through MW-3) were installed at the E.K. Queen 6-Inch Pearce release site. The monitor wells were installed to evaluate the status of the underlying groundwater.

Monitor well MW-1 was installed northwest of the release point, to a total depth of approximately one hundred thirty nine (139) feet bgs. Soil samples were collected at five (5) foot drilling intervals and field screened with a PID. Soil samples were submitted to the laboratory from the ten (10), thirty (30), fifty (50), seventy (70), ninety (90), one hundred ten (110) and one hundred twenty seven (127) foot drilling intervals. The analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples, with the exception of the soil samples from one hundred ten (110) and one hundred twenty seven (127) feet bgs, which exhibited TPH concentrations of 36 mg/Kg and 17.7 mg/Kg, respectively.

Monitor well MW-2 was installed east of the release point, to a total depth of approximately one hundred thirty five (135) feet bgs. Soil samples were collected at five (5) foot drilling intervals and field screened with a PID. Soil samples were submitted to the laboratory from the ten (10), thirty (30), fifty (50), seventy (70), ninety five (95), one hundred ten (110) and one hundred twenty (120) foot drilling intervals. The analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples.

Monitor well MW-3 was installed east of the release point, to a total depth of approximately one hundred twenty six (126) feet bgs. Soil samples were collected at five (5) foot drilling intervals and field screened with a PID. Soil samples were submitted to the laboratory from the ten (10), thirty-five (35), fifty (50), seventy (70), ninety (90), one hundred ten (110) and one hundred thirteen (113) foot drilling intervals. The analytical results indicated benzene, BTEX and TPH

concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples.

On January 9, 2009, one (1) additional soil boring (SB-5) was advanced on the east end of the excavation floor to further vertically investigate the extent of soil impact. The soil boring was advanced to a total depth of approximately sixty (60) feet bgs. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. Soil samples were submitted to the laboratory from the ten (10), twenty (20), thirty (30), forty (40), fifty (50) and six (60) foot drilling intervals. The analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples.

On February 25, 2009, the NMOCD Hobbs District Office verbally approved a modified remediation standard of:

- Benzene 10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH -5,000 mg/Kg (ppm)

SUMMARY OF GROUNDWATER REMEDIATION ACTIVITIES

On July 25, 2008, a groundwater sample was collected from the temporary casing installed in soil boring SB-4. The analytical results indicated a benzene concentration of 0.0016 mg/Kg, a toluene concentration of 0.008 mg/Kg, an ethyl-benzene concentration of 0.0074 mg/Kg and a total xylene concentration of 0.014 mg/Kg. Table 2 summarizes the Concentrations of Benzene, BTEX, TPH, Chlorides and Total Dissolved Solids in Groundwater.

Based on the analytical results, the NMOCD-Hobbs District Office requested and Plains concurred with the request, to install three (3) groundwater monitor wells (MW-1 through MW-3) at the release site. A description of the installation of the monitor wells and analytical results of the submitted soil samples is included in the Summary of Soil Remediation Activities above.

No PSH was detected in any of the site monitor wells during the 1st quarter 2009 reporting period.

On January 20, 2009, the site monitor wells (MW-1 through MW-3) were gauged and purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer mounted polystyrene tank and disposed of at an approved disposal in Monument, New Mexico.

Locations of the groundwater monitor wells and the inferred groundwater elevations, which were constructed from the measurements collected during the 1st quarterly sampling event, are depicted on Figures 3, Inferred Groundwater Gradient Map.

The Groundwater Gradient Map indicates a general gradient of approximately 0.0004 feet/foot to the east as measured between groundwater monitor wells MW-1 and MW-3. The corrected

groundwater elevations ranged from 3,907.49 to 3,908.24 feet above mean sea level, in monitor well MW-1 and monitor well MW-3, respectively. Table 3 summarizes Groundwater Elevation Data.

The analytical results of the 1st quarter 2009 groundwater sampling event indicate all BTEX constituent concentrations were less than the laboratory MDL in all three (3) monitor wells. The analytical results indicate chloride concentrations ranged from 126 mg/L in monitor well MW-3 to 206 mg/L in monitor well MW-2. The results further indicate total dissolved solids (TDS) concentrations ranged from 378 mg/L in monitor well MW-3 to 528 mg/L in monitor well MW-1.

Plains will continue groundwater monitoring and sampling through the 4th quarter 2009. Following receipt of the 4th quarter 2009 groundwater sampling results, Plains may request NMOCD approval to plug and abandon the monitor wells (MW-1 through MW-3), if the analytical results indicate groundwater has not been impacted above the NMOCD regulatory standards.

PROPOSED SOIL CLOSURE STRATEGY

Plains proposes the following soil remediation activities designed to progress the E.K. Queen 6-Inch release site toward an NMOCD approved soil closure:

- Plains will mechanically screen the on-site stockpiles to segregate large blocks of caliche from the soil. The large blocks of caliche will be placed in the existing excavation during backfilling activities. Plains proposes to collect a stockpile soil sample for each 500 cubic yards of segregated soil. The soil samples will be submitted to the laboratory and analyzed for concentrations of BTEX using EPA method 8021b and TPH using SW-846 8015M. Provided the analytical results indicate the TPH concentration of the soil sample is less than 5,000 mg/Kg as approved by the NMOCD, the soil will be stockpiled and used as backfill. Should the analytical results indicate the TPH concentration of any of the stockpile soil samples exceed 5,000 mg/Kg, the affected soil will be blended and resampled until TPH concentrations are less than 5,000 mg/Kg TPH.
- Plains proposes to install a twenty (20) mil polyurethane liner in the western portion of the excavation. The liner will be cushioned by a six (6) inch layer of sand above and below the liner to protect the liner from damage during excavation backfilling activities. The excavation will be backfilled and compacted in twelve (12) inch lifts. Following backfill activities the surface will be contoured to fit the surrounding topography. Reseeding of the site with vegetation acceptable to the New Mexico State Land Office will take place at the conclusion of the proposed remediation activities.
- On July 25, 2008, Soil boring SB-4 was advanced and the analytical results of collected soil samples indicated an area of impact located between approximately twenty (20) to forty-five (45) feet bgs. Following excavation backfill activities, Plains proposes to install a minimum of seven (7) two (2) inch soil vapor extraction (SVE) wells on ten (10) to twenty-five (25) foot spacing. The initial SVE wells will be located adjacent to and north, south, east and west of soil boring SB-4. Please reference Figure 4, Proposed SVE Well

Location Map. The SVE system utilizes a blower to create a vacuum at predetermined screened intervals below the ground surface, allowing areas of concern to be addressed. The vacuum created by the blower allows volatile organic compounds (VOCs) in the screened intervals to be removed from the affected soil and vented. Plains anticipates the SVE system will operate continuously, ceasing operation for short internals for required maintenance. Technical information, efficiency curves and photographs of the SVE system are provided in Appendix D. The SVE system will be monitored and adjusted as conditions warrant. Emission air samples will be collected and submitted to the laboratory as required by the New Mexico Environmental Department, Air Quality Bureau. When remediation goals have been achieved, Plains proposes to advance soil borings and collect and submit soil samples to the laboratory to confirm the successful remediation of the targeted area of concern. On NMOCD approval, the operation of the SVE system will cease and the SVE wells will be plugged and abandoned.

REPORTING

On completion of the proposed soil closure strategy activities, Plains will submit a Remediation Summary and Soil Closure Request for NMOCD approval. Groundwater monitoring and quarterly sampling will continue until the 4th quarter 2009. If the groundwater analytical results indicate BTEX constituent concentrations are less than the NMOCD regulatory standard, Plains will request NMOCD approval to cease groundwater monitoring and sampling activities. On NMOCD approval, Plains will submit a Site Closure Request and request permission to plug and abandon the on-site monitor wells.

LIMITATIONS

Basin Environmental Consulting, LLC has prepared this Remediation Summary and Soil Closure Strategy to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Consulting, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Consulting, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Consulting, LLC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Consulting, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Pipeline, L.P. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Consulting, LLC and/or Plains Pipeline, L.P.

DISTRIBUTION:

Copy 1: Larry Johnson

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division (District 1)

1625 French Drive

Hobbs, New Mexico 88240

Copy 2: Thaddeus Kostrubala

New Mexico State Land Office

310 Old Santa Fe Trail

P.O. Box 1148

Santa Fe, New Mexico 87504

Copy 3: Jeff Dann

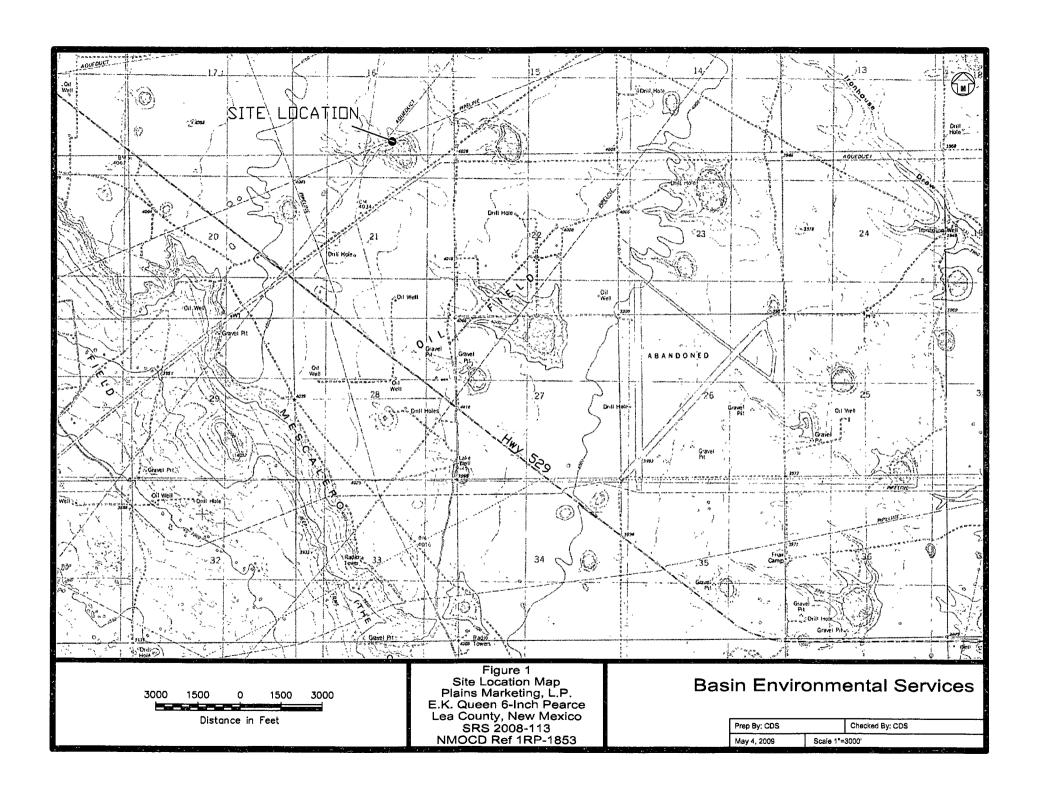
Plains Pipeline, L.P.

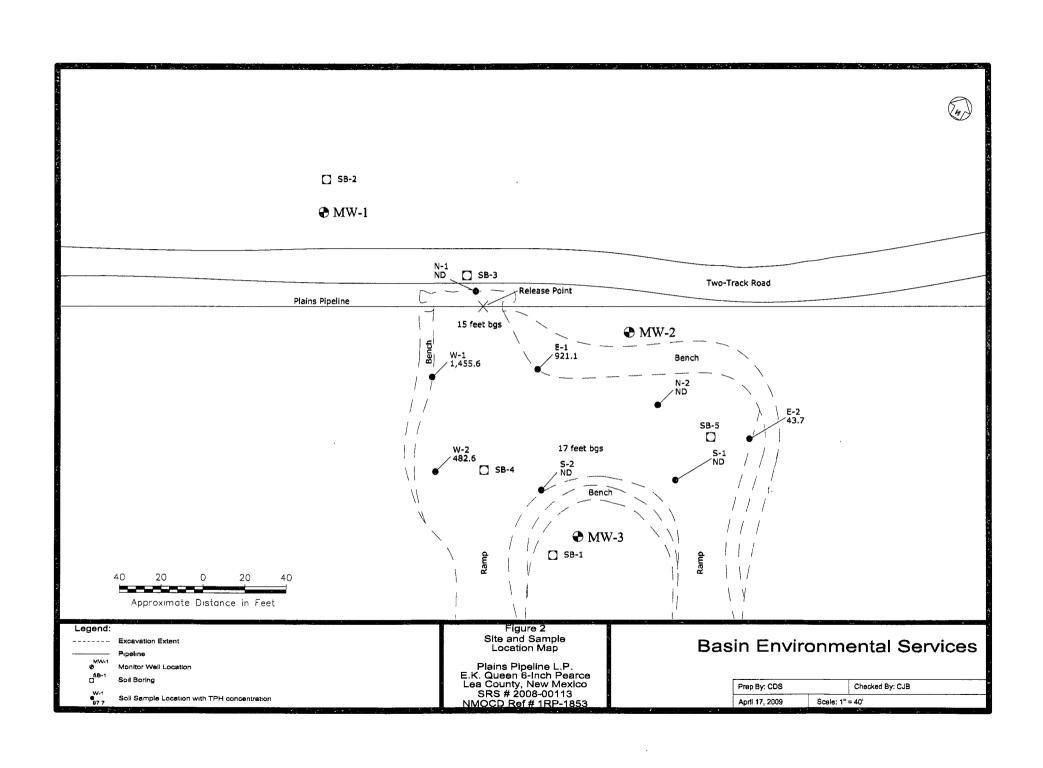
333 Clay Street, Suite 1600 Houston, Texas 77002 jpdann@paalp.com

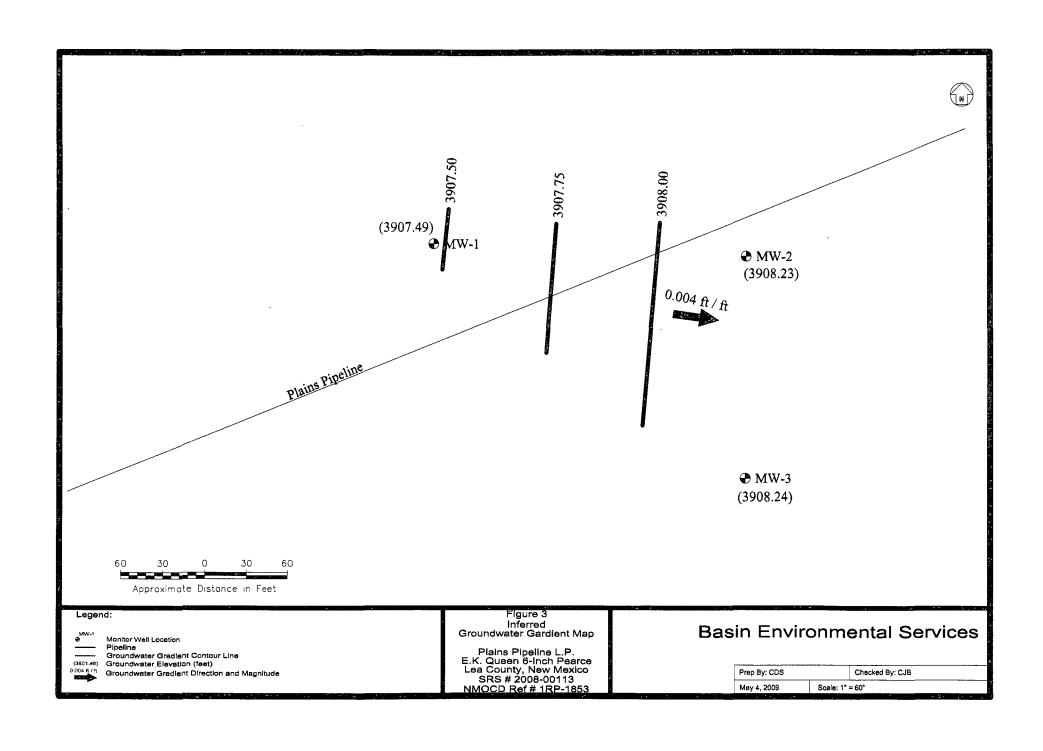
Copy 4: Jason Henry

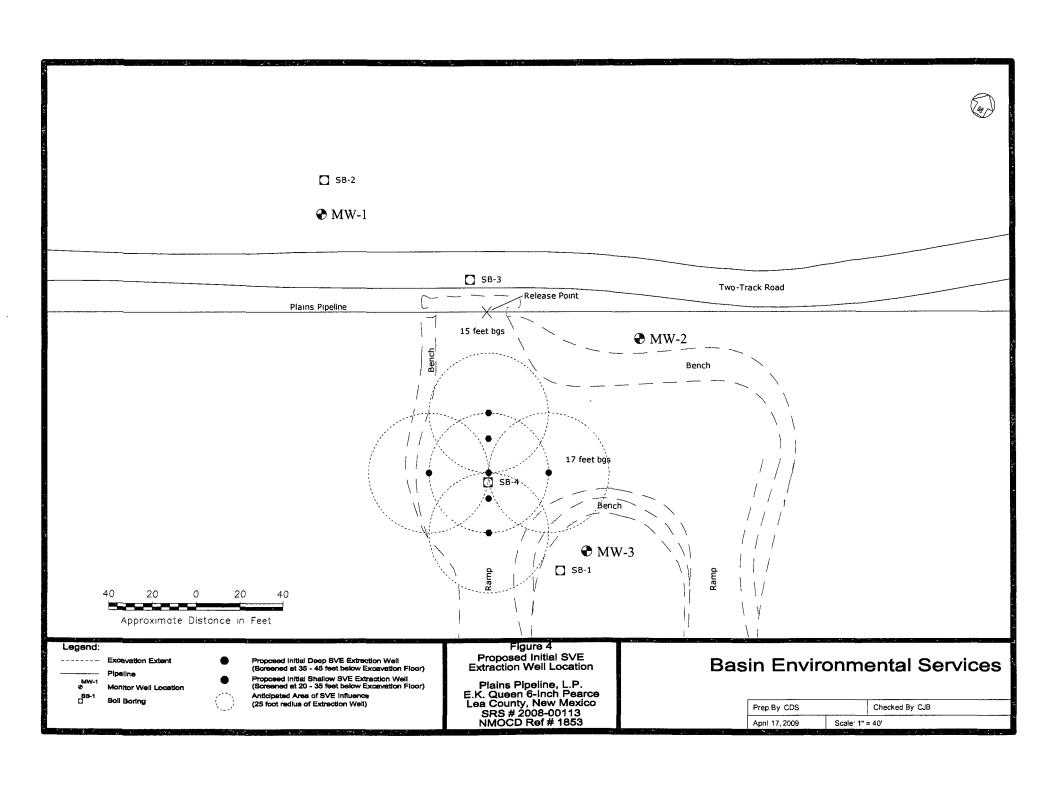
Plains Pipeline, L.P. 2530 State Highway 214 Denver City, Texas 79323

jhenry@paalp.com


Copy 5: Curt D. Stanley


Basin Environmental Consulting, LLC


P.O. Box 381


Lovington, New Mexico 88260 cdstanley@basin-consulting.com

Figures

Tables

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. E.K. QUEEN 6 INCH PEARCE LEA COUNTY, NEW MEXICO SRS: 2008-113

NMOCD REFERENCE NO: 1RP-1853

	G					MET	HOD: EPA SW 8	46-8021B, 5030			ME	THOD: 8015	M	TOTAL
SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	DATE ANALYZED	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE mg/Kg	ETHYL- BENZENE (mg/Kg)	M.P XYLENES (mg/Kg)	O- XYLENE (mg/Kg)	TOTAL BTEX	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TPH C ₆ -C ₃₅ (mg/Kg)
Floor @ 17'	17 feet	06/10/08	06/10/08	In-Situ	-	-	-	-	-	-	4,470	17,600	2,770	24,840
多个人的数据的数据的数据。	1 1 1 2 2	18 5 5 8 5 1 h	PACE S	· · · · · · · · · · · · · · · · · · ·		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STAKE S		100	I KANCE	法部的代码	は できる はい ない はい	11.75%	
SB-1 @ 10'	10 feet	07/25/08	07/30/08	In-Situ	< 0.0011	<0.0022	< 0.0011	< 0.0022	< 0.0011	< 0.0022	<16.2	<16.2	<16.2	>16.2
SB-1 @ 20'	20 feet	07/25/08	07/30/08	In-Situ	< 0.0011	< 0.0022	< 0.0011	< 0.0022	< 0.0011	<0.0022	<16.4	19.7	<16.4	20
SB-1 @ 30'	30 feet	07/25/08	07/30/08	In-Situ	< 0.0011	< 0.0021	< 0.0011	< 0 0021	< 0.0011	<0.0021	<15.9	<15.9	<15.9	<15.9
SB-1 @ 40'	40 feet	07/25/08	07/30/08	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	<0.0021	<15.6	<15.6	<15.6	<15.6
SB-2 @ 10'	10 feet	07/25/08	07/30/08	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<0.0010	< 0.0021	<15.4	<15.4	<15.4	>15.4
SB-2 @ 20'	20 feet	07/25/08	07/30/08	In-Situ	< 0.0010	<0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.0	<15.0	<15.0	<15.0
SB-2 @ 30'	30 feet	07/25/08	07/30/08	In-Situ	< 0.0010	< 0 0021	< 0.0010	< 0.0021	<0.0010	< 0.0021	<15.5	<15.5	<15.5	<15.5
SB-3 @ 10'	10 feet	07/25/08	07/30/08	In-Situ	<0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.6	<15.6	<15.6	<15.6
SB-3 @ 20'	20 feet	07/25/08	07/30/08	In-Situ	< 0.0011	< 0.0021	< 0.0011	< 0.0021	<0.0011	< 0.0021	<159	<15.9	<15.9	<15.9
SB-3 @ 30'	30 feet	07/25/08	07/30/08	In-Situ	< 0.0010	< 0.0021	<0.0010	< 0.0021	< 0.0010	<0.0021	<15.7	<15.7	<15.7	<15.7
SB-4 @ 10'	27 feet	07/25/08	07/30/08	In-Situ	19.62	240.2	168.7	197.5	75.06	701.08	24,900	53,000	8,450	86,350
SB-4 @ 20'	37 feet	07/25/08	07/30/08	In-Situ	2.721	110.3	130	171.5	83.38	497.901	23,400	53,900	7,870	85,170
SB-4 @ 30'	47 feet	07/25/08	07/30/08	In-Situ	0 0609	0.4793	0.3975	0.4977	0.2369	1.6723	67.2	876	127	1,070
SB-4 @ 40'	57 feet	07/25/08	07/30/08	In-Situ	0.0104	0.0381	0.024	0.0349	0.0208	0.1282	27.8	492	82	602
SB-4 @ 50'	67 feet	07/25/08	07/30/08	In-Situ	0.0066	0.0191	0.0069	0.0078	0.0036	0 044	<15.0	59.8	15.9	76
SB-4 @ 60'	77 feet	07/25/08	07/30/08	In-Situ	0.0034	0.0116	0.0053	0.0071	0.0039	0.0313	<15.0	224	37	261
SB-4 @ 70'	87 feet	07/25/08	07/30/08	In-Situ	0.005	0.0755	0.0941	0.1263	0.0703	0.3712	43.3	801	133	977
SB-4 @ 80'	97 feet	07/25/08	07/30/08	In-Situ	0.0018	0.0079	0.0145	0.0254	0.0149	0.0645	27.9	669	119	816
SB-4 @ 90'	107 feet	07/25/08	07/30/08	In-Situ	< 0.0011	0.0031	0.0016	0.0024	<0.0011	0.0071	<15.0	253	54.7	308
SB-4 @ 100'	117 feet	07/25/08	07/30/08	In-Situ	< 0.0011	0.0038	0.0071	0.011	0.0068	0.0287	17.1	430	78	525
The property of the property of	TENT TO	(a) (A)化	等。 等性性 人名德		"我看到我们		第三十二个数	生きのは	7 - W.C.	在漢漢	Contract of the Contract of th	MAINE.	12 4 2 7	1. 352
N-1 S/W	15 feet	10/23/08	10/30/08	In-Situ	< 0.0051	< 0.0102	< 0.0051	<0.0102	<0.0051	<0.0102	<15.2	<15.2	<15.2	<15.2
E-1 S/W	8 feet	10/23/08	10/30/08	In-Situ	-	-	-	-		•	33.1	771	117	921
W-1 S/W	8 feet	10/23/08	10/30/08	In-Situ	-	-	-	-	-	-	16.6	1,160	279	1,456
E-2 S/W	17 feet	10/23/08	10/30/08	In-Situ	<0.0052	< 0.0104	<0.0052	<0.0104	<0.0052	< 0.0104	<15.6	21.8	21.9	43.7
S-1 S/W	17 feet	10/23/08	10/30/08	In-Situ	<0.0052	<0.0104	<0.0052	<0.0104	<0.0052	< 0.0104	<15.6	<15.6	<15.6	<15.6
N-2 S/W	17 feet	10/23/08	10/30/08	In-Situ	< 0.0051	< 0.0101	<0.0051	<0.0101	<0.0051	<0.0101	<15.2	<15.2	<15.2	<15.2
S-2 S/W	17 feet	10/23/08	10/30/08	In-Situ	<0.0053	< 0.0106	<0.0053	<0.0106	<0.0053	< 0.0106	<15.9	<15.9	<15.9	<15.9
W-2 S/W	17 feet	10/23/08	10/30/08	In-Situ	-	-	-	-	-		<15.3	396	86.6	482.6
MONWARE SINK		\$ 7 3 8.777。2	対象域が必要	\$2 30 a	Markey Color	4468935		Carlo William	E E SHARE	THE STATE OF THE S	DANA CO	PALATE STATE		400
MW-1 @ 10'	10' bgs	01/06/09	01/14/09	In-Situ	< 0.0010	<0.0021	<0.0010	<0.0021	< 0.0010	<0.0021	<15.6	<15.6	<15.6	<15.6
MW-1 @ 30'	30' bgs	01/06/09	01/14/09	In-Situ	< 0.0010	<0.0021	<0.0010	<0.0021	< 0.0010	<0.0021	<15.4	<15.4	<15.4	<15.4
MW-1 @ 50'	50' bgs	01/06/09	01/14/09	In-Situ	< 0.0010	<0.0020	< 0.0010	<0.0020	<0.0010	< 0.0020	<15.2	<15.2	<15.2	<15.2

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. E.K. QUEEN 6 INCH PEARCE LEA COUNTY, NEW MEXICO SRS: 2008-113

NMOCD REFERENCE NO: 1RP-1853

	CAMPLE					MET	HOD: EPA SW 8	46-8021B, 5030			ME	THOD: 8015	SM	TOTAL
SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	DATE ANALYZED	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE mg/Kg	ETHYL- BENZENE (mg/Kg)	M.P XYLENES (mg/Kg)	O- XYLENE (mg/Kg)	TOTAL BTEX	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TPH C ₆ -C ₃₅ (mg/Kg)
MW-1 @ 70'	70' bgs	01/06/09	01/14/09	In-Situ	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	<15.2	<15.2	<15.2	<15.2
MW-1 @ 90'	90' bgs	01/06/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	<0.0021	< 0.0010	< 0.0021	<15.4	<15.4	<15.4	<15.4
MW-1 @ 110'	110' bgs	01/06/09	01/14/09	In-Situ	<1100.0>	< 0.0021	< 0.0011	< 0.0021	1100.0>	< 0.0021	<16.1	36	<16.1	36
MW-1 @ 127'	127' bgs	01/06/09	01/14/09	In-Situ	< 0.0011	< 0.0022	< 0.0011	<0.0022	< 0.0011	< 0.0022	<16.2	17.7	<16.2	17.7
MW-2 @10'	10' bgs	01/07/09	01/14/09	In-Situ	< 0.0010	< 0.0020	< 0.0010	,0.0020	< 0.0010	< 0.0020	<15.3	<15.3	<15.3	<15.3
MW-2 @ 30'	30' bgs	01/07/09	01/14/09	In-Situ	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	<15.3	<15.3	<15.3	<15.3
MW-2 @ 50'	50' bgs	01/07/09	01/14/09	In-Situ	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	<15.2	<15.2	<15.2	<15.2
MW-2 @ 70'	70' bgs	01/07/09	01/14/09	In-Situ	< 0.0010	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	<15.3	<15.3	<15.3	<15.3
MW-2 @ 95'	95' bgs	01/07/09	01/14/09	In-Situ	< 0.0011	< 0.0021	< 0.0011	< 0.0021	< 0.0011	< 0.0021	<16.0	<16.0	<16.0	<16.0
MW-2 @ 110'	110' bgs	01/07/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.6	<15.6	<15.6	<15.6
MW-2 @ 120'	120' bgs	01/07/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.7	<15.7	<15.7	<15.7
MW-3 @ 10'	10' bgs	01/08/09	01/14/09	In-Situ	< 0.0011	< 0.0021	< 0.0011	< 0.0021	< 0.0011	< 0.0021	<15.8	<15.8	<15.8	<15.8
MW-3 @35'	35' bgs	01/08/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.4	<15.4	<15.4	<15.4
MW-3 @ 50'	50' bgs	01/08/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.6	<15.6	<15.6	<15.6
MW-3 @ 70'	70' bgs	01/08/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.6	<15.6	<15.6	<15.6
MW-3 @ 90'	90' bgs	01/08/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	<0.0021	< 0.0010	< 0.0021	<15.7	<15.7	<15.7	<15.7
MW-3 @ 110'	110' bgs	01/08/09	01/14/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.5	<15.5	<155	<15.5
MW-3 @ 113'	113' bgs	01/08/09	01/13/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.6	<15.6	<15.6	<15.6
DANCE BROKE	1. 188. 188	Tal 15.4 F.	The Contract of		286.61 EX	発送なった の	人工经验的	A. C. 是意。然	学、集、特别	14	4/17/17		.000	
SB-5 @ 10'	27' bgs	01/09/09	01/13/09	In-Situ	< 0.0011	< 0.0022	< 0.0011	<0.0022	< 0.0011	< 0.0022	<16.6	<16.6	<16.6	<16.6
SB-5 @ 20'	37' bgs	01/09/09	01/13/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.7	<15.7	<15.7	<15.7
SB-5 @ 30'	47' bgs	01/09/09	01/13/09	In-Situ	< 0.0011	< 0.0021	< 0.0011	< 0.0021	< 0.0011	< 0.0021	<16.0	<16.0	<16.0	<16.0
SB-5 @ 40'	57' bgs	01/09/09	01/13/09	In-Situ	< 0.0010	< 0.0021	< 0.0010	< 0.0021	< 0.0010	< 0.0021	<15.6	<15.6	<15.6	<15.6
SB-5 @ 50'	67' bgs	01/09/09	01/13/09	In-Situ	< 0.0011	< 0.0021	< 0.0011	< 0.0021	< 0.0011	< 0.0021	<15.9	<15.9	<15.9	<15.9
SB-5 @ 60'	77' bgs	01/09/09	01/14/09	In-Situ	< 0.0011	< 0.0022	< 0.0011	< 0.0022	< 0.0011	< 0.0022	<16.4	<16.4	<16.4	<16.4
VARIABLE TO THE	EST BAR	"国内有海""	ATT BOOK	754W	品的编数点	T-MARIE AND	185 Th. 183	33486	May Million		2477.4	1 2 50 7	CARRY	1.33
NMOCD Criteria					10					50				5,000

TABLE 2

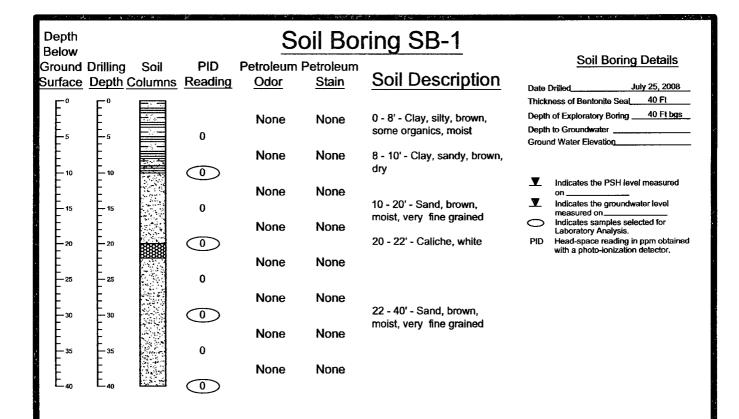
CONCENTRATIONS OF BENZENE, BTEX, CHLORIDES AND TOTAL DISSOLVED SOLIDS IN GROUNDWATER

PLAINS PIPELINE, L.P.
EK QUEEN 6-INCH PEARCE
LEA COUNTY, NEW MEXICO
PLAINS SRS NO. 2008-113
NMOCD REFERENCE NO: 1R-1853

			METHODS	EPA SW 8	46-8021B, 50	30		
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	CHLORIDES (mg/L)	TDS (mg/L)
Prelim GW (SB-4)	07/25/08	0.0016	0.008	0.0074	0.0091	0.0049	-	-
					*	٠		
MW-1	01/20/09	<0.001	<0.002	<0.001	<0.002	<0.001	200	528
MW-2	01/20/09	<0.001	<0.002	<0.001	<0.002	<0.001	206	572
MW-3	01/20/09	<0.001	<0.002	<0.001	<0.002	< 0.001	126	378
The state of the state of the	The state of the	建筑 工程。	taken. W.		The state of the state of	The state	and \$35000	"多"的"多"。
NMOCD CRITERIA		0.01	0.75	0.75	TOTAL XY	LENES 0.62	250	10,000

TABLE 3

GROUNDWATER ELEVATION DATA

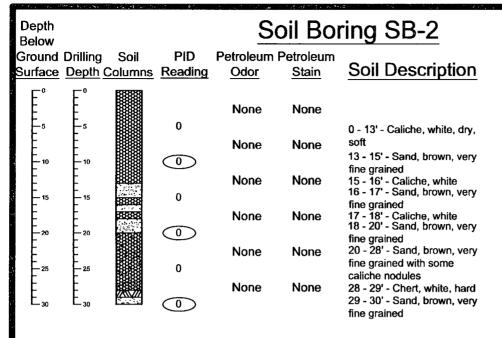

PLAINS PIPELINE, L.P. E.K. QUEEN 6-INCH PEARCE LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2008-113

NMOCD REFERENCE NO: 1RP-1853

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	01/20/09	4,028.12	-	120.63	0.00	3,907.49
\$11.00 PM			The state of the state of			Market Market
MW-2	01/20/09	4,024.41	-	116.18	0.00	3,908.23
" - " " " " " " " " " " " " " " " " " "	a stage to a stage of the stage		San Million Market			
MW-3	01/20/09	4,015.28	-	107.04	0.00	3,908.24
Y L. L. C.		A STATE OF THE STA	2.75年の大学の大学の			CANAGE TO

Appendices

Appendix A Soil Boring and Monitor Well Logs


Notes

- The soil boring was advanced on date using air rotary drilling techniques
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.

Boring Log Details Soil Boring SB-1 E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS	Checked By: CDS	
November 17, 2008		

Soil Boring Details

 Date Drilled
 July 25, 2008

 Thickness of Bentonite Seal
 30 Ft

 Depth of Exploratory Boring
 30 Ft bgs

 Depth to Groundwater
 Ground Water Elevation

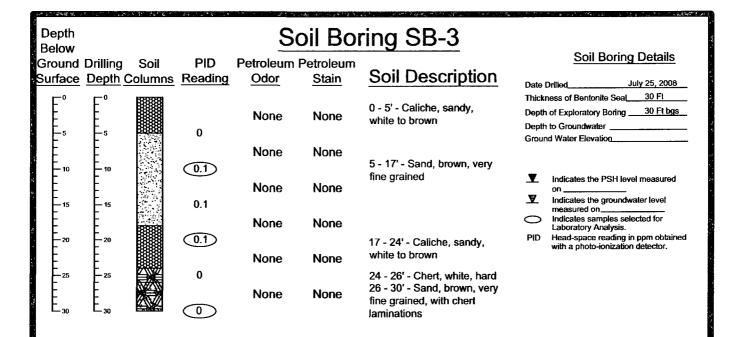
Indicates the PSH level measured

Indicates the groundwater level measured on

Indicates samples selected for Laboratory Analysis.

PID Head-space reading in ppm obtained with a photo-ionization detector.

Notes

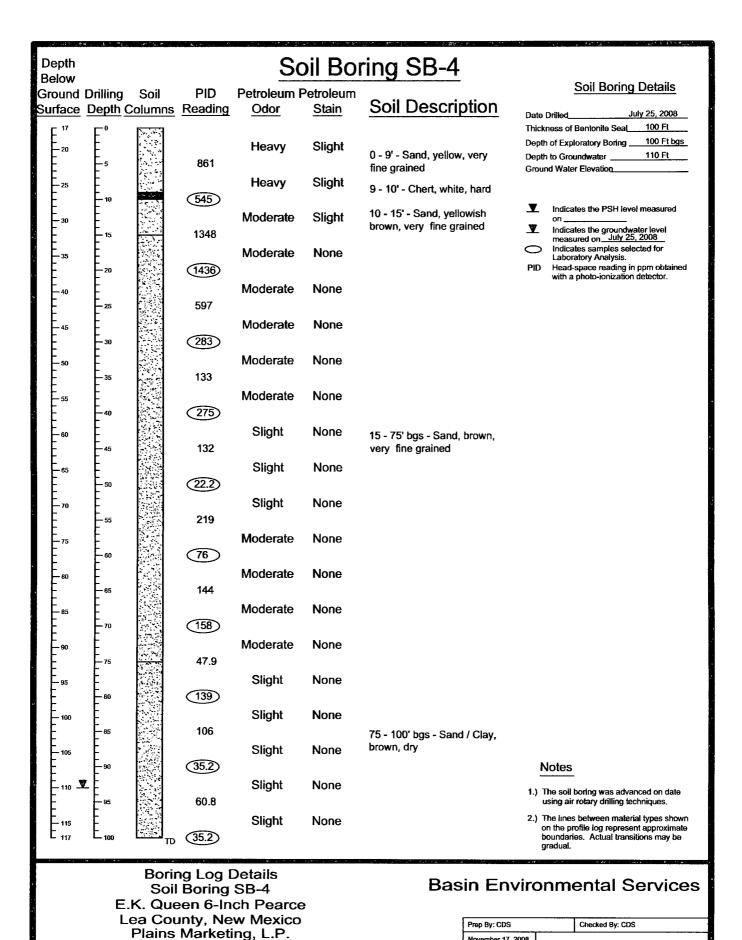

- The soil boring was advanced on date using air rotary drilling techniques.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.

Boring Log Details Soil Boring SB-2 E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS Checked By: CDS

November 17, 2008


Notes

- The soil boring was advanced on date using air rotary drilling techniques
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.

Boring Log Details Soil Boring SB-3 E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS	Checked By: CDS
November 17, 2008	

November 17, 2008

Soil Boring SB-5 Depth **Below** Soil Boring Details Ground Drilling PID Petroleum Petroleum Soil Soil Description Stain Surface Depth Columns Reading Odor January 9, 2009 Date Drilled 0 - 2' - Chert and calcified Thickness of Bentonite Seal_ 60 Ft Depth of Exploratory Boring Approx. 77 Ft bgs Sandstone, white, hard None None 2 - 7' - Sand, brown, Depth to Groundwater 17.5 medium grained with gravel, Ground Water Elevation well rounded None None 7 - 10' - Sand, brown, (50.2) medium grained with gravel, **Y** Indicates the PSH level measured None None well rounded, moist **y** Indicates the groundwater level 16.2 measured on. measured on Indicates samples selected for Laboratory Analysis. Head-space reading in ppm obtained with a photo-ionization detector. None None (16.3) None None 10 - 39' - Sand, brown, fine grained, moist 11.8 None None (10.6)None None 9.8 None None 39 - 40' - Sand, brown, very (9.8) fine grained, dry None None 6.8 None None 40 - 60' - Sand, brown, very fine grained, moist (12.2) None None 11.3 None None (11.4)

Notes

- The soil boring was advanced on date using air rotary drilling techniques.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.

Boring Log Details Soil Boring SB-5 E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Pri	Prep By: CDS				C	Checked By; CDS										_		
Ma	arch 9, 2009																	

Monitor Well MW-1 Monitor Well MW-1 Drilling Soil PID Petroleum Petroleum Soil Description Depth Columns Reading <u>Odor</u> Stain January 6, 2009 Date Drilled_ Thickness of Bentonite Seat 139 Ft Depth of Exploratory Boring ___ None None Depth to Groundwater _ 0 - 10' bgs - Caliche, white, dry 1.3 Ground Water Elevation None None (1.2) 10 - 12' bgs - Caliche, white, dry ■ Indicates the PSH level measured None None ▼ 1.3 None None 12 - 25' bgs - Sand, tan with caliche nodules, dry 1 1 None None 1.6 25 - 32' bgs - Sand, white - tan caliche nodules, None None (1.4) None None 32 - 34' bgs - Sandstone, hard, dry, silicious 34 - 36' bgs - Sand, tan, very fine grained 1.3 None None 36 - 40' bgs - Sandstone, hard, dry, silicious 1.5 None None 1.3 None None (1.2) 40 - 70' bgs - Sand, brown, very fine grained, dry None None with caliche nodules 1.4 None None None None 1.2 None None (1.5) None None 70 - 80' bgs - Sand, brown, very fine grained, damp 1.4 with caliche nodules None None 1.1 None None 1.7 80 - 95' bgs - Sand, brown with clay and sandstone None None nodules, damp (18) None None 1.5 None None 95 - 100 bgs - Clay, brown, sandy, damp 16 None None 1,6 None None 2.1 **Completion Notes** None None 2,4 100 - 127 bgs - Clay, brown with Sandstone 2) The well was constructed with 2' ID, 0 010 inch factory stotted, threaded joint, schedule 40 PVC pipe 3.) The well is protocled with a locked stick up steel cover and compression cap nodules, damo None None 2.2 None None The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. None None (2.6) The depths indicated are referenced from ground surface. 127 - 139 bgs - Clay, brown, sandy **Basin Environmental Services** E.K. Queen 6-Inch Pearce **Monitor Well Details**

Monitor Well Details MW-1 E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Prep By: CDS		Checked By: CDS							
November 17, 2008									
	-								

Monitor Well MW-2

Deiling	Call	PID	Detroloum F	John Journ	
Drilling	Soil		Petroleum F		Sail Description
Depth C	olumns	Reading	<u>Odor</u>	<u>Stain</u>	Soil Description
-0					
F,	RSS4				
F	1881		None	None	
<u>_</u> 5	18331	1.8			0 - 5' bgs - Caliche, white, dry
F.		1.0			
Ė	12.4		None	None	
⊢	[]	(0.3)			
₽"	10.0	(2.7)			
	83.73		None	None	5 - 21' bgs - Sand, tan, very fine grained, dry
F			HOLIC	110110	3 - 21 bys - Sand, rain, very line grained, dry
15	(***)	2.4			
F	175.1		None	None	
E			None	None	
-20	15.74	2.1			
E	Diction				21 - 23' bgs - Sandstone, tan, silicious
F	Hit William		None	None	_
L ₂₅	3.5	1.8			23 - 25' bgs - Sand, tan, very fine grained, dry
F."		1.0			25 - 27' bgs - Sandstone, tan, silicious
Ė	25.7		None	None	25 - 27 bgs - Sandstone, tan, silicious
- H	1.7.1	(00)			
30		(2.8)			
F			None	None	27 - 35' bgs - Sand, tan, with caliche nodules, dry
E	1		HOIL	HONG	
- 35	 	3.2			
F	(Q.)		Mana	Mana	
E	2.7		None	None	
F-40	RCI	3.5			
t	1.7.4	-			
F	FX3		None	None	
L ₄₅	1.27	3.4			
- ⊩~	1.1	5.7			
ļ.	(-2-3		None	None	
- F	-1-1	(30)			
-50	2-1	(3.2)			
⊢	15.5		None	None	35 - 60' bgs - Sand, brown, very fine grained, dry
F			HONG	HONG	with caliche nodules
55		3.2			
F	7		Mana	Mana	
Ŀ	1.73		None	None	
F-60		30			
E	2.5				
F	1.1		None	None	60 - 65' bgs - Sand, brown, very fine grained, dry
上 ₆₅	1	3.0			
- ⊩ "		0.0			
<u> </u>			None	None	65 - 70' bgs - Sand, brown, very fine grained, damp
_ թ	12.72	(30)			
F"	-73	(3.0)			
E	L.771		None	None	
F	FS: 1		110110	110110	70 - 80' bgs - Sand, brown, damp with caliche
- 75	1.73	3.7			
F	F C 1		None	None	nodules
E	1.7		None	None	
80	1	3.3			80 - 85' bgs - Sand, brown, very fine grained, damp
E	F/X1				00 - 00 bgs - cana, brown, very line grained, damp
F	1353		None	None	
85		3.3			
F	-X-				
F	12		None	None	
90	.÷€:	3.2			
F.	→	J.Z			
Ł	-X-4		None	None	
F	-7				
-95	2	4.0			
F	77	-	None	None	
E			None	None	
F 100		2.9			
E			N1-		
F	·/=		None	None	
105	=	2.8			
F ""					
F			None	None	85 - 135' bgs - Clay, brown, sandy, damp with
Ł.,,	14	(3.1)			caliche nodules
-110	EX.	ري			
Ė	5/4		None	None	
	-3:-	2.5		•	
115		2.5			
F	-A23		None	None	
F -	37		MOHE	HOHE	
120 🔻		2.1			
F	7.		Man	Nar-	
E			None	None	
125	. X.				
Ŀ					
F					
130					
F "					
F					
Ł	7				
135	то				

Monitor Well MW-2

Date Dolled	January 6, 2009
Thickness of Bentonite Sea	135 Ft
Depth of Exploratory Boring	135 Ft bgs
Depth to Groundwater	120 Ft
Ground Water Elevation	

Indicates the PSH level measured

indicates the groundwater level measured on <u>January 6, 2009</u> indicates samples selected for Laboratory Analysis Head-space reading in ppm obtain with a photo-ionization detector

Completion Notes

- The monitor well was advanced or using air rotary drilling techniques
- The well was constructed with 2" ID, 0 010 inch factory stotled, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.

Monitor Well Details MW-2

E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS Checked By: CDS November 17, 2008

Monitor Well MW-3 Monitor Well MW-3 PID Petroleum Petroleum Drilling Soil Soil Description Depth Columns Reading Odor Stain Thickness of Bentonite Seal. 126 Ft 0 - 5' bas - Clay, dark brown with caliche nodules Depth of Exploratory Boring _ 126 Ft bgs None None and some organic material, dry Death to Groundwater 106 Ft 3.0 Ground Water Elevation 5 - 10' bgs - Clay, brown, silty with caliche nodules, None None (2.9) 10 - 15' bgs - Sand, brown, very fine grained with T Indicates the PSH level mea caliche nodules, dry None None ¥ 2.5 0 15 - 25' bgs - Sand, brown, very fine grained,damp None None 2.6 None None 2.3 25 - 27 bgs - Caliche, white, hard None None 3.0 None None (4.3) None None 3.3 None None 27 - 60' bgs - Sand, brown with caliche nodules, 2.3 None None 22 None None 2.6 None None 3.0 None None 2.3 None None (2.0) None None 1,9 None None 1.7 None None 1.8 None None 60 - 126' bgs - Sand, brown, very fine grained, 2.9 None None 2.2 None None 1.6 None None 2.4 None None 3.4 Completion Notes (3.6) None None The monitor well was advanced on date using air rotary drilling techniques The well is protected with a locked stick up steel cover and compression cap The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. The depths indicated are referenced from ground surface

Monitor Well Details MW-3

E.K. Queen 6-Inch Pearce Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS		Checked By: CDS	
March 9, 2009	·		

Appendix B Analytical Reports

Analytical Report 305463

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

E K Queen 6" Pearce 2008-113

12-JUN-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

12-JUN-08

Project Manager: Camille Reynolds
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 305463

E K Queen 6" Pearce

Project Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305463. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305463 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 305463

PLAINS ALL AMERICAN EH&S, Midland, TX

E K Queen 6" Pearce

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Floor @ 17'	S	Jun-06-08 14:00		305463-001

Certificate of Analysis Summary 305463 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: E K Queen 6" Pearce

Contact: Camille Reynolds

Project Location: Lea County, NM

Project Id: 2008-113

Date Received in Lab: Tue Jun-10-08 09:02 am

Report Date: 12-JUN-08
Project Manager: Brent Barron, II

				rroject Manager.	Dient Darton, in	
Analysis Requested	Lab Id:	305463-001				
	Field Id:	Floor @ 17'				
	Depth:					
	Matrix:	SOIL				
	Sampled:	Jun-06-08 14.00				
Percent Moisture	Extracted:					
	Analyzed:	Jun-10-08 16:50				
	Units/RL:	% RL				
Percent Moisture		3.25				
TPH by SW8015 Mod	Extracted:	Jun-11-08 15:33				
1111 by 5 W 0015 W10d	Analyzed:	Jun-12-08 11:25				
	Units/RL:	mg/kg RL				
C6-C12 Gasoline Range Hydrocarbons		4470 77.5				
C12-C28 Diesel Range Hydrocarbons		17600 77.5				
C28-C35 Oil Range Hydrocarbons		2770 77.5	 ,			
Total TPH		24840				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austın - Tampa - Miami - Atlanta - Corpus Christi - Latin America

(281) 589-0692 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0695 9701 Harry Hines Blvd, Dallas, TX 75220 (214) 902 0300 (214) 351-9139 (210) 509-3334 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3335 (813) 620-2033 2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2000 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 6017 Financial Dr., Norcross, GA 30071 (770) 449-8800 (770) 449-5477

Form 2 - Surrogate Recoveries

Work Order #: 305463 Project ID: 2008-113

Lab Batch #: 725253 Sample: 305463-001 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			{D}				
1-Chlorooctane	152	100	152	70-135	**		
o-Terphenyl	163	50.0	326	70-135	**		

Lab Batch #: 725253 Sample: 305532-001 S/MS Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg Amount Control TPH by SW8015 Mod Flags Found Amount Recovery Limits [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 97.2 100 97 70-135 o-Terphenyl 52.5 50.0 105 70-135

Lab Batch #: 725253 Sample: 305532-001 SD / MSD Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg Amount True Control TPH by SW8015 Mod Found Amount Recovery Limits Flags [B] %R %R [A] **Analytes** [D] 1-Chlorooctane 96.0 100 96 70-135 o-Terphenyl 53 9 50.0 108 70-135

Lab Batch #: 725253 Sample: 510516-1-BKS / BKS Batch: 1 Matrix: Solid

SURROGATE RECOVERY STUDY Units: mg/kg Amount True Control TPH by SW8015 Mod Found Amount Recovery Limits Flags [A] [B] %R %R **Analytes** [D] 1-Chlorooctane 87.2 100 87 70-135 o-Terphenyl 49.9 50.0 100 70-135

Lab Batch #: 725253 Sample: 510516-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	82.5	100	83	70-135		
o-Terphenyl	45 9	50.0	92	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{***} Poor recoveries due to dilution

Project Name: E K Queen 6" Pearce

Work Order #: 305463

Project ID: 2008-113

Lab Batch #: 725253

Sample: 510516-1-BSD / BSD

Batch: 1 Matrix: Solid

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	91.0	100	91	70-135	
o-Terphenyl	49.9	50.0	100	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution
Surrogate Recovery [D] = 100 * A / B

Project Name: E K Queen 6" Pearce

Work Order #: 305463.

Project ID: 2008-113

Analyst: ASA

Date Prepared: 06/11/2008

Date Analyzed: 06/11/2008
Matrix: Solid

Lab Batch ID: 725253

Sample: 510516-1-BKS

Batch #: 1

Units: mg/kg BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	906	91	1000	928	93	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	914	91	1000	931	93	2	70-135	35	

nelad

Project Name: E K Queen 6" Pearce

Work Order #: 305463 Project ID: 2008-113

Lab Batch ID: 725253 QC- Sample ID: 305532-001 S Batch #: 1 Matrix: Soil

Date Analyzed: 06/12/2008 Date Prepared: 06/11/2008 Analyst: ASA

Reporting Units: mg/kg		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY													
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag				
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD					
C6-C12 Gasoline Range Hydrocarbons	ND	1040	1000	96	1040	1000	96	0	70-135	35					
C12-C28 Diesel Range Hydrocarbons	ND	1040	1010	97	1040	1020	98	1	70-135	35					

Sample Duplicate Recovery

Project Name: E K Queen 6" Pearce

Work Order #: 305463

Lab Batch #: 725130 **Date Analyzed:** 06/10/2008

Project ID: 2008-113

Date Prepared: 06/10/2008 Analyst: WRU

QC- Sample ID: 305463-001 D Batch #:

Matrix: Soil

Reporting Units: % SAMPLE / SAMPLE DUPLICATE RECOVERY

reporting emiss.	SIMILE POINT EE DOI EICHTE RECOVERT										
Percent Moisture Analyte ercent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag						
Analyte		[B]									
Percent Moisture	3 25	3,11	4	20							

ē
Φ
_
₫,

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-553-1800 Fax: 432-563-1713

	Project Manager	Curt Stanley			PAGE 01 C	DF 01			_								F	Proje	ect N	iame	. <u>E</u>	κc	UE	EN	6" F	2 ₀₈	rce					
	Company Name	Basin Environmental Ser	vice T	echno	logies, LLC											_			Proj	ect #	20	008-	113									
	Company Address	P O Box 301																Pr	ojeci	Loc	Le	a Co	unt	y, NI	ч							
	City/State/Zip	Lovington, NM 88260																	,	PO#	PA	A	c j	Re	/nol	ds						
	Telephone No	(505) 441-2244				Fax No.		(50)5) 3	96-1	429					_	Rep	ort F	orm	at	X	Sta	nda	rd		П	TRR		П	NPDE	ES	_
	Sampler Signature	Cant Stande	ما	$ \overline{\geq}$	ill.	e-mail·				_			ine	env	cor	 n						_,_				_			_			
(lab use		8	5	3	Licheron	L.		=										F			=	TCLP		ialyz	e F	ar T	_	一	_		_	
ORDE		63								ocar	/aric	20.2	≜ nF.	Cont	ainer		Matru	1	~ I	· ·		TAL				X		İ			77	
(Ajuo pen			Depth	th.	bjed	Page.		of Containers								St = Stude	5-501/501	Speculy orn	Ē)	Mg Na K)	Anions (Cl. SO4 Alkalınty)	350	Metals As Ag Ba Cd Cr Pb Hg Se			BTEX 80218J5030 or BTEX 8260				RUSH TAT WAS CONTROLLED 24	-Schadule) 24	
LAB # (tab	FIEL	TD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Tousist of Cor	po	FONH	Ē	¹оѕ⁴н	Madei	O'S ON	None Other / Specific	OW. Drinking Water	GW - Groundwater	SI.	1814 HAI	1 2	Anions (Cl. Si	SAR / ESP / CEC	Metals As Ag	Volames	Senivolatiles	BTEX 8021B.	КСІ	NORM		TAT HELIG	Standard 1AT	The rate of
01	Flox	or @ 17'			6/6/2008	1400		1	х				\Box	\perp	I	Ŀ	SOIL	1	x	I						\sqsupset	\Box	I	\square	\blacksquare	×	Č
	<u> </u>						_		L		_	\vdash	4	+	\perp	╀		+	+	+	╄	H		Н	_	\dashv	+	+	$+\!\!\!\!-\!$	+	+	_
		·····	_	-			-	-	H	-	\dashv	\dashv	+	+	+	╀		+	╁	+	╀	\vdash	<u> </u>	-	-	+	+	+	₩	+	+	-
-							H	Н		Н	-	-	\dashv	+	+	╁		+	+	+	╁	 	-		+	+	+	+	+	+	+	٦
								Н				T	7	+	\dagger	t		T	†	+-	T	1-	_		7	+	十	\top	\Box	\top	+	٦
								Ξ,							T			T			T					T	\top	I			I	1
															Ι	Γ		I	Ι							\Box	\Box	$oldsymbol{\perp}$	\square	\Box	I	
<u> </u>								Ц	Ш		4	_	4	4	4	╀		4	1	1	L				_	4	4	4	$\perp \downarrow$	4	\perp	4
Special I	Instructions:		L i					Ш	Ш	Ш				Ц.	1	L		L		١.		ton		mme		ᆜ		丄	Ш	1_	┸	4
	-																			Sa	mple	Co	Ytaw	vers lead	Intak	ct?			5	N	 	
Relinguis	1774	6/0/08	90	2	Received by.									T		ate		Ti	me	ತಿದ್ದರ	bels stod stod	on c y se y se	onte els c els c	ineri on co	(s) intai ioler	ner(:	s)		多人	N N N N N N N N N N N N N N N N N N N	<u> </u>	
Relinquis	hed by	Date	Tia	nė	Received by									T	Ī	ate	T	Ti	me	Sa	mple by t	Hai Sami Cour	nd 0 pler/ er?	elive Cilen	red I Rep UPS	, ס	DHL	Fc	φEx (ξ.)	N N Lone:	Star	
Relinquis	hed by	Date	Tir	ne	Respired by EL	1	10	ر	<u>~</u>	<u>~</u>				4		ete	8		me) Z	Те	- 4	чυ	? (je, j	5.2				1.5	°(

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client	Brain Enu / Plains
Date/ Time	61008 102
ab ID#	305463
nitials	

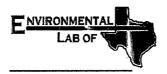
Sample Receipt Checklist

#1	Temperature of container/ cooler?	Yes	No	4.5 °C
‡2	Shipping container in good condition?	(Yes)	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present /
‡ 4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Ves	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	(es	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Yeş	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes'	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	Yes	No_	See Below
#14	Sample bottles intact?	Ves'	Νφ	
#15	Preservations documented on Chain of Custody?	Ýes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	Sec Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yés:	No	Not Applicable

Variance Documentation

Contact	Contacted by:	Date/ Time	
Regarding:			
Corrective Action Taken			
Check all that Apply	See attached e-mail/ fax Client understands and would like to proceed with Cooling process had begun shortly after sampling	,	

Analytical Report 308807


for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

E K QUEEN 6" PEARCE 2008-113

04-AUG-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

04-AUG-08

Project Manager: Camille Reynolds PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 308807

E K QUEEN 6" PEARCE Project Address: Lea County, NW

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 308807. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 308807 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 308807

PLAINS ALL AMERICAN EH&S, Midland, TX E K QUEEN 6" PEARCE

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-1 @ 10'	S	Jul-25-08 08:55		308807-001
SB-1 @ 20'	S	Jul-25-08 09:05		308807-002
SB-1 @ 30'	S	Jul-25-08 09:15		308807-003
SB-1 @ 40'	S	Jul-25-08 09:25		308807-004
SB-2 @ 10'	S	Jul-25-08 09:55		308807-005
SB-2 @ 20'	S	Jul-25-08 10:05		308807-006
SB-2 @ 30'	S	Jul-25-08 10:15		308807-007
SB-3 @ 10'	S	Jul-25-08 11:25		308807-008
SB-3 @ 20'	S	Jul-25-08 11:40		308807-009
SB-3 @ 30'	S	Jul-25-08 11:50		308807-010
SB-4 @ 10'	S	Jul-25-08 12:35		308807-011
SB-4 @ 20'	S	Jul-25-08 12:45		308807-012
SB-4 @ 30'	S	Jul-25-08 12:55		308807-013
SB-4 @ 40'	S	Jul-25-08 13:05		308807-014
SB-4 @ 50'	S	Jul-25-08 13:15		308807-015
SB-4 @ 60'	S	Jul-25-08 13:35		308807-016
SB-4 @ 70'	S	Jul-25-08 13:55		308807-017
SB-4 @ 80'	S	Jul-25-08 14:30		308807-018
SB-4 @ 90'	S	Jul-25-08 15:15		308807-019
SB-4 @ 100'	S	Jul-25-08 16:40		308807-020

Project Name: E K QUEEN 6" PEARCE

Project Id: 2008-113

Contact: Camille Reynolds

Project Location: Lea County, NW

Date Received in Lab: Tue Jul-29-08 08:30 am

Report Date: 04-AUG-08

Project Manager: Brent Barron, II Lab Id: 308807-001 308807-002 308807-003 308807-004 308807-005 308807-006 Field Id: SB-1 @ 10' SB-1 @ 20' SB-1 @ 30' SB-1 @ 40' SB-2 @ 10' SB-2 @ 20' Analysis Requested Depth: Matrix: SOIL SOIL SOIL SOIL SOIL SOIL Sampled: Jul-25-08 08:55 Jul-25-08 09.05 Jul-25-08 09·15 Jul-25-08 09.25 Jul-25-08 09:55 Jul-25-08 10:05 Extracted: Jul-30-08 10:00 Jul-30-08 10.00 Jul-30-08 10:00 Jul-30-08 10:00 Jul-30-08 10:00 Jul-30-08 10:00 BTEX by EPA 8021B Analyzed: Jul-30-08 16 04 Jul-30-08 17.16 Jul-30-08 17:40 Jul-30-08 18:04 Jul-30-08 18:27 Jul-30-08 18:51 Units/RL: mg/kg mg/kg mg/kg mg/kg RLmg/kg RL mg/kg RLBenzene ND 0 0011 ND 0.0011 ND 0 0011 0.0010 ND 0 0010 ND 0.0010 ND Toluene ND 0 0022 ND 0.0022 ND 0 0021 ND 0.0021 ND 0.0021 ND 0 0021 Ethylbenzene ND 0 0011 ND 0.0011 ND 0 0011 ND 0.0010 ND 0.0010 0 0010 ND m,p-Xylenes ND 0.0022 ND 0.0022 ND 0 0021 ND 0.0021 ND 0.0021 ND 0 0021 o-Xylene ND 0 0011 ND 0.0011 ND 0 0011 ND 0.0010 ND 0.0010 ND 0.0010 Total Xylenes ND ND ND ND ND ND Total BTEX ND ND ND ND ND ND Extracted: **Percent Moisture** Jul-30-08 08:00 Jul-30-08 08:00 Analyzed: Jul-30-08 08:00 Jul-30-08 08:00 Jul-30-08 08:00 Jul-30-08 08:00 Units/RL: % RLRL % RL% RL% RLPercent Moisture 1.00 7.47 8.33 1.00 5.79 1 00 3 98 1.00 2.75 1.00 3.19 1.00 Jul-29-08 11:40 Jul-29-08 11:40 Jul-29-08 11:40 Jul-29-08 11:40 Extracted: Jul-29-08 11:40 Jul-29-08 13:45 TPH by SW8015 Mod Analyzed: Jul-30-08 14.27 Jul-29-08 14:17 Jul-30-08 12:42 Jul-30-08 16:20 Jul-30-08 16:47 Jul-30-08 02:22 Units/RL: RL mg/kg mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg C6-C12 Gasoline Range Hydrocarbons ND 16.2 ND 16.4 ND 159 ND 15.6 ND 154 ND 150 C12-C28 Diesel Range Hydrocarbons ND 16.2 197 164 ND 15.9 ND 15.6 ND 15.4 ND 150 C28-C35 Oil Range Hydrocarbons ND 16.2 ND 16.4 ND 15.9 ND ND 15.4 ND 15.0 15.6 Total TPH ND 19.7 ND ND ND ND

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

Project Name: E K QUEEN 6" PEARCE

Contact: Camille Reynolds

Project Id: 2008-113

Project Location: Lea County, NW

Date Received in Lab: Tue Jul-29-08 08:30 am

Report Date: 04-AUG-08

Project Manager: Brent Barron, Il

	,		,					1 Toject Ma	11115011	brem barron,			
	Lab Id:	308807-0	007	308807-0	08	308807-0	009	308807-0	010	308807-	011	308807-0	012
Analysis Requested	Field Id:	SB-2 @ 3	30'	SB-3 @	10'	SB-3 @	20'	SB-3 @ 3	30'	SB-4 @	10'	SB-4 @	20'
Analysis Requesieu	Depth:		1										
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-25-08 1	0:15	Jul-25-08 1	1:25	Jul-25-08	1:40	Jul-25-08 1	1.50	Jul-25-08	12.35	Jul-25-08 1	12.45
BTEX by EPA 8021B	Extracted:	Jul-30-08 1	10.00	Jul-30-08 1	0:00	Jul-30-08	0:00	Jul-30-08 1	0.00	Aug-03-08	11:00	Aug-03-08	11:00
212112, 2111 00212	Analyzed:	Jul-30-08 1	19·15	Jul-30-08 1	9:39	Jul-30-08 2	20.51	Jul-30-08 21·15		Aug-04-08	02:36	Aug-04-08	03:00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0010	ND	0 0010	ND	0 0011	ND	0 0010	19.62	0 5150	2.721	0.5163
Toluene		ND	0.0021	ND	0.0021	ND	0 0021	ND	0 0021	240 2	1.030	1103	1.033
Ethylbenzene		ND	0.0010	ND	0 0010	ND	0 0011	ND	0 0010	168.7	0.5150	130 0	0 5163
m,p-Xylenes		ND	ND 0 0021		ND 0.0021		ND 0 0021		0 0021	197.5 1.030		171.5	1 033
o-Xylene		ND	0.0010	ND 0.0010		ND 0.0011 ND		ND 0.0010		75.06	0.5150	83.38	0.5163
Total Xylenes		ND			ND			ND		272 56		254.88	
Total BTEX		ND		ND		ND		ND		701.08		497.901	
Percent Moisture	Extracted:												
	Analyzed:	Jul-30-08 (08:00	Jul-30-08 0	8.00	Jul-30-08 (08:00	Jul-30-08 0	98.00	Jul-30-08	08.00	Jul-30-08 08:0	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		3.51	1.00	4 09	1.00	5.39	1.00	4 21	1 00	2 92	1 00	3.15	1 00
TPH by SW8015 Mod	Extracted:	Jul-29-08 1	11:40	Jul-29-08 1	1:40	Jul-29-08	1:40	Jul-29-08 1	1.40	Jul-29-08	11.40	Jul-29-08 1	11:40
	Analyzed:	Jul-30-08 1	17:14	Jul-30-08 1	7:43	Jul-30-08	8:11	Jul-30-08 1	8.40	Jul-30-08	19.39	Jul-30-08 2	20.06
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.5	ND	15.6	ND	15.9	ND	157	24900	386	23400	387
C12-C28 Diesel Range Hydrocarbons		ND	15.5	ND	15.6	ND	159	ND	157	53000	386	53900	387
C28-C35 Oil Range Hydrocarbons		ND	15.5	ND	15.6	ND	159	ND	157	8450	386	7870	387
Total TPH		ND		ND		ND		ND		86350		85170	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

Project Name: E K QUEEN 6" PEARCE

Contact: Camille Reynolds
Project Location: Lea County, NW

Project Id: 2008-113

Date Received in Lab: Tue Jul-29-08 08:30 am

Report Date: 04-AUG-08

								Project Ma	nager:	Brent Barron	, II		
	Lab Id:	308807-0	013	308807-0	14	308807-0	015	308807-0	016	308807-	017	308807-0	018
Analysis Daguastad	Field Id:	SB-4@	30'	SB-4 @ 4	10'	SB-4 @	50'	SB-4 @	60'	SB-4 @	70'	SB-4 @	80'
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-25-08 1	2:55	Jul-25-08 1	3 05	Jul-25-08	13·15	Jul-25-08	13.35	Jul-25-08	13.55	Jul-25-08 1	14.30
BTEX by EPA 8021B	Extracted:	Aug-01-08	16.00	Jul-30-08 1	0:00	Jul-30-08	10 00	Jul-30-08	00 00	Jul-30-08	10 00	Jul-30-08	10:00
	Analyzed:	Aug-02-08	17:22	Jul-30-08 2	2:50	Jul-30-08	23:14	Jul-30-08 2	23.38	Jul-31-08	00.02	Jul-31-08 (00.25
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		0.0609	0.0512	0.0104	0.0010	0.0066	0.0010	0 0034	0 0011	0.0050	0 0011	0 0018	0 0011
Toluene		0.4793	0.1023	0.0381	0.0021	0.0191	0.0021	0 0116	0 0021	0.0755	0 0022	0 0079	0 0021
Ethylbenzene		0.3975	0.0512	0 0240	0 0010	0 0069	0.0010	0 0053	0 0011	0.0941	0 0011	0 0145	0 0011
m,p-Xylenes		0.4977			0.0021	0 0078	0.0021	0 0071	0 0021	0.1263	0 0022	0 0254	0 0021
o-Xylene		0.2369 0.0512		0 0208 0.0010		0 0036	0 0010	0 0039	0 0011	0.0703 0 001		0 0149	0 0011
Total Xylenes		0.7346		0 0557		0 0114		0.011		0.1966		0.0403	
Total BTEX		1.6723		0 1282		0 044		0 0313		0.3712		0.0645	
Percent Moisture	Extracted:												
	Analyzed:	Jul-30-08 (08 00	Jul-30-08 0	8.00	Jul-30-08 (08:00	Jul-30-08 (08.00	Jul-30-08	08.00	Jul-30-08 (08.00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		2.26	1 00	2 42	1.00	4.19	1.00	6.67	1.00	8.14	1.00	6.08	1.00
TPH by SW8015 Mod	Extracted:	Jul-29-08	11:40	Jul-29-08 1	1:40	Jul-29-08	11:40	Jul-29-08	11.40	Jul-29-08	11:40	Jul-29-08	13-45
11 11 25 2 11 00 11 11 00	Analyzed:	Jul-29-08	18·29	Jul-29-08 1	9:00	Jul-29-08	19:27	Jul-29-08	19:53	Jul-29-08	20.21	Jul-30-08 (02:48
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		67.2	150	27 8	15.0	ND	150	ND	150	43.3	150	27.9	150
C12-C28 Diesel Range Hydrocarbons		876	150	492	15.0	59 8	150	224	150	801	150	669	150
C28-C35 Oil Range Hydrocarbons		127	150	81.7	15.0	15.9	150	36.6	150	133	150	119	15.0
Total TPH		1070.2		601.5		75.7		260.6		977.3		815 9	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

Project Name: E K QUEEN 6" PEARCE

Contact: Camille Reynolds

Project Id: 2008-113

Project Location: Lea County, NW

Date Received in Lab: Tue Jul-29-08 08:30 am

Report Date: 04-AUG-08

Project Manager: Brent Barron, II

				Project Manager	Diciti Darion, ii	
	Lab Id:	308807-019	308807-020			
Analysis Requested	Field Id:	SB-4 @ 90'	SB-4 @ 100'			
Analysis Requesieu	Depth:					
	Matrix:	SOIL	SOIL			
	Sampled:	Jul-25-08 15·15	Jul-25-08 16 40			
BTEX by EPA 8021B	Extracted:	Jul-31-08 11:00	Jul-31-08 11:00			
	Analyzed:	Jul-31-08 18:19	Jul-31-08 18.42			
	Units/RL:	mg/kg RL	mg/kg RL			
Benzene		ND 0.0011	ND 0 0011			
Toluene		0.0031 0.0021	0 0038 0.0022			
Ethylbenzene		0.0016 0.0011	0 0071 0 0011			
m,p-Xylenes		0.0024 0.0021	0 0110 0 0022			
o-Xylene		ND 0.0011	0.0068 0 0011			
Total Xylenes		0.0024	0 0178			
Total BTEX		0.0071	0 0287			
Percent Moisture	Extracted:	:				
	Analyzed:	Jul-30-08 08:00	Jul-30-08 08·00			
	Units/RL:	% RL	% RL			
Percent Moisture		5 51 1 00	7.73 1.00	,		
TPH by SW8015 Mod	Extracted:	Jul-29-08 13 45	Jul-29-08 13:45			
1111 by 5 11 0015 11100	Analyzed:	Jul-30-08 03 15	Jul-30-08 03:42			
	Units/RL:	mg/kg RL	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons		ND 150	17.1 15.0			
C12-C28 Diesel Range Hydrocarbons		253 15.0	430 15.0			
C28-C35 Oil Range Hydrocarbons		54.7 15.0	78 2 15 0			
Total TPH		307.7	525.3			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miamu - Latin America - Atlanta - Corpus Christi

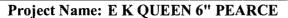
Odessa Laboratory Director

XENCO Laboratorics

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- **J** The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.


Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Work Order #: 308807 Project ID: 2008-113

Lab Batch #: 729470 Sample: 308807-001 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0332	0.0300	111	80-120		
4-Bromofluorobenzene	0.0301	0.0300	100	80-120		

Lab Batch #: 729470 Sample: 308807-001 S/MS Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] %R %R [A] **Analytes** [D] 1,4-Difluorobenzene 0.0290 0.0300 97 80-120 0.0329 0.0300 110 80-120 4-Bromofluorobenzene

Lab Batch #: 729470 Sample: 308807-001 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags %R [B] %R [A] [D] **Analytes** 1.4-Dıfluorobenzene 0.0289 0.0300 96 80-120 4-Bromofluorobenzene 0.0329 0.0300 110 80-120

Lab Batch #: 729470 Sample: 308807-002 / SMP Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg Control Amount True BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1.4-Difluorobenzene 0.0332 0.0300 111 80-120 4-Bromofluorobenzene 0.0297 0.0300 99 80-120

Lab Batch #: 729470 Sample: 308807-003 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STU				STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Dıfluorobenzene	0.0336	0 0300	112	80-120	
4-Bromofluorobenzene	0.0308	0.0300	103	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729470

Sample: 308807-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg SURROGATE RECOV				OVERY STUDY		
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzenc	0.0330	0.0300	110	80-120		
4-Bromofluorobenzene	0.0290	0.0300	97	80-120		

Lab Batch #: 729470

Sample: 308807-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		'-'	[D]			
1,4-Dıfluorobenzene	0.0333	0.0300	111	80-120		
4-Bromofluorobenzene	0.0308	0.0300	103	80-120		

Lab Batch #: 729470

Sample: 308807-006 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	IAI	(D)	[D]	7010		
1,4-Diffuorobenzene	0.0325	0.0300	108	80-120		
4-Bromofluorobenzene	0.0309	0.0300	103	80-120		

Lab Batch #: 729470

Sample: 308807-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0327	0.0300	109	80-120			
4-Bromofluorobenzene	0.0297	0.0300	99	80-120			

Lab Batch #: 729470

Sample: 308807-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	nits: mg/kg SURROGATE RECOVERY STUE				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		1	[D]		
1,4-Dıfluorobenzene	0.0339	0.0300	113	80-120	
4-Bromofluorobenzene	0.0307	0.0300	102	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Project ID: 2008-113 Work Order #: 308807

Sample: 308807-009 / SMP Lab Batch #: 729470 1 Matrix: Soil Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0335	0.0300	112	80-120		
4-Bromofluorobenzene	0.0316	0.0300	105	80-120	\	

Sample: 308807-010 / SMP Lab Batch #: 729470 1 Matrix: Soil Batch:

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Recovery Limits Flags Found Amount %R [A] [B] %R [D]**Analytes** 1.4-Dıfluorobenzene 0.0330 0.0300 110 80-120 4-Bromofluorobenzene 0.0295 0.0300 98 80-120

Sample: 308807-014 / SMP Lab Batch #: 729470 Matrix: Soil Batch: - 1

Units: mg/kg SURROGATE RECOVERY STUDY True BTEX by EPA 8021B Amount Control Limits Found Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0354 0.0300 118 80-120

0.0247

0 0300

82

80-120

Sample: 308807-015 / SMP Lab Batch #: 729470 Batch: Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0336 0.0300 112 80-120 4-Bromofluorobenzene 0.0311 0.0300 104 80-120

Sample: 308807-016 / SMP Lab Batch #: 729470 Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount True Control Found Amount Recovery Limits Flags [B] %R [A] %R [D] **Analytes** 1,4-Difluorobenzene 0.0364 0.0300 121 ** 80-120 4-Bromofluorobenzene 0.0364 0.0300 121 80-120

4-Bromofluorobenzene

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729470

Sample: 308807-017 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0403	0.0300	134	80-120	**		
4-Bromofluorobenzene	0.0582	0 0300	194	80-120	**		

Lab Batch #: 729470

Sample: 308807-018 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0344	0.0300	115	80-120			
4-Bromofluorobenzene	0.0264	0.0300	88	80-120			

Lab Batch #: 729470

Sample: 512994-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0337	0.0300	112	80-120			
4-Bromofluorobenzene	0.0308	0.0300	103	80-120			

Lab Batch #: 729470

Sample: 512994-1-BSD / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1,4-Difluorobenzene	0.0266	0.0300	89	80-120		
4-Bromofluorobenzene	0.0283	0 0300	94	80-120		

Lab Batch #: 729725

Sample: 308807-019 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0347	0.0300	116	80-120	
4-Bromofluorobenzene	0.0357	0.0300	119	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729725

Sample: 308807-020 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0339	0.0300	113	80-120	
4-Bromofluorobenzene	0.0396	0.0300	132	80-120	**

Lab Batch #: 729725

Sample: 308850-001 S/MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			{D}			
1,4-Difluorobenzene	0.0333	0.0300	111	80-120		
4-Bromofluorobenzene	0.0953	0.0300	318	80-120	**	

Lab Batch #: 729725

Sample: 308850-001 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1,4-Dıfluorobenzene	0.0348	0.0300	116	80-120		
4-Bromofluorobenzene	0.0757	0.0300	252	80-120	**	

Lab Batch #: 729725

Sample: 513100-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		, ,	[D]			
1,4-Difluorobenzene	0.0279	0.0300	93	80-120		
4-Bromofluorobenzene	0.0328	0.0300	109	80-120		

Lab Batch #: 729725

Sample: 513100-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
•						
1,4-Dıfluorobenzene	0.0342	0.0300	114	80-120		
4-Bromofluorobenzene	0.0299	0.0300	100	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729725

Sample: 513100-1-BSD / BSD

Matrix: Solid Batch: 1

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		[D]				
1,4-Dıfluqrobenzene	0.0287	0.0300	96	80-120	_	
4-Bromofluorobenzene	0.0316	0.0300	105	80-120		

Lab Batch #: 729840

Sample: 308807-013 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0351	0.0300	117	80-120		
4-Bromofluorobenzene	0.0375	0.0300	125	80-120	**	

Lab Batch #: 729840

Sample: 308887-002 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0283	0 0300	94	80-120		
4-Bromofluorobenzene	0.0342	0.0300	114	80-120		

Lab Batch #: 729840

Sample: 308887-002 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	[[[D]			
1,4-Difluorobenzene	0.0289	0.0300	96	80-120		
4-Bromofluorobenzene	0.0331	0.0300	110	80-120		

Lab Batch #: 729840

Sample: 513177-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0280	0.0300	93	80-120		
4-Bromofluorobenzene	0.0294	0.0300	98	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729840

Sample: 513177-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0347	0.0300	116	80-120		
4-Bromofluorobenzene	0 0272	0.0300	91	80-120		

Lab Batch #: 729840

Sample: 513177-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0279	0.0300	93	80-120	·	
4-Bromofluorobenzene	0.0306	0.0300	102	80-120		

Lab Batch #: 729864

Sample: 308807-011 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzenc	0.0442	0.0300	147	80-120	**	
4-Bromofluorobenzene	0 0501	0.0300	167	80-120	**	

Lab Batch #: 729864

Sample: 308807-012 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0457	0.0300	152	80-120	**	
4-Bromofluorobenzene	0.0784	0.0300	261	80-120	**	

Lab Batch #: 729864

Sample: 308887-004 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0283	0.0300	94	80-120		
4-Bromofluorobenzene	0.0322	0.0300	107	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807 **Project ID:** 2008-113

Lab Batch #: 729864 Sample: 308887-004 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0287	0.0300	96	80-120		
4-Bromofluorobenzene	0.0314	0.0300	105	80-120		

Lab Batch #: 729864 Sample: 513197-1-BKS / BKS Batch: ! Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STUDY Control True Amount BTEX by EPA 8021B Found Amount Recovery Limits Flags %R %R [A] [B] [D] **Analytes** 1,4-Difluorobenzene 98 0.0295 0.0300 80-120 4-Bromofluorobenzene 0.0307 0.0300 102 80-120

Lab Batch #: 729864 Sample: 513197-1-BLK / BLK Batch: 1 Matrix: Solid

SURROGATE RECOVERY STUDY Units: mg/kg Amount True Control BTEX by EPA 8021B Recovery Limits Flags Amount Found [A] [B] %R %R [D] **Analytes** 115 80-120 1,4-Difluorobenzene 0.0346 0.0300 0.0287 0.0300 4-Bromofluorobenzene 96 80-120

Lab Batch #: 729864 Sample: 513197-1-BSD / BSD Batch: 1 Matrix: Solid

SURROGATE RECOVERY STUDY Units: mg/kg Amount Control BTEX by EPA 8021B Recovery Flags Amount Limits Found %R [A] [B] %R [D] **Analytes** 1,4-Difluorobenzene 0.0285 0.0300 95 80-120 4-Bromofluorobenzene 0.0313 0.0300 104 80-120

Lab Batch #: 729435 Sample: 308807-006 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	95.0	100	95	70-135			
o-Terphenyl	48.4	50.0	97	70-135			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729435

Sample: 308807-006 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	99.9	100	100	70-135	
o-Terphenyl	51.7	50.0	103	70-135	

Lab Batch #: 729435

Sample: 308807-018 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	96.2	100	96	70-135		
o-Terphenyl	57.0	50.0	114	70-135		

Lab Batch #: 729435

Sample: 308807-019 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
I-Chlorooctane	98.9	100	99	70-135		
o-Terphenyl	53.7	50.0	107	70-135		

Lab Batch #: 729435

Sample: 308807-020 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	98.0	100	98	70-135			
o-Terphenyl	54.3	50.0	109	70-135			

Lab Batch #: 729435

Sample: 512968-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	Inits: mg/kg SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	111	100	111	70-135	
o-Terphenyl	59.1	50.0	118	70-135	

^{**} Surrogates outside limits, data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807 **Project ID:** 2008-113

Lab Batch #: 729435 Sample: 512968-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
I-Chlorooctane	98.4	100	98	70-135		
o-Terphenyl	50.7	50.0	101	70-135		

Lab Batch #: 729435 Sample: 512968-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STUDY TPH by SW8015 Mod Amount True Control Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 98.3 100 98 70-135 o-Terphenyl 51.3 50.0 103 70-135

Lab Batch #: 729462 Sample: 308657-007 S/MS Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Flags Found Amount Recovery Limits [A] [B] %R %R [D] Analytes 1-Chlorooctane 94.7 95 100 70-135 o-Terphenyl 49.6 50.0 99 70-135

Lab Batch #: 729462 Sample: 308657-007 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY TPH by SW8015 Mod Amount Flags Found Recovery Limits Amount [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 92.1 100 92 70-135 o-Terphenyl 48 5 50.0 97 70-135

Lab Batch #: 729462 Sample: 308807-001 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	92.2	100	92	70-135			
o-Terphenyl	47.7	50.0	95	70-135			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729462

Sample: 308807-002 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	92.6	100	93	70-135	
o-Terphenyl	48.1	50.0	96	70-135	

Lab Batch #: 729462

Sample: 308807-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	95 1	100	95	70-135	_	
o-Terphenyl	49.4	50.0	99	70-135		

Lab Batch #: 729462

Sample: 308807-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg SURROGATE REC				STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes			(~)		
1-Chlorooctane	91.3	100	91	70-135	
o-Terphenyl	46.6	50.0	93	70-135	

Lab Batch #: 729462

Sample: 308807-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		i.	[D]		
1-Chlorooctane	93.9	100	94	70-135	
o-Terphenyl	47.9	50.0	96	70-135	

Lab Batch #: 729462

Sample: 308807-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Units: mg/kg SURROGATE RECOVERY STU				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	190	100	190	70-135	**
o-Terphenyl	88.2	50,0	176	70-135	**

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729462

Sample: 308807-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg SURROGATE RECOVERY ST				STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	87.8	100	88	70-135	
o-Terphenyl	45.1	50 0	90	70-135	

Lab Batch #: 729462

Sample: 308807-009 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	89.1	100	89	70-135	
o-Terphenyl	45.7	50.0	91	70-135	

Lab Batch #: 729462

Sample: 308807-010 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	88.7	100	89	70-135	
o-Terphenyl	45.9	50.0	92	70-135	

Lab Batch #: 729462

Sample: 308807-011 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
I-Chlorooctanc	799	100	799	70-135	**		
o-Terphenyl	667	50,0	1334	70-135	**		

Lab Batch #: 729462

Sample: 308807-012 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY								
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooctane	891	100	891	70-135	**					
o-Terphenyl	668	50.0	1336	70-135	**					

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807 **Project ID:** 2008-113

Lab Batch #: 729462 Sample: 308807-013 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1-Chlorooctane	92.4	100	92	70-135				
o-Terphenyl	54.2	50.0	108	70-135				

Lab Batch #: 729462 Sample: 308807-014 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY True Control TPH by SW8015 Mod Amount Found Amount Recovery Limits Flags [B] %R %R [A] **Analytes** [D]1-Chlorooctane 100 88.6 89 70-135 o-Terphenyl 49.6 50.0 99 70-135

Lab Batch #: 729462 Sample: 308807-015 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY True Control TPH by SW8015 Mod Amount Found Amount Recovery Limits Flags %R [B] %R [A] [D] Analytes 1-Chlorooctane 85 7 100 86 70-135 o-Terphenyl 45.3 50.0 91 70-135

Lab Batch #: 729462 Sample: 308807-016 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH by SW8015 Mod Found Amount Recovery Limits Flags [B] %R %R [A] [D]**Analytes** 1-Chlorooctane 91.8 100 92 70-135 o-Terphenyl 50.3 50.0 101 70-135

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes		. ,	[D]						
1-Chlorooctane	92.0	100	92	70-135					
o-Terphenyl	59.0	50.0	118	70-135					

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Lab Batch #: 729462

Sample: 512991-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes	()		[D]	,,,,,				
1-Chlorooctane	113	100	113	70-135				
o-Terphenyl	56.3	50.0	113	70-135				

Lab Batch #: 729462

Sample: 512991-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		, ,	[D]		
1-Chlorooctane	102	100	102	70-135	
o-Terphenyl	52.2	50.0	104	70-135	

Lab Batch #: 729462

Sample: 512991-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	98 4	100	98	70-135					
o-Terphenyl	50.7	50.0	101	70-135					

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID:

2008-113

Lab Batch #: 729470

Sample: 512994-1-BSD

Matrix: Solid

Date Analyzed: 07/30/2008

Date Prepared: 07/30/2008

Analyst: BRB

Reporting Units: mg/kg	Batch #: 1	BLANK /B	BLANK SPI	KE REC	OVERY S	STUDY
BTEX by EPA 8021B	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags

Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
		[C]	[D]		
, ND	0.0500	0.0459	92	70-130	
ND	0.0500	0.0427	85	70-130	
ND	0.0500	0.0469	94	71-129	
ND	0.1000	0.0988	99	70-135	
ND	0.0500	0.0475	95	71-133	
	Result [A] ND ND ND ND ND	Result Added [B]	Result [A] Added [B] Spike Result [C] ND 0.0500 0.0459 ND 0.0500 0.0427 ND 0.0500 0.0469 ND 0.1000 0.0988	Result [A] Added [B] Spike Result [C] Spike %R [D] ND 0.0500 0.0459 92 ND 0.0500 0.0427 85 ND 0.0500 0.0469 94 ND 0.1000 0.0988 99	Result [A] Added [B] Spike Result [C] Spike %R [D] Limits %R ND 0.0500 0.0459 92 70-130 ND 0.0500 0.0427 85 70-130 ND 0.0500 0.0469 94 71-129 ND 0.1000 0.0988 99 70-135

Blank Spike Recovery [D] = 100*[C]/[B]
All results are based on MDL and validated for QC purposes.

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Date Prepared: 07/31/2008 Batch #: 1

Project ID: 2008-113 Date Analyzed: 07/31/2008

Analyst: BRB Lab Batch ID: 729725

> **Analytes** Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene

Sample: 513100-1-BKS

Matrix: Solid

Units:	mg/kg
--------	-------

nits: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag		
lytes		[B]	[C]	[D]	[E]	Result [F]	[G]						
	ND	0.0500	0.0500	100	0.05	0.0460	92	8	70-130	35			
	ND	0.0500	0 0487	97	0.05	0.0445	89	9	70-130	35			
zene	ND	0.0500	0.0552	110	0.05	0.0500	100	10	71-129	35			
enes	ND	0.1000	0.1159	116	0.1	0.1048	105	10	70-135	35			

0.05

0.0513

113

ND **Date Prepared:** 08/01/2008 Analyst: ASA

Date Analyzed: 08/02/2008

Lab Batch ID: 729840

Sample: 513177-1-BKS

Batch #: 1

0.0500

Matrix: Solid

71-133

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	ND	0.1000	0.1149	115	0.1	0.1060	106	8	70-130	35	
Toluene	ND	0.1000	0.1132	113	0.1	0.1050	105	8	70-130	35	
Ethylbenzene	ND	0.1000	0.1230	123	0,1	0.1147	115	7	71-129	35	
m,p-Xylenes	ND	0.2000	0.2527	126	0.2	0.2359	118	7	70-135	35	
o-Xylene	ND	0.1000	0.1167	117	0.1	0.1094	109	6	71-133	35	

0.0564

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Project ID: 2008-113

Analyst: BRB

Date Prepared: 08/03/2008

Date Analyzed: 08/03/2008

Lab Batch ID: 729864

Sample: 513197-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	ND	0.1000	0.0877	88	0.1	0.0833	83	5	70-130	35	
Toluene	ND	0.1000	0.0926	93	0.1	0.0882	88	5	70-130	35	
Ethylbenzene	ND	0.1000	0.1066	107	0.1	0.1018	102	5	71-129	35	
m,p-Xylenes	ND	0.2000	0.2234	112	0.2	0.2124	106	5	70-135	35	
o-Xylene	ND	0.1000	0.1057	106	0.1	0.1006	101	5	71-133	35	

Analyst: ASA

Date Prepared: 07/29/2008

Date Analyzed: 07/30/2008

Lab Batch ID: 729435

Sample: 512968-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	964	96	1000	883	88	9	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	1020	102	1000	931	93	9	70-135	35	

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Date Prepared: 07/29/2008

Project ID: 2008-113

Analyst: ASA

Date Frepared: 0/12/1200

Date Analyzed: 07/29/2008

Lab Batch ID: 729462

Sample: 512991-1-BKS **Batch #:** 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	969	97	1000	882	88	9	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	1020	102	1000	921	92	10	70-135	35	

Form 3 - MS Recoveries

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Lab Batch #: 729435 Project ID: 2008-113

 Date Analyzed:
 07/30/2008
 Date Prepared:
 07/29/2008
 Analyst:
 ASA

 QC- Sample ID:
 308807-006 S
 Batch #:
 1
 Matrix:
 Soil

QC- Sample ID: 308807-006 S

Reporting Units: mg/kg

MATRIX / MATRIX SPIKE RECOVERY STUDY

TPH by SW8015 Mod

Parent Sample Result Added [C] WR | Flag | Fla

Analytes	Sample Result [A]	Spike Added [B]	Result [C]	%R [D]	Limits %R	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	884	88	70-135	
C12-C28 Diesel Range Hydrocarbons	ND	1000	935	94	70-135	

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

 Lab Batch ID: 729470
 QC- Sample ID: 308807-001 S
 Batch #: 1
 Matrix: Soil

Date Analyzed: 07/30/2008 Date Prepared: 07/30/2008 Analyst: BR

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag	
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD		
Benzene	ND	0.1081	0.0364	34	0.1081	0.0348	32	6	70-130	35	Х	
Toluene	ND	0.1081	0.0343	32	0.1081	0.0329	30	6	70-130	35	Х	
Ethylbenzene	ND	0.1081	0.0370	34	0.1081	0.0354	33	3	71-129	35	Х	
m,p-Xylenes	ND	0.2161	0.0778	36	0.2161	0.0744	34	6	70-135	35	Х	
o-Xylene	ND	0.1081	0 0378	35	0.1081	0.0363	34	3	71-133	35	X	

Lab Batch ID: 729725 QC- Sample ID: 308850-001 S Batch #: 1 Matrix: Soil

Date Analyzed: 07/31/2008 Date Prepared: 07/31/2008 Analyst: BRB

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	•	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	0.0015	0 0508	0.0278	52	0.0508	0.0261	48	8	70-130	35	Х
Toluene	0.0092	0.0508	0.0189	19	0.0508	0.0173	16	17	70-130	35	Х
Ethylbenzene	0.0079	0.0508	0.0135	11	0.0508	0.0136	11	0	71-129	35	Х
m,p-Xylenes	0.0232	0.1016	0.0352	12	0.1016	0.0315	8	40	70-135	35	XF
o-Xylene	0.0136	0.0508	0.0203	13	0.0508	0.0182	9	36	71-133	35	XF

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807 Project ID: 2008-113

 Lab Batch ID:
 729840
 QC- Sample ID:
 308887-002 S
 Batch #:
 1
 Matrix:
 Soil

Date Analyzed: 08/02/2008 Date Prepared: 08/01/2008 Analyst: ASA

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Result	Sample	•	Duplicate Spiked Sample	•	RPD	Control Limits	Control Limits	Flag	
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD		
Benzene	ND	0.1299	0.1199	92	0.1299	0.1186	91	1	70-130	35		
Toluene	ND	0.1299	0.1189	92	0.1299	0.1174	90	2	70-130	35		
Ethylbenzene	ND	0.1299	0.1260	97	0.1299	0.1258	97	0	71-129	35		
m,p-Xylenes	ND	0.2598	0.2592	100	0.2598	0.2584	99	1	70-135	35		
o-Xylene	ND	0 1299	0.1188	91	0.1299	0.1171	90	1	71-133	35		

Lab Batch ID: 729864 QC- Sample ID: 308887-004 S Batch #: 1 Matrix: Soil

Date Analyzed: 08/04/2008 Date Prepared: 08/03/2008 Analyst: BRB

Reporting Units: mg/kg		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY									
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0 1307	0.0938	72	0.1307	0.0981	75	4	70-130	35	
Toluene	ND	0.1307	0.0978	75	0.1307	0.1026	79	5	70-130	35	
Ethylbenzene	ND	0.1307	0.1100	84	0.1307	0.1161	89	6	71-129	35	
m,p-Xylenes	ND	0.2615	0.2291	88	0.2615	0.2416	92	4	70-135	35	
o-Xylene	ND	0.1307	0.1077	82	0.1307	0.1129	86	5	71-133	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

nelad

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807 Project ID: 2008-113

 Lab Batch ID: 729462
 QC- Sample ID: 308657-007 S
 Batch #: 1
 Matrix: Soil

Date Analyzed: 07/29/2008 Date Prepared: 07/29/2008 Analyst: ASA

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag	
Analytes	Result ·[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD		
C6-C12 Gasoline Range Hydrocarbons	ND	1120	956	85	1120	942	84	1	70-135	35		
C12-C28 Diesel Range Hydrocarbons	ND	1120	943	84	1120	967	86	2	70-135	35		

Sample Duplicate Recovery

Project Name: E K QUEEN 6" PEARCE

Work Order #: 308807

Lab Batch #: 729500 Project ID: 2008-113

 Date Analyzed: 07/30/2008
 Date Prepared: 07/30/2008
 07/30/2008
 Analyst: IRO

 QC- Sample ID: 308807-001 D
 Batch #: 1
 Matrix: Soil

Reporting Units: %	SAMPLE / SAMPLE DUPLICATE RECOVERY										
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag						
Percent Moisture	7.47	6.59	13	20							

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes

age 32 of 34

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax 432-563-1713

	Project Manager	Curt Stanley				PAGE 02 O	F 02										_ Р	rojec	t Na	mo J	EK	QU	EEN	16"	PE#	IRC	E				_
	Company Name	Basin Environment	al Serv	ice Te	chnoi	ogies, LLC											_	P	roje	1 # 2	200	8-11	13								
	Company Address	P O Box 301															_	Proj	ect l	oc l	.ea	Cou	nty,	NM							_
	City/State/Zip	Lovington, NM 8821	60														_		P) #: <u>[</u>	PAA	-с	JR	еупо	ids						
	Telephone No.	(505) 441-2244		<u>. </u>			Fax No		(50)5) <u>3</u>	96-1	429					Repo	rt Fo	ma	. [X s	Stand	dard			TRR	P] NP(DES	
	Sampler Signature:	(H)	A	_	_		e-mail		<u>cs</u>	star	nley	(Q)	oa <u>s</u>	inei	۱۷.0	om															
(lab use o	ontw)		\supset		_	,												F			TC		Anal	yze F	or	$\overline{}$		_	\dashv	,	
1,	308807									-	Aron	(350	D 4 4	of C	o estad	2000	Matrix	1	_	-	TOT/	AL	+	#	X	П	-			48, 12 hrs	
AB a (leth use only)		D CODE		Beginning Depth	Ending Depth	Date Sampled	Тте Ѕалтрюс	Field Filtered	Fotal # of Containers		4			NaOH O		(Specify)	ter SSudgiter SSoliSol	H 418 1 GOISM 801:	01 XT 2005 XT	3	Anions (Cl. SO4 Alballmly)	SARVESPICEC	Melas As Ag Ba Cd Cr Pb Hg Se Volation	Somvotatios	BTEX 80218/5030 or BTEX 8260	RCI	NORM			RUSH TAT (Pre-Schedule) 24, 4.	Significant Part
11	SB-4	@ 10'				7/25/2008	1235		1	х							SOIL	×						I	х	ಠ	I	\perp		X	
12	SB-4	@ 20'				7/25/2008	1245		1	x					T		SOIL	Ιx				\perp	I	oxdot	X	\Box				X	(
13	SB-4	4@30				7/25/2008	1255		1	х				I			SOIL	Ţχ	L						х			\perp	Ш	×	K
14	SB-4	@ 40'				7/25/2008	1305		1	х					ľ		SOIL	X	L				L		x		\perp	\perp	Ш	<u>L</u>	ĸ
15	SB-4	€ 50°				7/25/2008	1315		1	х							SOIL	x							x	Ш	\perp	\perp	Ш	<u> </u>	ĸ
16	SB-4	t © 60. 				7/25/2008	1335	Γ	1	×							SOIL	Tx			Ι	\perp			x	Ш	\perp	丄	$oxed{oxed}$	L	Ķ
17	SB-4	1 @ 70°				7/25/2008	1355		1	х							SOIL] x							х	Ш	\perp	丄	Ш	L	K
18	SB-4	6 80.				7/25/2008	1430		1	x							SOIL	x							x	Ц	\perp	\bot	Ш	LL×	X
19	\$8-4	1 @ 90,				7/25/2008	1515		1	х							SOIL] x						\perp	x	П			Ш		<u>x</u>
20	SB-4	@ 100°				7/25/2008	1640		1	x							SOIL] x	1						x	Ц		丄	Ш	LL	X
Relinguist Relinguist	hed b	Da	g/ox	2 2	30 me	Received by:										Di	ale ale	Ten	18	Sam VOC Labe Cust Cust Sam	ple (is Fr is ody ody ody ole I	Cont ee o n con seal seal	ainea f Hea stain is on is on d Del	ments rs inte adspa er(s) conta coole ivered ent Re	act? ace? sineri er(s) d ep. ?		. 1	2000 B		N N N N N N N	
Relinguist	hed by	Da	ite	Tu	me /	Race vertices	от//		_								4	Tin ?		Tem	pene	ture	Upo	n Rac	ceipt	4	07	<u>ر</u>	0.5	*c	_

age	
ၓၟ	
₫	
ω	

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone 432-563-1800 Fax: 432-563-1713

	Project Manager	Curt Stanley	t Stanley PAGE 01 OF 02									_	Pro	oject	Nam	e: <u>E</u>	ΚC	ME	EN F	6" P	EAF	₹CE							
	Company Name	Basin Environment	al Service	Techno	logies, LLC										_		Pr	oject	#: <u>2</u>	308-	·113							_	
	Company Address	P 0 Box 301														F	roje	ct Lo	c: <u>Le</u>	a Co	ounty	y, NS	4						
	City/State/Zip	Lovington, NM 8826	50															РО	#: <u>P</u> /	. .	C. J	Rey	nold	ls_					
	Telephone No	(505) 441-2244				Fax No		(505	5) 39	8-142	9					Repor	t For	mat	X	Sta	andar	rd		 [] T	RRP			4PDE	s
	Sampler Signature	11 xt-	$\sqrt{\lambda}$	7		e-mail		cst	tanl	ey@)ba	:Si∩	env	/ co	m														
(lab use					7	-											F			TCLP		alyz	e Fo	<u> </u>	〒	$\overline{\Box}$	$\overline{}$	Ŧ.]
1.	**: 308807	1						,	Para.	serva	da a		1000	raina	1	Matrix	L			OTAL	\Box	口		X		П			
ORDER	- J0000			T-		I	Γ	П	He	ser va	T	1	T		_		80158	1006			rtg Sa			8TEX 80218/5030 or BTEX 8260	1		-	1 2	:
3	}			1							l					r SL – Sludy r S – SoliSo Soedfy Oct	3		SO4. Alkalinder)		Cd Cr Pb Hg			197				RUSH TAT (Pre Schedide)	
use only)	-		ag l	£	Pa	₽	ĺ	Bringers		1	1				,	5 L M	(40 Sm)	٠	2 4	2	Pa Co		[05.05		11		8 8	<u> </u>
(Ba)			<u></u>	å	d di	due	Pag	8	-	1					E S	- Granking Water - Graundwater - Non Potable 5	18	Tx 1005	8 8	D/ dS	S.A.g	ıİ	to los	ě				E	ļ,
**			Beginning Depth	Ending Depth	Оа/е Ѕатріес	Time Sampled	Bid Filtered	otal # of Contamers		g g	,08,H	HOSN	Na,S,O,	None	her (OW-Dranking Wate CW = Croundwate NP-Non Potable	1 1	TPH T	Amons (CI SO4, Alla	SAR, ESPICEC	Metals As Ag Ba	Volatiles	Semvoluties	ž ,	202			Ę	Standard TAT
1	 	LD CODE	- a	<u></u>		-	i.	۳		Ī Ī	1	Ž	Ž	Ž	٥	출출 호 SOIL	₽ X	2 0	3 4	9	3	H	-	X S	[=	╁	+	ᆤ	X
2		·1 @ 10'	-	+	7/25/2008 7/25/2008	855 905	╁	- 1	X	+	╁	+	\vdash		┨	SOIL	X	+	+	╁	H	\dashv		<u>^</u>	+	╁	+	十	†
3		-1 @ 20' -1 @ 30		+	7/25/2008	915	H	1	X	+	╁	+	╁	1	┪	SOIL	î	\dashv	+	╁	H	\dashv	-	}	+-	1-	+	十	T _x
1 H		-1@ 40'			7/25/2008	925	\vdash	1	x	+	╁	╁	+	H	٦	SOIL	x		+	+	Ħ	\dashv	_	x x	┿	\dagger	十	十	T _x
5		-2 @ 10'	-+-	+	7/25/2008	955	H	-	x	+	十	╁	t	+	┪	SOIL	x	+	+	+	⇈	\dashv	_	x †	十	1	十	+	X
6		-2 @ 20'		_	7/25/2008	1005		1	-	$^{+}$	+	+	†	1	┪	SOIL	x	+	+	+	Ħ	7		x	╈	M	十	十	X
7		-2 @ 30'		+	7/25/2008	1015		1	$\overline{}$	\top	†	T	T	1	┪	SOIL	x	\dashv	+	T	П	\dashv	_	x	\top	П	十	十	x
8		-3 @ 10'		<u> </u>	7/25/2008	1125		1	x	\top	T	T	╁		┪	SOIL	X	\dashv	1	T	П	ヿ	_	х	1	П	ヿ	T	X
9		·3 @ 20'		_	7/25/2008	1140		_	X	7	T	T	Τ	П	┪	SOIL	x	\dashv		T	П	\sqcap	\top	х	1	П	Т	T	x
10		-3 @ 30'			7/25/2008	1150		1	X		Τ	T			٦	SOIL	x		7	T	П	П		x			\Box	\mathbf{I}	Х
Special	Instructions																				y Co		ents: Intac				ด	N	
																		\	roca	Free	e of H	lead:	space			- 7	Š.	N	ı
Ge Inquis	ng by	7/24		Time	Received by:										Da	te	Time	[č	usto	dy se		on co	ortain		.)	,	D00000	N N	
Refination	hed by	7/C4		うつ Time	Received by			_	_				_	-	Оa	te	Time		amo	e He	ort D	belive	ooler(. ered			1	Š.	N N	i
	\sim																	- [by	2017	notecii	Crien	n Rep UPS	, , 	ж	Fed	¥ν E× ι	N Lone S	
Reinquis	ned by	Da	te	lime	Received by Et	7/		_						7	Da	1 1 -	Time						Rece					5.0	
L					VIIII)	<i>f</i> (_		_					Щ	71	es 2	٠, ١		_			_				<u></u>		-	
				- /																									

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Chent	Basin Environmental
Date/ Time	7/29/08 8:30
Lab ID#	308807
Initials	79

Sample Receipt Checklist

				Client Initia
#1	Temperature of container/ cooler?	Yes	No	0.5 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present
#5	Chain of Custody present?	(Yes	No	
#6	Sample instructions complete of Chain of Custody?	(Yes	No	
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No	
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont / Lid
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(Tes)	No	
#11	Containers supplied by ELOT?	(Yes	No	
#12	Samples in proper container/ bottle?	(Yes	No	See Below
#13		(Yes	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	(Yes)	No	
#16	Containers documented on Chain of Custody?	(Yes	No	
#17	Sufficient sample amount for indicated test(s)?	(YES	No	See Below
#18		(Yes)	No	See Belaw
#19	Subcontract of sample(s)?	Yes	No	(Not Applicable)
#20	VOC samples have zero headspace?	(Yes)	No	Not Applicable

Variance Documentation

Contact		Contacted by,	Date/ Time	****
Regarding				
Corrective Action Taker	1			
Check all that Apply		See attached e-mail/ fax Client understands and would like to proc Cooling process had begun shortly after s	•	

Analytical Report 308796

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

E K Queen 6" Pearce 2008-113

31-JUL-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:

Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

31-JUL-08

Project Manager: Camille Reynolds
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 308796

E K Queen 6" Pearce

Project Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 308796. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 308796 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 308796

PLAINS ALL AMERICAN EH&S, Midland, TX

E K Queen 6" Pearce

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Prelim GW	W	Jul-25-08 16:45		308796-001

Certificate of Analysis Summary 308796 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: E K Queen 6" Pearce

Contact: Camille Reynolds

Project Id: 2008-113

Project Location: Lea County, NM

Date Received in Lab: Tue Jul-29-08 08:30 am

Report Date: 31-JUL-08

Project Manager: Brent Barron, II

		i roject Manager.	
Lab Id:	308796-001		
Field Id:	Prelim GW		
Depth:			
Matrix:	WATER		
Sampled:	Jul-25-08 16:45		
Extracted:	Jul-30-08 16:02		
Analyzed:	Jul-31-08 06 24		
Units/RL:	mg/L RL		
	0.0016 0 0010		
	0.0080 0 0020		
	0 0074 0 0010		
	0.0091 0 0020		
	0.0049 0.0010		
	0 014		
	0 031		
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed:	Field Id: Prehm GW Depth: Matrix: WATER Sampled: Jul-25-08 16:45 Extracted: Jul-30-08 16:02 Analyzed: Jul-31-08 06 24 Units/RL: mg/L RL 0.0016 0 0010 0.0080 0 0020 0 0074 0 0010 0.0049 0.0010 0 0014	Lab Id: 308796-001 Field Id: Prelim GW Depth: WATER Sampled: Jul-25-08 16:45 Extracted: Jul-30-08 16:02 Analyzed: Jul-31-08 06 24 Units/RL: mg/L RL 0.0016 0 0010 0.0080 0 0020 0.0091 0 0020 0.0049 0.0010 0.0049 0.0010 0 014 0.014

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone Fax (281) 589-0692 (281) 589-0695 11381 Mcadowglen Lane Suite L Houston, Tx 77082-2647 9701 Harry Hines Blvd, Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3334 (210) 509-3335 2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2000 (813) 620-2033 (305) 823-8500 5757 NW 158th St, M1am1 Lakes, FL 33014 (305) 823-8555 6017 Financial Dr., Norcross, GA 30071 (770) 449-8800 (770) 449-5477

Project Name: E K Queen 6" Pearce

Work Order #: 308796

Project ID: 2008-113

Lab Batch #: 729592

Sample: 308660-010 S / MS

Batch: 1

Matrix: Water

SURROGATE RECOVERY STUDY Units: mg/L Amount True BTEX by EPA 8021B Recovery Flags Found Amount Limits [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0 0292 0.0300 97 80-120 4-Bromofluorobenzene 0.0308 0.0300 103 80-120

Lab Batch #: 729592

Sample: 308660-010 SD / MSD

Batch: 1 Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	[]	(5)	[D]	, , , ,	
1,4-Difluorobenzene	0.0275	0.0300	92	80-120	_
4-Bromofluorobenzene	0.0285	0.0300	95	80-120	

Lab Batch #: 729592

Sample: 308796-001 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Dıfluorobenzene	0.0369	0.0300	123	80-120	**
4-Bromofluorobenzene	0.0333	0.0300	111	80-120	

Lab Batch #: 729592

Sample: 513044-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			{D}		
1,4-Dıfluorobenzene	0.0291	0.0300	97	80-120	
4-Bromofluorobenzene	0.0340	0.0300	113	80-120	

Lab Batch #: 729592

Sample: 513044-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
· · · · · · · · · · · · · · · · · · ·		ļ	(-1		
1,4-Dıfluorobenzene	0.0350	0.0300	117	80-120	
4-Bromofluorobenzene	0.0303	0.0300	101	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: E K Queen 6" Pearce

Work Order #: 308796

Project ID: 2008-113

Lab Batch #: 729592

Sample: 513044-1-BSD / BSD

Batch: | Matrix: Water

Units: mg/L SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags [A] [B] %R %R Analytes [D] 1,4-Dıfluorobenzene 0.0282 0.0300 80-120 0.0288 4-Bromofluorobenzene 0.0300 96 80-120

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: E K Queen 6" Pearce

Work Order #: 308796

Analyst: BRB Date Prepared: 07/30/2008

Project ID: 2008-113

Date Analyzed: 07/31/2008

Lab Batch ID: 729592

Sample: 513044-1-BKS

Batch #: 1

Matrix: Water

Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY												
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]							
Benzene	ND	0.0500	0.0553	111	0.05	0.0456	91	19	70-125	25	-			
Toluene	ND	0 0500	0.0544	109	0.05	0.0434	87	22	70-125	25				
Ethylbenzene	ND	0.0500	0.0583	117	0.05	0.0467	93	22	71-129	25				
m,p-Xylenes	ND	0.1000	0.1213	121	0.1	0.0971	97	22	70-131	25				
o-Xylene	ND	0.0500	0 0598	120	0.05	0.0472	94	24	71-133	25				

Relative Percent Dıfference RPD = 200*|(D-F)/(D+F)|Blank Spıke Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: E K Queen 6" Pearce

Work Order #: 308796

Project ID: 2008-113

Lab Batch ID: 729592

QC- Sample ID: 308660-010 S

Batch #:

Matrix: Water

Date Analyzed: 07/31/2008

Date Prepared: 07/30/2008

Analyst: BRB

Reporting Units: mg/L		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY													
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag				
Analytes	[A]	[B]	[C]	[D]	[E]	Result [r]	[G]	/*	/6R	/0KFD					
Benzene	ND	0.0500	0.0521	104	0.0500	0.0430	86	19	70-125	25					
Toluene	ND	0.0500	0.0497	99	0.0500	0.0397	79	22	70-125	25					
Ethylbenzene	ND	0.0500	0.0538	108	0.0500	0 0432	86	23	71-129	25					
m,p-Xylenes	ND	0.1000	0.1121	112	0.1000	0.0902	90	22	70-131	25					
o-Xylene	ND	0.0500	0.0545	109	0.0500	0.0445	89	20	71-133	25					

age 10 of 11

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Curt Stanley		_	PAGE 01 C	F 01											Pro	ect	Nam	• <u>E</u>	KC)UE	EN:	<u>6" P</u>	EAF	₹ÇE				
	Company Name	Basin Environment	al Service	[echnal	logies, LLC													Pro	oject	#: <u>2</u>	008-	113								
	Company Address	P O. Bax 301															P	roje	ct Lc	c. <u>L</u>	a Cr	ount	y, NJ	u						
	City/State/Zip	Lovington, NM 882	50												_				PO	#: <u>P</u>	A -	C. J	. Rey	mole	ds					
	Telephone No	(505) 441-2244		>_		Fax No		(50	5) 39	6-14	129					R	ep ort	For	mat [.]	X	Sta	enda	rd		Оτ	RRP		0	NPDES	.s
	Sampler Signature	(1×1-	$\sqrt{2}$			e-mail		CS	tanl	ey	@b	asıı	nen'	v.cc	m									_					_	_
(lab use			0		\													Е	_		TCLP		nalyz	se Fo	T	Т	П	\Box	77 27	
ORDER	* 30879 6	5						1	Pre	serv	ation	8 2 0	of Cor	ntame	ers	Ma	tmx .	#	_	寸)TAL		H	$\overline{}$	X				2	
AB & (lab use only)		LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Reid Fatered	fotal # of Containers	82	HNO,	FC	NaCh Mach	Na ₂ S ₂ O ₃	None	- 1	DW - Ornodosy Water St Study		4181 8015M	TPH TX 1006 TX 1006	Anons (C. SO4 Akatush)	SAR / ESP / CLC	Metals As Ag Be Cd Cr Pb Mg Se	Volables	Semvolables	BTEX 80218/5030 or BTEX 8280	NORM			RUSH TAT (Pre Schedule) 24.	Standard TAT
	PRE	LIM GW			7/25/2008	1645		3	х		х		T			G	N			T				I	x	I		I	工	x
				<u> </u>			П			\perp		ļ	\perp					\Box		I	L		\Box	\Box		\perp		\Box	\perp	П
				╄				Ц	4	4	4	+	╁.	\sqcup	4			\dashv	\perp	+	ļ.,	Н	Ц	4	+	\perp	Н	+	+	\dashv
				+				-	+	+	+	+	╁╌	╌╽	4		-	Н	+	+	⊢	Н	Н	+	+	┿	₩	-	+	╁╌┥
			-	+-				-	+	+	\pm	╁	╁	Н	┪		_	\forall	+	+	╁	Н	\vdash	+	+	十	╁	+	╁	₩
			\dashv	t				\dashv	T	\forall	\dagger	†	†	H	7			\forall	\dagger	$^{+}$	┪	Г	H	_	\dagger	†	H	+	+	Ħ
												Ι	İ	П										I	1	T	П	\top	1	П
												Ι	L							Ι					\perp	\perp	Ш	\Box	\perp	\square
				<u> </u>	l			Ц	\perp			1			_				4	1		Ļ	Ц		\perp	\perp		丄	丄	Ц
speciai i	nstructions																		s	amp	story e Co Free	ntair	iers I	Intec	1 7		6	2	N	
Penguist	TY	- 7h		™• '30	Received by:										Dat	te	Γ	îme	١ō	usto	on c ly se ly se	als c	on co	ntair	ner(s)	t		De se s	2 2	
telinquis!	Karby S	/ba	6 - 4	me	Received by									Γ	Dat	te	Г	Time	Š	ampl by	e Her Same Cour	nd D plani	elive Clien	ered	7	HL	Ć	D .	N N one Si	iter
Relinquish	ned by	Da	ls 1	ime	Received by ELC		_		_					7]	Daj P	oR		Time 30			_							03	_	- 1

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client	Basia Environmental
Date/ Time	7/29/08 8 30
ab ID #	308796
nitials	<u>J</u> G

Sample Receipt Checklist

				Chent Inits
* 1	Temperature of container/ cooler?	(Yes)	No	0.5 °C
¥2	Shipping container in good condition?	(Yes)	No	
# 3	Custody Seals intact on shipping container/ cooler?	(Yes	No	Not Present
7 4	Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present
¥5	Chain of Custody present?	(Yes	No	
# 6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No	
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont / Lid
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No	
#11	Containers supplied by ELOT?	(Yes)	No	
#12	Samples in proper container/ bottle?	(Yes)	No	See Below
#13	Samples properly preserved?	(Yes)	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	(Yes)	No	
#16	Containers documented on Chain of Custody?	(Yes	No	,
#17	Sufficient sample amount for indicated test(s)?	(VES	No	See Below
#1B		(Yes)	No	See Below
#19	Subcontract of sample(s)?	Yes	No	(Not Applicable)
#20	VOC samples have zero headspace?	(Yes)	No	Not Applicable

Variance Documentation

Contact		Contacted by.	Date/ Time	
Regarding				
Corrective Action Taker	n'			
	······································			
Check all that Apply		See attached e-mail/ fax Client understands and would like to proceed Cooling process had begun shortly after sam		

Analytical Report 315760

for

PLAINS ALL AMERICAN EH&S

Project Manager: Daniel Bryant

EK Queen Pearce 6" 2008-113

31-OCT-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215 - Odessa/Midland, TX T104704215-08-TX

Florida certification numbers:

Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 17

31-OCT-08

Project Manager: Daniel Bryant
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 315760

EK Queen Pearce 6"

Project Address: Lea County, NM

Daniel Bryant:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 315760. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 315760 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 315760

PLAINS ALL AMERICAN EH&S, Midland, TX

EK Queen Pearce 6"

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
N-1 S/W	S	Oct-23-08 16:00		315760-001
E-1 S/W	S	Oct-23-08 16:04		315760-002
W-1 S/W	S	Oct-23-08 16:11		315760-003
E-2 S/W	S	Oct-23-08 16:20		315760-004
S-1 S/W	S	Oct-23-08 16:25		315760-005
N-2 S/W	S	Oct-23-08 16:30		315760-006
S-2 S/W	S	Oct-23-08 16:34		315760-007
W-2 S/W	S	Oct-23-08 16:38		315760-008

Project Location: Lea County, NM

Certificate of Analysis Summary 315760 PLAINS ALL AMERICAN EH&S, Midland, TX

nelad

Project Id: 2008-113 Project Name: EK Queen Pearce 6"

Contact: Daniel Bryant

Date Received in Lab: Fri Oct-24-08 05:25 pm

Report Date: 31-OCT-08
Project Manager: Brent Barron, II

Total TPH		ND		921.1		1455.6		43 7		ND		ND	
C28-C35 Oil Range Hydrocarbons		ND	15.2	117	163	279	165	219	15.6	ND	156	ND	15.2
C12-C28 Diesel Range Hydrocarbons		ND	15.2	771	163	1160	165	218	15.6	ND	156	ND	15.2
C6-C12 Gasoline Range Hydrocarbons		ND	152	33 1	163	166	165	ND	15.6	ND	156	ND	152
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
-	Analyzed:	Oct-28-08	07·14	Oct-28-08	07:40	Oct-28-08 0	08:06	Oct-28-08	08.32	Oct-28-08	08·59	Oct-28-08	16·10
TPH By SW8015 Mod	Extracted:	Oct-27-08	14.30	Oct-27-08	14:30	Oct-27-08 1	4:30	Oct-27-08	14 30	Oct-27-08	14.30	Oct-27-08	14 30
Percent Moisture		1 56	1.00	7 75	1.00	8 82	1.00	3.67	1 00	3 73	1 00	1.30	1 00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
	Analyzed:	Oct-27-08	17 00	Oct-27-08	17 00	Oct-27-08 1	7.00	Oct-27-08	17:00	Oct-27-08	17.00	Oct-27-08	17:00
Percent Moisture	Extracted:												
Total BTEX		ND						ND		ND		ND	
Total Xylenes		ND						ND		ND		ND	
o-Xylene		ND	0 0051					ND	0.0052	ND	0 0052	ND	0 0051
m,p-Xylenes		ND	0 0102					ND	0.0104	ND	0.0104	ND	0 0101
Ethylbenzene		ND	0.0051					ND	0 0052		0.0052	ND	0 0051
Toluene			0.0102						0 0104		0.0104	ND	0 0101
Benzene	Omski.		0.0051						0 0052		0.0052	ND	0.0051
	Units/RL:	mg/kg	RL RL					mg/kg	22 13 RL	mg/kg	22 33 RL	mg/kg	22 37 RL
BTEX by EPA 8021B	Analyzed:	Oct-30-08						Oct-30-08		Oct-30-08	-	Oct-30-08	
	Extracted:	Oct-30-08						Oct-30-08		Oct-30-08		Oct-30-08	
	Sampled:	Oct-23-08	6.00	Oct-23-08	6:04	Oct-23-08 1	6.11	Oct-23-08	16.20	Oct-23-08	16.25	Oct-23-08	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
Analysis Requested	Depth:												
	Field Id:	N-1 S/V	v	E-1 S/V	v	W-1 S/V	v l	E-2 S/V	v	S-1 S/W		N-2 S/	w
	Lab Id:	315760-0	001	315760-0	002	315760-0	03	315760-0	004	315760-0	005	315760-	006

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

Certificate of Analysis Summary 315760 PLAINS ALL AMERICAN EH&S, Midland, TX

nelad

Project Id: 2008-113

Contact: Daniel Bryant

Project Name: EK Queen Pearce 6"

Project Location: Lea County, NM

Date Received in Lab: Fri Oct-24-08 05:25 pm

Report Date: 31-OCT-08

Project Manager: Brent Barron, II

Lab Id:	315760-007	315760-008				
Field Id:	S-2 S/W	W-2 S/W				
Depth:						
Matrix:	SOIL	SOIL				
Sampled:	Oct-23-08 16 34	Oct-23-08 16.38				
Extracted:	Oct-30-08 16 15					
Analyzed:	Oct-30-08 23·19					
Units/RL:						
	ND 0 0053					
	ND 0 0106					
	ND 0.0053					
	ND 0.0106					
	ND 0.0053					
	ND					
	ND					
Extracted:			*			
Analyzed:	Oct-27-08 17.00	Oct-27-08 17 00				
Units/RL:	% RL	% R	_			
	5 74 1 00	1 88 1.0)			
Extracted:	Oct-27-08 14·30	Oct-27-08 14:30				
Analyzed:	Oct-28-08 09·53	Oct-28-08 10:18				
Units/RL:	mg/kg RL	mg/kg R				
	ND 159	ND 15	3			
	ND 159	396 15	3			
	ND 15.9	86 6 15	3			
	ND	482.6				
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Analyzed: Analyzed: Analyzed:	Field Id: S-2 S/W Depth: SOIL Matrix: SOIL Sampled: Oct-23-08 16 34 Extracted: Oct-30-08 23·19 Units/RL: mg/kg RL ND 0 0053 ND 0 0106 ND 0.0053 ND ND Extracted: Analyzed: Oct-27-08 17.00 Units/RL: % RL 5 74 1 00 Extracted: Oct-27-08 14·30 Analyzed: Oct-28-08 09·53 Units/RL: mg/kg RL ND 15.9 ND 15.9 ND 15.9	Field Id: S-2 S/W W-2 S/W Depth: Matrix: SOIL SOIL Sampled: Oct-23-08 16 34 Oct-23-08 16.38 Extracted: Oct-30-08 23·19 Cot-30-08 23·19 Units/RL: mg/kg RL ND 0 0053 ND 0.0053 ND 0.0106 ND 0.0053 ND ND ND 0.0053 ND ND ND 0.0053 Extracted: Analyzed: Oct-27-08 17.00 Oct-27-08 17 00 Extracted: Analyzed: Oct-27-08 14:30 Oct-27-08 14:30 Extracted: Oct-27-08 14:30 Oct-27-08 14:30 Analyzed: Oct-28-08 09:53 Oct-28-08 10:18 Units/RL: mg/kg RL mg/kg RI ND 15:9 ND 15:3 ND 15:9 396 15:3 ND 15:9 366 15:3	Field Id: S-2 S/W W-2 S/W Depth: Matrix: SOIL SOIL Sampled: Oct-23-08 16 34 Oct-23-08 16.38 Extracted: Oct-30-08 16 15 Analyzed: Oct-30-08 23·19 Units/RL: mg/kg RL ND 0.0053 ND 0.0106 ND 0.0053 ND ND ND ND ND ND Extracted: Analyzed: Oct-27-08 17.00 Oct-27-08 17 00 Units/RL: % RL % RL Extracted: Oct-27-08 14:30 Oct-27-08 14:30 Oct-27-08 14:30 Analyzed: Oct-28-08 09:53 Oct-28-08 10:18 Units/RL: mg/kg RL ND 15.9 ND 15.3 ND 15.3 ND 15.9 396 15.3 ND 15.9 86.6 15.3	Field Id: S-2 S/W	Field Id: S-2 S/W W-2 S/W Depth: Matrix: SOIL SOIL SOIL SOIL SOIL Solid
This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone Fax 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0692 (281) 589-0695 (214) 351-9139 (214) 902 0300 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 2505 N. Falkenburg Rd., Tampa, FL 33619 (305) 823-8500 (305) 823-8555 5757 NW 158th St, M1ami Lakes, FL 33014 (770) 449-8800 (770) 449-5477 6017 Financial Dr., Norcross, GA 30071

Project Name: EK Queen Pearce 6"

Work Orders: 315760,

Project ID: 2008-113

Lab Batch #: 738706

Sample: 315760-001 / SMP

Matrix: Soil Batch:

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Dıfluorobenzene	0.0336	0.0300	112	80-120	
4-Bromofluorobenzene	0.0234	0.0300	78	80-120	**

Lab Batch #: 738706

Sample: 315760-004 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		'-'	[D]		
1,4-Dıfluorobenzene	0.0330	0.0300	110	80-120	
4-Bromofluorobenzene	0.0250	0.0300	83	80-120	

Lab Batch #: 738706

Sample: 315760-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0325	0.0300	108	80-120			
4-Bromofluorobenzene	0.0212	0.0300	71	80-120	**		

Lab Batch #: 738706

Sample: 315760-006 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0 0332	0.0300	111	80-120			
4-Bromofluorobenzene	0 0230	0.0300	77	80-120	**		

Lab Batch #: 738706

Sample: 315760-006 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0312	0 0300	104	80-120			
4-Bromofluorobenzene	0.0387	0.0300	129	80-120	**		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 315760,

Project ID: 2008-113

Lab Batch #: 738706

Sample: 315760-006 SD / MSD

Matrix: Soil 1 Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	11	[2]	[D]	7000		
1,4-Difluorobenzene	0.0304	0 0300	101	80-120		
4-Bromofluorobenzene	0.0342	0.0300	114	80-120		

Lab Batch #: 738706

Sample: 315760-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0329	0.0300	110	80-120		
4-Bromofluorobenzene	0.0210	0.0300	70	80-120	**	

Lab Batch #: 738706

Sample: 518351-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	1		[D]			
1,4-Difluorobenzene	0.0278	0.0300	93	80-120		
4-Bromofluorobenzene	0 0296	0.0300	99	80-120		

Lab Batch #: 738706

Sample: 518351-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	[]	"-"	[D]	,		
1,4-Dıfluorobenzene	0.0329	0.0300	110	80-120		
4-Bromofluorobenzene	0.0213	0.0300	71	80-120	**	

Lab Batch #: 738706

Sample: 518351-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0 0267	0.0300	89	80-120		
4-Bromofluorobenzene	0.0277	0.0300	92	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 315760,

Project ID: 2008-113

Lab Batch #: 738479

Sample: 315760-001 / SMP

Batch: Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
I-Chlorooctane	109	100	109	70-135		
o-Terphenyl	54.3	50.0	109	70-135		

Lab Batch #: 738479

Sample: 315760-001 S / MS

Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	120	100	120	70-135			
o-Terphenyl	59.5	50.0	119	70-135			

Lab Batch #: 738479

Sample: 315760-001 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	122	100	122	70-135			
o-Terphenyl .	60.9	50.0	122	70-135			

Lab Batch #: 738479

Sample: 315760-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	1	[D]				
1-Chlorooctane	113	100	113	70-135		
o-Terphenyl	63.0	50.0	126	70-135		

Lab Batch #: 738479

Sample: 315760-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY												
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags									
Analytes 1-Chlorooctane	131	100	131	70-135										
o-Terphenyl	77.6	50 0	155	70-135	**									

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 315760, **Project ID**: 2008-113

Lab Batch #: 738479 Sample: 315760-004 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY											
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags							
Analytes		(12)	[D]	, , , ,								
I-Chlorooctanc	132	100	132	70-135								
o-Terphenyl	64.5	50 0	129	70-135								

Lab Batch #: 738479 Sample: 315760-005 / SMP Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg Amount True Control **TPH By SW8015 Mod** Flags Found Amount Recovery Limits %R [A] [B] %R [D] **Analytes** 1-Chlorooctane 111 111 70-135 100 55.8 50.0 112 70-135 o-Terphenyl

Lab Batch #: 738479 Sample: 315760-006 / SMP Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg True Control Amount TPH By SW8015 Mod Found Amount Recovery Limits Flags %R %R B [A] [D] **Analytes** 1-Chlorooctane 112 100 112 70-135 70-135 o-Terphenyl 55.6 50.0 111

Lab Batch #: 738479 Sample: 315760-007 / SMP Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg Amount True Control TPH By SW8015 Mod Amount Recovery Limits Flags Found %R %R [B] [A] [D] **Analytes** 107 100 107 70-135 1-Chlorooctane 54.7 50.0 109 70-135 o-Terphenyl

Lab Batch #: 738479 Sample: 315760-008 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY												
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags									
Analytes			[D]											
1-Chlorooctane	109	100	109	70-135										
o-Terphenyl	59.0	50.0	118	70-135										

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 315760,

Project ID: 2008-113

118

70-135

Lab Batch #: 738479

Sample: 518217-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH By SW8015 Mod Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 124 100 124 70-135

59.2

Lab Batch #: 738479

o-Terphenyl

Sample: 518217-1-BLK / BLK

Batch: 1 Matrix: Solid

50.0

Units: mg/kg	SURROGATE RECOVERY STUDY												
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
Analytes			[D]										
1-Chlorooctane	116	100	116	70-135									
o-Terphenyl	58.8	50.0	118	70-135									

Lab Batch #: 738479

Sample: 518217-1-BSD / BSD

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY												
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags								
Analytes			[D]										
1-Chlorooctane	122	100	122	70-135									
o-Terphenyl	65.0	50.0	130	70-135									

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 315760

Analyst: ASA Date Prepared: 10/30/2008

Project ID: 2008-113 **Date Analyzed:** 10/30/2008

Lab Batch ID: 738706

Sample: 518351-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY														
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Analytes		[B]	[C]	[D]	(E)	Result [F]	[G]								
Benzene	ND	0.5000	0.4784	96	0.5	0.4682	94	2	70-130	35					
Toluene	ND	0.5000	0,4916	98	0.5	0.4755	95	3	70-130	35					
Ethylbenzene	ND	0.5000	0.4873	97	0.5	0.4575	92	6	71-129	35					
m,p-Xylenes	ND	1.000	1.100	110	1	1.023	102	7	70-135	35					
o-Xylene	ND	0.5000	0.5111	102	0.5	0.4732	95	8	71-133	35					

Analyst: ASA

Date Prepared: 10/27/2008

Date Analyzed: 10/28/2008

Lab Batch ID: 738479

Sample: 518217-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	K/BLANK S	SPIKE / E	BLANK S	SPIKE DUPL	ICATE :	RECOVI	ERY STUD	ΟΥ	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	849	85	1000	839	84	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	897	90	1000	881	88	2	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 315760

Project ID: 2008-113

Lab Batch ID: 738706

QC- Sample ID: 315760-006 S

Matrix: Soil Batch #:

Date Analyzed: 10/31/2008

Date Prepared: 10/30/2008

Analyst: ASA

Reporting Units: mg/kg

M	ATRIX SPIK	E / MATR	RIX SPIKE DUPLIC	ATE REC	OVERY S	STUDY		
	Spiked Sample	Spiked	Duplicate	Spiked		Control	Control	

BTEX by EPA 8021B Analytes	Parent Sample Spike Result Added [A] [B]		ded [C]		Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.5066	0.0923	18	0.5066	0.1567	31	53	70-130	35	XF
Toluene	ND	0.5066	0.2428	48	0.5066	0.2280	45	6	70-130	35	Х
Ethylbenzene	ND	0.5066	0 2900	57	0.5066	0.2664	53	7	71-129	35	Х
m,p-Xylenes	ND	1.013	0 9000	89	1.013	0 7311	72	21	70-135	35	
o-Xylene	ND	0.5066	0.4241	84	0.5066	0.3403	67	23	71-133	35	X

Lab Batch ID: 738479

QC- Sample ID: 315760-001 S

Batch #:

1 Matrix: Soil

Date Analyzed: 10/28/2008

Date Prepared: 10/27/2008

Analyst: ASA

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY														
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag				
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD					
C6-C12 Gasoline Range Hydrocarbons	ND	1020	813	80	1020	809	79	1	70-135	35					
C12-C28 Diesel Range Hydrocarbons	ND	1020	889	87	1020	885	87	0	70-135	35					

Sample Duplicate Recovery

Project Name: EK Queen Pearce 6"

Work Order #: 315760

Lab Batch #: 738311

Project ID: 2008-113

 Date Analyzed: 10/27/2008
 Date Prepared: 10/27/2008
 Analyst: BEV

 QC- Sample ID: 738311-1 D
 Batch #: 1
 Matrix: Soil

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: % **Percent Moisture** Parent Sample Control Sample Duplicate RPD Limits Result Flag %RPD Result [A][B] Analyte 7.28 7.28 Percent Moisture NC 20

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

2
9
Θ
5
Q.
7

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax. 432-563-1713

	Project Manager	Camilla Bryant													Pr	ojec	t Nar	ne. E	ΚQ	uee	n Pe	arc	6"					
	Company Name	Basin Environmenta	Service To	echnol	logies, LLC			_							_	Pr	ojeci	# 2	800	-113								
	Company Address	P 0 Box 301										_			_ 1	Proje	ect L	06 <u>L</u>	es C	ounty	, NA							
	City/State/Zip	Lovington, NM 88260	1														PO	#: <u>P</u>	AA -	DΒ	yan	<u> </u>						
	Telephone No	(575)605-7210				Fax No:		(505	5) 39	6-142	29				Repor	t For	rmat	[2	St	andar	ď			RRP		□ N	IPDE:	s
	Sampler Signature	C Buyar	<u> </u>			e-mail		çıb	rya	nt@)ba	sın-	con	sult	ng.com	_	_		_	- X-		e For						1
(lab	use only)															E			TCLP		allyz	Т		Τ		\top	72 hrs.	1
OR	DER#: 315	760						(Pre	serva	tion 8	. ≠ Of	Cont	ainers	Matrix	9		7	DIAL	+	\dashv	-+-	K.				33	L
		LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total# of Containers	Ke	HNO,	H SO,	NaOH	Na, c, C,	None Other (Specity)	DW - Drinking Water StStudy GW - Groundwater S-SolvSol NP-Non Potable Socylly Other	4181		Cattons (Ca Mg Nu K)	SAK / ESP / CEC	Metals As Ag Ba Cd Cr Pt Hg Se	Volatifies	Semivolation	RGI	NORW			RUSH TAT (Pre-Schedule) 24,	Standard TAT 4 DAY
0		-1 S/W			23-Oct-08	1600		1	X	\perp	\perp	L	\sqcup	4	SOIL	x	Ц	4	1		_	1	1	1	$\bot \downarrow$	-	4	X
0		-1 S/W		<u> </u>	23-Oct-08	1604			X	1	\downarrow	L	\sqcup	4	SOIL	X		_	<u> </u>	\sqcup	4	4	+	\bot	\sqcup	\vdash	+	×
0		-1 S/W	_	_	23-Oct-08	1611	-	_	X	_	-	L	$\vdash \vdash$	4	SOIL	X.	\sqcup	+	4	\vdash	4	_	4	+	Н	+	+	×
0		-2 S/W		<u> </u>	23-Oct-08	1620	-	_	X	_	┿	H	Н	4	SOIL	X	\vdash	+	+	1-1	4	-	+-	+	₩	-	┾	×
C		-1 S/W		L	23-Oct-08	1625	-	-+	X	+	+-		\sqcup	+	SOIL	X	\vdash	+	+-	\vdash	-	+	+-	+	╁┤	- 	+	X
_		-2 S/W	_	<u> </u>	23-Oct-08	1630	+	-+	×	+	┿	1	Н		SOIL	ļΧ	\vdash	+	+	\vdash	+		┿	+-	+	-+	+	X
0		-2 S/W		<u> </u>	23-Oct-08	1634	-	-	X	4	+	⊢	H	+	SOIL	X	-	4	+	+	+	+	+	+-	\vdash	├┼-	╀	X
10	<u>හි w</u>	-2 S/W		<u> </u>	23-Oct-08	1638	-	4	X	+	+	\vdash	╁	+	SOIL	X	Н	-	+	╀╌┤	+	+	+	╁.	╁┤	+	+-	X
-				<u> </u>			+	4	+	+-	┿	┾	-	+	├	H		+	┼	H	+		+	╁	+	+	+	\vdash
Plea	craf Instructions se run BTEX 8021B on atl										<u> </u>					i		Samp VOCs	de Co Free	y Cor ontain e of H	ers f leads	ntaci space		ــــــــــــــــــــــــــــــــــــــ	لـــا ،	8	 z z	\dashv
Relig	quisiped by quisiped out quisiped out	Date Da	108 14 108 17	27 ne 27	Received by Received by		,	<u> </u>	<u> </u>				1	o/z	1/07 /	Time Time	7	Custo Custo Samo	Ne Ha	conta eals of eals of end D roler/ irier? 4 1 4 ure Us	in co in co lelive Slant	ntain oler(red Rep JPS	s) ? DI	HL,	Fed	8 X X X X X X X X X X	N N N one S	- 1
	,			(1201	240	1	_	Z		-	_		ic/z	1/08/1	72	5	1 61110			A-11 F	100	р. 		_			_

Environmental Lab of Texas

Variance/ Corrective Action Re	port- Sample	a Log-Ir	ı		
Client Phins Basin Cho					
Date/Time 10 14 08 1727					
ab 10# 315740					
nitials <u>QL</u>					
Sample Receipt	Checklist			C	ient Initials
1 Temperature of container/ cooler?	(es)	No	4	° cl	ion maais
2 Shipping container in good condition?	(Yes)	No			
3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Pr	esent	
4 Custody Seals intact on sample bottles/ container?	(es)	No	Not Pr	esent	
5 Chain of Custody present?	Yes	No			
6 Sample instructions complete of Chain of Custody?	(Yes)	No			
7 Chain of Custody signed when relinquished/ received?	Yes	No			
8 Chain of Custody agrees with sample label(s)?	Yes	No	ID written or		
9 Container label(s) legible and intact?	Yes	No	Not App		
10 Sample matrix/ properties agree with Chain of Custody?	Yes	No			
11 Containers supplied by ELOT?	Yes	No			
12 Samples in proper container/ bottle?	Yes	No	See E	lelow	
13 Samples properly preserved?	Yes)	No	See E	elow	
14 Sample bottles intact?	Yes	No			
15 Preservations documented on Chain of Custody?	Yes	No			
16 Containers documented on Chain of Custody?	Xee ?	No	<u> </u>		i
17 Sufficient sample amount for indicated test(s)?	Yes	No	See E	elow	
18 All samples received within sufficient hold time?	(Yes)	No	See E	elow	
19 Subcontract of sample(s)?	Yes	No		olicable >	
20 VOC samples have zero headspace?	Yes	No	Not Ap	olicable	
Contact: Contacted by:	mentation		Date/ T	ime· _	
Regarding Corrective Action Taken:		~··			
Check all that Apply See attached e-mail/ fax Client understands and wou	ıld like to prod	ceed with	n analysis		
Client understands and wou Cooling process had begun			•		

Gracie Avaios

From: Camille J Bryant [cjbryant@basin-consulting com]

Sent: Wednesday, October 29, 2008 1.07 PM

To: Gracie Avalos

Subject: Re WO 315760 / EK Queen Pearce 6"

Please run samples 1, 4, 5, 6 and 7 for concentrations of BTEX 8021B.

Thank you, Camille Bryant

Project Manager Basin Consulting

---- Original Message --From: Gracie Avalos
To: cjbryant@basin-consulting.com
Sent: Wednesday, October 29, 2008 11:40 AM
Subject: WO 315760 / EK Queen Pearce 6°

Ms. Bryant,

Per your Chain of Custody (which has also been attached), you've requested for our lob to run BTEX 80218 on all samples below 100ppm TPH. I've attached the TPH results for directive on which samples you would like for us to go ahead with.

Many thanks, Gracie Avalos Project Assistant Xenco Labs - Odessa 432-563-1800 Office 432-4563-1713 Fax gracie.ayalos@xenco.com

CONFIDENTIALITY STATEMENT

This electronic message contains information from the XENCO Laboratories and is confidential or privileged. The information is intended to be for the use of the individual or entity named above. If you are not the intended recipient, be aware that any disclosure, copying, distribution or use of the contents of this message is prohibited. If you have received this electronic message in error, please notify us immediately by telephone

Please consider the environment before printing this email

10/31/2008

Analytical Report 322297

for

PLAINS ALL AMERICAN EH&S

Project Manager: Daniel Bryant

EK Queen Pearce 6" 2008-113

15-JAN-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers:
Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

15-JAN-09

Project Manager: **Daniel Bryant PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 322297

EK Queen Pearce 6"

Project Address: Lea County, NM

Daniel Bryant:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 322297. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 322297 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 322297

PLAINS ALL AMERICAN EH&S, Midland, TX

EK Queen Pearce 6"

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1 10'	S	Jan-06-09 10:00		322297-001
MW-1 30'	S	Jan-06-09 10:10		322297-002
MW-1 50'	S	Jan-06-09 10:30		322297-003
MW-1 70'	S	Jan-06-09 10:55		322297-004
MW-1 90'	S	Jan-06-09 11:20		322297-005
MW-1 110'	S	Jan-06-09 11:50		322297-006
MW-1 127'	S	Jan-06-09 12:35		322297-007
MW-2 10'	S	Jan-07-09 11:00		322297-008
MW-2 30'	S	Jan-07-09 11:10		322297-009
MW-2 50'	S	Jan-07-09 11:30		322297-010
MW-2 70'	S	Jan-07-09 11:50		322297-011
MW-2 95'	S	Jan-07-09 12:15		322297-012
MW-2 110'	S	Jan-07-09 12:40		322297-013
MW-2 120'	S	Jan-07-09 13:15		322297-014
MW-3 10'	S	Jan-08-09 09:30		322297-015
MW-3 35'	S	Jan-08-09 09:40		322297-016
MW-3 50'	S	Jan-08-09 09:55		322297-017
MW-3 70'	S	Jan-08-09 10:15		322297-018
MW-3 90'	S	Jan-08-09 10:40		322297-019
MW-3 110'	S	Jan-08-09 11:10		322297-020
MW-3 113'	S	Jan-08-09 11:50		322297-021
SB-5 10'	S	Jan-09-09 10:20		322297-022
SB-5 20'	S	Jan-09-09 10:25		322297-023
SB-5 30'	S	Jan-09-09 10:35		322297-024
SB-5 40'	S	Jan-09-09 10:45		322297-025
SB-5 50'	S	Jan-09-09 11:00		322297-026
SB-5 60'	S	Jan-09-09 11:20		322297-027

Certificate of Analysis Summary 322297 PLAINS ALL AMERICAN EH&S, Midland, TX

inelad

Project Name: EK Queen Pearce 6"

Contact: Daniel Bryant

Project Id: 2008-113

Project Location: Lea County, NM

Date Received in Lab: Tue Jan-13-09 10:36 am

Report Date: 15-JAN-09

								Project Mar	nager:	Brent Barron,	II		
	Lab Id:	322297-001		322297-002		322297-003		322297-004		322297-005		322297-006	
Aughora Bannarad	Field Id:	MW-1 10'		MW-1 30'		MW-1 5	0'	MW-1 70'		MW-1 90'		MW-1 110'	
Analysis Requested	Depth:												
Matrix:		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jan-06-09 10.00		Jan-06-09 10 10		Jan-06-09 10.30		Jan-06-09 10 55		Jan-06-09 11:20		Jan-06-09 11·50	
BTEX by EPA 8021B	Extracted:	Jan-13-09 13·15		Jan-13-09 13:15		Jan-13-09 13·15		Jan-13-09 13·15		Jan-13-09 13:15		Jan-13-09 13 15	
	Analyzed:	Jan-14-09 04·46		Jan-14-09 05:07		Jan-14-09 05·28		Jan-14-09 05·48		Jan-14-09 06:09		Jan-14-09 06·30	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0011
Toluene		ND 0 0021		ND 0 0021		ND 0.0020		ND 0 0020		ND	0 0021	ND	0 0021
Ethylbenzene		ND	0.0010	ND	0 0010	ND	0.0010	ND	0.0010	ND	0 0010	ND	0 0011
m,p-Xylenes		ND	0.0021	ND	0.0021	ND	0.0020	ND	0.0020	ND	0 0021	ND	0 0021
o-Xylene			0.0010		0.0010		0 0010	ND	0 0010	ND	0.0010	ND	0 0011
Total Xylenes		ND 0.0021		ND 0.0021		ND 0 0020		ND 0 0020		ND 0 0021		ND	0 0021
Total BTEX		ND 0.0010		ND 0.0010		ND 0 0010		ND 0.0010		ND 0 0010		ND	0 0011
Percent Moisture	Extracted:												
Analyzed:		Jan-13-09 17.00		Jan-13-09 17.00		Jan-13-09 17.00		Jan-13-09 17.00		Jan-13-09 17:00		Jan-13-09 17:00	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		3.56	1.00	2.43	1.00	1.18	1.00	1 42	1 00	2.84	1.00	6 79	1.00
TPH By SW8015 Mod	Extracted:	Jan-13-09 13·30		Jan-13-09 13·30		Jan-13-09 13·30		Jan-13-09 13·30		Jan-13-09 13 30		Jan-13-09 13 30	
	Analyzed:	Jan-13-09 21:50		Jan-13-09 22·15		Jan-13-09 22·40		Jan-13-09 23·05		Jan-13-09 23·30		Jan-13-09 23 55	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	156	ND	154	ND	15.2	ND	15.2	ND	15.4	ND	161
C12-C28 Diesel Range Hydrocarbons		ND	156	ND	154	ND	152	ND	15.2	ND	15.4	360	161
C28-C35 Oil Range Hydrocarbons		ND	15.6	ND	154	ND	15.2	ND	152	ND	15.4	ND	16.1
Total TPH		ND	156	ND	154	ND	15.2	ND	15.2	ND	15.4	36	161

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

nelad

Project Id: 2008-113

Project Location: Lea County, NM

Contact: Daniel Bryant

Project Name: EK Queen Pearce 6"

Date Received in Lab: Tue Jan-13-09 10:36 am
Report Date: 15-JAN-09

Project Manager: Brent Barron II

								Project Mai	iager:	Brent Barron,	11		
	Lab Id:	322297-0	07	322297-0	322297-008 322297-009		09	322297-010		322297-011		322297-0	12
Analysis Paguested	Field Id:	MW-1 12	27'	MW-2 1	0'	MW-2 3	0'	MW-2 5	0'	MW-2 7	0'	MW-2 9	5'
Analysis Requested	Depth:												
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Jan-06-09 1	2 35	Jan-07-09 1	1:00	Jan-07-09 1	1.10	Jan-07-09 l	1.30	Jan-07-09 1	1.50	Jan-07-09 1	2.15
TPH By SW8015 Mod	Extracted:	Jan-13-09 1	3 30	Jan-14-09 1	4·30	Jan-14-09 1	4·30	Jan-14-09 1	4.30	Jan-14-09 1	4·30	Jan-14-09 1	4 30
11112, 5, 10015 1,100	Analyzed:	Jan-14-09 00 20		Jan-14-09 1	6:24	Jan-14-09 1	6.46	Jan-14-09 1	7.08	Jan-14-09 1	7·31	Jan-14-09 1	7.54
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	16.2	ND	15.3	ND	153	ND	152	ND	15.3	ND	160
C12-C28 Diesel Range Hydrocarbons		177	16.2	ND	15.3	ND	153	ND	152	ND	15.3	ND	16.0
C28-C35 Oil Range Hydrocarbons		ND	16.2	ND	15.3	ND	15.3	ND	152	ND	153	ND	16.0
Total TPH		17.7	16.2	ND	153	ND	15.3	ND	152	ND	15.3	ND	16.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warrarnty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Project Id: 2008-113

Contact: Daniel Bryant

Project Location: Lea County, NM

Project Name: EK Queen Pearce 6"

Date Received in Lab: Tue Jan-13-09 10.36 am Report Date: 15-JAN-09

Project Manager: Brent Barron, Il

				1 Toject Manager.	Dient Builen, 11							
Lab Id:	322297-007	322297-008	322297-009	322297-010	322297-011	322297-012						
Field Id:	MW-1 127'	MW-2 10'	MW-2 30'	MW-2 50'	MW-2 70'	MW-2 95'						
Depth:												
Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL						
Sampled:	Jan-06-09 12·35	Jan-07-09 11·00	Jan-07-09 11:10	Jan-07-09 11:30	Jan-07-09 11:50	Jan-07-09 12·15						
Extracted:	Jan-13-09 13·15	Jan-13-09 13.15	Jan-13-09 13:15	Jan-13-09 13:15	Jan-13-09 13.15	Jan-13-09 13 15						
Analyzed:	Jan-14-09 06·50	Jan-14-09 07.11	Jan-14-09 07:31	Jan-14-09 07.52	Jan-14-09 08.54	Jan-14-09 09·15						
Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL						
	ND 0 0011	ND 0.0010	ND 0.0010	ND 0 0010	ND 0 0010	ND 0 0011						
	ND 0 0022	ND 0.0020	ND 0.0020	ND 0 0020	ND 0 0020	ND 0.0021						
	ND 0.0011	ND 0.0010	ND 0.0010	ND 0 0010	ND 0.0010	ND 0.0011						
	ND 0 0022	ND 0.0020	ND 0.0020	ND 0 0020	ND 0 0020	ND 0.0021						
	ND 0.0011	ND 0 0010	ND 0.0010	ND 0 0010	ND 0.0010	ND 0 0011						
	ND 0.0022	ND 0 0020	ND 0.0020	ND 0 0020	ND 0.0020	ND 0.0021						
	ND 0 0011	ND 0 0010	ND 0.0010	ND 0 0010	ND 0 0010	ND 0.0011						
Extracted:												
Analyzed:	Jan-13-09 17:00	Jan-13-09 17.00	Jan-13-09 17 00	Jan-13-09 17:00	Jan-13-09 17:00	Jan-13-09 17·00						
Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL						
	7 14 1 00	2.22 1.00	1 91 1.00	1.13 1 00	1.91 1.00	6.10 1.00						
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: MW-1 127' Depth: Matrix: SOIL Sampled: Jan-06-09 12·35 Extracted: Jan-13-09 13·15 Analyzed: Jan-14-09 06·50 Units/RL: mg/kg RL ND 0 0011 ND 0 0022 ND 0.0011 ND 0.0021 ND 0.0022 ND 0.0011 Extracted: Analyzed: Jan-13-09 17:00 Units/RL: % RL	Field Id: MW-1 127' MW-2 10' Depth: SOIL SOIL Sampled: Jan-06-09 12·35 Jan-07-09 11·00 Extracted: Jan-13-09 13·15 Jan-13-09 13·15 Analyzed: Jan-14-09 06·50 Jan-14-09 07·11 Units/RL: mg/kg RL mg/kg RL ND 0.0011 ND 0.0010 ND 0.0022 ND 0.0020 ND 0.0011 ND 0.0010 ND 0.0021 ND 0.0020 ND 0.0022 ND 0.0020 ND 0.0022 ND 0.0020 ND 0.0011 ND 0.0010 ND 0.0022 ND 0.0020 ND 0.0011 ND 0.0010 Extracted: Analyzed: Jan-13-09 17:00 Jan-13-09 17:00 Units/RL: % RL % RL	Field Id: MW-1 127' MW-2 10' MW-2 30' Depth: SOIL SOIL SOIL SOIL Sampled: Jan-06-09 12:35 Jan-07-09 11:00 Jan-07-09 11:10 Extracted: Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Analyzed: Jan-14-09 06:50 Jan-14-09 07:11 Jan-14-09 07:31 Units/RL: mg/kg RL mg/kg RL mg/kg RL ND 0 0011 ND 0.0010 ND 0.0010 ND 0 0022 ND 0.0020 ND 0.0020 ND 0 0011 ND 0.0010 ND 0.0010 ND 0 0022 ND 0.0020 ND 0.0020 ND 0 0011 ND 0.0010 ND 0.0010 ND 0 0022 ND 0 0020 ND 0.0020 ND 0 0011 ND 0 0010 ND 0.0010 ND 0 0011 ND 0 0010 ND	Lab Id: 322297-007 322297-008 322297-009 322297-010 Field Id: MW-1 127' MW-2 10' MW-2 30' MW-2 50' Depth: MW-2 50' Matrix: SOIL SOIL <th <="" colspan="6" th=""><th>Field Id: MW-1 127' MW-2 10' MW-2 30' MW-2 50' MW-2 70' Matrix: SOIL Jan-07-09 11:50 Jan-07-09 11:50 Jan-07-09 11:50 Jan-07-09 11:50 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-14-09 07:31 Jan-14-09 07:52 Jan-14-09 08:54 Mm/kg RL mg/kg RL</th></th>	<th>Field Id: MW-1 127' MW-2 10' MW-2 30' MW-2 50' MW-2 70' Matrix: SOIL Jan-07-09 11:50 Jan-07-09 11:50 Jan-07-09 11:50 Jan-07-09 11:50 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-14-09 07:31 Jan-14-09 07:52 Jan-14-09 08:54 Mm/kg RL mg/kg RL</th>						Field Id: MW-1 127' MW-2 10' MW-2 30' MW-2 50' MW-2 70' Matrix: SOIL Jan-07-09 11:50 Jan-07-09 11:50 Jan-07-09 11:50 Jan-07-09 11:50 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-13-09 13:15 Jan-14-09 07:31 Jan-14-09 07:52 Jan-14-09 08:54 Mm/kg RL mg/kg RL

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Project Name: EK Queen Pearce 6"

nelad

Project Id: 2008-113

Contact: Daniel Bryant

Project Location: Lea County, NM

Date Received in Lab: Tue Jan-13-09 10:36 am

Report Date: 15-JAN-09
Project Manager: Brent Barron II

								Project Mai	nager:	Brent Barron,	. 11		
	Lab Id:	322297-0	13	322297-0	14	322297-015		322297-0	016	322297-0	017	322297-	-018
Analysis Paguastad	Field Id:	MW-2 11	10'	MW-2 12	20'	MW-3 1	0'	MW-3 3	5'	MW-3 5	50'	MW-3	70'
Analysis Requested	Depth:								:				
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	_
	Sampled:	Jan-07-09 1	2,40	Jan-07-09 1	3.15	Jan-08-09 (9:30	Jan-08-09 (9.40	Jan-08-09	09·55	Jan-08-09	10.15
BTEX by EPA 8021B	Extracted:	Jan-13-09 I	13·15	Jan-13-09 1	3.15	Jan-13-09	3.15	Jan-13-09	13.15	Jan-13-09	13 15	Jan-13-09	13 15
	Analyzed:	Jan-14-09 (99·36	Jan-14-09 0	9.57	Jan-14-09	0:39	Jan-14-09	11.00	Jan-14-09	11 21	Jan-14-09	11.43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0 0010	ND	0.0010	ND	0.0011	ND	0 0010	ND	0 0010	ND	0 0010
Toluene		ND	0 0021	ND	0.0021	ND	0.0021	ND	0 0021	ND	0 0021	ND	0.0021
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0 0011	ND	0 0010	ND	0 0010	ND	0.0010
m,p-Xylenes		ND	0.0021	ND	0 0021	ND	0.0021	ND	0 0021	ND	0 0021	ND	0.0021
o-Xylene		ND	0.0010	, ND	0 0010	ND	0.0011	ND	0 0010	ND	0.0010	ND	0 0010
Total Xylenes		ND	0 0021	ND	0 0021	ND	0.0021	ND	0 0021	ND	0.0021	ND	0 0021
Total BTEX		ND	0 0010	ND	0 0010	ND	0.0011	ND	0 0010	ND	0.0010	ND	0 0010
Percent Moisture	Extracted:												
	Analyzed:	Jan-13-09 I	17.00	Jan-13-09 17 00		Jan-13-09 17:00		Jan-13-09 17:00		Jan-13-09	17:00	Jan-13-09	17 00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		3.74	1 00	4 61	1.00	4.90	1.00	2 89	1.00	3 75	1 00	3 73	1.00
TPH By SW8015 Mod	Extracted:	Jan-14-09 I	14·30	Jan-14-09 1	4.30	Jan-14-09 1	4.30	Jan-14-09	14.30	Jan-14-09	14 30	Jan-14-09	14 30
,	Analyzed:	Jan-14-09 1	18·17	Jan-14-09 1	9.03	Jan-14-09 1	9:27	Jan-14-09	19:50	Jan-14-09	20.13	Jan-14-09	20 37
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	156	ND	15.7	ND	158	ND	154	ND	156	ND	156
C12-C28 Diesel Range Hydrocarbons		ND	156	ND	15.7	ND	158	ND	154	ND	156	ND	156
C28-C35 Oil Range Hydrocarbons		ND	156	ND	15.7	ND	158	ND	15.4	ND	156	ND	156
Total TPH		ND	15.6	ND	157	ND	15.8	ND	15.4	ND	156	ND	15.6

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

nelad

Project Id: 2008-113

Contact: Daniel Bryant

Project Location: Lea County, NM

Project Name: EK Queen Pearce 6"

Date Received in Lab: Tue Jan-13-09 10:36 am

Report Date: 15-JAN-09
Project Manager: Brent Barron, II

								I I Oject III	145	Diem Danon,	**		
	Lab Id:	322297-0	19	322297-0	20	322297-0	21	322297-0	22	322297-0	23	322297-0	24
Analysis Danuartad	Field Id:	MW-3 9	0'	MW-3 110' MW-3 11		13'	SB-5 10'		SB-5 20'		SB-5 30)'	
Analysis Requested	Depth:							•					
	Matrix:	SOIL		SOIL		SOIL.		SOIL		SOIL		SOIL	
	Sampled:	Jan-08-09 1	0:40	Jan-08-09 1	1.10	Jan-08-09 1	1:50	Jan-09-09 1	0 20	Jan-09-09 l	0.25	Jan-09-09	10.35
BTEX by EPA 8021B	Extracted:	Jan-13-09 1	13:15	Jan-13-09 1	3.15	Jan-13-09 1	3:00	Jan-13-09 1	3.00	Jan-13-09	3.00	Jan-13-09	13 00
Analyz		Jan-14-09 1	12:04	Jan-14-09 1	2 25	Jan-13-09 2	2:07	Jan-13-09 2	2.28	Jan-13-09 2	22.49	Jan-13-09 2	23-11
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0 0010	ND	0 0010	ND	0.0010	ND	0.0011	ND	0 0010	ND	0 0011
Toluene		ND	0 0021	ND	0 0021	ND	0.0021	ND	0 0022	ND	0.0021	ND	0.0021
Ethylbenzene		ND	0 0010	ND	0 0010	ND	0.0010	ND	0 0011	ND	0.0010	ND	0.0011
m,p-Xylenes		ND	0.0021	ND	0.0021	ND	0 0021	ND	0 0022	ND	0.0021	ND	0.0021
o-Xylene		ND	0.0010	ND	0 0010	ND	0.0010	ND	0 0011	ND	0 0010	ND	0 0011
Total Xylenes		ND	0.0021	ND	0.0021	ND	0.0021	ND	0 0022	ND	0 0021	ND	0 0021
Total BTEX		ND	0 0010	ND	0.0010	ND	0.0010	ND	0 0011	ND	0 0010	ND	0.0011
Percent Moisture	Extracted:												
	Analyzed:	Jan-13-09 1	17.00	Jan-13-09 17:00		Jan-13-09 17:00		Jan-13-09 17 00		Jan-13-09	7 00	Jan-13-09	17.00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		4 33	1.00	3 09	1 00	3 61	1.00	9.75	1.00	4 67	1.00	5.99	1 00
TPH By SW8015 Mod	Extracted:	Jan-14-09 l	14·30	Jan-14-09 1	4:30	Jan-14-09 1	4:30	Jan-14-09 1	4·30	Jan-14-09	4.30	Jan-14-09	15 00
Till by Swaats Mad	Analyzed:	Jan-14-09 2	21.00	Jan-14-09 2	21:23	Jan-14-09 21.46		Jan-14-09 22:10		Jan-14-09 2	22 33	Jan-15-09 (02.47
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.7	ND	15.5	ND	15.6	ND	166	ND	15.7	ND	160
C12-C28 Diesel Range Hydrocarbons		ND	15.7	ND	15.5	ND	156	ND	166	ND	157	ND	160
C28-C35 Oil Range Hydrocarbons		ND	15.7	ND	15.5	ND	156	ND	166	ND	157	ND	160
Total TPH		ND	15.7	ND	15.5	ND	156	ND	16.6	ND	157	ND	16.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Project Id: 2008-113

Contact: Daniel Bryant

Project Name: EK Queen Pearce 6"

Project Location: Lea County, NM

Date Received in Lab: Tue Jan-13-09 10:36 am

Report Date: 15-JAN-09
Project Manager: Brent Barron, II

	,		,		rroject Manager:	Dient Barron, II	·
	Lab Id:	322297-025	322297-026	322297-027			
Analysis Requested	Field Id:	SB-5 40'	SB-5 50'	SB-5 60'			
Anutysis Requesteu	Depth:						
	Matrix:	SOIL	SOIL	SOIL			
	Sampled:	Jan-09-09 10:45	Jan-09-09 11 00	Jan-09-09 11,20			
BTEX by EPA 8021B	Extracted:	Jan-13-09 13:00	Jan-13-09 13·00	Jan-13-09 13:00			
Dilling Dill 00212	Analyzed:	Jan-13-09 23·32	Jan-13-09 23:53	Jan-14-09 00.14			
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL			
Benzene		ND 0 0010	ND 0.0011	ND 0.0011			
Toluene		ND 0 0021	ND 0.0021	ND 0.0022			
Ethylbenzene		ND 0 0010	ND 0.0011	ND 0.0011			
m,p-Xylenes		ND 0 0021	ND 0.0021	ND 0.0022			
o-Xylene		ND 0.0010	ND 0.0011	ND 0 0011			
Total Xylenes		ND 0.0021	ND 0.0021	ND 0 0022			
Total BTEX		ND 0.0010	ND 0 0011	ND 0 0011			
Percent Moisture	Extracted:						
1 01 01 11 11 11 11 11 11 11 11 11 11 11	Analyzed:	Jan-13-09 17:00	Jan-13-09 17.00	Jan-13-09 17.00			
	Units/RL:	% RL	% RL	% RL			
Percent Moisture		3 79 1 00	5 63 1 00	8 76 1 00			
TPH By SW8015 Mod	Extracted:	Jan-14-09 15.00	Jan-14-09 15:00	Jan-14-09 15:00			
1111 by 5 11 00 15 11 10 u	Analyzed:	Jan-15-09 03:10	Jan-15-09 03:33	Jan-15-09 03·56			
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons		ND 156	ND 15.9	ND 164			
C12-C28 Diesel Range Hydrocarbons		ND 15.6	ND 15.9	ND 16.4			
C28-C35 Oil Range Hydrocarbons		ND 15.6	ND 15.9	ND 16.4			
Total TPH		ND 15.6	ND 15.9	ND 16.4			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746367

Sample: 322296-001 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
Analytes			{D}							
1,4-Difluorobenzene	0.0274	0.0300	91	80-120						
4-Bromofluorobenzene	0.0310	0.0300	103	80-120						

Lab Batch #: 746367

Sample: 322296-001 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes	(1	(=)	[D]						
1,4-Dıfluorobenzene	0.0273	0.0300	91	80-120					
4-Bromofluorobenzene	0 0309	0.0300	103	80-120					

Lab Batch #: 746367

Sample: 322297-021 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0304	0.0300	101	80-120				
4-Bromofluorobenzene	0.0315	0.0300	105	80-120				

Lab Batch #: 746367

Sample: 322297-022 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Dıfluorobenzene	0.0309	0 0300	103	80-120				
4-Bromofluorobenzene	0.0336	0 0300	112	80-120				

Lab Batch #: 746367

Sample: 322297-023 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Dıfluorobenzene	0.0308	0.0300	103	80-120					
4-Bromofluorobenzene	0.0324	0 0300	108	80-120					

^{**} Surrogates outside limits, data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297, **Project ID**: 2008-113

Lab Batch #: 746367 Sample: 322297-024 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes		',	[D]						
1,4-Difluorobenzene	0.0316	0.0300	105	80-120					
4-Bromofluorobenzene	0.0323	0.0300	108	80-120					

Lab Batch #: 746367 Sample: 322297-025 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount Control BTEX by EPA 8021B Recovery Limits Flags Amount Found [A] [B] %R %R [D] **Analytes** 1,4-Dıfluorobenzene 0.0311 104 0.0300 80-120 4-Bromofluorobenzene 0.0325 0.0300 108 80-120

Units: mg/kg SURROGATE RECOVERY STUDY Amount Control BTEX by EPA 8021B Limits Flags Found Amount Recovery [B] %R %R [A] [D]**Analytes** 1,4-Difluorobenzene 0.0313 0.0300 104 80-120 0.0318 0.0300 106 80-120 4-Bromofluorobenzene

Lab Batch #: 746367 **Sample:** 322297-027 / SMP **Batch:** 1 **Matrix:** Soil

SURROGATE RECOVERY STUDY Units: mg/kg True Control Amount BTEX by EPA 8021B Recovery Limits Flags Found Amount [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0312 0.0300 104 80-120 0.0322 0.0300 107 80-120 4-Bromofluorobenzene

Lab Batch #: 746367 Sample: 522852-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg	mg/kg SURROGATE RECOVERY STUD				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Dıfluorobenzene	0.0292	0.0300	97	80-120	
4-Bromofluorobenzene	0.0293	0.0300	98	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746367

Sample: 522852-1-BLK / BLK

1 Matrix: Solid Batch:

Units: mg/kg

SUPPOCATE DECOVERY STUDY

omes. mg/kg	SCRROGATE RECOVERT STODI				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	[]	(-)	{D		
1,4-Dıfluorobenzene	0.0315	0.0300	105	80-120	
4-Bromofluorobenzene	0.0331	0.0300	110	80-120	

Lab Batch #: 746367

Sample: 522852-1-BSD / BSD

Batch: 1 Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	11	121	[D]	, , , ,		
1,4-Dıfluorobenzene	0.0293	0.0300	98	80-120		
4-Bromofluorobenzene	0.0295	0.0300	98	80-120		

Lab Batch #: 746371

Sample: 322297-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	''		[D]			
1,4-Dıfluorobenzene	0.0308	0.0300	103	80-120		
4-Bromofluorobenzene	0.0308	0.0300	103	80-120		

Lab Batch #: 746371

Sample: 322297-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	123	[2]	[D]	/•••			
1,4-Difluorobenzene	0.0308	0.0300	103	80-120			
4-Bromofluorobenzene	0.0311	0.0300	104	80-120			

Lab Batch #: 746371

Sample: 322297-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		, ,	[D]		
1,4-Dıfluorobenzene	0.0307	0.0300	102	80-120	
4-Bromofluorobenzene	0.0308	0.0300	103	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

102

80-120

Lab Batch #: 746371

Sample: 322297-004 / SMP

Batch: Matrix: Soil

Units: mg/kg

SURROGATE RECOVERY STUDY Amount Control BTEX by EPA 8021B Recovery Limits Flags Found Amount [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0307 0.0300 102 80-120

0.0306

Lab Batch #: 746371

4-Bromofluorobenzene

Sample: 322297-005 / SMP

0.0300 1 Matrix: Soil Batch:

TT .. *4 --

Units: mg/kg SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		, ,	[D]		
1,4-Difluorobenzene	0.0305	0.0300	102	80-120	
4-Bromofluorobenzene	0.0309	0.0300	103	80-120	

Lab Batch #: 746371

Sample: 322297-006 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes			[0]		
1,4-Difluorobenzene	0.0305	0.0300	102	80-120	
4-Bromofluorobenzene	0.0310	0.0300	103	80-120	

Lab Batch #: 746371

Sample: 322297-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg SURROGATE RECOVERY ST				STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R {D]	Control Limits %R	Flags
Analytes			(10)		
1,4-Difluorobenzene	0.0306	0.0300	102	80-120	
4-Bromofluorobenzene	0 0306	0.0300	102	80-120	

Lab Batch #: 746371

Sample: 322297-008 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0305	0.0300	102	80-120		
4-Bromofluorobenzene	0.0308	0.0300	103	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746371

Sample: 322297-009 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0305	0.0300	102	80-120		
4-Bromofluorobenzene	0.0306	0 0300	102	80-120		

Lab Batch #: 746371

Sample: 322297-010 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0309	0.0300	103	80-120		
4-Bromofluorobenzene	0.0302	0.0300	101	80-120		

Lab Batch #: 746371

Sample: 322297-011 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	Ì		[D]			
1,4-Dıfluorobenzene	0.0306	0.0300	102	80-120		
4-Bromofluorobenzene	0 0308	0.0300	103	80-120		

Lab Batch #: 746371

Sample: 322297-012 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			{ D]				
1,4-Dıfluorobenzene	0.0303	0.0300	101	80-120			
4-Bromofluorobenzene	0.0312	0.0300	104	80-120			

Lab Batch #: 746371

Sample: 322297-013 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0310	0.0300	103	80-120	***************************************	
4-Bromofluorobenzene	0.0307	0 0300	102	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297, **Project ID:** 2008-113

Lab Batch #: 746371 Sample: 322297-014/SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		[D]				
1,4-Difluorobenzene	0.0306	0.0300	102	80-120		
4-Bromofluorobenzene	0.0316	0.0300	105	80-120		

Lab Batch #: 746371 Sample: 322297-015 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount True Control Found Recovery Limits Flags Amount %R %R [A] [B] [D] **Analytes** 1,4-Difluorobenzene 0.0304 101 0.0300 80-120 4-Bromofluorobenzene 0.0318 106 0.0300 80-120

Lab Batch #: 746371 Sample: 322297-015 S/MS Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount True Control Found Amount Recovery Limits Flags %R [A] [B] %R [D]**Analytes** 1.4-Difluorobenzene 0.0269 0.0300 90 80-120 4-Bromofluorobenzene 0.0312 0.0300 104 80-120

Lab Batch #: 746371 Sample: 322297-015 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount True Control Found Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0270 0.0300 90 80-120 4-Bromofluorobenzene 0.0321 0.0300 107 80-120

Lab Batch #: 746371 Sample: 322297-016 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount BTEX by EPA 8021B True Control Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0309 0.0300 103 80-120 4-Bromofluorobenzene 0.0323 0.0300 108 80-120

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746371

Sample: 322297-017 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			ושו			
1,4-Difluorobenzene	0.0306	0.0300	102	80-120		
4-Bromofluorobenzene	0.0322	0.0300	107	80-120		

Lab Batch #: 746371

Sample: 322297-018 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0308	0.0300	103	80-120		
4-Bromofluorobenzene	0.0326	0 0300	109	80-120		

Lab Batch #: 746371

Sample: 322297-019 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0307	0,0300	102	80-120		
4-Bromofluorobenzene	0.0328	0 0300	109	80-120		

Lab Batch #: 746371

Sample: 322297-020 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0308	0.0300	103	80-120		
4-Bromofluorobenzene	0.0329	0 0300	110	80-120		

Lab Batch #: 746371

Sample: 522855-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0 0277	0.0300	92	80-120			
4-Bromofluorobenzene	0.0275	0.0300	92	80-120			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746371

Sample: 522855-1-BLK / BLK

1 Matrix: Solid Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0313	0.0300	104	80-120		
4-Bromofluorobenzene	0.0303	0.0300	101	80-120		

Lab Batch #: 746371

Sample: 522855-1-BSD / BSD

Batch: | Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	11-1	(2)	[D]	,,,,,		
1,4-Difluorobenzene	0.0291	0.0300	97	80-120		
4-Bromofluorobenzene	0.0278	0.0300	93	80-120		

Lab Batch #: 746422

Sample: 322296-001 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	114	100	114	70-135		
o-Terphenyl	48.9	50.0	98	70-135		

Lab Batch #: 746422

Sample: 322296-001 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	113	100	113	70-135		
o-Terphenyl	48.4	50.0	97	70-135	•	

Lab Batch #: 746422

Sample: 322297-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
I-Chlorooctane	100	100		70.135		
1-Ciliotooctane	100	100	100	70-135		
o-Terphenyl	54.5	50.0	109	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746422

Sample: 322297-002 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	1/21	[2]	[D]	/•			
1-Chlorooctane	96 8	100	97	70-135			
o-Terphenyl	51.4	50.0	103	70-135			

Lab Batch #: 746422

Sample: 322297-003 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	St	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	97.6	100	98	70-135		
o-Terphenyl	51.5	50.0	103	70-135		

Lab Batch #: 746422

Sample: 322297-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	98.8	100	99	70-135		
o-Terphenyl	52.4	50 0	105	70-135		

Lab Batch #: 746422

6422

Sample: 322297-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	99.0	100	99	70-135		
o-Terphenyl	53.0	50.0	106	70-135		

Lab Batch #: 746422

46422

Sample: 322297-006 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes			[0]		
1-Chlorooctane	99.3	100	99	70-135	
o-Terphenyl	53.7	50.0	107	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746422

Sample: 322297-007 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	93.5	100	94	70-135	11.000.00		
o-Terphenyl	50.6	50.0	101	70-135			

Lab Batch #: 746422

Sample: 522884-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	118	100	118	70-135			
o-Terphenyl	51.6	50.0	103	70-135			

Lab Batch #: 746422

Sample: 522884-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	' '		[D]			
1-Chlorooctane	98.4	100	98	70-135		
o-Terphenyl	54.6	50.0	109	70-135		

Lab Batch #: 746422

Sample: 522884-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	1.51	121	[D]	7411		
1-Chlorooctane	117	100	117	70-135		
o-Terphenyl	52.5	50.0	105	70-135		

Lab Batch #: 746545

16545

Sample: 322297-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	, ,	, ,	[D]		
I-Chlorooctane	108	100	108	70-135	
o-Terphenyl	54.6	50.0	109	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746545

Sample: 322297-009 / SMP

Matrix: Soil Batch: 1

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	(2-2)	(2)	[D]			
1-Chlorooctane	106	100	106	70-135		
o-Terphenyl	53.5	50.0	107	70-135		

Lab Batch #: 746545

Sample: 322297-010 / SMP

Matrix: Soil Batch: 1

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	104	100	104	70-135		
o-Terphenyl	51.7	50 0	103	70-135		

Lab Batch #: 746545

Sample: 322297-011 / SMP

Batch: 1 Matrix: Soil

SUDDOCATE DECOVEDY STUDY

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	103	100	103	70-135		
o-Terphenyl	51.6	50.0	103	70-135		

Lab Batch #: 746545

Sample: 322297-012 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]	/ / /			
1-Chlorooctane	104	100	104	70-135			
o-Terphenyl	52.7	50.0	105	70-135			

Lab Batch #: 746545

Sample: 322297-013 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
I-Chlorooctane	106	100	106	70-135		
o-Terphenyl	53.8	50.0	108	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery $\{D\} = 100 * A / B$

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297, Project ID: 2008-113

Lab Batch #: 746545 Sample: 322297-014 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
I-Chlorooctane	113	100	113	70-135		
o-Terphenyl	56.6	50.0	113	70-135		

Lab Batch #: 746545 Sample: 322297-015 / SMP Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY True Control Amount **TPH By SW8015 Mod** Found Amount Recovery Limits Flags %R %R [B] [A] [D]Analytes 1-Chlorooctane 99.6 100 70-135 100 o-Terphenyl 50.8 50.0 102 70-135

Lab Batch #: 746545 Sample: 322297-015 S/MS Batch: 1 Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH By SW8015 Mod Recovery Limits Flags Found Amount %R %R [B] [D]**Analytes** 1-Chlorooctane 119 100 119 70-135 o-Terphenyl 56.9 50.0 114 70-135

Lab Batch #: 746545 Sample: 322297-015 SD / MSD Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg TPH By SW8015 Mod Limits Found Amount Recovery Flags [A] [B] %R %R [**D**] Analytes 1-Chlorooctane 121 100 121 70-135 o-Terphenyl 57.9 50.0 116 70-135

Lab Batch #: 746545 Sample: 322297-016 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	99.8	100	100	70-135		
o-Terphenyl	50.4	50.0	101	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746545

Sample: 322297-017 / SMP

Batch: Matrix: Soil

Units: mg/kg

SURROGATE RECOVERY STUDY

Serrodate Recovered			JIODI		
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		1-1	[D]		
1-Chlorooctane	102	100	102	70-135	
o-Terphenyl	51.7	50.0	103	70-135	

Lab Batch #: 746545

Sample: 322297-018 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1-Chlorooctane	102	100	102	70-135		
o-Terphenyl	51 8	50.0	104	70-135		

Lab Batch #: 746545

Sample: 322297-019 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
I-Chlorooctanc	99.4	100	99	70-135		
o-Terphenyl	50.6	50.0	101	70-135		

Lab Batch #: 746545

Sample: 322297-020 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			[5]			
1-Chlorooctane	102	100	102	70-135		
o-Terphenyl	51.7	50.0	103	70-135		

Lab Batch #: 746545

Sample: 322297-021 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	104	100	104	70-135			
o-Terphenyl	52.6	50.0	105	70-135			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746545

Sample: 322297-022 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	101	100	101	70-135			
o-Terphenyl	51.4	50.0	103	70-135	***		

Lab Batch #: 746545

Sample: 322297-023 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	11	(-1	[D]				
1-Chlorogetane	100	100	100	70-135			
o-Terphenyl	51.1	50.0	102	70-135			

Lab Batch #: 746545

Sample: 522939-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			[15]			
1-Chlorooctane	128	100	128	70-135		
o-Terphenyl	60.6	50.0	121	70-135		

Lab Batch #: 746545

Sample: 522939-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	108	100	108	70-135		
o-Terphenyl	56.0	50.0	112	70-135		

Lab Batch #: 746545

Sample: 522939-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	125	100	125	70-135		
o-Terphenyl	58.5	50 0	117	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746564

Sample: 322297-024 / SMP

Batch: Matrix: Soil

Units: mg/kg

SURROGATE RECOVERY STUDY Control

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	104	100	104	70-135	
o-Terphenyl	52 0	50.0	104	70-135	

Lab Batch #: 746564

Sample: 322297-025 / SMP

1 Matrix: Soil Batch:

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	103	100	103	70-135			
o-Terphenyl	51.5	50.0	103	70-135			

Lab Batch #: 746564

Sample: 322297-026 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	104	100	104	70-135		
o-Terphenyl	52.4	50.0	105	70-135	,, ,	

Lab Batch #: 746564

Sample: 322297-027 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	109	100	109	70-135			
o-Terphenyl	53.5	50.0	107	70-135			

Lab Batch #: 746564

Sample: 322381-002 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	127	100	127	70-135		
o-Terphenyl	60.0	50.0	120	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: EK Queen Pearce 6"

Work Orders: 322297,

Project ID: 2008-113

Lab Batch #: 746564

Sample: 322381-002 SD / MSD

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	123	100	123	70-135		
o-Terphenyl	63.0	50.0	126	70-135		

Lab Batch #: 746564

Sample: 522946-1-BKS / BKS

Matrix: Solid Batch: 1

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		,-,	[D]			
I-Chlorooctane	120	100	120	70-135		
o-Terphenyl	57.4	50.0	115	70-135		

Lab Batch #: 746564

Sample: 522946-1-BLK / BLK

Batch: 1 Matrix: Solid

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	101	100	101	70-135	
o-Terphenyl	50.8	50.0	102	70-135	

Lab Batch #: 746564

Sample: 522946-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes 1-Chlorooctane	119	100	119	70-135	
o-Terphenyl	62.9	50.0	126	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution Surrogate Recovery $\{D\} = 100 * A / B$

BS / BSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 322297 Analyst: ASA

Date Prepared: 01/13/2009

Project ID: 2008-113 Date Analyzed: 01/13/2009

Lab Batch ID: 746367

Sample: 522852-1-BKS

Units: mg/kg

Batch #: 1

Matrix: Solid

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.0988	99	0.1	0.0978	98	1	70-130	35	
Toluenc	ND	0.1000	0.0965	97	0.1	0.0958	96	1	70-130	35	
Ethylbenzene	ND	0.1000	0.1028	103	0.1	0.1022	102	1	71-129	35	"
m,p-Xylenes	ND	0.2000	0.2038	102	0.2	0.2025	101	1	70-135	35	
o-Xylene	ND	0.1000	0.0985	99	0.1	0.0978	98	1	71-133	35	

Date Analyzed: 01/14/2009 Analyst: ASA **Date Prepared:** 01/13/2009

Lab Batch ID: 746371 Matrix: Solid Sample: 522855-1-BKS Batch #: 1

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/kg BTEX by EPA 8021B Blank Spike Blank Blank Spike Blank Blk. Spk Control Control Flag Sample Result Added Spike Spike Spike Dup. RPD Limits Limits Added [A] Result %R Duplicate %R % %R %RPD Result [F] [B] [C] [D] [E] [G] **Analytes** Benzene ND 0.1000 0.0923 92 0.1 0.0939 94 2 70-130 35 Toluene 2 35 ND 0.1000 0.0880 88 0.1 0.0899 90 70-130 Ethylbenzene 2 71-129 35 ND 0.1000 0.0910 91 0.1 0.0927 93 2 70-135 m,p-Xylenes ND 0.2000 0.1791 90 0.2 0.1820 91 35 o-Xylene ND 0.1000 0.0874 87 0.1 0.0891 2 71-133 35

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 322297

Analyst: BHW Date Prepared: 01/13/2009

Project ID: 2008-113

Date Analyzed: 01/13/2009

Lab Batch ID: 746422

Sample: 522884-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	K/BLANK S	SPIKE / B	BLANK S	PIKE DUPI	ICATE 1	RECOVI	ERY STUD	Υ	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	1110	111	1000	1110	111	0	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	1090	109	1000	1070	107	2	70-135	35	

Analyst: BHW

пм

Date Prepared: 01/14/2009

Date Analyzed: 01/14/2009

Lab Batch ID: 746545

Sample: 522939-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	ICATE	RECOVI	ERY STUD	·Υ	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	1020	102	1000	999	100	2	70-135	35	1
C12-C28 Diesel Range Hydrocarbons	ND	1000	1110	111	1000	1060	106	5	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 322297

Analyst: BHW

Date Prepared: 01/14/2009

Project ID: 2008-113

Date Analyzed: 01/15/2009

Lab Batch ID: 746564

Sample: 522946-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	PIKE DUPI	ICATE	RECOVI	ERY STUD	PΥ	
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	945	95	1000	925	93	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	997	100	1000	968	97	3	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 322297

Project ID: 2008-113

Lab Batch ID: 746367

QC- Sample ID: 322296-001 S

Matrix: Soil Batch #:

Date Analyzed: 01/14/2009

Date Prepared: 01/13/2009

Analyst: ASA

Reporting Units: mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

		14	171 I WIZE DI 118	L / LYLEK I		KE DOI LION	IL KEC	O V LIVE .	31021		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1088	0.0666	61	0.1088	0.0689	63	3	70-130	35	Х
Toluene	ND	0.1088	0.0647	59	0.1088	0.0665	61	3	70-130	35	Х
Ethylbenzene	ND	0.1088	0.0674	62	0.1088	0.0690	63	2	71-129	35	Х
m,p-Xylenes	ND	0.2176	0.1332	61	0.2176	0.1359	62	2	70-135	35	X
o-Xylene	ND	0.1088	0.0612	56	0.1088	0.0629	58	4	71-133	35	Х

Lab Batch ID: 746371 Date Analyzed: 01/14/2009 **QC-Sample ID:** 322297-015 S

Batch #:

1 Matrix: Soil

Date Prepared: 01/13/2009

Analyst: ASA

Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0.1052	0.0710	67	0 1052	0.0727	69	3	70-130	35	Х
Toluene	ND	0.1052	0.0702	67	0.1052	0.0723	69	3	70-130	35	X
Ethylbenzene	ND	0.1052	0.0743	71	0.1052	0.0768	73	3	71-129	35	
m,p-Xylenes	ND	0.2103	0.1464	70	0.2103	0.1514	72	3	70-135	35	
o-Xylene	ND	0.1052	0.0661	63	0.1052	0.0692	66	5	71-133	35	Х

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Form 3 - MS / MSD Recoveries

Project Name: EK Queen Pearce 6"

Work Order #: 322297 Project ID: 2008-113

 Lab Batch ID: 746422
 QC- Sample ID: 322296-001 S
 Batch #: 1
 Matrix: Soil

Date Analyzed: 01/14/2009 Date Prepared: 01/13/2009 Analyst: BHW

Reporting Units: mg/kg		M	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY !	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	% K	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1090	1160	106	1090	1180	108	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1090	1120	103	1090	1140	105	2	70-135	35	

Lab Batch ID: 746545 QC- Sample ID: 322297-015 S Batch #: 1 Matrix: Soil

Date Analyzed: 01/14/2009 Date Prepared: 01/14/2009 Analyst: BHW

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY **Parent** Spiked Sample Spiked Duplicate Spiked Control Control TPH By SW8015 Mod Sample Spike Result Sample Spike Spiked Sample Dup. **RPD** Limits Limits Flag Result %R Result [F] %R % %R %RPD Added [C] Added **Analytes** A [B] [D] [E] [G] C6-C12 Gasoline Range Hydrocarbons ND 1050 996 95 1050 999 95 0 70-135 35 101 1060 101 70-135 35 C12-C28 Diesel Range Hydrocarbons ND 1050 1060 1050

Lab Batch ID: 746564 QC- Sample ID: 322381-002 S Batch #: 1 Matrix: Soil

Date Analyzed: 01/15/2009 Date Prepared: 01/14/2009 Analyst: BHW

Reporting Units: mg/kg		M	IATRIX SPIKI	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spike	Spiked Sample Result	Sample	-	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1110	1030	93	1110	1020	92	l	70-135	35	
C12-C28 Diesel Range Hydrocarbons	70.1	1110	1070	90	1110	1060	89	1	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: EK Queen Pearce 6"

Work Order #: 322297

Lab Batch #: 746380 **Date Analyzed:** 01/13/2009 **Project ID:** 2008-113

Date Prepared: 01/13/2009

Analyst: BEV

QC- Sample ID: 322296-001 D

Batch #:

Matrix: Soil

Reporting Units: %	SAMPLE	SAMPLE 1	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte		121			
Percent Moisture	8 07	10.4	25	20	F

Lab Batch #: 746383

Date Analyzed: 01/13/2009

Date Prepared: 01/13/2009

Analyst: BEV

QC-Sample ID: 322297-015 D

Batch #:

Matrix: Soil

Reporting Units: %	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte	[]	[B]			
Percent Moisture	4.90	7.07	36	20	F

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Page
33
맠
8

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone 432-563-1800 Fax. 432-563-1713 1013

Project Manager Project Name. EK Queen Pearce 6" Carville Bryant Company Name Basin Environmental Service Technologies, LLC Project # 2008-113 Company Address. P.O. Box 301 Project Loc Lea County, NM City/State/Zip PO# PAA - D Bryant Lovington, NM 88250 Report Format: X Standard TRRP ☐ NPDES Telephone No (575)605-7210 Fax No (505) 396-1429 cibryant@basin-consulting.com ance Analyze For. TCLP (lab use only) TOTAL 322297 ORDER #: Preservation & and Containers | Metris ginning Dapth FIELD CODE 0١ 1 X SOIL X MW-1 10' 6-Jan-09 1000 OL MW-1 30' 6-Jan-09 1010 SOIL <u>ა</u> MW-1 50' 6-Jan-09 1030 SOIL Ю¥ 1 2 SOIL x MW-1 70' 1055 6-Jan-09 05 MW-1 90* 6-Jan-09 1120 SOIL 0ψ MW-1 110' 6-Jan-09 1150 SOIL 10 SOIL x MW-1 127 1235 6-Jan-09 08 MW-2 10* 1100 SOIL 7-Jan-09 09 MW-2 301 1110 1 X SOIL 7-Jan-09 x Special Instructions: SOIL MW-2 50' 7-Jan-09 1130 Laboratory Comme **3800** Sample Containers Intact? VOCs Free of Headspace? Labels on container(s)
Custody seals on container(s)
Custody seals on cooler(s) 28 1/19/09 (A) N N Fedex Lone Star ample Hand Delivered by Sempler/Client Rep. 2 by Courier? UPS DHL 467. 7(455) Temperature Upon Receipt aceived by ELOI andia Lenn -7.0° 1-1309 10:36

F	nvir	'nnm	ontal	Lah	of 1	2eva

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 Wast I-20 East Odessa, Texas 79765 Phone. 432-563-1600 Fax. 432-563-1713 153

Project Name: EK Queen Pearce 6" Project Manager Camille Bryant Company Name Basin Environmental Service Technologies, LLC Project # 2008-113 Company Address P. D. Box 301 Project Loc. Lea County, NM City/State/Zip Lovington, NM 88260 PO#. PAA - D Bryant Report Format. X Standard NPDES Telephone No. (505) 396-1429 TRRP (535)605-7210 cibryant@basin-consulting.com Sampler Signatu (lab use only) TCLP TOTAL 322297 ORDER #: Preservation 2 / of Containers | Matrix ning Depth ding Depth AB# (tab ı FIELD CODE į. MW-2 70 7-Jan-09 1150 11 x SOIL x 12 MW-2 95' 7-Jan-09 1215 SOIL 3 SOIL MW-2 110' 7-Jan-09 1240 14 1315 SOIL MW-2 120" 7-Jan-09 5 MW-3 10' 8-Jan-09 0930 SOIL ILL SOIL MW-3 35" B-Jan-09 0940 17 0955 SOIL l x MW-3 50' 8-Jan-09 1 X رق MW-3 70' SOIL 8-Jan-09 1015 1 X x 19 MM-3 90. 6-Jan-09 1040 SOIL 10 1 X SOIL X MW-3 110' 8-Jan-09 1110 Laboratory Comments: Special Instructions. Started Started Sample Containers Intact? VOCs Free of Headspace? Labels on contamer(s)
Custody seals on container(s)
Custody seals on cooler(s) 26. 62. Custody seats on coolens)

Sample Hand Delivered
by Sample/Client Rep ?
by Courner? UPS DHL
4 0 2 / (455

Temperature Upon Receipt Y N FedEx Lone Star -2.0 °C 11304 10 30

Env	/ironn	nental	Lab	of 7	Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713 3.83

	Project Manager Camille Bryant										_			_		Pr-	oje	et Na	me	Εŀ	Q	166	n P	ear	ce 6	3"						_
	Company Name Basin Environmental Ser	vice T	chnol	ogles, LLC		_										_	P	roje	ct #	20	08-	113	<u>; </u>									
	Company Address P 0 Box 301																Prop	ect	Loc	Le	e Co	unt	y, N	м		_		_				
	Crty/State/Zip Lovington, NM 88260															_		P	O#:	PA	A - I	D. 8	ryar	nt								
	Telephone No. (575)605-7210				Fax No		150)5) !	396-	1421	,					Repor	t Fo	orme	t;	X	Sta	mda	rd			TRE	ąp.			NPDI	ES	
	Sampler Signatule: (MIDOL B	نابرو	w	J	e-mail.		<u>ପ</u>	bry	/an	t@	bas	sın	-co	nsı	ıltiı	ng.com	_						_								_	
(lab use	<u> </u>	U															H		_	7	CLP	_~	nelya	ze F	or.	7		_	_	4		
ORDER	R#: 322197							F	rese	van	an £	0	f Cor	ntain	ers	Matrix	Ę	_		TC	TAL	E	П	F	X						52 hrs	
LAB # (lab use only)	FIELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Freid Filtered	Tutal # of Contamers		- G	Đ.			8		Offier (Specify)	Drinking Water St Studg Croundwater S Soll/Soll von Potable Specify Odw	TPH 418 1 8015M 8015B	TX 1005 FX 10	Cations (Ca Mg Na K)	Anlons (C) SO4, Alkalinay)	SARIESPICEC	Metals As Ag Ba Cd Cr Pb Hg Se	Votables	Semvolatiles	BTEX 80218/5030 OF BTEX 6200	RCI	NORM			- 1:	Standard TAT 4 DAY	ORGINGIA CALACAL
U	MW-3 113'			8-Jan-09	1150		1	х		Γ						SOIL	X	_							х		I	I	\perp	I	×	
12	SB-5 10'			9-Jan-09	1020		1	x				L				SOIL	X								X				$oxed{oxed}$	${f I}$	X	<u>-</u>
13	SB-5 20'			9-Jan-09	1025	Ш	1	x		L					L	SOIL	Į x	L					Ш		х			\perp	\perp	I	x	(
14	SB-5 30'			8-Jan-09	1035		1	<u>x</u>	_		L				L	SOIL	<u> </u> x	L	L			L		Ц	x		\Box			\perp	<u></u> x	(
15	SB-5 40'			9-Jan-09	1045		1	x	L	1	L				L	SOIL	X	4		L		Ш			x		\dashv	\perp	⊥	\perp	X	¢
1,00	\$8-5 50'			9-Jan-09	1100	L.	1	x	L	L	L	L	L	Ш	L	SOIL	<u> x</u>	L	L	L				Ц	x	┙	\dashv	\perp	\perp	┸	X	
27	SB-5 60'		<u> </u>	9-Jan-09	1120		1	X	-	<u> </u>	-	-	-	L	L	SOIL	×	-		-		H	Н	Н	X	-	\dashv	\dashv	+	+	- X	(
-							H	H	T	t		\vdash	\dagger	-			l	-	-	_		П					_	\pm	\pm	t	$^{+}$	-
								Γ	Π								Γ	Γ									П	Т		\perp	Ι	
Special	Instructions ⁴				·																			ents Inta				- ś	5	N		
En	when by Bugart 1/3/09	71	5	Received by	2	-			_					L	7	3/04 7	Tin	5	VO Lat Cus Out	Cs ! sels stod	on c y se y se	of H contr als d	lead ainer on co on co	ispa r(s) onta oole	nuer(er(s)	(s)		(00 /00 /V)	Y. 33 6	Pzzz	5	
Reinquis Reinquis	1/3/09	10.		Received by	hea Ja		2/1							,		ate	Tim	na		by t	Sami Cour	oler/ er?	Clier al 1	ered UPS UPS Red	s i	DHL		FedE	x Lo	N N one S	Star	

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

			· · · · · · · · · · · · · · · · · · ·
Cient	Basin Enu	Plains	
Jale' Time	11309 1	0.36	
Lab ID#	31119	1	
ritials	aL		
		Sample Receipt Ch	ecklist

				Client Initials
13	Temperature of container/ cooler?	(res	No	-2.0 °C
2	Shipping container in good condition?	₫€8	No	
3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
14	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
5	Chain of Custody present?	Yes	No	
6	Sample instructions complete of Chain of Custody?	(Yes)	No	
7	Chain of Custody signed when relinquished/ received?	Ves	No	
'8	Chain of Custody agrees with sample label(s)?	(es	No	ID written on Cont / Lid
.9	Container label(s) legible and intact?	(es)	No	Not Applicable
:10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No	
111	Containers supplied by ELOT?	(es)	No	
12	Samples in proper container/ bottle?	Yes	No	See Below
113	Samples properly preserved?	(Yes)	No	See Below
:14		(Yes	No	
115		(Yes)	No	
116		Yes	No	
:17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
118		Yes	No	See Below
:19		Yes	No	(Not Applicable)
120		(Yes)	No	Not Applicable

Variance Documentation

Contact.		Contacted by	Date/ Time	
Regarding		· · · · · · · · · · · · · · · · · · ·		
Corrective Action Taker)			
				_
Check all that Apply		See attached e-mail/ fax Client understands and would like to proceed w Cooling process had begun shortly after sampl	•	

Analytical Report 322927

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

E.K. Queen 6 Inch Pearce 2008-113

22-JAN-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

22-JAN-09

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 322927

E.K. Queen 6 Inch Pearce

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 322927. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 322927 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 322927

PLAINS ALL AMERICAN EH&S, Midland, TX

E.K. Queen 6 Inch Pearce

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Jan-20-09 10:45		322927-001
MW-2	W	Jan-20-09 11:45		322927-002
MW-3	W	Jan-20-09 13:30		322927-003

nelad

Project Id: 2008-113

Contact: Jason Henry

Project Location: Lea County, NM

Project Name: E.K. Queen 6 Inch Pearce

Date Received in Lab: Wed Jan-21-09 08:32 am

Report Date: 22-JAN-09

Project Manager: Brent Barron, II

					1 Toject Manager.	
	Lab Id:	322927-001	322927-002	322927-003		
Analysis Requested	Field Id:	MW-1	MW-2	MW-3		
Anutysis Kequesteu	Depth:					
	Matrix:	WATER	WATER	WATER		
	Sampled:	Jan-20-09 10:45	Jan-20-09 11 45	Jan-20-09 13.30		
Anions by EPA 300	Extracted:					
	Analyzed:	Jan-21-09 09:37	Jan-21-09 09·37	Jan-21-09 09·37		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL		
Chloride		200 5 00	206 5 00	126 5.00		
BTEX by EPA 8021B	Extracted:	Jan-21-09 16:00	Jan-21-09 16:00	Jan-21-09 16.00		
	Analyzed:	Jan-22-09 03:36	Jan-22-09 03:58	Jan-22-09 04:19		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL		
Benzene		ND 0.0010	ND 0 0010	ND 0 0010		
Toluene		ND 0.0020	ND 0 0020	ND 0.0020		
Ethylbenzene		ND 0.0010	ND 0 0010	ND 0.0010		
m,p-Xylenes		ND 0.0020	ND 0 0020	ND 0.0020		
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010		
Total Xylenes		ND 0.0010	ND 0 0010	ND 0.0010		
Total BTEX		ND 0.0010	ND 0.0010	ND 0.0010		
TDS by SM2540C	Extracted:					
·	Analyzed:	Jan-21-09 16:05	Jan-21-09 16:05	Jan-21-09 16:05		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL		
Total dissolved solids		528 5.00	572 5 00	378 5 00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Form 2 - Surrogate Recoveries

Project Name: E.K. Queen 6 Inch Pearce

Work Orders: 322927, **Project ID**: 2008-113

Units: mg/L	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	11	121	[D]	, , , ,	
1,4-Dıfluorobenzene	0.0316	0.0300	105	80-120	
4-Bromofluorobenzene	0.0313	0.0300	104	80-120	

Lab Batch #: 747222 Sample: 322896-001 SD / MSD Batch: 1 Matrix: Water

Units: mg/L SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0277 0.0300 92 80-120 4-Bromofluorobenzene 0.0309 0.0300 103 80-120

Lab Batch #: 747222 Sample: 322927-001 / SMP Batch: 1 Matrix: Water

SURROGATE RECOVERY STUDY Units: mg/L Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags %R [A] [B] %R [D] **Analytes** 1,4-Difluorobenzene 0.0324 0.0300 108 80-120 4-Bromofluorobenzene 0.0326 0.0300 109 80-120

Lab Batch #: 747222 Sample: 322927-002 / SMP Batch: 1 Matrix: Water

Units: mg/L SURROGATE RECOVERY STUDY True Amount Control BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0321 0.0300 107 80-120 4-Bromofluorobenzene 0.0326 0.0300 109 80-120

Lab Batch #: 747222 Sample: 322927-003 / SMP Batch: 1 Matrix: Water

SURROGATE RECOVERY STUDY Units: mg/L Amount BTEX by EPA 8021B Recovery Found Amount Limits Flags [B]%R %R [A] [D]Analytes 1,4-Difluorobenzene 109 0.0326 0.0300 80-120 4-Bromofluorobenzene 0.0322 0.0300 107 80-120

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits, data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: E.K. Queen 6 Inch Pearce

Work Orders: 322927,

Project ID: 2008-113

Lab Batch #: 747222

Sample: 523400-1-BKS / BKS

Batch: 1 Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUD				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0279	0.0300	93	80-120	
4-Bromofluorobenzene	0.0278	0.0300	93	80-120	

Lab Batch #: 747222

Sample: 523400-1-BLK / BLK

Batch: 1 Matrix: Water

Units: mg/L	Units: mg/L SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	, , , ,	"	[D]			
1,4-Dıfluorobenzene	0.0321	0 0300	107	80-120		
4-Bromofluorobenzene	0.0329	0.0300	110	80-120		

Lab Batch #: 747222

Sample: 523400-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0292	0.0300	97	80-120		
4-Bromofluorobenzene .	0 0293	0.0300	98	80-120		

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: E.K. Queen 6 Inch Pearce

Work Order #: 322927 2008-113 Project ID:

Matrix: Water Lab Batch #: 747179 Sample: 747179-1-BKS **Date Analyzed:** 01/21/2009 **Date Prepared:** 01/21/2009 Analyst: LATCOR

Reporting Units: mg/L RLANK /RLANK SPIKE RECOVERY STUDY

Reporting Ontes. mg/L	atcn #:	BLANK/I	BLANK SPI	KE KEC	OVERY	SIUDI
Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	10.0	9.91	99	90-110	

BS / BSD Recoveries

Project Name: E.K. Queen 6 Inch Pearce

Work Order #: 322927

Date Prepared: 01/21/2009 Batch #: 1

Project ID: 2008-113 Date Analyzed: 01/21/2009

Analyst: ASA Lab Batch ID: 747222

Sample: 523400-1-BKS

Matrix: Water

Units: mg/L		BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE 1	RECOVI	ERY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	ND	0.1000	0.0891	89	0.1	0.0908	91	2	70-125	25	
Toluene	ND	0.1000	0.0873	87	0.1	0.0891	89	2	70-125	25	
Ethylbenzene	ND	0.1000	0.0968	97	0.1	0.0994	99	3	71-129	25	
m,p-Xylenes	ND	0.2000	0.1912	96	0.2	0.1962	98	3	70-131	25	
o-Xylene	ND	0.1000	0.0929	93	0.1	0.0956	96	3	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: E.K. Queen 6 Inch Pearce

Work Order #: 322927

Lab Batch #: 747179 **Date Analyzed:** 01/21/2009

QC- Sample ID: 322927-001 S

Project ID: 2008-113

Date Prepared: 01/21/2009

Analyst: LATCOR

1

Matrix: Water

Reporting Units: mg/I

Batch #: MATRIX / MATRIX SPIKE DECOVERY STUDY

Reporting Units: mg/L	MAIL	CIA / MIA	I KIX SPIKE	RECO	VEKY SIU	אע
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]		1-7		
Chloride	200	100	304	104	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)
All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: E.K. Queen 6 Inch Pearce

Work Order #: 322927

Date Analyzed: 01/22/2009

Lab Batch ID: 747222

QC- Sample ID: 322896-001 S

Batch #:

Project ID: 2008-113 Matrix: Water

Date Prepared: 01/21/2009

Analyst: ASA

Reporting Units: mg/L

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.0826	83	0 1000	0.0858	86	4	70-125	25	
Toluene	ND	0.1000	0.0806	81	0.1000	0.0837	84	4	70-125	25	
Ethylbenzene	ND	0.1000	0.0895	90	0.1000	0.0925	93	3	71-129	25	
m,p-Xylenes	ND	0.2000	0.1770	89	0.2000	0.1824	91	2	70-131	25	
o-Xylene	ND	0.1000	0.0845	85	0.1000	0.0875	88	3	71-133	25	

Chloride

Sample Duplicate Recovery

Project Name: E.K. Queen 6 Inch Pearce

Work Order #: 322927

Lab Batch #: 747179 Date Analyzed: 01/21/2009

Date Prepared: 01/21/2009

1

Project ID: 2008-113 Analyst: LATCOR

QC- Sample ID: 322927-001 D

Batch #:

Matrix: Water

Reporting Units: mg/L

ts: mg/L	SAMPLE /	SAMPLE / SAMPLE DUPLICATE RECOVER				
Anions by EPA 300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag	
Analyte	, , ,	[B]				
	200	200	0	20		

Lab Batch #: 747236 Date Analyzed: 01/21/2009

Date Prepared: 01/21/2009

Analyst: WRU

QC-Sample ID: 322927-001 D Reporting Unite: mg/I

Batch #:

Matrix: Water

Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	AIE REC	OVERY
TDS by SM2540C	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Total dissolved solids	528	538	2	30	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

age
ಚ
Q,
4

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

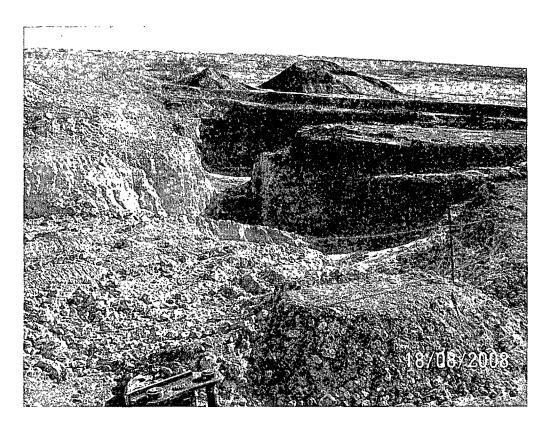
12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax 432-563-1713

	Project Manager Curt Stanley PAGE 01 OF 01									Р	roje	et Nas	me: E	к.	Que	en (8 inc	ch P	'ear	ce										
	Company Name Basin Environmental Service Technologies, LLC											Project # 2008-113																		
	Company Address	Company Address P 0. Box 301												Project Loc: Lea County, NM																
	City/State/Zip Lovington, NM 88250													PC) # <u>P</u>	AA •	J H	enry												
	Telephone No (505) 441-2244 Fax No (505) 396-1429								_	Report Format: X Standard TRR				rrr-	3	☐ NPDES														
	Sampler Signature	ent O Fraley	Ja	<u></u>	ns Reju	ocas-mail		csta	nle	γ@	bas	ine	nv.	on	1		_												_	
(lab use o		$ \ell$ ℓ)		ı												E	_		TCLF	1	nalyz	ze Fo		T	T	Τ	H	,	
ORDER	<u>:#: 52</u>	1927	,			,	·		Pr	eserv	ation	8.0	of Ca	itain	ers	Matrix	BS i de	П	Т	TOTAL	+-	Н	1	X g			2540c		4 T	_
_													İ			r Su-Study r S-Sottsoll Softetville	- 1	12		3	Metals. As Ag Ba Cd Cr Pb Hg Se			BTE 80218/5030 or 8TEX 0260	-		TDS (EPA METHOD SM 2540c)		24	
# (lab use only)			ŧ.		20	2		Ş	1								. 8	ř	Na K	SAR / ESP / CEC	8		H	90			ETHO		Person I	
an del			0 gun	ğ	Dale Sampled	Time Sampled	pava	of Container							Other (Spootly)	OW - Danking water OW - Groundwater We have potatie S	4181	TX 1005	S 5	SP/CE	80.2		か	Sept 7	_	270	PA M	RIDES	TAT 50	
LAB#	FIEL	D CODE	Beginning Depth	Ending Depth	Dale	Trime	ield Filtered	10	93	HNO,	₽ :	og i	O,SVEN	None) Jayer (DW-DA		1 1	Calons (Ca Mg	SAR / ESP / CEC	Metal	Volabiles	Semivoladius		OF C	PAH 8270	SQT	CHLORIDES	RUSH TAT PR	
Ül		AW-1			1/20/2009	1045		3	x							GW	Ĺ			<u> </u>	Ĺ		$\overline{}$	x		Ī	×	×	×	•
07		1W-2	<u> </u>		1/20/2009	1145	9	24	х		4	1	\perp	L	Ц	GW	\perp	$\perp \downarrow$	\perp	\perp	L	Ц	Ш	X	\perp	1	x	×	X	-
03		NW-3		L	1/20/2009	1330	_	3	х	_	4	\perp	+	L	Н	GW	+	+4	-	+	-	Н	\vdash	X	+	+	X	X	×	Ĺ
							4		╂~	+	+	+	+	├	Н		+-	╁┤	+	╁	╀	Н	\vdash	+	+	+-	\vdash	Н	+	_
\vdash				 			\dashv		Н	+	+	+	╫	-	H		╀	+	+	+	┢	Н	\vdash	+	+	+	H	Н	十	-
\vdash									Н	1	+	\dagger	+	\vdash	H		t	╁╌╂	+	╁	╁	H	\dashv	+	+	+	H	\sqcap	十	-
			_	_					П	\dashv	\top	T	T				T	Ħ		T	T	П	\Box	\top	T	十		H	十	-
											T		Т	П	П		T					П		T	I	I		\Box		
															П					L			\square		I	L		\square	$oxed{oxed}$	
Special to	nstructions:	VOA FOR	ı/\	V۱	1-2														Labo Samp								ج		4	
Reknquish		Q Date		me	Received by							_		_	Oat	. T	Tim	_	VOC:					ə ?			Ø.	١	1	
Keeudna	series (1/2/1/10		32	Received by										000	٠	1 141		Custo	dy se	als c	on co	ntain	10r(5)		, '	â	1 A A B A	i a	
Retinquist	ned by	Date		me	Received by								_	T	Dat	e	Tim		Samp	le Ha	nd C	elive	ered .		, C.	ه ۱۰	1944 (SCOO)	7	ناه ا	
	<u></u>		-											L	В.,				b	y Cou	rier?	CHEF	uPS	, c	HL	Fed	ıEx	Lone	Star	
Relinquist	ned by	Date	18	me	Received by ELC	v Kilri	no	·u						1-	2/-		नात कें		Temp	eratu	re Uj	pon f	Rece	ıpt		-3	3. ź	5 00	c	

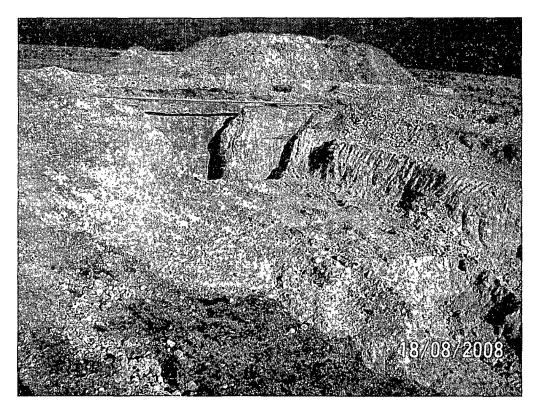
Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

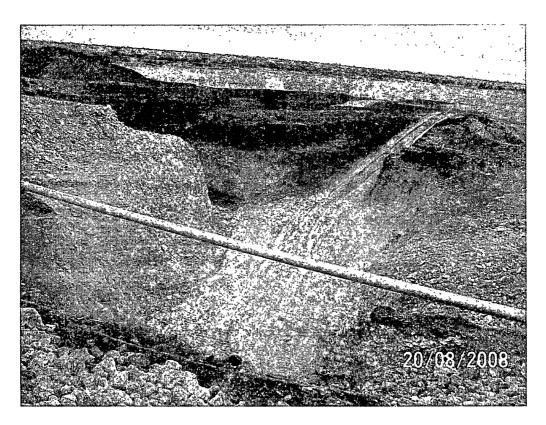
Client	Brisis Env Plans
Date/ Time	12101 322127° E 32
ab ID#	324921
nitials	

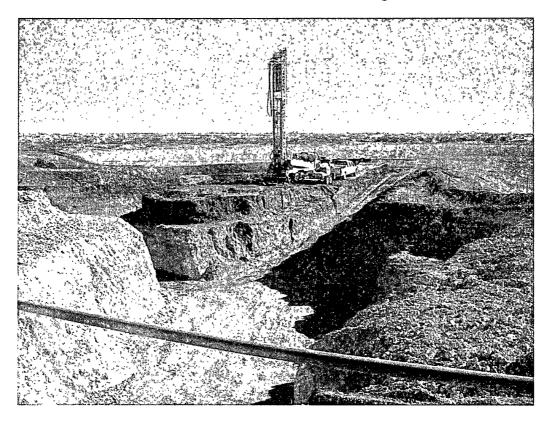

Sample Receipt Checklist

#1	Temperature of container/ cooler?	Yes)	No	3.5 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	· Not Present >
#4	Custody Seals intact on sample bottles/ container?	Yes>	No	Not Present
#5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	Yes.	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont / Lid
#9	Container label(s) legible and intact?	Yes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	Yes	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes)	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes_	No	Not Applicable)
#20	VOC samples have zero headspace?	Yes	No	Not Applicable


Variance Documentation

Contact		Contacted by.	Date/ Time	
Regarding				
Corrective Action Taker	1			
Check all that Apply		See attached e-mail/ fax		****
Oncor all many ppg		Client understands and would like to proceed Cooling process had begun shortly after sam	•	


Appendix C Photographs


EK Queen Pearce 6-Inch Release Site, facing east

EK Queen Pearce 6-Inch Release Site, facing north

EK Queen Pearce 6-Inch Release Site, facing south

EK Queen Pearce 6-Inch Release Site, installing monitor well MW-3

Appendix D SVE Technical Information, Efficiency Curves and SVE Photographs

Turnkey Soil Vapor Extraction Rental System

TABLE OF CONTENTS

1	SYSTEM DESCRIPTION	, 1
1.1	SVE SYSTEM	, 1
1.2	EQUIPMENT ENCLOSURE AND ELECTRICAL POWER SYSTEM	. 2
1.3	SYSTEM CONTROLS	
1	1 SVE Blower and VFD Operation	
1	.2 Power Monitor Function	4
1	3 Alarm Light and Reset Button Functions	4

1 SYSTEM DESCRIPTION

1.1 SVE System

The SVE system consists of a Roots Model 36 URAI positive displacement, rotary lobe vacuum blower. The SVE Blower is powered by an electric motor via a direct drive flexible coupling assembly. The motor for the SVE Blower consists of a 5 HP, three phase, TEFC, 3550 rpm, 230/460 vac motor.

A 5 Hp variable frequency drive (VFD) motor controller was provided for the SVE Blower motor as part of the system control panel to convert the incoming single-phase power to three-phase and allow the speed for this blower to be easily be changed in the field. The VFD was programmed to allow an operator to manually adjust the motor to operate at a frequency range between 20.0 and 45.0 Hz corresponding to an approximate blower RPM range of 1150 to 2588 RPM.

The blower and motor were selected to meet the specified design criteria of 120 scfm at 5.0" Hg at an altitude of 5200 ft. above MSL. Blower performance calculations for the specified design conditions along with performance curves for a blower operating at variable speeds (RPMs) and variable inlet vacuums are provided in the Appendix under the SVE System Tab. Variations in actual blower performance from the values predicted on the curves can be expected based on actual atmospheric pressure, inlet temperature, relative humidity, and other factors.

A summary of major equipment and instrumentation associated with the SVE system is provided below.

- (1) Roots Dresser Model URAI 36 positive displacement, rotary lobe blower.
- (1) Baldor 5 Hp, 230/460vac, 60hz, 3450 rpm, TEFC, premium efficiency motor.
- (1) 55 gallon fluid moisture separator (KO Tank) with 30 gallon liquid storage capacity, XP hi level switch, sight glass and 34" drain valve.
- (3) Inlet vacuum gauges (0-200" w.c.) mounted before and after KO tank and at blower inlet.
- (1) In-line air filter rated for 180 cfm of air flow.
- (1) 1 ½" gate bleed air valve with inlet filter/silencer.
- (1) 2" venturi flow sensor with 0-200 scfm magnahelic flow indicator installed on blower inlet, before bleed air.
- (1) 2" vacuum relief valve set to open @ 9" Hg
- (1) Premium grade discharge silencer.

- (1) 2 ½" diameter steel exhaust stack.
- (1) XP discharge high temperature switch.
- (1) Exhaust stack discharge temperature gauge (50-400 deg F).
- (1) 1/4" discharge sample port.
- (4) Vacuum gauge (0-200" w.c.) for measuring vacuum at SVE lines 1-4.
- (1) 3" schedule 40 PVC, vapor extraction common header pipe.
- (4) individual SVE extraction manifold lines connected to 3" common header pipe
- Each individual SVE manifold line supplied with;
 - 1-1/2" gate valve for flow control,
 - 1-1/2" venturi flow sensor and magnehelic flow indicator (0-50 scfm for all 14 lines)
 - 1/4" sample port, and
 - flexible, vacuum rated clear PVC hose with rubber hose couplers for transition to 2" pipe stub-ups.

Note: All SVE flow indicator gauges were calibrated to display flow in scfm at standard conditions of 14.73 psia and 70 deg Fahrenheit. If actual operating conditions at the flow meters vary from the specified calibration conditions, flow readings recorded at the gauge indicators should be corrected based on actual operating pressure/vacuums and temperatures to obtain a corrected SCFM flow reading. Correction charts/equations for the flow sensors are provided in the Appendix under the Process Inst. Tab.

1.2 Equipment Enclosure And Electrical Power System

The remediation system equipment was supplied inside a 6 ft wide x 6 ft long pre-engineered wood frame enclosure with 7 ft-4 inch high sidewalls. A summary of building construction details and associated electrical equipment is provided below.

- Wood frame construction with 2" x 4" studs on 24" centers for walls, 16" centers on ceiling, and 12" centers on floor.
- ½-inch DuratempTM exterior siding and trim with latex paint.
- ½-inch plywood roof decking covered with 15 # roofing paper and 25 year asphalt shingles.
- 3 ft wide x 6 ft-10 inch high, insulated, wood door with keyed lock.
- R-13 fiberglass batt insulation installed between wall and ceiling framing.
- Interior layer of 5/8" Type X drywall on walls and ceiling.
- (1) 120 vac, ¼ Hp, XP, 12" diameter exhaust fan w/OSHA guard, exterior shutter, exterior vent cover, and line voltage thermostat (thermostat mounted inside control panel).
- (1) 18 inch tall x 24 inch louvered wall vents with filter
- (1) Class 1, Div 2, 120 vac, 300 watt, overhead light fixture and XP light switch.
- (1) XP, 1500 watt, 240 vac, single phase heater with line voltage thermostat (thermostat mounted inside control panel).

Remediation equipment located inside the enclosure was pre-wired to an exterior control panel. A 60 amp, service rated, fused disconnect was supplied on the exterior of the

enclosure to connect site power to the system. The 240 vac, 3Ø power from the main disconnect feeds into a power distribution terminal block at the main control panel for distribution to the individual electrical loads. The main control panel contains individual circuit breakers to provide short circuit protection for motor, lighting, ventilation fan, heating and control panel electrical loads. All electrical work inside the equipment enclosure was completed in accordance with NEC requirements for a Class 1, Division 2, Group D, hazardous environment.

1.3 System Controls

The system controls are housed within a 24-inch wide x 30-inch tall x 12-inch deep NEMA 4/12 electrical enclosure mounted to the outside of the building. Major control components housed within the enclosure include the following:

- Leeson 5 HP variable frequency drive (VFD) motor controller for SVE Blower motor control (three phase input and output).
- Circuit breakers for motor loads, heating, lighting, outlet, and control power for 115 vac outlet.
- Power phase/voltage monitor relay.
- 120 vac and 12 vdc control relays.
- On/Off control power switch with Green LED.
- Hand-Off-Auto (H-O-A) control switch for SVE blower.
- Elapsed time hour meter and green LED run indicator light for SVE blower.
- Alarm RESET pushbutton.
- Red LED alarm indicators.
- Interior swing out panel mounted behind the exterior door of the control panel door.

1.3.1 SVE Blower and VFD Operation

When the three position (H-O-A) switch for the SVE blower is placed in the HAND position all control logic for the blower will be overridden with the exception of a fault at the VFD controller.

When the (H-O-A) switch is placed in the AUTO position, the SVE blower will normally be activated unless an operational or alarm condition as listed below occurs. The alarm situations listed below will deactivate the SVE blower and latch on a red alarm light after the specified time delay has expired with a continuous input signal.

Power Monitor Alarm

KO Tank HI LEVEL Alarm activated.

(0-6 sec adjustable delay)

(2 sec fixed delay)

• SVE Discharge High Temp. activated.

(no delay)

• SVE VFD Fault.

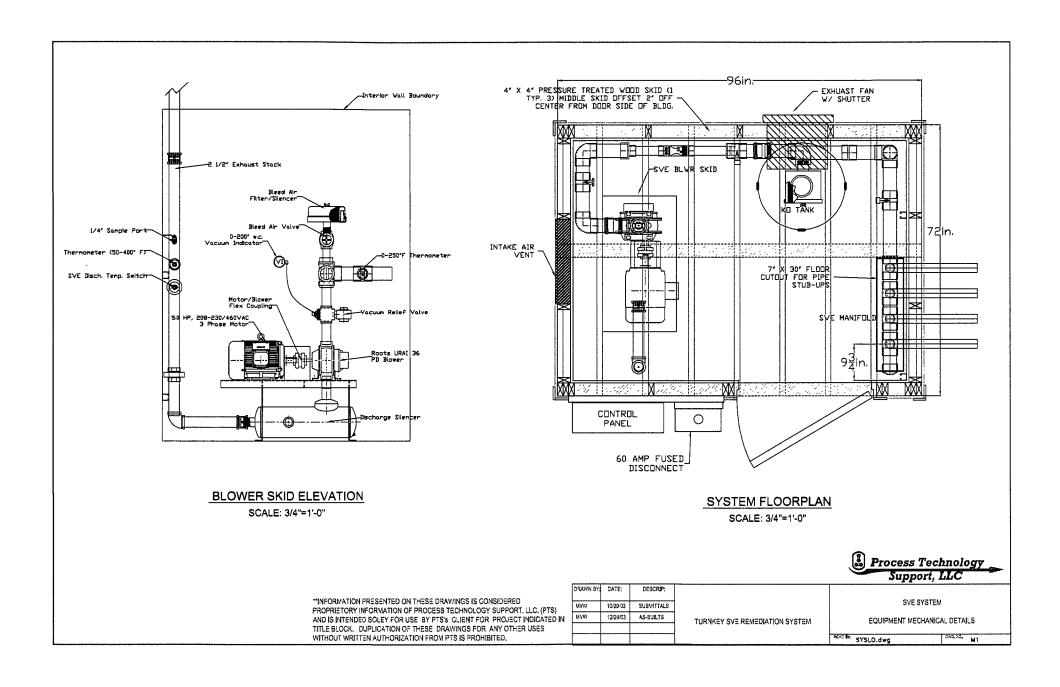
(no delay)

• SVE Low Vacuum

(0-30 sec adjustable delay)

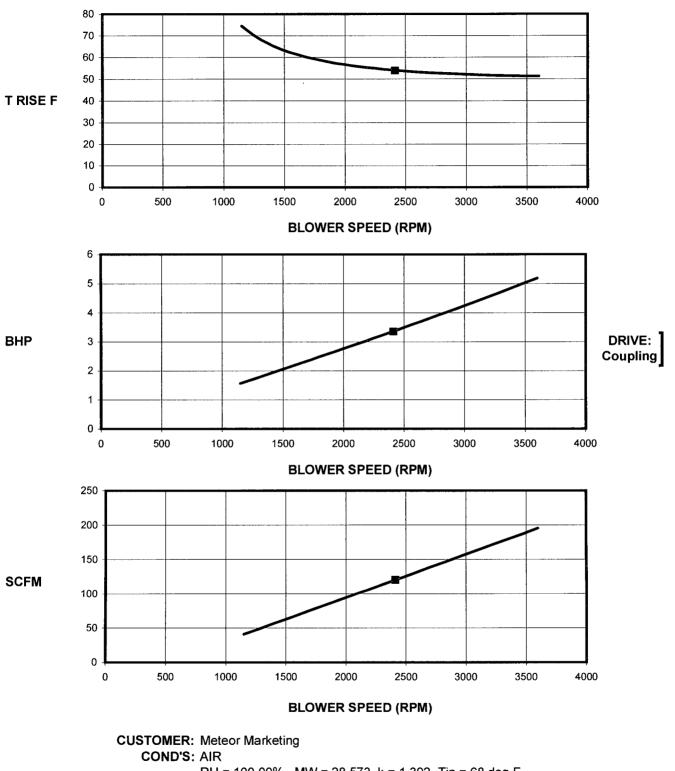
During normal operation when the VFD is powered up (powered up implies 3Ø, 208 vac power is applied to input terminals) but no run request is being received (i.e. H-O-A switch on OFF position) the LCD located on the front of the VFD will display 3 horizontal dashes. When the VFD receives a request to run by placing the H-O-A switch to AUTO or HAND, the blower will activate and the LCD will display the RPMs at which the SVE motor is operating. The VFD was configured to allow an approximate minimum blower speed setting of 1150 RPM and a maximum setting of 2588 RPM. The SVE blower speed can be adjusted anywhere between these minimum and maximum values while the blower is operating by pressing the UP/DOWN arrows located on the front of the VFD.

In the event a FAULT condition occurs at the VFD (i.e. motor thermal overload), the LED on the front of the VFD will display a fault code signal (i.e., PF for a current overload fault). A description of FAULT codes is supplied on page 44 of the drive manual supplied in the Appendix under the Control System Documentation tab.


1.3.2 Power Monitor Function

A power phase/voltage monitor located inside the main control panel disconnects the control power to the VFD motor controller in the event of low voltage, phase loss or phase reversal. The blower will restart automatically once the power supply to the system returns to normal.

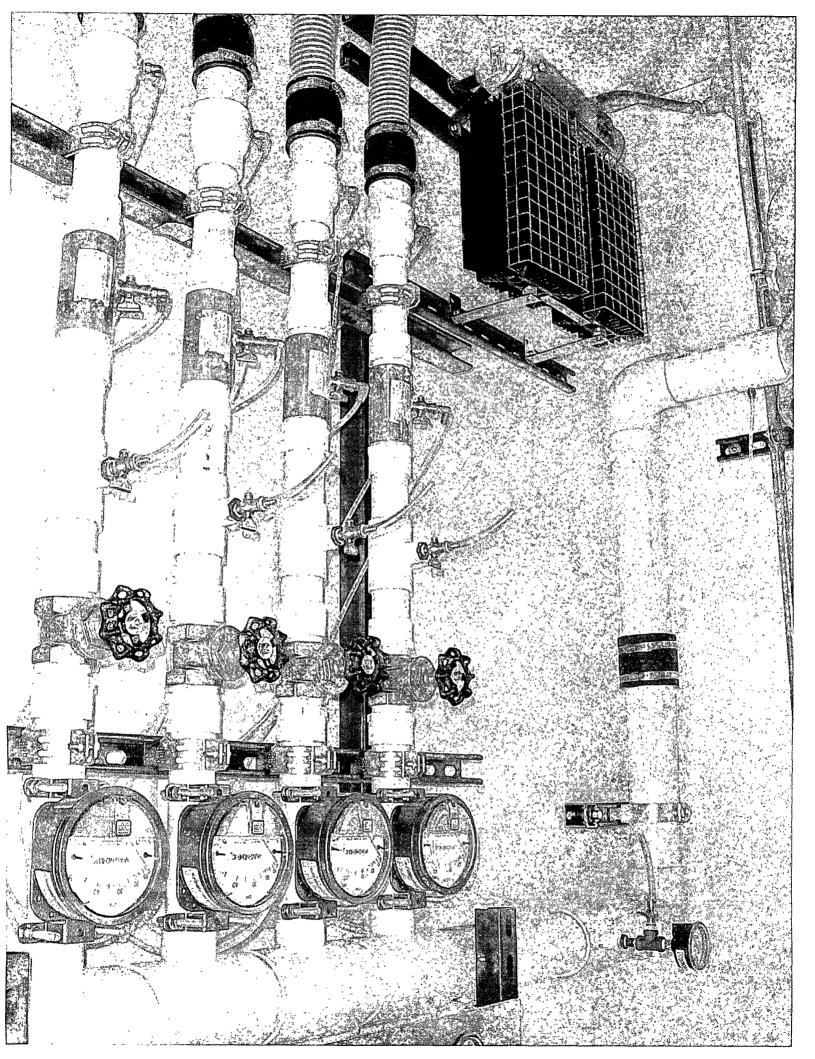
1.3.3 Alarm Light and Reset Button Functions


In the event any system alarm as listed in section 2.3.1 is activated continuously for the specified period of time, the SVE blower will be <u>latched OFF</u> and the alarm pilot light will be <u>latched ON</u> until the alarm condition is removed and either the RESET button located on the panel door is manually activated <u>or</u> a power cycle is initiated, with the exception of a power fault alarm.

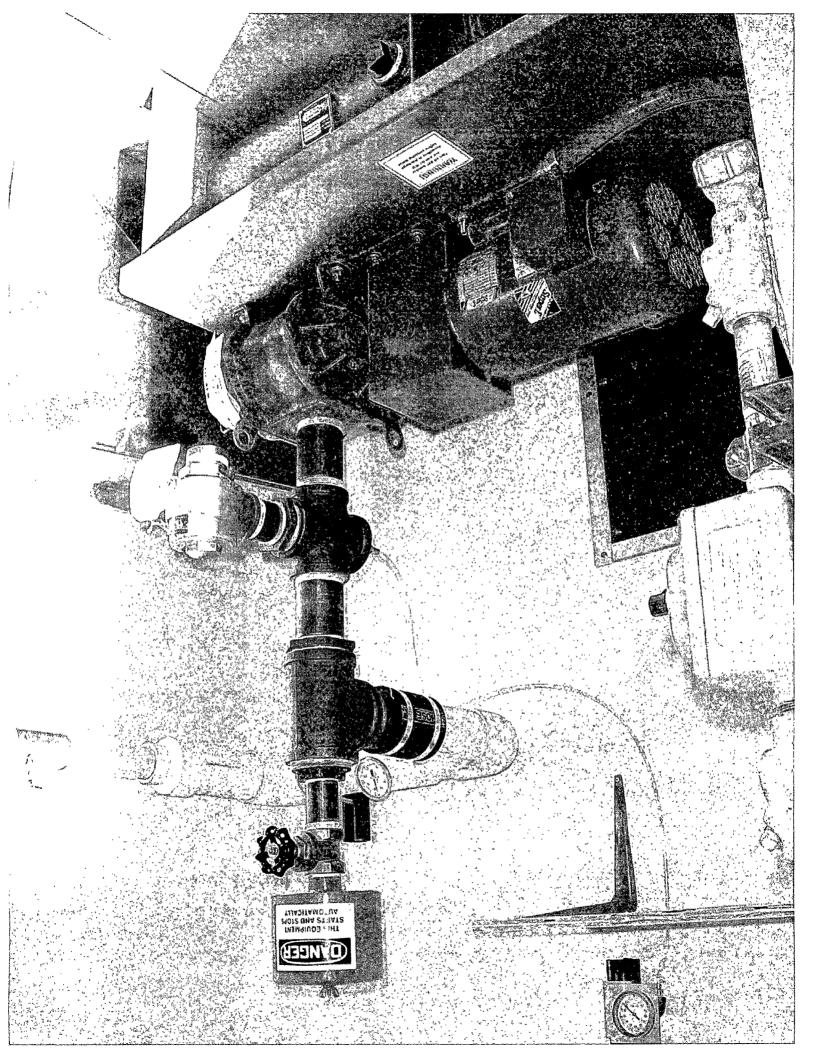
Note: In the event of an SVE blower motor fault event, the fault code PF will be displayed on the LED located on the SVE variable frequency drive. Before restarting the system, determine and correct the cause of the fault. Leave the H-O-A switch in the AUTO position and press the control panel reset button to clear the fault from VFD and restart the Blower. SEE CAUTIONS REGARDING MOTOR OVERLOADS IN SECTION 3.1

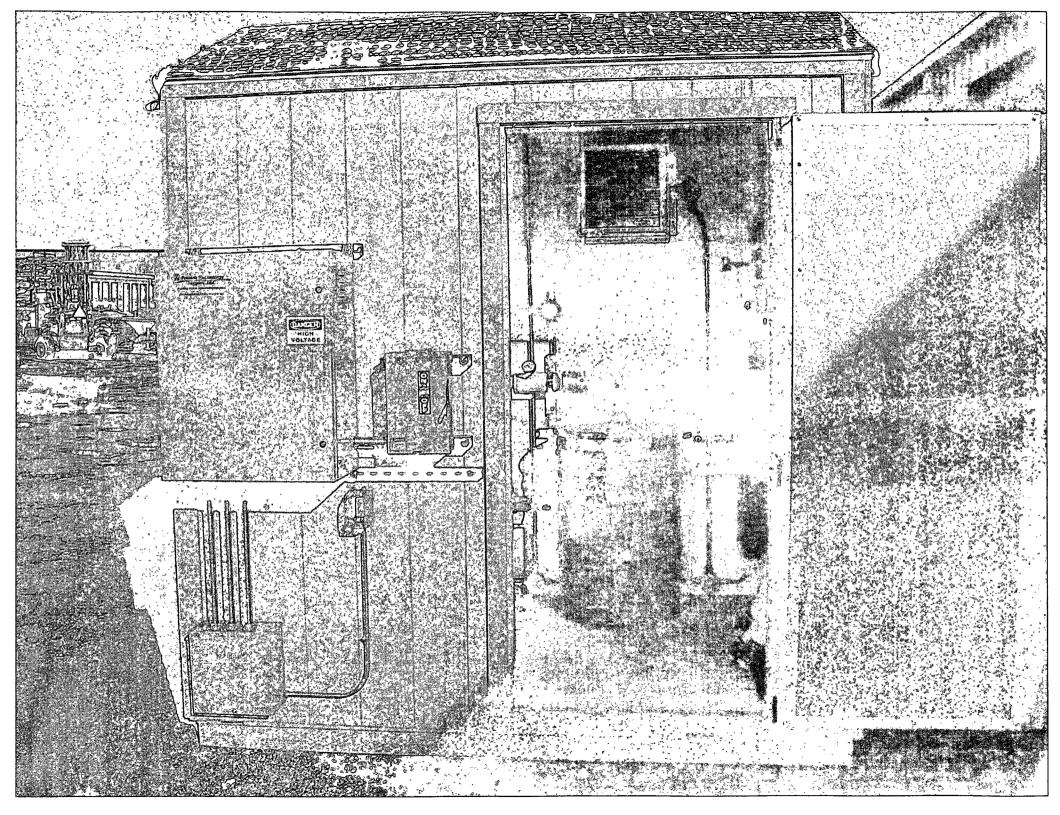
36 URAI: Variable Speed Performance

Dresser ROOTS



RH = 100.00% MW = 28.573 k = 1.392 Tin = 68 deg F


DESIGN: Speed = 2413 RPM


System Inlet P = 5 in Hg Vac (Inlet P Loss = 0.4 PSI)

STD: RH = 36% T = 68 deg F P = 14.7 PSIA

Appendix E Release Notification and Corrective Action (Form C-141)

<u>District I</u> 1625 N French Dr., Hobbs, NM 88240 District II District III
1000 Rio Brazos Road, Aztec, NM 87410

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Revised October 10, 2003

Form C-141

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

			Rele	ease Notific	ation	and Co	rrective A	ction	1	,			
						OPER	TOR		x Initi	al Report		Final Report	
Name of Co				7.60060			nille Bryant						
		Hwy 82, Lov		NM 88260			No. 505-441-096						
Facility Nat	me E.K. Qu	ieen Pearce	nen			часниу тур	e 6"Steel Pipeli	ne	1				
Surface Ow	ner SLO			Mineral O	wner				Lease N	٧о.			
LOCATI							LEASE						
Unit Letter O	Section 16	Township 18S	Range 34E	Feet from the	North/	South Line	Feet from the	East/V	Vest Line	County Lea			
		Latitud	<u>32° 44</u>	31.2"		Longitude	103° 33' 46.6'						
				NAT	URE	OF RELI	EASE						
Type of Rele							Release 10 barrel			Recovered 0			
Source of Re	lease 6" Stee	el Pipeline				Date and H 05/06/2008	our of Occurrence @ 11:00	е		Hour of Disc 08 @ 11:40	covery		
Was Immedia	ate Notice G		Yes 🗍	No Not Rec	mired	If YES, To Larry John			l l				
By Whom? C	amille Brya		163	140 🔲 140t KG		1 -	our 05/06/2008 (@ 16 6 6			*		
Was a Water						If YES, Vo	lume Impacting the	he Wate	ercourse.	4 404		15	
			Yes 🛚	No					Mar	16.2	008	3	
If a Watercou	irse was Imp	oacted, Descri	be Fully.*						1 111	101			
inch steel gat	hering line tl	hat produces a	pproxima	n Taken Internal contelly 600 barrels of \$\ \text{S}\$ content of \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	f oil per	day. The pr	essure on the line	sulted in	release of eximately	90 psi and the	oil. T	he line is a 6-	
				en.* The impacted			,						
regulations al public health should their o	I operators a or the environment in ad	are required to conment. The a live failed to a dittion, NMO	report an acceptance dequately CD accept	is true and compled/or file certain re e of a C-141 report investigate and re tance of a C-141 r	lease no rt by the mediate	tifications ar NMOCD ma contamination	d perform correct arked as "Final Re on that pose a thre	tive acti eport" de eat to gr	ons for rele oes not reli ound water	eases which i leve the oper r, surface wa	may en ator of ter, hui	ndanger Tiability man health	
Signature amille Brunt						OIL CONSERVATION DIVISION							
Printed Name: Camille Bryant						Approved by	District Superior	NTAL E	ENGINEER				
Title: Remedi	ation Coord	inator				Approval Date	:5.8.08	E	Expiration	Date: 7.8	<u> 3.0</u>	8	
E-mail Addre	ss: cjbryant@	@paalp.com				Conditions of		Attached					
Date: 05/08/2		s If Necessa		Phone:505-441-09	965					1RF	۶. رو	353	