<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II
1301 W. Grand Avenue, Artesia, NM 88210
District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Revised October 10, 2003

Form C-141

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

30-015	10822	2.	Rele	ease Notific	catio	n and Co	rrective A	ction	l			
15EB 082	913069	97				OPERA	ro <u>r</u>		☐ Initi	al Report	\boxtimes	Final Report
Name of Co			ting LLC	; <u> </u>		Contact Ka	nicia Carrillo					
				nd, Texas 7970	1	Telephone No. (432) 685-4332						
Facility Nan	ne GJ CC	OOP Unit #4	17			Facility Typ	e Injection we	<u> </u>				
Surface Own	ner			Mineral ()wner				Lease N	No. 30-015	-1082	2
				LOCA		N OF REI	LEASE					
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/V	Vest Line	County		
<u>c</u>	21	17S	29E	660	North	1	1980	West		Eddy		
]	Latitude N 32°	49.52°	7 Longitud	e W 104°04.91	7				
				NAT	URE	OF REL						
Type of Rele		/or produced	water				Release 20 bbls			Recovered 8		
Source of Re	lease						Iour of Occurrenc 9/30/08 5:30 AM		Date and 9/30/08/3	Hour of Dis	covery	
Was Immedia	ate Notice (If YES, To	Whom?		21001000	P411		
1		\boxtimes	Yes [No 🗌 Not R	equired _	Mike Brat	tcher					
By Whom?							Iour 10/1/0 8 9:1					
Was a Watercourse Reached? ☐ Yes ☒ No						If YES, Vo	olume Impacting t	he Wate	ercourse.			
If a Watercou	irse was Im											
	irse was in	pacted, Besch	ioc i uny.									
N/A												
	CD .111	em and Reme	11.1 A -4!	77-1 *								
Describe Cau	ise of Probl	em and Keme	diai Actio	n raken."								
Contractor tr	uck turned	too sharp and	ran over s	teel swing in flov	vline. F	Replaced the d	amage piece of flo	wline.				
											_	
Describe Are	a Affected	and Cleanup	Action Tal	ken.*		1 - A 11 1: austria	were pick up and s			- CC t - d - m	41	1
							were pick up and s RAL and hauled					
submitted to								1 -1	•			
									_			
							knowledge and und perform correct					
							na perform correct parked as "Final R					
should their o	perations h	nave failed to	adequately	investigate and	remedia	ite contaminat	ion that pose a thr	eat to g	round wate	r, surface w	ater, hu	ıman health
or the environ				otance of a C-141	report	does not reliev	ve the operator of	respons	ibility for o	compliance	with an	y other
icaciai, state,		ws und/or mg	anations.				OIL CON	SERV	ATION	DIVISIO)N	
C: cm observe	////	1 /home						1,				
Signature:	17001	The C) 			Annroyad h	Signed Byupervis		Benerel	مصور		
Printed Name	e: Ike Tavai	rez				Approved by	- seamer Aninci Ale	<u>vi., </u>	JI-MIVA.		_	
Title: Project	Manager					Approval Dá	JUL 2 3 200)9	Expiration	Date: NA	·	
E-mail Addre	ess: ike.tava	arez@tetratecl	h.com			Conditions of	f Approval: NA					
Date:	1-13-	29		: (432) 682-4559			11			Attached	1 📙	

July 13, 2009

Mr. Mike Bratcher New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1301 W. Grand Ave. Artesia. New Mexico 88210

Re: 2 RP-253, Assessment and Closure Report for the COG Operating LLC, GJ West COOP Unit Well #47, Located in Unit Letter C, Section 21, Township 17 South, Range 29 East, Eddy County, New Mexico.

Dear Mr. Bratcher:

Tetra Tech, Inc. was contacted by COG Operating, LLC to investigate a spill that occurred at the GJ West COOP Unit #47 Well. The well is located in Unit Letter C, Section 21, Township 17 South, Range 29 East, Eddy County, New Mexico. The site coordinates are N 32°49.527, W 104°04.917. The Site is shown on Figures 1 and 2.

Background

The spill was discovered on September 30, 2008. According to the C-141 (Initial) included in Appendix A, the spill was caused when a contractor truck turned a corner too sharply on the lease road and ran over a steel swing in the flowline. The spill ran south along the lease road and then turned east along and beside the lease road. Approximately 20 barrels of oil and produced water was spilled and 8 barrels were recovered. The spill location is shown on Figure 3.

Groundwater and Regulatory

A water well located in Section 22, Township 18 South, Range 29 East, was measured using a steel tape to gauge the depth to water. The water well was not in use at the time and the static depth to water was measured at approximately 82.0' below ground surface (bgs).

A risk-based evaluation was performed for the Site in accordance with the NMOCD Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons

(TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene and xylene). Based on the regional groundwater data, the proposed RRAL for TPH is 1,000 mg/kg.

Assessment and Corrective Action

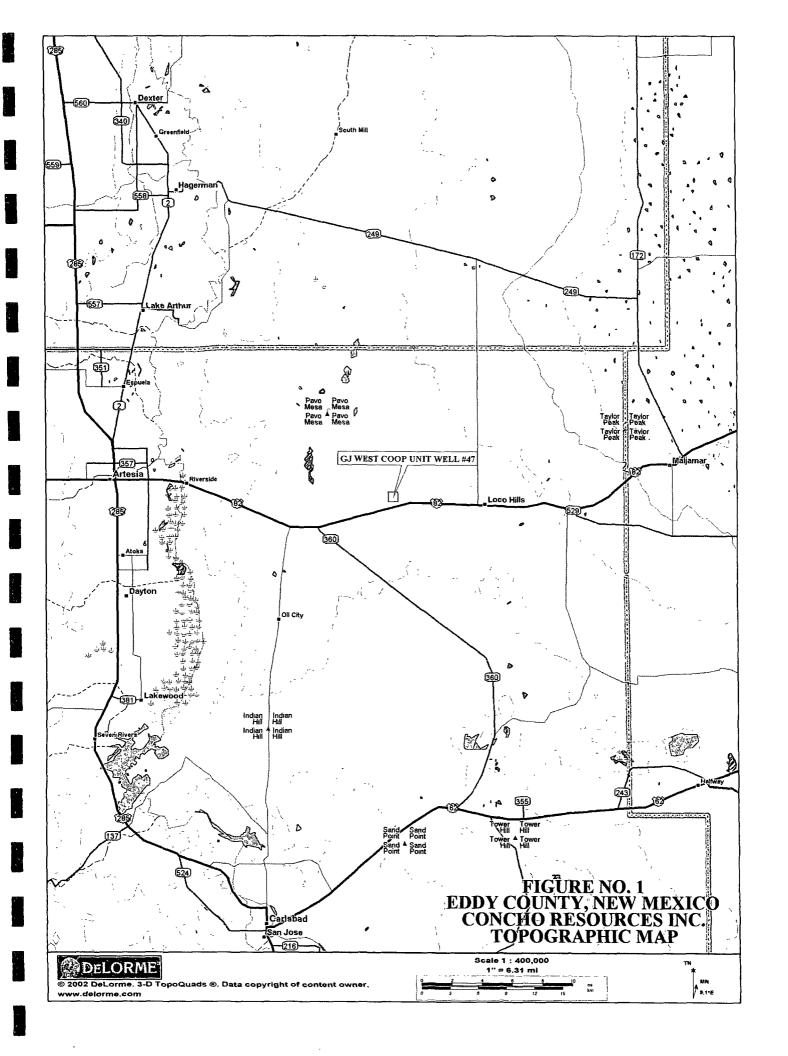
On January 20, 2009, Tetra Tech personnel inspected the site and collected samples. A total of three (3) auger holes were placed in the impacted area. Samples were collected to depths of 0.5' (AH-1 and AH-3) and 1.5' (AH-2). Deeper samples could not be collected with the hand auger due to a dense caliche layer. The laboratory report and chain of custody are enclosed in Appendix C. The analytical results are summarized in Table 1.

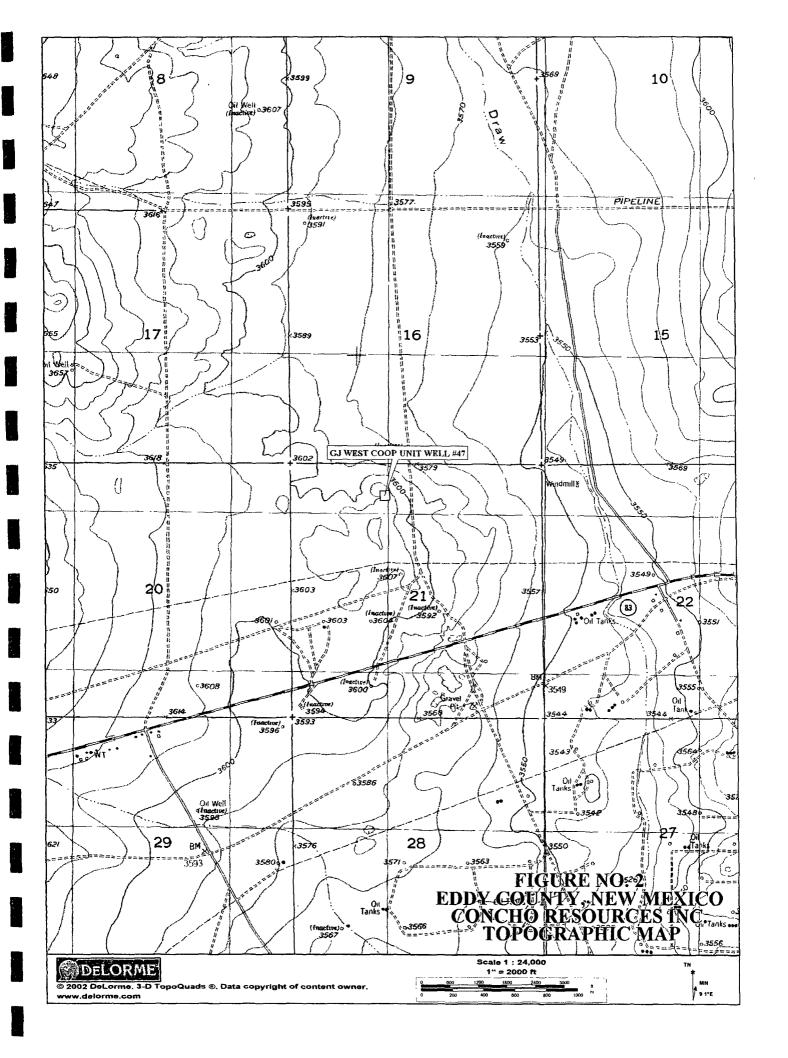
Referring to Table 1, AH-2 and AH-3, exceeded the RRAL for TPH in the 0-`1.0' and 0-0.5' samples, respectively. The TPH impact was define in AH-2 at 1.0' to less than the RRAL. Chloride concentrations were elevated in all three shallow samples and were only defined in AH-2. Based on the results, COG supervised the removal of 1.0' of impacted soil from the areas around the three auger holes. The soils were hauled offsite for proper disposal.

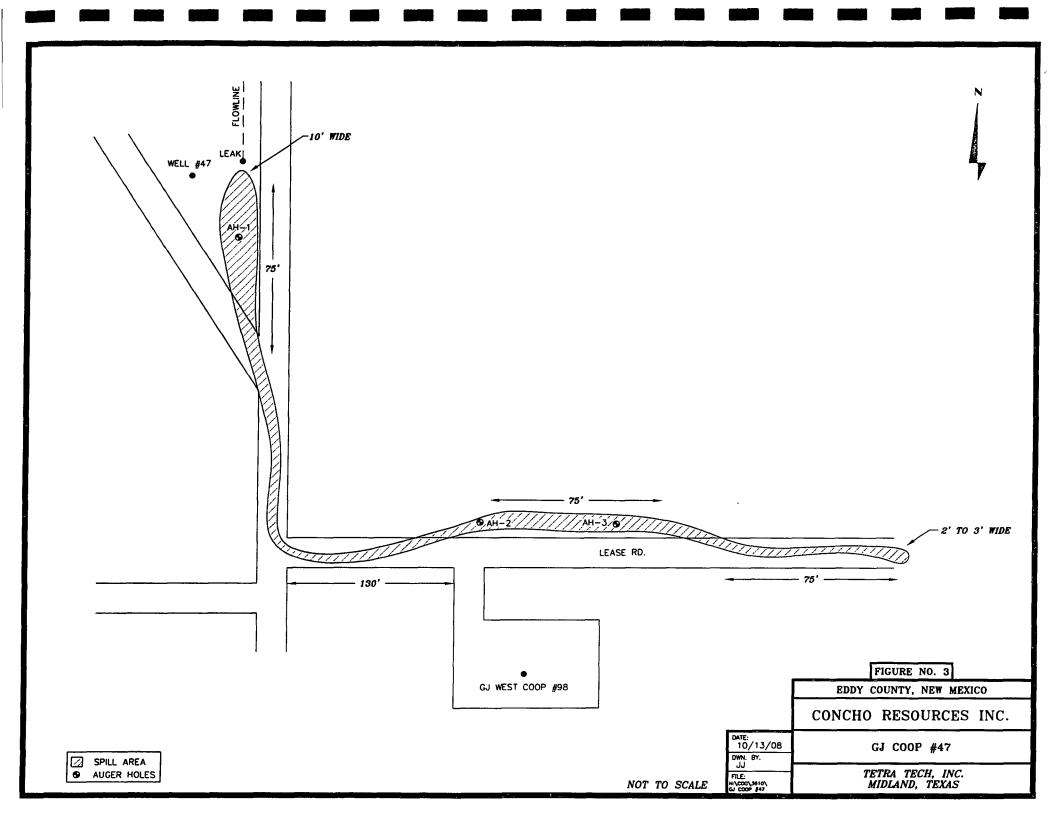
On February 12, 2009, Tetra Tech personnel supervised the installation of two (2) backhoe trenches to define the vertical extents of the chloride impact in the vicinity of AH-1 and AH-3. Referring to Table 1, the chloride concentrations were 323 mg/kg at 1.0' in the vicinity of AH-1 (Trench T-2) and <200 at 2.0' in the vicinity of AH-3 (Trench T-1). Additionally, TPH was below the RRAL in the vicinity of AH-3 at 1.0'.

Conclusions

The impacted area was defined and the impacted soils above the RRAL were excavated and hauled offsite for disposal. No TPH concentrations exceed the RRAL, and chloride concentrations range from <200 mg/Kg to 323 mg/Kg. Based upon the results of the assessment work and remediation performed at this site, COG requests closure of this site. The final C-141 is enclosed in Appendix B. If you have any question or comments concerning the assessment or the activities performed at the Site, please call me at (432) 682-4559.


Respectfully submitted,


Tetra Tech Inc.


Tim Reed, P.G.

Senior Project Manager

FIGURES

TABLE

............

Table 1 COG G J West Co-op Unit Well #47 Eddy County, New Mexico

Date	Sample	Soil	Status	•	TPH (mg/kg	g)	Benzene	Toluene	Ethlybenzene	Xylene	Chloride
Sampled	Depth (ft)	In-Situ	Removed	DRO	GRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1/20/2009	0-0.5		Х	<50.0	<1.00	<50.0	-	•	-	-	858
2/12/2009	1.0	X			-	-	_	-	-	_	323
1/20/2009	0-1	* * *	Х	2,920	89.9	3,009.9	<0.0200	<0.0200	0.175	0.618	1,190
1/20/2009	1-1.5	X		138	38.7	176.7	-	-	-		<200
1/20/2009	0-0.5		Х	4,620	262	4,882	<0.0500	0.326	0.809	2.37	1,200
2/12/2009	1.0	Χ		<50.0	<1.00	<50.0	-	-	-	-	323
2/21/2009	2.0	Х		-	-	_	-	-	-	-	<200
	Sampled 1/20/2009 2/12/2009 1/20/2009 1/20/2009 1/20/2009 2/12/2009	Sampled Depth (ft) 1/20/2009 0-0.5 2/12/2009 1.0 1/20/2009 0-1 1/20/2009 1-1.5 1/20/2009 0-0.5 2/12/2009 1.0	Sampled Depth (ft) In-Situ 1/20/2009 0-0.5 2/12/2009 1.0 X 1/20/2009 0-1 X 1/20/2009 1-1.5 X 1/20/2009 0-0.5 X 2/12/2009 1.0 X	Sampled Depth (ft) In-Situ Removed 1/20/2009 0-0.5 X 2/12/2009 1.0 X 1/20/2009 0-1 X 1/20/2009 1-1.5 X 1/20/2009 0-0.5 X 2/12/2009 1.0 X	Sampled Depth (ft) In-Situ Removed DRO 1/20/2009 0-0.5 X <50.0	Sampled Depth (ft) In-Situ Removed DRO GRO 1/20/2009 0-0.5 X <50.0	Sampled Depth (ft) In-Situ Removed DRO GRO Total 1/20/2009 0-0.5 X <50.0	Sampled Depth (ft) In-Situ Removed DRO GRO Total (mg/kg) 1/20/2009 0-0.5 X <50.0	Sampled Depth (ft) In-Situ Removed DRO GRO Total (mg/kg) (mg/kg) 1/20/2009 0-0.5 X <50.0	Sampled Depth (ft) In-Situ Removed DRO GRO Total (mg/kg) (mg/kg) (mg/kg) 1/20/2009 0-0.5 X <50.0	Sampled Depth (ft) In-Situ Removed DRO GRO Total (mg/kg) (mg/kg) (mg/kg) (mg/kg) 1/20/2009 0-0.5 X <50.0

⁽⁻⁾ Not Analyzed

APPENDIX A NMOCD FORM C-141

District 1
1625 N French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

OCT 0 1 2008

Submit 2 Copies to appropriate
District Office in accordance
with Rule 116 on back
side of form

OCD-ARTESIA

Release Notification and Corrective Action OPERATOR Initial Report **Final Report** 229137 Contact Kanicia Carrillo Name of Company COG OPERATING LLC Address 550 W. Texas, Suite 1300 Midland, TX 79701 Telephone No. 432-685-4332 Facility Name - GJ WEST COOP UNIT #47 Facility Type-Injection well Surface Owner Mineral Owner Lease No.API# 30-015-10822 30-015-10822 LOCATION OF RELEASE Unit Letter Township Feet from the North/South Line Feet from the East/West Line Section Range County 17-S 660 North West Eddy C Latitude Longitude NATURE OF RELEASE Type of Release- Water/oil Volume of Release- 20bbls Volume Recovered- 8bbis Date and Hour of Occurrence-Source of Release-Date and Hour of Discovery Flowline 9/30/08 5:30am 9/30/08 3:00 pm Was Immediate Notice Given? If YES, To Whom? Mike Bratcher Date and Hour 10/01/2008 9:10 am By Whom? Kanicia Carrillo Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. Yes No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Contractor Truck turned corner too sharp and ran over steel swing in flowline. We replaced the damaged piece of flowline. Describe Area Affected and Cleanup Action Taken.* Leak was contained to side of lease road and middle of lease road. All liquid was picked up and sand was spread on affected area on the road. Tetra Tech will submit soil samples and our final report. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Remediation Actions to be completed and Signature: Final C-141 submitted with confirmation Approved by District Supervisor: analyses/documentation on or before the Printed Name: Kanicia Carrillo TGumby SB Expiration Date. Expiration Date: # 12-18-08 Title: Regulatory Analyst Approval Date: 10-17-08 Conditions of Approval: STIPHLATIONS E-mail Address: kcarrillo@conchoresources.com Attached [Within 30 days, on or before 11-18-08. completion of 10/01/2008 Phone: 432-685-4332 a remediation work plan based on defineation should be 2RP - ス53 * Attach Additional Sheets If Necessary finalized and submitted for approval to the Division summarizing all actions taken and/or to be taken to mitigate

environmental damage

Notify OCD 48 hours prior to obtaining samples where analyses are to be presented to OCD

APPENDIX B GROUNDWATER DATA

Water Well Data Average Depth to Groundwater (ft) COG - GJ Co-op Unit Well #47, Eddy County, New Mexico

	16 5	South_		8 East			16 Sc	outh	2	9 East			16 3	South	3	0 East	
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	
	8	9	10	11	12	7	8	9 .	10	11	12	7	8	9	10	11	+
	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	1
	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	1
)	29	28	27	26	25	110 30	29	28	27	26	25	30	29	28	27	26	+
	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	
	17 \$	South	2	28 East		<u></u>	17 Sc	outh		9 East		<u> </u>	17 :	South	3	0 East	
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	
3	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	1
ı	20	21	22 79	23	24	19	20	21	22 80	23	24	19	20	21	22	23	1
)	29	28	27	26	25	30	29 210	SITE 28	27	26	25	30	29	28	27	26	1
	32	33	34 53	35	36	31	208 32	33	34	35	36	31	32	33	34	35	1
	100	South		28 East			18 Se			29 Eas		<u> </u>	40	South		30 East	_
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	
3	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	
9	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	1
)	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	
1	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	-

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 121 Abandoned Waterwell (recently measured)

APPENDIX C SUMMARY REPORT February 3, 2009 Report Date: February 3, 2009 115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 1 of 2 Eddy Co., NM

Summary Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street Midland, TX 79705

Report Date: February 3, 2009

Work Order: 9012121

Project Location: Eddy Co., NM

COG/GJ West Co-op Unit Well #47 Project Name:

Project Number: 115-6403610

			Date	${f Time}$	Date
Sample	Description	Matrix	Taken	Taken	Received
185449	AH-1 0-0.5'	soil	2009-01-20	00:00	2009-01-21
185450	AH-2 0-1.0'	soil	2009-01-20	00:00	2009-01-21
185451	AH-2 1'-1.5'	soil	2009-01-20	00:00	2009-01-21
185452	AH-3 0-0.5'	soil	2009-01-20	00:00	2009-01-21

			TPH DRO	TPH GRO		
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	$_{ m GRO}$
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
185449 - AH-1 0-0.5'					< 50.0	<1.00
185450 - AH-2 0-1.0'	< 0.0200	< 0.0200	0.175	0.618	2920	89.9
185451 - AH-2 1'-1.5'					138	38.7
185452 - AH-3 0-0.5'	< 0.0500	0.326	0.809	2.37	4620	262

Sample: 185449 - AH-1 0-0.5'

Param	Flag	Result	${f Units}$	RL
Chloride		858	mg/Kg	4.00

Sample: 185450 - AH-2 0-1.0'

Param	Flag	Result	Units	RL
Chloride		1190	mg/Kg	4.00

Sample: 185451 - AH-2 1'-1.5'

Report Date: February 3, 2009 115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 2 of 2 Eddy Co., NM

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

Sample: 185452 - AH-3 0-0.5'

Param	Flag	Result	Units	RL
Chloride		1200	mg/Kg	4.00

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1

Lubbock, Texas 79424 El Paso, Texas 79922 Midland Texas 79703

800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

6015 Harns Parkway, Suite 110

Ft Worth, Texas 76132

432 • 689 • 6301 817 • 201 • 5260

E-Mail: lab@traceanalysis.com

Certifications

WBENC: 237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003

Kansas E-10317

T104704221-08-TX El Paso:

LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street Midland, TX, 79705

Report Date: February 3, 2009

Work Order: 9012121

Project Location: Eddy Co., NM

COG/GJ West Co-op Unit Well #47 Project Name:

Project Number: 115-6403610

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	${f Time}$	Date
Sample	Description	Matrix	Taken	Taken	Received
185449	AH-1 0-0.5'	soil	2009-01-20	00:00	2009-01-21
185450	AH-2 0-1.0'	soil	2009-01-20	00:00	2009-01-21
185451	AH-2 1'-1.5'	soil	2009-01-20	00:00	2009-01-21
185452	AH-3 0-0.5'	soil	2009-01-20	00:00	2009-01-21

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 15 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blair fefturch

Dr. Blair Leftwich, Director

Standard Flags

B - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project COG/GJ West Co-op Unit Well #47 were received by TraceAnalysis, Inc. on 2009-01-21 and assigned to work order 9012121. Samples for work order 9012121 were received intact at a temperature of 3.8 deg. C.

Samples were analyzed for the following tests using their respective methods.

		\mathbf{Prep}	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	48254	2009-01-29 at 11:17	56465	2009-01-29 at 11:17
Chloride (Titration)	SM 4500-Cl B	48078	2009-01-23 at 09:14	56291	2009-01-23 at 16:45
TPH DRO	Mod. 8015B	48081	2009-01-23 at 09:00	56255	2009-01-23 at 11:15
TPH GRO	S 8015B	48254	2009-01-29 at 11:17	56469	2009-01-29 at 11:17

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9012121 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47

Sample Preparation: 2009-01-23

Page Number: 4 of 15 Eddy Co., NM

Analytical Report

Sample: 185449 - AH-1 0-0.5'

Laboratory:

Midland

Chloride (Titration) Analysis:

QC Batch: 56291 Prep Batch: 48078 Analytical Method: Date Analyzed:

SM 4500-Cl B 2009-01-23

Prep Method: N/A Analyzed By: AR Prepared By: AR

RL

Flag Parameter Result Units Dilution RL858 Chloride mg/Kg 50 4.00

Sample: 185449 - AH-1 0-0.5'

Laboratory:

Midland

TPH DRO Analysis: QC Batch: 56255 Prep Batch: 48081

Analytical Method: Date Analyzed:

Mod. 8015B 2009-01-23 Sample Preparation: 2009-01-23

Prep Method: N/A Analyzed By: LD

LD

Prepared By:

RL

Flag Result Units Dilution RLParameter < 50.0 50.0 $\overline{\text{DRO}}$ mg/Kg

					Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		80.0	mg/Kg	1	100	80	10 - 250.4

Sample: 185449 - AH-1 0-0.5'

Midland Laboratory:

TPH GRO Analysis: QC Batch: 56469 Prep Batch: 48254

Analytical Method: S 8015B Date Analyzed: 2009-01-29 Sample Preparation: 2009-01-29

Prep Method: S 5035 Analyzed By: MEPrepared By: ME

Flag Result Dilution Parameter Units RLGRO <1.00 mg/Kg 1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.904	mg/Kg	1	1.00	90	75 - 117.2
4-Bromofluorobenzene (4-BFB)		0.700	mg/Kg	1	1.00	70	56 - 142.8

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 5 of 15 Eddy Co., NM

Sample: 185450 - AH-2 0-1.0'

Laboratory: Midland

Analysis: BTEX QC Batch: 56465 Prep Batch: 48254 Analytical Method: S 8021B
Date Analyzed: 2009-01-29
Sample Preparation: 2009-01-29

Prep Method: S 5035 Analyzed By: ME Prepared By: ME

RL

Parameter	Flag	Result	${f Units}$	Dilution	RL
Benzene		< 0.0200	mg/Kg	2	0.0100
Toluene		< 0.0200	mg/Kg	2	0.0100
Ethylbenzene		0.175	mg/Kg	2	0.0100
Xylene		0.618	mg/Kg	2	0.0100

					Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.93	mg/Kg	2	2.00	96	49 - 129.7
4-Bromofluorobenzene (4-BFB)		2.01	mg/Kg	2	2.00	100	45.2 - 144.3

Sample: 185450 - AH-2 0-1.0'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 56291 Prep Batch: 48078 Analytical Method: SM 4500-Cl B
Date Analyzed: 2009-01-23
Sample Preparation: 2009-01-23

Prep Method: N/A Analyzed By: AR Prepared By: AR

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		1190	mg/Kg	50	4.00

Sample: 185450 - AH-2 0-1.0'

Laboratory: Midland

Analysis: TPH DRO QC Batch: 56255 Prep Batch: 48081 Analytical Method: Mod. 8015B
Date Analyzed: 2009-01-23
Sample Preparation: 2009-01-23

Prep Method: N/A Analyzed By: LD Prepared By: LD

Parameter	Flag	Result	Units	Dilution	RL
DRO		2920	mg/Kg	1	50.0

Surrogate	\mathbf{Flag}	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	1	416	mg/Kg	1	100	416	10 - 250.4

¹High surrogate recovery due to peak interference.

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 6 of 15 Eddy Co., NM

Sample: 185450 - AH-2 0-1.0'

Laboratory: Midland

Analysis: TPH GRO QC Batch: 56469 48254 Prep Batch:

Analytical Method: S 8015B Date Analyzed: 2009-01-29 Sample Preparation: 2009-01-29

Prep Method: S 5035 Analyzed By: MEPrepared By: ME

RL

Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
GRO		89.9	mg/Kg	2	1.00

					\mathbf{Spike}	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.74	mg/Kg	2	2.00	87	75 - 117.2
4-Bromofluorobenzene (4-BFB)	2	3.28	mg/Kg	2	2.00	164	56 - 142.8

Sample: 185451 - AH-2 1'-1.5'

Laboratory: Midland

Chloride (Titration) Analysis:

QC Batch: 56291 Prep Batch: 48078 Analytical Method: Date Analyzed:

SM 4500-Cl B 2009-01-23 Sample Preparation: 2009-01-23

Prep Method: N/A Analyzed By: ARPrepared By: AR

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	m mg/Kg	50	4.00

Sample: 185451 - AH-2 1'-1.5'

Laboratory:

Midland

Analysis: TPH DRO QC Batch: 56255 Prep Batch: 48081

Analytical Method: Mod. 8015B Date Analyzed: 2009-01-23 Sample Preparation: 2009-01-23

Prep Method: N/A Analyzed By: LD Prepared By: LD

Parameter	Flag	Result	Units	Dilution	RL
DRO		138	mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		88.6	mg/Kg	1	100	89	10 - 250.4

²High surrogate recovery due to peak interference.

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 7 of 15 Eddy Co., NM

Sample: 185451 - AH-2 1'-1.5'

Laboratory: Midland

Analysis: TPH GRO QC Batch: 56469 Prep Batch: 48254 Analytical Method: S 8015B
Date Analyzed: 2009-01-29
Sample Preparation: 2009-01-29

Prep Method: S 5035 Analyzed By: ME Prepared By: ME

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		38.7	mg/Kg	1	1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.916	mg/Kg	1	1.00	92	75 - 117.2
4-Bromofluorobenzene (4-BFB)		0.780	mg/Kg	1	1.00	78	56 - 142.8

Sample: 185452 - AH-3 0-0.5'

Laboratory: Midland

Analysis: BTEX QC Batch: 56465 Prep Batch: 48254 Analytical Method: S 8021B
Date Analyzed: 2009-01-29
Sample Preparation: 2009-01-29

Prep Method: S 5035 Analyzed By: ME Prepared By: ME

RL

Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0500	mg/Kg	5	0.0100
Toluene		0.326	mg/Kg	5	0.0100
Ethylbenzene		0.809	mg/Kg	5	0.0100
Xylene		2.37	mg/Kg	5	0.0100

					\mathbf{Spike}	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		4.61	mg/Kg	5	5.00	92	49 - 129.7
4-Bromofluorobenzene (4-BFB)		5.58	mg/Kg	5	5.00	112	45.2 - 144.3

Sample: 185452 - AH-3 0-0.5'

Laboratory: Mi

Midland

Analysis: Chloride (Titration) QC Batch: 56291 Prep Batch: 48078 Analytical Method: SM 4500-Cl B Date Analyzed: 2009-01-23 Sample Preparation: 2009-01-23

Prep Method: N/A
Analyzed By: AR
Prepared By: AR

Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		1200	mg/Kg	50	4.00

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 8 of 15 Eddy Co., NM

Sample: 185452 - AH-3 0-0.5'

Laboratory: Midland

Analysis: TPH DRO QC Batch: 56255 Prep Batch: 48081 Analytical Method: Mod. 8015B Date Analyzed: 2009-01-23 Sample Preparation: 2009-01-23 Prep Method: N/A Analyzed By: LD Prepared By: LD

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		4620	mg/Kg	5	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane	3	845	mg/Kg	5	100	845	10 - 250.4

Sample: 185452 - AH-3 0-0.5'

Laboratory: Midland

Analysis: TPH GRO QC Batch: 56469 Prep Batch: 48254 Analytical Method: S 8015B
Date Analyzed: 2009-01-29
Sample Preparation: 2009-01-29

Prep Method: S 5035 Analyzed By: ME Prepared By: ME

RL

Parameter	Flag	Result	Units	Dilution	m RL
GRO		262	mg/Kg	5	1.00

				\mathbf{Spike}	Percent	Recovery
Flag	Result	Units	Dilution	Amount	Recovery	Limits
	4.28	mg/Kg	5	5.00	86	75 - 117.2
4	8.10	$_{ m mg/Kg}$	5	5.00	162	56 - 142.8
	Flag	4.28	4.28 mg/Kg	4.28 mg/Kg 5	Flag Result Units Dilution Amount 4.28 mg/Kg 5 5.00	Flag Result Units Dilution Amount Recovery 4.28 mg/Kg 5 5.00 86

Method Blank (1) QC Batch: 56255

QC Batch: 56255 Prep Batch: 48081 Date Analyzed: 2009-01-23 QC Preparation: 2009-01-23

Analyzed By: LD Prepared By: LD

MDL

Parameter	Flag	Result	${\bf Units}$	m RL
DRO		<12.0	mg/Kg	50

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		61.3	${ m mg/Kg}$	1	100	61	30.9 - 146.4

³High surrogate recovery due to peak interference.

⁴High surrogate recovery due to peak interference.

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 9 of 15 Eddy Co., NM

Method Blank (1)

QC Batch: 56291

QC Batch: Prep Batch: 48078

56291

Date Analyzed: 2009-01-23 QC Preparation: 2009-01-23 Analyzed By: AR Prepared By: AR

MDL

Flag Result Units RLParameter Chloride < 2.01 mg/Kg 4

Method Blank (1)

QC Batch: 56465

QC Batch: 56465 Prep Batch: 48254 Date Analyzed: 2009-01-29 QC Preparation: 2009-01-29 Analyzed By: ME

Prepared By: ME

MDL

Result RLParameter Flag Units Benzene < 0.00800 mg/Kg 0.01 Toluene < 0.00800 mg/Kg 0.01 Ethylbenzene < 0.00820 mg/Kg 0.01Xylene < 0.00960 mg/Kg 0.01

Surrogate	Flag	Result	Units	Dilution	${f Spike} \ {f Amount}$	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.960	mg/Kg	1	1.00	96	65.6 - 130.6
4-Bromofluorobenzene (4-BFB)		0.731	mg/Kg	1	1.00	73	51.9 - 128.1

Method Blank (1)

QC Batch: 56469

QC Batch: 56469 Prep Batch: 48254

Date Analyzed: 2009-01-29 Analyzed By: MEME

GRO

QC Preparation: 2009-01-29 Prepared By:

Parameter Flag

MDL

Result RLUnits < 0.171mg/Kg

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.922	mg/Kg	1	1.00	92	58.3 - 129.3
4-Bromofluorobenzene (4-BFB)		0.607	mg/Kg	1	1.00	61	57 - 124.9

Laboratory Control Spike (LCS-1)

QC Batch:

56255

Date Analyzed:

2009-01-23

Analyzed By: LD Prepared By: LD

Prep Batch: 48081

QC Preparation: 2009-01-23

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 10 of 15

Eddy Co., NM

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	237	mg/Kg	1	250	<12.0	95	27.8 - 152.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		LCSD			Spike	Matrix		Rec.		RPD
Param	•	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		242	mg/Kg	1	250	<12.0	97	27.8 - 152.1	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			\mathbf{Spike}	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	73.0	74.1	mg/Kg	1	100	73	74	38 - 130.4

Laboratory Control Spike (LCS-1)

QC Batch:

56291

Date Analyzed:

2009-01-23

Analyzed By: AR Prepared By: AR

Prep Batch: 48078

QC Preparation: 2009-01-23

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Limit Rec. 98.2 Chloride mg/Kg 1 100 < 2.01 98 85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			\mathbf{Spike}	Matrix		Rec.		RPD
Param	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	99.7	mg/Kg	1	100	<2.01	100	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 48254

56465

Date Analyzed:

QC Preparation:

2009-01-29

2009-01-29

Analyzed By: ME Prepared By: ME

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit 0.761 Benzene mg/Kg 72.7 - 129.81 1.00 < 0.00800 76 0.903 Toluene mg/Kg 1.00 90 71.6 - 129.6 1 < 0.00800 Ethylbenzene 1.20 mg/Kg 1 1.00 < 0.00820 120 70.8 - 129.7 3.68 1 Xylene mg/Kg 3.00 < 0.00960 123 70.9 - 129.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. continued ...

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 11 of 15 Eddy Co., NM

control spikes continued ...

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.800	mg/Kg	1	1.00	< 0.00800	80	72.7 - 129.8	5	20
Toluene	0.956	mg/Kg	1	1.00	< 0.00800	96	71.6 - 129.6	6	20
Ethylbenzene	0.997	mg/Kg	1	1.00	< 0.00820	100	70.8 - 129.7	18	20
Xylene	3.03	mg/Kg	1	3.00	< 0.00960	101	70.9 - 129.4	19	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.903	0.943	mg/Kg	1	1.00	90	94	65.9 - 132
4-Bromofluorobenzene (4-BFB)	1.08	0.812	mg/Kg	1	1.00	108	81	55.2 - 128.9

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:

56469 48254

9 Date Analyzed: 4 QC Preparation:

2009-01-29 2009-01-29 Analyzed By: ME Prepared By: ME

LCS Spike Matrix Rec. Result Limit Units Dil. Amount Result Param Rec. GRO 7.78 mg/Kg 10.0 < 0.17178 70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	7.83	mg/Kg	1	10.0	< 0.171	78	70 - 130	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	$rac{ ext{LCS}}{ ext{Result}}$	$egin{array}{c} ext{LCSD} \\ ext{Result} \end{array}$	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	0.982	0.937	mg/Kg	1	1.00	98	94	70 - 130
4-Bromofluorobenzene (4-BFB)	0.728	0.744	mg/Kg	1	1.00	73	74	70 - 130

Matrix Spike (MS-1) Spiked Sample: 185481

QC Batch: 56255 Prep Batch: 48081 Date Analyzed: 2009-01-23 QC Preparation: 2009-01-23 Analyzed By: LD Prepared By: LD

continued ...

Report Date: February 3, 2009 115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 12 of 15 Eddy Co., NM

matrix spikes continued ...

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	216	mg/Kg	1	250	126.49	36	18 - 179.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	213	mg/Kg	1	250	126.49	35	18 - 179.5	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	80.9	77.0	mg/Kg	1	100	81	77	34.1 - 158

Matrix Spike (MS-1) Spiked Sample: 185645

QC Batch: 56291 Prep Batch: 48078 Date Analyzed: 2009-01-23 QC Preparation: 2009-01-23 Analyzed By: AR Prepared By: AR

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
Chloride	6690	mg/Kg	50	5000	1630	101	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	Limit
Chloride	6610	mg/Kg	50	5000	1630	100	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 185904

QC Batch: 56465 Prep Batch: 48254 Date Analyzed: 2009-01-29 QC Preparation: 2009-01-29

Analyzed By: ME Prepared By: ME

	MS			Spike	Matrix		Rec.
Param	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit
Benzene	0.894	mg/Kg	1	1.00	< 0.00800	89 -	58.6 - 165.2
Toluene	1.08	mg/Kg	1	1.00	0.1169	96	64.2 - 153.8
Ethylbenzene	1.14	mg/Kg	1	1.00	< 0.00820	114	61.6 - 159.4
Xylene	3.44	mg/Kg	1	3.00	< 0.00960	115	64.4 - 155.3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 13 of 15 Eddy Co., NM

Param	$\begin{array}{c} \mathbf{MSD} \\ \mathbf{Result} \end{array}$	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Benzene	0.864	mg/Kg	1	1.00	< 0.00800	86	58.6 - 165.2	3	20
Toluene	1.04	mg/Kg	1	1.00	0.1169	92	64.2 - 153.8	4	20
Ethylbenzene	1.07	mg/Kg	1	1.00	< 0.00820	107	61.6 - 159.4	6	20
Xylene	3.27	mg/Kg	1	3.00	< 0.00960	109	64.4 - 155.3	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.942	0.942	mg/Kg	1	1	94	94	76 - 127.9
4-Bromofluorobenzene (4-BFB)	0.991	1.06	mg/Kg	1	1	99	106	72 - 127.8

Matrix Spike (MS-1) Spiked Sample: 185450

QC Batch: Prep Batch: 48254

56469

Date Analyzed:

2009-01-29 QC Preparation: 2009-01-29

Analyzed By: ME Prepared By: ME

		MS			Spike	Matrix		Rec.
Param		Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit
GRO	5	120	mg/Kg	2	20.0	87.9226	160	22.3 - 134.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec .		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	\mathbf{RPD}	Limit
GRO	6	142	mg/Kg	2	20.0	87.9226	270	22.3 - 134.6	17	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)		1.97	1.64	mg/Kg	2	2	98	82	68.4 - 113.1
4-Bromofluorobenzene (4-BFB)	7 8	3.16	3.44	mg/Kg	2	2	158	172	66.7 - 134.3

Standard (ICV-1)

QC Batch: 56255

Date Analyzed: 2009-01-23

Analyzed By: LD

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	250	100	85 - 115	2009-01-23

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS to demonstrate analysis is under control.

⁶Matrix spike recovery out of control limits due to peak interference. Use LCSD to demonstrate analysis is under control.

⁷High surrogate recovery due to peak interference.

⁸High surrogate recovery due to peak interference.

Report Date: February 3, 2009 115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 14 of 15 Eddy Co., NM

Standard (CCV-1)

QC Batch: 56255

Date Analyzed: 2009-01-23

Analyzed By: LD

			\mathbf{CCVs}	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
$\overline{\mathrm{D}\mathrm{RO}}$		mg/Kg	250	235	94	85 - 115	2009-01-23

Standard (CCV-2)

QC Batch: 56255

Date Analyzed: 2009-01-23

Analyzed By: LD

			$rac{ ext{CCVs}}{ ext{True}}$	$\begin{array}{c} { m CCVs} \\ { m Found} \end{array}$	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	238	95	85 - 115	2009-01-23

Standard (ICV-1)

QC Batch: 56291

Date Analyzed: 2009-01-23

Analyzed By: AR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	\mathbf{Date}
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	101	. 101	85 - 115	2009-01-23

Standard (CCV-1)

QC Batch: 56291

Date Analyzed: 2009-01-23

Analyzed By: AR

			CCVs	\mathbf{CCVs}	CCVs	Percent	
			\mathbf{True}	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.7	99	85 - 115	2009-01-23

Standard (ICV-1)

QC Batch: 56465

Date Analyzed: 2009-01-29

Analyzed By: ME

			ICVs	ICVs	\mathbf{ICVs}	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	$\mathbf{Analyzed}$
Benzene		mg/Kg	0.100	0.0856	86	85 - 115	2009-01-29
Toluene		mg/Kg	0.100	0.102	102	85 - 115	2009-01-29

 $continued \dots$

115-6403610

Work Order: 9012121 COG/GJ West Co-op Unit Well #47 Page Number: 15 of 15 Eddy Co., NM

standard continued ...

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Ethylbenzene		mg/Kg	0.100	0.104	104	85 - 115	2009-01-29
Xylene	···	mg/Kg	0.300	0.293	98	85 - 115	2009-01-29

Standard (CCV-1)

QC Batch: 56465

Date Analyzed: 2009-01-29

Analyzed By: ME

			CCVs	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param .	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0910	91	85 - 115	2009-01-29
Toluene		mg/Kg	0.100	0.108	108	85 - 115	2009-01-29
Ethylbenzene		mg/Kg	0.100	0.111	111	85 - 115	2009-01-29
Xylene		mg/Kg	0.300	0.339	113	85 - 115	2009-01-29

Standard (ICV-1)

QC Batch: 56469

Date Analyzed: 2009-01-29

Analyzed By: ME

			ICVs True	$\begin{array}{c} \textbf{ICVs} \\ \textbf{Found} \end{array}$	$\begin{array}{c} {\bf ICVs} \\ {\bf Percent} \end{array}$	Percent Recovery	Date
Param	Flag	${f Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
$\overline{\text{GRO}}$		mg/Kg	1.00	0.890	89	85 - 115	2009-01-29

Standard (CCV-1)

QC Batch: 56469

Date Analyzed: 2009-01-29

Analyzed By: ME

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
$\overline{\text{GRO}}$		mg/Kg	1.00	1.01	101	85 - 115	2009-01-29

Analysis	Request	of Chain of Custo	dv R	3C	orc	1						ſ	PAGE	=	$\overline{\bot}$		OF:			
						······································	\mid			(0				REQU fy Me		No.)				
		TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946					15 (Ext. to C35)	1 1	Cd Vr Pd Hg Se								TAS	3		
CLIENT NAME: COG		SITE MANAGER: Ike Tavarez	NERS		ESERV METH		TX1005		8 8			60/624	20/02				Ha of	i		
PROJECT NO.: 115-640 36 10	PROJECT NAME	West COOP Unit Well #47	CONTAI				A SE	il I.	s Ag As	Sa	Coledina	3240/82	608 608	8	ö	Agr)	tos) e/Catior	200		
LAB I.D. NUMBER DATE TIME	$ \times \cdot Ed$	Y County, IVM SAMPLE IDENTIFICATION	NUMBER OF CONTAINERS	HCL	ICE	NONE	BTEX 8021By	PAH 8270	TCLP Metals Ag	TCLP Volatil	RCI	GC.MS Vol. 8240/8260/624	GC.MS Sem PCB's 8080/	Pest. 808/60	Chlorides Gamma Spec.	Alpha Beta (Air)	PLM (Asbestos) Maior Anions/Cations. pH. TDS	Inspec		
185447/120/09	S X AH	-1 0-0.5'	1		Х)								X	П	T	\prod		T
450 1/20/09	S X AH	-1 0-0.5' -2 0-1.0' -2 1'-1.5'	1		χ					П			T		丌	П	1	\prod		T
45 1/20/09	S X AH	-2 1'-1.5'	1		Х									7	X			\prod		T
4521/20/09		-3 0-0.51	1		χ		$ \rangle$								X					
															\perp					
																	\perp			
																Ш	\perp			
														Ш						
RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	Date: Time: Date:	Y: \$0 RESERVED BY: (Signature)		Dat Tim Dat	ie:	110:50	27	SAN	PLED Ay 7 PLES	BY: (Pr	int & In	itial) Circle	8PT			Tin	ne: _//	72.17	09	_
RELINQUISHED BY: (Signature)	Time: Date:	RECEIVED BY: (Signature)		Tim Dat	re:			- FE	DEX IND DI	ELIVER	ED	BUS UPS				OTHE				_
RECEIVING LABORATORY:	Time:	RECEIVED BY: (Signature)	············	Tim	re:		···	-			VTACT	_					Result		net	
ADDRESS: CITY: Tridian STAT CONTACT: STAT	/ PHONE:	P: DATE:	тіме:					ر ا	<u> </u>	e	14	WI	12	- a	***************************************		Autho Ye	f Charg prized: es	No.	0
SAMPLE CONDITION WHEN RECEIVED		Run 2 BTEX on the highest Th	DJI '	1	-		AI		te.	5+5	;	M	Lil	110	nd					

115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 1 of 1 Eddy Co., NM

Summary Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street Midland, TX 79705

Report Date: February 18, 2009

Work Order: 9021330

Project Location: Eddy Co., NM

Project Name:

COG/GJ West Co-op Unit Well #47

Project Number: 115-6403610

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
187522	T-1 1.0' Bottom	soil	2009-02-12	00:00	2009-02-13
187523	T-1 2.0' (1.0' BEB)	soil	2009-02-12	00:00	2009-02-13
187524	T-2 1.0'	soil	2009-02-12	00:00	2009-02-13

	TPH DRO	TPH GRO
	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)
187522 - T-1 1.0' Bottom	< 50.0	<1.00

Sample: 187522 - T-1 1.0' Bottom

Param	\mathbf{Flag}	Result	Units	RL
Chloride		323	mg/Kg	4.00

Sample: 187523 - T-1 2.0' (1.0' BEB)

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

Sample: 187524 - T-2 1.0'

Param	Flag	Result	Units	RL
Chloride		323	mg/Kg	4.00

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703 800 • 378 • 1296 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 432 • 689 • 6301 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

6015 Harris Parkway, Suite 110

Ft Worth, Texas 76132

817 • 201 • 5260

E-Mail lab@traceanalysis.com

Certifications

WBENC: 237019 HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003

Kansas E-10317

El Paso: T104704221-08-TX

LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street Midland, TX, 79705

Report Date:

February 18, 2009

Work Order:

9021330

Project Location: Eddy Co., NM

Project Name:

COG/GJ West Co-op Unit Well #47

Project Number:

115-6403610

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
\mathbf{Sample}	Description	Matrix	Taken	Taken	Received
$\overline{187522}$	T-1 1.0' Bottom	soil	2009-02-12	00:00	2009-02-13
187523	T-1 2.0' (1.0' BEB)	soil	2009-02-12	00:00	2009-02-13
187524	T-2 1.0'	soil	2009-02-12	00:00	2009-02-13

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 10 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Standard Flags

B - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project COG/GJ West Co-op Unit Well #47 were received by TraceAnalysis, Inc. on 2009-02-13 and assigned to work order 9021330. Samples for work order 9021330 were received intact at a temperature of 5.4 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	48592	2009-02-16 at 10:56	56886	2009-02-16 at 14:43
TPH DRO	Mod. 8015B	48608	2009-02-16 at 10:00	56899	2009-02-16 at 16:03
TPH GRO	S 8015B	48575	2009-02-15 at 13:00	56885	2009-02-15 at 13:26

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9021330 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 4 of 10 Eddy Co., NM

Analytical Report

Sample: 187522 - T-1 1.0' Bottom

Laboratory:

Midland

Analysis: QC Batch: Chloride (Titration)

56886

Prep Batch: 48592 Analytical Method: Date Analyzed:

SM 4500-Cl B

Sample Preparation:

2009-02-16 2009-02-16 Prep Method: N/A

Analyzed By: AR AR

Prepared By:

RL

Parameter Result Flag Chloride 323

Units mg/Kg Dilution 50

RL4.00

Sample: 187522 - T-1 1.0' Bottom

Laboratory:

Midland

Analysis: QC Batch:

TPH DRO 56899

Prep Batch: 48608

Analytical Method: Date Analyzed:

Mod. 8015B 2009-02-16

Sample Preparation: 2009-02-16

Prep Method: N/A

Analyzed By: LDLD

Prepared By:

RL

Flag Result Parameter Units Dilution RL< 50.0 DRO mg/Kg 50.0

					Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
n-Triacontane		111	mg/Kg	1	100	111	10 - 250.4

Sample: 187522 - T-1 1.0' Bottom

Laboratory:

Midland

TPH GRO Analysis: QC Batch: 56885 Prep Batch: 48575

Analytical Method:

Date Analyzed:

S 8015B

2009-02-15 Sample Preparation: 2009-02-15 Prep Method: S 5035

Analyzed By: AG Prepared By: AG

RL

Parameter Flag Result Dilution Units RL $\overline{\text{GRO}}$ < 1.00 mg/Kg 1 1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.829	mg/Kg	1	1.00	83	68.5 - 119.4
4-Bromofluorobenzene (4-BFB)		1.12	mg/Kg	1	1.00	112	52 - 117

115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 5 of 10 Eddy Co., NM

Sample: 187523 - T-1 2.0' (1.0' BEB)

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 56886 Prep Batch: 48592 Analytical Method: SM 4500-Cl B Date Analyzed: 2009-02-16 Sample Preparation: 2009-02-16 Prep Method: N/A
Analyzed By: AR
Prepared By: AR

RL

Sample: 187524 - T-2 1.0'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 56886 Prep Batch: 48592 Analytical Method: SM 4500-Cl B
Date Analyzed: 2009-02-16
Sample Preparation: 2009-02-16

Prep Method: N/A
Analyzed By: AR
Prepared By: AR

RL Parameter Flag Result

Result 323

Units Dilution mg/Kg 50 RL 4.00

Method Blank (1)

Chloride

QC Batch: 56885

QC Batch: 56885 Prep Batch: 48575 Date Analyzed: 2009-02-15 QC Preparation: 2009-02-15

Analyzed By: AG Prepared By: AG

MDL

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.851	mg/Kg	1	1.00	85	75.8 - 98.5
4-Bromofluorobenzene (4-BFB)		0.623	mg/Kg	1	1.00	62	56.5 - 109.5

Method Blank (1) QC

QC Batch: 56886

QC Batch: 56886 Prep Batch: 48592 Date Analyzed: 2009-02-16 QC Preparation: 2009-02-16 Analyzed By: AR Prepared By: AR

115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 6 of 10

Eddy Co., NM

		MDL		
Parameter	\mathbf{Flag}	Result	Units	RL
Chloride		<2.01	mg/Kg	4

Method Blank (1)

QC Batch: 56899

QC Batch: Prep Batch: 48608

56899

Date Analyzed:

2009-02-16

Analyzed By: LD

QC Preparation: 2009-02-16

Prepared By: LD

MDL

Parameter DRO

Flag

Result <12.0

Units mg/Kg RL50 ·

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		97.8	mg/Kg	1	100	98	30.9 - 146.4

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 48575

56885

Date Analyzed:

2009-02-15 QC Preparation: 2009-02-15 Analyzed By: AG

Prepared By: AG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	6.55	mg/Kg	1	10.0	< 0.482	66	60.5 - 100.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	\mathbf{RPD}	Limit
GRO	6.50	mg/Kg	1	10.0	< 0.482	65	60.5 - 100.1	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.927	0.913	mg/Kg	1	1.00	93	91	78.8 - 104.7
4-Bromofluorobenzene (4-BFB)	0.714	0.699	mg/Kg	1	1.00	71	70	66.1 - 107.3

Laboratory Control Spike (LCS-1)

QC Batch:

56886

Date Analyzed:

2009-02-16

Analyzed By: AR

Prep Batch: 48592

QC Preparation:

2009-02-16

Prepared By: AR

115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 7 of 10

Eddy Co., NM

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	97.8	mg/Kg	1	100	< 2.01	98	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	100	mg/Kg	1	100	< 2.01	100	85 - 115	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 56899

Date Analyzed: 2009-02-16

Analyzed By: LD Prepared By: LD

Prep Batch: 48608

QC Preparation: 2009-02-16

Rec.

	LCS			Spike	Matrix		Rec .
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
DRO	218	mg/Kg	1	250	<12.0	87	27.8 - 152.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
DRO	226	mg/Kg	1	250	<12.0	90	27.8 - 152.1	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	\mathbf{Units}	Dil.	Amount	${ m Rec.}$	Rec.	\mathbf{Limit}
n-Triacontane	115	118	mg/Kg	1	100	115	118	38 - 130.4

Matrix Spike (MS-1) Spiked Sample: 187522

QC Batch: 56885 Prep Batch: 48575

Date Analyzed: 2009-02-15 QC Preparation: 2009-02-15 Analyzed By: AG Prepared By: AG

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
GRO	9.71	mg/Kg	1	10.0	< 0.482	97	12.8 - 175.2

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			\mathbf{Spike}	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	11.0	mg/Kg	1	10.0	< 0.482	110	12.8 - 175.2	12	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

115 - 6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 8 of 10 Eddy Co., NM

Surrogate	$rac{ ext{MS}}{ ext{Result}}$	$\begin{array}{c} \text{MSD} \\ \text{Result} \end{array}$	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	1.08	1.17	mg/Kg	1	1	108	117	60.8 - 132.1
4-Bromofluorobenzene (4-BFB)	1.27	1.26	mg/Kg	1	1	127	126	31.3 - 161.7

Matrix Spike (MS-1) Spiked Sample: 187522

QC Batch: 56886 Prep Batch: 48592 Date Analyzed: 2009-02-16 QC Preparation: 2009-02-16 Analyzed By: AR Prepared By: AR

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	5750	mg/Kg	50	5000	323	108	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	Limit
Chloride	5820	mg/Kg	50	5000	323	110	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 187517

QC Batch: 56899 Prep Batch: 48608 Date Analyzed: 2009-02-16 QC Preparation: 2009-02-16

Analyzed By: LD Prepared By: LD

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	235	mg/Kg	1	250	<12.0	94	18 - 179.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	268	mg/Kg	1	250	<12.0	107	18 - 179.5	13	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	${f Units}$	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	129	136	mg/Kg	1	100	129	136	34.1 - 158

Standard (ICV-1)

QC Batch: 56885 Date Analyzed: 2009-02-15 Analyzed By: AG

115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47 Page Number: 9 of 10

Eddy Co., NM

			ICVs True	ICVs Found	$\begin{array}{c} \text{ICVs} \\ \text{Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.907	91	85 - 115	2009-02-15

Standard (CCV-1)

QC Batch: 56885

Date Analyzed: 2009-02-15

Analyzed By: AG

			\mathbf{CCVs}	\mathbf{CCVs}	\mathbf{CCVs}	Percent	
	•		True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
$\overline{\text{GRO}}$		mg/Kg	1.00	1.01	101	85 - 115	2009-02-15

Standard (ICV-1)

QC Batch: 56886

Date Analyzed: 2009-02-16

Analyzed By: AR

			$rac{ ext{ICVs}}{ ext{True}}$	${f ICVs} \ {f Found}$	$egin{array}{c} ext{ICVs} \ ext{Percent} \end{array}$	Percent Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	105	105	85 - 115	2009-02-16

Standard (CCV-1)

QC Batch: 56886

Date Analyzed: 2009-02-16

Analyzed By: AR

			$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	95.2	95	85 - 115	2009-02-16

Standard (ICV-1)

QC Batch: 56899

Date Analyzed: 2009-02-16

Analyzed By: LD

			$egin{array}{c} ext{ICVs} \ ext{True} \end{array}$	ICVs Found	$egin{array}{c} ext{ICVs} \ ext{Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	${f Analyzed}$
DRO		mg/Kg	250	266	106	85 - 115	2009-02-16

Standard (CCV-1)

QC Batch: 56899

Date Analyzed: 2009-02-16

Analyzed By: LD

Report Date: February 18, 2009 115-6403610

Work Order: 9021330 COG/GJ West Co-op Unit Well #47

Page Number: 10 of 10 Eddy Co., NM

			CCVs True	CCVs Found	$\begin{array}{c} \text{CCVs} \\ \text{Percent} \end{array}$	Percent Recovery	Date
Param	${f Flag}$	${f Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	248	99	85 - 115	2009-02-16

	10M	K (110	e (#			$\stackrel{\smile}{=}$		<u> </u>	<u> </u>	<u></u>	\subseteq					
Analysis Request of Chain of Custody	Rec	corc	k						P	AGE:		$\overline{\mathcal{L}}$	(OF:	1			
							ANALYSIS REQUEST (Circle or Specify Method No.)											
1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946				of (Ext to Cag)	PAH 8270	Cd Vr Pd Hg Se								TDS				
CLIENT NAME: COG SITE MANAGER: TKE TAWKZ	NERS	RESERV METH		0,521		s Ba	11		60/624					ıs, pH,				
PROJECT NO.: PROJECT NAME: 115-6403610 COG/GJ West Coop Unit Well #47	CONTA Y/N)					Is Ag A	se	Votatiles	8240/82	809	œ l	ģ	(Air)	s/Cation				
LAB I.D. DATE TIME WAY SAMPLE IDENTIFICATION	NUMBER OF CONTAINERS FILTERED (Y/N) HCL	HN03 ICE	NONE	BTEX 8021B	PAH 8270	RCRA Metals Ag As Ba TCLP Metals Ag As Ba	TCLP Volati	ICLP Semi volatiles RCI	GC.MS Vol. 8240/8260/624	PCB's 8080,	Pest. 808/60 Chloride	Gamma Spe	Alpha Beta (Air) PLM (Asbestos)	Major Anions/Cations, pH, TDS				
1875222/12/09 S X T-1 1.0' Botton	1	Х		>							X							
5232/12/09 S X T-1 2.0' (1.0' BEB)		X									Χ							
52A 2/12/09 S X T-2 1.0'		X									X							
							Ш											
														Ц	$\perp \! \! \perp$			
					Ш		Ц			\coprod								
										Ш				Ц				
										Ш	\perp	$oxed{igsqc}$			$\perp \downarrow$	1		
								\perp		Щ		ot						
RELINQUISHED BY: (Signature) RECEIVED BY: (Signature)		Date: _ A.	-13 - 6		SAN	IDI ED		sint 8. Ir	nitio()				Date		1007	\perp		
Time: 1410 Til		lime:	14:1	<u> </u>					nitial)				Time:	·				
Date: RECEIVED BY: (Signature) Date: RECEIVED BY: (Signature)	Date: SAMPLE SHIPPED BY: (Circle) Time: FEDEX BUS HAND DELIVERED UPS						AIRBILL #:											
Time: RECEIVING LABORATORY: Trace: RECEIVED BY: (Signature)		fime:			┪				PERSO				L	sults b				
ADDRESS:	TIME:				1	_/Le		uvi	15 CZ				Au	ithorize Yes	ed:	No		