

REPORTS

DATE:

Basin Environmental Consulting, LLC

2800 Plains Highway P. O. Box 381 Lovington, New Mexico 88260 cdstanley@basin-consulting.com Office: (575) 396-2378 Fax: (575) 396-1429

ŵ Effective Solutions

REMEDIATION SUMMARY

AND

SOIL CLOSURE REQUEST

PLAINS PIPELINE, L.P. (231735) DCP Plant to Lea Station 6-Inch Sec. 31 Lea County, New Mexico Plains SRS # 2009-084 UNIT LTR "K" (NE ¼ /SW ¼), Section 31, Township 20 South, Range 37 East Latitude 32.52733° North, Longitude 103.2906° West NMOCD Reference # 1RP-2166

Prepared For:

Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By: Basin Environmental Consulting, LLC 2800 Plains Highway Lovington, New Mexico 88260

May 2010

Curt D. Stanley Project Manager

May 4, 2010

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

NMOCD Reference # 1R-2166

Lea County, New Mexico

RECEIVED OCD 2010 HAY -5 A II: 18 Plains Pipeline, L.P. DCP Plant to Lea Station 6-inch Sec. 31 Site Unit Letter K of Section 31, Township 20 South, Range 37 East

RE:

Dear Mr. Hansen:

Plains Pipeline, L.P. is pleased to submit the attached Remediation Summary and Soil Closure Request, dated May 2010, for the DCP Plant to Lea Station 6-inch Sec. 31 site. This site is located in Section 31 of Township 20 South, and Range 37 East of Lea County, New Mexico. This document details the soil remediation activities performed at the site.

Should you have any questions or comments, please contact me at (575) 441-1099.

Sincerely.

ason benry

Jáson Henry Remediation Coordinator Plains Pipeline, L.P.

CC: Brian Henington, NMSLO, Santa Fe Office Larry Johnson, NMOCD, Hobbs Office

Enclosure

TABLE OF CONTENTS

INTRODUCTION AND BACKGROUND INFORMATION	1
NMOCD SITE CLASSIFICATION	.1
SUMMARY OF SOIL REMEDIATION ACTIVITIES	.2
SOIL CLOSURE REQUEST	7
LIMITATIONS	.7
DISTRIBUTION	.8

FIGURES

0

•

Figure 1 – Site Location Map Figure 2 – Site and Sample Location Map

TABLES

Table 1 – Concentrations of Benzene, BTEX and TPH in Soil

APPENDICES

Appendix A – Soil Boring and Monitor Well Logs

Appendix B – Analytical Reports

Appendix C - Photographs

Appendix D - Release Notification and Corrective Action (Form C-141)

INTRODUCTION AND BACKGROUND INFORMATION Basin Environmental Consulting, LLC (Basin), on behalf of Plains Pipeline, L.P. (Plains), has prepared this Remediation Summary and Soil Closure Request for the release site known as DCP Plant to Lea Station 6-Inch Sec. 31 (SRS # 2009-084). The legal description of the release site is Unit Letter "K" (NE ¼ SW ¼) Section 31 Township 20 South Range 37 East in Lea County.

prepared this Remediation Summary and Soil Closure Request for the release site known as DCP Plant to Lea Station 6-Inch Sec. 31 (SRS # 2009-084). The legal description of the release site is Unit Letter "K" (NE ¼ SW ¼), Section 31, Township 20 South, Range 37 East, in Lea County, New Mexico. The property affected by the release is owned by The State of New Mexico (ROE permit #1794) and is administered by the New Mexico State Land Office (NMSLO). The release site GPS coordinates are 32.52733° North and 103.2906° West. Please reference Figure 1 for a Site Location Map and Figure 2 for a Site and Sample Location Map. The Release Notification and Corrective Action (Form C-141) is provided as Appendix D.

On April 2, 2009, Plains discovered a crude oil release from a six (6)-inch steel pipeline. During initial response activities, Plains installed a temporary pipeline clamp on the pipeline to mitigate the release. The crude oil release resulted in a surface stain measuring approximately six (6) feet in width and eight (8) feet in length. The initial site assessment indicated approximately two (2) to three (3) barrels of crude oil was released from the pipeline and Plains initially classified the release as a "non-reportable" release. On April 7, 2009, following initial response activities, a soil investigation trench was excavated to a depth of approximately fourteen (14) feet below ground surface (bgs), parallel to the six (6) inch Plains pipeline. Based on visual and olfactory observations of the investigation trench, a soil boring was advanced on April 15, 2009 to further assess the vertical extent of impact at the site. On April 29, 2009, following the review of the existing data. Plains representatives reclassified the release as a "reportable" release. Plains notified the New Mexico Oil Conservation Division (NMOCD) - Hobbs District Office and Santa Fe Office of the release and a Release Notification and Corrective Action (Form C-141) was submitted. The Form C-141 indicated approximately twenty (20) barrels of crude oil was released from the pipeline, with no recovery. The cause of the release was attributed to external corrosion of the pipeline. General photographs of the site are provided as Appendix C.

The northern extent of the release site contains a pipeline corridor containing a twenty-four (24) and sixteen (16) inch diameter gas poly pipeline operated by DCP Midstream Partners, L.P. (DCP). In addition, an eight (8) inch fiberglass water pipeline operated by XTO Energy (XTO) is located to the north of the DCP poly pipelines and an abandoned ten (10) inch steel pipeline bisects the DCP Plant to Lea Station 6-Inch Sec. 31 excavation.

Plains maintained the large diameter and line spacing of the DCP poly pipelines constituted a health and safety hazard to Plains personnel and contractors working in close proximity to the pipelines. Plains requested NMOCD approval, to leave in-situ, impacted soil beneath and adjacent to the DCP poly pipelines.

NMOCD SITE CLASSIFICATION

According to data obtained from the New Mexico Office of the State Engineer (NMOSE), no water wells have been registered in Section 31. Soil boring (SB-1) advanced by Plains, indicated groundwater was encountered at a depth of approximately seventy-seven (77) feet bgs. The analytical results of the soil samples collected during the advancement of the soil boring, indicated hydrocarbon impact exceeding the NMOCD regulatory standard, was present at approximately sixty (60) feet bgs. The depth of hydrocarbon impact versus the depth of

0

Gy.

0

8

•

0

C

) () ()

() ()

۲

6

(

groundwater results in a score of twenty (20) being assigned to the site based on the NMOCD depth to groundwater criteria.

The water well database, maintained by the NMOSE, indicated there are no water wells less than 1,000 feet from the release, resulting in zero (0) points being assigned to this site as a result of this criteria.

There are no surface water bodies located within 1,000 feet of the site. Based on the NMOCD ranking system zero (0) points will be assigned to the site as a result of the criteria.

The NMOCD guidelines indicate the DCP Plant to Lea Station 6-Inch Sec 31 release site has an ranking score of twenty (20). Based on this score, the soil remediation levels for a site with a ranking score of twenty (20) points are as follows:

- Benzene -10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH -100 mg/Kg (ppm)

SUMMARY OF SOIL REMEDIATION ACTIVITIES

On April 7, 2009, following initial response activities, a soil investigation trench was excavated to a depth of approximately fourteen (14) feet bgs, parallel to the six (6) inch Plains pipeline. Based on visual and olfactory observations of the investigation trench, additional soil investigation was warranted.

On April 15, 2009, one (1) soil boring (SB-1) was advanced approximately ten (10) feet west of the release point to evaluate the vertical extent of soil impact. A soil boring log is provided as Appendix A. Soil samples were collected at five (5) foot drilling intervals and field screened using a Photo-Ionization Detector (PID). Selected soil samples were submitted to the laboratory for determination of concentrations of benzene, toluene, ethyl-benzene and xylene (BTEX) and total petroleum hydrocarbon (TPH) using EPA SW-846 8021b and SW-846 8015M, respectively.

Soil boring SB-1 was located approximately ten (10) feet west of the release point. The soil boring was advanced to a total depth of approximately eighty-five (85) feet bgs. Soil samples were collected at ten (10), twenty (20), thirty (30), forty (40), fifty (50), sixty (60), seventy (70) and seventy-five (75) feet bgs and submitted to the laboratory. The laboratory analytical results indicated benzene concentrations were less than the laboratory method detection limit (MDL) in all of the submitted soil samples, with the exception of the soil sample (SB-1 @ 10') collected at ten (10) feet bgs, which exhibited a benzene concentration of 0.0017 mg/Kg. All of the submitted soil samples exhibited benzene concentrations less than the NMOCD regulatory standard of 10 mg/Kg. The laboratory MDL in soil samples SB-1 @ 60', SB-1 @ 70' and SB-1 @ 75' to 1.931 mg/Kg in the soil sample SB-1 @ 50'. The laboratory analytical results indicated TPH concentrations ranged from 40.6 mg/Kg in the soil sample SB-1 @ 70' to 1,479.2 mg/Kg in the soil sample SB-1 @ 40'. Table 1 summarizes the Concentrations of Benzene, BTEX and TPH in

Soil. Soil boring and monitor well logs are provided as Appendix A and analytical reports are provided as Appendix B.

During the advancement of the soil boring, groundwater was encountered at approximately seventy-seven (77) feet bgs. A temporary casing was installed in the soil boring to allow a groundwater sample to be collected for analysis. On April 16, 2009, a groundwater sample (SB-1) was collected from the temporary casing and submitted to the laboratory for analysis. Following the collection of the groundwater sample, the temporary casing was removed from the soil boring and the soil boring was plugged with cement and bentonite, as required by the NMOSE. Based on the analytical results of the submitted groundwater sample, Plains notified NMOCD representatives at the Hobbs District Office and the Santa Fe Office of the laboratory confirmed impact to groundwater at the release site.

On June 2, 2009, following the advancement of the soil boring, excavation of the impacted soil commenced. Excavated soil was stockpiled on-site on plastic to mitigate the potential leaching of contaminants into the vadose zone.

On June 10, 2009, a soil sample (RP @ 15') was collected from the excavation floor at approximately fifteen (15) feet bgs. The analytical results indicated the benzene concentration was less than the laboratory MDL of 1.086 mg/Kg, the BTEX concentration was 15.568 mg/Kg and the TPH concentration was 1,418 mg/Kg.

On June 10, 2009, two (2) excavation sidewall soil samples (NSW @ 14.5' and SSW @ 14.5') were collected and submitted to the laboratory for analysis. The analytical results indicated benzene concentrations were less than the laboratory MDL of 0.0011 mg/Kg and 0.0019 mg/Kg for soil samples SSW @ 14.5' and NSW @ 14.5', respectively. BTEX concentrations were less than the laboratory MDL of 0.0022 mg/Kg and 0.0165 mg/Kg for soil samples SSW @ 14.5' and NSW @ 14.5', respectively. BTEX concentrations were less than the laboratory MDL of 0.0022 mg/Kg and 0.0165 mg/Kg for soil samples SSW @ 14.5' and NSW @ 14.5', respectively. TPH concentrations were less than the laboratory MDL of 16.7 mg/Kg and 26.1 mg/Kg for soil samples SSW @ 14.5' and NSW @ 14.5', respectively. A baseline stockpile soil sample (Stockpile) was collected from the excavated soil to evaluate the soil and determine its potential use as backfill material. The analytical results indicated the benzene concentration was less than the laboratory MDL of 1.071 mg/Kg, the BTEX concentration was 13.027 mg/Kg and the TPH concentration was 1,344 mg/Kg.

On June 10, 2009, five (5) delineation trenches (West Trench, North Trench #1, North Trench #2, North Trench #2, East Trench #1 and East Trench #2) were excavated to delineate the northern extent of soil impact. A trench (West Trench) was excavated on the northwest corner of the existing excavation to further delineate the release. The West Trench was excavated to a total depth of approximately six (6) feet bgs. A soil sample was collected at six (6) feet bgs and submitted to the laboratory for determination of BTEX and TPH concentrations. The analytical results indicated benzene, BTEX and TPH concentrations were less than the laboratory MDL of 0.0011 mg/Kg, 0.0023 mg/Kg and 16.9 mg/Kg, respectively. The analytical results indicated the West Trench was not impacted by the release.

A delineation trench (North Trench #1) was excavated north of the sixteen (16) and twenty-four (24) inch DCP poly gas lines. North Trench #1 was excavated to a total depth of approximately fourteen (14) feet bgs. Soil samples were collected and submitted to the laboratory at four (4) feet, eight (8) feet, twelve (12) feet and fourteen (14) feet bgs. The analytical results indicated

benzene concentrations were less than the laboratory MDL in each of the soil samples, ranging from less than 0.0012 mg/Kg in soil sample North Trench #1 @ 4' to less than 1.120 mg/Kg in soil sample North Trench #1 @ 14'. BTEX concentrations ranged from less than the laboratory MDL of 0.0023 mg/Kg in soil sample North Trench #1 @ 4' to 29.417 mg/Kg in soil sample North Trench #1 @ 14' and TPH concentrations ranged from less than the laboratory MDL of 17.5 mg/Kg in soil sample North Trench #1 @ 4' to 7,163 mg/Kg in soil sample North Trench #1 @ 14'. Based on the analytical results of soil samples collected from the North Trench #1, delineation was unsuccessful and addition trenches (East Trench #1, East Trench #2 and North Trench #2) were excavated at the north and northeast sides of the release site.

A delineation trench (North Trench #2) was excavated north of the eight (8) inch XTO fiberglass water line. North Trench #2 was excavated to a total depth of approximately eight (8) feet bgs. Soil samples were collected and submitted to the laboratory at four (4) feet and eight (8) feet bgs. The analytical results indicated benzene and BTEX concentrations were less than the laboratory MDL of 0.0011 and 0.0022 mg/Kg in each of the soil samples, respectively. TPH concentrations were less than the laboratory MDL of 15.9 mg/Kg and 16.5 mg/Kg in soil samples North Trench #2 @ 4' and North Trench #2 @ 8', respectively. Based on the analytical results of soil samples collected from the North Trench #2, delineation was successful on the north side of the release site.

A delineation trench (East Trench #1) was excavated east of the North Trench #1 and north of the sixteen (16) and twenty-four (24) inch DCP poly gas lines. East Trench #1 was excavated to a total depth of approximately fourteen (14) feet bgs. Soil samples were collected and submitted to the laboratory at four (4) feet and fourteen (14) feet bgs. The analytical results indicated benzene concentrations were less than the laboratory MDL of 0.0011 mg/Kg and 0.0107 mg/Kg in soil samples East Trench #1 @ 4' and East Trench #1 @ 14', respectively. BTEX concentrations were 0.00 mg/Kg in soil sample East Trench #1 @ 4' and 3.7949 mg/Kg in soil sample East Trench #1 @ 14'. TPH concentrations were less than the laboratory MDL of 16.1 mg/Kg in soil sample East Trench #1 @ 4' and 3,224 mg/Kg in soil sample East Trench #1 @ 14', respectively. Based on the analytical results of soil samples collected from the North Trench #2, delineation was unsuccessful on the northeast side of the release site.

A delineation trench (East Trench #2) was excavated east of East Trench #1 and north of the sixteen (16) and twenty-four (24) inch DCP poly gas lines. East Trench #2 was excavated to a total depth of approximately fourteen (14) feet bgs. Soil samples were collected and submitted to the laboratory at four (4) feet and fourteen (14) feet bgs. The analytical results indicated benzene concentrations were less than the laboratory MDL of 0.0010 mg/Kg and 0.0011 mg/Kg in soil samples East Trench #2 @ 4' and East Trench #2 @ 14', respectively. BTEX concentrations were less than the laboratory MDL of 0.0021 mg/Kg and 0.0022 mg/Kg in soil samples East Trench #1 @ 4' and East Trench #1 @ 14', respectively. TPH concentrations were less than the laboratory MDL of 15.6 mg/Kg and 17.0 mg/Kg in soil samples East Trench #1 @ 14', respectively. Based on the analytical results of soil samples collected from the East Trench #2, delineation was successful on the northeast side of the release site.

On June 10, 2009, a baseline stockpile soil sample (Stockpile) was collected and submitted to the laboratory. The analytical results indicated the benzene concentration was less than the laboratory MDL of 1.071 mg/Kg. The BTEX concentration was 13.047 mg/Kg and the TPH concentration was 1,344 mg/Kg.

On June 12, 2009, two (2) excavation sidewall soil samples (WSW @ 14.5' and ESW @ 14.5') were collected and submitted to the laboratory for analysis. The analytical results indicated benzene and BTEX concentrations were less than the appropriate laboratory MDL for each of the submitted soil samples. TPH concentrations were less than the laboratory MDL of 16.7 mg/Kg and 16.9 mg/Kg for soil samples WSW @ 14.5' and ESW @ 14.5', respectively.

The excavation of impacted soil was completed on June 12, 2009. Approximately 1,400 cubic yards (cy) of soil was stockpiled on-site during excavation activities, pending final disposition. The final dimensions of the excavation were approximately seventy (77) feet in width, approximately eighty (80) feet in length and fifteen (15) feet in depth.

The analytical results indicated the excavation sidewalls had been remediated to concentrations less than the NMOCD regulatory standard of 10 mg/Kg benzene, 50 mg/Kg BTEX and 100 mg/Kg TPH.

In July 2009, Plains submitted a *Remediation Summary and Proposed Remediation Strategy* to the NMOCD Santa Fe Office.

On September 21 through September 23, 2010, four (4) monitor wells (MW-1 through MW-4) were installed to evaluate the status of the groundwater at the DCP Plant to Lea Station 6-Inch Sec. 31 release site. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. Selected soil samples were submitted to the laboratory for determination of concentrations of benzene, BTEX and TPH.

Monitor Well MW-1 is located approximately thirteen (13) feet northeast of the release point, in a side gradient position. The monitor well was installed to a total depth of approximately eightysix (86) feet bgs. Soil samples were collected at twenty-five (25), thirty-five (35), forty-five (45), fifty-five (55), sixty-five (65), and seventy-five (75) feet bgs and submitted to the laboratory. The analytical results indicated benzene concentrations were less than the appropriate laboratory MDL. The analytical results further indicated BTEX concentrations ranged from 0.0359 mg/Kg in soil sample MW-1 @ 10' to 13.444 mg/Kg for soil sample MW-1 @ 40'. TPH concentrations ranged from 286 mg/Kg in soil sample MW-1 @ 10' to 1,538 mg/Kg in soil sample MW-1 @ 40'.

Monitor Well MW-2 is located approximately one hundred forty (140) feet north-northwest of the release point, in an up gradient position. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples were collected at fifteen (15), thirty (30), forty-five (45), sixty (60), and seventy-five (75) feet bgs and submitted to the laboratory. The analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL.

Monitor Well MW-3 is located approximately eighty-eight (88) feet south southwest of the release point, in a down and side gradient position. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples were collected at fifteen (15), thirty (30), forty-five (45), and sixty (60) feet bgs and submitted to the laboratory. The analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate

laboratory MDL, with the exception of soil sample MW-3 @ 60', which exhibited a benzene concentration of 0.0025 mg/Kg, a BTEX concentration of 0.0052 mg/Kg.

Monitor Well MW-4 is located approximately one hundred thirty seven (137) feet southsoutheast of the release point, in a down gradient position. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples were collected at fifteen (15), thirty (30), forty-five (45), sixty (60), and seventy-five (75) feet bgs and submitted to the laboratory. The analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL.

On October 8, 2009, three (3) stockpile soil samples (SP-1, SP-2 and SP-3) were collected and submitted to the laboratory. The three (3) soil samples represented approximately 1,400 cubic yards (cy) of excavated soil. The laboratory analytical results indicated benzene concentrations were less than the laboratory MDL for each of the three (3) soil samples. BTEX concentrations ranged from less than the laboratory MDL for soil sample SP-3 to 0.0343 mg/Kg for soil sample SP-1. TPH concentrations ranged from less than the laboratory SP-1.

On January 25, 2010, Plains received partial approval of the *Remediation Summary and Proposed Remediation Strategy* from the NMOCD. The NMOCD approval was conditional and required the submission of an Additional Soil Remediation Strategy for the North Trench #1 and East Trench #1 areas, as well as details of the proposed excavation liner.

On February 24, 2010, Plains submitted the NMOCD requested *Additional Soil Remediation Strategy* to the NMOCD Santa Fe Office. On March 4, 2010, the NMOCD Santa Fe Office approved the *Additional Soil Remediation Strategy*.

On March 9, 2010, remediation activities approved by the NMOCD and set forth in the *Remediation Summary and Proposed Remediation Strategy* and *Additional Soil Remediation Strategy* commenced.

On March 10, 2010, a twenty (20) mil polyurethane liner was installed in the excavation. Prior to the liner installation, a six (6) inch layer of sand was placed in the excavation to protect the liner from sharp objects. Following the liner installation, a six (6) inch layer of sand was placed on top of the liner for further protection. This engineering control will inhibit vertical migration of the contaminants below the liner, by shedding moisture to the edge of the liner and beyond the horizontal extent of the underlying impacted soil.

On March 10 through March 16, 2010, the excavation was backfilled in twelve (12) inch lifts with stockpiled soil, as approved by the NMOCD. Moisture was added to the backfilled soil when required.

On March 16, 2010, approximately one thousand (1,000) gallons of fresh water, containing approximately one hundred (100) pounds of a water soluble fertilizer (Miller 20-20-20) was placed in the North Trench #1 and East Trench #1. Following the infusion of the water/fertilizer solution, a twenty (20) mil liner was placed in the excavation and backfilled.

On completion of the backfill activities the surface was contoured to fit the surrounding topography. Reseeding of the site with vegetation acceptable to the New Mexico State Land Office will take place when conditions are optimal.

SOIL CLOSURE REQUEST

Based on the analytical results of confirmation soil samples, Basin recommends Plains provide the NMOCD and the NMSLO Santa Fe offices, a copy of the Remediation Summary and Soil Closure Request and request the NMOCD grant soil closure status to the DCP Plant to Lea Station 6-inch Sec. 31 release site.

PSH recovery and groundwater monitoring and will continue at the DCP Plant to Lea Station 6-Inch Sec. 31 release site until the NMOCD Santa Fe Office approves cessation of these activities. A Groundwater Monitoring Report will be submitted before April 1st of each year.

LIMITATIONS

Basin Environmental Consulting, LLC has prepared this Remediation Summary and Soil Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Consulting, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Consulting, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Consulting, LLC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Consulting, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Pipeline, L.P. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Consulting, LLC and/or Plains Pipeline, L.P.

6

(† (†

Õ

() ()

•

Ø

9

0 0

0 0

Ø

0

0 6

Ô

DISTRIBUTION:

Copy 1:	Ed Hansen New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505
Copy 2:	Larry Johnson New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, New Mexico 88240
Copy 3:	Brian Henington New Mexico State Land Office 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, New Mexico 87504
Copy 4:	Jeff Dann Plains Pipeline, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002 jpdann@paalp.com
Copy 5:	Jason Henry Plains Pipeline, L.P. 2530 State Highway 214 Denver City, Texas 79323 jhenry@paalp.com
Сору 6:	Curt D. Stanley Basin Environmental Consulting, LLC P.O. Box 381 Lovington, New Mexico 88260 cdstanley@basin-consulting.com

© Ø

6

Figures

.

....

Ô

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH SECTION 31 LEA COUNTY, NEW MENICO SRS: 2009-084 NMOCD REFERENCE NO: 1RP-2166

	_	-	_	_	_	_	_	_	_	_		_		-		_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_		-		_	—
TOTAL	TPH	C ₆ -C ₃₅	(mg/Kg)	494	906	481	1,479.2	1,005.1	122.5	40.6	43.3		1,418	26.1	<16.7	<16.9	<17.5	5,004	8,430	7,163	<16.1	3,224	<15.9	<16.5	<15.6	<17.0	1,344		16.9	<16.7	· · · · · · · · · · · ·	286	784	1,290	1,538	1,229	924	<16.1
4	ORO	$C_{28}-C_{35}$	(mg/Kg)	33	58	27	93.2	59.1	<15	<15.1	<15.1		187	<16.4	<16.7	<16.9	<17.5	915	1,610	1,430	<16.1	600	<15.9	<16.5	<15.6	<17.0	206		<15.5	<16.7		<87.1	<77.6	<75.8	<75.7	<75.4	<75.3	<16.1
THOD: 80157	DRO	$C_{12}-C_{28}$	(mg/Kg)	311	473	249	687	481	102	40.6	43.3		422	26.1	<16.7	<16.9	<17.5	3,780	5,920	4,910	<16.1	2,430	<15.9	<16.5	<15.6	<17.0	653	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	16.9	<16.7		149	440	616	550	529	448	<16.1
ME	GRO	C ₆ -C ₁₂	(mg/Kg)	150	375	205	669	465	20.5	<15.1	<15.1	1999 (J. 1997) - 1999 (J. 1999) - 1999 (809	<16.4	<16.7	<16.9	<17.5	309	006	823	<16.1	194	<15.9	<16.5	<15.6	<17.0	485		<15.5	<16.7	5	137	344	674	886	200	476	<16.1
	TOTAL	BTEN	(mg/Kg)	0.2556	0.2353	0.0143	1.7683	1.931	<0.098	<0.0020	<0.0020		15.568	0.0165	<0.0022	<0.0023	<0.0023	8.281	26.067	29.417	0.0024	3.7949	<0.0022	<0.0022	<0.0021	<0.0022	13.027		<0.0020	<0.0022		0.0359	2.876	10.291	13.444	7.143	3.563	<0.0021
	Ģ	XYLENE	(mg/Kg)	0.0554	0.0623	0.0041	0.4634	0.4744	<0.0049	<0.0010	<0.0010		2.508	<0.0011	<0.0011	<0.0011	<0.0012	3.179	5.021	5.157	<0.0011	1.419	<0.0011	<0.0011	<0.0010	<0.0011	2.527		<0.0010	<0.0011		0.0111	0.6959	2.244	2.981	1.652	0.8998	<0.0011
46-8021B, 5030	M.P	XYLENES	(mg/Kg)	0.1399	0.1368	0.0084	1.079	1.183	<0.0098	<0.0020	<0.0020		13.06	0.0083	<0.0022	<0.0023	<0.0023	3.9	12.62	14.36	0.0024	2.033	<0.0021	<0.0022	<0.0021	<0.0022	10.5		<0.0020	<0.0022		0.0248	1.794	6.373	8.349	4.364	2.155	<0.0021
OD: EPA SW 8.	ETHYL-	BENZENE	(mg/Kg)	0.0368	0.0301	0.0018	0.226	0.2736	<0.0049	<0.0010	<0.0010		<1.086	0.0012	<0.0011	<0.0011	<0.0012	1.0090	3.918	4.516	<0.0011	0.2889	<0.0011	<0.0011	<0.0010	<0.0011	<1.071		<0.0010	<0.0011		<0.0058	0.3744	1.5160	1.9840	1.1270	0.5080	<0.0011
METH		TOLUENE	ung/ Ng	0.022	0.0061	<0.0021	<0.1013	<0.0997	<0.0098	<0.0020	<0.0020		<2.172	0.0051	<0.0022	<0.0023	<0.0023	0.1930	4.508	5.384	<0.0021	0.054	<0.0021	<0.0022	<0.0021	<0.0022	<2.141		<0.0020	<0.0022		<0.0116	0.0113	0.1577	0.1298	<0.1006	<0.1002	<0.0021
		BENZENE	(IIIg/ Ng)	0.0017	<0.0011	<0.0011	<0.0507	<0.0498	<0.0049	<0.0010	<0.0010		<1.086	0.0019	<0.0011	<0.0011	<0.0012	<0.0555	<1.065	<1.120	<0.0011	<0.0107	<0.0011	<0.0011	<0.0010	<0.0011	<1.071		<0.0010	<0.0011		<0.0058	<0.0052	<0.0505	<0.0499	<0.0503	<0.0501	<0.0011
	SOIL	STATUS		In-Situ		In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	N/A	2	In-Situ	In-Situ		In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ							
	DATE	ANALYZED		04/21/09	04/21/09	04/21/09	04/21/09	04/21/09	04/21/09	04/21/09	04/21/09		06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09	06/16/09		06/16/09	06/16/09		09/29/09	00/57/60	09/29/09	60/57/60	09/29/09	00/57/60	09/26/09
	SAMPLE	DATE		04/15/09	04/15/09	04/15/09	04/15/09	04/15/09	04/15/09	04/15/09	04/15/09	· ·	06/10/00	60/01/90	06/10/00	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	06/10/09	* "SS"	06/12/09	06/12/09		09/23/09	09/23/09	09/23/09	09/23/09	09/23/09	09/23/09	60/12/60
	SAMPLE	DEPTH	(cont)	10 Feet	20 Feet	30 Feet	40 Feet	50 Feet	60 Feet	70 Feet	75 Feet		15 Feet	14.5 Feet	14.5 Feet	6 Feet	4 Feet	8 Feet	12 Feet	14 Feet	4 Feet	14 Feet	4 Feet	8 Feet	4 Feet	14 Feet	N/A		14.5 Feet	14.5 Feet		25 Feet	35 Feet	45 Feet	55 Feet	65 Feet	75 Feet	15 Feet
		SAMPLE LOCATION		SB-1 @ 10'	SB-1 @ 20'	SB-1 @ 30'	SB-1 @ 40'	SB-1 @ 50'	SB-1 @ 60'	SB-1 @ 70'	SB-1 @ 75'		RP @ 15'	NSW @ 14.5'	SSW @ 14.5'	West Trench @ 6'	North Trench #1 @ 4'	North Trench #1 @ 8'	North Trench #1 @ 12'	North Trench #1 @ 14'	East Trench # 1 @ 4'	East Trench #1 @ 14'	North Trench #2 @ 4'	North Trench #2 @ 8'	East Trench # 2 @ 4'	East Trench # 2 @ 14'	Stockpile		ESW @ 14.5'	WSW @ 14.5		MW-1 @ 10'	MW-1 @ 20'	MW-1 @ 30'	MW-1 @ 40'	MW-1 @ 50'	MW-1 @ 60'	MW-2@15'

Page 1 of 2

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH SECTION 31 LEA COUNTY, NEW MEXICO SRS: 2009-084 NMOCD REFERENCE NO: 1RP-2166

						MET	HOD: EPA SW 8	46-8021B, 5030			ME	THOD: 8015A	4	TOTAL
St MBLE LOCATION	SAMPLE	SAMPLE	DATE	SOIL	anaznau B	TOL UTANE	ETHYL-	M.P	ò	TOTAL	GRO	DRO	ORO	HdT
SAMELE LOCATION	BESD	DATE	ANALYZED	STATUS	BENZENE	I OLUENE ma/E'a	BENZENE	XYLENES	NYLENE	BTEN	$C_{6}-C_{12}$	$C_{12}-C_{28}$	$C_{28}-C_{35}$	C ₆ -C ₃₅
	(cont)				(ung/ng)	av /am	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
MW-2 @ 30'	30 Feet	60/17/60	09/26/09	In-Situ	<0.0011	<0.0021	<0.0011	<0.0021	<0.0011	<0.0021	<16.1	<16.1	<16.1	<16.1
MW-2 @ 45'	45 Feet	09/21/09	09/26/09	In-Situ	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<15.1	<15.1	<15.1	<15.1
MW-2 @ 60'	60 Feet	09/21/09	09/26/09	In-Situ	<0.0011	<0.0021	<0.0011	<0.0021	<0.0011	<0.0021	<16.1	<16.1	<16.1	<16.1
MW-2 @ 75'	75 Feet	09/21/09	06/26/09	In-Situ	<0.0013	<0.0026	<0.0013	<0.0026	<0.0013	<0.0026	<19.2	<19.2	<19.2	<19.2
MW-3 @ 15'	15 Feet	09/22/09	00/26/09	In-Situ	<0.0011	<0.0022	<0.0011	<0.0022	<0.0011	<0.0022	<16.3	<16.3	<16.3	<16.3
MW-3 @ 30'	30 Feet	09/22/09	09/26/09	In-Situ	< 0.0011	<0.0021	<0.0011	<0.0021	<0.0011	<0.0021	<16.0	<16.0	<16.0	<16.0
MW-3 @ 45'	45 Feet	09/22/09	06/26/09	In-Situ	<0.0010	<0.0020	< 0.0010	<0.0020	<0.0010	<0.0020	<15.0	<15.0	<15.0	<15.0
MW-3 @ 60'	60 Feet	09/22/09	09/26/09	In-Situ	0.0025	0.0027	<0.0011	<0.0021	<0.0011	0.0052	<16.0	<16.0	<16.0	<16.0
MW-4 @ 15'	15 Feet	09/22/09	09/26/09	In-Situ	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	5.4</td <td><15.4</td> <td><15.4</td> <td><15.4</td>	<15.4	<15.4	<15.4
MW-4 @ 30'	30 Feet	09/22/09	09/26/09	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0021	<15.7	<15.7	<15.7	<15.7
MW-4 @ 45'	45 Feet	09/22/09	06/26/09	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0021	<15.6	<15.6	<15.6	<15.6
MW-4 @ 60'	60 Feet	09/22/09	09/26/09	In-Situ	<0.0012	<0.0025	<0.0012	<0.0025	<0.0012	<0.0025	<18.6	<18.6	<18.6	<18.6
	$\{ f_{i}, f_{i}, f_{i} \}$			Contraction of the				\$					1. 1. A.	
SP-1	N/A	10/08/09	60/60/01	N/A	<0.0010	0.0022	0.0055	0.0343	0.0217	0.0637	55.1	489.0	28.5	572.6
SP-2	N/A	10/08/09	60/60/01	N/A	<0.0010	<0.0021	0.0019	0.0042	0.0038	0.0099	22.4	189.0	<15.8	211.4
SP-3	N/A	10/08/09	60/60/01	N/A	<0.0010	<0.0021	< 0.0010	<0.0021	<0.0010	<0.0021	<15.8	<15.8	<15.8	<15.8
								A	and the second second	1. Cales				с ^у ,

Page 2 of 2

Appendices

() () ()

0

OO

0

0

• 0 Ò 0 0 • æ ₿

Appendix A Soil Boring and Monitor Well Logs

Œ Ð • Ì 0

• 0 0 Ð Ø 0 8

Depth				Μ	onitor Well MW-1			
ground	Drilling So	il PID	Petroleum P	etroleun Stain	Soil Description		Monitor Well MV	<u>V-1</u>
E	E° E			Jain			Date Drilled September 24 Thickness of Bentonite Seat 57 F	4, 2009 -1
20	-5	1836	Heavy	Slight	U - 5 - Sand, brown with caliche hodules		Depth to Groundwater Ground Water Elevation	(bys
25	L 10	(747)	Very Heavy	Slight	5 - 18' - Caliche, grev, hard, drv, sandy		Indicates the DSH lavel more	-
30	-15 80	779	Heavy	None			Indicates the groundwater lev measured on	rel
- 35	- 20	848	Heavy	None	18 - 25' - Sand brown very fine grained dry with		 Indicates samples selected for Laboratory Analysis. PID Head-space reading in ppm o with a pater instruction detect 	r Ibtained
40	-25	1449	Heavy	None	caliche nodules		with a photo-tonization detect	ж.
- 45		(1463)	Heavy	None				
Ē		1078	Heavy	None				
			Heavy	None				
- 56	- 40	936	Heavy	None				
- 60	- 45	1522	Heavy	None	25 - 71' - Sand, brown, very fine grained, moist to wet at approximately 70 feet. Monitor well was	1000		
65	- 50	(1438)	Heavy	None	completed using water		Grout Surface Seal	
- 70	- 55	1851	Heavy	None		225455	Bentonite Pellet Seal	
175	- 60	(1550)	Very Heavy	None		2649031		
- 80	65	863	Verv Heavy	None			Sand Pack	
- 85 86		то	(or y (loarly	Hono			Screen	
							Completion Notes	on date
							using air / water rotary drilling te 2.) The well was constructed with 4 inch factory slotted, threaded joi	" ID, 0.020 int, schedu
							40 PVC pipe. 3.) The well is protected with a lock steel cover and compression ca	ed stick up p.
							 The lines between material types on the profile log represent appr boundaries. Actual transitions m pradual 	s shown oximate nay be
							 The depths indicated are referen ground surface. 	nced from
		Monito	or Well N	/IW-1	Rasin En	vironn	nental Consu	Itin
[DCP Pla	nt to Lea	a Station	n 6-Ir Mex	tico	CDS	Cherked By: CDS	
	-	Plains	Pipeline	, L.P	- October	7, 2009	Gibbled by, 665	

Drilling	Soil	PID	Patroleum	Petroleum	Monitor Well MW-2			Monitor Well MW-2
Depth C	columns	Reading	Odor	Stain	Soil Description	5000	Da	e Drilled September 21, 2009
Ē		0.2	None	None	0 - 3' bgs - Sand, light brown, clayey with caliche nodules		Th De De	ckness of Bentonite Seat <u>61 Ft</u> oth of Exploratory Boring <u>90 Ft bgs</u> oth to Groundwater
Ē		0.3	None	None	2 - 14' bas - Caliche white soft dry sandy		Gr	und Water Elevation
10		0.2			2 - 14 bys - Galicine, white, solit, dry, salidy		T	Indicates the PSH level measured
15		20.5	None	None				on Indicates the groundwater level measured on
20		16.8	None	None			PI	 Indicates samples selected for Laboratory Analysis. Head-space reading in ppm obtained with a charter instrume detector.
- 25		39.7	None	None				with a proto-tonization detector.
		27.1	None	None				
E		31.1	None	None				
- 36	124	46.6	None	None				
40		46.9	None	None				
- 45		(48.1)						
-50		35.4	None	None	14 - 90° bgs - Sand, brown, very fine grained, dry,			
- 55		47.9	None	None	and completed drilling with water		4	Grout Surface Seal
Ē		(10.0)	None	None			E	Bentonite Pellet Seal
- 60		(48.9)	None	None				Sand Pack
65		46.2	None	None		CON BASE		
70		45.4	Nana	Nono			E	Screen
75		(43.4)	None	None				
80		44.3	None	None				
- 85								
Ē								
90	TD							
								Completion Notes
							1	The monitor well was advanced on date using air / water rotary drilling technique
							2.	The well was constructed with 2" ID, 0. inch factory slotted, threaded joint, sch 40 PVC pipe.
							3.	The well is protected with a locked stick steel cover and compression cap.
								on the profile log represent approximate boundaries. Actual transitions may be gradual.
							3.	The depths indicated are referenced fro ground surface.
	Conce Sector	M	nitor W		N/_2		Bard Sector	
DC		ant to	Lea S	tation	6-Inch Sec 31 Basin E	nviror	me	ntal Consulti
		Lea C Pla	ounty,	New I	Vlexico	p By: CDS	1	Checked By: CDS
				,	Od	1, 2009	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Drilling Depth C	Soil	PID	Petroleum P	etroleum Stain	Monitor Well MW-3	3	Monitor Well MW-3
	olumns	Reading	Ouor	Stall			Date Drilled September 22, 2009 Thickness of Bentonite Seat 61 Ft
5	 	2.5	None	None	0 - 5' bgs - Clay, light brown, sandy with caliche nodules, some organics		Depth of Exploratory Boring <u>90 Ft bgs</u> Depth to Groundwater Ground Water Elevatiog
- 10		9.4	None	None	5 - 12' bgs - Caliche, white, soft, dry, sandy		Indicates the PSH level measured
15		10.5	None	None	12 - 18' bgs - Sand, light brown, very fine grained with some caliche nodules		Indicates the groundwater level measured on
-20		11.1	None	None	18 - 24' bas - Caliche white soft dry sandy		Laboratory Analysis. PID Head-space reading in ppm obtained with a photo-ionization detector.
-25		15.1	None	None			
- 30		8.0	None	None	24 - 33' bgs - Sand, light brown and Caliche, white, soft, dry		
- 35	23.8	8.2	None	None			
- 40		4.9	None	None			
Ē		(91)	None	None			
		13.0	None	None			
		8.6	None	None	33 - 90' bgs - Sand, reddish brown, very fine grained, dry. Lost circulation at 60 feet bgs and		Grout Surface Seal
- 50		0.0	None	None	completed drilling with water		Bentonite Pellet Seal
- 60 -		0.4					Sand Pack
- 65 - - -						10000000000000000000000000000000000000	Screen
- 70							
75							
- 30							
- 85							그는 것 사람들이
E 90	TD					CYXC.	
1.1							
1.12							
							10.0029
							Completion Notes
							 The monitor well was advanced on date using air / water rotary drilling techniques. The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule
							40 PVC pipe.3.) The well is protected with a locked stick up steel cover and compression cap.
							4.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be
							 3.) The depths indicated are referenced from ground surface.
335							
							and a star has
		Mo	onitor W	ell M\	N-3 Basin	Environ	mental Consulting
DC	P P	lant to Lea C	Lea Sta County, I	Ation New N	6-Inch Sec 31	Prep By: CDS	Checked By: CDS
1.0		Pla	ins Pipe	eline,	L.P.	October 7, 2009	

and the second second		Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.					
			6.1		Monitor Well MW-	4	Monitor Well MW-4
Drilling Depth (Soil Columns	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	5007	Date Drilled September 22, 2009
Ē,		10.5	None	None	0 - 5' bgs - Sand, light brown, clayey with caliche nodules, some organics		Thickness of Bentonite Seat60 Ft Depth of Exploratory Boring89 Ft bgs Depth to Groundwater
Ē		10.5	None	None	5 - 10' bgs - Caliche, white, soft, dry, sandy		Ground Water Elevation
- 10		27.2	None	None	10 -15' bgs - Sand, light brown, very fine grained,		Indicates the PSH level measured on
- 15 -		29.8	None	None	dry 15 - 20' bgs - Sand, light brown, very fine grained,		 Indicates the groundwater level measured on Indicates samples selected for
20		5.7	None	None	dry with some caliche nodules		Laboratory Analysis. PID Head-space reading in ppm obtained with a photo-ionization detector.
25		25.0	None	None	20 - 28' bgs - Caliche, white, hard, dry, sandy		
- 30		26.2	None	None	28 - 33' bgs - Sand, light brown, very fine grained,		
- 35		41 1	None	None	ary with caliche hodules 33 - 35' bgs - Sand, reddish brown, very fine grained, dry with caliche nodules		
Ē			None	None	3		
- 40		31.4	None	None			
45		27.9	None	None			
50		30.4	Nano	Nana			
55		25.4	None	None			Grout Surface Seal
60		33.9	None	None	33 - 89' bgs - Sand, reddish brown, very fine grained, dry. Lost circulation at 60 feet bgs and		Bentonite Pellet Seal
65					completed drilling with water		Sand Pack
						1000 ACC 4000	Screen
Ē							
- 76							
80							
85							
E.89	TD STATE					14740	
							Over the Nation
							Completion Notes The monitor well was advanced on date using air / water rotary diffing techniques. The well was constructed with 2° 10, 0:00 Inch factory stotled, threaded joint, schedul 40 PVC piec
							 The well is protected with a locked stick up steel cover and compression cap. The lines between material types shown on the profile tog represent approximate boundaries. Actual transitions may be
							gradual. 3.) The depths indicated are referenced from around surface
							······································
D	CP P	Mo lant to	onitor V Lea S	Vell M tation	W-4 Basin 6-Inch Sec 31	Environ	mental Consultin
		Lea C	County,	New	Mexico	Prep By: CDS	Checked By: CDS
		Pla	ins Pip	enne,	L.P.	October 7, 2009	

0

.

Ğ

Appendix B Analytical Reports

C Ð

Analytical Report 330358

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" - Sec 31 2009-0234

22-APR-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Miramar, FL E86349 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

22-APR-09

Î

9

6

6

Ø

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: **330358 DCP Plant to Lea Station 6'' - Sec 31** Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 330358. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 330358 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

£

and the second states of the second second

nēlað

Sample Cross Reference 330358

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" - Sec 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-1 @ 10'	S	Apr-15-09 13:50		330358-001
SB-1 @ 20'	S	Apr-15-09 14:00		330358-002
SB-1 @ 30'	S	Apr-15-09 14:20		330358-003
SB-1 @ 40'	S	Apr-15-09 14:30		330358-004
SB-1 @ 50'	S	Apr-15-09 14:50		330358-005
SB-1 @ 60'	S	Apr-15-09 15:20		330358-006
SB-1 @ 70'	S	Apr-15-09 15:50		330358-007
SB-1 @ 75'	S	Apr-15-09 16:20		330358-008

Ð • 5 ant a Bris

6

6

9

() () ()

.

Page 3 of 21

S C C Certificate of Analysis Summary 330358 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" - Sec 31

Contact: Jason Henry Project Id: 2009-0234

E

Linnin Linnin

Date Received in Lab: Fri Apr-17-09 08:07 am Report Date: 22-APR-09

1.00 0.0049 15.0 0.00490.00490.0098 0.00490.0049 15.0 15.0 15.0 ND 0.0098 R R Ł Apr-15-09 15:20 Apr-21-09 10:00 Apr-22-09 10:37 Apr-17-09 17:00 Apr-19-09 15:00 Apr-20-09 06:22 330358-006 SB-1 @ 60' mg/kg ND QN DN DN QN SOIL g 122.5 Q Q 20.5 102 mg/kg % mg/kg RL ND 0.0498 1.00 ND 0.0997 0.2736 0.0498 0.4744 0.0498 1.6574 0.0498 R R 15.1 15.1 15.1 15.1 1.183 0.0997 1.931 0.0498 Apr-20-09 00:00 Apr-17-09 17:00 Apr-19-09 15:00 Apr-15-09 14:50 Apr-21-09 09:43 Apr-20-09 05:57 330358-005 SB-1 @ 50' Brent Barron, II SOIL g 465 59.1 481 1005.1 mg/kg % Project Manager: mg/kg RL ND 0.0507 1.00 15.2 15.2 15.2 15.2 RL 1.079 0.1013 ND 0.1013 R R 0.2259 0.0507 0.4634 0.0507 1.5424 0.0507 1.7683 0.0507 Apr-21-09 09:22 Apr-17-09 17:00 Apr-15-09 14:30 Apr-20-09 00:00 Apr-19-09 14:00 Apr-20-09 01:18 330358-004 SB-1 @ 40' mg/kg SOIL 1.28 687 93.2 1479.2 % mg/kg RL ND 0.0011 1.00 15.8 15.8 15.8 15.8 R 0.0084 0.0021 0.0041 0.0011 0.0018 0.0011 0.0125 0.0011 R ND 0.0021 0.0143 0.0011 Apr-21-09 05:58 Apr-15-09 14:20 Apr-20-09 00:00 Apr-17-09 17:00 Apr-19-09 14:00 Apr-20-09 00:53 330358-003 SB-1 @ 30' <u>mg/kg</u>_____ SOIL 4.83 249 27.0 481 % mg/kg RL ND 0.0011 1.00 16.2 16.2 16.2 16.2 RL RL 0.0061 0.0022 0.0301 0.0011 0.1368 0.0022 0.0623 0.0011 0.1991 0.0011 RL 0.0011 Apr-20-09 00:28 Apr-20-09 00:00 Apr-21-09 05:37 Apr-17-09 17:00 Apr-19-09 14:00 Apr-15-09 14:00 330358-002 SB-1 @ 20' <u>mg/kg</u> 375 SOIL 0.2353 58.0 7.30 473 906 % mg/kg RL 0.0017 0.0010 0.0368 0.0010 0.0554 0.0010 1.00 15.7 15.7 15.7 0.1953 0.0010 0.1399 0.0021 0.2556 0.0010 RL 15.7 R 0.0218 0.0021 Apr-17-09 17:00 Apr-19-09 14:00 Apr-20-09 00:00 Apr-21-09 05:17 Apr-15-09 13:50 Apr-20-09 00:03 SB-1 @ 10' 330358-001 SOIL 4.59 150 311 32.7 493.7 mg/kg % Field Id: Matrix: Lab Id: Depth: Sampled: Extracted: Analyzed: Extracted: Extracted: Analyzed: Units/RL: Units/RL: Analyzed: Units/RL: TPH By SW8015 Mod **BTEX by EPA 8021B Percent Moisture** C6-C12 Gasoline Range Hydrocarbons C12-C28 Dicsel Range Hydrocarbons Project Location: Lea County, NM Analysis Requested C28-C35 Oil Range Hydrocarbons Percent Moisture Total Xylenes Ethylbenzene m,p-Xylenes **Fotal BTEX** Total TPH o-Xylene Benzene Tolucne

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout the anterpretation represent the best judgment of XENCO Laborations. XEXCO Laboratorics assumes no responsibility and malks no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director Brent Barron

I

 Certificate of Analysis Summary 330358
 Certificate of Analysis Summary 330358 Sector
Secto

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-0234

Date Received in Lab: Fri Apr-17-09 08:07 am Report Date: 22-APR-09

			4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Project Manager:	Brent Barron, II	
	Lab Id:	330358-007	330358-008			
Analyseis Poanostod	Field Id:	SB-1 @ 70'	SB-1 @ 75'			
rate and a sector	Depth:					
	Matrix:	SOIL	SOIL			
	Sampled:	Apr-15-09 15:50	Apr-15-09 16:20			
BTEX hv EPA 8021B	Extracted:	Apr-20-09 00:00	Apr-20-09 00:00			
	Analyzed:	Apr-21-09 06:18	Apr-21-09 06:39			
	Units/RL:	mg/kg RL	mg/kg RL			
Benzene		0100.0 UN	ND 0.0010			
Toluene		ND 0.0020	ND 0.0020			
Ethylbenzene		ND 0.0010	ND 0.0010			
m,p-Xylcnes		ND 0.0020	ND 0.0020	77		
o-Xylene	-	ND 0.0010	ND 0.0010			
Total Xylencs		ND 0.0010	0100.0 UN			
Total BTEX		ND 0.0010	ND 0.0010			
Percent Moisture	Extracted:					
	Analyzed:	Apr-17-09 17:00	Apr-17-09 17:00			
	Units/RL:	% RL	% RL			
Percent Moisture		ND 1.00	ND 1.00			
TPH By SW8015 Mod	Extracted:	Apr-19-09 15:00	Apr-19-09 15:00			
	Analyzed:	Apr-20-09 06:47	Apr-20-09 07:12			
	Units/RL:	mg/kg RL	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons	_	ND 15.1	ND 15.1			
C12-C28 Diesel Range Hydrocarbons		40.6 15.1	43.3 15.1			
C28-C35 Oil Range Hydrocarbons		ND 15.1	ND 15.1			
Total TPH		40.6 15.1	43.3 15.1			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report tractsent the back adgment of XENCO Laboratories XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data herby presented. Our liability is timited to the amount invoited for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director A W

Page 5 of 21

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St. Miami Lakes. FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

ork Orders : 330358	,		Project I	D: 2009-0234	1	
Lab Batch #: 756442	Sample: 528575-1-BKS / B	KS Ba	tch: 1 Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 04/21/09 02:13	SU	RROGATE R	ECOVERY	STUDY	1
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0285	0.0300	95	80-120	
Lab Batch #: 756442	Sample: 528575-1-BSD / B	SD Ba	tch: I Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 04/21/09 02:34	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0274	0.0300	91	80-120	
4-Bromofluorobenzene		0.0285	0.0300	95	80-120	
Lab Batch #: 756442	Sample: 528575-1-BLK / B	LK Ba	tch: 1 Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 04/21/09 03:14	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0245	0.0300	82	80-120	·····
4-Bromofluorobenzene		0.0277	0.0300	92	80-120	-:
Lab Batch #: 756442	Sample: 330358-001 / SMP	Ba	tch: Matr	ix: Soil		1
Units: mg/kg	Date Analyzed: 04/21/09 05:17	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0214	0.0300	71	80-120	*
4-Bromofluorobenzene		0.0563	0.0300	188	80-120	*
Lab Batch #: 756442	Sample: 330358-002 / SMP	Ba	tch: 1 Matr	ix: Soil	• <u>•</u> •••	
Units: mg/kg	Date Analyzed: 04/21/09 05:37	SU	RROGATE R	ECOVERY	STUDY	
BTEX	A nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I.4-Difluorobenzene	4 x1141 y US	0.0206	0.0300	69	80-120	*
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Orders : 330358	,		Project II): 2009-0234	ł	
Lab Batch #: 756442	Sample: 330358-003 / SMP	Batch: 1 Matrix: Soil				
Units: mg/kg	Date Analyzed: 04/21/09 05:58	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	į		[D]		
I,4-Difluorobenzene		0.0196	0.0300	65	80-120	*
4-Bromofluorobenzene		0.0322	0.0300	107	80-120	
Lab Batch #: 756442	Sample: 330358-007 / SMP	Bat	tch: Matri	x: Soil		
Units: mg/kg	Date Analyzed: 04/21/09 06:18	SU	RROGATE RE	COVERY	STUDY	1
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Control Recovery Limits F1 %R %R [D]		
1,4-Difluorobenzene		0.0238	0.0300	79	80-120	*
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0316	0.0300	105	80-120	
Lab Batch #: 756442	Sample: 330358-008 / SMP	Batch: 1 Matrix: Soil				
Units: mg/kg	Date Analyzed: 04/21/09 06:39	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0230	0.0300	77	80-120	*
4-Bromofluorobenzene		0.0299	0.0300	100	80-120	
Lab Batch #: 756442	Sample: 330358-004 / SMP	Bat	tch: ¹ Matri	x: Soil		
Units: mg/kg	Date Analyzed: 04/21/09 09:22	SURROGATE RECOVERY STUDY				
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0227	0.0300	76	80-120	*
4-Bromofluorobenzene		0.0404	0.0300	135	80-120	*
Lab Batch #: 756442	Sample: 330358-005 / SMP	Bat	tch: 1 Matri	x: Soil	1	
Units: mg/kg	Date Analyzed: 04/21/09 09:43	SURROGATE RECOVERY STUDY				
ВТЕХ	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1.4-Difluorobenzene		0.0211	0.0300	70	80.120	*
4-Bromofluorobenzene		0.0211	0.0300	127	80-120	*
		0,0500	0,0500	121	00-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

6

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Vork Orders : 330358	',		Project II	D: 2009-0234	ŧ	
Lab Batch #: 756442	Sample: 330355-027 S / MS	IS Batch: 1 Matrix: Soil				
Units: mg/kg	Date Analyzed: 04/21/09 10:25	SURROGATE RECOVERY STUDY				
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4 Differenchanzana		0.0241				ł
1,4-Difluorobenzene	······································	0.0241	0.0300	δυ 07	80-120	l
4-Dromonicorocenzene		0.0271	0.0500			<u> </u>
Lab Batch #: 756442	Sample: 330355-027 SD / N	ASD Bat	tch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/21/09 10:45	SU	RROGATE RE	SCOVERY S	STUDY	
BTEX	BTEX by EPA 8021B Amount True Found Amount Recovery Limi [A] [B] %R %I [D]				Control Limits %R	Flags
1.4-Difluorøbenzene		0.0252	0.0300	84	80-120	<u> </u>
4-Bromofluorobenzene		0.0311	0.0300	104	80-120	[
Lah Batch #: 756632	Sample: 528674-1-BKS / F	JKS Ba	tch: 1 Matr	ix: Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 04/21/09 11:49	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4 Diffuorabenzone	Analytes	0.0267	0.0200	0	PO 120	
4-Bromofluerobenzene		0.0207	0.0300	107	80-120	<u> </u>
		0.0322	0.0300		00-120	<u> </u>
Lab Batch #: 756632	Sample: 528674-1-BSD / B	SD Ba	tch: 1 Matri	ix: Solid		
Units: mg/kg	Date Analyzed: 04/21/09 12:10	SU	RROGATE RE	ECOVERY S	STUDY	·
BTEX	(by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0269	0.0300	90	80-120	[
4-Bromofluorobenzene		0.0329	0.0300	110	80-120	l
Lab Batch #: 756632	······································	3LK Batch: I Matrix: Solid				
4	Sample: 528674-1-BLK / B	LK Ba	tch: I Matri	IA. Oonu		
Units: mg/kg	Sample: 528674-1-BLK / E Date Analyzed: 04/21/09 12:51	3LK Ba	tch: 1 Matr RROGATE RI	COVERY S	STUDY	
Units: mg/kg BTE3	Sample: 528674-1-BLK / E Date Analyzed: 04/21/09 12:51 (by EPA 8021B	SLK Ba SU Amount Found [A]	tch: I Matr RROGATE RI True Amount [B]	Recovery %R	STUDY Control Limits %R	Flags
Units: mg/kg BTEX	Sample: 528674-1-BLK / E Date Analyzed: 04/21/09 12:51 & by EPA 8021B Analytes	BLK Ba SU Amount Found [A] 0.0235	tch: I Matr RROGATE RI True Amount [B] 0.0300	Recovery %R [D] 78	STUDY Control Limits %R 80-120	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Vork Orders : 330358	,		Project II	D: 2009-0234	ł,	
Lab Batch #: 756632	Sample: 330358-006 / SMP	P Batch: 1 Matrix: Soil				
Units: mg/kg	Date Analyzed: 04/22/09 10:37	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0206	0.0300	69	80-120	, **
4-Bromofluorobenzene		0.0445	0.0300	148	80-120	**
Lab Batch #: 756632	Sample: 330466-001 S / MS	Ba	tch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/22/09 11:18	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery Limits %R %R		
1,4-Difluorobenzene		0.0237	0.0300	79	80-120	*
4-Bromofluorobenzene		0.0503	0.0300	168	80-120	*
Lab Batch #: 756632	Sample: 330466-001 SD / M	ISD Ba	tch: ¹ Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/22/09 11:39	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluorobenzene		0.0236	0.0300	79	80-120	*
4-Bromofluorobenzene		0.0499	0.0300	166	80-120	*
Lab Batch #: 756285	Sample: 8406396-1-BKS / E	BKS Ba	tch: 1 Matri	ix: Solid		
Units: mg/kg	Date Analyzed: 04/19/09 15:42	SURROGATE RECOVERY STUDY				
трн і	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
L Chlangastana	Anarytes	108	100	100	70.125	
o-Terphenyl		50.3	50.0	108	70-135	
Lab Batab #: 756295	Sample: 8406206 1 PSD / E					
Lau Baten #: / 30263	Sample: 0400390-1-05D/ 0 Date Analyzed: 04/10/00 16:07	BSD Batch: I Matrix: Sold				
	Carc / mary 2001 / 19/07 10:07				Control	
ТРНІ	3y SW8015 Mod Analytes	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	Flags
1-Chlorooctane			100	111	70-135	
a Tambanul		52.0	50.0	104	70 135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

ork Orders : 330358	,		Project II	D: 2009-0234	1		
Lab Batch #: 756285	Sample: 8406396-1-BLK / 1	BLK Ba	tch: 1 Matr	ix: Solid			
Units: mg/kg	Date Analyzed: 04/19/09 16:32	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod		Amount Found ' [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1-Chlorooctane		96.7	100	97	70-135		
o-Terphenyl		56.5	50.0	113	70-135		
Lab Batch #: 756285	Sample: 330358-001 / SMP	Ba	tch: I Matr	ix: Soil			
Units: mg/kg	Date Analyzed: 04/20/09 00:03	SU	RROGATE R	ECOVERY	STUDY		
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Flags		
1-Chlorooctane		102	100	102	70-135		
o-Terphenyl		57.8	50.0	116	70-135	1	
Lab Batch #: 756285	Sample: 330358-002 / SMP	SMP Batch: I Matrix: Soil					
Units: mg/kg	Date Analyzed: 04/20/09 00:28	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	Anarytes	101	100	101	70.125	÷	
o-Terphenyl		55.2	50.0	110	70-135	. <u> </u>	
Lah Batch #: 756285	Sample: 330358-003 / SMP	Ra	tch· Matr	ix: Soil		ļ	
Units: mg/kg	Date Analyzed: 04/20/09 00:53	SL	RROGATE R	ECOVERY	STUDY		
TPH	By SW8015 Mod	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1-Chlorooctane		98.6	100	99	70-135		
o-Terphenyl		55.9	50.0	112	70-135		
Lab Batch #: 756285	Sample: 330358-004 / SMP	Batch: 1 Matrix: Soil					
Units: mg/kg	Date Analyzed: 04/20/09 01:18	SL	RROGATE R	OGATE RECOVERY STUDY			
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytaa		•				
L-Chlorooctane	Analytes	105	100	105	70.136		

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Vork Orders : 330358	\$,		Project II): 2009-0234	ŧ	
Lab Batch #: 756285	Sample: 330355-030 S / MS	3 Ba	tch: l Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/20/09 01:43	SU	RROGATE RF	ECOVERY f	STUDY	
ТРН Ј	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	l	'	[D]	1!	L
1-Chlorooctanc		114	100	114	70-135	
o-Terphenyl		52.3	50.0	105	70-135	1
Lab Batch #: 756285	Sample: 330355-030 SD / N	ASD Ba	tch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/20/09 02:09	SU	RROGATE RF	ECOVERY	STUDY	1
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	• Flags
1-Chlorooctanc		118	100	118	70-135	t.
o-Terphenyl		54.6	50.0	109	70-135	
Lab Batch #: 756385	Sample: 8406400-1-BKS / J	BKS Ba	itch: 1 Matr	ix: Solid	·	
Units: mg/kg	Date Analyzed: 04/20/09 04:41	SU	RROGATE RI	ECOVERY	STUDY	
ТРН Ј	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		100		70.125	 ;
I-Chlorooctane			100		70-135	<u> </u>
0-1 crpneny		50.2	50.0	100	/0-155	<u> </u>
Lab Batch #: 756385	Sample: 8406400-1-BSD / F	3SD Ba	tch: 1 Matri	ix: Solid		:
Units: mg/kg	Date Analyzed: 04/20/09 05:06	SU	RROGATE RE	COVERY	STUDY	-
ТРН Г	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		111	100	+	70-135	<u> :</u>
o-Terphenyl		51.2	50.0	102	70-135	† <u>.</u>
Lab Batch #: 756385	Sample: 8406400-1-BLK / /	BLK Ba	tch: 1 Matr	ix: Solid	L	L
Units: mg/kg	Date Analyzed: 04/20/09 05:31	SU	JRROGATE RJ	ECOVERY '	STUDY	
ТРН Ј	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	L		[D]	<u> </u> '	<u> </u> :
1-Chlorooctane		95.5	100	96	70-135	<u> </u>
o-Terphenyl	1	. 55.3	50.0	111	70-135	1.

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

0

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Orders : 330358	,		Project II	D: 2009-0234	4	
Lab Batch #: 756385	Sample: 330358-005 / SMP	Ba	itch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/20/09 05:57	SU	IRROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					
1-Chlorooctane		101	100	101	70-135	
o-Terphenyl		52.6	50.0	105	70-135	
Lab Batch #: 756385	Sample: 330358-006 / SMP	Ba	tch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/20/09 06:22	SU	IRROGATE RI	ECOVERY	STUDY	
ТРНІ	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		98.1	100	98	70-135	
o-Terphenyl		53.7	50.0	107	70-135	
Lab Batch #: 756385	Sample: 330358-007 / SMP	Ba	itch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 04/20/09 06:47	SU	RROGATE RI	ECOVERY	STUDY	
ТРНІ	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes	100	100	11	70.125	
o-Terphenyl		55.3	50.0	111	70-135	
T T D			50.0		10-155	
Lab Batch #: /30385	Sample: 330358-0087 SMP	Ba	itch: 1 Matri	ix: Soil	0711011	
Units: mg/kg	Date Analyzed: 04/20/09 07:12	50	RROGATE RI			
TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
L-Chlorooctane		97.1	100	07	70 125	
o-Terphenyl		53.9	50.0	108	70-135	
Lab Batch #: 756385	Sample: 330358-008 S / MS		taha l Matri		<u> </u>	
Lab Batch #. 196965	Date Analyzed: 04/20/09 13:27			COVEDV	STUDV	
ТРН І	Analytes	Amount Found [A]	Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		116	100	116	70-135	
			1 100	1 110	1 10-133	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

₽

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Orders : 330358,

Project ID: 2009-0234

Lab Batch #: 756385	Sample: 330358-008 SD / N	ASD Ba	tch: ¹ Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 04/20/09 13:53	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		115	100	115	70-135	
o-Terphenyl		51.5	50.0	103	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries 0 Ø 0 9

0

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330358

Lab Batch ID: 756442 Analyst: ASA

Units: mg/kg

Date Prepared: 04/20/2009

Batch #: 1

Sample: 528575-1-BKS

Project ID: 2009-0234 Date Analyzed: 04/21/2009 Matrix: Solid

	~
	Ξ
	2
	5
	~
	2
	5
1	5
ļ	ដ
l	ă
l	2
	Ξ
	5
ļ	\simeq
Į	
ł	Δ.
I	Ð
l	Ρ
ł	E
	\mathbf{Z}
	Z
	5
l	ü
ł	÷
	5
	3
l	8
I	-
I	E)
I	\mathbf{Z}
	F
ł	3
F	
Į	Ě
I	5
İ	<u></u>
l	8
Í	\leq
۱	¥
۱	Z
۱	Ą
I	님
۱	æ
۱	
I	

BTEX by EP.	A 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Dunlicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B	[C]	[a]	[E]	Result [F]	ย	2			
Benzene		QN	0.1000	0.0811	81	0.1	0.0811	81	0	70-130	35	
Toluene		QN	0.1000	0.0769	77	0.1	0.0767	77	0	70-130	35	
Ethylbenzenc		QN	0.1000	0.0804	80	0.1	0.0805	81	0	71-129	35	
m,p-Xylencs		ŊŊ	0.2000	0.1661	83	0.2	0.1661	83	0	70-135	35	
o-Xylene		DN	0.1000	0.0795	80	0.1	0.0796	80	0	71-133	35	
Analyst: ASA		Da	te Prepare	od: 04/21/200	6			Date Ar	alyzed: 0	4/21/2009		
Lab Batch ID: 756632	Sample: 528674-1-BF	ξS	Batch	#: 1					Matrix: S	bild		
Units: mg/kg	L		BLANH	K/BLANK S	SPIKE / B	LANK S	PIKE DUPL	ICATE F	RECOVE	RY STUD	Y	I

										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
BTEX by EPA 8021B	Blank ample Result {A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			5	[7]	[]]		5				
Benzene	DN	0.1000	0.0846	85	0.1	0.0873	87	3	70-130	35	
Toluenc	DN	0.1000	0.0801	80	0.1	0.0833	83	4	70-130	35	
Ethylbenzene	QN	0.1000	0.0845	85	0.1	0.0878	88	4	71-129	35	
m,p-Xylenes	QN	0.2000	0.1755	88	0.2	0.1818	16	4	70-135	35	
o-Xylene	QN	0.1000	0.0835	84	0.1	0.0858	86	3	71-133	35	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

0 **BS / BSD Recoveries**

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330358 Analyst: BHW

Lab Batch ID: 756285

Date Prepared: 04/19/2009 Batch #: 1

Sample: 8406396-1-BKS

Project ID: 2009-0234 Date Analyzed: 04/19/2009 Matrix: Solid

Units: mg/kg		BLAN	K /BLANK S	PIKE / E	SLANK S	PIKE DUPL	JUATE	KECUVE	KY SLUD	X	
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[8]	[c]	[0]	[E]	Result [F]	<u>ច</u>				
C6-C12 Gasoline Range Hydrocarbons	QN	1000	1040	104	1000	1070	107	3	70-135	35	
C12-C28 Dicsel Range Hydrocarbons	ND	1000	1020	102	1000	1050	105	3	70-135	35	
Analyst: BHW	Da	te Prepar	ed: 04/19/200	6(Date A	nalyzed: 0	4/20/2009		
Lab Batch ID: 756385 Sample: 8406400-1-	-BKS	Batcl	1#: 1					Matrix: S	olid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / E	STANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	Blank	Spike	Blank	Blank	Spike	Blank	BIK. Spk		Control	Control	
•	Sample Result	Added	Spike	Spike	Added	Spike	Dup.	RPD	Limits	Limits	Flag
	[A]		Result	%R		Duplicate	%R	%	%R	%RPD	
Analytes		[B]	[<u>c]</u>	ā	[E]	Result [F]	[0]	·			

35 35

70-135 70-135

ŝ

107 104

1070 1040

1000 1000

106 10

1000 1000

C6-C12 Gasoline Range Hydrocarbons C12-C28 Dicsel Range Hydrocarbons

1010 1060

Q Ð

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

 Image: Standard S

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330358

Lab Batch ID: 756442 Date Analyzed: 04/21/2009

Batch #: 1 Matrix: Soil Analyst: ASA

QC- Sample ID: 330355-027 S

Date Prepared: 04/20/2009

Project ID: 2009-0234

Reporting Units: mg/kg		W	ATRIX SPIK	E / MATI	RIX SPIF	CE DUPLICAT	FE RECO	DVERY S	TUDY		Γ
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	<u>5</u>	8 %	Added [E]	Result [F]	6] 8	%	%R	%RPD	
Benzene	QN	0.1293	0.0819	63	0.1293	0.0867	67	9	70-130	35	×
Toluene	ND	0.1293	0.0752	58	0.1293	0.0790	61	5	70-130	35	×
Ethylbenzenc	ŊŊ	0.1293	0.0778	60	0.1293	0.0835	65	7	71-129	35	×
m.p-Xylencs	ŊŊ	0.2587	0.1172	45	0.2587	0.1201	46	2	70-135	35	×
o-Xylene	ND	0.1293	0.0767	59	0.1293	0.0814	63	6	71-133	35	×
Lab Batch ID: 756632 Date Analyzed: 04/22/2009	QC- Sample ID: Date Prepared:	330466- 04/21/2	00 S	Bat Ani	tch #: alyst: ≠	l Matrix \SA	: Soil				

Reporting Units: mg/kg		M	ATRIX SPIKI	TAM / E	RLX SPH	KE DUPLICAT	FE RECO	DVERY S	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN	0.1126	0.0617	55	0.1126	0.0627	56	2	70-130	35	×
Toluene	QN	0.1126	0.0598	53	0.1126	0.0612	54	2	70-130	35	×
Ethylbenzene	QN	0.1126	0.0652	58	0.1126	0.0662	59	2	71-129	35	×
m,p-Xylencs	QN	0.2252	0.1341	60	0.2252	0.1364	61	2	70-135	35	×
o-Xylene	ND	0.1126	0.0587	52	0.1126	0.0604	54	3	71-133	35	×

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

 Image: Stampole

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330358

Lab Batch ID: 756285

1 Matrix: Soil

Project ID: 2009-0234

Lab Batch ID: 756285 Date Analyzed: 04/20/2009	QC- Sample ID: Date Prepared:	330355- 04/19/20	030 S 09	Bat Ana	ich #: ilyst:]	l Matrix BHW	t: Soil					
Reporting Units: mg/kg		M	ATRIX SPIKI	E / MATH	IIX SPI	KE DUPLICA'	TE RECO	DVERY S	TUDY			
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag	
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	1	
C6-C12 Gasoline Range Hydrocarbons	Q	1180	1360	115	1180	1410	611	4	70-135	35		
C12-C28 Diesel Range Hydrocarbons	ND	1180	1330	113	1180	1380	117	4	70-135	35		
Lab Batch ID: 756385	QC- Sample ID:	330358-	008 S	Bat	tch #:	1 Matrix	t: Soil					
Date Analyzed: 04/20/2009	Date Prepared:	04/19/20	60	Ana	ilyst:	BHW						
Reporting Units: mg/kg		M	ATRIX SPIKI	E / MATH	RIX SPI	KE DUPLICA	TE REC	DVERY S	TUDY			
TPH By SW8015 Mod	Parent Semulo	- 11 - 2	Spiked Sample	Spiked	- 11 - 21	Duplicate	Spiked	444	Control	Control	Ē	

	Flag				
Control	Limits %RPD		35	35	
Control	Limits %R		70-135	70-135	
	RPD %		1	0	
Spiked	Dup. %R	[6]	112	112	
Duplicate	Spiked Sample Result [F]		1130	0/11	
	Spike Added	[E]	1010	1010	
Spiked	Sample %R	ē	113	112	
Spiked Sample	Result [C]		1140	0/11	
	Spike Added	[B]	1010	0101	
Parent	Sample Result	[V]	ND	43.3	
TPH By SW8015 Mod		Analytes	C6-C12 Gasoline Range Hydrocarbons	C12-C28 Diesel Range Hydrocarbons	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*([C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 18 of 21

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330358

Lab Batch #: 756187			Project I	D: 2009-023	34
Date Analyzed: 04/17/2009	Date Prepared: 04/1	7/2009	Analy	st: BEV	
QC- Sample ID: 330355-021 D	Batch #: 1	ł	Matr	ix: Soil	
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	7.90	7.38	7	20	
Lab Batch #: 756188					
Date Analyzed: 04/17/2009	Date Prepared: 04/1	7/2009	Analy	st: BEV	
QC- Sample ID: 330358-004 D	Batch #: 1		Matri	ix: Soil	
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits. %RPD	Flag
Analyte					
Percent Moisture	1.28	1.10	15	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

	Texas					1260 Ode	90 We: 583; T	CHA st i-20 exas	IN OF East 79765	Sicos	roov	REC	DRD	ND	Pho Fau	(SIS R 10: 431 : 431	EQUI	EST 1800 1713			
l Manager, Curt Stanley												Projec	t Nam	00	plan	t to Le	50 Sta	tion 6	ŝ	30.31	_
any Name Basin Environmental	Servica Tect	hnolo	gies. LLC									đ	aject :	: 200	9-023	_					
any Address: P. O. Box 301												Proj	set Lo	: Lea	County	NM.					
ate/Zip: Lovington, NM 88260													D04	PAA	- J. Hc	λu					
one No: (575)005-7218	1			Fax No:	5	5) 39	-1429				Rey .	oor Fo	mat	ľ	Standar	13	Ē	d Ha		30dN	S
r Signature: (L XI-R	.J			e-mail:	δ ι	Istar	levic	Das	in-co	Insu	ling.c	Ę			ľ	ĺ				ł	Г
		/										1		1C	2		۶b	E	-	Ē	\$.Q
430358	1				L.3.	E					ľ	Ц		101	7	$\left \right $	×				21.0
Fiéto code	diga Depth	chqad gaiba	bolqmus2 ets0	bölqma2 emiT	behard Filered	ica	· 1011	NOS/H	*O'S'IN	Oster (Spixedy) Norre	or + Clonudward First Standard + Mo	15108 (115108) 817 1143	9001 X1 9001 X1 1431	ANDIA (CY, COA, MICERIAL)	6694 (556 (560) 6694 (566 (560) 7694 (566 (560)	saispiov esitaiovira	105 2021 80 20 20 20 20 20 20 20 20 20 20 20 20 20	100 K 100	102 S01	, the second second reside	A 15 (subtros-ord) IAI HZUH
SB-1@10'		1	04/15/09	1350	F	×	_				Sol	×	1	1	-	-	×	 			
SB-1@20'			04/15/09	1400	-	×					ŝ	×					×				
SB-1@30'		-	04/15/09	1420	-	×					Soi	Ě					×		··		-
SB-1 @40'	<u></u>		04/15/09	1430	÷	X			,		Sol	×				_	×				-
SB-1 @50'			04/15/09	1450		×					Sol	×		_		<u>.</u>	×				-+
SB-1 @60'	_		04/15/09	1520	-	×					Sol	<u>×</u>			_		×		-		-
58-1 <i>@</i> 70'			04/15/09	1550		×					ŝ	×					×		\dashv	\uparrow	
SB-1 @75'	_	-	04/15/09	1620		×				_	Sol	<u> </u>				_	×		_		-+
					-					_									÷	\pm	-+
		\neg			\neg					_		-			4		-				-
									•				2 10 2	sborat Imple	22 CQ	ens luit		17. S.	QS.		
med - 17 - 17	ent COC	C	lecewed by:							80	æ	e,	<u>, 200</u>	trefs o ustoov	000	0er(s) 1cont	(3) (5)	Viale.	(89)	4.4.VG	
	Little	1. ····	cocaived by.						†	õ	2	E.	0	ad a l		elivere Xent Ro	5 	2 . T	Ð≻∦	4 4 66	2.7
Date	, Ygna	Ť	book ed by ELO	1	12		ŀ			8	10	EU)	L.					2		ſ	. p

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client	Plains /Basin	
Date/ Time:	04-17-09 C 0807	*********************
Lab ID # :	330358	
Initials.	JMF	
	,	Sample Receipt Checklist

0

6

6

0

0

0

Ø

0

0

1

0

0

F

0

Client Initials Yes > No 2.5 °C Temperature of container/ cooler? #1 (Yes) #2 Shipping container in good condition? No Yes (Not Present> #3 Custody Seals intact on shipping container/ cooler? No (Yes) (Yes) #4 Custody Seals intact on sample bottles/ container? / label No Not Present #5 Chain of Custody present? No Sample instructions complete of Chain of Custody? Yes No #6 Yes #7 Chain of Custody signed when relinquished/ received? No Yes | ID written on Cont./ Lid #8 Chain of Custody agrees with sample label(s)? No Yes #9 Container label(s) legible and intact? No Not Applicable #10 Sample matrix/ properties agree with Chain of Custody? No Yes #11 Containers supplied by ELOT? No (Pes) : No #12 Samples in proper container/ bottle? See Below Yes #13 Samples properly preserved? No See Below #14 Sample bottles intact? No Yes #15 Preservations documented on Chain of Custody? No Yes) #15 Containers documented on Chain of Custody? No #17. Sufficient sample amount for indicated test(s)? (Yes) No Sec Below Yes> #18 All samples received within sufficient hold time? No See Below Yes #19 Subcontract of sample(s)? No Not Applicable (Yes) #20 VOC samples have zero headspace? No Not Applicable Variance Documentation Contact: Contacted by: Date/ Time:

Regarding:

Corrective Action Taken:

Check all that Apply:

1

See attached e-mail/ fax

and a second
Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 335116

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6-Inch-Sec 31 2009-084

17-JUN-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX Corpus Christi, TX T104704370-08-TX - Dallas, TX T104704295-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Miramar, FL E86349 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

17-JUN-09

Ò

8 9

<u>A</u>

B

0

 (\mathbf{B})

Ø

E

Õ

۲

P

Ì

8 9

0

Ø

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 335116 DCP Plant to Lea Station 6-Inch-Sec 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 335116. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 335116 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 335116

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6-Inch-Sec 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
RP @ 15'	S	Jun-10-09 11:30		335116-001
NSW @ 14.5'	S	Jun-10-09 11:50		335116-002
SSW @ 14.5'	S	Jun-10-09 12:10		335116-003
West Trench @ 6'	S	Jun-10-09 12:20		335116-004
North Trench # 1 @ 4'	S	Jun-10-09 12:30		335116-005
North Trench # 1 @ 8'	S	Jun-10-09 12:40		335116-006
North Trench # 1 @ 12'	S	Jun-10-09 12:50		335116-007
North Trench # 1 @ 14'	S	Jun-10-09 13:00		335116-008
East Trench # 1 @ 4'	S	Jun-10-09 13:10		335116-009
East Trench # 1 @ 14'	S	Jun-10-09 13:20		335116-010
North Trench # 2 @ 4'	S .	Jun-10-09 13:30		335116-011
North Trench # 2 @ 8'	S	Jun-10-09 13:40	١	335116-012
East Trench # 2 @ 4'	S	Jun-10-09 13:50		335116-013
East Trench # 2 @ 14'	S	Jun-10-09 14:00		335116-014
Stockpile	S	Jun-10-09 14:10		335116-015

Ð

CASE NARRATIVE

(1) (1)

Ð

0

0

۲

() () ()

۲

Ð

6

() ()

@ @

0

6

6

¢

0

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Project ID: 2009-084 Work Order Number: 335116 Report Date: 17-JUN-09 Date Received: 06/11/2009

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-762045 Percent Moisture None

Batch: LBA-762047 Percent Moisture None

Batch: LBA-762052 TPH by SW8015 Mod None

Batch: LBA-762264 BTEX-MTBE EPA 8021B SW8021BM

Batch 762264, Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike. Samples affected are: 335116-005, -004, -011, -009, -013, -014, -012, -003. The Laboratory Control Sample for Toluene, m,p-Xylenes, Benzene, Ethylbenzene, o-Xylene is within laboratory Control Limits

SW8021BM

Batch 762264, 4-Bromofluorobenzene recovered below QC limits: Data not confirmed by reanalysis. Samples affected are: 531836-1-BLK,335116-004,335116-014,335116-012,335116-013,335116-003,335116-005. Matrix Interference is suspected in sample surrogate failures.

Batch 762264, 4-Bromofluorobenzene recovered above QC limits: Data confirmed by reanalysis. Samples affected are: 335116-006, 335116-010

Batch: LBA-762423 BTEX-MTBE EPA 8021B None

Certificate of Analysis Summary 335116 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Project Location: Lea County, NM

Contact: Jason Henry Project Id: 2009-084

6

()) 0

> Date Received in Lab: Thu Jun-11-09 08:35 am Report Date: 17-JUN-09

83.6 0.0555 0.1109 0.0555 0.1109 0.0555 0.0555 1.00 83.6 83.6 83.6 0.0555 RL RL R North Trench # 1 (@) 8' Jun-16-09 08:06 Jun-10-09 12:40 Jun-15-09 11:00 Jun-12-09 08:45 Jun-11-09 11:32 Jun-11-09 16:11 335116-006 m<u>g/kg</u>_____ SOIL 0.1930 3.900 3.179 7.079 915 1.009 10.73 3780 8.281 309 5004 mg/kg % North Trench # 1 (@) 4' ND 0.0012 ND 0.0012 RL 0.175 0.175 RL 1.00 ND 0.175 ND 0.175 ND 0.0023 ND 0.0012 ND 0.0012 R ND 0.0023 ND 0.0012 Jun-10-09 12:30 Jun-12-09 13:00 Jun-12-09 23:40 Jun-12-09 08:45 Jun-11-09 11:32 Jun-11-09 15:48 335116-005 Brent Barron, II SOIL Q az 14.52 mg/kg mg/kg % 1.00 16.9 16.9 16.9 mg/kg RL ND 0.0011 16.9 Project Manager: ND 0.0023 ND 0.0011 ND 0.0023 ND 0.0011 ND 0.0011 0.0011 RL R Jun-12-09 23:18 Jun-11-09 15:25 Jun-10-09 12:20 Jun-12-09 13:00 Jun-12-09 08:45 Jun-11-09 11:32 West Trench (a) 6' 335116-004 mg/kg_____ SOL QN QZ QN Q2 11.84 % mg/kg RL ND 0.0011 ND 0.0011 ND 0.0022 ND 0.0011 RL 1.00 ND 0.0022 16.7 16.7 16.7 ND 0.0011 ND 0.0011 R 16.7 Jun-12-09 13:00 Jun-12-09 08:45 Jun-11-09 11:32 Jun-11-09 15:02 Jun-10-09 12:10 Jun-12-09 22:57 SSW @ 14.5' 335116-003 SOIL 10.16 g QN QZ 102 mg/kg % 16.4 16.4 mg/kg RL 0.0019 0.0011 16.4 1.00 16.4 RL 0.0051 0.0022 ND 0.0011 0.0083 0.0011 R R 0.0012 0.0011 0.0083 0.0022 0.0165 0.0011 lun-12-09 22:35 Jun-12-09 08:45 Jun-11-09 14:38 Jun-10-09 11:50 Jun-12-09 13:00 Jun-11-09 11:32 VSW @ 14.5' 335116-002 SOIL 8.98 QN QN 26.1 26.1 mg/kg % 81.4 81.4 1.086 1.086 1.086 1.00 81.4 13.06 2.172 15.568 1.086 81.4 RL ND 2.172 2.508 1.086 R R Jun-15-09 11:00 Jun-16-09 08:49 Jun-11-09 11:32 Jun-11-09 14:15 Jun-10-09 11:30 Jun-12-09 08:45 RP @ 15' 335116-001 mg/kg ND mg/kg 809 QN SOIL 15.568 422 187 1418 7.91 % Lab Id: Field Id: Depth: Matrix: Sampled: Analyzed: Extracted: Extracted: Analyzed: Units/RL: Units/RL: Analyzed: Units/RL: Extracted: TPH By SW8015 Mod BTEX by EPA 8021B C6-C12 Gasoline Range Hydrocarbons **Percent Moisture** C12-C28 Diesel Range Hydrocarbons Analysis Requested C28-C35 Oil Range Hydrocarbons Percent Moisture Total Xylenes Ethylbenzene m,p-Xylenes Total BTEX Total TPH Benzene o-Xylene Toluene

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughou this manufacial report represent the test pugnent of XENCO Laboratories. XENCO Laboratories assumes to reportisitivity and makes to warranty to the red use of the data hereby presented Our liability is limited to the amount invoited for this work order unless otherwise agreed to it mritting.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director Brent Barron

Control Con PLAINS ALL AMERICAN EH&S, Midland, TX Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Date Received in Lab: Thu Jun-11-09 08:35 am Report Date: 17-JUN-09

Contact: Jason Henry Project Id: 2009-084

Ø

o di co 6

Project Location: Lea County, NM					Keport Date:	60-NDC-/1	
					Project Manager: 1	Srent Barron, II	
	Lab Id:	335116-007	335116-008	335116-009	335116-010	335116-011	335116-012
	Field Id:	North Trench # 1 @ 12'	North Trench # 1 @ 14'	East Trench # 1 (@) 4'	East Trench # 1 (a) 14'	North Trench # 2 (a) 4'	North Trench # 2 @ 8'
naisan hay sistinu y	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jun-10-09 12:50	Jun-10-09 13:00	Jun-10-09 13:10	Jun-10-09 13:20	Jun-10-09 13:30	Jun-10-09 13:40
BTEX by EPA 8021B	Extracted:	Jun-15-09 11:00	Jun-15-09 11:00	Jun-12-09 13:00	Jun-15-09 11:00	Jun-12-09 13:00	Jun-12-09 13:00
	Analyzed:	Jun-16-09 09:10	Jun-16-09 09:32	Jun-13-09 00:44	Jun-16-09 08:27	Jun-13-09 01:27	Jun-13-09 02:52
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 1.065	ND 1.120	ND 0.0011	ND 0.0107	ND 0.0011	ND 0.0011
Toluene		4.508 2.130	5.384 2.239	ND 0.0021	0.0540 0.0215	ND 0.0021	ND 0.0022
Ethylbenzene		3.918 1.065	4.516 1.120	ND 0.0011	0.2889 0.0107	1100'0 QN	ND 0.0011
m,p-Xylenes		12.62 2.130	14.36 2.239	0.0024 0.0021	2.033 0.0215	ND 0.0021	ND 0.0022
o-Xylenc		5.021 1.065	5.157 1.120	ND 0.0011	1.419 0.0107	1100.0 DN	ND 0.0011
Total Xylenes		17.641 1.065	19.517 1.120	0.0024 0.0011	3.452 0.0107	1100'0 QN	ND 0.0011
Total BTEX		26.067 1.065	29.417 1.120	0.0024 0.0011	3.7949 0.0107	ND 0.0011	ND 0.0011
Percent Moisture	Extracted:						
	Analyzed:	Jun-12-09 08:45	Jun-12-09 08:45	Jun-12-09 08:45	Jun-12-09 08:45	Jun-12-09 08:45	Jun-12-09 08:45
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		6.86 1.00	11.22 1.00	7.58 1.00	6.88 1.00	6.01 1.00	9.48 1.00
TPH Bv SW8015 Mod	Extracted:	Jun-11-09 11:32	Jun-11-09 11:32	Jun-11-09 11:32	Jun-11-09 11:32	Jun-11-09 11:32	Jun-11-09 11:32
	Analyzed:	Jun-11-09 16:34	Jun-11-09 16:57	Jun-11-09 17:43	Jun-11-09 18:06	Jun-11-09 18:29	Jun-11-09 18:52
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		900 80.4	823 84.5	ND 16.1	194 80.5	ND 15.9	ND 16.5
C12-C28 Dicsel Range Hydrocarbons		5920 80.4	4910 84.5	ND 16.1	2430 80.5	ND 15.9	ND 16.5
C28-C35 Oil Range Hydrocarbons		1610 80.4	1430 84.5	ND 16.1	600 80.5	ND 15.9	ND 16.5
Total TPH		8430 80.4	7163 84.5	ND 16.1	3224 80.5	ND 15.9	ND 16.5

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed froughcut this analytical report traves in the sixty adgement of XENCO Laboratories. XENCO Laboratories assents on requestibility and makes no warranty in the end use of the data hereby presented. Our liability is limited to the amount invoised for this work order unless otherwise agreed to it in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director Brent Barron

Certificate of Analysis Summary 335116 Certificate of Analysis Summary 335116 PLAINS ALL AMERICAN EH&S, Midland, TX 0 0

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Project Location: Lea County, NM Contact: Jason Henry **Project Id:** 2009-084

Date Received in Lab: Thu Jun-11-09 08:35 am Report Date: 17-JUN-09

		ł			Project Manager: Brent Barron, II	
	Lab Id:	335116-013	335116-014	335116-015		
Analysis Rounostod	Field Id:	East Trench # 2 @ 4'	East Trench # 2 @ 14'	Stockpile		
Truthas areducated	Depth:					
	Matrix:	SOIL	SOIL	SOIL		
	Sampled:	Jun-10-09 13:50	Jun-10-09 14:00	Jun-10-09 14:10		
BTEX hv EPA 8021B	Extracted:	Jun-12-09 13:00	Jun-12-09 13:00	Jun-15-09 11:00		
	Analyzed:	Jun-13-09 03:14	Jun-13-09 03:35	Jun-16-09 09:54		
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL		
Benzene		0100.0 UN	ND 0.0011	ND 1.071		
Toluene		ND 0.0021	ND 0.0022	ND 2.141		
Ethylbenzene		ND 0.0010	ND 0.0011	ND 1.071		
m,p-Xylenes		ND 0.0021	ND 0.0022	10.50 2.141		
o-Xylcnc		ND 0.0010	1100.0 UN	2.527 1.071		
Total Xylenes		ND 0.0010	ND 0.0011	13.027 1.071		
Total BTEX		ND 0.0010	ND 0.0011	13.027 1.071		
Percent Moisture	Extracted:					
	Analyzed:	Jun-12-09 08:45	Jun-12-09 08:45	Jun-12-09 08:52		
	Units/RL:	% RL	% RL	% RL		
Percent Moisture		4.00 1.00	11.86 1.00	6.78 1.00		
TPH Bv SW8015 Mod	Extracted:	Jun-11-09 11:32	Jun-11-09 11:32	Jun-11-09 11:32		
	Analyzed:	Jun-11-09 19:15	Jun-11-09 19:38	Jun-11-09 20:01		
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL		
C6-C12 Gasoline Range Hydrocarbons		ND 15.6	ND 17.0	485 80.5		
C12-C28 Diesel Range Hydrocarbons		ND 15.6	ND 17.0	653 80.5		
C28-C35 Oil Range Hydrocarbons		ND 15.6	ND 17.0	206 80.5		
Total TPH		ND 15.6	ND 17.0	1344 80.5		

This analytical report, and the entire data package is represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this manufaciel report research the basi Judgment of XENCO Laboratorias assumes to responsibility and makes no warranty to the rend use of the data hereby presented. Our liability is limited to the amount invoited for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director Brent Barron

P

0

0

0

0 0

0

6

() () ()

Ð

() ()

6

8

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

F F F F F F F F F F	
$\left[\begin{array}{c} \\ \end{array} \right] $	mca
125	LLL
n	
10000	renner

()

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Vork Orders : 335116), Samnle: 531836-1-BKS / F	KS B:	Project II	D: 2009-084		
Units: mg/kg	Date Analyzed: 06/12/09 20:47	SI	JRROGATE R	ECOVERY !	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R (D)	Control Limits %R	Flags
1.4 Difluorobenzene	Analytes	0.0218	- 0.0200	106		
1,4-Difuorobenzene		0.0275	0.0300	100	80-120	·
		0.0275	0.0300	· 74	80-120	
Lab Batch #: /62264	Sample: 531830-1-880/8	SD Ba	atch: Matri	ix: Solid	OTHER V	
Units: mg/kg	Date Analyzed: 06/12/09 21:09	<u>.</u>	JRRUGATE N		STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0319	0.0300	106	80-120	i .
4-Bromofluorobenzene		0.0262	0.0300	87	80-120	i
Lab Batch #: 762264	Sample: 531836-1-BLK / F	LLK B:	atch: Matr	ix: Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 06/12/09 21:53	SI	JRROGATE R	ECOVERY !	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0274	0.0300	91	80-120	i
4-Bromofluorobenzene		0.0166	0.0300	. 55	80-120	*
Lab Batch #: 762264	Sample: 335116-002 / SMF	, Ba	atch: 1 Matr	ix: Soil	·	
Units: mg/kg	Date Analyzed: 06/12/09 22:35	SI	JRROGATE RI	ECOVERY ?	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0268	0.0300	89	80-120	[
4-Bromofluorobenzene		0.0274	0.0300	91	80-120	i
Lab Batch #: 762264	Sample: 335116-003 / SMF	<u>اــــــــــــــــــــــــــــــــــــ</u>	atch: 1 Matr	ix: Soil	<u> </u>	,
Units: mg/kg	Data Analyzada 06/12/00 22:57	St	JRROGATE RI	ECOVERY	STUDY	······
	Date Analyzed: 06/12/09 22:57	-		T		í <u> </u>
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
BTE:	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B] 0.0300	Recovery %R [D] 88	Control Limits %R 80-120	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery $\{D\} = 100 * A / B$

All results are based on MDL and validated for QC purposes.

to all a manual and	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1. 2004 ANN 17 48 10 1 10
577	M	20
244		K Z
n-ma		JED AL
19.7.7	K.R	ગતાનગ

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Vork Orders : 335116 Lab Batch #: 762264	', Sample: 335116-004 / SMP	B	Project II atch: 1 Matr	D: 2009-084 ix: Soil		
Units: mg/kg	Date Analyzed: 06/12/09 23:18	SU	JRROGATE RI	ECOVERY	STUDY	
BTEX	Х by ЕРА 8021В	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0272	0.0300	91	80-120	
4-Bromofluorobenzene		0.0208	0.0300	69	80-120	<u> * </u>
Lab Batch #: 762264	Sample: 335116-005 / SMP	Ba	atch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/12/09 23:40	SU	JRROGATE RI	ECOVERY S	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Anarytes	0.0279	0.0300	93	80-120	<u> </u>
4-Bromofluorobenzene		0.0183	0.0300	61	80-120	*
Lah Batch #: 762264	Sample: 335116-009 / SMP	B	atch: 1 Matr	ix: Soil	L	
Units: mg/kg	Date Analyzed: 06/13/09 00:44		JRROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0262	0.0300	87	80-120	<u> </u>
4-Bromofluorobenzene		0.0261	0.0300	87	80-120	[
Lab Batch #: 762264	Sample: 335116-011 / SMP	B	atch: 1 Matr	ix: Soil	<u> </u>	
Units: mg/kg	Date Analyzed: 06/13/09 01:27	SU	JRROGATE RI	ECOVERY ?	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					
1,4-Difluorobenzene		0.0269	0.0300	90	80-120	
4-Bromofluorodenzene		0.0247	0.0300	82	80-120	
Lab Batch #: 762264	Sample: 335116-012 / SMP	Ba	itch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 06/13/09 02:52	<u> </u>	RRUGATE K	ECOVERY A	STUDY	
DUEL			True		Control	Flags
BIE2	X by EPA 8021B	Amount Found [A]	Amount [B]	Recovery %R [D]	%R	i nigo
BIE2	X by EPA 8021B Analytes	Amount Found [A]	Amount [B]	Recovery %R [D]	80.120	

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

	$\sim \sim \sim \sim$
ł	
	1 - Commenter
	Contractures

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Orders : 335116 Lab Batch #: 762264	, Sample: 335116-013 / SMP	Ba	Project II tch: Matri): 2009-084 x: Soil		
Units: mg/kg	Date Analyzed: 06/13/09 03:14	SU	RROGATE RE	COVERY	STUDY	
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1403	Analytes					
1,4-Difluorobenzene		0.0272	0.0300	91	80-120	
4-Bromonuorobenzene		0.0197	0.0300	66	80-120	т
Lab Batch #: 762264	Sample: 335116-014 / SMP	Ba	tch: 1 Matri	x: Soil		
Units: mg/kg	Date Analyzed: 06/13/09 03:35	SU	RROGATE RE	COVERY	STUDY	
BTEX	Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0272	0.0300	91	80-120	
4-Bromofluorobenzene		0.0189	0.0300	63	80-120	*
Lab Batch #: 762264	Sample: 335116-005 S / MS	Ba Ba	tch: ¹ Matri	x: Soil	1	
Units: mg/kg	Date Analyzed: 06/13/09 06:26	SU	RROGATE RE	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	-5	0.0313	0.0300	104	80-120	
4-Bromofluorobenzene		0.0257	0.0300	86	80-120	
Lab Batch #: 762423	Sample: 531911-1-BKS / B	KS Ba	tch: ¹ Matri	x: Solid		.
Units: mg/kg	Date Analyzed: 06/15/09 08:57	SU	RROGATE RE	COVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0328	0.0300	109	80-120	
4-Bromofluorobenzene		0.0251	0.0300	84	80-120	
Lab Batch #: 762423	Sample: 531911-1-BSD / B	SD Ba	tch: Matri	x: Solid		
Units: mg/kg	Date Analyzed: 06/15/09 09:19	SU	RROGATE RE	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	·J	0.0324	0.0300	108	80-120	
4-Bromofluorobenzene		0.0242	0.0300	81	80-120	
			1		L	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

 Surrogate Recovery [D] = 100 * A / B

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Vork Orders : 335116), Sample: 531911-1-BLK / B	IK Ba	Project II	D: 2009-084		
Units: mg/kg	Date Analyzed: 06/15/09 10:03	SU SU	RROGATE RI	ECOVERY !	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	······································		וען		L
1,4-Difluorobenzene		0.0286	0.0300	95	80-120	l
4-Bromofluorobenzene		0.0146	0.0300	49	80-120	**
Lab Batch #: 762423	Sample: 335116-006 / SMP	Ba	itch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 06/16/09 08:06	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0239	0.0300	80	80-120	[
4-Bromofluorobenzene	_	0.0637	0.0300	212	80-120	**
Lab Batch #: 762423	Sample: 335116-010 / SMP	Ba	tch: 1 Matr	ix: Soil	<u> </u>	
Units: mg/kg	Date Analyzed: 06/16/09 08:27	SU	RROGATE RI	ECOVERY (STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0243	0.0300	81	80-120	í
4-Bromofluorobenzene		0.1400	0.0300	467	80-120	**
Lab Batch #: 762423		 Ba	tch: 1 Matr	ix: Soil	<u> </u>	
Units: mg/kg	Date Analyzed: 06/16/09 08:49	SU	RROGATE RI	ECOVERY (STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			ועו	L	I
1 4-Difluorohenzene	•	0.00.00	0.0200	83	80-120	1
		0.0250	0.0300		H	• ••• •••
4-Bromofluorobenzene		0.0250	0.0300	81	80-120	
4-Bromofluorobenzene Lab Batch #: 762423	Sample: 335116-007 / SMP	0.0250 0.0244 Ba	0.0300 0.0300 tch: 1 Matri	81 ix: Soil	80-120	
4-Bromofluorobenzene Lab Batch #: 762423 Units: mg/kg	Sample: 335116-007 / SMP Date Analyzed: 06/16/09 09:10	0.0250 0.0244 Ba SU	0.0300 0.0300 tch: 1 Matri RROGATE RE	81 ix: Soil COVERY S	80-120	
4-Bromofluorobenzene Lab Batch #: 762423 Units: mg/kg BTE2	Sample: 335116-007 / SMP Date Analyzed: 06/16/09 09:10 X by EPA 8021B	0.0250 0.0244 Ba SU Amount Found [A]	Itch: 1 Matr. JRROGATE RI Amount [B]	81 ix: Soil ECOVERY : Recovery %R [D]	80-120 STUDY Control Limits %R	Flags
4-Bromofluorobenzene Lab Batch #: 762423 Units: mg/kg BTE2	Sample: 335116-007 / SMP Date Analyzed: 06/16/09 09:10 X by EPA 8021B Analytes	0.0250 0.0244 Ba SU Amount Found [A]	0.0300 0.0300 itch: 1 Matr JRROGATE RI True Amount [B] 0.0300	81 ix: Soil ECOVERY : %R [D] 82	80-120 STUDY Control Limits %R	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

m	nd nm	3
S d I	l'(do)	
1 CUL	LIN	
n n		1
luaco	ROUMEB	ř.
	तः (चार्यस्य क्रियम् व्यक्त	1

A

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Orders : 335116	,	P	Project II	D: 2009-084		
Lab Batch #: 702423	Date Analyzed: 06/16/09 09:32	Ba SU	RROGATE RE	COVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluorohenzene	7 **********	0.0245	0.0300	82	80-120	
4-Bromofluorobenzene		0.0241	0.0300	80	80-120	
Lab Batch #. 762423	Sample: 335116-015 / SMP	Ra	teh: 1 Matri	v. Soil		
Units: mg/kg	Date Analyzed: 06/16/09 09:54	SU	RROGATE RE	COVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Anarytes	0.0268	0.0300	80	80.120	
4-Bromofluorobenzene		0.0243	0.0300	81	80-120	
L	Sec. 235446 002 S / MS	' D-		l Soil		
Lab Batch #: 702423	Sample: 333440-002 S7 MS	ь ва SU	RROCATE RE	X: SOIL	STUDY	
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0328	0.0300	109	80-120	
4-Bromofluorobenzene		0.0263	0.0300	88	80-120	
Lah Batch #: 762423	Sample: 335446-002 SD / N	1SD Ba	tch: Matri	x: Soil		L <u></u>
Units: mg/kg	Date Analyzed: 06/16/09 10:58	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0327	0.0300	109	80-120	
4-Bromofluorobenzene		0.0253	0.0300	84	80-120	
Lab Batch #: 762052	Sample: 531713-1-BKS / B	KS Ba	tch: ¹ Matri	x: Solid	I	
Units: mg/kg	Date Analyzed: 06/11/09 12:19	SU	RROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	77.2	99.9	77	70-135	
o-Terphenyl		35.3	50.0	71	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

$\left \right\rangle \left\langle \right\rangle$	ป.้ไ	(())
In And		$\sim\sim\sim$
UUU	34.19	ાત્મન

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

/ork Orders : 335116 Lab Batch #: 762052	, Sample: 531713-1-BSD / B	SD Ba	Project II atch: 1 Matr	D: 2009-084 ix: Solid		
Units: mg/kg	Date Analyzed: 06/11/09 12:42	SI	JRROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		81.3	100	81	70-135	
o-Terphenyl		35.6	50.0	71	70-135	
Lab Batch #: 762052	Sample: 531713-1-BLK / B	LK Ba	atch: ¹ Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 06/11/09 13:06	SU	URROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		81.4	100	81	70-135	
o-Terphenyl		41.4	50.0	83	70-135	
Lab Batch #: 762052	Sample: 335116-001 / SMP	B	atch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 14:15	SU	URROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
L-Chlorooctane		90.8	99.9	91	70-135	+
o-Terphenyl		42.4	50.0	85	70-135	
Lab Batch #: 762052	Sample: 335116-002 / SMP	B	atch: Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 14:38	SU	URROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctanc		85.8	99.5	86	70-135	
o-Terphenyl		40.9	49.8	82	70-135	
Lab Batch #: 762052	Sample: 335116-003 / SMP	B	atch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 15:02	SI	URROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	00.5				
I-Chlorooctane		89.6	100	90	70-135	
o-I crphcnyl		44.8	50.0	90	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

man	
	$((\bigcirc))$
INK	\mathcal{N}
llahar	forflag.
Low a	man

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Vork Orders : 335116	,	D	Project II	D: 2009-084		
Lab Batch #: 702052	Date Analyzed: 06/11/09 15:25	Ва SL	JRROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					
1-Chlorooctanc		85.2	99.6	86	70-135	
o-Terphenyl		41.9	49.8	84	70-135	
Lab Batch #: 762052	Sample: 335116-005 / SMP	Ba	atch: Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 15:48	SU	JRROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane		0.871	0.996	87	70-135	
o-Terphenyl		0.431	0.498	87	70-135	
Lab Batch #: 762052	Sample: 335116-006 / SMP	Ba	atch: Matr	ix: Soil	1	I
Units: mg/kg	Date Analyzed: 06/11/09 16:11	SU	JRROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		97.9	99.5	98	70-135	
o-Terphenyl		42.7	49.8	86	70-135	
Lab Batch #: 762052	Sample: 335116-007 / SMP	Ba	atch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 16:34	SU	JRROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		118	99.8	118	70-135	
o-Terphenyl		46.5	49.9	93	70-135	
Lab Batch #: 762052	Sample: 335116-008 / SMP	Ba	atch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 16:57	su	JRROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		106	100	106	70-135	
o-Terphenyl		45.0	50.0	90	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

(

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Vork Orders : 335116 Lab Batch #: 762052	, Sample: 335116-009 / SMP	Ba	Project II	D: 2009-084 ix: Soil		·
Units: mg/kg	Date Analyzed: 06/11/09 17:43	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					-
1-Chlorooctane		81.3	99.5	82	70-135	
o-rerpinenyi	L	41.8	49.8	84	/0-135	
Lab Batch #: 762052	Sample: 335116-010 / SMP	Ba	itch: 1 Matr	ix: Soil	OTHER &	
Units: mg/kg	Date Analyzed: 06/11/09 18:06	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane		95.8	100	96	70-135	
o-Terphenyl		44.4	50.0	89	70-135	
Lab Batch #: 762052	Sample: 335116-011 / SMP	Ba	tch: 1 Matr	ix: Soil	,	
Units: mg/kg	Date Analyzed: 06/11/09 18:29	SU	JRROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctanc		90.5	99.8	91	70-135	
o-Terphenyl		45.9	49.9	92	70-135	
Lab Batch #: 762052	Sample: 335116-012 / SMP	Ba	tch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 18:52	SU	JRROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		85.7	99.6	86	70-135	
o-Terphenyl		41.9	49.8	84	70-135	
Lab Batch #: 762052	Sample: 335116-013 / SMP	Ba	ntch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/11/00 10:15	SU	IRROGATE R	ECOVERY	STUDY	
	Date Analyzed: 00/11/09 19:15					
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

()

1000	$\sim \sim \sim$
15 11 -	1 C (a)
17.75	N N N V
	$\sim \sim \sim \sim$
llidm	monta

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Orders : 335116,			Project IE): 2009-084		
Lab Batch #: 762052	Sample: 335116-014 / SMP	Bat	tch: Matri	x: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 19:38	SU.	RROGATE RE	COVERY	STUDY	
ТРН В	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		86.5	99.9	87	70-135	
o-Terphenyl		41.6	50.0	83	70-135	
Lab Batch #: 762052	Sample: 335116-015 / SMP	Bat	tch: Matri	x: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 20:01	SU	RROGATE RE	COVERY	STUDY	
ТРН В	y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					
1-Chlorooctanc		87.6	100	88	70-135	
o-lerphenyl	,	41.6	50.0	83	70-135	
Lab Batch #: 762052	Sample: 335099-001 S / MS	Bat	tch: ¹ Matri	x: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 21:31	SU	RROGATE RE	COVERY	STUDY	
ТРН В	y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			(D)		
1-Chlorooctane		100	100	100	70-135	
o-Terphenyl		41.1	50.0	82	70-135	
Lab Batch #: 762052	Sample: 335099-001 SD / M	SD Bat	tch: Matri	x: Soil		
Units: mg/kg	Date Analyzed: 06/11/09 21:54	SU	RROGATE RE	ECOVERY	STUDY	
ТРН В	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1-Chlorooctanc		95.1	100	95	70-135	
o-Terphenyl		41.6	50.0	83	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Disordentee 0 Ø

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Order #: 335116 Analyst: ASA

Lab Batch ID: 762264

Date Prepared: 06/12/2009

Batch #: 1

Sample: 531836-1-BKS

Date Analyzed: 06/12/2009 Matrix: Solid

Project ID: 2009-084

BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Units: mg/kg			BLAN	K /BLANK S	PIKE / F	ILANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
BTEX by EP	A 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		[<u>v</u>]	[B]	Result [C]	8% [D]	[E]	Duplicate Result [F]	%R [G]	%	%К	%RPD	
Benzene		ND	0.1000	0.0919	92	0.1	0.0932	93	-	70-130	35	
Toluene		ND	0.1000	0.0894	89	0.1	0.0907	16	-	70-130	35	
Ethylbenzenc		DN	0.1000	0.0935	94	0.1	0.0943	94	-	71-129	35	
m,p-Xylenes		ND	0.2000	0.1889	64	0.2	0.1900	95	1	70-135	35	
o-Xylene		DN	0.1000	0.0903	06	0.1	0.0901	90	0	71-133	35	
Analyst: ASA		Da	te Prepar	ed: 06/15/200	6			Date Ar	nalyzed: 0	6/15/2009		
Lab Batch ID: 762423	Sample: 531911-1-BF	(S	Batch	1#: 1					Matrix: S	olid		

Units: mg/kg		BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[8]		a	[E]	Result [F]	[0]			-	
Benzene	QN	0.1000	0.1144	114	0.1	0.1077	108	9	70-130	35	
Toluene	DN	0.1000	0.1103	011	0.1	0.1039	104	6	70-130	35	
Ethylbenzene	QN .	0.1000	0.1125	113	0.1	0.1065	107	5	71-129	35	
m,p-Xylcncs	QN	0.2000	0.2279	114	0.2	0.2154	108	6	70-135	35	
o-Xylenc	ΟN	0.1000	0.1068	107	0.1	0.1007	101	9	71-133	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Œ

a constant

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Order #: 335116

Lab Batch ID: 762052 Analyst: BHW

Sample: 531713-1-BKS

Date Prepared: 06/11/2009 Batch #: 1

Project ID: 2009-084 Date Analyzed: 06/11/2009 Matrix: Solid

TUDY
OVERY S
E REC
LICAT
TE DUP
VK SPIK
/ BLAN
SPIKE
BLANK
TANK /
BI

Units: mg/kg		BLANI	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE I	RECOVE	CRY STUD	Y	
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[6]				
C6-C12 Gasoline Range Hydrocarbons	ND	666	704	01	1000	710	71	1	70-135	35	
C12-C28 Dicsel Range Hydrocarbons	DN	666	811	18	1000	820	82	1	70-135	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Order #: 335116 0 Lab Batch #: 762264 Ø Date Analyzed: 06/13/2009

OC- Sample ID: 335116-005 S

0

0

0 6 Ð 0 0 0 0 Ø • 6 Ø 6 0 Ō 0 Ø æ æ

Project ID: 2009-084 Date Prepared: 06/12/2009 Analyst: ASA Botoh #. 1 N. C

QC- Sample ID: 555110-005 5	Baten #:	I		Matrix:	Soil	
Reporting Units: mg/kg	MATE	RIX / MA	TRIX SPIKE	RECOV	VERY STU	DY
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[7.5]	[0]				
Benzene	ND	0.1168	0.0688	59	70-130	x
Toluene	ND	0.1168	0.0278	24	70-130	X
Ethylbenzene	ND	0.1168	0.0396	34	71-129	X
m,p-Xylenes	ND	0.2335	0.0220	9	70-135	X
o-Xyłene	ND	0.1168	0.0684	59	71-133	х

 $finite{Definition} The formula to Clative Percent Difference [E] = 200*(C-A)/(C+B) Il Results are based on MDL and Validated for QC Purposes

RL - Below Reporting Limit

Ŧ

 Image: Stamp
 Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Order #: 335116

Date Analyzed: 06/16/2009 Lab Batch ID: 762423

ASA -Analyst: Batch #:

Matrix: Soil

Project ID: 2009-084

QC- Sample ID: 335446-002 S Date Prepared: 06/15/2009

Reporting Units: mg/kg		Σ	ATRIX SPIKI	E / MATI	RIX SPII	KE DUPLICAT	FE REC	VERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	QN	0.1061	0.0913	86	0.1061	0.0927	87	2	70-130	35	
Toluene	ŊŊ	0.1061	0.0821	77	0.1061	0.0807	76	2	70-130	35	
Ethylbenzene	ŊŊ	0.1061	0.0787	74	0.1061	0.0737	69	7	71-129	35	×
m,p-Xylencs	QN	0.2122	0.1538	72	0.2122	0.1441	68	7	70-135	35	×
o-Xylene	DN	0.1061	0.0733	69	0.1061	0.0711	67	3	71-133	35	×
Lab Batch ID: 762052 Q	C- Sample ID:	335099-	-001 S	Bat	tch #:	1 Matrix	: Soil				

/62052	06/11/2009	mg/kg
Lab Batch LU:	Date Analyzed:	Reporting Units:

Date Prepared: 06/11/2009

Mat	
÷	11110
#:	

Analyst: BHW

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH Rv SW2015 Mod	Farent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
notal CTADIA C ART IT IT	Sample	Spike	Result	Sample	Spike	Spiked Sample	Dup.	RPD	Limits	Limits	Flag
	Result	Added	[C]	%R	Added	Result [F]	%R	%	%R	%RPD	
Analytes	[A]	[B]		<u>[</u>]	[E]		<u>5</u>				
C6-C12 Gasoline Range Hydrocarbons	QN	1140	927	81	1140	606	80	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1140	1160	102	1140	0911	102	0	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested. I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 21 of 25

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6-Inch-Sec 31

Work Order #: 335116

Lab Batch #: 762045			Project I	D : 2009-084	4
Date Analyzed: 06/12/2009 D	ate Prepared: 06/1	2/2009	Analy	st: BEV	
QC- Sample ID: 335099-001 D	Batch #: 1		Matr	ix: Soil	
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		(B)			
Percent Moisture	12.5	12.7	1	20	
Lab Batch #: 762047					
Date Analyzed: 06/12/2009 D	ate Prepared: 06/1	2/2009	Analy	st: BEV	
QC- Sample ID: 335116-015 D	Batch #: 1		Matr	ix: Soil	
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[0]			
Percent Moisture	6.78	7.42	9	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

❹ Ø 0 Ð Ø ₽ O Ø Ø 0 0 Ø ወ Ø Ð 0 Ð Ø Ø Ð ℗ Ø Ø ₿ B Ø ₽ ₿ Ø \mathbf{O}

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

2 Project Name: DCP Plant to Lea Station 6-inch - Sec 31 TAT brebnard × × × 00= × C NPDES Lone Star 111 24 '81 ISE IN TAT HEUR ç , ż CUININA E 300 sid teal 1984 miled AGB ¥000700§ 2.6 HAq Phone: 432-563-1800 Fax: 432-563-1713 Птякр WU U'N 뜅 D PICters Rep. 7 7 UPS D (6+208) 310 Temperature Upon Repeipt Sample Containers Intect? enter a companye Labels of collarie (s) Custody seels on conta Cliendly seels on conta VOCs Free of Headspa Project Loc: Les County, NM PO #: PAA - J. Henry ectivals Sample Hand Deliver Report Format: X Standard Project #: 2009-084 ell gri d'i 10 60 eli gA, 24 jaiseli by Contern 030 / 483 / 848 TCLP: Note (Ct, BOA, Al ()s , exi (gM , 62) crobs(9001 X1 \$001 X1 Hda 8:35 Time Ime 00100 415108) 1918 Hal × × e. × × × × clbryant@basin-consulting.com Soil Soli Soil Soil Soff Soil Soll Soil Soil Soil Dultille HARMA BUCKNEEDER Data Date CAPAR (CPOCKY) (HAG) andM 12600 West 1-20 East Odesta, Texas 79785 10-34W HOWN 'OSI H (505) 398-1429 C X YON OH ONH Macie N. Hrold t 20.4 00 × × × XX × × × × mietrioD to . e tetol *-** Ŧ -*** ** 00/0214 04 Fax No: CAMILLE SELANN & Mail 1130 1150 1210 1220 1230 1240 1250 1300 1310 1320 pelomes anal g PAGE 01 OF by ELO 6/10/2009 6/10/2009 6/10/2009 6/10/2009 6/10/2009 6/10/2009 6/10/2009 6/10/2003 6/10/2009 6/10/2009 Received by. leceived by: Basin Environmental Service Technologies, LLC beigms8 ws0 10/11/19/0835 finding Depth ame uiqaŭ grinning Depth 4 Lovington, NM 88260 Date Company Address: 2800 Plains Hwy Camille Bryant (575) 605-7210 335110 FIELD CODE North Trench #1 @ 12' North Trench #1 @ 14' North Trench #1 @ 4 North Trench #1 @ 8' Of East Trench #1 @ 4' 10 East Trench #1 @ 14' pecial Instructions: Sampler Signalulat West Trench @ 6' Project Manager Company Name Telephone No: City/State/Zip: SSW @ 14.5' NSW @ 14.5' RP @ 15' (lab dse only) ORDER #: approved in noustred | 8 8 07 3 3 R \mathscr{B} (Ajuo asn gej) g 0

Ø Õ Ø ⊕ ወ Đ 0 Ø ₽ 働 Ø Ð • Ø ⊕ ₿ • B Ð Ø ወ 0 0

Environmental Lab of Texas

,

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT bisbrieta × × × × Project Name: DCP Plant to Lea Station 6-inch - Sec 31 O NPOES SAL 62' 12 142 ADE and) TAT HEUS \mathbf{p} Chlorides E 300 1441 16543 milling A93 e HAG g (.M.H.O.N Phone: 432-583-1800 Fax: 432-583-1713 TRRP DHL. ICH Ċ 015 x 210 10 000 01 200 x 2100 Sample Containers Intect? femperature Upon Receipt in Clerk Rep. Lebels on Cortainer(s), Custody seets on contain Custody seets on contain Custody seets on contain Sample Hand Delivared Laboratory Comments Project Loc: Lea County, NM PO # PAA - J. Henry X Standard by SampicifC Project #: 2009-084 *5 6H 4H 10 50 68 6V FA 18H 09014831846 A (NOC (D) = OK 'EN 'DN 'EO) W Report Format: :Hai 9001 X.L 9001 X1 i Ķ Time au -e 89109 (WO109 1:817 × × clbryant@basin-consulting.com Soil Soll Soll Soll Soll antimeter and Pe/11/09 | Datte Date Other (Spr GEVED ROOM 12600 West I-20 East Odessa. Toxas 79765 'O'S'EN HOPN 'QS⁴H (505) 396-1429 15 X YON KOH "ONH how Waller F-20-1 == × ×× × otal 9. of Co Derezia Pist SPUL MULLE ROUPAT C-Mail Fax No: 1350 1400 1410 1330 1340 belqma2 envT 3 PAGE 02 OF Ned by ELOT 6/10/2003 6/10/2009 6/10/2009 6/10/2009 6/10/2009 sceived by: socived by: Basin Environmental Service Technologies, LLC balome2 ata0 uidag Buipu 0/11/09/08/31 224 a Li uidaO Buluuis Lovington, NM 88250 Oate Company Address: 2800 Plains Hwy **Camille Bryant** 575) 605-7210 335/10 FIELD CODE North Trench #2 @ 4' North Trench #2 @ 8' East Trench #2 @ 14 East Trench #2 @ 4' Project Manager. Sampter slightetuite Company Name City/State/Zip: Telephone No Stockpile scial instructions (lab ase only) ORDER #: II 5 c_{2} (yino pau dai) a BA

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Basin Mains
Date/ Time:	06/11/09 8:35
Lab ID # ·	335116
Initials:	and
1	

Sample Receipt Checklist

#1	Temperature of container/ cooler?	CI65	No	2.6 °C
#2	Shipping container in good condition?	Tes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present>
#4	Custody Seals intact on sample bottles/ container?	CYES	No	Not Present
#5	Chain of Custody present?	des	No	
#6	Sample instructions complete of Chain of Custody?	CYEs	No	
#7	Chain of Custody signed when relinquished/ received?	Nes	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	iD written on Cont./ Lid
#9	Container label(s) legible and intact?	(Y.os	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(YES	No	
#11	Containers supplied by ELOT?	(Tes	No	
#12	Samples in proper container/ bottle?	(Yes)	No	See Below
#13	Samples properly preserved?	(Yes	No	Sec Below
#14	Sample bottles intact?	(Y.es	No	
#15	Preservations documented on Chain of Custody?	Nes	No	
#16	Containers documented on Chain of Custody?	(Yes	No	
#17	Sufficient sample amount for indicated test(s)?	(Yes	No	See Balow
#18	All samples received within sufficient hold time?	Nes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Tes	No	Not Applicable

Contact: Regarding:

Corrective Action Taken.

Check all that Apply:

See altached e-mail/ fax

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Date/ Time:

Ø 0 0

0

Ð

Analytical Report 335449

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station-Sec 31

2009-084

17-JUN-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX Corpus Christi, TX T104704370-08-TX - Dallas, TX T104704295-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Miramar, FL E86349 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

17-JUN-09

(a)

Ð

(†) (†)

()

1

Ø

Ø

0

0

٩

0

()

Ô

4

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: **335449 DCP Plant to Lea Station-Sec 31** Project Address: E of Eunice, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 335449. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 335449 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 335449

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station-Sec 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
ESW @ 14.5'	S	Jun-12-09 11:05	14.5 ft	335449-001
WSW @ 14.5'	S	Jun-12-09 11:10	14.5 ft	335449-002

CASE NARRATIVE

Ő

0

(†) (†)

P

Ø

Ø

0

0

•

0 Ð 0 0 Ð

Ø

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station-Sec 31

Project ID: 2009-084 Work Order Number: 335449 Report Date: 17-JUN-09 Date Received: 06/12/2009

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-762328 Percent Moisture None

Batch: LBA-762422 TX1005 None

Batch: LBA-762511 BTEX-MTBE EPA 8021B SW8021BM

Batch 762511, 4-Bromofluorobenzene recovered below QC limits; Data not confirmed by reanalysis. Samples affected are: 531972-1-BLK,335449-002,335449-001. Sample surrogate failures due to Matrix interference. Color Contribution of Color C Ċ **Q** 36334 <u>P</u>

Project Location: E of Eunice, NM Contact: Jason Henry Project Id: 2009-084

Report Date: 17-JUN-09

Date Received in Lab: Fri Jun-12-09 04:15 pm

				Project Manager: Brent Barron, II	
	Lab Id:	335449-001	335449-002		
Analycic Donnoctod	Field Id:	ESW @ 14.5'	WSW @ 14.5'		
naicanhay ciclinity	Depth:	14.5- A	14.5- A		
	Matrix:	SOIL	SOIL		
	Sampled:	Jun-12-09 11:05	Jun-12-09 11:10		
BTEX by EPA 8021B	Extracted:	Jun-15-09 17:00	Jun-15-09 17:00		
	Analyzed:	Jun-16-09 13:50	Jun-16-09 14:11		
	Units/RL:	mg/kg RL	mg/kg RL		
Benzene		ND 0.0010	1100.0 UN		
Toluenc		ND 0.0020	ND 0.0022		
Ethylbenzene		ND 0.0010	1100.0 UN		
m,p-Xylenes		ND 0.0020	ND 0.0022		
o-Xylene		ND 0.0010	ND 0.0011		
Total Xylencs		ND 0.0010	ND 0.0011		
Total BTEX		ND 0.0010	ND 0.0011		
Percent Moisture	Extracted:				
	Analyzed:	Jun-16-09 08:47	Jun-16-09 08:47		
	Units/RL:	% RL	% RL		
Percent Moisture		3.03 1.00	10.19 1.00		
TPH Bv SW8015 Mod	Extracted:	Jun-15-09 13:01	Jun-15-09 13:01		
	Analyzed:	Jun-15-09 21:08	Jun-15-09 21:33		
	Units/RL:	mg/kg RL	mg/kg RL		
C6-C12 Gasoline Range Hydrocarbons		ND 15.5	ND 16.7		
C12-C28 Dicsel Range Hydrocarbons		16.9 15.5	ND 16.7		
C28-C35 Oil Range Hydrocarbons		ND 15.5	ND 16.7		
Total TPH		16.9 15.5	ND 16.7		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the brait loggment of XENCO Laboratories. XENCO Laboratories assumes to regonsibility and makes no warrangt to the tend use of the data herby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director Brent Barron

Ø

6

0

0

Sec. 3

() ()

(*) (*)

() ()

0

00

()

0

@ @

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St. Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

	<u>.</u>		. يقتمون
b	(1)	' (d	0)
		Y	\simeq
UU	ઝઝર	.1Ot	હ્ય

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station-Sec 31

Work Orders : 335449), 0 1 631073 1 DKG (D	V C D	Project II	D: 2009-084		
Lab Batch #: 702311	Sample: 551972-1-BKS7 B	KS Bai	RROGATE RI	x: Sona ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	EX by EPA 8021B Amount Found [A] True Amount [B] True Amount [B] Control Limits %R Flags Analytes 0.0328 0.0300 109 80-120 - 0.0328 0.0300 86 80-120 - Sample: 531972-1-BSD / BSD Batch: 1 Matrix: Solid - Date Analyzed: 06/16/09 12:02 SURROGATE RECOVERY STUDY - - EX by EPA 8021B Amount [A] True [A] Recovery [B] Control Limits %R Flags Analytes 0.0324 0.0300 108 80-120 - Sample: 531972-1-BLK / BLK Batch: 1 Matrix: Solid - Sample: 531972-1-BLK / BLK Batch: 1 Matrix: Solid - Sample: 531972-1-BLK / BLK Batch: 1 Matrix: Solid - Date Analyzed: 06/16/09 12:45 SURROGATE RECOVERY STUDY - - EX by EPA 8021B Amount [A] True Amount [B] Recovery %R [D] Control Limits %R Flags Manalytes 0.0146 0.03					
4-Bromofluorobenzene						
Lab Batch #: 762511	Sample: 531972-1-BSD / B	SD Ba	tch: 1 Matri	x: Solid	L	
Units: mg/kg	Date Analyzed: 06/16/09 12:02	SU	RROGATE RI	COVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0324	0.0300	108	80-120	
4-Bromofluorobenzene		0.0251	0.0300	84	80-120	
Lab Batch #: 762511	Sample: 531972-1-BLK / B	LK Bai	tch: Matri	x: Solid		
Units: mg/kg	Date Analyzed: 06/16/09 12:45	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0285	0.0300	95	80-120	
4-Bromofluorobenzene		0.0146	0.0300	49	80-120	*
Lab Batch #: 762511	Sample: 335449-001 / SMP	Bai	tch: ¹ Matri	ix: Soil	•	
Units: mg/kg	Date Analyzed: 06/16/09 13:50	SU	RROGATE RI	ECOVERY	STUDY	<u> </u>
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	-	0.0282	0.0300	94	80-120	
4-Bromofluorobenzene		0.0175	0.0300	58	80-120	*
Lab Batch #: 762511	Sample: 335449-002 / SMP	Ba	tch: 1 Matri	ix: Soil		
Units: mg/kg	Date Analyzed: 06/16/09 14:11	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0287	0.0300	96	80-120	
4-Bromofluorobenzene		0.0159	0.0300	53	80-120	*

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

.

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Ø

magain market
5(1)((0)
COUCE
In-A-marine
[Genterrier
Reprintentien

•

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station-Sec 31

Vork Orders : 335449	, Sample: 335322-007 S / MS	Ra	Project II): 2009-084		
Units: mg/kg	Date Analyzed: 06/16/09 21:59.	SU	JRROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4 Difluorobenzene		0.0228	0.0200	100	80.120	·
4-Bromofluorobenzene		0.0328	0.0300	ATE RECOVERY STUDY 'ue Control junt Recovery Limits Flags 300 109 80-120 300 94 80-120 300 94 80-120 300 94 80-120 Matrix: Solid ATE RECOVERY STUDY Imits Flags 'ue Recovery Control Limits 0unt Recovery %R [D] 300 110 80-120 300 300 110 80-120 300 300 94 80-120 300 300 94 80-120 300 Matrix: Solid ATE RECOVERY STUDY Flags 'ue Recovery Control Limits 00 98 70-135 300 0.0 80 70-135 300 0.0 80 70-135 300 0.0 97 70-135 300 0.0 97 70-135 300 </td <td></td>		
Lab Batch #. 762511		ISD Ba	Matr	L iv: Solid	l	<u> </u>
Units: mg/kg	Date Analyzed: 06/16/09 22:21	SI SI	JRROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	<u>-</u>	0.0329	0.0300	110	80-120	
4-Bromofluorobenzene		0.0282	0.0300	94	80-120	
Lab Batch #: 762422	Sample: 531914-1-BKS / B	KS Ba	atch: 1 Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 06/15/09 16:54	su	JRROGATE RI	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	98.2	100		70-135	
o-Terphenyl		39.8	JRROGATE RECOVERY STUDY True Amount [B] Recovery %R [D] Control Limits %R Flags 0.0300 110 80-120 94 80-120 0.0300 94 80-120 94 80-120 atch: 1 Matrix: Solid 100 94 80-120 True Amount [B] Recovery %R [D] Control Limits %R Flags 100 98 70-135 100 100 98 70-135 100			
Lab Batch #: 762422	Sample: 531914-1-BSD / B	SD Ba	atch: 1 Matr	ix: Solid	<u> </u>	· · · ·
Units: mg/kg	Date Analyzed: 06/15/09 17:20	SU	JRROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctanc		Image: Non-state indext inde				
o-Terphenyl		39.3	50.0	79	70-135	
Lab Batch #: 762422	Sample: 531914-1-BLK / B	LK Ba	atch: 1 Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 06/15/09 17:45	SU	JRROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		87.1	100	87	70-135	<u> </u>
o-Terphenyl		44.3	50.0	89	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

\sim		
DC	ปี (((0)	Í
	m	
Inch.	manna	
		1

() ()

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station-Sec 31

Work Orders : 335449), Samplar 335449-001 / SMP	Pa	Project II): 2009-084		
Lan Balcii #. 702422	Date Analyzed: 06/15/09 21:08	Ba SU	RROGATE RE	COVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		IAI IBI %R IDI Flags 8015 Mod Amount IAI Amount IAI True Amount IBI Recovery %R IDI Control Limits %R Flags 8015 Mod 97.6 100 98 70-135 - 97.6 100 98 70-135 - - sample: 335446-003 S / MS Batch: 1 Matrix: Soil - sample: 335446-003 S / MS Batch: 1 Matrix: Soil - 8015 Mod Amount IAI True Amount IBI Recovery %R IDI Control Limits %R Flags 41.9 49.9 84 70-135 - 5 99.7 105 70-135 - 6 105 99.7 105 70-135 -				
o-Terphenyl						
Lab Batch #: 762422	Sample: 335449-002 / SMP					
Units: mg/kg	Date Analyzed: 06/15/09 21:33	SU	RROGATE RE	COVERY	STUDY	
ТРН	By SW8015 Mod	46.5 50.0 93 70-135 nple: 335449-002 / SMP Batch: I Matrix: Soil yzed: 06/15/09 21:33 SURROGATE RECOVERY STUDY Mod Amount [A] True [A] Recovery [B] Control Limits %R Flags 97.6 100 98 70-135 Flags 97.6 100 98 70-135 Flags mple: 335446-003 S / MS Batch: 1 Matrix: Soil 99 yzed: 06/15/09 22:22 SURROGATE RECOVERY STUDY Matrix: Soil 99 Mod Amount Found [A] True Amount [B] Recovery %R Control Limits %R Flags 105 99.7 105 70-135 Flags				
1-Chlorooctanc	Anarytes	97.6	100	08	70 135	
o-Terphenyl		Amount Found [A]True Amount [B]Recovery %R [D]Control Limits %RFlags92.51009370-13546.550.09370-1352/SMPBatch:1Matrix: Soil:33SURROGATE RECOVERY STUDYAmount Found [A]True (B]Recovery %R (D]Control Limits %R97.61009870-13597.61009870-13597.61009870-13597.61009870-13597.61009870-13549.550.09970-1353 S/MSBatch:1Matrix: Soil2:22SURROGATE RECOVERY STUDYAmount Found [A]True Amount [B]Recovery %R %R [D]10599.710570-1353 SD / MSDBatch:1Matrix: Soil2:47SURROGATE RECOVERY STUDYAmount [A]True Matrix: Soil2:47Amount [A]True Matrix: SoilControl Limits %R (B]				
Lah Batch #: 762422	Sample: 335446-003 S / MS	Ra	tch: Matri	v Soil		
Units: mg/kg	Date Analyzed: 06/15/09 22:22	SU	RROGATE RE	COVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Date Analyzed: 06/15/09 21:33SURROGATE RECOVERY STUDYH By SW8015 ModAmount [A]True Amount [B]Recovery %RControl Limits %RAnalytes97.61009870-13597.61009870-1351009897.61009970-13597.6100989970-13597.61009970-135100989970-135100999970-135100999970-135100909970-1351009192:22SURROGATE RECOVERY STUDYH By SW8015 ModAmount [A]True [B]Recovery %R %R101101%R					
I-Chlorooctane		105	99.7	105	70-135	
o-Terphenyl		41.9	49.9	84	70-135	
Lab Batch #: 762422	Sample: 335446-003 SD / MS	SD Ba	tch: ¹ Matri	x: Soil		
Units: mg/kg	Date Analyzed: 06/15/09 22:47	SU	RROGATE RE	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		109	99.8	109	70-135	
o-Terphenyl		45.7	49.9	92	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station-Sec 31

Work Order #: 335449 Analyst: ASA

Lab Batch ID: 762511

Date Prepared: 06/15/2009

Batch #: 1

Sample: 531972-1-BKS

Project ID: 2009-084 Date Analyzed: 06/16/2009 Matrix: Solid **BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY**

Units: mg/kg			BLANI	K /BLANK S	PIKE / E	BLANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
BTEX by EPA	8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup. % D	RPD	Control Limits % n	Control Limits	Flag
Analytes		[v]	[B]			(E)	Dupicate Result [F]	<u>[</u>]	2	N 0/	MALU	
Benzene		DN	0.1000	0.1102	110	0.1	0.1069	107	ñ	70-130	35	
Toluenc		ND	0.1000	0.1068	107	1.0	0.1032	103	ñ	70-130	35	
Ethylbenzene		ΟN	0.1000	0.1114	111	0.1	0.1077	801	3	71-129	35	
m,p-Xylencs		ND	0.2000	0.2247	112	0.2	0.2169	801	4	70-135	35	
o-Xylene		ΟN	0.1000	0.1067	107	0.1	0.1029	103	4	71-133	35	
Analyst: BHW		Da	te Prepare	ed: 06/15/200	6			Date Ar	alyzed: 0	6/15/2009		
Lab Batch ID: 762422	Sample: 531914-1-B	KS	Batch	1 #: 1					Matrix: S	olid		

Units: mg/kg		BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	Blank Samnla Result	Spike	Blank Snike	Blank Snike	Spike	Blank Snike	Blk. Spk Dun	RPD	Control Limits	Control Limits	Flag
	[A]		Result	%R	nonnu	Duplicate	%R	%	%R	%RPD	0 !
Analytes		[B]	[C]	[D]	[E]	Result [F]	<u>5</u>				
C6-C12 Gasoline Range Hydrocarbons	QN	1000	867	87	0001	862	86	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ŊŊ	0001	1050	105	1000	1030	103	2	70-135	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station-Sec 31

Work Order #: 335449

Lab Batch ID: 762511 Date Analyzed: 06/16/2009 Reporting Units: mg/kg

Project ID: 2009-084

QC- Sample ID: 335322-007 S Date Prepared: 06/15/2009

Batch #: 1 Matrix: Solid Analyst: ASA

Keporting Units: mg/kg		M	ATRIX SPIKI	E / MATI	RIX SPIF	(E DUPLICA)	FE RECO	DVERY S	TUDY		_
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN	0.1208	0.1118	93	0.1208	0.1119	93	0	70-130	35	
Toluene	QN	0.1208	0.1090	96	0.1208	0.1087	90	0	70-130	35	
Ethylbenzene	QN	0.1208	0.1151	95	0.1208	0.1140	94	_	71-129	35	
m,p-Xylenes	ŊŊ	0.2416	0.2315	96	0.2416	0.2299	95	-	70-135	35	
o-Xylene	ΟN	0.1208	0.1081	89	0.1208	0.1078	89	0	71-133	35	
Lab Batch ID: 762422 Date Analyzed: 06/15/2009	QC- Sample ID: Date Prepared:	335446- 06/15/2(-003 S 009	Bat Ans	tch #: alyst: E	1 Matrix 3HW	:: Soil				
Reporting Units: mg/kg		W	ATRIX SPIKI	E/MATI	RIX SPH	(E DUPLICA)	FE RECO	DVERY S	TUDY		

		M	ATKIX SPIKE	LIAM / 2	ALX SPH	KE DUPLICA	IE KECC	VEKY S	YUUY		
TPH Rv CW8015 Mod	Parent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
noth ctop to fa tt tt	Sample	Spike	Result	Sample	Spike	Spiked Sample	Dup.	RPD	Limits	Limits	Flag
	Result	Added		%R	Added	Result [F]	%Β	%	%В	%RPD	ı
Analytes	[A]	[B]		[q]	[E]		[0]				
C6-C12 Gasoline Range Hydrocarbons	QN	1020	953	93	1030	979	95	۳ ۳	70-135	35	
C12-C28 Diesel Range Hydrocarbons	QN	1020	1220	120	1030	1190	116	2	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative. EQL = Estimated Quantitation Limit

	ς.	r	'n	Y,	Y.	ς,
	2	Ł	L	۲¢	Y.	2
I	n-	<u>آب</u>	n.	ĥ	9	'n
Ł	Ŷ	بيجيه	ų۲,	0.900	140	1

Ð

Ø

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station-Sec 31

Work Order #: 335449

Lab Batch #: 762328			Project I	D: ²⁰⁰⁹⁻⁰⁸⁴	1
Date Analyzed: 06/16/2009	Date Prepared: 06/1	6/2009	Analy	st: BEV	
QC- Sample ID: 335446-001 D	Batch #: 1		Matr	ix: Soil	
Reporting Units: %	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	19.0	19.3	2	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Ð

⊕

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Basin	Plains
Date/ Time:	6.17.09	16:15
Lab iD # :	<u> </u>	9449
Initials:	GL	

Sample Receipt Checklist

#1	Temperature of container/ cooler?	(Yes)	No	1.1 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yès	No	Not Present
#5	Chain of Custody present?	(Yes)	No	
#6	Sample instructions complete of Chain of Custody?	(Yes)	No	
#7	Chain of Custody signed when relinguished/ received?	(Yes)	No	
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on ContJ Lid
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No	
#11	Containers supplied by ELOT?	(Yes)	No	
#12	Samples in proper container/ bottle?	(Yes)	No	See Below
#13	Samples properly preserved?	(Yes)	No	See Below
#14	Sample bottles intact?	(Yes)	No	
#15	Preservations documented on Chain of Custody?	(Yes)	No	
#16	Containers documented on Chain of Custody?	(Yes)	No	
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below
#18	All samples received within sufficient hold time?	(Yes)	No	-See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable>
#20	VOC samples have zero headspace?	Nes	No	Not Applicable

Variance Documentation

Date/ Time:

Contact:

•

P

Ð

@ @

() ()

0

Ø Ð Ð 0 1 0 **() ()** 0 (Ø

Contacted by:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 345778

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6-Inch Sec 31

2009-084

30-SEP-09

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-08-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00308), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87428), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-08-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-08-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370-08-TX) Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917)

30-SEP-09

t ()

0

(

Ð

() ()

(])

Ø

()

()

(

(b)

Ð

Ø

0

働

0

Ð

(B) (B)

(†) (†)

0 0

0

000

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 345778 DCP Plant to Lea Station 6-Inch Sec 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 345778. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 345778 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

(†) (†)

Ð

❶

0

0 P • Ð 0 0 0 ⊕ Ð ₿ Ð Ð 0 Ð

Sample Cross Reference 345778

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6-Inch Sec 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2 @ 15'	S	Sep-21-09 10:00		345778-001
MW-2 @ 30'	S	Sep-21-09 10:30		345778-002
MW-2 @ 45'	S	Sep-21-09 11:10		345778-003
MW-2 @ 60'	S	Sep-21-09 11:50		345778-004
MW-2 @ 75'	S	Sep-21-09 12:40		345778-005
MW-3 @ 15'	S	Sep-22-09 11:00		345778-006
MW-3 @ 30'	S	Sep-22-09 11:40		345778-007
MW-3 @ 45'	S	Sep-22-09 12:20		345778-008
MW-3 @ 60'	S	Sep-22-09 13:40		345778-009
MW-4 @ 15'	S	Sep-22-09 15:00		345778-010
MW-4 @ 30'	S	Sep-22-09 15:50		345778-011
MW-4 @ 45'	S	Sep-22-09 16:30		345778-012
MW-4 @ 60'	S	Sep-22-09 17:20		345778-013
MW-1 @ 10'	S	Sep-23-09 08:30		345778-014
MW-1 @ 20'	S	Sep-23-09 08:55		345778-015
MW-1 @ 30'	S	Sep-23-09 09:15		345778-016
MW-1 @ 40'	S	Sep-23-09 09:50		345778-017
MW-1 @ 50'	S	Sep-23-09 10:40		345778-018
MW-1 @ 60'	S	Sep-23-09 11:35		345778-019

CASE NARRATIVE

(1) (1)

Ð

0

働

()

() ()

B

B

()

0

0

0

0

(B)

Ø

Ð

⊕

0

❹

(†) (†)

0

0

0

€

0

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Project ID: 2009-084 Work Order Number: 345778

Report Date: 30-SEP-09 Date Received: 09/23/2009

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-774064 Percent Moisture None

Batch: LBA-774382 TPH by SW8015 Mod None

Batch: LBA-774486 BTEX-MTBE EPA 8021B None

Batch: LBA-774737 BTEX-MTBE EPA 8021B SW8021BM

Batch 774737, Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 345778-016, -017, -019, -014, -015, -008, -018. The Laboratory Control Sample for Toluene, m,p-Xylenes, Benzene, Ethylbenzene, o-Xylene is within laboratory Control Limits

SW8021BM

Batch 774737, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 345778-014. 4-Bromofluorobenzene recovered above QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 345778-016,345778-017,345778-015,345778-019,345778-018.

Certificate of Analysis Summary 345778 PLAINS ALL AMERICAN EH&S, Midland, TX

1

1

Contact: Jason Henry Project Id: 2009-084 ¢ Ρ.

Date Received in Lab: Wed Sep-23-09 05:10 pm Renort Date: 30-SEP-09

roject Location: Lea County, NM					· · · · · · · · · · · · · · · · · · ·		
					Project Manager:	Brent Barron, II	
	Lab Id:	345778-001	345778-002	345778-003	345778-004	345778-005	345778-006
A sector Damaged	Field Id:	MW-2 @ 15'	MW-2 @ 30'	MW-2 @ 45'	MW-2 @ 60'	MW-2 @ 75'	MW-3 @ 15'
naisanhay sistinuy	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	TIOS	SOIL
	Sampled:	Sep-21-09 10:00	Sep-21-09 10:30	Sep-21-09 11:10	Sep-21-09 11:50	Sep-21-09 12:40	Sep-22-09 11:00
BTEX by EPA 8021B	Extracted:	Sep-25-09 15:30	Sep-25-09 15:30	Sep-25-09 15:30	Sep-25-09 15:30	Sep-25-09 15:30	Sep-25-09 15:30
	Analyzed:	Sep-26-09 07:24	Sep-26-09 07:44	Sep-26-09 08:04	Sep-26-09 08:23	Sep-26-09 08:43	Sep-26-09 09:03
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.0011	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0013	ND 0.0011
Toluenc		ND 0.0021	ND 0.0021	ND 0.0020	ND 0.0021	ND 0.0026	ND 0.0022
Ethylbenzene	-	ND 0.0011	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0013	ND 0.0011
m,p-Xylencs		ND 0.0021	ND 0.0021	ND 0.0020	ND 0.0021	ND 0.0026	ND 0.0022
o-Xylenc		ND 0.0011	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0013	ND 0.0011
Total Xylencs		ND 0.0011	ND 0.0011	0100.0 UN	1100.0 UN	ND 0.0013	ND 0.0011
Total BTEX		ND 0.0011	ND 0.0011	0100.0 UN	ND 0.0011	ND 0.0013	ND 0.0011
Percent Moisture	Extracted:						
	Analyzed:	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		7.07 1.00	6.78 1.00	1.08 1.00	7.07 1.00	22.0 1.00	7.92 1.00
TPH By SW8015 Mod	Extracted:	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11
	Analyzed:	Sep-27-09 14:41	Sep-27-09 15:06	Sep-27-09 15:30	Sep-27-09 15:55	Sep-27-09 16:20	Sep-27-09 16:45
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons	-	ND 16.1	ND 16.1	ND 15.1	ND 16.1	ND 19.2	ND 16.3
C12-C28 Diesel Range Hydrocarbons		ND 16.1	ND 16.1	ND 15.1	ND 16.1	ND 19.2	ND 16.3
C28-C35 Oil Range Hydrocarbons		ND 16.1	1.91 DN	ND 15.1	ND 16.1	ND 19.2	ND 16.3
Total TPH	r 	ND 16.1	ND 16.1	ND 15.1	ND 16.1	ND 19.2	ND 16.3

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no reponsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Certificate of Analysis Summary 345778 PLAINS ALL AMERICAN EH&S, Midland, TX 6 6 MONTOIN ø (fil

Ð

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County. NM

() ()

Date Received in Lab: Wed Sep-23-09 05:10 pm Report Date: 30-SEP-09 Project Name: DCP Plant to Lea Station 6-Inch Sec 31

					Project Manager: H	srent Barron, II	
	Lab Id:	345778-007	345778-008	345778-009	345778-010	345778-011	345778-012
A sector Descreted	Field Id:	MW-3 @ 30'	MW-3 @ 45'	MW-3 @ 60'	MW-4 @ 15'	MW-4 @ 30'	MW-4 @ 45'
Analysis Nequesieu	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Sep-22-09 11:40	Sep-22-09 12:20	Sep-22-09 13:40	Sep-22-09 15:00	Scp-22-09 15:50	Sep-22-09 16:30
BTEX by EPA 8021B	Extracted:	Sep-25-09 15:30	Sep-29-09 12:00	Sep-25-09 15:30	Sep-25-09 15:30	Sep-25-09 15:30	Sep-25-09 15:30
	Analyzed:	Sep-26-09 09:36	Sep-29-09 12:22	Sep-26-09 10:16	Sep-26-09 10:36	Sep-26-09 11:37	Sep-26-09 11:57
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.0011	ND 0.0010	0.0025 0.0011	ND 0.0010	ND 0.0010	ND 0.0010
Tolucne		ND 0.0021	ND 0.0020	0.0027 0.0021	ND 0.0020	ND 0.0021	ND 0.0021
Ethylbenzene		ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010
m,p-Xylenes	-	ND 0.0021	ND 0.0020	ND 0.0021	ND 0.0020	ND 0.0021	ND 0.0021
o-Xylene		ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010
Total Xylenes		ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010
Total BTEX		ND 0.0011	ND 0.0010	0.0052 0.0011	ND 0.0010	ND 0.0010	ND 0.0010
Percent Moisture	Extracted:						
	Analyzed:	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		6.82 1.00	ND 1.00	6.18 1.00	2.97 1.00	4.60 1.00	3.75 1.00
TPH By SW8015 Mod	Extracted:	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11
	Analyzed:	Sep-27-09 17:09	Sep-27-09 17:34	Sep-27-09 17:58	Sep-27-09 18:49	Sep-27-09 19:14	Sep-27-09 19:39
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 16.0	ND 15.0	ND 16.0	ND 15.4	ND 15.7	ND 15.6
C12-C28 Diesel Range Hydrocarbons		ND 16.0	ND 15.0	ND 16.0	ND 15.4	ND 15.7	ND 15.6
C28-C35 Oil Range Hydrocarbons		ND 16.0	ND 15.0	ND 16.0	ND 15.4	ND 15.7	ND 15.6

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed introughout this analytical report represent the best jubitment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

15.6

Q

15.7

12

15.4

QZ

16.0

Q

15.0

Q

16.0

g

Total TPH

COCTINICATE OF ANALYSIS Summary 345778 B 0

Contact: Jason Henry Project Id: 2009-084

E Date Received in Lab: Wed Sep-23-09 05:10 pm Report Date: 30-SEP-09

Project Location: Lea County, NM					Report Date:	50-SEP-09	
					Project Manager: 1	Brent Barron , II	
	Lab Id:	345778-013	345778-014	345778-015	345778-016	345778-017	345778-018
Audicie Damardad	Field Id:	MW-4 @ 60'	MW-1 @ 10'	MW-I @ 20'	MW-1 @ 30'	MW-1 @ 40'	MW-1 @ 50'
naisanhay sistinuv	Depth:						
	Matrix:	SOIL	SOIL	NIOS	TIOS	SOIL	SOIL
	Sampled:	Sep-22-09 17:20	Scp-23-09 08:30	Scp-23-09 08:55	Scp-23-09 09:15	Scp-23-09 09:50	Scp-23-09 10:40
BTEX by EPA 8021B	Extracted:	Sep-25-09 15:30	Sep-29-09 12:00	Sep-29-09 12:00	Sep-29-09 12:00	Sep-29-09 12:00	Sep-29-09 12:00
	Analyzed:	Sep-26-09 12:17	Sep-29-09 14:44	Sep-29-09 15:04	Sep-29-09 13:23	Sep-29-09 13:43	Sep-29-09 14:03
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.0012	ND 0.0058	ND 0.0052	ND 0.0505	ND 0.0499	ND 0.0503
Tolucne		ND 0.0025	ND 0.0116	0.0113 0.0104	0.1577 0.1011	0.1298 0.0999	ND 0.1006
Ethylbenzene		ND 0.0012	ND 0.0058	0.3744 0.0052	1.516 0.0505	1.984 0.0499	1.127 0.0503
m,p-Xylencs		ND 0.0025	0.0248 0.0116	1.794 0.0104	6.373 0.1011	8.349 0.0999	4.364 0.1006
o-Xylene		ND 0.0012	0.0111 0.0058	0.6959 0.0052	2.244 0.0505	2.981 0.0499	1.652 0.0503
Total Xylenes		ND 0.0012	0.0359 0.0058	2.490 0.0052	8.617 0.0505	11.330 0.0499	6.016 0.0503
Total BTEX		ND 0.0012	0.0359 0.0058	2.876 0.0052	10.291 0.0505	13.444 0.0499	7.143 0.0503
Percent Moisture	Extracted:						
	Analyzed:	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59	Sep-25-09 08:59
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		19.5 1.00	13.9 1.00	3.58 1.00	1.07 1.00	ND 1.00	1.00 1.00
TPH By SW8015 Mod	Extracted:	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11	Sep-26-09 12:11
	Analyzed:	Sep-27-09 20:03	Sep-27-09 20:28	Sep-27-09 20:54	Sep-27-09 21:19	Sep-27-09 21:43	Sep-27-09 22:07
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 18.6	137 87.1	344 77.6	674 75.8	988 75.7	700 75.4
C12-C28 Diesel Range Hydrocarbons		ND 18.6	149 87.1	440 77.6	616 75.8	550 75.7	529 75.4
C28-C35 Oil Range Hydrocarbons		ND 18.6	ND 87.1	ND 77.6	ND 75.8	ND 75.7	ND 75.4
Total TPH		ND 18.6	286 87.1	784 77.6	1290 75.8	1538 75.7	1229 75.4

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and restite servessed introughout thin analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

İ

Certificate of Analysis Summary 345778	PLAINS ALL AMERICAN EH&S, Midland, TX
CALLON	Cartesta

Contact: Jason Henry Project Id: 2009-084

Date Received in Lab: Wed Sep-23-09 05:10 pm Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Report Date: 30-SEP-09

Project Location: Lea County, NM			Report Date: 30-SEP-09
			Project Manager: Brent Barron, II
	Lab Id:	345778-019	
Analisio Damastad	Field Id:	MW-1 @ 60'	
naisan hay sisting	Depth:		
	Matrix:	SOIL	
	Sampled:	Sep-23-09 11:35	
BTEX by EPA 8021B	Extracted:	Sep-29-09 12:00	
	Analyzed:	Sep-29-09 14:23	
	Units/RL:	mg/kg RL	
Benzene		ND 0.0501	
Tolucnc		ND 0.1002	
Ethylbenzene		0.5080 0.0501	
m,p-Xylencs		2.155 0.1002	
o-Xylene		0.8998 0.0501	
Total Xylenes		3.055 0.0501	
Total BTEX		3.563 0.0501	
Percent Moisture	Extracted:		
	Analyzed:	Sep-25-09 08:59	
	Units/RL:	% RL	
Percent Moisture		ND 1.00	
TPH By SW8015 Mod	Extracted:	Sep-26-09 12:11	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations mat neerall expressed introughout this analytical report represent the best juggment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

75.3 75.3 75.3 75.3

476 mg/kg

C6-C12 Gasoline Range Hydrocarbons

C12-C28 Diesel Range Hydrocarbons C28-C35 Oil Range Hydrocarbons

Total TPH

448 ND 924

Ł

Sep-27-09 22:32

Analyzed: Units/RL: Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

() ()

(

₿

1

8 8

0

0 0

6

() ()

B

@ **(**)

Ð

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

· ·		
000	500	mi sita i
15 21 -	411/	day
124.	-1.1	$\mathcal{Q} \cap \mathcal{V}$
	JUL 1	
n n		
Index		ന്നുവ
	بعبابه	0. A S M . A . A . A . A
Later Alle	1 <u>1</u> <u>1</u> <u>1</u>	11 11 200 2 2 1

0

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Units: mg/kg Date Analyzed: 09/26/09 06:04 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount [A] True Amount [A] Recovery %R [D] Control Limits %R 1.4-Difluorobenzene 0.0299 0.0300 100 80-120 4-Bromofluorobenzene 0.0299 0.0300 103 80-120 Lab Batch #: 774486 Sample: 538951-1-BSD / BSD Batch: 1 Matrix: Solid Units: mg/kg Date Analyzed: 09/26/09 06:24 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount Found [A] True Amount [A] Control Limits %R Analytes Analytes Control 0.0310 Control 0.0300	Flags
BTEX by EPA 8021BAmount Found [A]True Amount [B]Recovery %R [D]Control Limits %R %RAnalytes0.02990.030010080-1201.4-Difluorobenzene0.02990.030010080-1204-Bromofluorobenzene0.03100.030010380-120Lab Batch #: 774486Sample: 538951-1-BSD / BSDBatch:1Matrix: SolidUnits: mg/kgDate Analyzed: 09/26/09 06:24SURROGATE RECOVERY STUDYBTEX by EPA 8021BAmount Found [A]True (A]Recovery (B]Control Limits %R %R	Flags
Analytes I I 1,4-Difluorobenzene 0.0299 0.0300 100 80-120 4-Bromofluorobenzene 0.0310 0.0300 103 80-120 Lab Batch #: 774486 Sample: 538951-1-BSD / BSD Batch: 1 Matrix: Solid Units: mg/kg Date Analyzed: 09/26/09 06:24 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount Found [A] True [B] Recovery %R [D] Control Limits %R	Flags
1.4-Difficition 0.0299 0.0300 100 80-120 4-Bromoliluorobenzene 0.0310 0.0300 103 80-120 Lab Batch #: 774486 Sample: 538951-1-BSD / BSD Batch: 1 Matrix: Solid Units: mg/kg Date Analyzed: 09/26/09 06:24 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount Found [B] 7% R [D] Control Limits % R Analytes [D] % R % R % R	Flags
Lab Batch #: 774486 Sample: 538951-1-BSD / BSD Batch: 1 Matrix: Solid Units: mg/kg Date Analyzed: 09/26/09 06:24 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount [A] True [B] Control %R %R Control Limits Analytes J J J J	Flags
Lab Batch #: 774486 Sample: 538951-1-BSD / BSD Batch: Matrix: Solid Units: mg/kg Date Analyzed: 09/26/09 06:24 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount True Control Limits [A] [B] %R %R [A] [D] %R %R	Flags
Units: mg/kg Date Analyzed: 09/26/09 06:24 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount Found [A] True Amount [B] Control Limits %R Analytes [B] %R	Flags
BTEX by EPA 8021B Amount Found True Amount Control Limits Analytes [A] [B] %R %R	Flags
1,4-Difluorobenzene 0.0301 0.0300 100 80-120	
4-Bromofluorobenzene 0.0311 0.0300 104 80-120	
Lab Batch #: 774486 Sample: 538951-1-BLK / BLK Batch: 1 Matrix: Solid	
Units: mg/kg Date Analyzed: 09/26/09 07:04 SURROGATE RECOVERY STUDY	
BTEX by EPA 8021B Amount Found True Amount Control Limits Analytes [A] [B] %R [D] %R	Flags
1,4-Difluorobenzene 0.0265 0.0300 88 80-120	
4-Bromofluorobenzene 0.0304 0.0300 101 80-120	
Lab Batch #: 774486 Sample: 345778-001 / SMP Batch: Matrix: Soil	
Units: mg/kg Date Analyzed: 09/26/09 07:24 SURROGATE RECOVERY STUDY	
BTEX by EPA 8021B Amount Found True Amount Control Limits Analytes [A] [B] %R %R	Flags
1,4-Difluorobenzene 0.0268 0.0300 89 80-120	
4-Bromofluorobenzene 0.0316 0.0300 105 80-120	
Lab Batch #: 774486 Sample: 345778-002 / SMP Batch: 1 Matrix: Soil	
Units: mg/kg Date Analyzed: 09/26/09 07:44 SURROGATE RECOVERY STUDY	
BTEX by EPA 8021BAmount Found [A]True Amount [B]Control Limits %R [D]Analytes	Flags
1,4-Difluorobenzene 0.0271 0.0300 90 80-120	
4-Bromofluorobenzene 0.0318 0.0300 106 80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Ø

Ô

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders : 345778.	Sample: 345778-003 / SMP	Pata	Project II	D: 2009-084		
Units: mg/kg	Date Analyzed: 09/26/09 08:04	SU	RROGATE RI	ECOVERY	STUDY	
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1,4-Difluorobenzene		0.0270	0.0300	90	80-120	
4-Bromofluorobenzene		0.0317	0.0300	106	80-120	
Lab Batch #: 774486	Sample: 345778-004 / SMP	Bate	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 09/26/09 08:23	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0263	0.0300	88	80-120	
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	
Lab Batch #: 774486	Sample: 345778-005 / SMP	Batc	h: ¹ Matrix	Soil	L	
Units: mg/kg	Date Analyzed: 09/26/09 08:43	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0264	0.0300	88	80-120	
4-Bromofluorobenzene		0.0297	0.0300	99	80-120	
Lab Batch #: 774486	Sample: 345778-006 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/26/09 09:03	SU	RROGATE RI	ECOVERY	STUDY	
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0270	0.0300	90	80-120	
4-Bromofluorobenzene		0.0325	0.0300	108	80-120	
Lab Batch #: 774486	Sample: 345778-007 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/26/09 09:36	SU	RROGATE RI	ECOVERY	STUDY	
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0270	0.0300	90	80-120	
4-Bromofluorobenzene		0.0336	0.0300	112	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

61

Call Canada and		one many ways with the
SA	NP	201
KY7	LA	NL
In-m-		PPAS -
<u>uni</u>	vir.	mæ

() ()

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Vork Orders : 345778. Lab Batch #: 774486	, Sample: 345778-009 / SMP	Batc	Project II h: ¹ Matrix	D: 2009-084 : Soil		
Units: mg/kg	Date Analyzed: 09/26/09 10:16	SU	RROGATE R	ECOVERY	STUDY	
втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0258	0.0300	86	80-120	
4-Bromofluorobenzene		0.0292	0.0300	97	80-120	
Lab Batch #: 774486	Sample: 345778-010 / SMP	Batc	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/26/09 10:36	SU	RROGATE R	ECOVERY	STUDY	_
втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					
1,4-Difluorobenzene		0.0266	0.0300	89	80-120	
4-Bromofluorobenzene		0.0314	0.0300	105	80-120	l
Lab Batch #: 774486	Sample: 345778-011 / SMP	IP Batch: I Matrix: Soil				
Units: mg/kg	Date Analyzed: 09/26/09 11:37	SU	RROGATE R	ECOVERY	STUDY	
втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0261	0.0300	87	80-120	
4-Bromofluorobenzene		0.0313	0.0300	104	80-120	
Lab Batab #: 774486	Sample: 345778-012 / SMP	Bate	h: Matrix	·Soil		L,
Units: mg/kg	Date Analyzed: 09/26/09 11:57	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluorobenzene		0.0264	0.0300	88	80-120	
4-Bromofluorobenzene		0.0313	0.0300	104	80-120	
Lab Batch #: 774486	Sample: 345778-013 / SMP	Batc	h: 1 Matrix	:Soil	1	L
Units: mg/kg	Date Analyzed: 09/26/09 12:17	SU	RROGATE R	ECOVERY	STUDY	
втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0255	0.0300	85	80-120	
4-Bromofluorobenzene		0.0284	0.0300	95	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

働

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

'ork Orders : 345778 Lab Batch #: 774486	, Sample: 345778-001 S / M	S Batcl	Project II h: ¹ Matrix	D: 2009-084 :Soil		
Units: mg/kg	Date Analyzed: 09/26/09 14:58	SUI	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		I	[D]		
1,4-Difluorobenzene		0.0280	0.0300	93	80-120	
4-Bromofluorobenzene		0.0316	0.0300	105	80-120	
Lab Batch #: 774486	Sample: 345778-001 SD / M	MSD Batch	n: 1 Matrix	;:Soil		
Units: mg/kg	Date Analyzed: 09/26/09 15:19	SUI	RROGATE RI	ECOVERY	STUDY	
втеу	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0287	0.0300	96	80-120	<u> </u>
4-Bromofluorobenzene		0.0312	0.0300	104	80-120	<u> </u>
Lah Ratch #. 774737	Samule: 539121-1-BKS / F	KS Batel		- Solid	ى	<u></u>
Units: mg/kg	Date Analyzed: 09/29/09 09:44	SU	RROGATE RI	ECOVERY	STUDY	.
BTE	X by EPA 8021B	Amount Found	True Amount	Recovery	Control Limits	Flags
	Analytes	[A]	[B]	%к [D]	%R	
1,4-Difluorobenzene		0.0303	0.0300	101	80-120	·
4-Bromofluorobenzene		0.0307	0.0300	102	80-120	
Lab Batch #: 774737	Sample: 539121-1-BSD / B	SD Batch	a: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 09/29/09 10:04	SUI	RROGATE RE	ECOVERY	STUDY	
втел	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]	!	۱
1,4-Difluorobenzene		0.0301	0.0300	100	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	
Lab Batch #: 774737	Sample: 539121-1-BLK / B	LK Batch	a: Matrix	:Solid		
Units: mg/kg	Date Analyzed: 09/29/09 10:44	SUI	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		l	{D}		
1,4-Difluorobenzene		0.0266	0.0300	89	80-120	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·	'	·

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Ø

	$\sim \sim \sim \sim \sim$
	ンイゴ (((o)
ł	WIND
	CONTINUE
	이 히 프 피 이 곳이 귀엽 관계가 있다.

() () ()

•

0 働 • 0 0 0 Ø 6 Ð Ð

() ()

₿

0

B

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders : 345778	, Sample: 345778-008 / SMP	Batel	Project II): 2009-084		
Units: mg/kg	Date Analyzed: 09/29/09 12:22	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			ַןטן 		
1,4-Difluorobenzene		0.0267	0.0300	89	80-120	
4-Bromofluorobenzene		0.0300	0.0300	100	80-120	
Lab Batch #: 774737	Sample: 345778-016 / SMP_	Batel	h: Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/29/09 13:23	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount {B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0250	0.0300	83	80-120	
4-Bromofluorobenzene		0.0456	0.0300	152	80-120	**
Lab Batch #: 774737	Sample: 345778-017 / SMP	Batcl	h: Matrix	: Soil		
Units: mg/kg	Date Analyzed: 09/29/09 13:43	SU	RROGATE RI	ECOVERY	STUDY	
ВТЕУ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0240	0.0300	80	80-120	
4-Bromofluorobenzene		0.0514	0.0300	171	80-120	**
Lab Batch #: 774737	Sample: 345778-018 / SMP	Batcl	h: 1 Matrix	:Soil		· ·
Units: mg/kg	Date Analyzed: 09/29/09 14:03	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I,4-Difluorobenzene		0.0250	0.0300	83	80-120	
4-Bromofluorobenzene		0.0415	0.0300	138	80-120	**
Lab Batch #: 774737	Sample: 345778-019 / SMP	Batcl	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 09/29/09 14:23	SU	RROGATE RI	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0261	0.0300	87	80-120	
4-Bromofluorobenzene		0.0414	0.0300	138	80-120	**

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	\mathbf{D}
	$(\mathcal{Q} \circ)$
	$\sim \sim 1$
10000	0763

@ @

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders : 345778,	Sample: 345778-014 / SMP	Batel	Project II	D: 2009-084		
Units: mg/kg	Date Analyzed: 09/29/09 14:44	SU	RROGATE RI	COVERY	STUDY	
BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	0.0227	0.0200	70	80.120	**
4. Bromofluorobenzene		0.0237	0.0300	105	80-120	**
		0.0314	0.0300	105	00-120	
Lab Batch #: 7/4/37	Sample: 345778-0157 SMP Date Analyzed: 09/29/09 15:04	Batel	h: Matrix: RROGATE RI	COVERY	STUDY	
BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0245	0.0300	82	80-120	
4-Bromofluorobenzene		0.0773	0.0300	258	80-120	**
Lab Batch #: 774737	Sample: 346027-001 S / MS	Batel	h· 1 Matrix	: Soil		L
Units: mg/kg	Date Analyzed: 09/29/09 20:48	SU	RROGATE RI	COVERY	STUDY	
BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 A Difluorabenzane	Analytes	0.0202	0.0200	07	80.120	
4-Bromofluorobenzene		0.0292	0.0300	97	80-120	
		(CD D)	0.0300	0.0	00-120	
	Sample: 346027-001 SD7 W	Batci	REACTE RE	COVERV	STUDY	
BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0286	0.0300	95	80-120	
4-Bromofluorobenzene		0.0320	0.0300	107	80-120	
Lab Batch #: 774382	Sample: 538882-1-BKS / BI	KS Batel	h: 1 Matrix:	Solid	•	
Units: mg/kg	Date Analyzed: 09/27/09 13:01	SU	RROGATE RI	COVERY	STUDY	
TPH B	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		92.5	100	93	70-135	
o-Terphenyl		36.3	50.0	73	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	$\sim \sim \sim \sim$	2
ł).
		E.
	long to factor	8 20
	a change and a second	

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders : 345778	, ,		Project II	D: 2009-084		
Lab Batch #: 7/4382	Sample: 538882-1-BSD / B	SD Bate	ch: Matrix	Solid	STUDY	
Units: mg/kg	Date Analyzed: 09/27/09 13:26	50		LUVERI		
ТРН	By SW8015 Mod	Amount Found [A]	True Amount (B)	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		95.9	100	96	70-135	
o-Terphenyl		37.1	50.0	74	70-135	
Lab Batch #: 774382	Sample: 538882-1-BLK / B	LK Bate	ch: 1 Matrix	Solid		
Units: mg/kg	Date Analyzed: 09/27/09 13:51	SL	JRROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		83.6	100	84	70-135	
o-Terphenyl		39.6	50.0	79	70-135	
Lab Batch #: 774382	Sample: 345778-001 / SMP	Bato	ch: 1 Matrix	:Soil	L	
Units: mg/kg	Date Analyzed: 09/27/09 14:41	SU	JRROGATE RI	ECOVERY	STUDY	-
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		74.3	99.8	74	70-135	
o-Terphenyl		36.3	49.9	73	70-135	
Lab Batch #: 774382	Sample: 345778-002 / SMP	Bato	ch: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/27/09 15:06	SU	JRROGATE RI	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Anarytes	89.4	00.8	00	70-135	
o-Terphenyl		41.5	49.9	83	70-135	-
Lab Batch #: 774382	Sample: 345778-003 / SMP	Bate	h. 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 09/27/09 15:30	SL	JRROGATE RI	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		74.4	99.9	74	70-135	·
o-Terphenyl		37.0	50.0	74	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Form 2 - Surrogate Recoveries

,		Project I	D: 2009-084		
Sample: 345778-0047 SMP	Bato	Ch: I Matrix	FCOVERV	STUDY	
Date Analyzed: 09/27/09 15:55					
By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]	l i	
	73.0	99.9	73	70-135	
	36.5	50.0	73	70-135	
Sample: 345778-005 / SMP	Bate	ch: Matrix	:Soil		
Date Analyzed: 09/27/09 16:20	SU	JRROGATE R	ECOVERY	STUDY	
By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	79.9	100	80	70-135	
	37.3	50.0	75	70-135	
Sample: 345778-006 / SMP	Batc	h: 1 Matrix	:: Soil	1	
Date Analyzed: 09/27/09 16:45	SU	RROGATE R	ECOVERY	STUDY	
By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	71.8	100	72	70-135	
	35.6	50.0	71	70-135	
Sample: 345778-007 / SMP	Batc	ch: I Matrix	:Soil	·	
Date Analyzed: 09/27/09 17:09	SU	RROGATE R	ECOVERY	STUDY	
3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	72.4	00.7	74	70.125	
	35.9	49.9	72	70-135	
Sample: 345778-008 / SMP		h. 1 Matrix	 Soil		
Date Analyzed: 09/27/09 17:34	Batt	RROGATE R	ECOVERY	STUDY	
By SW8015 Mod	Amount Found [A]	True Amount B	Recovery %R	Control Limits %R	Flags
Amplutes	1. •1	('~'	1 (0)	ו	
Analytes		00.5	{D}		
	Sample: 345778-004 / SMP Date Analyzed: 09/27/09 15:55 By SW8015 Mod Analytes Sample: 345778-005 / SMP Date Analyzed: 09/27/09 16:20 By SW8015 Mod Analytes Sample: 345778-006 / SMP Date Analyzed: 09/27/09 16:45 By SW8015 Mod Analytes Sample: 345778-007 / SMP Date Analyzed: 09/27/09 17:09 By SW8015 Mod Analytes Sample: 345778-008 / SMP Date Analyzed: 09/27/09 17:34 By SW8015 Mod	Sample:345778-004 / SMPBateDate Analyzed:09/27/09 15:55SUBy SW8015 ModAmount Found [A]Analytes73.036.5Sample:345778-005 / SMPBateDate Analyzed:09/27/09 16:20SUBy SW8015 ModAmount Found [A]Amount Found [A]Analytes79.937.3Sample:345778-006 / SMPBate Analyzed:09/27/09 16:45SUBy SW8015 ModAmount Found [A]Analytes71.835.6Sample:345778-007 / SMPBate Analyzed:09/27/09 17:09SUBy SW8015 ModAmount Found [A]Analytes71.835.6Sample:345778-007 / SMPBate Analyzed:09/27/09 17:09SUBy SW8015 ModAmount Found [A]Analytes73.435.9Sample:345778-008 / SMPBate Analyzed:09/27/09 17:34SUBy SW8015 ModAmount Found [A]Analytes73.435.9Sample:345778-008 / SMPBate Analyzed:09/27/09 17:34SUBy SW8015 ModAmount Found [A]Analytes73.4Sample:345778-008 / SMPBateMount Found [A]Analytes73.4Sample:345778-008 / SMPBateAmount Found [A]BateAmount Found [A]BateAmount Found [A] </td <td>Sample: 345778-004 / SMPBatch:1MatrixDate Analyzed: 09/27/09 15:55SURROGATE RBy SW8015 ModAmount Found [A]True Amount [B]Analytes73.099.936.550.0Sample: 345778-005 / SMPBatch:1Date Analyzed: 09/27/09 16:20SURROGATE RBy SW8015 ModAmount Found [A]True Amount [B]Analytes79.910037.350.0Sample: 345778-006 / SMPBatch:1Matrix Found [A]1B]Analytes79.910037.350.0Sample: 345778-006 / SMPBatch:1Date Analyzed: 09/27/09 16:45SURROGATE RBy SW8015 ModAmount Found [A]True Amount [B]Analytes71.810035.650.0Sample: 345778-007 / SMP Batch:Batch:1Matrix Date Analyzed: 09/27/09 17:09SURROGATE RBy SW8015 ModAmount [A]True Amount [A]Analytes73.499.735.949.9Sample: 345778-008 / SMP Batch:Matrix Amount [A]Analytes73.499.735.949.9Sample: 345778-008 / SMP Batch:Matrix Amount [A]Bate Analyzed: 09/27/09 17:34SURROGATE RBy SW8015 ModAmount [A]True Amount [B]Analytes73.499.735.949.9Sample: 345778-008 / SMP </td> <td>Sample: 345778-004 / SMPProject ID: 2009-084Batch:1Matrix: SoilDate Analyzed: 09/27/09 15:55SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True (B]Recovery %RAnalytes73.099.973Canadystan36.550.073Sample:345778-005 / SMP 36.5Batch:1Matrix: SoilDate Analyzed:09/27/09 16:20SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True Matrix: SoilRecovery %RDate Analyzed:09/27/09 16:20SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True Batch:Recovery %RDate Analyzed:09/27/09 16:45SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True [B]Recovery %RDate Analyzed:09/27/09 16:45SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RAnalytes1Matrix:SoilDate Analyzed:09/27/09 17:09SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RDate Analyzed:09/27/09 17:09SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RDate Analyzed:09/27/09 17:09SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RBatch:1Matrix:SoilDate Analyzed:09/27/09 17:34SUROGATE RECOVERY<</td> <td>Project ID: 2009-084 Sample: 345778-004 / SMP Batch: 1 Matrix: Soil Date Analyzed: 09/27/09 15:55 SURROGATE RECOVERY STUDY By SW8015 Mod Amount Found True Amount [A] Matrix: Soil Control Limits %R Analytes 73.0 99.9 73 70-135 Sample: 345778-005 / SMP Batch: 1 Matrix: Soil Control Limits Date Analyzed: 09/27/09 16:20 SURROGATE Recovery formation Control Limits Control Limits By SW8015 Mod Amount Found [A] Matrix: Soil Control Limits Limits Analytes 79.9 100 80 70-135 Sample: 345778-006 / SMP Batch: 1 Matrix: Soil Date Analyzed: 09/27/09 16:45 SURROGATE Recovery formation Control Limits Sy SW8015 Mod Amount Found [A] True Amount Found [A] Matrix: Soil Control Limits Surgers 345778-007 / SMP Batch: 1 Matrix: Soil Date Analyzed: 09/27/09 17:09 SUROGATE Re</td>	Sample: 345778-004 / SMPBatch:1MatrixDate Analyzed: 09/27/09 15:55SURROGATE RBy SW8015 ModAmount Found [A]True Amount [B]Analytes73.099.936.550.0Sample: 345778-005 / SMPBatch:1Date Analyzed: 09/27/09 16:20SURROGATE RBy SW8015 ModAmount Found [A]True Amount [B]Analytes79.910037.350.0Sample: 345778-006 / SMPBatch:1Matrix Found [A]1B]Analytes79.910037.350.0Sample: 345778-006 / SMPBatch:1Date Analyzed: 09/27/09 16:45SURROGATE RBy SW8015 ModAmount Found [A]True Amount [B]Analytes71.810035.650.0Sample: 345778-007 / SMP Batch:Batch:1Matrix Date Analyzed: 09/27/09 17:09SURROGATE RBy SW8015 ModAmount [A]True Amount [A]Analytes73.499.735.949.9Sample: 345778-008 / SMP Batch:Matrix Amount [A]Analytes73.499.735.949.9Sample: 345778-008 / SMP Batch:Matrix Amount [A]Bate Analyzed: 09/27/09 17:34SURROGATE RBy SW8015 ModAmount [A]True Amount [B]Analytes73.499.735.949.9Sample: 345778-008 / SMP 	Sample: 345778-004 / SMPProject ID: 2009-084Batch:1Matrix: SoilDate Analyzed: 09/27/09 15:55SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True (B]Recovery %RAnalytes73.099.973Canadystan36.550.073Sample:345778-005 / SMP 36.5Batch:1Matrix: SoilDate Analyzed:09/27/09 16:20SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True Matrix: SoilRecovery %RDate Analyzed:09/27/09 16:20SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True Batch:Recovery %RDate Analyzed:09/27/09 16:45SURROGATE RECOVERYBy SW8015 ModAmount Found [A]True [B]Recovery %RDate Analyzed:09/27/09 16:45SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RAnalytes1Matrix:SoilDate Analyzed:09/27/09 17:09SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RDate Analyzed:09/27/09 17:09SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RDate Analyzed:09/27/09 17:09SURROGATE RECOVERYBy SW8015 ModAmount [A]True [B]Recovery %RBatch:1Matrix:SoilDate Analyzed:09/27/09 17:34SUROGATE RECOVERY<	Project ID: 2009-084 Sample: 345778-004 / SMP Batch: 1 Matrix: Soil Date Analyzed: 09/27/09 15:55 SURROGATE RECOVERY STUDY By SW8015 Mod Amount Found True Amount [A] Matrix: Soil Control Limits %R Analytes 73.0 99.9 73 70-135 Sample: 345778-005 / SMP Batch: 1 Matrix: Soil Control Limits Date Analyzed: 09/27/09 16:20 SURROGATE Recovery formation Control Limits Control Limits By SW8015 Mod Amount Found [A] Matrix: Soil Control Limits Limits Analytes 79.9 100 80 70-135 Sample: 345778-006 / SMP Batch: 1 Matrix: Soil Date Analyzed: 09/27/09 16:45 SURROGATE Recovery formation Control Limits Sy SW8015 Mod Amount Found [A] True Amount Found [A] Matrix: Soil Control Limits Surgers 345778-007 / SMP Batch: 1 Matrix: Soil Date Analyzed: 09/27/09 17:09 SUROGATE Re

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

3

٩

<u>h</u>.

Surrogate Recovery [D] = 100 * A / B

	_
2(],((())	2
	ļ
Monorate	Ś
	ż

Ø

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Vork Orders : 345778	, Sample: 345778-009 / SMP	Bate	Project II	D: 2009-084		
Units: mg/kg	Date Analyzed: 09/27/09 17:58	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		76.8	100	77	70-135	
o-Terphenyl		35.6	50.0	71	70-135	
Lab Batch #: 774382	Sample: 345778-010 / SMP	Bate	h: i Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/27/09 18:49	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		74.2	99.6	74	70-135	
o-Terphenyl		35.4	49.8	71	70-135	
Lab Batch #: 774382	Sample: 345778-011 / SMP	Bato	h: ¹ Matrix	:Soil	1	
Units: mg/kg	Date Analyzed: 09/27/09 19:14	SL	RROGATE R	ECOVERY	STUDY	
ТРН 1	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	71.2	8 00	71	70 135	
o-Terphenyl		36.3	49.9	73	70-135	
Lab Batab # 77/382	Semple: 345778-012 / SMP	Patr	h. 1 Matrix	Soil		
Lab Balch #: 774302	Date Analyzed: 00/27/00 10:30	SU	RROGATE R	ECOVERY	STUDY	
TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			{D}		
1-Chlorooctane		75.4	99.8	76	70-135	
o-Terphenyl		36.0	49.9	72	70-135	
Lab Batch #: 774382	Sample: 345778-013 / SMP	Bato	:h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/27/09 20:03	st	IRROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		84.4	100	84	70-135	
o-Terphenyl		39.3	50.0	79	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

1) d :	
1 Roth	montha
Jan	nconnac

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders : 345778	3, Samalar 245778 014 / SMR	D - 4 -	Project I	D: 2009-084		
Lab Batch #: 774382	Date Analyzed: 09/27/09 20:28	Batc SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes					
1-Chlorooctane		71.6	100	72	70-135	
o-Terphenyl		35.7	50.0	71	70-135	
Lab Batch #: 774382	Sample: 345778-015 / SMP	Bate	:h: ¹ Matrix	::Soil		
Units: mg/kg	Date Analyzed: 09/27/09 20:54	SU	IRROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		76.5	99.8	77	70-135	
o-Terphenyl		36.7	49.9	74	70-135	
Lab Batch #: 774382	Sample: 345778-016 / SMP	Bata	l vh· 1 Matriv	I •• Soil		
Linits: mg/kg	Date Analyzed: 09/27/09 21:19	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		81.3	100	81	70-135	
o-Terphenyl		35.9	50.0	72	70-135	
Lab Batch #: 774382	Sample: 345778-017 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/27/09 21:43	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		ļ	ועו		
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	81.2	100	81	70-135	
o-Terphenyl		35.9	50.0	72	70-135	
Lab Batch #: 774382	Sample: 345778-018 / SMP	Bate	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 09/27/09 22:07	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		81.8	99.5	82	70-135	
o-Terphenyl		35.3	49.8	71	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

1

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Vork Orders : 345778 Lab Batch #: 774382	Sample: 345778-019 / SMP	Batc	Project II h: Matrix: RROGATE RE	D: 2009-084 Soil	STUDY	
TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	•	81.7	99.6	82	70-135	
o-Terphenyl		36.9	49.8	74	70-135	
Lab Batch #: 774382	Sample: 345778-001 S / MS	Batc	h: l Matrix:	:Soil		
Units: mg/kg	Date Analyzed: 09/27/09 22:56	SU	RROGATE RE	ECOVERY	STUDY	
ТРН І	3y SW8015 Mod Analvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		92.6	100	93	70-135	
o-Terphenyl	· · · · · · · · · · · · · · · · · · ·	36.2	50.0	72	70-135	
Lab Batch #: 774382	Sample: 345778-001 SD / N	ISD Bate	h: Matrix:	Soil	<u>.</u>	
Units: mg/kg	Date Analyzed: 09/27/09 23:21	SU	RROGATE RE	ECOVERY	STUDY	
ТРН І	3y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		108	99.9	108	70-135	
o-Terphenyl		39.4	50.0	79	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 345778 Analyst: ASA

Lab Batch ID: 774486

Units: mg/kg

Sample: 538951-1-BKS

Date Prepared: 09/25/2009 Batch #: 1

Project ID: 2009-084 Date Analyzed: 09/26/2009 Matrix: Solid

	5
	5
	Ξ
	9
	$\mathbf{\Sigma}$
	2
	E J
	$\mathbf{\Sigma}$
l	5
I	X
I	2
I	H
ļ	2
l	- 1
1	μ.
I	
I	\triangleleft
I	C
l	Ţ
	6
	Ω
	r_1
l	
ļ	×
1	5
Ì	
Ì	X
	Z
	◄
	Ľ.
	8
l	r-1
Ī	Ľ
	a
	5
1	1
	¥
	Z
l	$\mathbf{<}$
I	
l	B
	-
	$\mathbf{\Sigma}$
	7
	7
	Ľ
	~
	(and a second

BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	V	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	<u>[</u> و]	%	%K	%RPD	
Benzene	QN	0.1000	0.0845	85	0.1	0.0852	85	1	70-130	35	
Tolucne	QN	0.1000	0.0832	83	0.1	0.0839	84	-	70-130	35	
Ethylbenzene	ND	0.1000	0.0842	84	0.1	0.0854	85	-	71-129	35	
m,p-Xylenes	QN	0.2000	0.1852	93	0.2	0.1874	94	-	70-135	35	
o-Xylcne	DN	0.1000	0.0904	90	0.1	0.0915	92	1	71-133	35	
Analyst: ASA	Da	tte Prepare	d: 09/29/200	6			Date An	alyzed: 0	9/29/2009		

Lab Batch ID: 774737

Batch #: 1 Sample: 539121-1-BKS

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Matrix: Solid

Units: mg/kg		BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[d]	[E]	Result [F]	[6]				
Benzene	ŊŊ	0.1000	0.0977	86	0.1	0.0959	96	2	70-130	35	
Toluene	ŊŊ	0.1000	0.0961	96	0.1	0.0944	94	2	70-130	35	
Ethylbenzene	ŊŊ	0.1000	0.0980	86	0.1	0.0958	96	2	71-129	35	
m,p-Xylencs	QN	0.2000	0.2147	107	0.2	0.2099	105	2	70-135	35	
o-Xylenc	QN	0.1000	0.1027	103	1.0	0.0994	66	3	71-133	35	

Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Mondates 0 1. 2.2

BS / BSD Recoveries

6

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 345778 Analyst: BHW

Lab Batch ID: 774382

Date Prepared: 09/26/2009

Batch #: 1

Sample: 538882-1-BKS

Project ID: 2009-084 Date Analyzed: 09/27/2009 Matrix: Solid

Units: mg/kg		BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPI	ICATE 1	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		[B]		10] X%	[E]	Dupncare Result [F]	X %	%	70 K	%K/U	
C6-C12 Gasoline Range Hydrocarbons	DN	1000	687	06	1000	816	92	2	70-135	35	
C12-C28 Dicsel Range Hydrocarbons	QN	1000	1020	102	1000	0901	901	4	70-135	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

 Image: Startage

Work Order #: 345778

Date Analyzed: 09/26/2009 Lab Batch ID: 774486

Reporting Units: mg/kg

Project ID: 2009-084

QC- Sample ID: 345778-001 S Date Prepared: 09/25/2009

Matrix: Soil ASA Analyst: Batch #:

-

		[A]			II JO VIV	VE DUFLICA.	IE RECU	VENT	10010		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN	0.1076	0.0763	11	0.1076	0.0783	73	e	70-130	35	
Toluene	ŊŊ	0.1076	0.0810	75	0.1076	0.0800	74	-	70-130	35	
Ethylbenzene	QN	0.1076	0.0813	76	0.1076	0.0804	75	-	71-129	35	
m,p-Xylencs	QN	0.2152	0.1836	85	0.2152	0.1796	83	2	70-135	35	
o-Xylene	ND	0.1076	0.0891	83	0.1076	0.0873	81	2	71-133	35	
Lab Batch ID: 774737 Date Analyzed: 09/29/2009	C- Sample ID: Date Prepared:	346027- 09/29/2	-001 S 209	Ba An	tch #: alyst: /	l Matrix ASA	:: Soil				

Reporting Units: mg/kg		A	ATRIX SPIK	E / MAT	RIX SPII	KE DUPLICA'	FE RECO	VERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	0.0020	0.1066	0.0584	53	0.1066	0.0580	53	-	70-130	35	×
Tolucne	0.0157	0.1066	0.0598	41	0.1066	0.0593	41	-	70-130	35	×
Ethylbenzene	0.0077	0.1066	0.0594	48	0.1066	0.0594	48	0	71-129	35	×
m,p-Xylencs	0.0112	0.2132	0.1292	55	0.2132	0.1291	55	0	70-135	35	×
o-Xylene	0.0047	0.1066	0.0592	51	0.1066	0.0587	51	-	71-133	35	×

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit
Image: Started in the second secon

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 345778

Date Analyzed: 09/27/2009 Lab Batch ID: 774382

QC- Sample ID: 345778-001 S Date Prepared: 09/26/2009

Matrix: Soil -Analyst: BHW

Batch #:

Project ID: 2009-084

Reporting Units: mg/kg		M	ATRIX SPIKI	Z/MATI	HAS XIX	KE DUPLICAT	fe reco	VERY S	TUDY		
TPH By SW8015 Mod	Parent Sample Decute	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]		10]	E]	Kesult [F]	<u>1</u>	%	%0K	%KPD	
C6-C12 Gasoline Range Hydrocarbons	DN	1080	968	06	1080	1140	901	16	70-135	35	
C12-C28 Dicsel Range Hydrocarbons	ND	1080	1140	106	1080	1300	120	13	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 345778

Lab Batch #: 774064				Project I	D: ²⁰⁰⁹⁻⁰⁸⁴	1
Date Analyzed: 09/25/2009	Date Prepared:	09/25/2009	Anal	yst:BEV		
QC- Sample ID: 345778-001 D	Batch #:	1	Mat	rix: Soil		
Reporting Units: %	S	AMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Par	ent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Percent Moisture		7.07	7.41	5	20	

Spike Relative Difference RPD 200 * [(B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit B

IAI Disbrield × ×× × × × × × zzzzazz Project Name: DCP Plant to Lea Station 6-Inch Sec 31 NPDES Lone Star #4125 (84 (45 (9)(control-erro) TAT HBU ç ODE 3 sebirolric 6265 007 EPA Paint Flast Test Laboratory Commentar: Sentido Contratory Commentar: Sentido Contratorio Contratorio VOXOS Free of Headespace? Labore and an octavitation () Labore and an octavitation () Custory and an octavitation () HAG 🗌 такр Phone: 432-563-1800 Fax: 432-563-1713 .M.A.O.N CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST eHe iDB X 0929 XB18 OCCUPIER DIE × × × х × × × Temperature Upon Receipt: ampled Client Rep CPS Sample Hand Delivered Project Loc: Lea County, NM PO #. PAA - J. Henry X Standard Project #: 2009-084 45 BH GH IN DO BE B SAR / ESP / CEC 2 wions (Cl, BC4; Ahz (N .SN .QM .60) and Report Format: 5001 X1 3441 9001 X1 9.73 0117.16 ime firms 1443 × The second 1'91> × × × × muco Aponda Soil Soil Soll Soil Soll Soll Soil Soil Soil Soil Date Date (Vitrage) variation cstanlev@basinenv.com (HAR) arow 12600 West I-20 East Odessa, Texas 79765 OX6-EN HOW ,02,H (C X YON IDH (575) 396-1429 ONH × × × 00 × × × × × × enseriatino D to .a lase -** -*** ~ fain burefird bu Fax No: e-mail: 1110 1240 1500 1150 1000 1030 1100 1140 1220 1340 beigmag emil 03 Anora PAGE 01 OF 9/21/2009 9/21/2009 9/21/2009 9/22/2009 9/21/2009 9/22/2009 9/22/2009 9/22/2009 9/21/2009 9/22/2009 Received by: Received by: Basin Environmental Service Technologies, LLC beldmes etc0 yidag Bujpuj 1710 Rine Environmental Lab of Texas Inte ŝ dinaing Deph Plesen Lovington, NM 58260 Date, Vale Date 2300 Plains Hwy いば -2244 Curt Stanley 345778 (575) 441-MW-2 @ 15' MW-2 @ 30' NW-2 @ 45' MW-2 @ 60' NW-2 @ 75' MW-3@15 MW-3 @ 30' NW-3 @ 45 MW-3 @ 60' MW-4 @ 15' FIELD CODE -Company Address: Sampler Signature: Project Manager Company Name Telephone No: City/State/Zip: ectal Instructions (lab use only). inguished by ORDER #: ŝ 20 3 28 8 53 0 õ (Aiuo eśn dej) # Gu

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	_			1					ſ	TAT bisonsiz	×	×	×	×	×	×	×	×	×		1.A	Y 1.		
	6.3				SEC SEC			n et	.92	AUSH TAT (Pre-standard 24, 4									-		1. (z z		in the second	U U
	Se				NP(Chiorides E 300											107	<u> </u>		
	2							•		1201 1000 1018 AGB										·	66	6035	ക്ക	
	5									HA9												,	3	Ĵ
713	UQ1				бЪ					.M.B.O.N											<u>.</u>	$\sim \gamma$, ,
5.1	Stat				H																		Ē	
32-5	e3				<u> </u>		ž -	×+		10154 6021816099 01 BTEX 625	×	×		_×	×	<u> </u>	<u>×</u>	×	×		1.1	ine. Visit	- 8 v	ceipt
भूम् प्र	8		ŴN	2			82.			eolatio Amaŭ			_								nent S Int	otts)	e a d	ga
й н	ant	7	ιţλ'	Hên	pard		Anal	$\left \right $		Activities in the color of the color											omo Presi	40.5	Έğ.	50
a	ā	õ	Cou		ČE L		á,	5t		RAR/ ESP/ CEC								{			の日日	con eats	fand Die gener	1-1-25
	- Õ	200	3	PAA	เรา		1 2 1	10		(Vrinsleal A, MOS, JD) enclared								-				5.2 g	18.8.8	
	'ag'	`	ÿ	*						Cations (Ca, Mg, Va, K)											1	133		<u> </u>
	N8N	sject	ב ד	S.	mat			٢	***	8001 AT 2001 XT (H9T					-	-		-				T	<u> </u>	
	18	Pre	roje		For				62	109 (MS108) 1'819 -Hd1	×	×	×	×	×	×	×	×	×			Ê	Ê	18 3
	5. 0.		۵		۲ŏ			٦,	5	HURMOR ADDRESS ADDRESS OBJECT		_	_	_	_		_	-	_		1		[
					Sei S				DBW.	CW= Onumber States	ŝ	Sci	So	Soi	ŝ	ŝ	So	ŝ	Soi				1	v
	1	1		ł		_		ŀ	+	signification of the states of the states												-	5	19 0
						5			۶ł	(Store (Somethy)						-						G	2	6 63
88 st						N.C			Į.	forsien											1		<u> </u>	0
797 797						2e			š	HOM			-							•				
x115						Se				*05 ⁴ H										~~~~				
Vest , Te					8	õ			ŝ	HCI (NOV X 3)												1		ľ
1 00					-1- 92	θY		1		"ONH									-				1	-
6 126 Oct					5) 36	he		Ľ	Ī	÷21	×	×	×	×	×	×	×	×	×		1			
					15	S		_	Τ	nanisino) to .a intera	-	-				-								
										bereti Piefi											1			È l
/	- 05				Fax No.	e-mail.				beigma2 emit	1550	1630	1720	0830	0855	0915	0550	1040	1135					29
	PAGE 02 05	gies, LLC								საქოვნ აჩიე	9/22/2009	9/22/2009	9/22/2009	9/23/2009	9/23/2009	9/23/2009	9/23/2009	9/23/2009	9/23/2009			Recorded by.	Received by,	Record DV ELD
Ι		ech nok				3				Ending Depth												1 0	e	2
		I NICE				C-F				digad galanigad										_		1	F	F
	م. ۲	ironmental Se	s Hwy	NM 68260	244	0.0	-		_													0#ce 9/23/46	Date	Date
	Curl Stank	Basin Envi	2800 Plain	Lovington,	(575) 441-2	XU		SU S	7.0	LD CODE	4@30'	4 @ 45'	-4 @ 60'	-1 @ 10	-1 @ 20'	-1 @ 30'	-1 @ 40'	-1@50	-1 @ 50'				-	- And a second se
	anager:	Name	Address	/Zip:	o No.	Signature		Zel	2	96	WW	MM	MM	MW	MM	MW	MW	WW	MW			[wh		
	Project M	Company	Company	City/State	Telephon	Sampler (trity)		H.												istructions.	X:H)) /apa	ed by:
							(lab use o	opuqu	Vanyo	(Vino seu dai) a BAJ	Ξ	. 21.	5	14	5	10	-	6	2		Special It	using a	Relercust	Referquésh

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client	Brisin Env.	Plains
Date/ Time	9.23.09	17:10
Lab ID # 1	3457	7 <u>0</u>
initials:	<u> </u>	

Sample Receipt Checklist

					CI	ient Init
#1	Temperature of container/ cooler?	Yés	No	4.1	° C	
#2	Shipping container in good condition?	(Yes)	No			
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Pres	ient ⁾	
#4	Custody Seals intact on sample bottles/ container?	(Yes')	No	Not Pres	sent	
#5	Chain of Custody present?	(Yes)	No			
#6	Sample instructions complete of Chain of Custody?	(Yes)	No			
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No			
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on (Cont./ Lid	
#9	Container label(s) legible and intact?	CYES	No	Not Appli	cable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No			
#11	Containers supplied by ELOT?	Yes	No			
#12	Samples in proper container/ bottle?	(Les)	No	See Be	tow	
#13	Samples properly preserved?	(Yes)	No	See Be	iow	
#14	Sample bottles intact?	(Tes)	No			
#15	Preservations documented on Chain of Custody?	Tes	No			
#16	Containers documented on Chain of Custody?	(Yes)	No			
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Be	low	
#18	All samples received within sufficient hold time?	(Yes)	No	See Be	low	
#19	Subcontract of sample(s)?	Yes	No	Not Appli	cable)	
#20	VOC samples have zero headspace?	Yes')	No	Not Appl	cable	

Variance Documentation

Date/ Time:

Contact: Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 347770

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6 Inch Sec 31

2009-084

13-OCT-09

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-08-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00308), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87428), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-08-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-08-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370-08-TX) Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917)

13-OCT-09

8

Ð

0

6

(

(

Ð

6

Ø

0

6

() ()

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 347770 DCP Plant to Lea Station 6 Inch Sec 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 347770. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 347770 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Page 2 of 16

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 347770

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6 Inch Sec 31

Sample Id	Matrix	Date Collected Sample Depth	Lab Sample Id
SP-1	S	Oct-08-09 13:30	347770-001
SP-2	S	Oct-08-09 13:40	347770-002
SP-3	S	Oct-08-09 13:50	347770-003

Ċ,

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6 Inch Sec 31

 Project ID:
 2009-084

 Work Order Number:
 347770

Report Date: 13-OCT-09 Date Received: 10/09/2009

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-776505 TX1005 None

Batch: LBA-776553 BTEX-MTBE EPA 8021B SW8021BM

Batch 776553, 4-Bromofluorobenzene recovered above QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 347770-001.

SW8021BM

Batch 776553, Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 347770-001, -002, -003. The Laboratory Control Sample for Toluene, m,p-Xylenes, Benzene, Ethylbenzene, o-Xylene is within laboratory Control Limits

Batch: LBA-776634 Percent Moisture None

Batch: LBA-776812 TX1005 None

Contact: Jason Henry

Certificate of Analysis Summary 347770 PLAINS ALL AMERICAN EH&S, Midland, TX Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Date Received in Lab: Fri Oct-09-09 08:17 am

Report Date: 13-OCT-09

Project Location: Lea County, NM					Keport Date:	13-001-09	
					Project Manager:	Brent Barron, II	
	Lab Id:	347770-001	347770-002	347770-003		-	
Analysis Danuastad	Field Id:	SP-I	ŚP-2	SP-3			
naisanhay sistinut	Depth:						
	Matrix:	SOIL	SOIL	SOIL			_
	Sampled:	Oct-08-09 13:30	Oct-08-09 13:40	Oct-08-09 13:50			
BTEX by EPA 8021B	Extracted:	Oct-09-09 13:00	Oct-09-09 13:00	Oct-09-09 13:00			
	Analyzed:	Oct-09-09 16:54	Oct-09-09 17:16	Oct-09-09 17:37			
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL			;
Benzene		ND 0.0010	ND 0.0010	ND 0.0010			
Tolucne		0.0022 0.0021	ND 0.0021	ND 0.0021	}		
Ethylbenzene		0.0055 0.0010	0.0019 0.0010	0100.0 UN	, 40 APR]	
m,p-Xylenes		0.0343 0.0021	0.0042 0.0021	ND 0.0021			
o-Xylenc		0.0217 0.0010	0.0038 0.0010	ND 0.0010			
Total Xylencs		0.0560 0.0010	0.0080 0.0010	ND 0.0010			
Total BTEX		0.0637 0.0010	0.0099 0.0010	ND 0.0010			
Percent Moisture	Extracted:						
	Analyzed:	Oct-12-09 13:38	Oct-12-09 13:38	Oct-12-09 13:38			
	Units/RL:	% RL	% RL	% RL			
Percent Moisture	•	3.65 1.00	5.15 1.00	5.20 1.00			
TPH By SW8015 Mod	Extracted:	Oct-09-09 13:00	Oct-09-09 13:00	Oct-09-09 15:18			
	Analyzed:	Oct-11-09 17:30	Oct-11-09 17:56	Oct-12-09 19:18			
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons		55.1 15.6	22.4 15.8	ND 15.8			
C12-C28 Diesel Range Hydrocarbons		489 15.6	189 15.8	ND 15.8			
C28-C35 Oil Range Hydrocarbons		28.5 15.6	ND 15.8	ND 15.8			
Total TPH		573 15.6	211 15.8	ND 15.8	t		

This analytical report, and the entite data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed introughout this analytical report represent the besi juggment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and marks no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

() ()

Sec. 2

6) ()

6

()

(*) (*)

a g

9 9

6

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	FIIOIC	гах
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

$\square \square \square \square \square \square$
) < (< 0)
Reflection

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Work Orders : 347770), Samalar 5400000 1 BKS / B		Project II	D: 2009-084		
Lan Balen #: 170555	Date Analyzed: 10/09/09 12:01	SU SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0300	0.0300	100	80-120	
Lab Batch #: 776553	Sample: 540222-1-BSD / B	SD Batc	h: ¹ Matrix	Solid		
Units: mg/kg	Date Analyzed: 10/09/09 12:22	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	······	0.0301	0.0300	100	80-120	
4-Bromofluorobenzene		0.0299	0.0300	100	80-120	
Lab Batch #: 776553	Sample: 540222-1-BLK / E	BLK Bate	h: Matrix	:Solid	I	
Units: mg/kg	Date Analyzed: 10/09/09 13:05	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0272	0.0300	91	80-120	
4-Bromofluorobenzene		0.0300	0.0300	100	80-120	
Lab Batch #: 776553	Sample: 347770-001 / SMF	Bate	h: ¹ Matrix	:Soil	1	
Units: mg/kg	Date Analyzed: 10/09/09 16:54	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0257	0.0300	86	80-120	
4-Bromofluorobenzene		0.0399	0.0300	133	80-120	*
Lab Batch #: 776553	Sample: 347770-002 / SMF	Bate	h: ¹ Matrix	Soil	•	
Units: mg/kg	Date Analyzed: 10/09/09 17:16	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0271	0.0300	90	80-120	
4-Bromofluorobenzene		0.0322	0.0300	107	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

23	ĴE	R	٩
lot	ac	COT	œ

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Work Orders : 347770	,		Project II	b: 2009-084		
Lab Batch #: //6553	Sample: 34/770-0037 SMP	Batel	h: 1 Matrix:	Soil	TUDV	
Units: mg/kg	Date Analyzed: 10/09/09 17:37		KRUGATE KE			
ВТЕХ	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0267	0.0300	89	80-120	
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	
Lab Batch #: 776553	Sample: 347823-001 S / MS	Batcl	h: I Matrix:	Soil		
Units: mg/kg	Date Analyzed: 10/09/09 22:54	SU	RROGATE RE	ECOVERY	STUDY	
BTEX	Analytas	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Analytes	0.0288	0.0300	06	80.120	
4-Bromofluorobenzene		0.0334	0.0300		80-120	
1 D D H 77(55)	0 1 247922 001 SD / N			Call	00120	
Lab Batch #: //0003	Sample: 347823-001 SD7 W	ISD Batch	h: I Matrix	SOIL	STUDY	
Units: mg/kg	Date Analyzed: 10/09/09 23:16	50.	KRUGATE KI			
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R .[D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0289	0.0300	96	80.120	
4-Bromofluorobenzene		0.0324	0.0300	108	80-120	
Lab Ratab #1 776505	Semple: 540186-1-BKS / B	KS Patal	h. 1 Matrix	Solid		
Lab Balch #. 770505	Date Analyzed: 10/11/09 08:10	SU	RROGATE RI	COVERY	STUDY	
TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	j	103	100	103	70-135	<u> </u>
o-Terphenyl		44.8	50.0	90	70-135	
Lab Batch #: 776505	Sample: 540186-1-BSD / B	SD Batel	h: 1 Matrix:	:Solid		
Units: mg/kg	Date Analyzed: 10/11/09 08:36	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1-Chlorooctane		109	100	109	70-135	
o-Terphenyl	······	48.3	50.0	97	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

12:50

			_
~		\sim	
150	1 1	' I C	(0)
11			\mathcal{S}
	n	8 - A - A - A	0
110	លោ	സ	ngg.
1			

() ()

0

0 0

0

B

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Vork Orders : 347770	,		Project II	D: 2009-084		
Lab Batch #: 770303	Sample: 340180-1-BLK / B	LN Bate	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		93.9	100	94	70-135	
o-Terphenyl		48.9	50.0	98	70-135	
Lab Batch #: 776505	Sample: 347770-001 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 10/11/09 17:30	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc		96.9	100	97	70-135	
o-Terphenyl		47.1	50.0	94	70-135	
Lab Batch #: 776505	Sample: 347770-002 / SMP	Batc	h: Matrix	:Soil	I	
Units: mg/kg	Date Analyzed: 10/11/09 17:56	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		98.4	100	98	70-135	
o-Tcrphenyl		48.2	50.0	96	70-135	
Lab Batch #: 776505	Sample: 347445-001 S / MS	Batc	h: I Matrix	:Soil	• <u> </u>	
Units: mg/kg	Date Analyzed: 10/11/09 18:21	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		106	100	106	70-135	
o-Terphenyl		41.5	50.0	83	70-135	
Lab Batch #: 776505	Sample: 347445-001 SD / N	ISD Bate	h: Matrix	:Soil	L	
Units: mg/kg	Date Analyzed: 10/11/09 18:47	su	RROGATE R	ECOVERY	STUDY	
TPH 1	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		· 107	100	107	70-135	
o-Terphenyl		41.3	50.0	83	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

ĺ	$\sim \sim \sim \sim \sim$
	いべ ゴ ' (ぺ の)
1	
	0-
	CONTROUMES -
	나는 그는 그는 그는 그는 것을 가장하는 것을 하는 것을 수가 있다. 이렇는 것을 하는 것을 수가 있는 것을 것을 수가 않아? 것을 것을 수가 있는 것을 것을 수가 않아? 것을 수가 않아? 것을 것 같이 않아? 것 않아? 것 같이 않아? 것 같이 않아? 것 같이 않아? 것 같이 않아? 것 같이 않아? 것 같이 않아? 것 않아? 않아? 것 같이 않아? 않아? 않아? 것 않아? 않아? 않아? 않아? 않아? 않아? 않아? 않아? 않아? 않아?

OO

0

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Vork Orders : 347770	, , , , , , , , , , , , , , , , , , ,	1/ C	Project II	D: 2009-084		
Lab Batch #: 776812	Sample: 540368-1-BKS / B	KS Bate	RROGATE RI	ECOVERY	STUDY	
TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane		106	99.9	106	70-135	
o-Terphenyl	······································	44.0	50.0	88	70-135	
Lab Batch #: 776812	Sample: 540368-1-BSD / B	SD Bate	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 10/12/09 16:23	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		109	99.8	109	70-135	
o-Terphenyl		44.1	49.9	88	70-135	·
Lab Batch #: 776812	Sample: 540368-1-BLK / B	BLK Bate	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 10/12/09 16:48	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		98.2	99.5	99	70-135	
o-Terphenyl		48.9	49.8	98	70-135	
Lab Batch #: 776812	Sample: 347770-003 / SMF	Batc	h: Matrix	:Soil		
Units: mg/kg	Date Analyzed: 10/12/09 19:18	SU	RROGATE RI	ECOVERY	STUDY	-45-4
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1-Chlorooctane		81.5	99.6	82	70-135	
o-Terphenyl		39.9	49.8	80	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

loborolog \bigcirc

BS / BSD Recoveries

Ű

() ()

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Work Order #: 347770 Analyst: ASA

Lab Batch ID: 776553

Date Prepared: 10/09/2009

Batch #:]

Sample: 540222-1-BKS

Date Analyzed: 10/09/2009 Matrix: Solid

Project ID: 2009-084

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Flag

Units: mg/kg		BLANI	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE F	LECOVE	RY STUD	Y
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD
Benzene	QN	0.1000	0.0984	98	0.1	0.0973	67	_	70-130	35
Tolucne	QN	0.1000	0.0967	26	0.1	0.0956	96	-	70-130	35
Ethylbenzene	QN	0.1000	0.0986	66	0.1	0.0970	- 26	5	71-129	35
m,p-Xylencs	QN	0.2000	0.2154	108	0.2	0.2121	106	2	70-135	35
0-Xvlene	CIN	0.1000	0 1038	104	-	0 1023	102	-	71,133	35

.												
o-Xylcne		QN	0.1000	0.1038	104	0.1	0.1023	102	1	71-133	35	
Analyst: BHW		D	tte Prepar	ed: 10/09/200	6			Date A	alyzed: 1	0/11/2009		
Lab Batch ID: 776505	Sample: 540186-1-B	KS	Batch	∎#:]					Matrix: S	olid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	ILANK S	FIKE DUPI	ICATE	RECOVE	RY STUD	Y	
TPH Bv SW801	15 Mod	Blank	Spike	Blank	Blank	Spike	Blank	Blk. Spk		Control	Control	
6		Sample Result	Added	Spike	Spike	Added	Spike	Dup.	RPD	Limits	Limits	Flag
		[Y]		Result	%R		Duplicate	%R	%	%R	%RPD	
Anglytes			[<u>B</u>]	[c]	[<u>a</u>]	E	Result [F]	[<u></u>]				

35 35

70-135 70-135

4 ŝ

8 92

899 921

1000 0001

88 86

884 855

QN Ð

C6-C12 Gasoline Range Hydrocarbons C12-C28 Dicsel Range Hydrocarbons

Analytes

0001 1000 **B**

Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

<u>Aborellorites</u> 0

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Work Order #: 347770 Analyst: BEV

Lab Batch ID: 776812

Date Prepared: 10/09/2009

Batch #: 1

Sample: 540368-1-BKS

Project ID: 2009-084 Date Analyzed: 10/12/2009 Matrix: Solid **BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY**

Units: mg/kg		BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE I	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[c]	a	[E]	Result [F]	<u>[</u>				
C6-C12 Gasoline Range Hydrocarbons	QN	666	935	94	866	944	95	1	70-135	35	
C12-C28 Dicscl Range Hydrocarbons	DN	666	891	89	866	889	89	0	70-135	35	

Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200* (C-F)/(C+F)

(clouding)

0

E S S

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

.

Work Order # : 347770

Date Analyzed: 10/09/2009 Lab Batch ID: 776553

Project ID: 2009-084

QC- Sample ID: 347823-001 S Date Prepared: 10/09/2009

Matrix: Soil -ASA Analyst: Batch #:

Reporting Units: mg/kg		W	ATRIX SPIKI	E / MATI	RIX SPII	KE DUPLICAT	FE RECO	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. GG	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN	0.1000	0.0371	37	0.0998	0.0361	36	3	70-130	35	×
Tolucne	QN	0.1000	0.0388	39	0.0998	0.0376	38	3	70-130	35	×
Ethylbenzene	0.0011	0.1000	0.0389	38	0.0998	0.0386	38	-	71-129	35	×
m,p-Xylenes	0.0068	0.2000	0.0879	41	0.1996	0.0864	40	2	70-135	35	×
o-Xylene	0.0027	0.1000	0.0453	43	0.0998	0.0450	42	-	71-133	35	Х
Lab Batch ID: 776505 Date Analyzed: 10/11/2009	QC- Sample ID: Date Prepared:	347445- 10/09/2(-001 S 009	Ba An	tch #: alyst:]	l Matrix BHW	: Soil				
Reporting Units: mg/kg		M	ATRIX SPIKI	E / MATI	RIX SPII	KE DUPLICAT	re reco	OVERY S	STUDY		

			ALKIA SFINI			NE PUFLICA	IE RECO	VENIC			
TDH R. CW8015 Mad	Parent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
nntal ctrop as c for the	Sample	Spike	Result	Sample	Spike	Spiked Sample	Dup.	RPD	Limits	Limits	Flag
	Result	Added		%R	Added	Result [F]	%R	%	%R	%RPD	
Analytes	[A]	[B]		[<u>[</u>]	Ξ		[0]			<u>.</u>	
C6-C12 Gasoline Range Hydrocarbons	QN	1010	616	16	1010	937	93	2	70-135	35	
C12-C28 Dicsel Range Hydrocarbons	127	0101	901	17	1010	616	78	2	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 13 of 16

94 198 1.4

•

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6 Inch Sec 31

Work Order #: 347770

Lab Batch #:	776634				Project I	D: 2009-084	1
Date Analyzed:	10/12/2009	Date Prepai	ed: 10/12/2009	Ana	lyst:BEV		
QC- Sample ID:	346934-001 D	Batel	h#: 1	Mat	rix: Solid		
Reporting Units:	%		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
	Percent Moisture		Parent Sample Result	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
	Analyte			[B]			
ercent Moisture			3.17	3.39	7	20	[]

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

0 Ö

	Variance/ Corrective Action R	eport- Sampi	le Log-Ir	r	
Chent.	Plains Basin				
Date/ Time	10/10/109 817				
lah ID #	347770				
Initials	(a) i d				
	Sample Receip	t Checklist			
				Client	nitlais
#1 Temperature of	container/ cooler?	(ମ୍ବିଚ୍ଚ)	No	3.6 °C	
#2 Shipping contail	her in good condition?	(Yes)	No		
#3 Custody Seals i	ntact on shipping container/ cooler?	Yes	No	SNot Present	
#4 Custody Seals i	ntact on sample bottles/ container?	<yes< td=""><td>No</td><td>Not Present</td><td></td></yes<>	No	Not Present	
#5 Chain of Custoo	ly present?	(Yes)	No		
#6 Sample Instruct	ions complete of Chain of Custody?	Tes	No		
#7 Chain of Custor	ly signed when relinquished/ received?	Yes	, No		
#8 Chain of Custor	ly agrees with sample label(s)?	Ceò	No	ID written on ConL/ Lid	
#9 Container label	s) legible and intact?	(Yès	No	Not Applicable	
#10 Sample matrix	properties agree with Chain of Custody?	(Yes'	No		
#11 Containers sup	plied by ELOT?	Yês	No		
#12 Samples in pro	per container/ bottie?	(Yēs	No	See Below	
#13 Samples prope	irly preserved?	(Yes	No	Sce Below	
#14 Sample bottles	intact?	(Yes)	No	1	
#15 Preservations	documented on Chain of Custody?	(Yes	No	· · · · · · · · · · · · · · · · · · ·	
#16 Containers doo	cumented on Chain of Custody?	Yes	No	·····	
#17 Sufficient same	amount for indicated test(s)?	Yes	No	Sea Below	
#18 All samples rec	eived within sufficient hold time?	(Yes)	No	See Below	
#19 Subcontract of	semple(s)?	Yes	No		
#20 VOC samples	have zero headspace?	(Yes)	No	Not Applicable	
	Variance Doci	umentation	······		
Contact:	Contacted by:		-	Date/ Time:	
Regarding:					
Corrective Action Ta	iken,				
Check all that Apply	See attached e-mail/ fax Olient understands and wo Conting process had begun	uid like to prod	ceed with	n analysis	
	Last 2000, proceed ned obge	. Starty und	- un reprint 12	, -, -, -, -, -, -, -, -, -, -, -, -, -,	

Appendix C Photographs

÷ Ò (B e ۲ Ø

•

DCP Plant to Lea Station 6-Inch Sec 31 excavation, looking southeast

DCP Plant to Lea Station 6-Inch Sec 31 excavation, looking east

DCP Plant to Lea Station 6-Inch Sec 31 excavation, looking north prior to liner installation

DCP Plant to Lea Station 6-Inch Sec 31 excavation, looking north, liner installation in progress

Ó O O

DCP Plant to Lea Station 6-Inch Sec 31 excavation, water packing backfill material

DCP Plant to Lea Station 6-Inch Sec 31, North Trench #1 and East Trench #1 Soil Amendments being placed in Trenches

Appendix D Release Notification and Corrective Action (Form C-141)

Release Notification and Corrective Action OPERATOR Name of Company Prints Pipeline, LP Address 2830 Hby 214 – Berver City, Tr. 7922 Telephone No. (573) 441-1049 Contract Jacon Reary Lease No. Lackiny Type Pipeline Surface Owner NM SLO Lower City, Tr. 7922 Contact Jacon Reary Lease No. Lower School No. (573) 441-1049 Lackiny Type Pipeline Lower School No. (573) 442- Aper P Specific Scool Cook Lower School No. (573) 443-1049 Lacking Control Not Not Not Not Not Not Not Not Not Not	District I 1625 N. French District II 201 W. Grand <u>District III</u> 1600 Rio Brazo <u>District IV</u> 1220 S. St. Fran	Dr., Hobbs, Avenuc, Arto Road, Azte cis Dr., Santa	NM 88240 osia, NM 88210 c, NM 87410 a Fc, NM 87505	л 	Sta Energy Min Oil C C 1220 Sa	ate of nerals Conser South inta Fe	New Me> and Natura vation Di St. France, NM 87:	tico al Resources vision ois Dr. 505	RE Al HO	CEIV PR 2 9 20 BBSO(ED Qubmit SD ^{istri}	Revised C 2 Copies ct Office with Ru	Form C-14 Detober 10, 20 to appropria in accordan le 116 on bac side of for
OPTERATOR Distant Report Initial Report Image of Company Address 2500 Hwy 214 – Denver City, 73 7923 Telephone No. (572) 441-1099 Facility Nume DCC Plant to Las Station 6-incle Sec. 31 Facility Nume DCC Plant to Las Station 6-incle Sec. 31 Facility Nume Lesse No. Surface Owner NM BL/0 Mineral Owner Lesse No. Lesse No. ECOCATION OF RELEASE County Lait Letter Section Tuwnship Range Feel from the NarWesk Line County Lait Letter Section Tuwnship Range Feel from the NarWesk Line County Lait Letter Section Tuwnship Range Feel from the North/Court Plant B Date and Hoor of Courterse Lesse No. Laiting Encode Crute OB Not Required Laiting Encode Plant B Date and Hoor of Dotecovery Line and Hoor of Dotecovery Was a Whetercourse Reached? Yes No< Not Required				Rel	ease Notific	ation	and Co	orrective /	(ctio	n		ár	
Name of Company Prime Pipeline, LP Contact Jacon Reary Address 2500 Hoy 244 - Derver City, TV 2923 Telephone NO. (573) 441-1099 Facility Type Pipeline Surface Owner NM SLO Mineral Owner Lease No. Lease No. Link Letter Social Township Range Feel from the North/South Line County Lease No. Latitude N 32 Stell Feel from the North/South Line County Lea Latitude N 32 Stell Feel from the North/South Line County Lea Latitude N 32 Stell Feel from the Data and Hour of Occurrence Data and Hour of Occurrence Data and Hour of Occurrence Data and Hour of Discovery Uatareet Uatareet Adv20200 Fiscovery Uatareet Data and Hour of Discovery Uatareet Data and Hour of Discovery Uatareet Data and Hour of Discovery Uatareet Uatareet Adv20200 Fiscovery Uatareet Data and Hour of Discovery Uatareet Data and Hour of Discovery Uatareet Uatareet Stell Data and Hour of Discovery Uatareet Data and Hour of Discovery Uatareet Data							OPER A	ATOR	(🛛 Initi	al Kepor	1]]	Final Rep
Addiess 200 Hey 14* - Devie Un; Ar 2023 Technike No. 10* Pipeline Surface Dumer NM SLO Mineral Downer I.easily Name Surface Owner NM SLO Mineral Owner I.easily Name Surface Owner NM SLO North/South Line Feet from the Easy West Line Convy Lastitude N 32.52723* Longitude W 103.2906* NATURE OF RELEASE Volume Recovered 0.bbits Date and Hour of Discovery Ustaware Ustaware Ustaware Ustaware 0.4229209 15:00 Was immediate Notice Given? Yes No El Not Required Lars Of Mon? on 04292020 0.9000 (revised to reportable on 0429202) Was a Watercourse Resched? Yes El No If YES, Yolume Impacting five Watercourse. If a Watercourse was Impacted, Describe Publy.* Describe Cause of Problem and Remedial Action Taken.* Storing of the pipeline eit file release, point is approximately '' Yes, Yolume Impacting five Watercourse. If a Watercourse was Impacted, Describe Publy.* Describe Cause of Problem and Remedial Action Taken.* Storing tin the gravi	Name of Co	mpany	Plains Pipe	line, LP			Contact	Jason Henr	<u>y `-</u> 1000				
Surface Downer N89 S4.0 Mineral Owner Lease No. Linit Letter Section Twoeship Range Peet from the NorfwSouth Line Feet from the County La Attacket 31 208 37E Peet from the NorfwSouth Line Feet from the County Latitude N32.52733* Longitude W 183.2906* NATURE OF RELEASE Date and Hour of Discovery Using and Hour of Discovery <	Facility Nar	ne	DCP Plant to	Lea Sta	tion 6-inch Sec. 3	1	Facility Typ	pe Pipeline	10)/				
Instrume Instrum Instrume Instrume	Surface Ow	ner NM §	0.43		Mineral O	wner				Lease N	10.		
Link Latter Section Township Range Feet from the Nork/South Line Feet from the Cast/West Line County Lafitude N 32.52733 ⁶ Longitude W 103.2906 ⁶ NATURE OF RELEASE NATURE OF RELEASE Type of Kelease Grade Oll Volume of Release 20 bits Volume Recovered 0 bits Source of Release Grade Oll Volume of Release 20 bits Volume of Release 20 bits Volume of Release 20 bits Source of Release Grade Oll Volume of Release 20 bits Volume of Release 20 bits Volume of Release 20 bits Was fininediate Notice Grant If Yes, To Whom? on 04/29/2009 Date and Hour of Discovery Unknown Was a Watercourse Reuchee?? If Yes, To Whom? on 04/29/2009 Date and Hour 04/02/2009 Was a Watercourse was Inspaced. Describe Fully.* If Yes, Voleme Impacting the Watercourse. If Yes, Voleme Impacting the value of the release. Throughput the subject file is 660 bits/ds/ap and the operating pressure of the pipeline is 45 pis. The depth of the pipeline at the release, piel is approximat 2° bp, The B125 concentration in the Grupt is tess than 10 ppm and the gravity of the crade is 65: Describe Canse of Problem and Remedial Action Taken.* The release of rude resulted in a surface stain that measured approximately 6° x 8°. The impacted area will he rewediated					T O O A	THE	I ADDI FOR	NER NER	acey u	ARE API #	30.02	5.0630	0.00.000
K 31 206 37E Canadian M Latitude Nature M	Linit Lefter	Section	Township	Range	LUCA	North/	N OF KE	LEASE Feet from the	East/	West Line	County		
Latitude N 32.52733* Longitude W 103.7906* Pres of Release Crude OI Date and Hour O Cocurate Date and Hour O Cocurate Was Immediate Notice Given? Yes Yes No Was Immediate Notice Given? Yes Yes No Was Immediate Notice Given? Yes Yes No Was a Matercourse Resolve? Date and Hour Was a Watercourse Resolve? Yes Yes No If YES, To Whom? on 04729/2009 (cvised to reportable on 04/29/2009) Was a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* External corrosion of 6* inch pipeline caused a release of crude oil. A Clamp was installed on the pipeline to mitigate the release. Throughput the solid/divide time is 660 bibl/divide is less than 10 appm and the gravity of the crude is 65: Describe Cause of Problem and Remedial Action Taken.* The released crude resulted in a surface stain that measured approximately 6' x 8'. The impacted area will be remediated per applicable gaidelines. In redby certify that the information given above is true and complete to the best of my knowledge and understand that preses which may endange public behath or the crude is adopting the crude is control in actions for releases which may endange public behath or the environment. In addition, NMOCD acceptance	K	3 <u>1</u>	205	37E		. with	oraan Dino			TO USE DATE	Lea		
NATURE OF RELEASE Type of Release Crude OI Volume Recovered 0 bbls Source of Release 0° Steel Pipeline Date and Hour of Discovere Date and Hour of Discovere Was Immediate Notice Given? Press No If YES, To Whon? on 0429/2009 15:00 By Whon? Jace and Hour 0429/2009 09:00 (revised to reportable on 04/29/2009 Was a Watercourse Reached? Yes No If YES, Volome Impacting the Watercourse. If a Watercourse was Impacted. Describe Fully.* If YES, Volome Impacting the Watercourse. If a Watercourse was Impacted. Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* * The optimization in the crude is less than 10 ppm and the gravity of the crude is 55: Describe Cause of Problem and Remedial Action Taken.* * * External Affected and Champ Action Taken.* * * External time is 660 biblotaly and the operating pressure of the pipeline is 45 psi. The depth of the pipeline, it the release, point is approximate? * The relaxed crude resulted in a surface stain flast measured approximately 6' x 8'. The impacted area will be remediated per applicable gaidelines. * I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursue and ange r			۱		Latitude N 32	2.52733	⁹ Longitud	e W 103.2906			L		
Type of Release Crude Oil Volume of Release 20 bits Volume of Release 20 bits Source of Release 6° Steel Pipeline Date and Hour of Occurrence Date and Hour of Occurrence Date and Flour of Discovery Was Immediate Notice Given? Yes No No </td <td></td> <td></td> <td></td> <td></td> <td>NAT</td> <td>TRE</td> <td>OF REL</td> <td>EASE</td> <td></td> <td></td> <td></td> <td></td> <td>)</td>					NAT	TRE	OF REL	EASE)
Source of Release 6" Steel Pipeline Date and Hour of Occurrence Date and Hour of 0.500 very Was Immediate Notice Given? [] Yes No [S] Not Required If YES, To Whom? on 04/32/2009 15:00 By Whon? Jason Benry Date and Hour of 02000 (crevised to reportable on 04/29/2000 (crevised to crevised to crevised to crevised to crevised to crevised to crevise of crevised to crevised to crevised to crevised to crevised to crevised to crevised to crevised to crevise of crevised to crevise crevised to crevised to cr	Type of Rele	ise Cru	ıde Oil		1468.2		Volume of	f Release 20 bb	ls	Volume F	lecovered	0 bbls	
Was fumediate Notice Given? Yes No Not Required If YES, To Whom? on 64/29/2009 Data of Not By Whom? Jason Henry Data and Houry Data ande	Source of Re	ease 6"	Steel Pipeline	2			Date and I	lour of Occurren	ce	Date and 04/02/200	Hour of I 19 15-00	Discovery	1
Yes No No <t< td=""><td>Was Immedia</td><td>ite Notice (</td><td>Given?</td><td></td><td></td><td></td><td>If YES, To</td><td>o Whom? on 04/2</td><td>9/2009</td><td>1 0 11 0 21 200</td><td>10100</td><td></td><td></td></t<>	Was Immedia	ite Notice (Given?				If YES, To	o Whom? on 04/2	9/2009	1 0 11 0 21 200	10100		
By Mhon? Jason Heary Date and Hour 04729200 %0 09:00 (revised to reportable on 0472920 Was a Wutercourse Reached? If Yes Z No If Yes, Volume Impacting the Watercourse. If a Watercourse was Impacted, Describe Fully.* If a Watercourse was Impacted, Describe Fully.* Describe Canse of Problem and Remedial Action Taken.* External corrosion of 6° inch pipeline caused a release of crude oil. A clampi was installed on the pipeline is the release. Throughput the subject line is 660 bbl3(va) and the operating pressure of the pipeline is 45 psi. The depth of the pipeline jst the release, point is approximately 2' bgs. The H25 concentration in the grupt is less than 10 ppm and the gravity of the crude is 65: Describe Area Affected and Cheanup Action Taken.* The released crude resulted in a surface stain that measured approximately 6' x 8'. The impacted area will be remediated per applicable guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all poperasors are regulations all poperasors was regulations allow protests which may endanger regulations allowed their operation shave failed to adequately investigate and remediate contamination that pose a threat to groundlense which may other federal, state, or toeil laws and/or regulations. Signuture: Wash and Heury and				Yes	No 🛛 Not Re	quired	Larry Joi	inson (initial est	imate =	2-3 bbls ba	sed on si	nall surf	face stain)
□ Yes ⊠ No If a Wittercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* External corrosion of 6° inch pipeline caused a release of crude oil. A clamp was installed on the pipeline to mitigate the release. Throughput the subject line is 660 bbls/day and the operating pressure of the pipeline is 45 psi. The depth of the pipeline at the release point is appreximat 2° bgs. The H2S concentration in the crude is less than 10 ppm and the gravity of the crude is 55: Describe Area Affected and Cleanup Action Taken.* The released crude resulted in a surface stain that measured approximately 6' x 8'. The impacted area will be remediated per applicable guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operations have failed to adquately investigue and recent as Trained as Trained Report does not relieve the operator for containation that pose a threat to ground water, surface water, human head or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Signature: Date: Printed Name: Jason Benry Field Name: Jason Benry Printed Name: Jason Benry Printed Name: Jason Benry Printed Name: Jason Benry Printed Name: Jason Benry Prin	By Whom? . Was a Water	ason Heni	y .hed?	·	· · · · · · · · · · · · · · · · · · ·		Date and I	-lour 04/29/20 olume Impacting	09 @ 0 the Wa	9:00 (revise) tercourse.	d to repo	rtable of	n 04/29/2005
If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* External corrosion of 6° incl. pipeline caused a release of crude oil. A clamp was installed on the pipeline to mitigate the release. Throughput the subject line is 660 bbls/day and the operating pressure of the pipeline is 45 psi. The depth of the pipeline, it the release point is approximate? 2° bgs. The H2S concentration in the crude is less than 10 ppm and the gravity of the crude is 65: Describe Area Affected and Cleanup Action Taken.* The released crude resulted in a surface stain that measured approximately 6' x 8'. The impacted area will be remediated per applicable guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" dees not releave the operator of liability should their operations have field to adquately investigate and remediate contamination lab pose a threat to ground water, numan heal or the environment. In addition, NMOCD acceptance of a C-141 report by the NMOCD marked as "Final Report" dees not releave the operator of inshifty for compliance with any other federal, state, or local laws and/or regulations. Signature: Amon Printed Name: Jason Benry Printed Name: Jason Benry Printed Name: Jason Benry		,		Yes 🛛] No								
Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measured approximately 6' x 8'. The impacted area will be remediated per applicable guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human heal or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Signature: Asson Menry Printed Name: Jason Menry Title: Remediation Coordinator E-mail Address: jheury@paalp.com Date: $0.4 (2.9)/(2.009)$ Phone: (575) 441-1099 Attach Additional Sheets If Necessary FGtRLO 9V205 7827	External cor the subject li 2' bas. The	rosion of 6 ne is 660 b H2S conce	" inch pipelin bls/day and the	e caused he opera	a release of crud ting pressure of t	e.oil. A he pipel 1 and th	clamp was ine is 45 psi e pravity of	installed on the . The depth of t the crude is 65:	pipelin he pipe	e to mitigate line at the r	e the rele elease po	ase. Thu int is ap	roughput fo proximately
The released crude resulted in a surface stain that measured approximately 6' x 8'. The impacted area will be remediated per applicable guidelines. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operators have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human heal or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Signature: Assoc Menry Approved by District Similar Difference of a C-141 report by District Similar Difference of Approval Date: $4 \cdot 29 \cdot 09$ Expiration Date: $6 \cdot 29 \cdot 09$ E-mail Address: jlieury@paalp.com Conditions of Approval: Attached [] Date: $0 + 2 + 2 + 2 + 2 + 0 + 2 + 2 + 0 + 2 + 2$	Describe Are	a Affected	and Cleanup A	ction Ta	ken.* .		<u></u>						
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human heal or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Signature: Asson OIL CONSERVATION DIVISION Printed Name: Jason Henry Approved by District NMMENTAL ENGINEER Title: Remediation Coordinator Approval Date: $4 \cdot 29 \cdot 09$ Expiration Date: $6 \cdot 79 \cdot 09$ E-mail Address: Jiteury@pastp.com Conditions of Approval: Attached [] Date: $04 \cdot 2.9 / 2c09$ Phone: (575) 441-1099 Grift 27.27 Additional Sheets If Necessary FGtRL09/205 782.7 FGtRL09/205 782.7	The released guidelines.	crude res	utted in a surf	ace stain	that measured a	pproxin	nately 6' x 8	". The impacted	l area v	vill be reme	liated pe	r applics	able .
Signature: Date: OIL CONSERVATION DIVISION Printed Name: Jason Menry Approved by District Rhoth BMMENTAL ENGINEER Title: Remediation Coordinator Approval Date: 4.29.09 E-mail Address: Juleury@paalp.com Conditions of Approval: Attached [] Date: 04/29/2009 Phone: (575) 441-1099 Conditions of Approval: Attached [] Attached Additional Sheets If Necessary FGKRL09/2057827 FGKRL09/2057827 FGKRL09/2057827	I hereby certi regulations al public health should their c or the enviror federal, state,	fy that the i l operators or the envir perations h iment. In a or local law	nformation giv are required to ronment. The ave failed to a ddition, NMO vs and/or regu	ven above o report a acceptan dequately CD acceptations,	e is true and compl nd/or file certain re- ce of a C-141 repo investigate and re- ptance of a C-141 r	ete to the elease no rt by the emediate report de	te best of my otifications a NMOCD m e contaminat pes not reliev	knowledge and nd perform corre- harked as "Final l ion that pose a th ve the operator of	understa ctive ac Report" reat to g respons	and that purs tions for rele does not reli ground water sibility for co	uant to N cases whi eve the o , surface omplianc	MOCD t ch may e perator o water, hu e with an	rules and indanger if liability uman health iy other
Signature: Jason Menry Approved by District RNMR MENTAL ENGINEER Printed Name: Jason Menry Approved by District RNMR MENTAL ENGINEER Title: Remediation Coordinator Approval Date: 4.29.09 Expiration Date: 6.29.09 E-mail Address: Interry@paalp.com Conditions of Approval: Attached [] Date: 04/209/2009 Phone: (\$75) 441-1099 Attached [] Attach Additional Sheets If Necessary FGtRL09/205 782.7			/	2/				OIL CON	SER	VATION	DIVIS	ION	
Printed Name: Jason Henry Approved by District NUMPRONMENTAL ENGINEER Title: Remediation Coordinator Approval Date: 4.29.09 Expiration Date: 6.29.09 E-mail Address: Henry@paalp.com Conditions of Approval: Attached [] Date: 04/29/2009 Phone: (\$75) 441-1099 Conditions of Approval: Attached [] Attach Additional Sheets If Necessary FGtRL09/2057827 FGtRL09/2057827 FGtRL09/2057827	Signature:	Jas	on f	Den	res			. has	Jones	phinse	3 Thurs		
Title:Remediation CoordinatorApproval Date: $4.79.09$ Expiration Date: $6.79.09$ E-mail Address:Jheary@paalp.comConditions of Approval:Attached []Date: $04/2.9/2009$ Phone: (575) 441-1099Zent 09.4.210Attach Additional Sheets If NecessaryFGtRL09V2057827	Printed Name	: Jason H	енгу		0		Approved by	Districe Suppres	M ME	NTAL EN	GINEE	R	
E-mail Address: jheury@paalp.com Conditions of Approval: Attached [] Date: 04/29/2009 Phone: (575) 441-1099 Attach Additional Sheets If Necessary FGrRL09V2057827	l'itle: Reme	liation Co	ordinator				Approval Da	10: 4.29.04	}	Expiration I	Date:	6.29.	09
Date: $04/2.9/2009$ Phone: (575) 441-1099 Attach Additional Sheets If Necessary FGtRL09V2057827	E-mail Addre	ss: jlieurv	@paalp.com			1	Conditions o	f Approval:				, r	
FGIRL0912057827	Date: 04 Attach Addit	2.9/2 ional Shee	2609 ets If Necessa	Phone	: (575) 441-1099						Attach	ed [_] \$09,	4.2166
			£6	IRLO	91/205782	7							