2R - 155

REPORTS

07/15/2010

July 15, 2010

VIA EMAIL: Glenn.von Gonten@state.nm.us

Mr. Glenn von Gonten, Acting Chief Environmental Bureau - Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 88505 RECEIVED OCD

Re: Case No 14413 – Final Investigation Report and Remediation Plan BTA Oil Producers LLC, Pardue "C" 8808 JV-P Well #1, API No. 30-015-26341 Unit N (SE/4, SW/4), Section 11, Township 23 South, Range 28 East NMPM Eddy County, New Mexico

Dear Glenn,

Larson & Associates, Inc. (LAI), on behalf of BTA Oil Producers LLC (BTA), is pleased to submit the enclosed report for compliance with the Stipulated Order & Settlement Agreement (Case No. 14413) between OCD and BTA dated February 2, 2010. The report presents the results of subsurface investigations and remediation plan for the Pardue "C" 8808 JV-P Well #1 (Site) located in Unit N (SE/4, SW/4), Section 11, Township 23 South, Range 28 East NMPM, in Eddy County, New Mexico. The Site is located about 4 miles northeast of Loving, New Mexico. Your approval of the remediation plan is requested. Please contact me at (432) 687-0901 if you have questions.

Larson & Associates, Inc.

Mark J. Larson, P.G. mark@laenvironmental.com

Cc: Sherry Bonham – OCD District 2 Ben Grimes - BTA

July 15, 2010

VIA EMAIL: Glenn.von Gonten@state.nm.us

Mr. Glenn von Gonten, Acting Chief Environmental Bureau - Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 88505

2010 RECEIVED OCD JUL 16 υ ÿ

Re: Case No 14413 – Final Investigation Report and Remediation Plan BTA Oil Producers LLC, Pardue "C" 8808 JV-P Well #1, API No. 30-015-26341 Unit N (SE/4, SW/4), Section 11, Township 23 South, Range 28 East NMPM Eddy County, New Mexico

Dear Glenn,

Larson & Associates, Inc. (LAI), on behalf of BTA Oil Producers LLC (BTA), is pleased to submit the enclosed report for compliance with the Stipulated Order & Settlement Agreement (Case No. 14413) between OCD and BTA dated February 2, 2010. The report presents the results of subsurface investigations and remediation plan for the Pardue "C" 8808 JV-P Well #1 (Site) located in Unit N (SE/4, SW/4), Section 11, Township 23 South, Range 28 East NMPM, in Eddy County, New Mexico. The Site is located about 4 miles northeast of Loving, New Mexico. Your approval of the remediation plan is requested. Please contact me at (432) 687-0901 if you have questions. Sincerely,

Larson & Associates, Inc.

Mark J. Larson, P.G. mark@laenvironmental.com

Cc: Sherry Bonham – OCD District 2 Ben Grimes - BTA

FINAL INVESTIGATION REPORT AND REMEDIATION PLAN

1. C.

1. 1. 1. 1.

ない いっちょう

· 4. 6. 10

のからな

A. 4. 4.

5-8 A & A

. J. &

2.20 100

94 N 8

and the

No. 1

(()) ()

2.55.54

Pardue "C" 8808 JV-P Well #1 API No. 30-015-26341 NMOCD Case No. 14413 Eddy County, New Mexico

LAI Project No. 10-0101

July 15, 2010

Prepared for: BTA Oil Producers, LLC 104 S. Pecos Midland, Texas 79701

Prepared by: Mark J. Larson Certified Professional Geologist No. 10490

Larson & Associates, Inc. 507 North Marienfeld, Suite 200 Midland, Texas 79701

Table of Content

1.0	Executive Summary1
2.0	Introduction4
2.1	Regulatory Background and Chronology4
3.0	Setting5
3.1	Soil5
3.2	Geology5
3.3	Groundwater6
3.4	Water Wells6
4.0	Previous Investigation6
4.1	BTA Investigations6
4.2	R.T. Hicks Investigations
4.3	LAI Investigations9
5.0	Current Investigations10
5.1	Soil Samples10
5.2	Monitoring Wells
5.3	Depth to NAPL and Groundwater Measurements12
5.4	Groundwater and Surface Water Samples12
5.5	Horizontal Hydraulic (Slug) Tests12
5.6	Notification
6.0	Current Investigation Results14
6.1	Soil Sample Results14
6.2	Groundwater and Surface Water Sample Results16
6.3	Slug Test Results
7.0	Conclusions
8.0	Remediation Plan
8.1	Constituent Reduction and Hydraulic Control19
8.2	Soil Removal
9.0	References

List of Tables

Table 1a	Summary of BTA Derived Soil Analyses
Table 1b	Summary of BTA Derived Groundwater Analyses
Table 2a	Summary of R.T. Hicks Derived Soil Analyses
Table 2b	Summary of R.T. Hicks Derived Groundwater and Surface Water Analyses
Table 3a	Summary of LAI Derived Soil Analyses
Table 3b	Monitoring Well Completion Details and Gauging Summary
Table 3c	Summary of LAI Derived Organic Water Quality Analyses
Table 4	Summary of Slug Test Results

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Photograph
Figure 3	Geological Cross Section Map
Figure 4	Geologic Map

にある
Sec. 3.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1. S.
「「「「「」」」を
St. Call of
1.28.
* Repaired
まれた
Participant State
「小学生」
Sec. 2
19 33 19
1. 2. Call
المراجع بيدرون المراجع بيدرون
Contraction of the
. 14.

List of Figures (cont.)

\$ 4.8

Mar Star

I. BARL

W. C. P. W.

- 1993, HE

1 ale & Car

a Plan "

「開始を

5 . T. B. . .

S. S. Sugar

100 G 100

· alleger a

1. A. C.

第二記

A. + Range

and the second

1. 1. 2 4 B

U U U	
Figure 5	West to East Geological Cross Section A to A'
Figure 6	North to South Geological Cross Section B to B'
Figure 7	North to South Geological Cross Section C to C'
Figure 8	Depth to Groundwater Map, April 26, 2010
Figure 9	Groundwater Potentiometric Map, April 26, 2010
Figure 10	BTA and R.T. Hicks Soil Sample Location Map
Figure 11	R.T. Hicks Monitoring Well Location Map
Figure 12	EM-31HD (0 to 9.8 Feet) Map
Figure 13	EM-31VD (0 to 19.7) Map
Figure 14	EM-31 HD and VD Profile Map
Figure 15	Chloride Concentrations in Soil at 5 Feet
Figure 16	Chloride Concentrations in Soil at 10 Feet
Figure 17	Chloride Concentrations in Soil at 15 Feet
Figure 18	Chloride Concentrations in Soil at 20 Feet
Figure 19	Chloride Concentrations in Soil at 25 Feet
Figure 20	Chloride Concentrations in Soil at 30 Feet
Figure 21	Isopleth Map of Chloride Concentrations in Groundwater, April 27, 2010
Figure 22	Isopleth Map of TDS Concentrations in Groundwater, April 27, 2010
Figure 23	Maximum Chloride and TPH Concentrations in Soil and Soil Excavation Areas

List of Appendices

Appendix A	OCD Correspondence
Appendix B	Water Well Records
Appendix C	Boring Logs and Monitoring Well Diagrams
Appendix D	Laboratory reports (CD ROM)
Appendix E	Photo Documentation
Appendix F	Slug Test Calculations
Appendix G	Liner Specifications

1.0 Executive Summary

This final investigation report has been prepared by Larson & Associates, Inc. (LAI) on behalf of BTA Oil Producers, LLC (BTA) to present investigations performed at the Pardue "C" 8808 JV-P Well #1 (Site) for compliance with New Mexico Oil Conservation Division (OCD) Stipulated Order & Settlement Agreement (Order) No. R-13218 (Case No. 14413). The Site is located in Unit N (SE/4), (SW/4), Section 11, Township 23 South, Range 28 East NMPM in Eddy County, New Mexico.

In October 2007 an OCD inspector from the District 2 Office in Artesia, New Mexico, observed an overflow line from the injection pump that discharged produced water into an unlined pit located east of the SWD well. A Notice of Violation was issued to BTA that required it to clean up the Site and remove the overflow line by January 22, 2008. The well was plugged on January 4, 2010, and final C-103 was submitted to the OCD on January 14, 2010.

The Stipulated Order & Settlement Agreement (Case No. 14413) was signed between the OCD and BTA requiring BTA to, among others, submit a plan to delineate the horizontal and vertical extent of the contamination from the pit, well and tank battery, and characterize the impact to the vadose zone, shallow perched aquifer, and deeper regional aquifer.

On February 8, 2010, BTA submitted a plan to the OCD. LAI revised the plan and submitted it to the OCD on March 7, 2010. The plan was approved on March 12, 2010.

Previous investigations were performed by BTA and others between February 2008 and December 2009 which included collecting soil samples from the unlined pit from backhoe trenches and borings, installing monitoring wells adjacent to the Pecos River, located about 100 feet east of the Site, collecting surface water and groundwater samples. The investigations identified elevated concentrations of chloride and total petroleum hydrocarbons (TPH) in soil at the unlined pit and concluded that groundwater had been impacted from the unlined pit based on samples collected from the shallow monitoring wells east of the Site.

In February 2010 LAI performed an electromagnetic terrain (EM-31) terrain conductivity survey that identified several areas with elevated conductivity in the soil, relative to background, near the tank battery, pit, and south of the pit. Elevated EM-31 readings were also observed around the plugged SWD well. The highest EM-31 vertical dipole (VD) reading was recorded south of the pit and suggested vertical dispersion and southeast migration of vadose zone contaminants.

During April and May 2010 LAI collected soil samples from nineteen borings (BH-1 through BH-19), installed seven (7) monitoring wells (MW - 7 through MW-14), collected groundwater and surface water samples for laboratory analysis and performed horizontal hydraulic conductivity (slug) tests in the new wells.

The current and previous investigations revealed five (5) areas (east of the tank battery, near the plugged SWD well, east side of the Site near boring BH-7, unlined pit and south of the pit) where chloride in soil exceeded 5,000 milligrams per kilogram (mg/Kg) in the vadose zone. The locations of elevated chloride correlate with areas of elevated EM-31 conductivity anomalies. Three (3) locations were identified with TPH concentrations in soil greater than 300 mg/Kg including areas near the plugged

SWD well and pit. Benzene and BTEX were not observed in soil samples above the method detection limits.

" Mar

All cash aft

See 16

1.5 1.8 m

Sea &

* e

Light and dense non aqueous phase liquids (LNAPL and DNAPL) were not observed in the monitoring wells. Groundwater occurs in Quaternary-age alluvium between about 34 and 36 feet below ground surface (bgs). The alluvium consists of interbedded and laterally discontinuous units of silty clay, conglomerate, sandy clay, silty and sandy gravel, gravelly sand and silt. Conglomerate occurs near the surface between about 1 and 15 feet below ground surface (bgs) and averages about 7 feet thick. The conglomerate is very well cemented with pebble to cobble-size inclusions. The alluvium is about 68 feet thick near the southeast corner of the Site and is underlain by the Castile formation consisting of dark gray to reddish brown shale interbedded with gypsum and calcite. The Castile Formation is the lower confining unit for the alluvium. Groundwater was not observed in the Castile formation.

Groundwater in the alluvium flows from west to east at a gradient of about 0.013 feet per foot and localized groundwater mounding, caused by recharge, was observed near the center of the pit. The overall average horizontal hydraulic conductivity for the alluvium, calculated from the slug tests, is 9.189 feet per day.

BTEX and TPH were not detected above the method detection limits in groundwater samples collected from the monitoring wells on April 27, 2010. Dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) were below the New Mexico Water Quality Control Commission (WQCC) human health standards (20 NMAC 6.2.3103.A).

Chloride exceeded background (2,510 mg/L) in samples collected from monitoring wells MW-8 through MW-14 and ranged in concentration from 2,810 mg/L (MW-8) to 13,500 mg/L (MW-10). The highest concentration of chloride (13,500 mg/L) occurred in well MW-10 located east (down gradient) of the pit. Chloride was detected at 10,800 mg/L in well MW-14, near the center of the pit, and 10,800 mg/L in well MW-4 located east of the Site.

Total dissolved solids (TDS) ranged from 7,310 mg/L (MW-8) to 25,300 mg/L (MW-10) and exceeded the background concentration of 6,900 mg/L. The highest TDS concentration (25,300 mg/L) was reported in well MW-10 located east (down gradient) of the pit. TDS was 21,500 mg/L in well MW-14 installed near the center of the pit, and 20,500 mg/L in well MW-4 located east of the Site.

BTEX and TPH were not present above the method detection limits in surface samples from Seep #1 through Seep #4 located along the west bank of the Pecos River and east of the Site. Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) were below the Numeric Domestic Water Quality standards established by the New Mexico Environment Department (NMED) Surface Water Quality Bureau (20 NMAC 6.4.900.J).

Chloride in the seep samples ranged from 2,580 mg/L in Seep #1 (upstream) to 4,440 mg/L in Seep #4 (downstream). TDS ranged from 7,750 mg/L (Seep #1) to 11,800 mg/L (Seep #4). It could not be determined if the Site was contributing to the chloride and TDS present in the seeps. No seeps were located south of Seep #4 to determine if chloride and TDS concentrations increase that may suggest a different source.

The nearest fresh water well is for irrigation and located approximately 0.5 miles south (cross gradient) of the Site. No receptor wells are located down gradient of the Site. The nearest down gradient well is

located east of the Pecos River about 4,300 feet (0.8 mile) southeast. None of the wells identified would be affected by the Site.

15 B

「「「「「」

20 34

3. Y. S.

AG. 9.3

A Sec. 2.

1. 18 9

5.084

" " " n at

S. 8. 8. 4.

Sec. 24.

1.1

1. 1. 1. 1.

1. A.

1. 8.1

- anu -

BTA proposes remedial actions to reduce the concentration of constituents of concern (TPH and chloride) in the vadose zone, protect groundwater from further degradation and install hydraulic controls to reduce constituent concentrations and control migration.

2.0 Introduction

The as of

1 . al

雪雪

1 . 1 . Alle

第 法

This report was prepared on behalf of BTA by LAI, its consultant, to present the subsurface investigation results of the Pardue "C 8808 JV-P Well #1 (Site) for compliance with Stipulated Order & Settlement Agreement (Order) No. R-13218 (Case No. 14413). The Site is located about 4 miles northeast of Loving, in Unit N (SE/4, SW/4), Section 11, Township 23 South, Range 28 East NMPM, Eddy County, New Mexico. The geodetic position is north 32° 18' 46.9" and west 104° 03' 43.5". Figure 1 presents a location and topographic map. Figure 2 presents an aerial photograph.

2.1 Regulatory Background and Chronology

On October 19, 2007, an OCD inspector from the District 2 office, Artesia, New Mexico, observed an overflow line from the injection pump that discharged produced water into an unlined pit located east of the SWD well. The OCD issued a Notice of Violation (NOV) that required BTA to clean up the Site and remove the overflow line by January 22, 2008.

On November 12, 2009, BTA submitted form C-103 notifying the OCD of its intent to plug the SWD well and remove the tank battery. The well was plugged on January 4, 2010, and final C-103 was submitted to the OCD on January 14, 2010.

On February 2, 2010, BTA agreed to a Stipulated Order & Settlement Agreement (Case No. 14413) that required BTA to, among others, submit a plan by February 25, 2010 to delineate the horizontal and vertical extent of the contamination from the pit, well and tank battery, and characterize the impact to the vadose zone, shallow perched aquifer, and deeper regional aquifer.

The OCD required the following:

- BTA must propose an adequate number of soil borings and monitor wells that will enable it to completely delineate the impact of the produced water releases to the vadose zone and to ground water;
- The vadose zone investigation must be comprehensive enough that BTA can use the data when removing the chloride-contaminated soil to approximately 20 feet below grade;
- BTA must collect and analyze soil and/or bedrock samples for benzene and total BTEX using 8021B or 8260B, TPH using EPA method 418.1, the GRO and DRO combined fractions using 8015M and chloride using method 300.1;
- If the GRO soil fraction exceeds 80 mg/kg, then BTA must also analyze for VOCs using method 8260;
- If the DRO soil fraction exceeds 200 mg/kg, then BTA must also analyze for SVOCs using method 8270;
- BTA's ground water investigation must establish background ground water concentrations for chloride and must delineate the produced water contamination in both the perched and the deeper regional aquifer;
- BTA must install a sufficient number of monitoring wells screened across the shallow perched aquifer with no more than 15 feet of well screen (five feet above the water level with 10 feet below) to delineate ground water contamination;
- BTA must also propose a location for monitor well to determine whether the deeper regional aquifer has been contaminated;

- BTA must properly develop all monitor wells before sampling the ground water. Purged ground water must be properly collected and BTA must document how it intends to dispose of the purged water;
- BTA must collect and analyze ground water samples for benzene, and total BTEX using 8021B or 8260B, the GRO and DRO fractions using 8015M and chlorides using method 300M.

On February 8, 2010, BTA submitted a plan (*Pardue "C" SWD Site Delineation Plan*) to the OCD. The OCD submitted comments on February 10, 2010, and required BTA to revise the plan. On February 12, 2010, LAI submitted a revised plan (*Revised Pardue "C" SWD Site Delineation Plan*) on behalf of BTA that included:

- Performing an electromagnetic (EM-31) terrain conductivity survey to qualitatively assess vadose zone impacts;
- Collecting soil samples from rotary or auger drilled borings to delineate the extent of vadose zone contamination;
- Installing monitoring wells to delineate impact to groundwater;
- Performing hydraulic conductivity (slugs) tests to calculate the average aquifer horizontal hydraulic conductivity; and
- Preparing a report.

On February 16, 2010, the OCD approved the plan with conditions. On February 25 and 26, 2010, LAI performed an EM-31 conductivity of the Site including the area west of the Site where background conditions were observed about 300 feet west of the Site. On March 7, 2010, LAI submitted the results of the EM-31 survey (*Preliminary Investigation Report*) to the OCD that included proposed locations for soil borings and monitoring wells and a timeline for completing the work. The OCD approved the plan on March 12, 2010. Appendix A presents OCD correspondence.

3.0 Setting

3.1 Soil

18 M 20

1. S. C.

Sec. 8.

1. a .

Soil is represented by the Upton gravelly loam, 0 to 9% slopes. The Upton gravelly loam occurs on broad plains west of the Pecos River and was derived from calcareous alluvium. The soil is typically shallow and underlain by caliche or cemented gravel (conglomerate). The surface layer consists of grayish-brown gravelly loam about 3 inches thick that is underlain by about 6 inches of brown gravelly loam. Caliche is typically present at approximately 9 inches below the surface. The soil is mostly used for native pasture and wildlife, with a small amount of acreage used for irrigated crops.

3.2 Geology

According to the Geologic Map of New Mexico (Scholle, P.A., 2003) the Site is underlain by Quaternaryage alluvium deposited by the Pecos River. Examination of soil samples and drill cuttings from 19 soil borings revealed that the alluvium consists of interbedded and laterally discontinuous units of silty clay, conglomerate, sandy clay, silty and sandy gravel, gravelly sand and silt. Conglomerate was generally observed near the surface between about 1 and 15 feet below ground surface (bgs) and averages about 7 feet thick. The conglomerate is very well cemented with pebble to cobble-size inclusions. The alluvium is about 68 feet thick near boring BH-9 (MW-11, southeast of the Site). The uppermost bedrock stratum appears to be the Permian-age Castile formation. An unconformity was observed where the alluvium contacts the Castile formation. Boring BH-9A was advanced approximately 50 feet into the Castile formation and observed dark gray to reddish brown shale interbedded with gypsum and calcite. The Castile Formation is about 1,500 feet thick near the center of the Delaware Basin in Southeastern New Mexico. The Tansil formation of the Artesia group underlies the Castile formation and is part of irregularly shaped north-trending belt that is comprised of anhydrite and salt about 100 feet thick.

A geological cross section map and geologic map are presented in Figures 3 and 4, respectively. A west to east trending geological cross-section (A to A') is presented in Figure 5. Figures 6 and 7 present north to south trending geological cross sections B to B' and C to C', respectively.

3.3 Groundwater

S. 6. 3.

1003

1. A. A.

Sec. 2.20

2 - **F**a

a fart

Groundwater occurs in the alluvium between about 34 and 36 feet bgs. On April 26, 2010, groundwater was measured in monitoring wells MW-7 through MW-14 between approximately 33.89 feet bgs (MW-14) near the center of the pit to 37.32 feet bgs (MW-10) east of the pit. The saturated thickness of the alluvium is approximately 32 feet based on the depth to groundwater and depth to the lower confining unit (Castile formation) at boring BH-9. A depth to groundwater map for April 26, 2010 is presented in Figure 8.

On April 26, 2010, the groundwater elevation ranged from 2970.95 feet above mean sea level (MSL) at well MW-7 (up gradient) to 2963.68 feet above MSL at well MW-10 (down gradient). Groundwater flow was from west to east at a gradient of about 0.013 feet per foot. Groundwater mounding caused by localized recharge was observed near the center of the pit (MW-14) where the groundwater elevation was about 2 feet higher than in the surrounding wells. A groundwater potentiometric map dated April 26, 2010 is presented in Figure 9.

Groundwater was not observed in the Castile formation at BH-9A which was advanced to about 120 feet bgs.

3.4 Water Wells

Eight fresh water wells were identified from New Mexico State Engineer (NMSE) records within 1-mile of the Site. The main well use is irrigation but a domestic well (C-2503) was identified about 2,100 feet (0.4 miles) west (up gradient) of the Site. The nearest well is for irrigation and located about 0.5 miles south (cross gradient) of the Site. No receptor wells are located down gradient of the Site and the nearest down gradient well is located east of the Pecos River about 4,300 feet (0.8 mile) southeast. The well is used for commercial or exploration purposes. None of the wells identified would be affected by the Site. Approximate water well locations are presented in Figure 1. Appendix B presents water well records.

4.0 Previous Investigation

4.1 BTA Investigations

BTA personnel conducted investigations on February 15, 2008, March 19, 2008, April 16, 2008 and July 24, 2008.

On February 15, 2008, soil samples were collected between 1 and 3 feet bgs from two excavations (1-SPL and 2-SPL) located near the west side and center of the pit, respectively. The samples were analyzed by Trace Analysis, Inc. (Trace) for TPH, including gasoline range organics (GRO) and diesel range organics (DRO) by method 8015B and chloride by method E300. Sample 1-1' SPL was analyzed for benzene, toluene, ethylbenzene and xylene (BTEX) by method 8021B.

6.6.6.7

1. 3 M. A.

1.30

たきで

死 調読 や

1 .- E

On March 19, 2008, soil samples were collected at approximately 1 foot bgs from four (4) trenches (North-1, South-2, East-3 and West-4) located near the edges of the pit. Trace analyzed the samples for chloride by titration method SM 4500-CL B.

On April 16, 2008, soil samples were collected between 1 and 3 feet bgs at five (5) trenches (NS-1, SS-1, ES-1, WS-1 and Central) located near the center and edges of the pit. Trace analyzed the samples for TPH by method 8015B and chloride by titration method SM 4500-CL B. The sample from the Central Trench at 1 foot bgs was analyzed for BTEX by method 8021B.

On July 24, 2008, an auger rig was used to collect soil samples at 3, 6 and 8 feet bgs from six (6) locations (N, S, E, W, Central and Back) north, south, east, west and center of the pit. The background (Back) boring was located about 100 feet north of the tank battery. Trace analyzed the samples for TPH by method 8015B and chloride by titration method SM 4500-Cl B. The sample from the North (6'), South (3'), West (6') and Center (6') borings were analyzed for BTEX by method 8021B. The sample results were submitted to the OCD on April 24, 2008 (*Pardue SWD Site Remediation Plan*), June 24, 2008 (*Site Delineation Plan*) and August 14, 2008 (*Pardue SWD Site Remediation Plan*). BTA derived soil analyses are presented in Table 1a. Figure 10 presents a drawing showing the approximate BTA soil sample locations.

Referring to Table 1a, benzene was not present in the soil samples at concentrations above the method detection limit of 1.0 milligrams per kilogram (mg/Kg) and below the OCD closure limit of 0.2 mg/Kg for unlined pits (19.15.17.13 C (3) NMAC). The highest BTEX concentration (3.044 mg/Kg) was reported in sample 1-1'-SPL and was below the OCD closure limit of 50 mg/Kg for unlined pits. TPH ranged from less than the method detection limit (<1.0 mg/Kg) to 948.3 mg/Kg and exceeded the OCD closure limit of 100 mg/Kg for unlined pits in samples from Central Trench, 1' (426.5 mg/Kg), Central Trench, 8' (948.3 mg/Kg), 1-1'-SPL (685 mg/Kg) and 2-2'SPL (216.8 mg/Kg). TPH in sample Central Trench, 8' (948.3 mg/Kg) may be due to cross contamination as samples collected by LAI (BH-15, 5') reported TPH at 123 mg/Kg.

Chloride in soil ranged from 294 mg/Kg (ES-3, 2') to 15,000 mg/Kg (1-1'-SPL) and exceeded the OCD closure limit of 250 mg/Kg or background, whichever is greater. The vertical extent of the chloride was not determined.

On September 25, 2008, BTA contracted Straub Corporation, Stanton, Texas, to drill and install a temporary monitor well (TMW) about 75 feet southwest of the Site. Straub used an air rotary rig to advance a boring to about 65 feet bgs and constructed the well with 2-inch schedule 40 PVC screw threaded screen and casing. Approximately 20 feet of factory slotted screen, equipped with a filter sock, was placed near the bottom of the boring. A boring log was prepared from visual examination of drill cuttings. The hole was left open for approximately 72 hours to allow water to accumulate in the well. On September 29, 2008, the well lacked sufficient water for development and a groundwater sample was collected and analyzed by Trace for chloride and TDS. The well was later plugged. BTA submitted the monitor well installation and sample results to the OCD on October 8, 2008 (*Site Monitor*)

Well Report). A summary of the BTA derived groundwater analysis is presented in Table 1b. Figure 10 presents a drawing showing the location of the temporary monitor well (TMW).

Referring to Table 1b, chloride and TDS in TMW were 757 milligrams per liter (mg/L) and 2,680 mg/L, respectively. The chloride and TDS values exceeded the New Mexico Water Quality Control Commission (WQCC) domestic water quality standards of 250 mg/L and 1,000 mg/L, respectively. The chloride and TDS concentration in the TMW groundwater sample are below the background concentrations reported from monitoring well MW-7.

4.2 R.T. Hicks Investigations

200

B. ...

10.00

1. 19

all of

San and

ふとう

\$. m. 4

がった

R.T. Hicks Consultants, Ltd. (RT Hicks) investigated the Site on January 17, 2009, November 17 and 18, 20009 and December 17, 2009.

On January 17, 2009, RT Hicks collected soil samples from four auger borings (SB-1 through SB-4) near the center and edges of the pit. Samples were collected about every 5 feet (i.e., 5', 10', 15', 20', etc.) to 30 feet bgs, except at location SB-4, near the center of the pit, where samples were collected to about 40 feet bgs. Trace analyzed the samples for chloride by method E300. Select samples were analyzed for BTEX and TPH by methods 8021B and 8015B, respectively.

On November 17, 2009, RT Hicks collected soil samples at two backhoe trenches near the center of the pit (north of borehole SB-4) and the west side of the pit. The samples were collected at 2, 4, and 6 feet bgs near the center of the pit and 2 feet bgs near the west side of the pit. Hall Environmental Analysis Laboratory, Inc. (Hall) analyzed the samples for metals (boron, calcium, magnesium, potassium and sodium), anions (fluoride, chloride, bromide, nitrate + nitrite, phosphorus and sulfate), alkalinity, and TDS by synthetic precipitation leaching procedure (SPLP) EPA method 1312. A summary of the RT Hicks derived soil analyses is presented in Table 2a. Figure 10 presents the approximate locations of the RT Hicks derived soil samples.

Referring to Table 2a, benzene, BTEX and TPH were not present above the method detection limits in samples from borings SB-1 through SB-4 and were below the OCD closure limits of 0.2 mg/Kg, 50 mg/Kg and 100 mg/Kg, respectively, for unlined pits (19.15.17.13 C (3) NMAC).

Chloride in samples from borings SB-1 through SB-4 ranged from 53.7 mg/Kg (SB-3, 30') to 9,560 mg/Kg (SB-4, 5') and exceeded the OCD closure limit for unlined pits (250 mg/Kg or background, whichever is greater) in all samples except SB-3 (5', 10', 15', 20', 25' and 30'). The vertical extent of chloride in the vadose zone was not determined, but the lateral extent of chloride down gradient of the pit was determined at SB-3 located southeast corner of the pit.

Chloride in the SPLP samples from the trench north of SB-4 (2, 4 and 6 feet) and near the west side of the pit (2 feet) were below the WQCC domestic water quality standard of 250 mg/Kg. However, no total chloride was available to perform a comparative analysis.

On November 17, 2009, RT Hicks used power and hand augers to install 6 shallow monitoring wells (MW-1 through MW-6) on the west bank of the Pecos River upstream (MW-1, MW-2 and MW-3), adjacent (MW-4 and MW-5) and downstream (MW-6) of the Site. The wells were completed between 2.87 (MW-4) and 3.80 (MW-6) feet bgs with 2-inch schedule 40 PCV materials. The wells were secured

with locking compression caps. No well construction diagrams were available. Monitoring well locations are presented in Figure 11.

On November 18, 2009 and December 17, 2009, RT Hicks collected groundwater samples from the monitoring wells, surface water samples from the Pecos River upstream and downstream (east of MW-6) and a produced water sample from a dump valve at the tank battery. Hall analyzed the samples from November 18, 2009. Trace analyzed the samples from December 17, 2009. The samples were analyzed for metals (boron, calcium, magnesium, potassium and sodium), anions (fluoride, chloride, bromide and nitrate + nitrite), alkalinity and TDS. Hall analyzed the sample from MW-4 for BTEX and methyl tertiary butyl ether (MTBE). Anatek Lab, Inc. (Anatek) analyzed the samples for sulfur by method 200.7. A summary of the RT Hicks derived groundwater, surface and produced water analyses is presented in Table 2b.

Referring to Table 2b, BTEX was present above method detection limits but below the WQCC human health standards in the MW-4 sample. RT Hicks concluded from inorganic analysis that past discharges from the Site impacted water quality at MW-4 and to a lesser extent groundwater quality at MW-5. RT Hicks also concluded that the perched aquifer is not a place of withdrawal for future use based upon the fact that a constant source of higher quality water exists directly east of the area of impact (the Pecos River) or below the perched zone (the alluvium or Gatuna formation). Further, RT Hicks concluded that surface water quality (Pecos River) has not been impacted by the former injection well site and the condition of the habitat in the area of impact is not materially different from background conditions.

4.3 LAI Investigations

2 th (2)

1. C.

States and

14

まっ. 筆る

19 A

S. 2. 20

19.34

the of the

1. 4. T. . .

1.2.1.0.2

41 - 18

On February 24 and 25, 2010, LAI personnel performed an electromagnetic (EM) terrain conductivity survey to identify areas with elevated conductivity, relative to background, that would correlate with elevated chloride in soil. An EM-31 meter, manufactured by Geonics, Ltd., Toronto, Canada, was used to collect measurements over an area measuring approximately 350 x 650 feet (5.23 acres). An EM-31 profile was also performed along the west bank of the Pecos River between MW-1 and MW-6. The EM-31 meter has exploration capabilities ranging from 0 to 9.8 feet in the horizontal dipole (HD) mode and 0 to 19.7 feet in the vertical dipole (VD) mode. The conductivity response in the HD mode is greatest near the surface and decrease with depth, whereas, the conductivity response is null near the surface and increases rapidly to a depth equal to about 0.4 times the coil spacing in the VD mode. The maximum EM-31VD response occurs at a depth equal to about 75% of the exploration depth or at about 14.75 feet and decreases with depth.

EM-31 HD and VD measurements were collected at surveyed stations about every 25 feet inside the fenced area and about every 50 feet outside the fenced area. EM-31HD and VD readings were collected about every 25 feet along the profile adjacent to the Pecos River.

The EM-31HD and VD readings were compared background readings established between stations 250 and 350 north on profile 0 east. Figure 12 and Figure 13 present the Site EM-31HD and VD drawings, respectively. The EM-31HD and VD measurements adjacent to the Pecos River are presented in Figure 14.

Referring to Figure 12, elevated EM-31HD readings, between approximately 4 and 6 times background, were observed in the vicinity of the tank battery with the maximum EM-31HD reading (135 mmhos/m) observed at station 100 north and 300 east. The EM-31HD readings in the tank battery area appear to trend to the northwest. The EM-31HD readings in the pit ranged from 61 to 91 mmhos/m and were

from 2 and 4 times above background. The highest EM-31HD reading (215 mmhos/m) was recorded south of the pit at station 175 north and 525 east and was 8 times greater than background. The EM-31HD readings suggest impact to the shallow vadose zone and migration to the southeast.

Referring Figure 13, elevated EM-31VD readings, between 3 and 4 times background, were observed around the plugged SWD well. The EM-31VD readings in the vicinity of the pit ranged from 1 to 3 times background and suggest decreasing conductivity with depth. The EM-31VD readings were about 4 times background south of the pit, where EM-31HD readings exceeded 8 times background. The highest EM-31VD reading (120 mmhos/m) was recorded at station 175 north and 525 east and suggested that vertical dispersion and southeast migration of vadose zone contaminants. The EM-31VD readings decreased to 1 and 2 times background approximately 50 feet southeast of the Site.

Referring to Figure 14, the EM-31 HD and VD conductivity measurements adjacent to the Pecos River, between MW-1 and MW-6, increased in the vicinity of wells MW-3 and MW-5 and may correspond to groundwater with elevated TDS concentrations.

5.0 Current Investigations

5.1 Soil Samples

HL

「「「「

S. 8

\$ 50 m

Sugar 2

8.0, 10 S

1. 2 mar 1.

12.00

1.20

(T) 2 (T)

S. Caller

要認

the she

Between April 6 and 15, 2010, LAI personnel collected soil samples from 19 borings (BH-1 through BH-19). Boring BH-1, located about 300 feet west of the Site, was designated as a background location. Other boring locations included BH-2 through BH-8 (west, north, south and east of the Site), BH-9 (southeast of Site), BH-10 through BH-12 (tank battery), BH-13 (east of tank battery), BH-14 (east of plugged SWD well), BH-15 (center of pit) and BH-16 through BH-19 (anomaly south and east of the Site). Boring locations are presented in Figure 2. Appendix C presents the boring logs.

Scarborough Drilling, Inc. (SDI) drilled the borings with an air rotary rig and collected the soil samples with split spoon and jam tube samplers about every 5 feet (i.e., 0, 5, 10, 15, 20, 25 feet, etc.) between about 30 and 35 feet bgs. The samples were collected in laboratory provided containers that were filled to near zero headspace, labeled, chilled in an ice-filled cooler and hand delivered under chain of custody to Xenco Laboratories, Inc. (Xenco), located in Odessa, Texas. Duplicate samples were collected in 8-ounce glass sample jars for headspace analysis using a calibrated photoionization detector (PID). No samples exhibited PID readings above 100 parts per million (ppm), therefore, no samples were analyzed by laboratory for BTEX. All samples were analyzed for chloride using EPA method 300. Select samples, including the bottom sample from each boring, were analyzed for TPH by method 418.1. The bottom sample from each boring was also field tested for chloride and analyzed by the laboratory to confirm the field results and vertical extent of chloride. LAI derived soil analyses are presented in Table 3a. Laboratory reports are presented in Appendix D.

All sampling equipment, including jam tube and split spoon sampler, sampling scoops and trowels, were thoroughly washed between samples using a solution of distilled water and laboratory grade detergent and rinsed with distilled water. The drilling rig and equipment, including drilling bit, rods, etc., were cleaned between locations using a power washer. Decontamination fluids were placed on an impervious lined area. The decontamination fluids were placed in a 55 gallon drum and transferred to a frac tank arranged through BTA with Standard Energy Services, Lubbock, Texas.

West Engineering and Surveying Company (West), a New Mexico registered professional land surveyor, surveyed the borings for location and elevation to a USGS datum. Geological logs were prepared for

each boring from descriptions of soil samples and drill cuttings according to the unified soil classification system (USCS). Drill cuttings were placed on plastic adjacent to the borings until disposal is arranged. The borings were plugged according to OSE rules.

5.2 Monitoring Wells

10 Jan

いないの

1.2

State of

見いるの記述

設備部門

10.00

58 . V.

ありが

Sec. 2.

Sec.

فروبتي الم

Eight (8) monitoring wells (MW-7 through MW-14) were installed in borings BH-1 (MW-7), BH-5 (MW-8), BH-6 (MW-9), BH-8 (MW-10), BH-9 (MW-11), BH-13 (MW-12), BH-14 (MW-13) and BH-15 (MW-14). Monitoring well MW-7 was designated as background well and was installed in boring (BH-1) about 300 feet west (up gradient) of the Site. Monitoring wells MW-8 through MW-11 were installed cross gradient (north, south and east) and down gradient (southeast) of the Site. Monitoring wells MW-13 were installed down gradient (east) of the tank battery and plugged SWD well, respectively. Monitoring well MW-14 was installed near the center of the unlined pit. Monitoring well locations are presented in Figure 2.

The wells were completed in the alluvium between approximately 45 feet (MW-11) and 53 feet (MW-9) bgs and constructed with 4-inch screw-threaded schedule 40 PCV casing and approximately 15 feet of 0.010 inch factory-slotted screen. The well screen was installed with approximately 5 feet screen above and 10 feet of screen below the groundwater level observed during drilling. Graded silica sand (8 to 16) was placed around the screen from the bottom of the well to approximately 2 feet above the screen. A layer of bentonite chips, approximately 3 feet thick, was placed above the sand and hydrated with potable water. The annular space between the casing and borehole, from the top of the sand to about 2 feet bgs, was filled with a mixture of portland cement and bentonite grout (3% - 5%). Each well was secured with a locking compression cap and above-grade locking steel cover anchored in a concrete pad measuring about 2 X 2 feet. A small amount of water was introduced into the boring during drilling to stabilize and clean the bore hole. A portable containment was constructed at each location to capture fluids and cuttings evacuated from the boring during drilling. The fluids were allowed to evaporate and the cuttings remained on site until disposal is arranged. Boring logs were prepared from examination of soil samples and drill cuttings using the USCS. Monitoring well completion details and gauging summary are presented in Table 3b. Monitoring well completion reports are presented in Appendix C. Photo documentation is presented in Appendix E.

Two (2) wells were proposed for the deeper regional aquifer (Rustler formation) but it was determined that the Castile formation (Permian) was the uppermost bedrock stratum and consists of dark gray to reddish brown shale interbedded with gypsum and calcite. The Castile formation occurs at about 68 feet bgs near BH-9. Boring BH-9A was advanced into the Castile formation about 50 feet through a 5-inch steel conductor casing that was installed across the alluvium from ground surface to about 54 feet bgs. Portland cement and bentonite grout was pumped under pressure through a tremmie pipe to grout the conductor casing. The grout was allowed to cure for approximately 24 hours prior to advancing the boring into the Castile formation. Groundwater was not observed in the Castile formation and after a discussion with Mr. Glenn von Gonten with OCD Environmental Bureau on April 7, 2010, verbal approval was granted to plug the boring. The conductor casing was cut off about 2 feet below ground and the boring, including the conductor casing, was grouted to surface with portland cement and bentonite grout.

West surveyed the wells, including boring BH-9A and the RT Hicks monitoring wells (MW-1 through MW-6) for location, ground and top of PVC well casing elevation, referenced to a USGS datum.

The wells were developed with a rig bailer and additional development was performed by pumping the wells with an electric submersible pump and dedicated disposal polyethylene tubing. The wells were developed until purged water was visibly clear of sediment. The purged water was placed into a frac tank arranged by BTA with Standard Energy Services, Lubbock, Texas.

5.3 Depth to NAPL and Groundwater Measurements

See. See.

5 . 5 0 . AV

1.1

No light NAPL or dense NAPL was observed in the wells. An electronic oil and water interface probe was used to measure depth to groundwater and NAPL to within 0.01 foot accuracy at the top of the PVC casing on the north side of the wells and measurements were recorded in bound field notebook. The interface probe was thoroughly cleaned between wells using a solution of laboratory-grade detergent and water and rinsed with distilled water.

5.4 Groundwater and Surface Water Samples

On April 26 through 28, 2010, groundwater samples were collected from monitoring wells MW-1 through MW-14, excluding MW-5 and MW-6, which did not contain sufficient water volume to fill the sample containers. The groundwater samples were collected using low-flow techniques. The low flow sampling pump was placed midway in the screened portion of well and pumped at a low rate while the groundwater level was monitored with an electronic water level meter to prevent over pumping while the purged water was monitoring until pH, temperature, conductivity stabilized within \pm 10%. The purged water was placed in the frac tank for disposal. The groundwater samples were collected from the low flow pump discharge.

Surface water samples were collected at 4 seeps (Seep #1 through Seep #4) that were flowing on April 26, 2010. The seeps are located along the west bank of the Pecos River between monitoring wells MW-3 through MW-6. The samples were collected using a stainless steel beaker or flowed directly into the sample containers at the point of discharge nearest to the bluff and farthest from the river. Seep locations are presented in Figure 2.

The low flow pump, electric lead and beaker were thoroughly cleaned with a solution of distilled water and laboratory-grade detergent and rinsed with distilled water.

The samples were collected in laboratory provided containers that were labeled, chilled in an ice chest and delivered under chain of custody control to DHL Analytical, Inc. (DHL), a National Environmental Laboratory Accreditation Program (NELAP) accredited lab, located in Round Rock, Texas. DHL analyzed the samples for WQCC metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver), BTEX (8021B), TPH (418.1) and WQCC domestic water quality parameters (chloride, sulfate, TDS and pH). Quality assurance and quality control (QA/QC) samples were collected and included equipment (rinse), duplicate and trip blanks. The LAI derived organic, inorganic and general water quality parameters are summarized in Table 3c. Laboratory reports are presented in Appendix D.

5.5 Horizontal Hydraulic (Slug) Tests

On May 4 through 7, 2010, LAI personnel performed horizontal hydraulic conductivity (falling head and rising head) slug tests in well MW-7 through MW-14. The slug tests were performed to calculate an average horizontal hydraulic conductivity for the alluvial aquifer. The tests were performed by lowering (falling head) and raising (rising head) a weighted 2-inch by 5-foot PVC tube (slug) in and out of the wells while head loss (falling) and head gain (rising) was simultaneously measured using a pressure transducer and an electronic data logger. An In-Situ model 700 pressure transducer measured the response and a

handheld Rugged Reader recorded the data. The slug, pressure transducer and cables were washed between wells using a solution of distilled water and laboratory grade detergent and rinsed with distilled water. No slug tests were performed in monitoring wells MW-1 through MW-6 due to completion depth. The data was uploaded from the Rugged Reader to a PC and the horizontal hydraulic conductivity was calculated using the Bouwer and Rice (1976) method for partially or fully penetrating wells. The slug test results are presented in Table 4. Appendix F presents the slug test calculations.

5.6 Notification

S' drag Mary

1. 2. 1.

in the second

1 (See

1. E. S.

に調

3 4 J. C.

Sec.

1000

1.00

. .

Notification was provided to the OCD Santa Fe and District 2 offices at least 48-hours prior to performing work at the Site including drilling soil borings, installing monitoring wells, collecting groundwater and surface water samples and performing slug tests. LAI also submitted daily or weekly status reports while drilling and installing soil borings and monitoring wells.

6.0 Current Investigation Results

6.1 Soil Sample Results

Referring to Table 3a, the highest TPH concentration in the LAI derived samples were 3,970 mg/Kg from BH-14, 0 feet, located east of the plugged SWD well, and 4,400 mg/Kg in BH-15, 0 feet located near the center of the pit. TPH in BH-14 decreased to 274 mg/Kg and 37 mg/Kg in samples from at 5 and 10 feet, respectively. TPH in BH-15 decreased to 123 mg/Kg at 5 feet and was below the method detection limit (11.2 mg/Kg) at 10 feet bgs. The highest TPH concentration in the remaining samples was 271 mg/Kg which occurred at 5 feet in boring BH-6, located south of the Site. The OCD closure limit of 100 mg/Kg for TPH (19.15.17.13 C (3) NMAC) was exceeded in the following samples:

Location	Sample Depth (Feet)	TPH (mg/Kg)
BH-1	5	204
BH-4	5	254
	20	242
	30	115
BH-6	5	271
	20	246
BH-14	0	3,970
	5	274
BH-15	0	4,440
	5	123
BH-16	5	266
	20	231
	30	250
BH-17	5	217
	20	238
	30	269
BH-18	5	120
	20	176
	30	216
BH-19	20	101
	30	137

- **5**-- 1-5-- 1-5-

18. N. .

Section of

S. Call

111 · 11

The maximum background chloride concentration (268 mg/Kg) was observed in the 25 foot sample from BH-1 (MW-7) located about 300 feet west of the Site. The OCD closure limit for unlined pits (250 mg/Kg or background, whichever is greater) was exceeded in the following samples:

Location	Chloride (mg/Kg)
BH-2	306 - 1,050
BH-3	281 - 2,220
BH-4	416 - 777
BH-5	416 - 885
BH-6	448 - 671
BH-7	1,030 - 7,950
BH-9	308 - 1,480
BH-10	709 - 1,400
BH-11	783 - 2,470
BH-12	316 - 909
BH-13	671 - 12,500
BH-14	986 - 7,630
BH-15	357 - 2,020
BH-16	594 - 4,720
BH-17	1,500 - 7,330
BH-18	618 - 1,890
BH-19	608 - 5,870

Figure 15 through Figure 20 present chloride concentration isopleths in soil at 5, 10, 15, 20, 25 and 30 feet bgs. Five locations were identified with chloride concentrations exceeding 5, 000 mg/Kg. This included, BH-7 located near the east edge of the Site, BH-13 (MW-12) located east of the tank battery, BH-14 located east of the plugged SWD well, BH-17 located south of the Site and BH-19 located southeast of the Site.

Chloride in BH-7 was above 5,000 mg/Kg at 5 (6,160 mg/Kg) 10 (7,950 mg/Kg), 15 (7,600 mg/Kg) and 20 (7,690 mg/Kg) feet, and decreased to 1,800 and 1,030 mg/Kg at 25 and 30 feet, respectively.

Chloride in BH-13 was above 2,500 mg/Kg at 5 feet (3,460 mg/Kg), above 5, 000 mg/Kg at 10 (12,500 mg/Kg) and 15 (9,840 mg/Kg) feet and decreased to 1,910 mg/Kg, 3,950 mg/Kg, and 2,710 mg/Kg at 20, 25 and 30 feet, respectively.

Chloride in BH-14 was 1,490 mg/Kg, 3,580 mg/Kg, 3,050 mg/Kg at 5, 10 and 15 feet, respectively, increasing to 5,690 mg/Kg and 7,630 mg/Kg at 20 and 25 feet, respectively, and decreasing to 3,670 mg/Kg at 30 feet.

Chloride in BH-17 was above 5,000 mg/Kg in samples from 5 (5,050 mg/Kg) and 10 (7,330 mg/Kg) feet, respectively and decreased to 1,650 mg/Kg, 1,580 mg/Kg, 1,500 mg/Kg and 2,500 mg/Kg at 15, 20, 25 and 30 feet, respectively.

Chloride in BH-19 was 1,520 mg/Kg, 2,210 mg/Kg, 1,070 mg/Kg, 1,760 mg/Kg, 608 mg/Kg, and increased to 5,870 mg/Kg in samples from 5, 10, 15, 20, 25 and 30 feet, respectively. The chloride in the 25 foot samples from BH-19 (5,870 mg/Kg) and BH-17 (2,500 mg/Kg) suggests vertical stratification with depth.

The areas of elevated chloride correlate with areas of elevated EM-31VD readings shown on Figure 13.

Chloride in BH-15, drilled near the center of the pit, was 257 mg/Kg (5 feet), 967 mg/Kg (10 feet), 1,740 mg/Kg (15 feet), 661 mg/Kg (20 feet), 847 mg/Kg (25 feet) and 2,020 mg/Kg (30 feet). The chloride concentration decreases to the east toward BH-8 (MW-10).

Chloride concentrations in samples from BH-3, located northwest of the tank battery, decrease with depth from 2,220 mg/Kg (5 feet) to 281 mg/Kg (30 feet) and suggest that the impact may be from a past flow line release.

6.2 Groundwater and Surface Water Sample Results

19

1. S.

1. 1. 1.

Referring to Table 3c, BTEX and TPH were not detected above the method detection limits in groundwater samples collected from the monitoring wells on April 27, 2010.

On April 27, 2010, dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) were below the WQCC human health standards (20 NMAC 6.2.3103.A).

On April 27, 2010, chloride exceeded background (2,510 mg/L) in samples from monitoring wells MW-8 through MW-14 and ranged in concentration from 2,810 mg/L (MW-8) to 13,500 mg/L (MW-10). Figure 21 presents an isopleth map of chloride concentrations in groundwater on April 26, 2010.

Referring to Figure 21, chloride was 2,810 mg/L in the sample from well MW-8, located north of the Site and does not indicate impaction from the former SWD well or pit. Elevated chloride in groundwater was observed near the center of the Site with the highest concentration (13,500 mg/L) being reported in well MW-10 located east (down gradient) of the pit. Chloride was 10,800 mg/L in well MW-14 installed near the center of the pit, and 10,800 mg/L in well MW-4 located east of the Site.

On April 27, 2010, TDS ranged from 7,310 mg/L (MW-8) to 25,300 mg/L (MW-10) and exceeded the background concentration of 6,900 mg/L reported in MW-7. Figure 22 presents an isopleth map of TDS concentrations in groundwater.

Referring to Figure 22, TDS was 7,310 mg/L in MW-8, located north of the Site and does not indicate impaction from the SWD well or pit. Elevated TDS in groundwater, similar to chloride, was observed near the center of the Site with the highest TDS concentration (25,300 mg/L) being reported in well MW-10 located east (down gradient) of the pit. TDS was 21,500 mg/L in well MW-14 installed near the center of the pit, and 20,500 mg/L in well MW-4 located east of the Site.

On April 27, 2010, BTEX and TPH were not present above the method detection limits in the seep samples #1 through #4. Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) were below domestic water quality numeric standards established by the New Mexico Environment Department (NMED) Surface Water Quality Bureau (20 NMAC 6.4.900.J).

Chloride in seep samples #1 through #4 ranged from 2,580 mg/L in Seep #1 (upstream) to 4,440 mg/L in Seep #4 (downstream). TDS in the seep samples ranged from 7,750 mg/L (Seep #1) to 11,800 mg/L (Seep #4). It cannot be concluded if the Site is contributing to the chloride and TDS levels at the seeps as

no seeps were observed south of Seep #4 to determine if the concentrations continue to increase which may indicate a different source.

6.3 Slug Test Results

Referring to Table 4, an overall horizontal hydraulic conductivity of 9.189 feet per day was calculated for the alluvial aquifer based on falling and rising head slug tests performed in monitoring wells MW-7 through MW-14. The average falling head hydraulic conductivity was 8.925 feet per day and the average rising head hydraulic conductivity was 3.657 feet per day. Data from the rising head test in well MW-10 was insufficient to calculate a hydraulic conductivity.

7.0 Conclusions

The following conclusions are based on subsurface investigations performed at the Site between February 15, 2008 and May 7, 2010:

- Benzene and BTEX were not present in soil samples above the method detection limits and were below the OCD closure limit of 0.2 mg/Kg and 50 mg/Kg, respectively, for unlined pits (19.15.17.13 C (3) NMAC);
- The maximum TPH concentrations in samples were reported from samples Central Trench, 1' (426.5 mg/Kg), Central Trench, 8' (948.3 mg/Kg), 1-1' SPL (685 mg/Kg), 2-2' SPL (216.8 mg/Kg), BH-14, 0' (3,970 mg/Kg) and BH-15, 0' (4,440 mg/Kg) and exceeded the OCD closure limit of 100 mg/Kg for unlined pits (19.15.17.13 C (3) NMAC);
- TPH in sample Central Trench, 8' (948.3 mg/Kg) may be the result of cross contamination as the sample from BH-15, 5' reported 123 mg/Kg;
- TPH in the remaining samples ranged from 123 mg/Kg (BH-15, 5') to 274 mg/Kg (BH-14, 5');
- The maximum background chloride concentration (268 mg/Kg) was exceeded in soil samples, except SB-3 and BH-8 located east of the pit;
- Chloride exceeded 5,000 mg/Kg in soil samples at 5 locations (BH-7, BH-13, BH-14, BH-17 and BH-18) that correlate with areas of elevated EM-31 VD readings;
- Groundwater occurs in the alluvium between approximately 34 and 36 feet bgs;
- The saturated thickness of the alluvium is about 32 feet;
- The Castile formation (Permian) appears to be the uppermost bedrock stratum and is the lower confining unit for the alluvium;
- Groundwater in the alluvium ranged in elevation from 2970.95 feet (MW-7) to 2963.68 feet (MW-1) above MSL and flows east at a gradient of approximately 0.013 feet per foot;
- Groundwater mounding, caused by localized recharge, was observed near the center of the pit (MW-14) where the groundwater elevation is about 2 feet higher than in nearby wells;

- Ground water was not observed in the Castile formation at boring BH-9 which was drilled to approximately 120 feet bgs;
- The lateral and vertical extent of chloride in the vadose zone was determined from boring samples;
- STEX and TPH were not present in groundwater samples above the method detection limits;
- Dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) were below the WQCC human health standards in groundwater samples;
- Chloride exceeded background (2,510 mg/L) in samples from the monitoring wells and ranged from 2,810 mg/L (MW-8) to 13,500 mg/L (MW-10);
- Chloride in samples MW-8 (2,810 mg/L) located north of the Site does not indicate impaction from the former SWD well or pit;
- Elevated chloride in groundwater was observed near the center of the Site with the highest concentration (13,500 mg/L) in well MW-10 (down gradient) located east of the pit;
- Chloride was 10,800 mg/L in well MW-14, installed near the center of the pit, and 10,800 mg/L in well MW-4 located east of the Site;
- TDS exceeded background (6,900 mg/L) in samples from the monitoring wells and ranged from 7,310 mg/L (MW-8) to 25,300 mg/L (MW-10);
- TDS in MW-8 (7,310 mg/L), located north of the Site, does not indicate impaction from the SWD well or pit;
- TDS was similar in concentration to chloride with the highest concentration reported in well MW-10 (25,300 mg/L) located down gradient (east) of the pit;
- TDS was 21,500 mg/L in well MW-14 installed near the center of the pit, and 20,500 mg/L in well MW-4 located east of the Site;
- BTEX and TPH were not present above the method detection limits in Seep #1 through #4;
- Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) in the seep samples were below domestic water quality numeric standards established by the NMED Surface Water Quality Bureau;
- Chloride in the seep samples ranged from 2,580 mg/L at Seep #1 (upstream) to 4,400 mg/L at Seep #4 (downstream);
- TDS in the seep samples ranged from 7,750 mg/L (Seep #1) to 11,800 mg/L (Seep #4);

 It cannot be concluded if the Site is contributing to the chloride and TDS levels at the seeps as no seeps were observed south of Seep #4 to determine if the concentrations continue to increase which may indicate a different source.

8.0 Remediation Plan

BTA proposes remedial actions to reduce the concentration of constituents of concern (TPH and chloride) in the vadose zone to protect groundwater from further degradation and install hydraulic controls to reduce the concentration of chloride in groundwater and control migration of chloride in groundwater.

8.1 Constituent Reduction and Hydraulic Control

- 1. BTA will perform a pumping test to collect draw-down data sufficient to perform computer simulations to determine pumping rates and locations for recovery wells necessary to control offsite migration and reduce chloride concentrations in groundwater;
- 2. Monitoring well MW-14 will be use as a pumping well and surrounding wells (MW-8, MW-9, MW-10, MW-11, MW-12 and MW-13) as observation wells during the pumping test, which will be performed for a sufficient time (i.e., 48 to 72 hours) to achieve steady state conditions and monitor recovery to pre-test conditions. The data will be evaluated using commercially available software (i.e., Aquifer Test, Aqtesolv, etc.) to simulate aquifer draw down for capture radius, recovery well placement and pumping rate;
- 3. Pumping test water will be captured in 500-barrel frac tanks for disposal in a OCD approved Class II disposal well;
- 4. A report will be submitted to the OCD following completion of the pumping test and data analysis and will include the pumping test procedures, computer simulations, proposed locations for recovery wells, pumping rates, treatment equipment and effluent management;
- 5. BTA will provide notification to the OCD in Santa Fe and Artesia, New Mexico at least 48 hours prior to performing any work at the site.

8.2 Soil Removal

6.3

1. S. 4. 3

- 1. BTA will excavate soil to approximately 5 feet bgs over an area measuring approximately 21,491 square feet which will include the area in the vicinity of BH-7, immediately east of the tank battery (BH-13), around the plugged SWD well (BH-14), unlined pit (BH-15) and south of the pit (BH-16 and BH-17).
- 2. Soil will also be excavated to approximately 10 feet bgs in the vicinity of boring BH-7, immediately east of the tank battery (BH-13), around the plugged SWD well (BH-14) and area south of the pit (BH-17).
- 3. Soil will be excavated to 15 feet bgs immediately east of the tank battery (BH-13). The soil will be disposed at Lea Land Landfill or Controlled Recovery, Inc., which are approved by the OCD and operate under permits NM-1-035 and R9166, respectively. The deeper excavations (i.e., 10 and 15 feet) will be backfilled to a uniform depth of 5 feet bgs with non-waste containing

earthen material that will be tested to ensure constituents do not exceed the concentrations specified in Paragraph (3) of Subsection C of 19.15.17.13 NMAC. Figure 23 presents the maximum contaminant (TPH and chloride) concentrations in soil samples and proposed excavation areas;

- 4. A synthetic and bentonite clay liner (Bentomat CL), manufactured by CETCO Lining Technologies, placed in the bottom of the excavation. The clay mat will be installed facing up to provide a vertical barrier against infiltration of precipitation and prevent leaching of residual chloride to groundwater. The liner seams will be sealed with granular bentonite according to manufacturer instructions. Liner specifications are presented in Appendix G;
- 5. The excavation will be filled with non-waste containing earthen material as presented in Item 1;
- 6. The Site will be seeded with a native grass seed mixture suitable to the property owner to prevent surface erosion;
- 7. BTA will provide notification to the property owner and the OCD in Santa Fe and Artesia, New Mexico at least 48 hours prior to conducting soil remediation activities.

9.0 References

ST at

3 m 3

2. 1. M.

1 2 ° - 1

1 miles

Bouwer, P. and R.C. Rice, 1976. A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, Volume 12, No. 3, pp 423 – 428.

Scholle, P.A., 2003. *Geologic Map of New Mexico*, New Mexico Bureau of Geology and Mineral Resources.

Table 1a Summary of BTA Derived Soil Analyses BTA Oil Producers Pardue 'C' JVP Well #1 10-0101

r - 1 F - 1

ņ

ę,

-20 -

Location	Depth	Date	Benzene	Toluene	Ethyl benzene	Xylene	Total BTEX	DRO	GRO	Total TPH	Chloride
RRAL:											;
					Sample Trench	hch					
1-1'-SPL	1	2/15/2008	<0.100	0.712	0.322	2.01	3.044	455	230	685	15,900
2-2'-SPL	2	2/15/2008	1	-	-	-	ł	139	77.8	216.8	3,510
2-3'-SPL	S	2/15/2008	1	ł	1	;	;	<50.0	1.08	1.08	2,430
North-1	1	3/19/2008	1	1	-	1	-	1	1	1	3,110
	£	7/24/2008	ł	ł	;	ł	1	<50.0	1.25	1.25	559
	9	7/24/2008	<0.01	<0.01	<0.01	<0.01	<0.01	<50.0	1.28	1.28	739
	8	7/24/2008	ł	ł	1	1	-	<50.0	1.22	1.22	844
South-2	1	3/19/2008	;	ł	ł	1	1	1	1	1	1,190
	£	7/24/2008	<0.01	<0.01	<0.01	<0.01	<0.01	<50.0	1.07	1.07	3,160
	9	7/24/2008	ł	1	1	1	ł	<50.0	<1.00	<1.00	2,620
i	8	7/24/2008	:	;	ł	ł	ł	<50.0	<1.00	<1.00	2,410
East-3	1	3/19/2008	ł	ł	-	1	1	ł	1	1 ·	898
	£	7/24/2008	1	1	ł	-	ł	<50.0	<1.00	<1.00	2,240
	9	7/24/2008	ł	ł	ł	1	ł	<50.0	<1.00	<1.00	968
	8	7/24/2008	;	;	ł	ł	:	<50.0	<2.00	<2.00	369
West-4	1	3/19/2008	ł	1	1	ł	1	1	1	ł	2,540
	ſ	7/24/2008	1	:	ł	ł	I	<50.0	1.09	1.09	474
	9	7/24/2008	<0.01	<0.01	<0.01	<0.01	<0.01	<50.0	1.13	1.13	489
	8	7/24/2008	1	I	ł	:	1	<50.0	1.01	1.01	429
SS-2	-	4/16/2008	;	1	1	;		<50.0	<1.00	<1.00	:
	2	4/16/2008	ł	ł	1	1	1	<50.0	<1.00	<1.00	2,590
	Υ	4/16/2008	1	1	1	1	:	<50.0	<1.00	<1.00	1,640
Central	н	4/16/2008	<0.01	<0.01	<0.01	<0.01	<0.01	396	30.5	426.5	
	2	4/16/2008	;	1	1	1	ł	<50.0	1.01	1.01	4,590
	с	4/16/2008	;	;	1	1	1	56.0	2.43	58.4	4,740

Page 1 of 3

100 L 2 2 2 1 19. 1 B. 1. W. C. B. 194 No. 2 6 6. State State 「あた State the Martin and A.S. W. A Bulgerer 1. 4 M and the 記言が言い B the and 6 ji 81 an Strange

Summary of BTA Derived Soil Analyses Pardue 'C' JVP Well #1 **BTA Oil Producers** Table 1a 10-0101

Location	Depth	Date	Benzene	Toluene	Ethyl benzene	Xylene	Total BTEX	DRO	GRO	Totaí TPH	Chloride
RRAL:											:
WS-4	1	4/16/2008				:	:	<50.0	<1.00	<1.00	1
	2	4/16/2008	1	ł	1	ł	ł	<50.0	<1.00	<1.00	4,320
	m	4/16/2008	1	ł	;	;	1	<50.0	<1.00	<1.00	3,260
NS-1	1	4/16/2008	1	1	1	1	1	<50.0	<1.00	<1.00	1
	2	4/16/2008	1	ł	1	1	ł	<50.0	<1.00	<1.00	3,980
	m	4/16/2008	ł	ł	ł	:	1	<50.0	<1.00	<1.00	4,430
ES-3	1	4/16/2008	1	1	1	ł	1	<50.0	<1.00	<1.00	1
	2	4/16/2008	:	ł	ł	1	ł	<50.0	<1.00	<1.00	294
	m	4/16/2008	ł	ł	ł	1	1	<50.0	<1.00	<1.00	582
Central	m	7/24/2008	1	1	1	1	1	<50.0	1.65	1.65	1,550
	9	7/24/2008	<0.01	<0.01	<0.01	<0.01	<0.01	<50.0	1.78	1.78	3,240
	ø	7/24/2008	ł	ł	ŀ	:	;	947	1.32	948.3	3,180
Back	£	7/24/2008	<0.01	<0.01	<0.01	<0.01	<0.01	<50.0	2.47	2.47	1,460
	9	7/24/2008	1	1	1	1	I	<50.0	1.09	1.09	889
	∞	7/24/2008	1	1	1	ł	I	<50.0	1.10	1.10	325
Matac											

Notes

TPH samples analyzed via EPA method 8015M. Samples collected by BTA Oil Producers.

Depth measurements are in feet.

All concentrations are in milligrams per kilogram (mg/Kg, parts per million). Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

Table 1b Summary of BTA Derived Groundwater Analyses BTA Oil Producers Pardue 'C' JVP Well #1 10-0101

Well ID	Date	рН	Chloride	Sulfate	TDS
WQCC S	Standard		250	600	1,000
TMW	09/29/08		757		2,680

Notes:

2. . .

÷.,

Sample collected by BTA Oil Producers.

All results reported in milligrams per liter (mg/L)

"--" Indicates the chemical was not analyzed.

Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

1. S. Sale 2 MARCY . 10 - 10 - 11 T. W. M. Star Jack た理由意义 and a set い いう · 2. apr 2. 1.200 F. S. S. S. and the set al the set State of the state

Table 2a Summary of R. T. Hicks Derived Soil Analyses BTA Oil Producers Pardue 'C' JVP Well #1 10-0101

Location	Depth	Date	Benzene	Toluene	Ethyl benzene	Xylene	DRO	GRO	Total TPH	Chloride
RRAL:										1
SB-1	ы	1/27/2009	<0.0100	<0.0100	<0.0100	<0.0100	<50.0	<1.00	<1.00	1,680
_	10	1/27/2009	1	1	1	1	ł	ł	1	1,130
	15	1/27/2009	;	1	I	1	ł	ł	1	442
	20	1/27/2009	1	1	ł	1	1	ł	1	536
	25	1/27/2009	<0.0100	<0.0100	<0.0100	<0.0100	<50.0	<1.00	<1.00	610
	30	1/27/2009	8	ł	;	-	-	:	1	1,520
SB-2	ъ	1/27/2009	<0.0100	<0.0100	<0.0100	<0.0100	<50.0	<1.00	<1.00	2,030
	10	1/27/2009	1	ł	ł	1	ł	ł	ł	1,850
_	15	1/27/2009	;	ł	:	ł	ł	ł	ł	1,260
	20	1/27/2009	1	ł	ł	ł	1	ł	1	675
	25	1/27/2009	ł	1	I	ł	ł	1	1	1,010
	30	1/27/2009	ł	;	-	-	1	1	1	594
SB-3	5	1/27/2009	<0.0100	<0.0100	<0.0100	<0.0100	<50.0	<1.00	<1.00	85.2
	10	1/27/2009	ł	1	1	ł	1	ł	}	89.1
	15	1/27/2009	ł	;	1	ł	;	ł	ł	58.1
	20	1/27/2009	1	ł	ł	ł	ł	ł	1	103
	25	1/27/2009		ł	ł	1	ł	}	1	111
	30	1/27/2009	ł	1	-	:	1	-		53.7

Contra la 1. 8 B. 2. 1. A. C. No. of Lot of Lot Let a trans Lang and Sec. Se. 1.24 C P. 44. 19 Seve fred Sec. 36 5 32 S 18 3 A.S. 3 御湯る 「「「「 Sec. 2 what "

Summary of R. T. Hicks Derived Soil Analyses Pardue 'C' JVP Well #1 **BTA Oil Producers** Table 2a 10-0101

	Depth	Date	Benzene	Toluene	benzene	Xylene	DRO	GRO	Total TPH	Chloride
RRAL:										1
SB-4	5	1/27/2009	<0.0100	<0.0100	<0.0100	<0.0100	<50.0	<1.00	<1.00	9,560
	10	1/27/2009	<0.0100	<0.0100	<0.0100	<0.0100	<50.0	<1.00	<1.00	3,100
	15	1/27/2009	ł	1	ł	ſ	ł	1	ł	1,580
	20	1/27/2009	;	1		ſ	1	1	1	661
	25	1/27/2009	1	;	ł	1	ł	1	ł	4,160
	30	1/27/2009	1	;	ł	ſ	ł	1	1	1,050
	40	1/27/2009	1	ł	1	1	-	1	1	607

Notes

Samples collected by R. T. Hicks Consultants, LTD.

Samples analyzed by Trace Analysis.

TPH analyzed via EPA method 8015.

All concentrations are in milligrams per kilogram (mg/Kg, parts per million). Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

Constant. 2 3 2 382 1 をはいま 「日本」と、「 13.23 ma Parters No. Anther E to Bat of 34 W 24 調理が ない 10 100 B A THE LE S B heren A TRUE R. 5.2

he was

1. 1. 1.

Table 2a Summary of R. T. Hicks Derived SPLP Soil Analyses BTA Oil Producers Pardue 'C' JVP Well #1 10-0101

Location	Depth	Depth Date	Boron	Calcium	Magnesium	Potassium	Sodium	Fluoride	Chloride	Nitrite	Bromide	Nitrate	Phosphorus	Sulfate
RRAL:														1
						Samp	Sample Trench							
Trench N of SB4	2	11/25/2009 0.059	0.059	9.4	0.92	<1.0	19	0.34	31	<0.10	0.18	<0.10	<0.50	5.7
	4	11/25/2009	<0.040	8.2	0.74	<1.0	14	0.49	17	<0.10	0.10	<0.11	<0.50	5.5
	9	11/25/2009	<0.040	8.7	0.82	<1.0	19	0.35	32	<0.10	0.16	<0.10	<0.50	5.9
Trench @ W	2	11/25/2009 0.096	0.096	20	1.6	<1.0	46	0.83	41	<0.10	0.31	0.18	<0.50	8.3
Notes														

Samples collected by R. T. Hicks Consultants, LTD. Samples analyzed by Hall Environmental Laboratory.

Samples prepared via EPA SPLP method 1312.

Depth measurements are in feet. All concentrations are in milligrams per liter (mg/L, parts per million). Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

14 P.Z. S. Constanting 日間に聞い S. S. Law . Post Sale and C. Year and an an ALC: NO. IN CASE Sec. Bar No march 東京部の S. Care 調整の THE Y S. States of Sec 3 Sais Section 2

Table 2a Summary of R. T. Hicks Derived SPLP Soil Analyses BTA Oil Producers Pardue 'C' JVP Well #1 10-0101

Location	Depth	Date	Alkalinity	Alkalinity Ammonia	TDS	Sulfur
RRAL:						
		Sa	Sample Trench			
Trench N of SB4	2	11/25/2009	<50	<2.0	112	2.31
	4	11/25/2009	65	<2.0	120	2.22
	9	11/25/2009	27	<2.0	98.0	2.39
Trench @ W	2	11/25/2009	<50	<2.0	136	2.53

Notes

Samples collected by R. T. Hicks Consultants, LTD.

Samples for alkalinity, ammonia and TDS were analyzed by Hall Environmental.

Sulfur analysis was performed by Anatek.

Samples prepared via EPA SPLP method 1312.

Depth measurements are in feet.

All concentrations are in milligrams per liter (mg/L, parts per million).

Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

2. T. L. Bug 10000 a strategy 王子的第三 100 100 ALL CAR 「一般の S. S. Ober & S. 12 an an 8 20° 81 のないの Star Bay 教育の語 A. W. Ma 3. W. W. **1** 1. 2.26. 4

Table 2b

Summary of R. T. Hicks Derived Groundwater and Surface Water Analyses BTA Oil Producers Pardue 'C' JVP Well #1 10-0101

Location	Date	MTBE	Benzene	Toluene	Ethyl benzene	Total Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene
RRAL:								
1-WW	11/18/2009					:		1
MW-2	11/18/2009	1	1	-	1	1	1	1
MW-3	11/18/2009	-		:	1		1	1
MW-4	11/18/2009	<0.0025	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001
MW-5	11/18/2009	1	;	;	1	;	;	1
MW-6	11/18/2009	1	ł	1	ł	:	-	ł
			ğ	QC Samples				
Trip Blank	11/19/2009	<0.0025	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001

Notes

Samples collected by R. T. Hicks Consultans, LTD.

BTEX samples analyzed via EPA method 8021B.

All concentrations are in milligrams per liter (mg/L, parts per million).

Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

Star Ba

言語を、語

the and

Further B

- 403 Mr. 34

1 Maria

1 m 20 . 2

1. S. M.

調想

W. A.

in Star and

「日本の

の時間で

Borry Land

1.18° 4.1

語の言語

2. 1. AL

Table 2b

Summary of R. T. Hicks Derived Groundwater and Surface Water Analyses BTA Oil Producers Pardue 'C' JVP Well #1

rdue 'C' JVP Well # 10-0101

Location	Date	Boron	Calcium	Magnesium	Potassium	Sodium	Fluoride	Chloride	Bromide	Nitrate + Nitrite	Phosphorus	Sulfate
RRAL:								250				600
1-WM	11/18/2009	0.89	1,300	460	98	1,800	1.8	3,700	5.0	<10	<10	3,000
	12/17/2009	:	1	1	9.41	1,660	;	2,830	<2.50	1	1	1
MW-2	11/18/2009	1.0	1,400	490	45	1,800	1.5	3,400	4.9	<10	<10	3,000
	12/17/2009	;	ł	1	9.09	1,610	:	3,100	<2.50	1	1	:
MW-3	11/18/2009	0.75	1,100	460	22	1,700	<2.0	3,400	5.9	<10	<10	2,900
	12/17/2009	1	1	:	11.2	1,400	:	2,780	30.9	1	1	-
MW-4	11/18/2009	0.86	1,300	390	35	8,000	1.2	14,000	40	<40	<10	2,800
	12/17/2009	1	1		25.8	7,280	:	11,900	119	1	1	:
MW-5	11/18/2009	0.73	1,200	400	17	2,100	1.0	4,500	11	<10	<0.50	2,500
	12/17/2009	:	ł	;	15.1	1,960	:	3,430	48.6	:	1	ţ
9-MM	11/18/2009	1.4	910	720	24	2,600	2.4	5,800	7.0	<20	<10	4,700
	12/17/2009	:	ţ	:	12.2	2,090	:	3,370	34.2	:	1	1
Pecos R E MW-6 11/18/2009	11/18/2009	0.36	500	210	6.4	740	0.91	1,800	0.71	<4.0	<0.50	2,000
Pardue B Dump V 11/17/2009	11/17/2009	16	26,000	3,900	1,500	6,700	<10	210,000	2500	<1000	<50	390
Pecos Upstream	1/26/2009	}	1	;	ł	ł	ł	1,300	ſ	ł	ł	1 .
	11/18/2009	0.35	540	220	6.4	710	0.82	1,600	0.68	<4.0	<0.50	1,700
Pecos Downstream 1/26/2009	1/26/2009	ł	ł	1		-	:	1,290	ſ	;	4	1
Seep	1/26/2009	1	ł	ł	ł	1	1	4,840	ſ	:	1	ł
W-1 (Bank Bore)	1/26/2009	1			-	:	;	2,890	1	1	1	1
SB-4	1/26/2009	1		1	-	:	1	6,650	1	:	1	:
Cooler Water	11/19/2009	1	1	1		}	1	28	1	ł	1	ł

Notes

Samples collected by R. T. Hicks Consultans, LTD. All concentrations are in milliarams per lliter (med.) - per

All concentrations are in milligrams per lliter (mg/L, parts per million). 'Blue and Bold indicates the value exceeds the RRAL Cleanup Level. 1. 18 A. B. A. LIN Balls # and the state Sec. 5 3 語を出すい A. S. S. 記録なの K-128-3 言語語言 Series and の調整に いの Trank R Ser a marte Sec. 1. のというよう 門聖之 Strates

Table 2b

Summary of R. T. Hicks Derived Groundwater and Surface Water Analyses Pardue 'C' JVP Well #1 **BTA Oil Producers** 10-0101

location	Date	Alkalinity	Specific	Ammonia	SUT	Sulfur
FOLGUIN	הפוב	אואמוווונא	Conductance		C 21	
RRAL:						
MW-1	11/18/2009	530	16,000	<1.0	10,000	1,090
	12/17/2009	;	1	-	8,150	1
MW-2	11/18/2009	600	15,000	<1.0	9,450	1,090
	12/17/2009	:	;	1	8,860	:
MW-3	11/18/2009	400	14,000	<1.0	9,300	1,160
	12/17/2009	;	;		7,530	1
MW-4	11/18/2009	260	50,000	<1.0	25,300	1,070
	12/17/2009	1	1	1	26,200	
MW-5	11/18/2009	380	15,000	<1.0	9,690	907
	12/17/2009	:	1	ł	8,940	1
MW-6	11/18/2009	430	21,000	<1.0	13,000	1,500
	12/17/2009	ł	1	1	10,600	1
Pecos R E MW-6	11/18/2009	170	5,900	<1.0	4,640	627
Pardue B Dump V	11/17/2009	23	530,000	760	298,000	131
Pecos Upstream	11/18/2009	170	6,000	<1.0	4,740	672
Cooler Water	11/19/2009	1			110	1
Notes						

votes Samples collected by R. T. Hicks Consultans, LTD. Specific conductance is reported in µmhos/cm.

All concentrations are in milligrams per liter (mg/L, parts per million). Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

18. a.

,

., ...*

-

Location		Date	трн	Chloride
RRAL:			100	
BH-1 (MW-7)	0	4/8/2010		74.0
	5	4/8/2010	204	72.1
	10	4/8/2010		197
	15	4/8/2010		216
	20	4/8/2010	53.5	54.0
	25	4/8/2010		268
	30	4/8/2010	27.7	160
BH-2	0	4/12/2010		68.6
	5	4/12/2010	<10.3	306
	10	4/12/2010		979
	15	4/12/2010	<10.7	1,050
	20	4/12/2010		442
	25	4/12/2010		519
	30	4/12/2010	<10.6	234
	35	4/12/2010		184
BH-3	0	4/12/2010		184
	5	4/12/2010	<10.6	2,220
	10	4/12/2010		1,060
	15	4/12/2010	<11.3	1,400
	20	4/12/2010		1,360
	25	4/12/2010		775
	30	4/12/2010	<10.4	281
	35	4/12/2010		164
BH-4	0	4/8/2010		66.5
	5	4/8/2010	254	26.0
	10	4/8/2010		159
	15	4/8/2010		416
	20	4/8/2010	242	512
-	25	4/8/2010		777
	30	4/8/2010	115	243
BH-5 (MW-8)	0	4/9/2010		105
	5	4/9/2010	15.1	111
	10	4/9/2010		416
	15	4/9/2010		885
	20	4/9/2010	20.6	635
	25	4/9/2010		636
	30	4/9/2010	79.2	608

.

Location	,	Date	трн	Chloride
RRAL:			100	
BH-6 (MW-9)	0	4/8/2010		155
	5	4/8/2010	271	467
	10	4/8/2010		592
	15	4/8/2010		671
	20	4/8/2010	246	448
	26	4/8/2010		259
BH-7	0	4/14/2010		7,190
	5	4/14/2010	<10.4	6,160
	10	4/14/2010	<10.7	7,950
	15	4/14/2010		7,600
	20	4/14/2010	<10.7	7,690
	25	4/14/2010		1,800
	30	4/14/2010		1,030
	35	4/14/2010		1,050
BH-8 (MW-10)	0	4/14/2010		91.9
	5	4/14/2010	<10.9	176
	10	4/14/2010		181
	15	4/14/2010	<10.7	90
	20	4/14/2010		105
	25	4/14/2010		128
	30	4/14/2010		124
	35	4/14/2010		108
BH-9 (MW-11)	0	4/5/2010		197
	5	4/5/2010	35.9	1,480
	10	4/5/2010		1,420
	15	4/5/2010		963
	20	4/5/2010	52.9	1,090
	25	4/5/2010		201
	30	4/5/2010	53.3	382
	35	4/5/2010		308
	50	4/7/2010		592
	60	4/7/2010		405
	70	4/7/2010		482
BH-10	0	4/13/2010		44.2
	5	4/13/2010	<11.1	8.05
	10	4/13/2010		1,120
	15	4/13/2010	<11.0	845

р ⁷ |- Э

.

1.77

72.00

2 - 2 - 2 S -

Location	· · · · · · · · · · · · · · · · · ·	Date	трн	Chloride
RRAL:		4	100	
BH-10	20	4/13/2010		1,250
	25	4/13/2010		1,400
	30	4/13/2010	<10.3	709
	35	4/13/2010		628
BH-11	0	4/13/2010		35.5
	5	4/13/2010	<10.6	223
	10	4/13/2010		238
	15	4/13/2010	<10.8	783
	20	4/13/2010		1,090
	25	4/13/2010		2,470
	30	4/13/2010	<11.1	1,620
	35	4/13/2010		953
BH-12	0	4/12/2010	<10.5	801
	5	4/12/2010		316
	10	4/12/2010		761
	15	4/12/2010	<11.1	267
	20	4/12/2010		338
	25	4/12/2010		909
	30	4/12/2010	<10.5	773
	35	4/12/2010		411
BH-13 (MW-12)	0	4/13/2010		671
	5	4/13/2010		3,460
	10	4/13/2010	<11.0	12,500
	15	4/13/2010		9,840
	20	4/13/2010	42.0	1,910
	25	4/13/2010		3,950
	30	4/13/2010	<10.7	2,710
	35	4/13/2010		1,860
BH-14 (MW-13)	0	4/15/2010	3,970	986
	5	4/15/2010	274	1,490
	10	4/15/2010	37.0	3,580
	15	4/15/2010		3,050
	20	4/15/2010		5,690
	25	4/15/2010		7,630
	30	4/15/2010		3,670
	35	4/15/2010		3,280

7

1. 1. 1.

۱. ۲. ۱.

ан. В

1 . E

1

.

5

ţ.

·

4 - 2

*

Location		Date	ТРН	Chloride
RRAL:			100	
BH-15 (MW-14)	0	4/14/2010	4,440	1,820
	3	4/14/2010		247
	5	4/14/2010	123	357
	7	4/14/2010		575
	10	4/14/2010	<11.2	967
	15	4/14/2010		1,740
	20	4/14/2010		661
	25	4/14/2010		847
	30	4/14/2010		2,020
	35	4/14/2010		1,220
BH-16	0	4/6/2010		4,720
	5	4/6/2010	266	3,540
	10	4/6/2010		826
	15	4/6/2010		917
-	20	4/6/2010	231	594
	25	4/6/2010		1,280
	30	4/6/2010	250	665
	35	4/6/2010		421
BH-17	0	4/6/2010		7,060
	5	4/6/2010	217	5,050
	10	4/6/2010		7,330
	15	4/6/2010		1,650
	20	4/6/2010	238	1,580
	25	4/6/2010		1,500
	30	4/6/2010	269	2,500
	35	4/6/2010		3,030
BH-18	0	4/8/2010		92.7
	5	4/8/2010	120	1,890
	10	4/8/2010		1,140
	15	4/8/2010		885
	20	4/8/2010	176	691
	25	4/8/2010		618
	30	4/8/2010	216	858
	35	4/8/2010		552
BH-19	0	4/6/2010	68.9	228
	5	4/6/2010		1,520
	10	4/6/2010		2,210

Location		Date	ТРН	Chloride
RRAL:			100	
BH-19	15	4/6/2010		1,070
	20	4/6/2010	101	1,760
	25	4/6/2010		608
	30	4/6/2010	137	5,870
	35	4/6/2010		1,240

Notes

Samples analyzed via EPA method 418.1.

Depth measurements are in feet.

All concentrations are in milligrams per kilogram (mg/Kg, parts per million). **Blue and Bold** indicates the value exceeds the RRAL Cleanup Level.

Location		Date	Chloride
RRAL:			
BH-3	5	4/12/2010	385
BH-13 (MW-12)	5	4/13/2010	245
	10	4/13/2010	113
	15	4/13/2010	150
BH-17	0	4/6/2010	292
	5	4/6/2010	247
	30	4/6/2010	127

Notes

Samples prepared via EPA SPLP 1312.

Depth measurements are in feet.

All concentrations are in milligrams per liter (mg/L, parts per million). Blue and Bold indicates the value exceeds the RRAL Cleanup Level.

Table 3b

10 E 1

. . 10

a. . .

Monitoring Well Completion Details and Gauging Summary BTA Oil Producers - Pardue 'C' JVP Lea County, New Mexico

10-0101

Corrected 2,959.91 2,970.95 2,966.72 Elevation 2,965.21 2,965.94 2,965.30 2,962.93 2,959.54 Water ł ł ł Depth to Water 38.24 38.21 3.71 2.08 --2.75 5.17 --3.31 4.04 ł ł ŧ ł ł ł Depth to Fluid 1 1 : : 1 1 | | : : : : 1 1 1 1 Groundwater Data Date Gauged 04/26/10 04/26/10 04/26/10 04/26/10 04/26/10 04/26/10 04/26/10 04/26/10 ł ł ł Elevation 2,969.25 2,967.38 2,962.66 2,964.71 3,009.19 3,004.93 2,968.92 2,966.97 TOC Stickup Casing 1.720.68 1.26 1.35 3.29 1.97 1.51 3.03 Screen Interval 32.29-46.69 32.61-47.58 (sgq) ł ł ł ł ł 3,005.9 3,001.9 Surface Elevation 2,967.2 2,963.2 2967.9 2,966.7 2,961.4 2,965.0 Diameter (inches) Well 2 2 2 2 2 2 4 4 Well Depth from TOC 50.36 50.73 4.64 4.90 4.00 4.12 4.98 5.31 Drilled Depth (bgs) ł ł ł ł ł ł 47 47 11/17/2009 Date Drilled 11/17/2009 11/17/2009 11/17/2009 11/17/2009 11/17/2009 4/9/2010 4/9/2010 Well Information MW-05 Well ID MW-03 MW-06 MW-08 (BH-5) MW-07 (BH-1) MW-02 MW-04 MW-01

Table 3b

с 4 5 -

ia. .

р. 4 4 _ 2

1. . 1. .

÷

1. Soc. .

بمققيم

Monitoring Well Completion Details and Gauging Summary BTA Oil Producers - Pardue 'C' JVP Lea County, New Mexico

County, New Mexi 10-0101

Well Information	mation								Groundwater Data	r Data		
Well ID	Date Drilled	Drilled Depth (bgs)	Well Depth from TOC	Well Diameter (inches)	Surface Elevation	Screen Interval (bgs)	Casing Stickup	TOC Elevation	Date Gauged	Depth to Fluid	Depth to Water	Corrected Water Elevation
MW-09 (BH-6)	4/8/2010	53	49.65	4	3,001.3	31.62-46.02	3.00	3,004.30	 04/26/10	1	 38.77	 2,965.53
MW-10 (BH-8)	4/14/2010	46	50.15	4	3,001.0	32.08-46.48	3.04	3,004.04	 04/26/10	1	 40.36	 2,963.68
MW-11 (BH-9)	4/5/2010	45	47.93	4	2,999.8	29.86-44.26	2.89	3,002.69	 04/26/10		 38.95	 2,963.74
MW-12 (BH-13)	4/13/2010	47	50.32	4	3,003.5	32.38-46.78	3.07	3,006.57	 04/26/10	1 1	 39.36	 2,967.21
MW-13 (BH-14)	4/15/2010	47	49.85	4	3,003.0	31.78-46.18	3.20	3,003.38	 04/26/10	1 1	 39.18	 2,964.20
MW-14 (BH-15)	4/14/2010	44	47.64	4	3.000.4	29.66-44.06	3.04	3,003.44	 04/26/10	1	 36.93	 2,966.51
Matar												

Notes

All values are in feet, unless otherwise noted.

bgs - below ground surface

TOC - top of casing

Elevations are above mean sea level referenced to 1984 Geodetic Datum.

Wells drilled and installed by Scarborough Drilling, Lamesa, Texas. Schedule 40 threaded PVC casing and screen.

Table 3c LAI Derived Organic Water Quality Analysis BTA Oil Producers - Pardue 'C' JVP Loving, Lea County, New Mexico 10-0101

Well ID	Date	TRPH	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTE
WQCC	Standard		0.01	0.75	0.75	0.62	
MW-01	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-02	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-03	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-04	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-05	04/28/10			Insuffic	ient water to colle	ct sample	
MW-06	04/28/10			Insuffic	ient water to colled	ct sample	
MW-07	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-08	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-09	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-10	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-11	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-12	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-13	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
MW-14	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
NMED Num	eric Standard		0.022	6.8	3.1		
Seep-1	04/26/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Seep-2	04/26/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Seep-3	04/26/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Seep-4	04/26/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002

Notes:

A 19.44

2.25

ALL AND ALL AND A

July - Belle

10000

Carlo a start

Con the second

18 - Contra

12.00

A SHE .

1-2-2025

a the second second

1. B. B. B.

All results reported in milligrams per liter (mg/L)

"<" Indicates the reported concentration is below the method detection limit (MDL).

"---" Indicates the chemical was not analyzed.

Bold indicates the chemical of concern was detected above the MDL.

Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

Red indicated the chemical exceeds Surface Water Quality Bureau Numeric Domestic Water Quality Standard.

Table 3c LAI Derived Organic Water Quality Analysis BTA Oil Producers - Pardue 'C' JVP Loving, Lea County, New Mexico 10-0101

Well ID	Date	TRPH	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX
WQCC Sta	andard		0.01	0.75	0.75	0.62	
Equip Rinse-01	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Dup-01 (Seep-1)	04/26/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Trip Blank-01	04/27/10		<0.0008	<0.002	<0.002	<0.003	<0.002
Equip Rinse-02	04/28/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Dup-02 (MW-8)	04/27/10	<0.300	<0.0008	<0.002	<0.002	<0.003	<0.002
Trip Blank-02	04/28/10		<0.0008	<0.002	<0.002	<0.003	<0.002

Notes:

1. 2. Ber

AURTON S

のない

「日本」

"新学生"

Bup we

a state

1 B. . .

8.00 No.

101 1

the state

2010-0120

2109<u>8-</u>80

A 1920 - 2

All results reported in milligrams per liter (mg/L)

"<" Indicates the reported concentration is below the method detection limit (MDL).

"--" Indicates the chemical was not analyzed.

Bold indicates the chemical of concern was detected above the MDL.

Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

Road Street No. of Street, or Stre 1.00 Acres and the second The second Brite Prints 1 and the second State of the 1.72 J. 188 1. 2. 2. 2. C. Same? 1. Co Ber ! mari XA See See Se

at. Sadiat

ないないな

Table 3c LAI Derived Metals Water Quality Analysis BTA Oil Producers - Pardue 'C' JVP Loving, Lea County, New Mexico 10-0101

Well ID	Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MQCC	WQCC Standard	0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05
MW-01	04/28/10	0.00243	0.0375	0.000307	0.0166	0.00495	<0.00008	0.00358	<0.001
MW-02	04/28/10	0.00407	0.0340	0.000399	0.00587	0.00573	<0.00008	0.00667	<0.001
MW-03	04/28/10	0.00392	0.0232	<0.0003	0.00429	0.00115	<0.00008	0.00817	<0.001
MW-04	04/28/10	0.00514	0.0575	0.00054	0.00845	0.00725	<0.00008	0.0108	<0.001
MW-05	04/28/10			nsul	Insufficient water to collect sample	to collect sar	nple		
90-MM	04/28/10			Insu	Insufficient water to collect sample	to collect sar	nple		
MW-07	04/27/10	0.00274	0.0167	<0.0003	<0.002	<0.0003	<0.00008	0.00637	<0.001
MW-08	04/27/10	0.00254	0.0157	<0.0003	<0.002	<0.0003	<0.00008	0.00766	<0.001
60-MM	04/27/10	<0.002	0.0201	<0.0003	<0.002	<0.0003	<0.00008	0.00505	<0.001
MW-10	04/28/10	0.00245	0.115	<0.0003	<0.002	<0.0003	<0.00008	0.00628	<0.001
MW-11	04/28/10	0.00319	0.0210	0.0006	<0.002	0.000945	<0.0008	0.00561	<0.001
MW-12	04/27/10	0.00236	0.0374	<0.0003	<0.002	<0.0003	<0.00008	0.0111	<0.001
MW-13	04/27/10	0.00211	0.0407	<0.0003	<0.002	<0.0003	<0.00008	0.0130	<0.001
MW-14	04/28/10	<0.002	0.150	<0.0003	<0.002	<0.003	<0.0008	0.00769	<0.001

LAI Derived Metals Water Quality Analysis Table 3c

1 - Charles

17 . J. C.

Trans.

S. W. W. S.

1. 18 A.

and the second

C. C. BERN

2. Jac. 1.

a state

Sec. Barry

B. Bargare

No 6 1

AL P ST

1. 20 La 5.

المعشرة وإها

1. S. M.

•	'C' JVP	v Mexico
,	il Producers - Pardue	, New N
	ucers -	Lea County,
	il Prod	g, Lea (
	BTA Oil	Lovin

10-0101

Well ID	Date	Arsenic	Barium	Cadmium	Cadmium Chromium	Lead	Mercury	Selenium	Silver
NMED Num	MED Numeric Standard	0.023	2.0	0.005	0.1	0.05	0.002	0.05	1
Seep-1	04/26/10	0.00253	0.0151	<0.0003	<0.002	<0.0003	<0.00008	0.00761	<0.001
Seep-2	04/26/10	0.00503	0.0145	<0.0003	<0.002	<0.0003	<0.00008	0.00716	<0.001
Seep-3	04/26/10	0.00251	0.0179	<0.0003	<0.002	<0.0003	<0.00008	0.00399	<0.001
Seep-4	04/26/10	<0.002	0.0196	<0.0003	<0.002	<0.0003	<0.00008	0.00269	<0.001
Notes:									

All results reported in milligrams per liter (mg/L)

"<" Indicates the reported concentration is below the method detection limit (MDL).

"--" Indicates the chemical was not analyzed.

Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

Red indicated the chemical exceeds Surface Water Quality Bureau Numeric Domestic Water Quality Standard.

in the set -3" -3"E" Sec. and the second not with the Free letter 「「「「「「「」」 Same Rank 1.0.5 M . 3 1 1 102.46 P. La Carl - alla and Sec. 2

A. Cor B.

聖皇四

Part and

Table 3c

LAI Derived Metals Water Quality Analysis BTA Oil Producers - Pardue 'C' JVP Loving, Lea County, New Mexico

10-0101

Well ID	Date	Arsenic	Barium	Cadmium	Cadmium Chromium	Lead	Mercury	Selenium	Silver
WQCC Sta	andard	0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05
Equip Rinse-01 04/2	04/27/10	<0.002	€00 [.] 0>	<0.0003	<0.002	<0.0003	<0.0008	<0.002	<0.001
Dup-01 (Seep-1) 04/26/10	04/26/10	0.00261	0.0151	<0.0003	<0.002	<0.0003	<0.00008	0.0076	<0.001
Equip Rinse-02	04/28/10	<0.002	<0.003	<0.0003	0.00244	<0.0003	<0.00008	<0.002	<0.001
Dup-02 (MW-8)	04/27/10	0.00238	0.0214	<0.0003	<0.002	<0.0003	<0.00008	0.0073	<0.001
Motor.									

Notes:

All results reported in milligrams per liter (mg/L)

"<" Indicates the reported concentration is below the method detection limit (MDL).

"--" Indicates the chemical was not analyzed. Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

Table 3c LAI Derived Water Quality Parameters BTA Oil Producers - Pardue 'C' JVP Loving, Lea County, New Mexico 10-0101

Well ID	Date	рН	Chloride	Sulfate	TDS
WQCC S	Standard	** **	250	600	1,000
MW-01	04/28/10	7.35	3,380	2,830	9,230
MW-02	04/28/10	7.15	3,650	2,950	10,000
MW-03	04/28/10	7.24	2,670	2,630	7,840
MW-04	04/28/10	7.24	10,000	2,630	20,500
MW-05	04/28/10		Insufficient water	to collect sample	2
MW-06	04/28/10		Insufficient water	to collect sample	2
MW-07	04/27/10	7.04	2,510	2,370	6,900
MW-08	04/27/10	7.04	2,810	2,620	7,310
MW-09	04/27/10	7.09	4,180	2,860	9,980
MW-10	04/28/10	6.94	13,500	1,470	25,300
MW-11	04/28/10	6.99	3,150	2,630	8,780
MW-12	04/27/10	7.10	3,670	2,690	8,900
MW-13	04/27/10	7.02	8,060	3,050	13,500
MW-14	04/28/10	6.90	10,800	1,700	21,500
NMED Num	eric Standard				
Seep-1	04/26/10	7.47	2,580	2,350	7,750
Seep-2	04/26/10	7.28	3,090	2,340	8,220
Seep-3	04/26/10	7.87	3,350	2,540	9,070
Seep-4	04/26/10	7.50	4,440	3,210	11,800

Notes:

All results reported in milligrams per liter (mg/L)

"<" Indicates the reported concentration is below the method detection limit (MDL).

"--" Indicates the chemical was not analyzed.

Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

Red indicated the chemical exceeds Surface Water Quality Bureau Numeric Domestic Water Quality Standard.

Sectors -

14.5

Table 3c LAI Derived Water Quality Parameters BTA Oil Producers - Pardue 'C' JVP Loving, Lea County, New Mexico 10-0101

Date	рН	Chloride	Sulfate	TDS
indard		250	600	1,000
04/27/10	9	<0.300	<1	<10
04/26/10	7.33	2,580	2,370	7,870
04/28/10	6.8	<0.300	<1	47.0
04/27/10	6.93	2,730	2,540	7,910
	ndard 04/27/10 04/26/10 04/28/10	ndard 04/27/10 9 04/26/10 7.33 04/28/10 6.8	ndard 250 04/27/10 9 <0.300	ndard 250 600 04/27/10 9 <0.300

Notes:

1002000

The state of

State State

A. Cart

A State of

and they

Carlos a

11 T T

A PARTY

-25.55

A Reed and

200 CO

All results reported in milligrams per liter (mg/L)

"<" Indicates the reported concentration is below the method detection limit (MDL).

"---" Indicates the chemical was not analyzed.

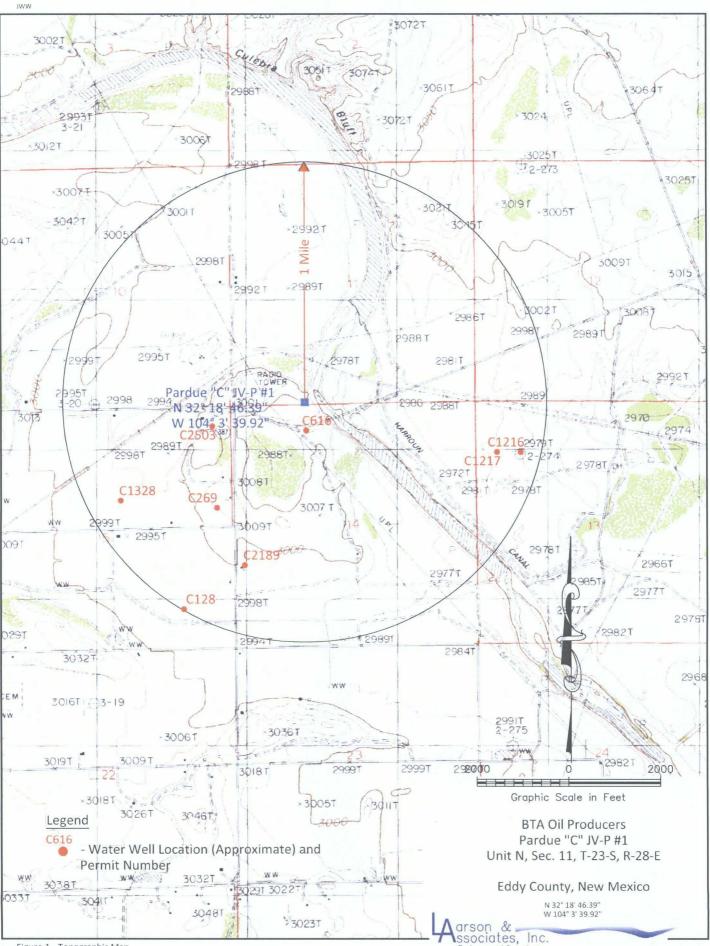

Blue indicated the chemical exceeds the Water Quality Control Commission (WQCC) standard.

Table 4 BTA Oil Producers - Pardue 'C' JVP Slug Test Results Loving County, New Mexico

MW-ID & Test	Falling Head K	Rising Head K	Well Average
MW-07 Test 1	8.47843815	10.9077332	
MW-07 Test 2	8.900801	11.4066316	
MW-07 Test 3	8.8724545	10.3634804	
MW-07 Average	8.751	10.893	9.822
MW-08 Test 1	1.680663985	1.935215555	
MW-08 Test 2	1.55792364	insufficient data	
MW-08 Test 3	1.561608685	2.201105725	
MW-08 Average	1.600	2.068	1.834
MW-09 Test 1	0.025149015	0.095357626	
MW-09 Average	0.025	0.095	0.060
MW-10 Test 1	52.0158275	insufficient data	
MW-10 Test 2	54.4536265	insufficient data	
MW-10 Test 3	43.6252635	insufficient data	
MW-10 Average	50.032	insufficient data	50.032
MW-11 Test 1	5.89323735	6.54520685	
MW-11 Test 2	5.9641036	6.76630955	
MW-11 Test 3	6.19937955	6.7407977	
MW-11 Average	6.019	6.684	6.352
MW-12 Test 1	0.587056015	0.81921385	
MW-12 Average	0.587	0.819	0.703
MW-13 Test 1	2.9196895	5.65512675	
MW-13 Test 2	5.50772495	4.0535495	
MW-13 Test 3	4.4277233	5.0853621	
MW-13 Average	4.285	4.931	4.608
MW-14 Test 1	0.112734031	0.098759206	
MW-14 Test 2	0.087930843	0.113442693	
MW-14 Average	0.100	0.106	0.103
	0.100	0.106	
Range	to	to	
	50.032	10.893	
Overall Averages	8.925	3.657	9.189

Notes:

All results are reported in feet per day (ft/day).

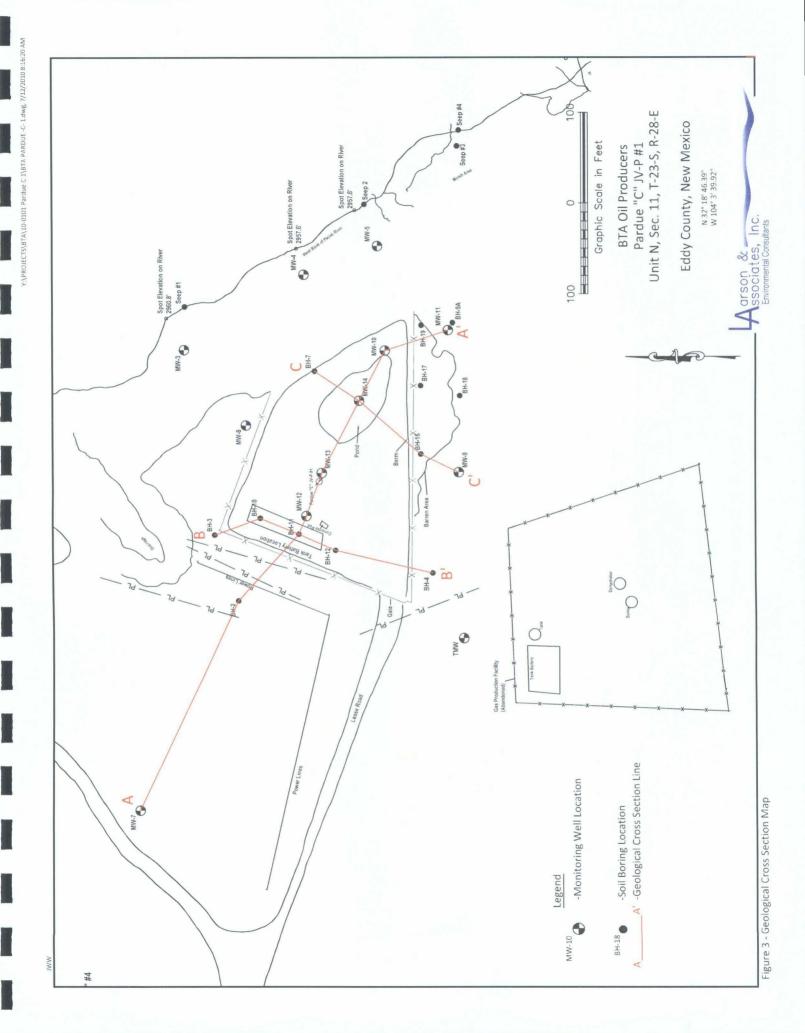
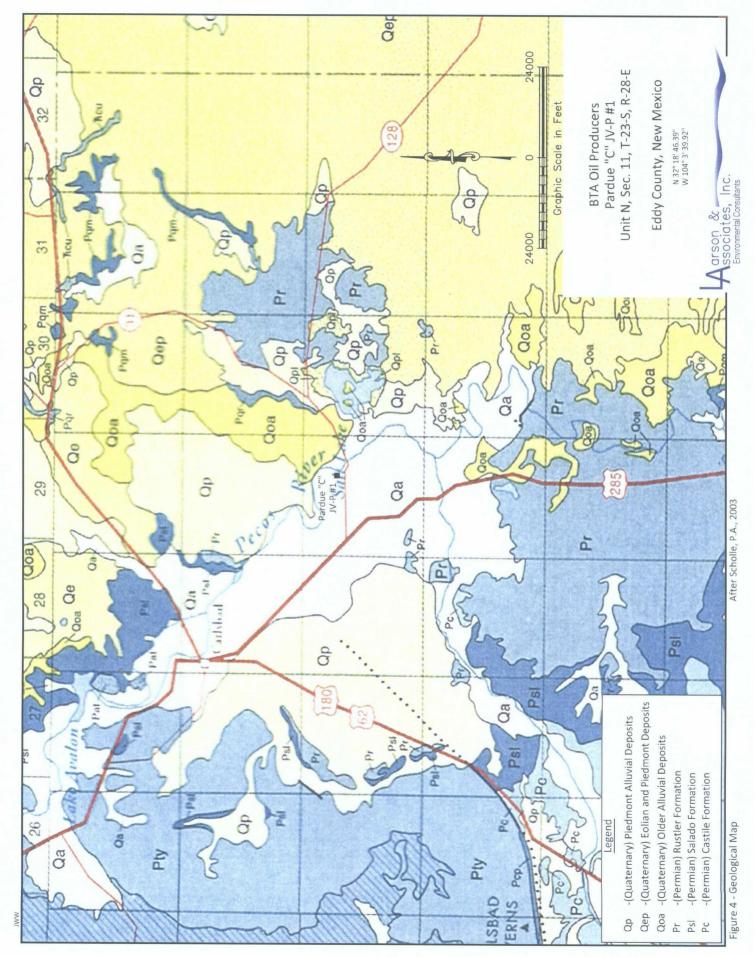

Environmental Consultants

Figure 1 - Topographic Map



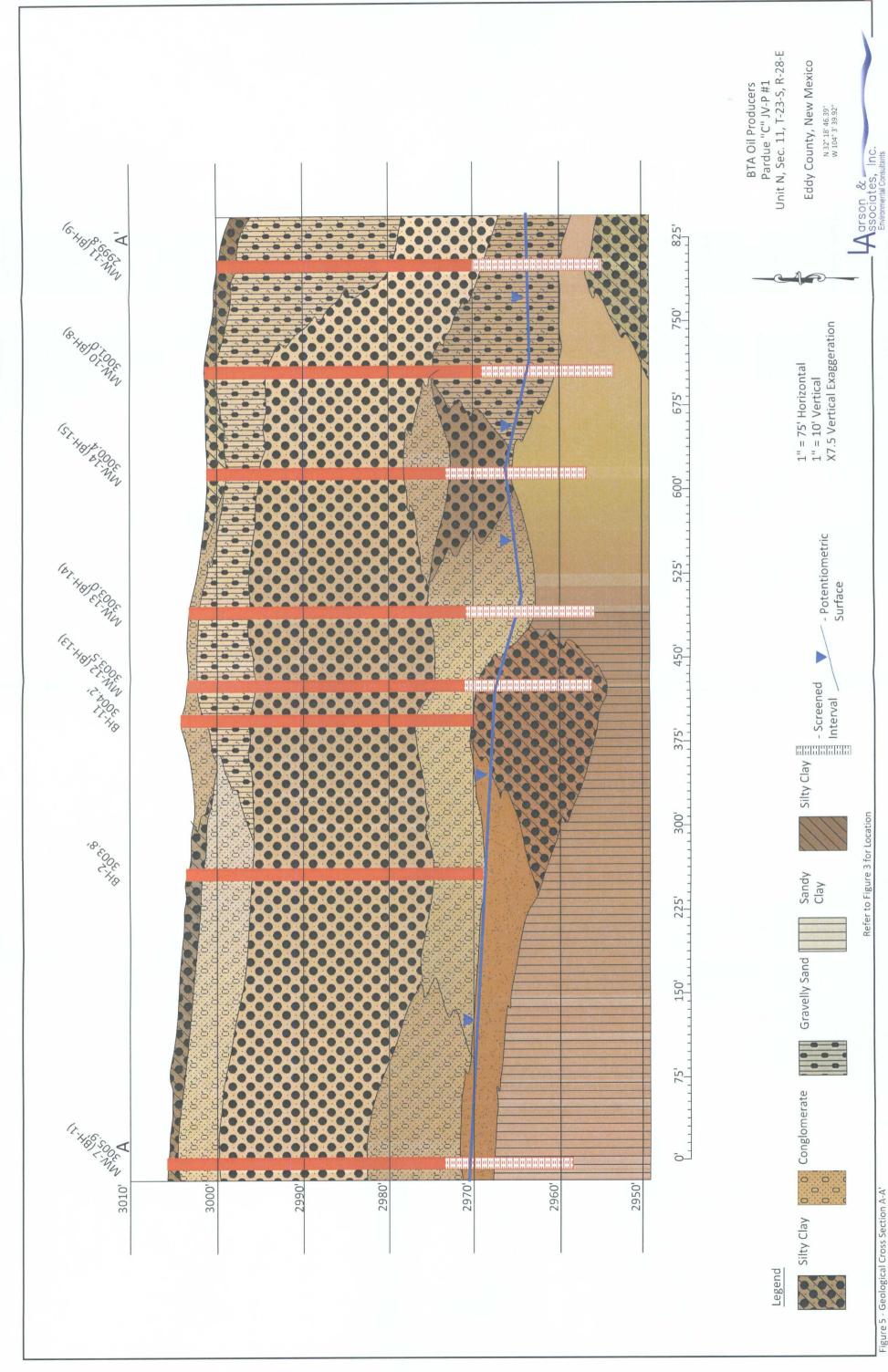
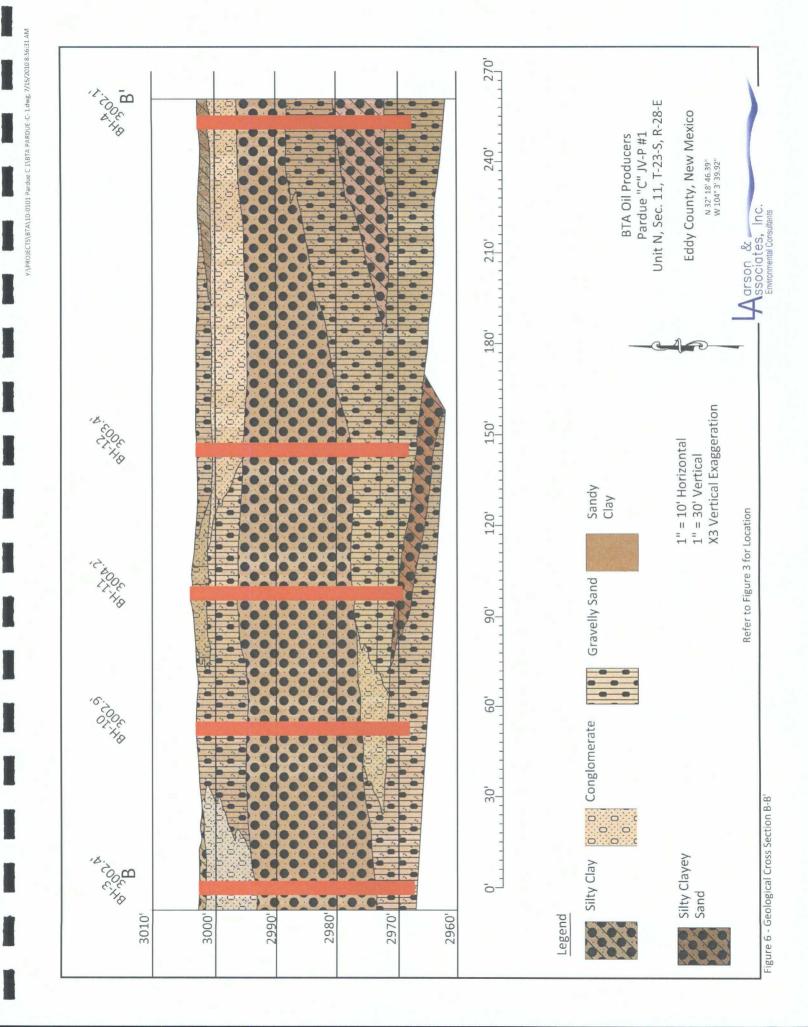
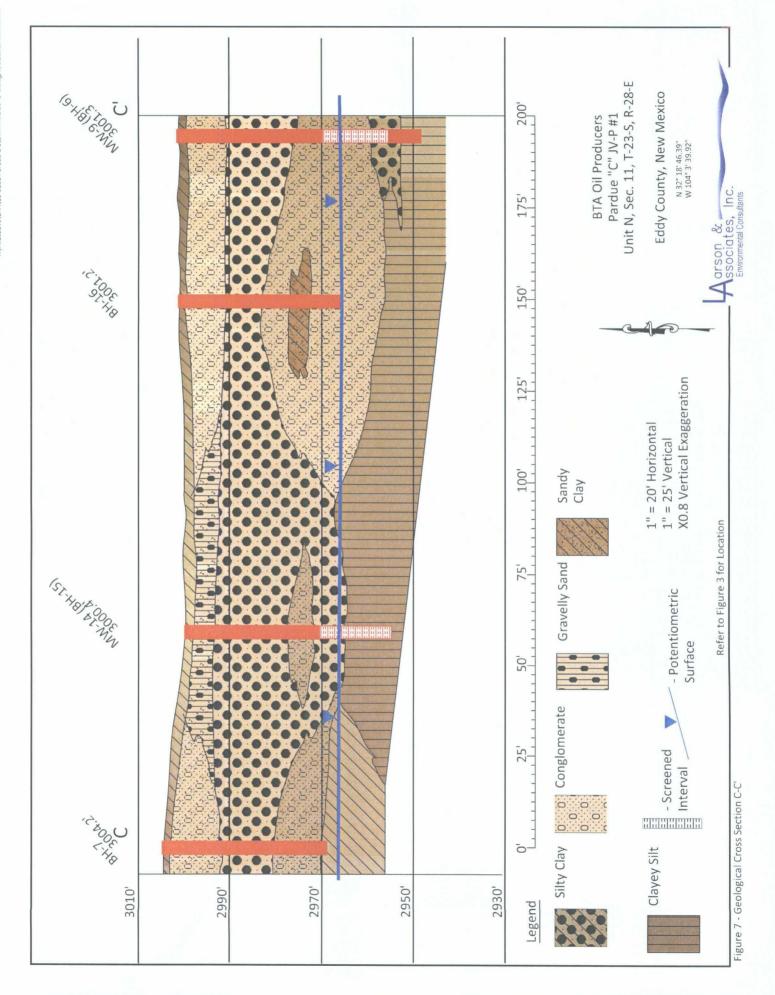
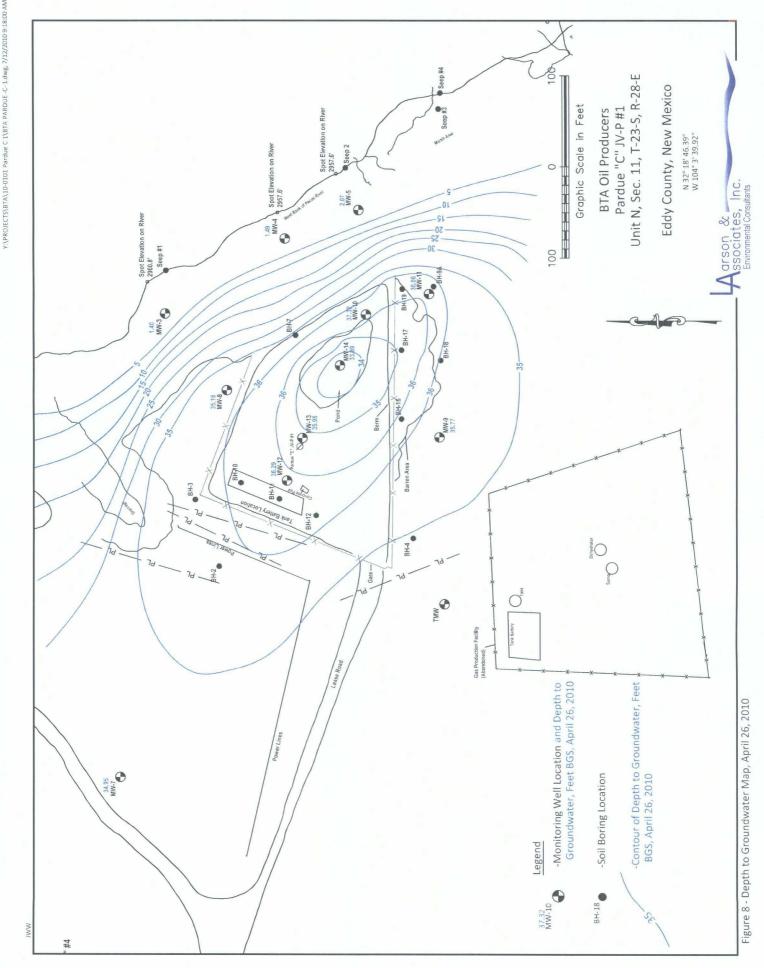
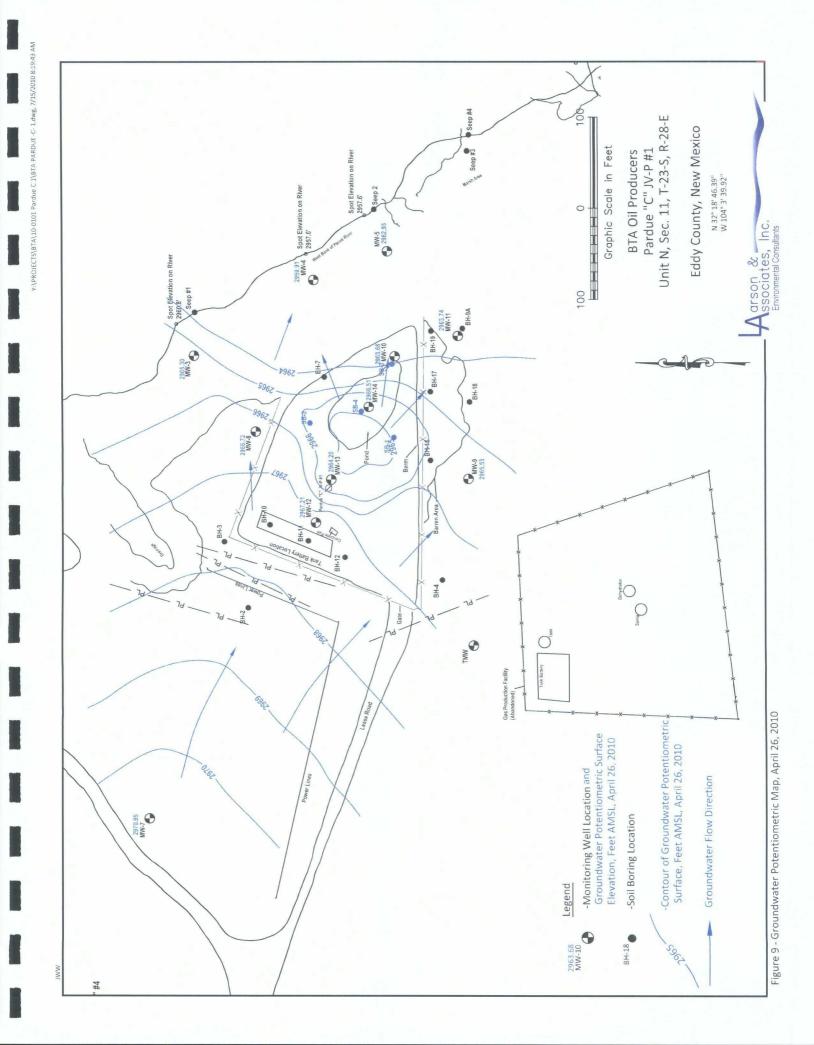

due C 1\BTA PARDUE -C- 1.dwg, 7/12/2010 8:14:28 Y:\PROJECTS\BTA\10-0101 Part

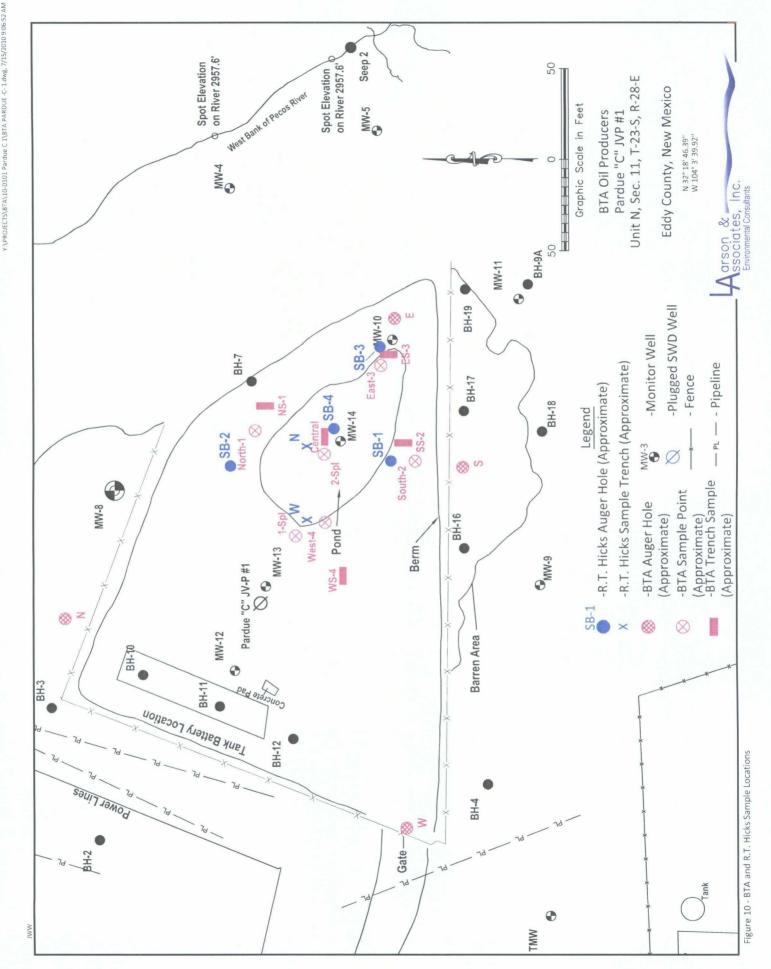
Figure 2 - Aerial Map


DJECTS\BTA\10-0101 Pardue C 1\BTA PARDUE -C- 1.dwg, 7/15/2010 8:55:33 AM






Y:\PROJECTS\BTA\10-0101 Pardue C 1\BTA PARDUE -C- 1.dwg, 7/15/2010 8:53:37 AM



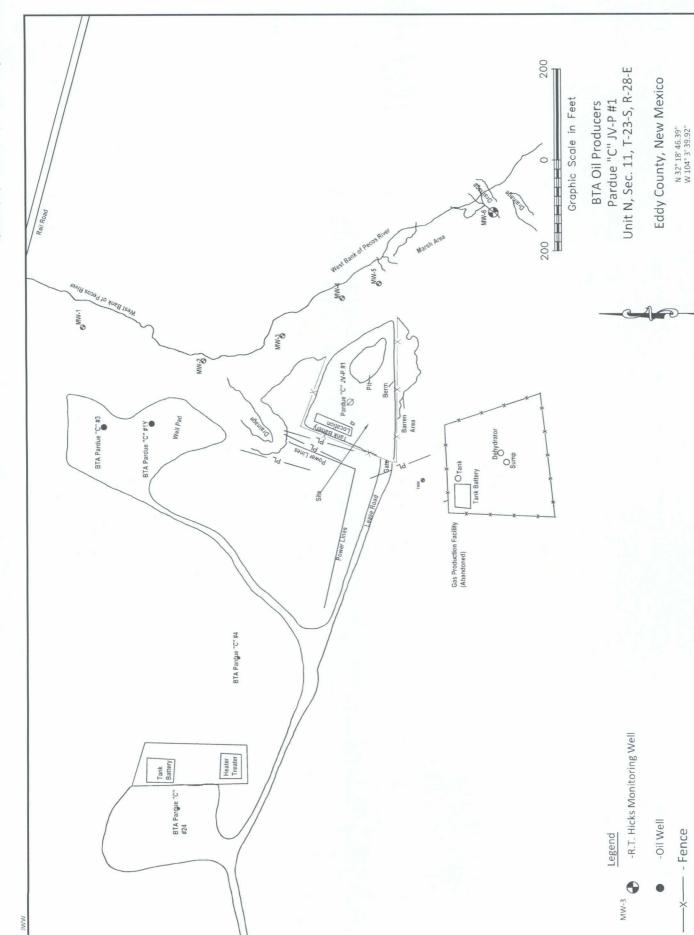
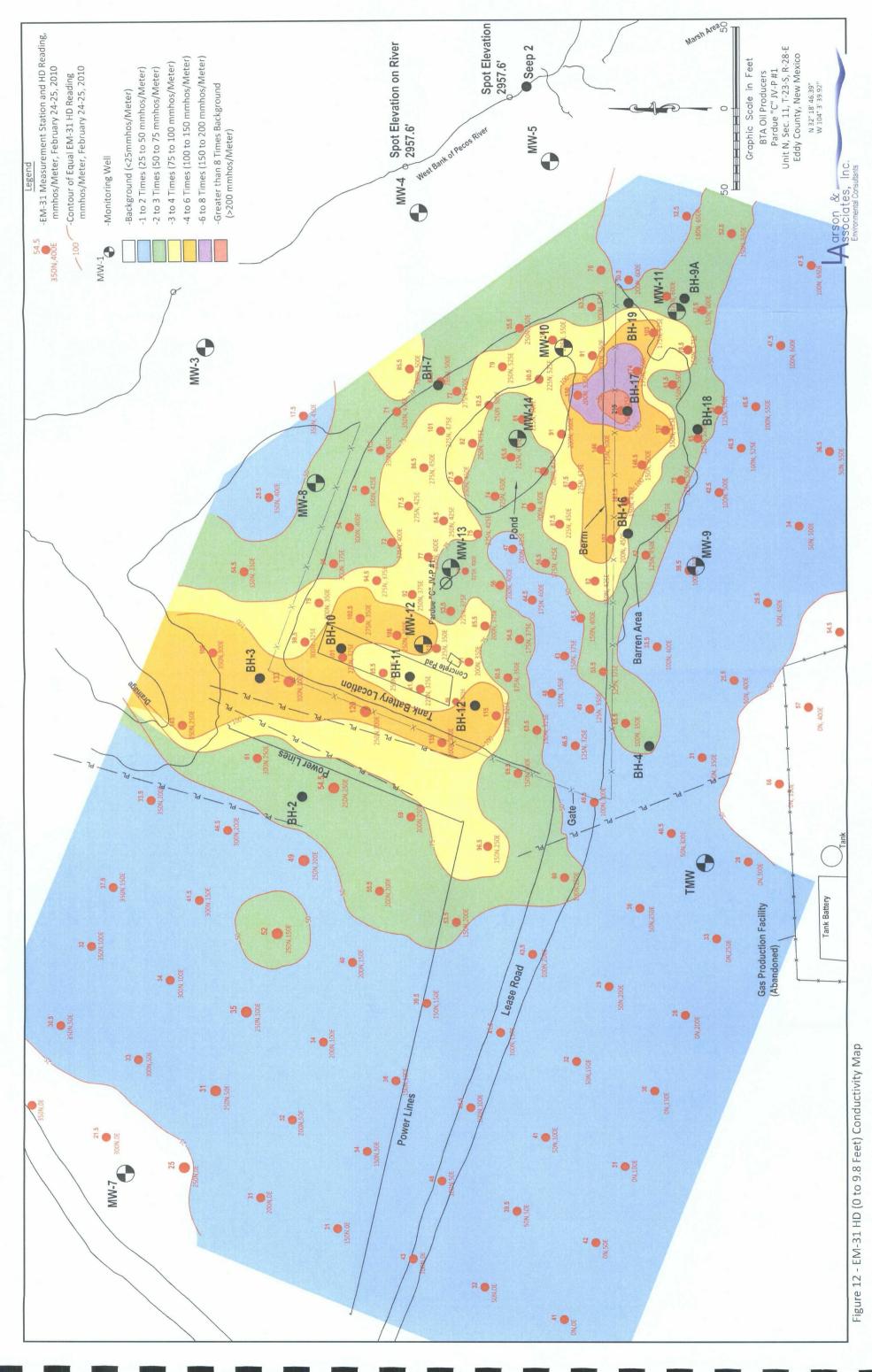
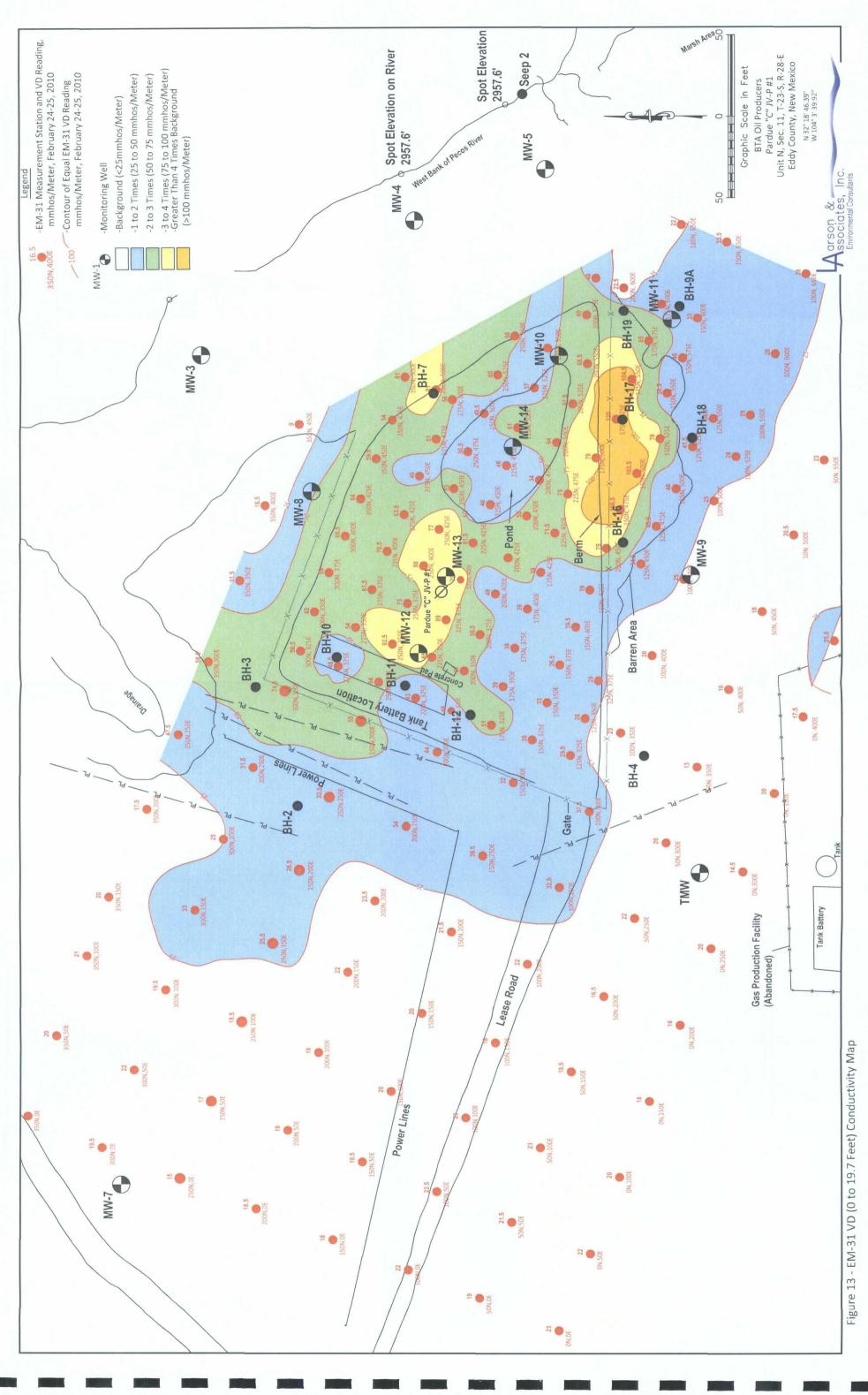
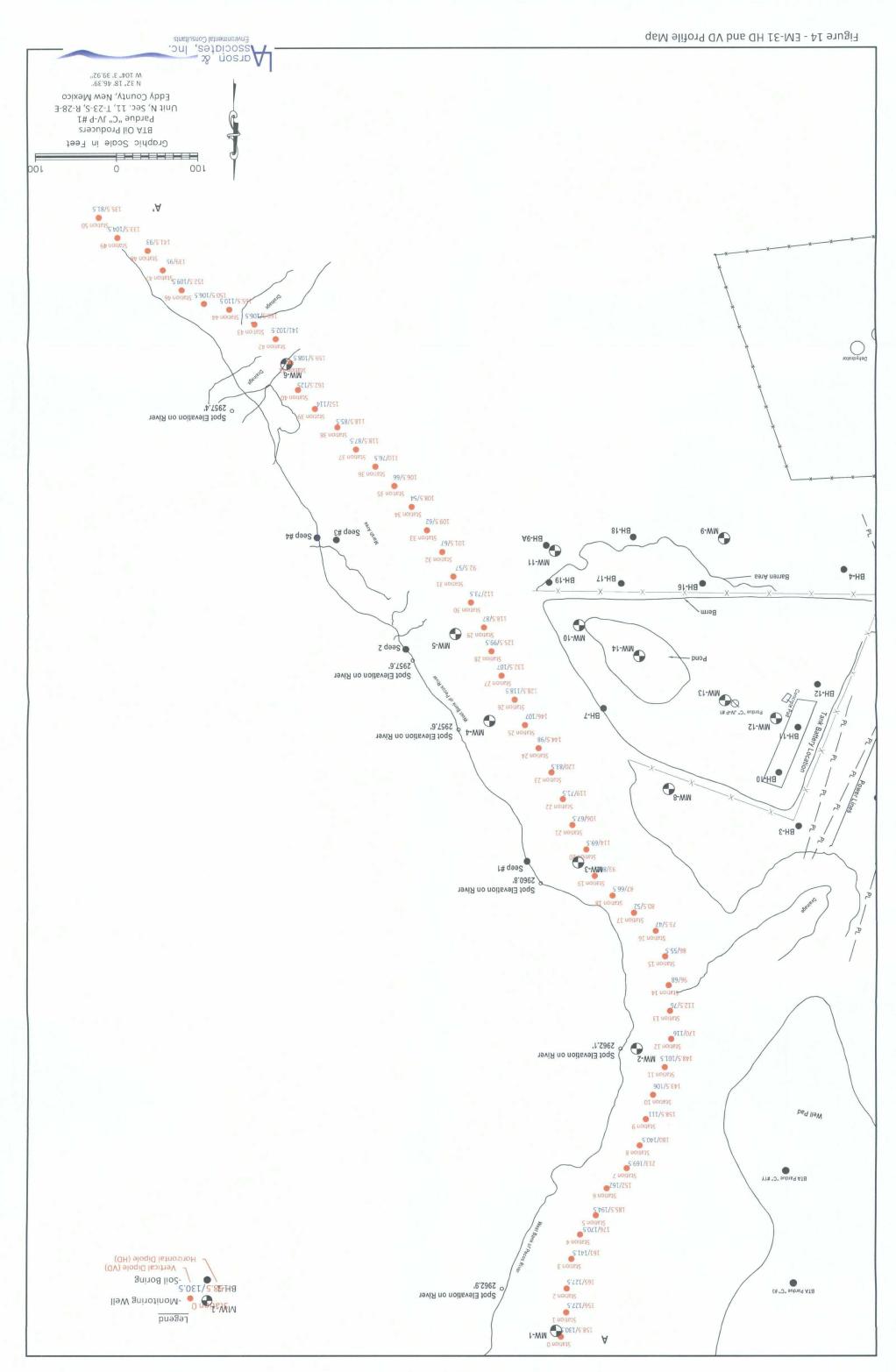
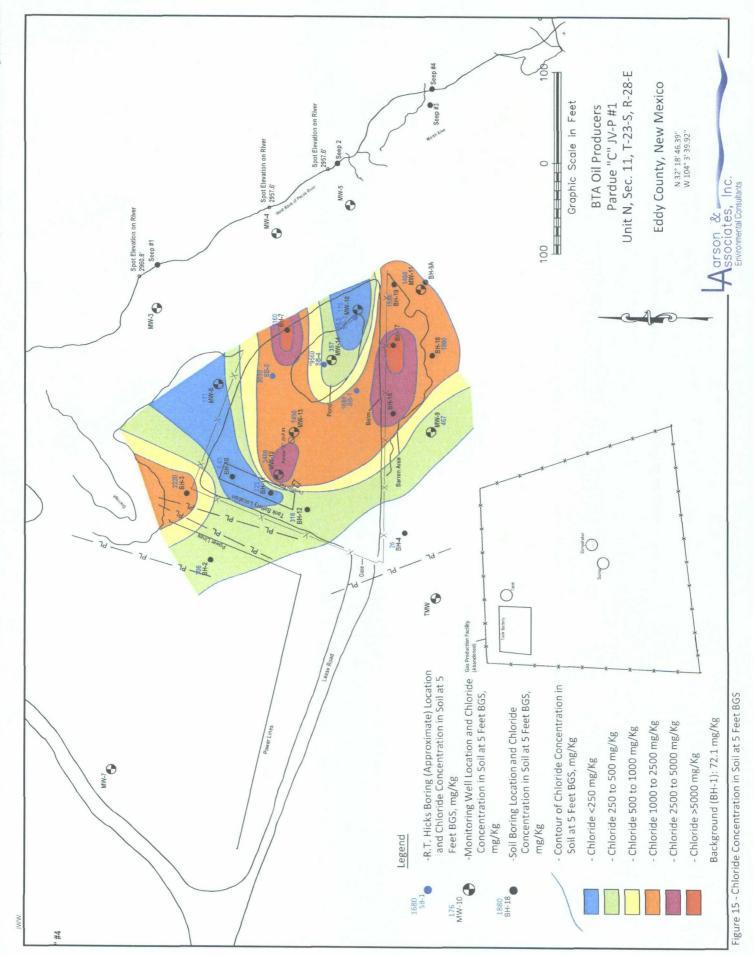



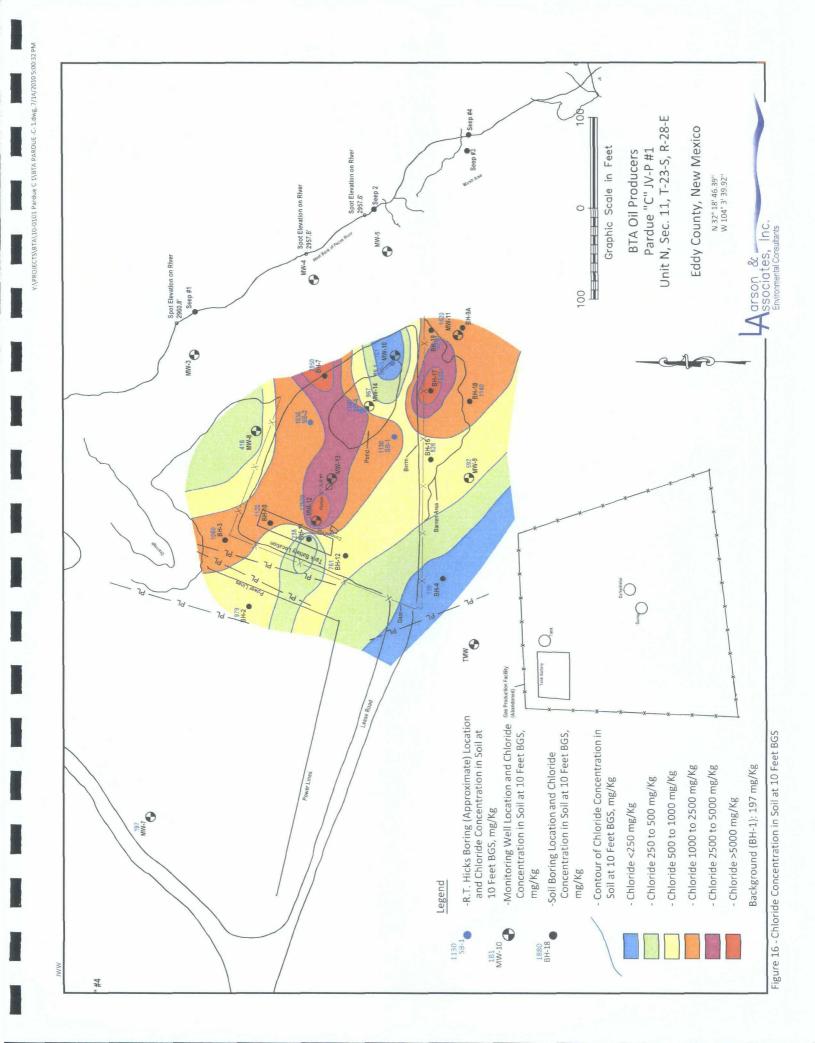
Figure 11 - R.T. Hicks Monitoring Well Locations

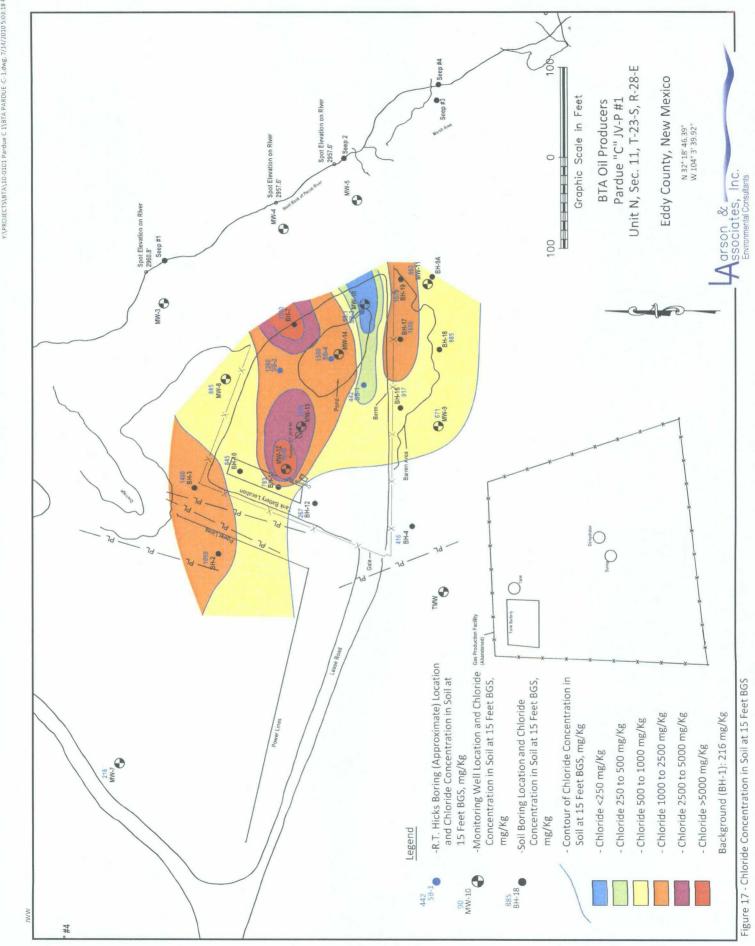

Aarson & Ssociates, Inc. Environmental Consultants

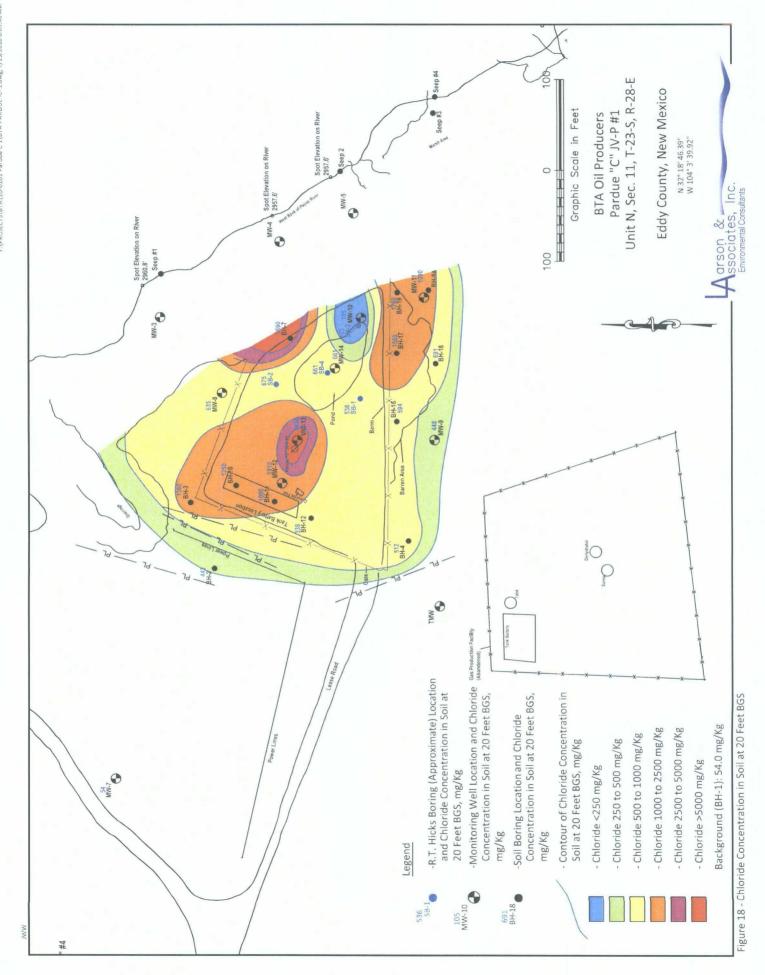

— PL — - Pipeline

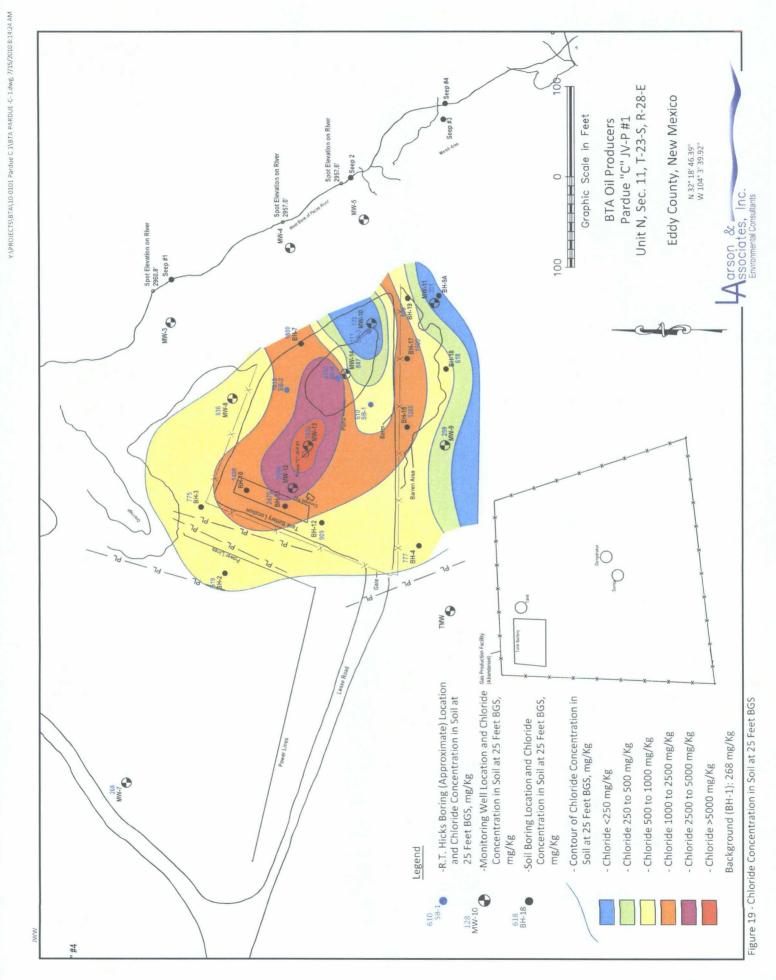
Y:\PROJECTS\BTA\10-0101 Pardue C 1\BTA PARDUE -C- 1.dwg, 7/12/2010 3:50:59 PM

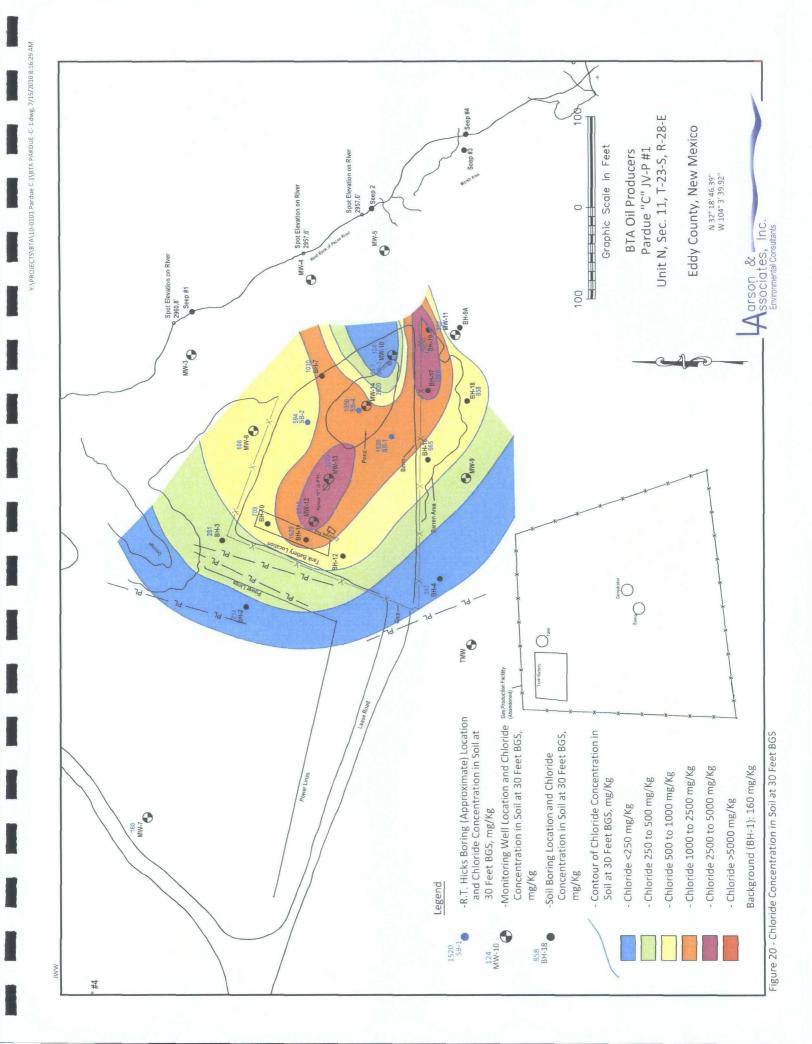


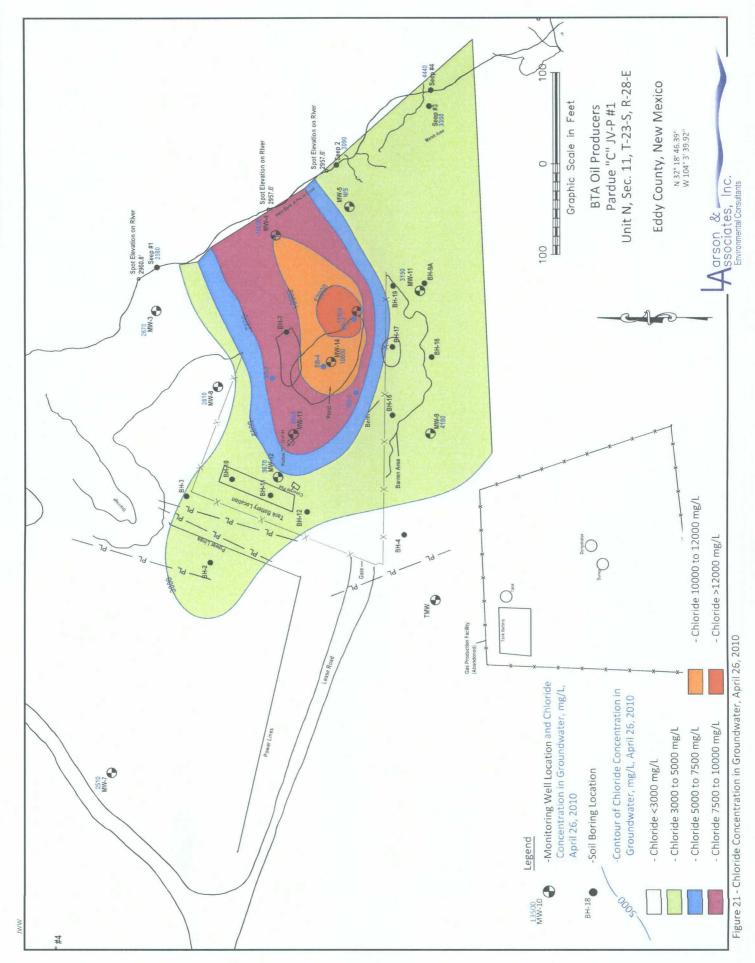


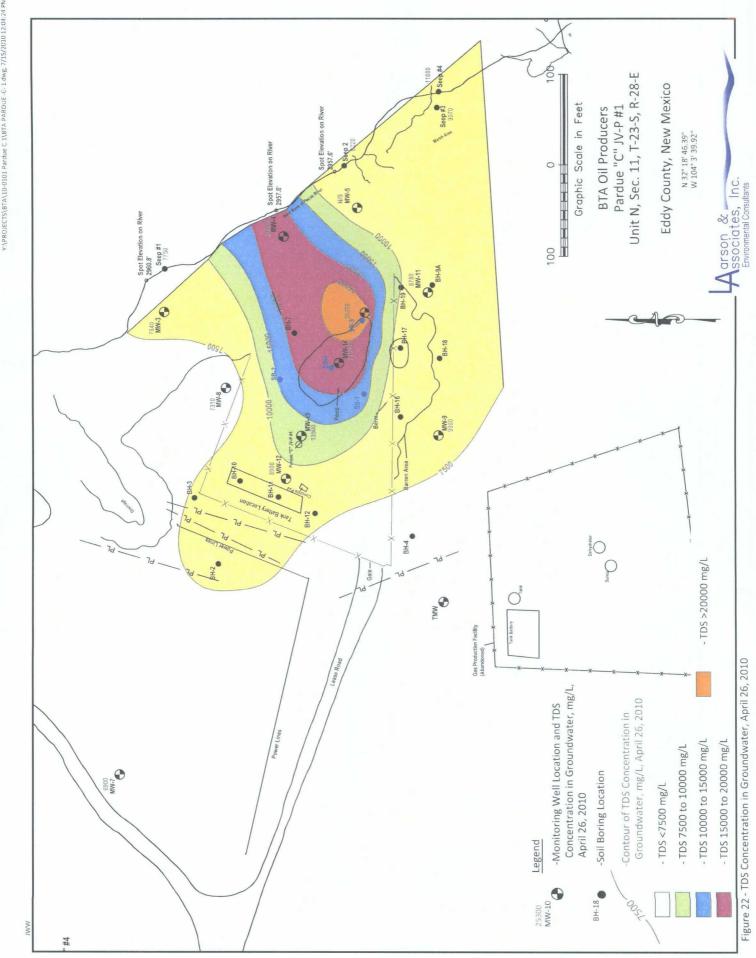

Y:\PROJECT5\BTA\10-0101 Pardue C 1\BTA PARDUE -C- 1.dwg, 7/12/2010 4:07:20 PM

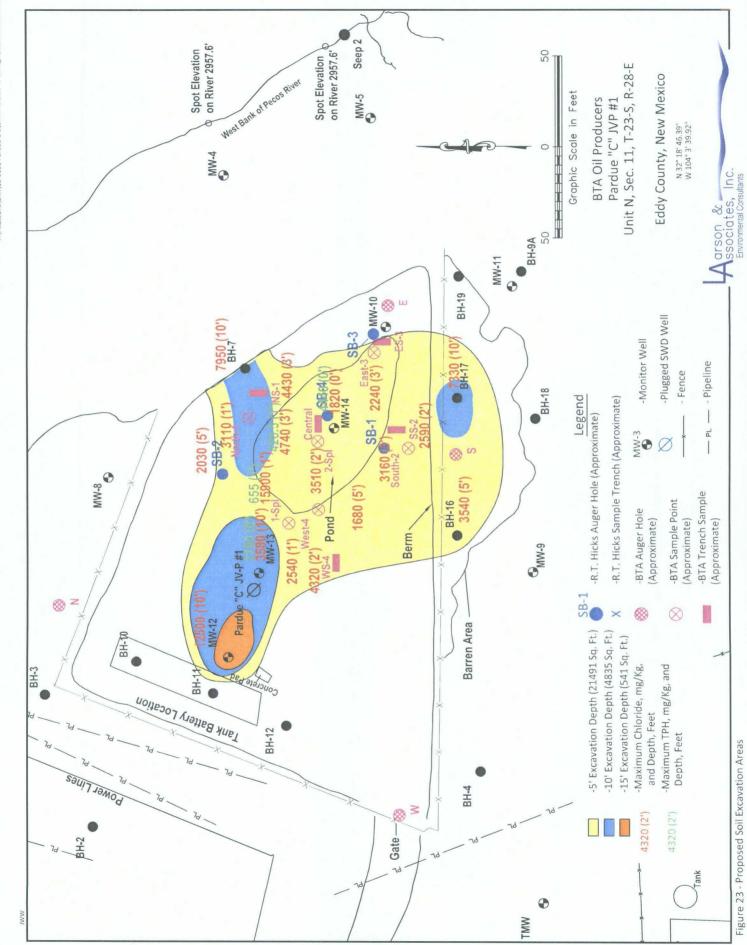

a March


Y:\PROJECTS\BTA\10-0101 Pardue C 1\BTA PARDUE -C- 1.dwg, 7/14/2010 4:59:52 PM






C\PROJECTS\BTA\10-0101 Pardue C 1\BTA PARDUE -C-1.dwg, 7/15/2010 8:09



K\PROJECT5\BTA\10-0101 Pardue C 1\BTA PARDUE -C-1.dwg, 7/15/2010 11:53:57 AN

C)PROJECTS\BTA\10-0101 Pardue C 1\BTA PARDUE -C- 1.dwg, 7/15/2010 11:21:40 AM

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

Mark E. Fesmire, P.E. Director Oil Conservation Division

1 - 200 - 20

19-Oct-07

BTA OIL PRODUCERS 104 S PECOS MIDLAND TX 79701 LOV NO. 02-07-206

LETTER OF VIOLATION - Inspection

Dear Operator:

The following inspection(s) indicate that the well, equipment, location or operational status of the well(s) failed to meet standards of the New Mexico Oil Conservation Division as described in the detail section below. To comply with standards imposed by Rules and Regulations of the Division, corrective action must be taken immediately and the situation brought into compliance. The detail section indicates preliminary findings and/or probable nature of the violation. This determination is based on an inspection of your well or facility by an inspector employed by the Oil Conservation Division on the date(s) indicated.

Please notify the proper district office of the Division, in writing, of the date corrective actions are scheduled to be made so that arrangements can be made to reinspect the well and/or facility.

INSPECTION DETAIL SECTION									
PARDUE C Inspection Date	8808 JVP No. Type Inspection		Violation?	N-11-23S-28E *Significant Non-Compliance?	30-015-26341-00- Corrective Action Due By:	00 Inspection No.			
10/19/2007	Bradenhead	Richard Inge	Yes	No	1/22/2008	iREI0724042324			
Comments on Inspection: Pit four was an o surface o Exclude purpose lines by		Pit found on location where an exist was an overflow line from the pump surface or sub-surface impoundment Excluded from this definition are bee purpose of safety and secondary con lines by compliance due date. You r below-grade tank.	. NMAC Ru , man-made c rms construct tainment." F	le 19.15.1.7.P.3 states or natural depression ted around tanks or of Please clean up the sit	s: "Pit shall mean any or diked area on the s ther facilities solely for e and remove the ove	r urface. or the rflow			

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF THE NEW MEXICO OIL CONSERVATION DIVISION, THROUGH THE ENFORCEMENT AND COMPLIANCE MANAGER, FOR A COMPLIANCE ORDER AGAINST BTA OIL PRODUCERS LLC, FINDING THE OPERATOR IN VIOLATION OF ORDER NO. R-9147-C, 19.15.26.10.B NMAC, 19.15.34 NMAC, 19.15.17 NMAC AND 19.15.29 NMAC AS TO A SALT WATER DISPOSAL FACILITY; REQUIRING OPERATOR TO SUBMIT A DELINEATION REPORT AND REMEDIATE THE FACILITY SITE; IN THE EVENT OF NON-COMPLIANCE REQUIRING THE OPERATOR TO PLUG AND ABANDON THE DISPOSAL WELL AND REMEDIATE THE ASSOCIATED FACILITY BY A DATE CERTAIN AND AUTHORIZE THE DIVISION TO TAKE THOSE ACTIONS AND FORFEIT THE APPLICABLE FINANCIAL ASSURANCE; AND HOLD OPERATOR IN VIOLATION OF 19.15.5.9 NMAC UNTIL OPERATOR COMPLETES ALL ORDERED CORRECTIVE ACTION, EDDY COUNTY, NEW MEXICO.

CASE 14413 Order No. R-13218

STIPULATED ORDER & SETTLEMENT AGREEMENT

The Oil Conservation Division ("OCD") and BTA Oil Producers LLC ("BTA") enter into this Stipulated Order & Settlement Agreement to resolve the civil compliance issues asserted in Case 14413. The parties mutually agree and bind themselves to the following:

1. OCD is the state agency charged with administration and enforcement of the Oil

and Gas Act (hereinafter, "Act"), and the rules promulgated pursuant to that act.

2. Operator is a limited liability company that operates wells in New Mexico under OGRID 305316.

3. BTA posted \$50,000 surety bond 105E9046 through Travelers Indemnity Company to secure the plugging and abandonment of its wells. Travelers Indemnity Company was notified of the hearing before the examiner and did not enter an appearance in the case.

Ċase No. 14413 Stipulated Order ٩,

Case 14413 BTA Oil Producers LLC OCD Exhibit 3 4. BTA is the operator of record of the Pardue C 8808 JVP #001 well, API 30-015-26341, located in Section 11, Township 23 South, Range 28 East in Eddy County, New Mexico (the well). The well is approximately 110 feet to the west of the Pecos River. Ground water at the well site occurs at approximately 41 feet below ground level.

5. The well is permitted as a salt water injection well. See Order No. R-9147-C (1991).

6. On October 19, 2007 an OCD inspector found an unpermitted, unlined pit at the

well site. An overflow line carried produced water from the tank battery at the well site to the

pit.

5. X.

here of

7. In Case No. 14413 the OCD alleges that BTA's use of the pit to dispose of

produced water violates the following:

- Order No. R-9147-C, which provides that the operator shall take all necessary steps to ensure that the injected water is not permitted to escape onto the surface, requires the operator to take such steps as may be timely and necessary to correct failures and leakage, and requires the operator to conduct operations in accordance with OCD's rules on injection, including Rule 703. Rule 703 has since been re-numbered as 19.15.26.10 NMAC.
- 19.15.26.10.B NMAC (formerly numbered Rule 703), which provides that "the operator
 of an injection project shall operate and maintain at all times the injection project,
 including injection wells, producing wells and related surface facilities, in such a manner
 as will confine the injected fluids to the interval or intervals approved and prevent surface
 damage or pollution resulting from leaks, breaks or spills."
- 19.15.34 NMAC, which governs the disposition of produced water and other oilfield waste. Section 11 of Part 34 provides, in relevant part, that no person shall dispose of produced water or other oil field waste "on or below the surface of the ground; in a pit; or in a pond, lake, depression or watercourse" or "in another place or in a manner that may constitute a hazard to fresh water, public health, safety or the environment." Section 12 of Part 34 provides, in relevant part, that persons disposing of produced water shall dispose of the water "in a manner that does not constitute a hazard to fresh water, public health, safety or the environment."

Case No. 14413 Stipulated Order

- 19.15.17 NMAC, which governs pits. "Pit" is defined in 19.15.2.7.P (3) NMAC to
 include natural depressions. Section 8.A of Part 17 provides that a person shall not
 construct or use a pit except in accordance with a division-issued permit. Section 10's
 siting requirements prohibit pits within 300 feet of a continuously flowing watercourse.
 Section 13 prohibits unlined permanent pits, and sets out closure requirements. The
 closure requirements provide that if a release has occurred at a pit, the operator must
 comply with the requirements of 19.15.29 NMAC.
- 19.15.29 NMAC, which governs releases. Section 8 of Part 29 sets out the reporting requirements for releases, requiring the person operating or controlling either the release or the location of the release to notify the division of unauthorized release occurring during the storing, disposal, injection or transportation of produced water or oil field waste. Section 11 requires the responsible person to complete division-approved corrective action for releases that endanger public health or the environment, in accordance with a remediation plan or an abatement plan.
 - 8. The OCD seeks an order requiring BTA to delineate contamination at the site, and

remediate the contamination. The OCD requests that the order provide that the OCD may plug

the well, remediate the site and forfeit the applicable financial assurance if BTA fails to complete

the required corrective action, and requests that BTA be subject to 19.15.5.9 NMAC until it takes

the required corrective action. The OCD cites the following authority for such an order:

- 19.15.29.11 NMAC, which requires the responsible person to complete divisionapproved corrective action for releases that endanger public health or the environment, in accordance with a remediation plan or an abatement plan.
- NMSA 1978, Section 70-2-14(B), which states if any of the requirements of the Act or the rules promulgated pursuant to the Act have not been complied with, the OCD, after notice and hearing, may order any well plugged and abandoned by the operator or surety or both in accordance with OCD rules and regulations, and forfeit the applicable financial assurance.
- NMSA 1978, Section 70-2-12(B), which provides that "apart from any authority, express or implied, elsewhere given to or existing in the oil conservation division by virtue of the Oil and Gas Act or the statutes of this state," the OCD "is authorized to make...orders for the purposes and with respect to" the subjects identified in that subsection, including:

"the disposition of water produced or used in connection with the drilling for or producing of oil or gas or both and to direct surface or subsurface disposal of the water...in a manner that will afford reasonable protection against contamination of fresh water supplies

Case No. 14413 Stipulated Order 3 designated by the state engineer" (NMSA 1978, Section 70-2-12(B)(15); and

"the disposition of nondomestic wastes resulting from the exploration, development, production or storage of crude oil or natural gas to protect public health and the environment" (NMSA 1978, Section 70-2-12(B)(21).

9. BTA agrees that the pit at the well is in violation of Order No. R-9147-C (1991),

19.115.26.10.B NMAC, 19.15.34 NMAC, 19.15.17 NMAC, and 19.15.29 NMAC.

10. BTA has plugged the wellbore of the well, and removed the tank battery.

11. BTA and the OCD agree that BTA will submit a remediation plan to investigate

vadose zone and ground water contamination at the site of the pit and tank battery at the Pardue

8808 JV-P #001, and will remediate the contamination in accordance with an OCD-approved

plan. To begin the process, BTA agrees to the following:

a. By February 25, 2010, BTA shall submit to the OCD's Environmental Bureau a plan to delineate the horizontal and vertical extent of the contamination at the site of the pit and tank battery, and characterize the impact of the produced water releases to the vadose zone, shallow perched aquifer, and the deeper regional aquifer. The OCD encourages BTA to work with the Environmental Bureau in drafting the plan. The plan shall include the following:

- BTA must propose an appropriate number of soil borings and monitor wells that will enable it to completely delineate the impact of the produced water releases to the vadose zone and to ground water.
- The vadose zone investigation must be comprehensive enough that BTA can use the data when removing the chloride-contaminated soil to approximately 20 feet below grade.
- BTA must collect and analyze soil and/or bedrock samples for benzene and total BTEX using 8021 B or 8260 B, TPH using EPA method 418.1, the GRO and DRO combined fractions using 8015 M and chlorides using method 300.1.
- If the GRO soil fraction exceeds 80 mg/kg, then BTA must also analyze for VOCs using method 8260.
- If the DRO soil fraction exceeds 200 mg/kg, then BTA must also analyze for SVOCs using method 8270.

Case No. 14413 Stipulated Order 4

A. Pake

0.8.4

- BTA's ground water investigation must establish background ground water concentrations for chlorides and must delineate the produced water contamination in both the perched aquifer and the deeper regional aquifer.
- BTA must install a sufficient number of monitor wells screened across the shallow perched aquifer with no more than 15 feet of screen (five feet above the water level with 10 feet below) to delineate the ground water contamination.
- BTA must also propose a location for a monitor well to determine whether the deeper regional aquifer has been contaminated.
- BTA must properly develop all monitor wells before sampling the ground water. Purged ground water must be properly collected and BTA must document how it intends to dispose of the purged water.
- BTA must collect and analyze ground water samples for benzene and total BTEX using 8021 B or 8260 B, the GRO and DRO combined fractions using 8015 M, and chlorides using method 300.1.

b. This case shall be continued until the March 4, 2010 docket. At that time the issue to be determined will be the adequacy of the delineation plan, and the next step to be taken in the delineation and remediation process. If the parties are able to enter into an amendment to this stipulated order specifying the next step(s), they may request that the case be continued until a future docket.

c. If BTA fails to meet any of the deadlines set in this order, or by any amendment to this order, the OCD may move for an order authorizing it to remediate the site and forfeit the applicable financial assurance.

d. BTA shall be in violation of 19.15.5.9 NMAC until it has submitted an acceptable delineation plan, received OCD approval of a remediation plan, completed soil remediation and begun remediation of water contamination. If the OCD remediates the site, BTA shall be in violation of 19.15.5.9 NMAC until it demonstrates that it has reimbursed the OCD for its expenses in excess of any amount recovered from the applicable financial assurance.

e. Either BTA or the OCD may move to re-open Case 14413 to request amendments to this order.

12. Nothing in this Order relieves BTA of its liability should it fail to investigate and

remediate contamination that poses a threat to ground water, surface water, human health or the

environment. In addition, nothing in this Order relieves BTA of its responsibility for compliance

with any other federal, state or local laws and/or regulations.

Case No. 14413 Stipulated Order 5

BTA Oil Producers LLC BZ BTA Oil Producers LLC

10 2 2 Date

Oil Conservation Division

Augers B.

ی اطلاح د ای

1.200

Sec. 19

india 2 m

1.28.1

1. T. B.

6. 2 . 0

4 . Also

A. 9. 4

4 18.14

Page -

"F - 2 - BUS

Daniel Sanchez, Compliance and Enforcement Manager

<u>2-2-10</u> Date

Oil Conservation Division

APPROVED BY: 7

2/5/10 Date

Mark Fesmire PE Director Oil Conservation Division

Case No. 14413 Stipulated Order 6

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF THE NEW MEXICO OIL CONSERVATION DIVISION, THROUGH THE ENFORCEMENT AND COMPLIANCE MANAGER, FOR A COMPLIANCE ORDER AGAINST BTA OIL PRODUCERS LLC, FINDING THE OPERATOR IN VIOLATION OF ORDER NO. R-9147-C, 19.15.26.10.B NMAC, 19.15.34 NMAC, 19.15.17 NMAC AND 19.15.29 NMAC AS TO A SALT WATER DISPOSAL FACILITY; REQUIRING OPERATOR TO SUBMIT A DELINEATION REPORT AND REMEDIATE THE FACILITY SITE; IN THE EVENT OF NON-COMPLIANCE REQUIRING THE OPERATOR TO PLUG AND ABANDON THE DISPOSAL WELL AND REMEDIATE THE ASSOCIATED FACILITY BY A DATE CERTAIN AND AUTHORIZE THE DIVISION TO TAKE THOSE ACTIONS AND FORFEIT THE APPLICABLE FINANCIAL ASSURANCE; AND HOLD OPERATOR IN VIOLATION OF 19.15.5.9 NMAC UNTIL OPERATOR COMPLETES ALL ORDERED CORRECTIVE ACTION, EDDY COUNTY, NEW MEXICO.

CASE 14413

Order No. R-13218-A

FIRST AMENDMENT TO THE STIPULATED ORDER & SETTLEMENT AGREEMENT

The Oil Conservation Division ("OCD") and BTA Oil Producers LLC ("BTA") agree to amend Order No. R-13218, the Stipulated Order and Settlement Agreement approved in Case 14413, to add the following provisions:

1. BTA timely filed a delineation plan, which the OCD has approved with conditions. The approved delineation plan satisfies the requirements of Paragraph 11(a) of Order No. R-13218.

2. BTA and the OCD agree that:

a. BTA shall conduct the delineation in accordance with its approved plan. BTA is reminded that its approved plan requires it to obtain OCD approval of proposed soil boring

Case No. 14413 First Amendment to Stipulated Order locations prior to mobilizing a drilling rig, and to obtain OCD approval of the locations of monitoring wells (including background) prior to mobilizing a drilling rig.

b. By August 5, 2010 BTA shall file with the OCD's Environmental Bureau a delineation report as described in its approved delineation plan.

c. By August 5, 2010 BTA shall file with the OCD's Environmental Bureau a proposed remediation approach, based on the findings made in its delineation report. Once the OCD has approved the remediation approach, BTA will have additional time in which to prepare a remediation plan based on the approved approach.

d. BTA shall e-mail Acting Environmental Bureau Chief Glenn von Gonten at least every two weeks to provide an update on BTA's progress.

e. This case shall be continued until the August 19, 2010 docket. At that time the issue to be determined will be the sufficiency of the delineation report and proposed remediation approach, and the next step to be taken in the remediation process. If the parties are able to enter into an amendment to this stipulated order specifying the next step(s), they may request that the case be continued until a future docket.

3. The remaining provisions of Order R-13218 remain in full force and effect.

BTA Oil Producers LLC

BTA Oil Producers LLC

Date

Oil Conservation Division

Daniel Sanchez,

Date

Case No. 14413 First Amendment to Stipulated Order 2 Compliance and Enforcement Manager Oil Conservation Division

APPROVED BY:

Mark Fesmire PE Director Oil Conservation Division

Date

Case No. 14413 First Amendment to Stipulated Order 3 New Mexico Energy, Minerals and Natural Resources Department

Bill Richardson

Jon Goldstein Cabinet Secretary

Jim Noel Deputy Cabinet Secretary Mark Fesmire Division Director Oil Conservation Division

FEBRUARY 10, 2010

Mr. Ben Grimes Operations Manager BTA Oil Producers LLC 104 South Pecos Midland, TX 79701

RE: BTA Oil Producers LLC Pardue "C" SWD Site Delineation Plan and Infrastructure Assessment 8808 JV-P Pardue SWD Facility Unit "A", Section 11, Township 23 South, Range 28 East Eddy County, New Mexico 2R155

Mr. Grimes:

The Oil Conservation Division (OCD) has received the "Site Delineation Plan" for the Pardue "C" SWD Facility, dated February 8, 2010, and a copy of the "Infrastructure Assessment" report. OCD has completed its review of the plan and cannot approve the plan and report as submitted and requires BTA to address the following issues:

Site Delineation Plan

1. Provide the proposed locations of additional soil borings or surface samples, especially in the former tank battery area.

2. Provide information for proposed well construction such that the screen length for all ground water monitoring well is 10 feet (not 40 feet as initially proposed) and that the "perch zone" and regional aquifer will not be hydraulically interconnected.

3. Provide the proposed location of "background" soil sampling.

4. Provide additional information regarding how the wells will be developed.

5. Provide additional information regarding field testing for chloride (e.g., instruction sheet).

Mr. Ben Grimes February 10, 2010 Page 2

H .U. H

. На 19 6. Provide additional information regarding sampling methods, including stabilization determination (e.g., +/- 10%), equipment decontamination and purge water disposal.

7. Revise Figure 3 and provide additional figures as necessary to depict the locations of all soil borings, monitor wells, and piezometers that have been previously advanced as well as the proposed new monitor wells and the seep areas.

8. Revise Section 4.0 to include a commitment to contact OCD prior to the final siting of all soil borings/monitor wells.

9. Revise Section 4.0 to specify how BTA will develop each monitor wells.

10. Revise Section 4.0 to specify how BTA will collect and dispose of any purge water, *etc.*

11. Revise Section 4.0 and Figure 3 to indicate that BTA shall advance at least one soil boring/monitor well downgradient of the tank battery and at least one soil boring/monitor well downgradient of the SWD well head.

12. Revise Section 4.0 to specify that BTA will take at least 5 percent duplicate samples for QA/QC and analyze the duplicate samples for the full suite.

13. Revise Section 4.2 so that the screen length, including "slotted" PVC pipe does not exceed ten feet in length (five feet above and five feet below the water table, **not** 40 feet).

14. Revise Section 4.2 to specify that the PVC casing shall be flush threaded and that the joints shall not be glued together.

15. Revise Section 4.2 to specify that the filter pack will be installed from the bottom of the borehole to no more than two feet above the top of the screen (**not** 20 feet above the top of the screen).

16. Revise Section 4.2 to specify that BTA will run Portland cement mixed with 2-5% bentonite back to surface.

17. Revise Section 4.4 by adding TPH (EPA Method 418.1) for soils and ground water and TDS (Standard Method 2540C) for ground water.

18. Revise Section 4.4 to specify how BTA will sample the monitor wells; *e.g.*, will dedicated bailers be used.

. the own

家語では

1. a. a.

A. 1840

S. Mary

19. Revise Section 4.4 to address how BTA will screen for and sample any NAPL.

20. Revise Section 4.4 to specify that at least one confirmation sample shall be taken below a sample that delineates chloride or hydrocarbon contamination vertically.

21. Add a section that addresses routine communications with OCD and notice to both OCD's Santa Fe office and Artesia District office.

22. Add a section that specifies the information that BTA will submit in its Delineation Report, including the integration of all existing data with newly determined data.

23. Add as section that specifies how BTA will survey all soil boring/monitor well locations.

Infrastructure Assessment

BTA's *Infrastructure Assessment* report provides a useful overview of how BTA operates its facilities in New Mexico. However, it does not address all the issues that OCD specified in its letter of November 18, 2009. OCD cannot approve the assessment as submitted and requires BTA to submit an Plan (rather than a report) to determine how it can improve its performance by preventing releases and spills at its New Mexico facilities by replacing or repairing any substandard equipment, aging infrastructure, preventing lightning strikes, *etc.* This plan should include a commitment by BTA to conduct site surveys to determine the condition of its equipment, including, but not limited to, valves, tanks, pipelines, *etc.* BTA should also provide an inventory of all of its sites and facilities at which it has conducted an inspection.

If you have any questions regarding OCD's review, please contact me at 505-476-3488.

Sincerely,

Glenn von Gonten Acting Environmental Bureau Chief

GvG/gvg

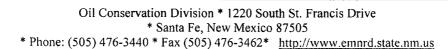
cc: Daniel Sanchez Gail Macquesten Ed Hansen Jim Griswold Mike Bratcher Sherry Bonham New Mexico Energy, Minerals and Natural Resources Department

Bill Richardson Governor

Jon Goldstein Cabinet Sceretary

Jim Noel Deputy Cabinet Secretary Mark Fesmire Division Director Oil Conservation Division

FEBRUARY 16, 2010


Mr. Ben Grimes Operations Manager BTA Oil Producers LLC 104 South Pecos Midland, TX 79701

RE: Revised Pardue "C" SWD Site Delineation Plan BTA Oil Producers LLC, Loving East Field, Unit A (NE/4, NE/4), Section 11, Township 23 South, Range 28 East NMPM, Eddy County, New Mexico 2R155

Mr. Grimes:

The Oil Conservation Division (OCD) has received the "Revised Site Delineation Plan" for the Pardue "C" SWD Facility, dated February 12, 2010, and an email copy of the "Infrastructure Plan" and "Pumper Monthly Inspection Form" dated February 12, 2010. OCD has completed its review of the "Revised Site Delineation Plan" and hereby conditionally approves it with the following conditions.

- 1. BTA shall install 4-inch diameter ground water monitoring wells in the "perched" zone at the site.
- 2. BTA shall use +/- 10% readings for stabilization determination when using low flow sampling.
- 3. BTA shall obtain OCD approval of purge water disposal method(s) prior to producing any purge water at the site.
- 4. BTA shall ensure that the casing surveys are conducted with a horizontal accuracy of 0.1 foot and a vertical accuracy of 0.01 foot (see Section 2.3).
- 5. BTA shall ensure that all ground water and NAPL elevation measurements are conducted with a vertical accuracy of 0.01.
- 6. BTA shall inspect the seeps and collect a sample if the seeps are flowing.

Mr. Ben Grimes February 10, 2010 Page 2

5 . A

1. S. A.

1. C. C.

State at 1

· 2 . 2 . 2

SAL N

24 8 30

1. and " 1.

1. 2. 2 M

a Mich

1. 6 . . . C

No March

S. S. S. S. S.

7. BTA shall include an appropriate number of maps and cross-sections to demonstrate that it has delineated the subsurface impacts (see Section 2.6).

OCD hereby approves the "Infrastructure Plan" and "Pumper Monthly Inspection Form."

Please be advised that OCD approval of these Plans does not relieve BTA of responsibility if its operations pose a threat to ground water, surface water, human health, or the environment. In addition, OCD approval does not relieve BTA of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

If you have any questions regarding OCD's review, please contact me at 505-476-3488.

Sincerely,

Glenn von Gonten Acting Environmental Bureau Chief

GvG/gvg

cc: Daniel Sanchez Gail Macquesten Ed Hansen Jim Griswold Mike Bratcher Sherry Bonham

March 10, 2010

H. 2. 01

State of

1. 1.

S. STATUS

16F 6

c te

2 H. 10115

Se Sugar

M. Jos

Mr. Glenn von Gonten Acting Environmental Bureau Chief New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: NMOCD Case No. 14413, BTA Oil Producers LLC Pardue "C" 8808 JV-P Well #1 - Preliminary Investigation Report Unit N (SE/4, SW/4), Section 11, Township 23 South, Range 28 East Eddy County, New Mexico

Dear Mr. von Gonten:

Larson & Associates, Inc. (LAI), as consultant to BTA Oil Producers LLC (BTA), submits the enclosed report to the New Mexico Oil Conservation Division (OCD) which presents the results of an electromagnetic (EM-31) terrain conductivity survey performed at the above-referenced location on February 24 and 25, 2010. The report includes a scope of work for additional investigations and timeline for the investigations. Please contact Mr. Ben Grimes, Operations Manager for BTA, at (432) 682-3753 or myself if you have questions. We may also be reached by email: <u>BGrimes@btaoil.com</u> or <u>mark@laenvironmental.com</u>. Sincerely,

Larson & Associates, Inc.

Mark J. Larson, P.G., C.P.G., C.G.W.P. Sr. Project Manager / President

Encl.

Cc: Sherry Bonham – OCD District 2 Ben Grimes – BTA Stuart Beal - BTA

Mark Larson

1 Tot 1

1. 1. A.

A Pas Mar

States.

1216.5

Star of the star

1. S. an

1. 18 1 E. A.

においてい

The Burk

A. He Here

の限の語

「見てい」

S. W. Ster

1- All - and

「ないです」

Sec.

From: Sent: To:	VonGonten, Glenn, EMNRD [Glenn.VonGonten@state.nm.us] Friday, March 12, 2010 2:53 PM Mark Larson; Sanchez, Daniel J., EMNRD; Macquesten, Gail, EMNRD; Hansen, Edward J.,
Cc: Subject: Attachments:	EMNRD; Griswold, Jim, EMNRD Bonham, Sherry, EMNRD; Ben Grimes; Stuart Beal; Bratcher, Mike, EMNRD RE: Pardue "C" 8808 JV-P SWD Well #1 Preliminary Investigation Report and Timeline image001.jpg
Ben, Mark:	
	s the Preliminary Investigation Report and Timeline submitted by Larson & Associates, Inc. on ducers. OCD also approves the Proposed Investigations detailed in Section 7 of the report.
Please submit a week	ly progress report and let OCD know of any unexpected delays.
Glenn	
Sent: Wednesday, M To: VonGonten, Glen Cc: Bonham, Sherry,	mailto:Mark@laenvironmental.com] arch 10, 2010 9:42 AM n, EMNRD EMNRD; Ben Grimes; Stuart Beal "C" 8808 JV-P SWD Well #1 Preliminary Investigation Report and Timeline
Glenn, Please find the attach Producers LLC (BTA) k (EM-31 survey), prop (SE/4, SW/4), Section	ned documents submitted to the New Mexico Oil Conservation Division (OCD) on behalf of BTA Oi by Larson & Associates, Inc. (LAI), its consultant, to report the findings of an initial investigation osed additional investigations and timeline for the Pardue "C" JV-P SWD Well #1 located in Unit N 11, Township 23 South, Range 28 East NMPM in Eddy County, New Mexico. A bound copy of the vill be sent via U.S. Mail today. Please contact Mr. Ben Grimes with BTA at (432) 682-3753 or mys

1

;

1

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

arson & **SSOCIATES**, Inc. Environmental Consultants

BTA Oil Producers LLC Pardue "C" 8808 JV-P Well #1 Eddy County, New Mexico

10° 200

: @.... (

8 400 S

S. W. M.

W. Bas

1 3d 3d

S. Star Star

1. X. C. V.

Same a

ので

the Budt

3. B. C.

の変換し

a state

The states

Street Co

Proposed Schedule

.....

11

.....

Delineation") to OCD – Santa Fe and Artesia, NMFebruary 16, 2010OCD – Santa approved revised delineation planFebruary 24 – 25, 2010LAI performed EM-31 conductivity surveyMarch 8, 2010LAI submitted preliminary investigation report ("Preliminary Investigation Report, Pardue "C" 8808 JV-P Well #1, NMOCD Case No 14413, Eddy County, NM") to OCD in Santa Fe and Artesia, NMMarch 29 – April 1, Nobilize rig; drill and sample BH-9; install MW-11 (shallow) and MW 201011A (deep)April 2, 2010Holiday – Good FridayApril 5, 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill BH-10, BH-11 and BH-12April 9, 2010Drill BH-10, BH-14; install MW-10April 12, 2010Drill BH-10, BH-14; install MW-12April 13, 2010Drill BH-13 and BH-14; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 17, 2010Install MW-7AApril 16, 2010Gauge and sample BH-19; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 16, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 - July 16, 2010Data reduction, evaluation and report preparation <th>Date</th> <th>Event</th>	Date	Event
February 16, 2010OCD – Santa approved revised delineation planFebruary 24 – 25, 2010LAI performed EM-31 conductivity survey 2010March 8, 2010LAI submitted preliminary investigation report ("Preliminary Investigation Report, Pardue "C" 8808 JV-P Well #1, NMOCD Case No 14413, Eddy County, NM") to OCD in Santa Fe and Artesia, NMMarch 29 – April 1, Mobilize rig; drill and sample BH-9; install MW-11 (shallow) and MW 201011A (deep)April 2, 2010Holiday – Good FridayApril 5, 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and sample BH-15; install MW-14April 14, 2010Drill and sample BH-15; install MW-7A (deep) surface casing (necessary)April 15, 2010Install MW-7AApril 16, 2010Install MW-7AApril 16, 2010Install MW-7AApril 16, 2010Gauge and sample BH-19; install MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	February 12, 2010	LAI submitted revised delineation plan ("Revised Pardue "C" SWD
February2425, LAI performed EM-31 conductivity survey20102010March 8, 2010LAI submitted preliminary investigation report ("Preliminary Investigation Report, Pardue "C" 8808 JV-P Well #1, NMOCD Case No 14413, Eddy County, NM") to OCD in Santa Fe and Artesia, NMMarch 29 - April 1, 2010Mobilize rig; drill and sample BH-9; install MW-11 (shallow) and MW 11A (deep)April 2, 2010Holiday - Good FridayApril 5, 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-13 and MW-14April 14, 2010Drill and sample BH-15; install MW-13 and MW-14April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 16, 2010Install MW-7AApril 16, 2010Install MW-7AApril 16, 2010Gauge and sample BH-19; install MW-7A (deep) surface casing (necessary)April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation		Delineation") to OCD – Santa Fe and Artesia, NM
2010LAIsubmittedpreliminaryinvestigationreport("PreliminaryInvestigationReport, Pardue "C" 8808 JV-P Well #1, NMOCD Case No14413, Eddy County, NM") to OCD in Santa Fe and Artesia, NMMarch 29 - April 1,Mobilize rig; drill and sample BH-9; install MW-11 (shallow) and MW201011A (deep)April 2, 2010Holiday - Good FridayApril 5, 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and sample BH-16; BH-17 and BH-18April 14, 2010Drill and sample BH-16; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 19 - 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	February 16, 2010	OCD – Santa approved revised delineation plan
Investigation Report, Pardue "C" 8808 JV-P Well #1, NMOCD Case No14413, Eddy County, NM") to OCD in Santa Fe and Artesia, NMMarch 29 – April 1,Mobilize rig; drill and sample BH-9; install MW-11 (shallow) and MW201011A (deep)April 2, 2010Holiday – Good FridayApril 5, 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (in necessary)April 16, 2010Install MW-7AApril 19 - 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, Data reduction, evaluation and report preparation2010Conduct slug tests		LAI performed EM-31 conductivity survey
201011A (deep)April 2, 2010Holiday – Good FridayApril 5, 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	March 8, 2010	Investigation Report, Pardue "C" 8808 JV-P Well #1, NMOCD Case No.
April 5 , 2010Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	• •	Mobilize rig; drill and sample BH-9; install MW-11 (shallow) and MW- 11A (deep)
BH-2; install MW-7April 6, 2010Sample MW-11/MW-11A; drill and collect soil samples from boring BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (necessary)April 16, 2010Install MW-7AApril 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	April 2, 2010	
BH-3, BH-4 and BH-5April 7, 2010Install MW-8; drill and sample BH-6; install MW-9April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (incessary)April 16, 2010Install MW-7AApril 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	April 5 , 2010	Develop and sample MW-11 and MW-11A; drill and sample BH-1 and BH-2; install MW-7
April 8, 2010Drill and sample BH-7 and BH-8; install MW-10April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (incressary)April 16, 2010Install MW-7AApril 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 10 - July 16, 2010Data reduction, evaluation and report preparation	April 6, 2010	Sample MW-11/MW-11A; drill and collect soil samples from borings BH-3, BH-4 and BH-5
April 9, 2010Drill BH-10, BH-11 and BH-12April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (increasary)April 16, 2010Install MW-7AApril 19 – 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 – July 16, 2010Data reduction, evaluation and report preparation	April 7, 2010	Install MW-8; drill and sample BH-6; install MW-9
April 12, 2010Drill BH-13 and BH-14; install MW-12April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (incessary)April 16, 2010Install MW-7AApril 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 - July 16, 2010Data reduction, evaluation and report preparation	April 8, 2010	Drill and sample BH-7 and BH-8; install MW-10
April 13, 2010Drill and samples BH-15; install MW-13 and MW-14April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (inecessary)April 16, 2010Install MW-7AApril 19 – 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 - July 16,Data reduction, evaluation and report preparation	April 9, 2010	Drill BH-10, BH-11 and BH-12
April 14, 2010Drill and sample BH-16, BH-17 and BH-18April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (incessary)April 16, 2010Install MW-7AApril 19 – 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 – July 16, 2010Data reduction, evaluation and report preparation	April 12, 2010	Drill BH-13 and BH-14; install MW-12
April 15, 2010Drill and sample BH-19; install MW-7A (deep) surface casing (incessary)April 16, 2010Install MW-7AApril 19 – 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 – July 16,Data reduction, evaluation and report preparation	April 13, 2010	Drill and samples BH-15; install MW-13 and MW-14
necessary)April 16, 2010Install MW-7AApril 19 – 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 – July 16,Data reduction, evaluation and report preparation2010Conduct slug tests	April 14, 2010	Drill and sample BH-16, BH-17 and BH-18
April 19 – 23, 2010Develop wells MW-7/MW-7A and MW-8 through MW-14April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 - July 16, 2010Data reduction, evaluation and report preparation	April 15, 2010	Drill and sample BH-19; install MW-7A (deep) surface casing (if necessary)
April 26 - 30, 2010Gauge and sample monitoring wells and seeps.May 3 - 7, 2010Conduct slug testsMay 10 - July 16,Data reduction, evaluation and report preparation2010Conduct slug tests	April 16, 2010	Install MW-7A
May 3 - 7, 2010Conduct slug testsMay 10 - July 16,Data reduction, evaluation and report preparation20102010	April 19 – 23, 2010	Develop wells MW-7/MW-7A and MW-8 through MW-14
May 10 – July 16, Data reduction, evaluation and report preparation 2010	April 26 - 30, 2010	Gauge and sample monitoring wells and seeps.
2010	May 3 - 7, 2010	Conduct slug tests
July 19, 2010 Deliver report to OCD - Santa Fo and Artesia NM	• • • •	Data reduction, evaluation and report preparation
July 19, 2010 Denver report to OCD – Janua Fe and Artesia, Myr	July 19, 2010	Deliver report to OCD – Santa Fe and Artesia, NM

Mark Larson

1. 2. 1. 1. m.

445 CU3

の 日本

The strength of

1. 20. 20. 2

A 26. 6

1. (EB)

· .

A. 15

1. . Bak

19. No. 10.

Sec. 25

13.13

From: Sent: To: Cc: Subject:	VonGonten, Glenn, EMNRD [Glenn.VonGonten@state.nm.us] Friday, March 12, 2010 2:53 PM Mark Larson; Sanchez, Daniel J., EMNRD; Macquesten, Gail, EMNRD; Hansen, Edward J., EMNRD; Griswold, Jim, EMNRD Bonham, Sherry, EMNRD; Ben Grimes; Stuart Beal; Bratcher, Mike, EMNRD RE: Pardue "C" 8808 JV-P SWD Well #1 Preliminary Investigation Report and Timeline							
Attachments:	image001.jpg							
Ben, Mark:								
	the Preliminary Investigation Report and Timeline submitted by Larson & Associates, Inc. on Icers. OCD also approves the Proposed Investigations detailed in Section 7 of the report.							
Please submit a weekly	progress report and let OCD know of any unexpected delays.							
Glenn								
Sent: Wednesday, Mar To: VonGonten, Glenn,	•							
	C" 8808 JV-P SWD Well #1 Preliminary Investigation Report and Timeline							
Producers LLC (BTA) by (EM-31 survey), propos (SE/4, SW/4), Section 1	ed documents submitted to the New Mexico Oil Conservation Division (OCD) on behalf of BTA Oil or Larson & Associates, Inc. (LAI), its consultant, to report the findings of an initial investigation sed additional investigations and timeline for the Pardue "C" JV-P SWD Well #1 located in Unit N 0.1, Township 23 South, Range 28 East NMPM in Eddy County, New Mexico. A bound copy of the II be sent via U.S. Mail today. Please contact Mr. Ben Grimes with BTA at (432) 682-3753 or myself							

ł

-----+

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

arson & SSOCIATES, Inc. Environmental Consultants

.

I am using the Free version of <u>SPAMfighter</u>. We are a community of 6 million users fighting spam. SPAMfighter has removed 5175 of my spam emails to date. The Professional version does not have this message.

1. S. 10

1. N. C.

1 3 . N . N

S' ward a

A. 8

建 (学)

10 M

5 . S. S. S.

This inbound email has been scanned for malicious software and transmitted safely to you using Webroot Email Security.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. This email has been scanned using Webroot Email Security.

1.4

S. S.

1.12 ale 3

.

.

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are (quarters a		-	(NAD83 UTM in meters)				
	POD Number	Q64 Q16	Q4 Se	c Tws I	Rng	Х	١	Y	
	C 00128	24	4 15	23S	28E	587783	3574162	*	
Driller License	SMITH, SAM'S.	• • •						<u></u>	-
Driller Name:	SMITH, SAM S.								
Drill Start Date	: 12/24/1952	Drill Finish D	ate:	01/10)/1953	Plug	Date:		
Log File Date:	04/30/1953	PCW Rcv Dat	e:	04/20)/1949	Sou	rce:	Shallow	
Pump Type:		Pipe Discharg	ge Size	:		Esti	mated Yie	eld:	
Casing Size:	7.00	Depth Well:	Depth Well: 149 fe			feet Depth Water:			
Wa	ter Bearing Stratifi	cations: To	ор Во	ttom D	escript	tion		<u></u>	
			25	120 S	andstor	ne/Grave	l/Conglom	erate	
	Casing Perf	orations: To	ор Во	ttom					_
		:	37	130					

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

 PC C	00269	(quar	ers are 1= ters are s Q16 Q4 4 2	mallest Sec	t to lar Tws		(NAD83	x	M in meters) Y 3574773*				,
Driller License:	FREEK, R.H.												
 Driller Name:	FREEK, R.H.												
Drill Start Date:	03/01/1958	Drill Finis	sh Date	:	03/	30/1958	PI	ug	Date:				
Log File Date:	04/08/1958	PCW Rev	/ Date:		04/	14/1959	Se	our	ce:	Shallo	w		
Pump Type:	TURBIN	Pipe Discharge Size:					Estimated Yield:						
Casing Size:	6.00	Depth W	ell:		240) feet	D	eptl	h Water:	35 fee	et		
Wate	r Bearing Stratif	ications:	Тор	Bott	om	Descrip	tion						
			20		65	Shale/M	ludston	e/S	iltstone				
•			200		205	Shale/M	ludston	e/S	iltstone			-	
	Casing Peri	forations:	Тор	Bott	om								
			48		54								

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

 · · · · · · · · · · · · · · · · · · ·	(A) Owner of well DANIEL He. MAGBY
	City LOVINI State NEW MEXICO
 	Well was drilled under Permit No. C269 and is located in the SE 1/4 SE 1/4 NE 1/4 of Section 15 Twp. 23 S Rge 28E
	(B) Drilling Contractor R. H. FREEK License No. WO 212 Street and Number VAN DAWSON COURTS, HOUTH Y
 	CityCARLSEADStateNEW Liex100
	Drilling was commenced
	Drilling was completed

Elevation at top of casing in feet above sea level ______ Total depth of well ______ 240______ State whether well is shallow or artesian ______ SHALLOW ______ Depth to water upon completion ______ 35_____

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth in Feet		Thickness in	Description of Water-Bearing Formation				
NU.	From	То	Feet					
1	40	65	25	RED ROCK FORMATION WATER				
2	500	205	55	BLUE SHALE WATER				
3				20 GAL, NO SALT WATER				
4								
5								

Section 3				RECOR	D OF CAS	ING		
Dia Pounds		Threads	pth	Feet	Type Shoe	Perforations		
in.	ſt.	in	Top	Bottom	reet	Type Shoe	From	То
		SPLOED		85	85	SHOE		
		HOLE DRY		85	200	BALT WATE	20 G. 157.	
				200	205	BLUE SHALE	SALT WATER	
		1 1			ļ			

Section 4

RECORD OF MUDDING AND CEMENTING

Depth From	in Feet To	Diameter Hole in in.	Tons Clay	No. Sacks of Cement	Methods Used
		6		2	FILL HOLE WITH HEAVY MUD TO 125 WITH

800	tion	5
OUU	CON	0

PLUGGING RECORD

Name of Plugging Contractor License No	
Street and Number	
Tons of Clay used Tons of Roughage used Type of roughage	
Plugging method usedDate Plugged19	
Plugging approved by: Cement Plugs were placed as follows:	

	Basin Supervisor	No.	Depth From	of Plug To	No. of Sacks Used
FOR USE OF	STATE ENGINEER ONLY				
Date Received	APR 8 1958				
	OFA IN ISO	<u> </u>			
File No. C-269	Use_JU		L	ocation No.	23 28.15.244

1. Co.

1. T.S. 10

, at 2.

	OF WELL	106			ction 6
	Type of Material Encountered	Color	Thickness in Feet	in Feet To	Depth From
	CLAY	RED	40	40	1
	ROCK WATER	RED	25	65	40
	FORMATION	RED	135	200	65
	SHALE BALT WATER	BLUE	5	205	200
	BALT FORMATION	RED	35	240	205
	· · · · · · · · · · · · · · · · · · ·				
			T		1
	· · · · · · · · · · · · · · · · · · ·				
	······································				
• • • •					
· · · · · · · ·					

				·····	
			(

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well

Well Defilier R. H. FREEK

C-269

調査で

100.00 1 1000

家に書

A and south

14 . But

1 + 00 Jun

8-8 ST

1. 2. 2. F

1. S. S. S. S.

ALC: STE

8 . 4 . 4 . 4 . 4 . 4 . 4

きん 読んを

S. 1. 2. 1. 2.

W. W. W.

1

100 - 100 -

C. S. Par

New Mexico Office of the State Engineer Point of Diversion Summary

	POD Number			Sec Two	-	X Y		
	00016		3 1	- 14 - 235	28E :	587982 3574978*		-
Driller License	BRININSTOOL	., M.D.						
Driller Name:	BRININSTOOL	., M.D.		, 10 100 U				
Drill Start Date	: 10/22/1980	Drill Fini	sh Date	: 12	/05/1980	Plug Date:		
Log File Date:	12/09/1980	PCW Rev	/ Date:			Source:	Shallow	
Pump Type:		Pipe Disc	charge	Size:		Estimated Yiel	d: 400	
Casing Size:	9.63	Depth W	ell:	12	0 feet	Depth Water:	30 feet	
Wa	ter Bearing Strat	ifications:	τορ	Bottom	Descriptio	on		-
	Ū		60	85		lluvium/Basin Fill		
			92	96	Shallow A	lluvium/Basin Fill		_
	Casing Pe	rforations:	Тор	Bottom				
			60	120				_
	· · ·	· · ·				· · · · · · · · · · · · · · · · · · ·		
						· · · · · ·		

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Revised	June	1972

STATE ENGINEER OFFICE WELL RECORD

FIELD ERGN. LUG

			Section 1	. GENERAL IN	FORMATION					
(A) Owner of	well id.	E. Trach	ta			Owner's W	C-C-C	616		
Street or	Post Office Ad	dress <u>%</u> Ju	<u>be Trac</u>	hta, P.O.	<u>. Box 158</u>					
City and	State Lovi	ng, Nelle	88256	<u> </u>						
Well was drilled	under Permit	No <u>C-6</u>								19949768) 9121 Nordflyn (922-49 5
 a. <u>NV</u>	_ ¼ <u>_ SW</u> ¼	<u></u> ¼	¼ of Se	ction <u>14</u>	Township	23 S Range	28E	N.M.P.M.		
b. Tract	No	of Map No		of the			<u></u>			
Subdiv	rision, recorder	in			ounty.					
		_ feet, Y=		•	M. Coordinate S	System				
(B) Drilling C	Contractor	M.D. B	rininst	001		License No,ND	-842			
Address										
						Cable	Size of hole	10 in		
Elevation of lar	nd surface or			at wel	1 15	ft. Total depth of v	veil12	0 ft.		
Completed wel	lis 🖾 si	nallow 🗀 ar	tesian.		Depth to water	upon completion of a	well <u>30</u>	ft.		
		Secti	ion 2. PRIN	CIPAL WATER	R-BEARING ST	RATA				
Depth		Thickness		Description of V	Water-Bearing F	ormation	Estimated			
From	<u> </u>	in Feet					(gallons per r	ninute)		
 60	85	15	Cavir	igs, grav	el & clay				·	
 			Grave	.1			400			
 									· · ·	
 	·									
			Sectio	n 3. RECORD	OF CASING					
Diameter	Pounds	Threads	****	in Feet	Length	Type of Shoe	Perfor	rations		
(inches)	per foot	per in.	Тор	Bottom	(feet)	1996 01 3100	From	To		
0 5/9	10	maldad	161	120	121	2020	60	120		

Section 4. RECORD OF MUDDING AND CEMENTING

Depth i	opth in Feet Hole Sacks		Sacks	Cubic Feet	Marked of Decomposit
From	Τò	Diameter	of Mud	of Cement	Method of Placement
]					
		<u>}</u>			
1					

Section 5. PLUGGING RECORD

Plugging Contractor				
Address		Depth	in Feet	Cubic Feet
Plugging Method	No.	Top	Bottom	of Cement
Date Well Plugged				
Plugging approved by:	2			
	3			
State Engineer Representative	4			

FOR USE OF STATE ENGINEER ONLY

Use

Date Received December 9, 1980

File No	C-616

1. 2. E.R.

A State

1 . T. A

10 Jan 1 .

Sec. 2

2.00

12. 12

3 # E

100 of

A. C. M.

1. S.S.

ALL ALSO

1

Hart & All Lot

· Catte

Quad __ Irr.

... Location No..

FWL FSL 235.28E.14.13133

	Deoth	in Feet	, Thickness		
	From	To	in Feet	Color and Type of Material Encountered	
	60	85	15	(Cleanout) Red Clay, gravel	
	85	90	5	Yellow lime	
	90	92	2	Yellow(very light) clay	
	-92		4	Gravel all colors	
_	96	110	14	Red clay	
	110	120	10	Red clay w/red and white gyp	
_			 		
-					
_					
_					
_					
_					
		1			
		· · · · · · · · · · · · · · · · · · ·	11 01 01 01 11 11 11 11 11 11 11 11 11 1		
			1		
· · · · · · · · · · · · · · · · · · ·					Analysis and an
				<u>т</u>	· · · · ·
~					
-					
		l	L	I 7. REMARKS AND ADDITIONAL INFORMATION	

C-616

5. W. H.

and them

1. 4 3 to by

使う

Refer ;

. n 1

1 at 10 - 1

·····

. .

.

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

<u>Driller</u>

INSTRUCTIONS: This for "Yould be executed in triplicate, preferably typewritten, and submitted of the State Engineer, A." Jons, except Section 5, shall be answered as completely and accurate define consisted or demonoid. When this form is used as a obtaining record, only Section 1(a) and Section – need be completed.

 appropriate district office s possible when any well is

2.4.2

5. 7 . . S

94° ° °

1. 2 Cal.

1995. e.4

P. 1. 6

New Mexico Office of the State Engineer **Point of Diversion Summary**

		DD Number			• Tws Rng 	X Y 898013575205*	
		BRADY, W.H. D	RILLING CO.				
Driller	Name:	W.H. BRADY					
Drill S	tart Date:	08/05/1964	Drill Finis	n Date:	08/06/1964	Plug Date:	
Log F	ile Date:	09/15/1964	PCW Rcv	Date:		Source:	Shallow
Pump	Туре:		Pipe Disc	harge Size:	:	Estimated Yield	1:
Casin	g Size:		Depth We	11:	60 feet	Depth Water:	45 feet
	a 1 1999 in an 1994 - 1996 in						
					· · · · · · · · · · · · · · · · · · ·		
·							
· · · · · · · · · · · · · · · · · · ·							

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1. 9 J. M.

and the second

2 60 to 12"

28.2

New Mexico Office of the State Engineer **Point of Diversion Summary**

	0D Number 01217		(quarte Q64 Q	ers are smalle 16 Q4 Se	c Tws Rng	IAD83 UTM in meters) X Y 5896063574593*	
Driller License:		DRILLIN	G CO.				
Driller Name:	W.H. BRADY						
Drill Start Date:	08/07/1964	Drill	Finisl	h Date:	08/11/1964	Plug Date:	
Log File Date:	09/15/1964	PCW	/ Rcv	Date:		Source:	Shallow
Pump Type:		Pipe	Disch	harge Size	e :	Estimated Yield	d:
Casing Size:		Dept	th We	11:	87 feet	Depth Water:	50 feet
Wate	r Bearing Strat	ification	s:	Тор Во	ttom Description	n	
		· · · · · · · · · · · · · · · · · · ·		55	69 Sandstone	/Gravel/Conglomer	rate
Mete	r Number:	559		M	eter Make:	MCCROMETE	R
Mete	r Serial Numbe	r: 95417	36	M	eter Multiplier:	1.0000	
Numl	per of Dials:	2		M	eter Type:	Diversion	
Unit	of Measure:	Acre-F	eet	Re	eturn Flow Perce	ent:	
	e mulupher:					y:-Quarterly	
Meter Readin	gs (in Acre-Fee	∋t)		<u></u>		and a second	2 (
Meter Readin Read Date	gs (in Acre-Fee Year Mtr R	et) leading	Flag	Rdr Co			Amount
Meter Readin Read Date 12/29/1998	gs (in Acre-Fea Year Mtr R 1999	et) eading 136	Flag A	Rdr Co		and a second	Amount 0
Meter Readin Read Date 12/29/1998 04/16/1999	gs (in Acre-Fea Year Mtr R 1999 1999	et) eading 136 155	Flag A A	Rdr Co ms ms		and a second	Amount 0 18.685
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999	gs (in Acre-Fea Year Mtr R 1999 1999 1999	et) leading 136 155 175	Flag A A A	Rdr Co ms ms ms		and a second	Amount 0 18.685 19.849
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999	gs (in Acre-Fea Year Mtr R 1999 1999 1999 1999	et) leading 136 155 175 200	Flag A A A A	Rdr Co ms ms ms ms ms		and a second	Amount 0 18.685 19.849 25.349
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 1999	et) leading 136 155 175 200 226	Flag A A A A A A	Rdr Co ms ms ms ms ms ms		and a second	Amount 0 18.685 19.849 25.349 25.613
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 1999 2000	et) leading 136 155 175 200	Flag A A A A A A A	Rdr Co ms ms ms ms ms		and a second	Amount 0 18.685 19.849 25.349
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 1999 2000 2000	et) leading 136 155 175 200 226 243	Flag A A A A A A A A A	Rdr Co ms ms ms ms ms ms mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 1999 2000 2000 2000	et) 136 155 175 200 226 243 256	Flag A A A A A A A A A A	Rdr Co ms ms ms ms ms ms mb mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 10/01/2000	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 1999 2000 2000 2000	et) leading 136 155 175 200 226 243 256 276	Flag A A A A A A A A A A A	Rdr Co ms ms ms ms ms ms mb mb mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141 20.241
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 10/01/2000 10/19/2000	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 1999 2000 2000 2000	et) leading 136 155 175 200 226 243 256 276 279	Flag A A A A A A A A A A A A	Rdr Co ms ms ms ms ms mb mb mb mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141 20.241 3.020
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 10/01/2000 10/19/2000 01/05/2001	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	et) leading 136 155 175 200 226 243 256 276 279 291	Flag A A A A A A A A A A A A A	Rdr Ca ms ms ms ms ms mb mb mb mb mb mb mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141 20.241 3.020 12.423
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 10/01/2000 10/19/2000 01/05/2001 04/15/2001	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 2000 2000 2000 2000	et) leading 136 155 175 200 226 243 256 276 279 291 306	Flag A A A A A A A A A A A A A A	Rdr Ca ms ms ms ms ms mb mb mb mb mb mb mb mb mb mb mb mb		and a second	Amount 0 18.685 19.849 25.613 16.558 13.141 20.241 3.020 12.423 14.682
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 10/01/2000 10/19/2000 01/05/2001 04/15/2001 05/09/2001	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 2000 2000 2000 2000	et) leading 136 155 175 200 226 243 256 279 291 306 312	Flag A A A A A A A A A A A A A A A A	Rdr Co ms ms ms ms ms mb mb mb mb mb mb mb mb mb mb mb mb mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141 20.241 3.020 12.423 14.682 5.732
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 07/01/2000 10/19/2000 01/05/2001 04/15/2001 05/09/2001 07/12/2001	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	et) leading 136 155 175 200 226 243 256 276 279 291 306 312 322	Flag A A A A A A A A A A A A A A A A A	Rdr Ca ms ms ms ms ms mb mb mb mb mb mb mb mb mb mb mb mb mb		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141 20.241 3.020 12.423 14.682 5.732 10.142
Meter Readin Read Date 12/29/1998 04/16/1999 06/30/1999 09/29/1999 01/04/2000 04/06/2000 07/01/2000 10/1/2000 10/19/2000 01/05/2001 04/15/2001 05/09/2001 07/12/2001 10/01/2001	gs (in Acre-Fee Year Mtr R 1999 1999 1999 1999 2000 2001 2	et) leading 136 155 175 200 226 243 256 279 291 306 312 322 337	Flag A A A A A A A A A A A A A A A A A A A	Rdr Co ms ms ms ms ms mb mb mb mb mb mb mb mb mb mb mb mb RPT RPT		and a second	Amount 0 18.685 19.849 25.349 25.613 16.558 13.141 20.241 3.020 12.423 14.682 5.732 10.142 14.798

*UTM location was derived from PLSS - see Help

Read Date	Year M	tr Reading	Flag	Rdr	Comment	Mtr Amount
04/01/2003	2003	369	А	ms		3.052
06/04/2003	2003	0	А	ms		0
06/04/2003	2003	7	А	ms		6.678
07/01/2003	2003	12	А	ms		5.246
08/20/2003	2003	22	А	ms		10.412
10/01/2003	2003	31	А	RPT		8.788
10/27/2003	2003	36	А	τw		4.600
01/02/2004	2003	49	A	ab		13.171
04/01/2004	2004	67	А	RPT		18.345
07/01/2004	2004	93	А	RPT		26.222
10/01/2004	2004	112	А	RPT		18.603
01/02/2005	2004	130	А	RPT		18.402
01/03/2005	2005	31	А	τw		0
01/29/2005	2005	35	А	τw		4.470
03/30/2005	2005	48	А	тw		13.120
07/06/2005	2005	70	А	тw		22.284
01/05/2006	2005	26	R	тw	Meter Rollover	55.703
04/06/2006	2006	49	А	tw		22.428
07/06/2006	2006	. 71	А	tw		21.985
01/09/2007	2006	26	R	tw	Meter Rollover	55.935
 07/03/2007	2007	72	Α	tw		45.278
10/11/2007	_2007		Α	tw		24.730
	2007	18		tw	Meter Rollover	21.415
 04/24/2008	2008	44	-A	tw		25.874
07/17/2008	2008	70-	A	tw		26.000
10/02/2008	2008	5	R	tw	Meter Rollover	35.752
01/15/2009	2008	28	А	tw		22.762
04/22/2009	2009	50	А	tw		21.303
08/04/2009	2009	72	А	tw		22.625
01/06/2010	2009	6	R	tw	Meter Rollover	33.717
**YTD Meter	r Amounts	: Year	1	Amount		
		1999		89.496		
		2000		65.383		
		2001		52.260		
		2002		11 .314		
		2003		63.261		
		2004		81.572		
		2005		95.577		
		2006		100.348		
		2007		91.423	•	
		2008		110.388		

Red - Care

**YTD Mete	r Amour	nts: Y	ear	Α	mount		
		2	2009	•	77.645		
Meter	Number	r:	1401			Meter Make:	
Meter	Serial N	lumbe	er: 01 03	5 530		Meter Multiplier:	1.0000
Numt	per of Dia	als:	5			Meter Type:	Power Child
Unit o	of Measu	ire:	Kilowa	att Hou	rs	Return Flow Percent	:
Usag	e Multipl	lier:				Reading Frequency:	Quarterly (No Reading Expected)
Meter Readin	gs in (Ki	lowatt	t Hours)				
Read Date	Year	Mtr F	Reading	Flag	Rdr	Comment	Mtr Amount
. 04/06/2000	2000		20998	А	mb		C
07/11/2000	2000		23327	A	mb		2329.000
**YTD Mete	er Amour	nts: Y	/ear	A	mount	L .	
		2	2000	23	29.000)	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

e 8 et

Wie Wi

Same and

· . 186. 4.

1. 4. A.

والمسالية

Strange .

Form WR-23

g.

調査法

1.00

.

STATE ENGINEER OFFICE

WELL RECORD INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

 A) Owner of well Vicente L. Us guidez
 Street and Number Rt i Box Ik
City Artosia State New New New New York
 Well was drilled under Permit No.C-1328and is located in the
 SW4 NE % of Section15Twp32_SRge.283
 (B) Drilling Contractor J. O. Harrond License Ndd. D. 461
Street and Number. 315 South 39th Street
 City Artasia State New Nexico
Drilling was commenced. 5/20
 Drilling was completed 6/10 19.68

State whether well is shallow or artesianShallow_Carlshalepth to water upon completion_If: Basin Section 2 PRINCIPAL WATER-BEARING STRATA

Occuon	-		110/10	
No.	Depth From	ir. Feet To	Thickness in Feet	Description of Water-Bearing Formation
1		 	!	
2	35			gravel
3	- <u>C-5</u>		F:	gravel
4			,	
..			· · · · · · · · · · · · · · · · · · ·	n an

Section-3				RECOR	D OF CAS	ING		
Dia	Pounds	Threads	Dey	oth	Dead	- One - Chee	Perfor	etions
in.	ft.	in	Top	Bottem				То
		- Hold						130'
		~ <u>~</u> @±0						
······································								

Section 4	4 RECORD OF MUDDING AND CEMENTING						
Depth From	in Feet To	Diameter Hole in in.	Tons Clay	Nr. Sacks of Cement	Methods Used		
	·····	ļ					
		}					
		ł					
.,				_			

Section	5

PLUGGING RECORD

Name of Plugging Contractor		License No.	
Street and Number	City	State	
Tons of Clay used	e used	Type of roughage	
Plugging method used	Date	Plugged	
Plugging approved by:	Cement I	Plugs were placed as follows:	

	No.	Depth of Plug		No. of Sacks Used
Basin Supervisor		From	То	NO. OI SACES USED
FOR USE OF STATE ENGINEER ONLY				
Date Received				
÷				
, I				·
ile No. Q. 1328 Use N.	~~?.'	Ţ	ocation No.	23.28.15.23

W WE - wea

61 AG

1 . ⁶ .

a spectrum

The Bar

14 AV

1. 22 Se

5. J. - 10.

2.12

S & 20

47 19

. "ed

10 C C

1. 2.

1.00 . 10 M

34. 2. 2

LOG OF WELL

Depth in Feet Thickness Type of Material Encountered Color in Feet From To Gray Rock 25 ¢ 25 Gravel Cong 25 27 .2 Rock 4.5 18 Grev 27 Eed Clay <u>1.5</u> 60 TE Eock 35 Gray 25 Cong 25 <u>00</u> 5 Gravel Reck_ 40 Grav 130 TCO Paly, Rock and Clay 50 End 130 Reck 200 20

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Well Driller

C-1320

Revised June 1972

STATE ENGINEER OFFICE WELL RECORD

1. Ho. - Eo.

18 m 1 m

1. S. C.

A 240

1.58

1. 2603

10 10 C

2° 1 8°

4.4 °

Ľ

ڊ

1999 - See				Section	1. GENERAL IN					
	(A) Owner of Street or E City and S	Post Office Ad	dressi/	<u>12 N/</u>	Thing (J. Hus 1 Hus 7	9 26.1	Owner June	's Well No	- 2187	•
	Well was drilled	under Permit l	No. <u>C - 2</u>	159		and is located	in the:			
	a. <u>17</u>	14 N. 14	<u></u>	¼ of §	Section 14	Township	<u>235</u> Ran	8e <u>19 E</u>	N.M.P.M	· · · · · · · · · · · · · · · · · · ·
	b. Tract ?	ło,	of Map No	·	of the					-
					of the			,		
े स् स् -			_ fcet, Y=		feet, N.	M. Coordinate	System		Zone in Grant	
「「「「」」	(B) Drilling C Address <u>P</u>	ontractor CBery	1335	Bros	Jely Co-	Juy.	License No 79768	WD-8		
	Drilling Began _	3-12-	<u> 70</u> Com	pleted	3-12-90	_ Type tools	ft. Total depth	Size of hole_		. 48 F
	Completed well		allow 🗆	artesian.		Depth to water	upon completion			
	Depth i	n Feet	Thicknes		Description of 1			Estimated]
	From	To	in Feet			water-pearing r		(gallons per	$\frac{\min(t)}{4F(Y)}$	-
		41	4		saratt			2 gel	7	
			·		· · · · · · · · · · · · · · · · · · ·	.**	· · · · · · · · · · · · · · · · · · ·			
				-2 -2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			The contraction of the state of the second secon			
				· · · · · · · · · · · · · · · · · · ·						
1				Sect	ion 3. RECORD	OFCASING				יישר שאיר אייראייראייראיין אראי אייראינעראיין אייראינעראאיי אייראינעראיי אייראינעראיי אייראייראייייאייי
	Diameter	Pounds	Threads		h in lieet	Length	Type of She	Perfo	orations	
	(inches)	per foot	per in.	Тор	Bottom	(feet)	1) p2 01 0.10	From	To	-
	3 5-	250.00	Falle	2	<u>.+ §</u>	145	Hone	21	49	-
										-

Depth in Feet		Hole	Sacks	Cubic Feet	Method of Placement	
From	То	Diameter	of Mud	of Cement	Method of Flacement	
e	16	124			pumpel the 1" Pipe	
Į į						

Section 5. PLUGGING RECORD

	Section 5. PLUGGING RE	CORD			
Plugging Contractor Spanil Aug Address Lang 13357 Color Plugging Method Langer man	1300 1 Jay 79768	No.		in Feet	Cubic Feet
Date Well Plugged 13-13-9	d.	1	Top CI-	Bottom 10	of Cement
Plugging approved by:		2	·····		
State Er	ngineer Representative	4			
Date Received April 20, 1990	FOR USE OF STATE ENGIN	EER ONLY		24. 11	
	Quad				. FSL
File No C-2189	Use_OWD	L	ocation No	23.28.14	31144

79 °

Section 6. LOG OF HOLE Depth in Feet Thickness Color and Type of Material Encountered in Feet Τo From + caliele) i 3 ¢ ile (soudy) ۰î 7 Clian 3 15 75 . . 1 :4 4 Make į 7 2. <u>. .</u> 1.1 5 المسبر مدون به 32 17 <u>ي</u> 37 4 100 77 4.5 82 20 1..... 1.00 'r C 10 I a holly Section 7, REMARKS AND ADDITIONAL INFORMATION There will and mean and wir when with medidled a Steel pope, Stitled from 21 - 48 pt. grand porked and the find from control the granting now the grand when income for any ser. (2 gal pie men + setty) Denning: Cartific coming 1 ft before service, namely V and converted the willity + silty) We ploypet it ppe to 36 Le prover 4 Tomat there, pulled drill pipe up to 12 ft 7 min the stary had The ment of such of same the ster 2.4 The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole. 1-2189

Driller

ENGTY.UCTIONS: This form of the State Engineer. All ld be executed in triplicate, preferably typewritten, and submitted to proits, except Section 5, shall be answered as completely and accurately cost

propriate district office ossible when any well is

Revised June 1972

STATE ENGINEER OFFICE WELL RECORD

			Se	ction 1. GENERAL INFORMATION			
	Street or	wellJ Post Office Ad State	immy G. Tar dress <u>P.Ö.</u> Lovin	vin Box 382 g, NM 88256	Owner's Well No	-2503 #1	
				and is located in the			
	a. <u>NE</u>	_ ¼ <u>NE</u> ¼	¼	4 of Section <u>15</u> Township <u>23</u> ,	S Range 28 E.	N.M.P.M.	
	b. Tract 1	No	of Map No,	of the			
	c. Lot No Subdiv	o vision, recorded	of Block No I in E	of the			
			_ feet, Y=	fect, N.M. Coordinate System	· · · · · · · · · · · · · · · · · · ·	Zone in Grant.	
	(B) Drilling C	ontractor <u>0</u>	SBOURN DRIL	LING & PUMP CO. Lice	nse No. <u>WD-353</u>		
	Address	1	908 S. Fris	st Street Artesia, NM	88210-9700		
	Drilling Began .	8-27-9	6 Completed	8-29-96 Type tools CABL	E TOOL Size of hol	e <u>8"</u> in.	
	Elevation of lar	nd surface or		at well is, ft. 1	fotal depth of well7 0	ft.	
	Completed well	lis 🕅 sl	nallow 🗆 artesia	m. Depth to water upon	completion of well <u>12</u>	, ft.	
			Section 2	2. PRINCIPAL WATER-BEARING STRATA			
	Depth		Thick ness in Feet	Description of Water-Bearing Formation		ed Yield er minu'le)	
	From	<u>To</u> 58.*		Yellow-Sand-Gravel		7	
And deal of the deal of the second se							
en and weather and and and	an a	en anticipation and a state		a and a state of the			типина III (2010). - Папина III (2010). - Папина III (2010). - Папина III (2010).

Section 3. RECORD OF CASING

Diameter Pounds		Threads Depth		in Feet Length		Turns of Shore	Perforations	
(inches)	per foot	per in.	Тор	Bottom	(fect)	Type of Shoe	From	То
5 1/2"OD	P.V.C. 20016.		1'Up	70	71,	None	30	70
						•••••••••••••••••••••••••••••••••••••••	-	
1								

Section 4. RECORD OF MUDDING AND CEMENTING

Method of Placement	Cubic Feet	Sacks	Hole		Depth in
	of Cement	of Mud	Diameter	Tn	From
			· · ·		
					ł-
					1

Section 5, PLUGGING RECORD

Plugging Contractor				
Aildress	No.	Depth	in Feet	Cubic Feet
Piugging Method	140.	Тор	Buttu:n	of Cement
Date Well Plugged	1		1	
Plugging approved by:	2		1	
	3			
State Engineer Representative	4			

Date Received 09-03-96

FOR USE OF STATE ENGINEER ONLY

Use_

 \overline{N}

1. 2. Mark

1 . A.

5. Sun 5.

1. S. S. S.

10

4.5

1.20

2. 1. 2. 2. 3

360.0

2.2

. \$÷ ÷ .

4. 4 v

100

\$ 3.0 C \$

Burle og

8 - B - 3

File No. C-2503

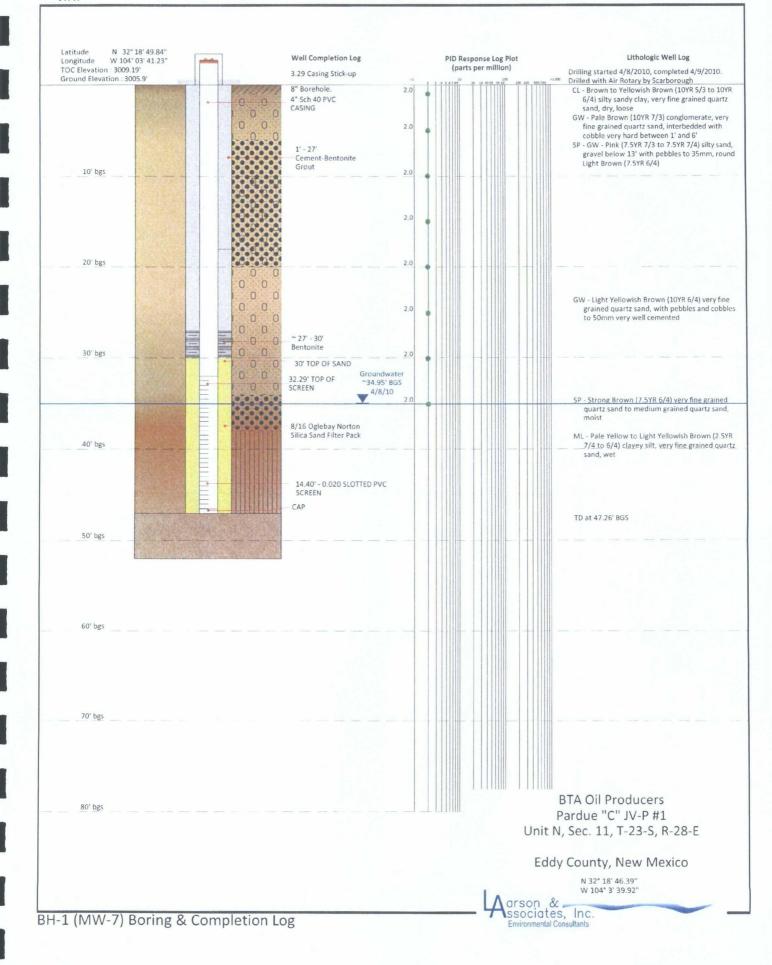
Quad _____ ____ FWL _____ FSL____ Domestic Location No. 23S.28E.15.24343

V

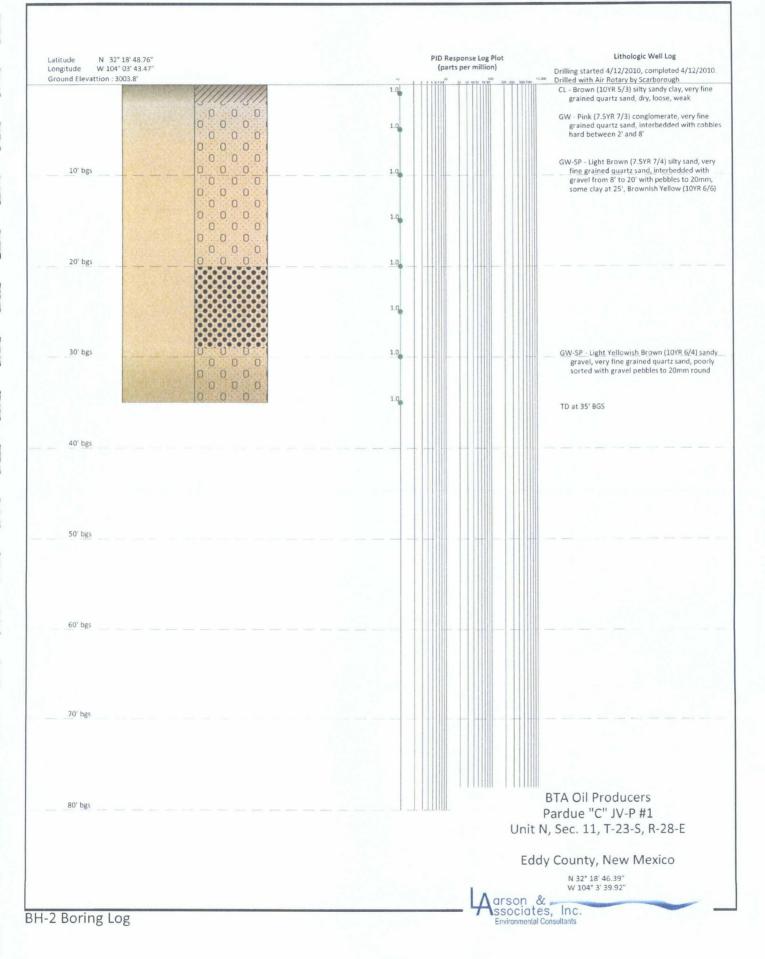
	ور <u>محمد معرد در در</u>			Section 6. LOG OF HOLE		
1	Depth i From	n Feet To	Thickness in Feet	Color and Type of Material Encount	ered	
	0	18	18	Blue Boulders - Caliche		
	1.8	28	10	White - Caliche - Gravel		
	28	58	30	Yellow - Sand & Gravel		
	58	53	5	Blue - Clay		
	63	66	3	Red - Sandy Clay	an a fair an	
		7.0	ļ4	Yellow Sandy Clay		
						
						•
	· · · · · · · · · ·					• • • • • • • • • • • • • • • • • • • •
·						
						- Palanning Hannado, triatala, isan ing kong
na an a	. vata	·····		an ana an ann ann anna ann ann ann an an	an di 11 dia mangkan adi selah di kana tertenda bi seba "di natura di 2000. Natura kana di sebagai natura di sebagai natura di sebagai natura di sebagai natura di 2000. Natura kana di sebagai natura di sebagai	anna 1975 - Santa Maria Maria Maria Maria Maria Maria Maria Maria Mangola Maria Maria Maria Maria Maria Maria M Maria Manana Manana Manana Manana Manana Manana Manana Maria Manana Manana Manana Manana Manana Manana Manana Ma
	<u>kanan ka</u>					
		I	Section	7. REMARKS AND ADDITIONAL INFORMATION	36	
					, 96 SEF	
				6-2503		
				1	c.	
					HM 11 48	
					H0C	

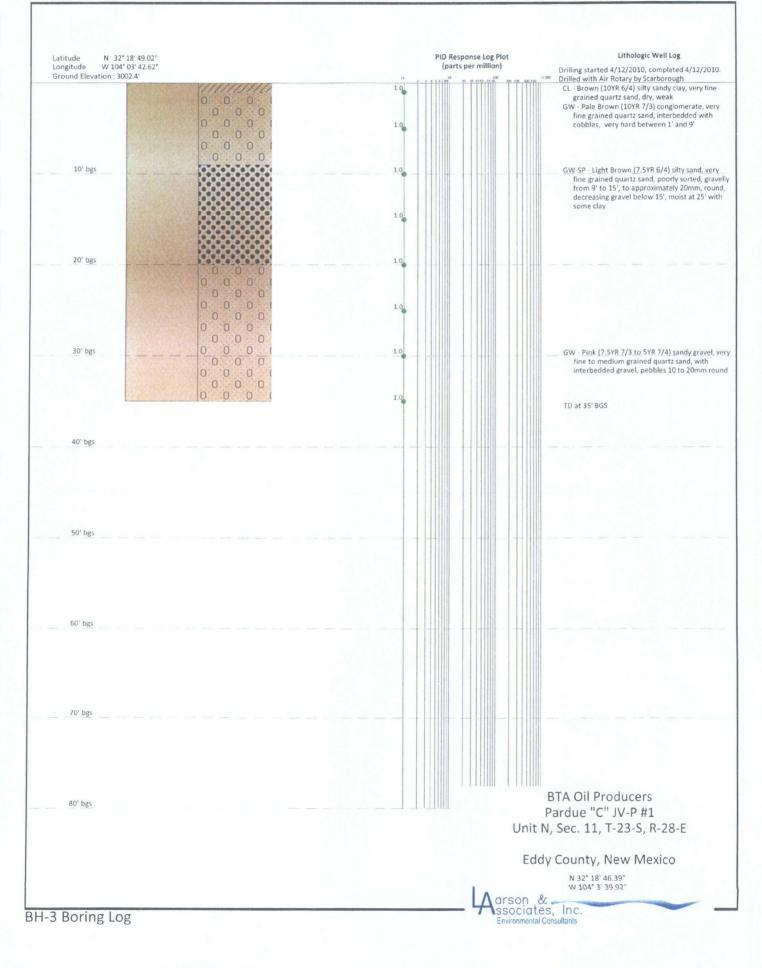
The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Hoy malabour

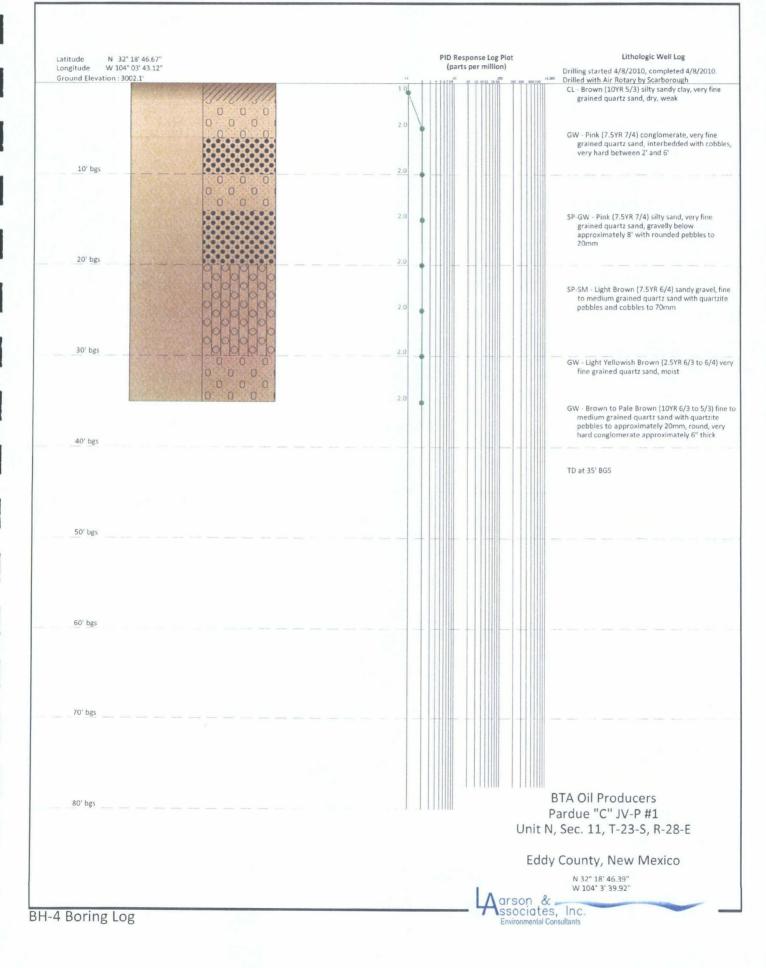

INSTRUCTIONS: This for of the State Engineer. Al.

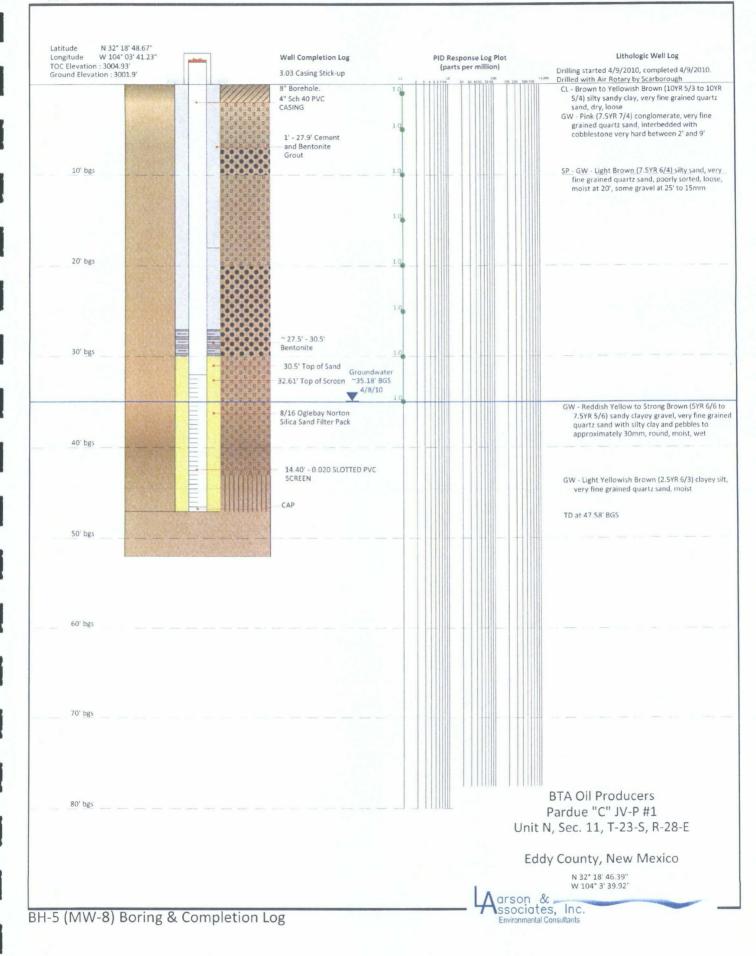
مىرىكى يۇمىيى مەركى يۇمىرى

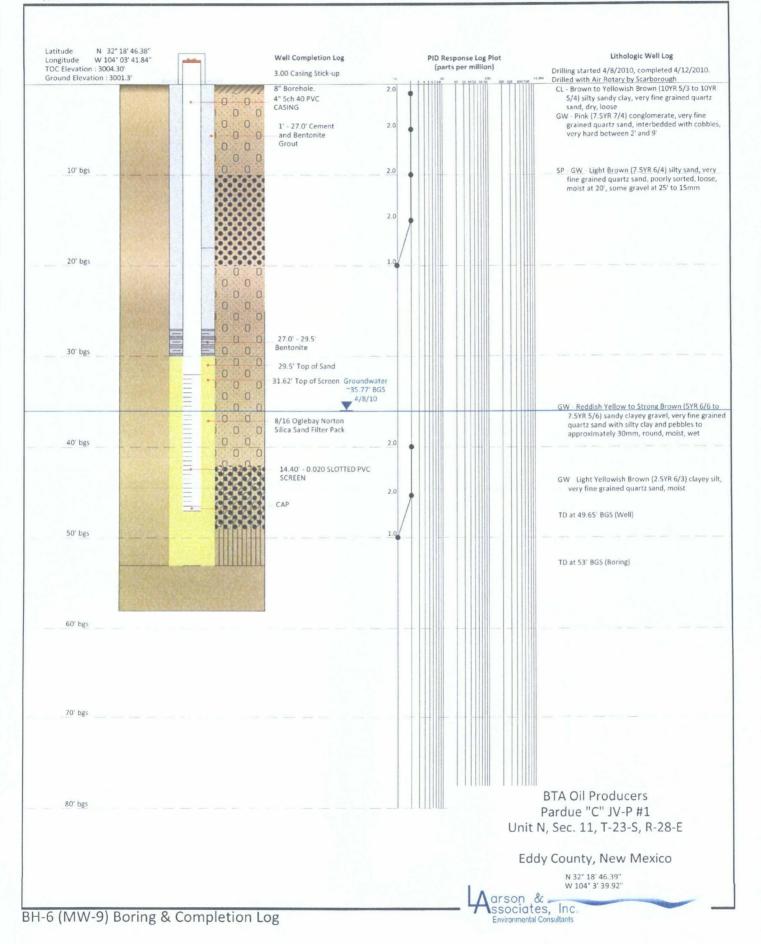

The Sec

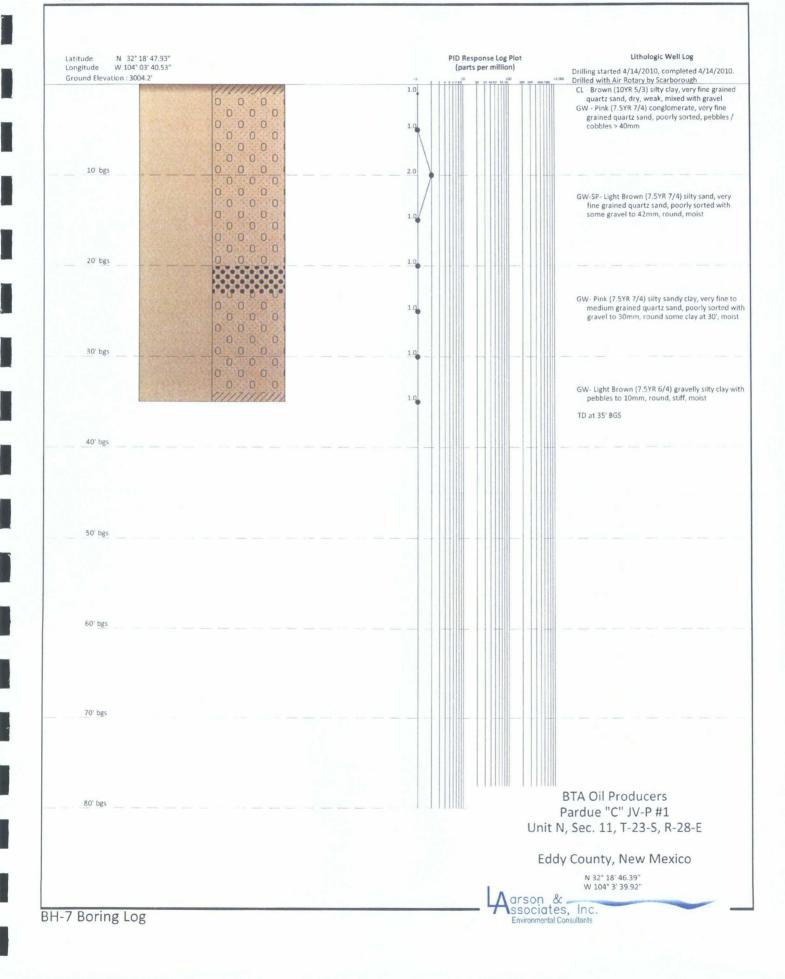

uld be executed in triplicate, preferably typewritten, and submitted \boldsymbol{t} ons, except Section 5, shall be answered as completely and accurate. deilled construct or deenened. When this form is used as a plussing record only Section 1(a) and Section 5 leed be completed.

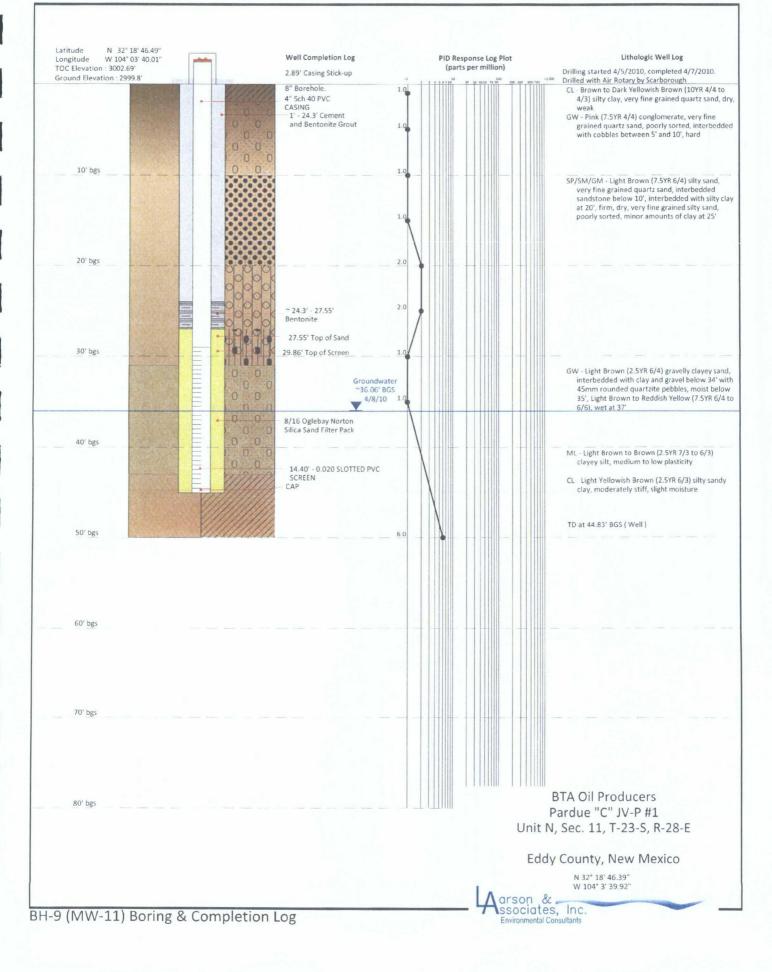
propriate district office ossible when any well is

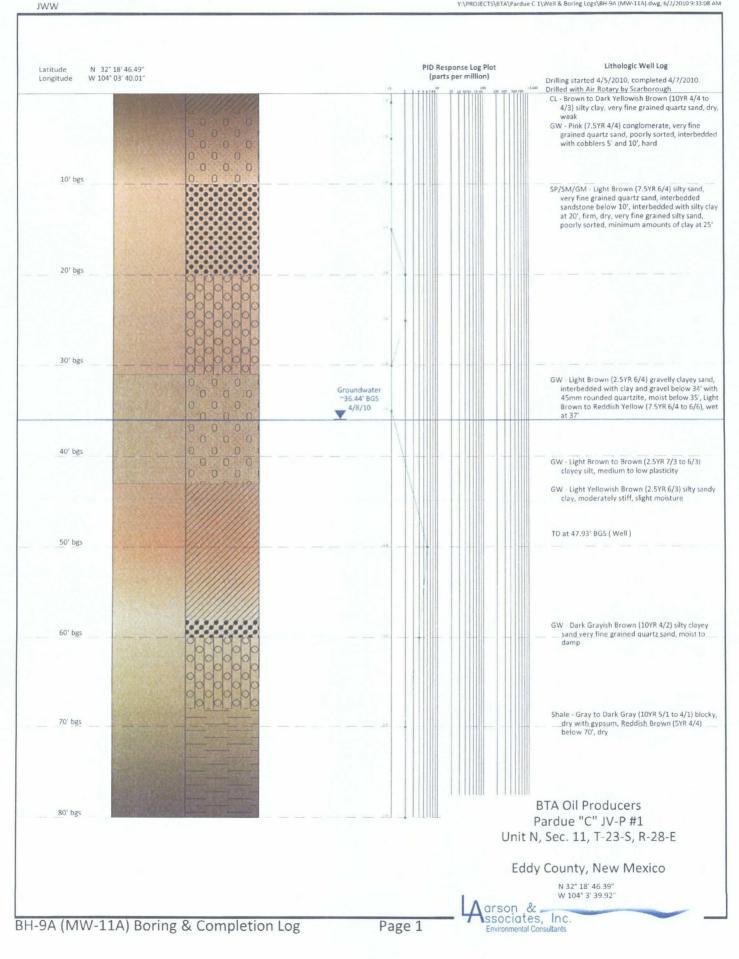


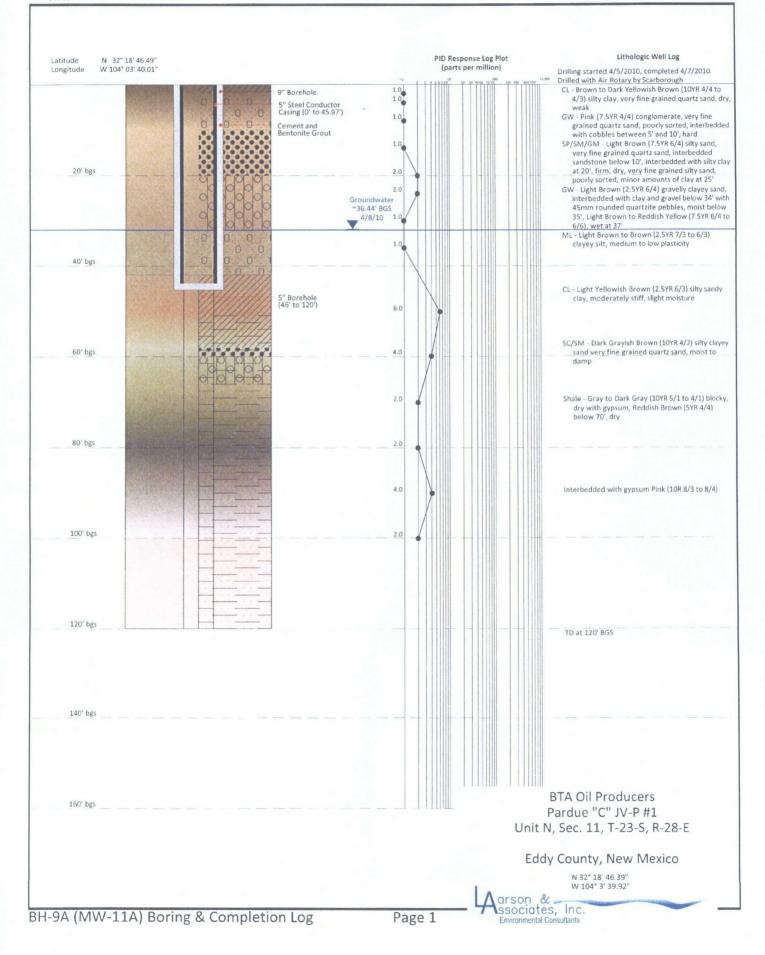




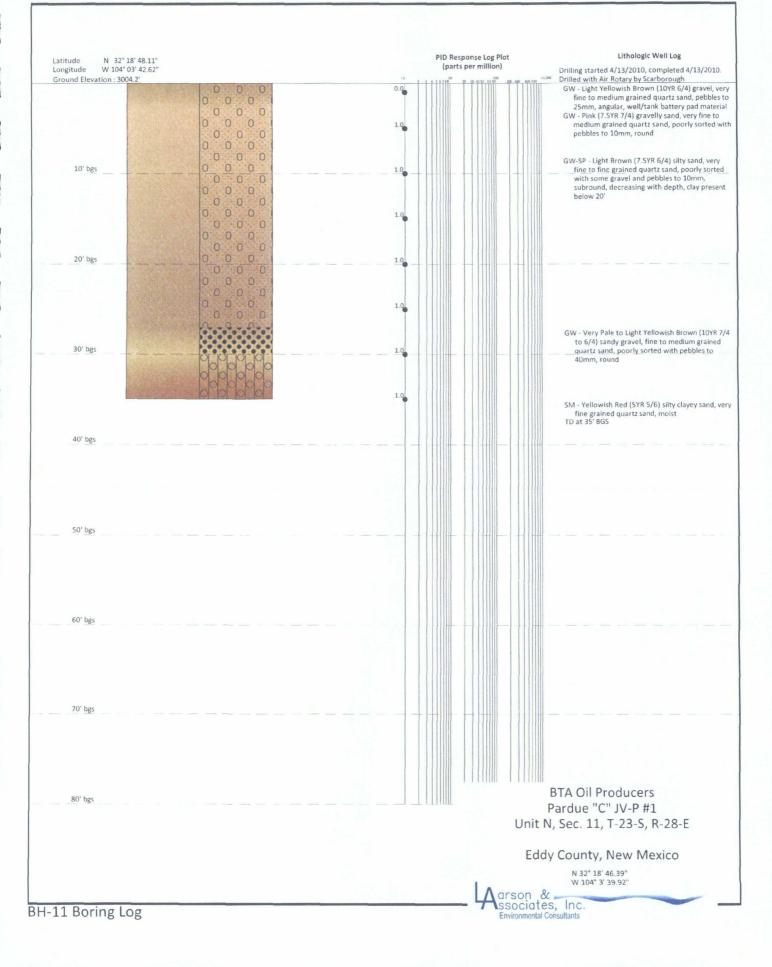


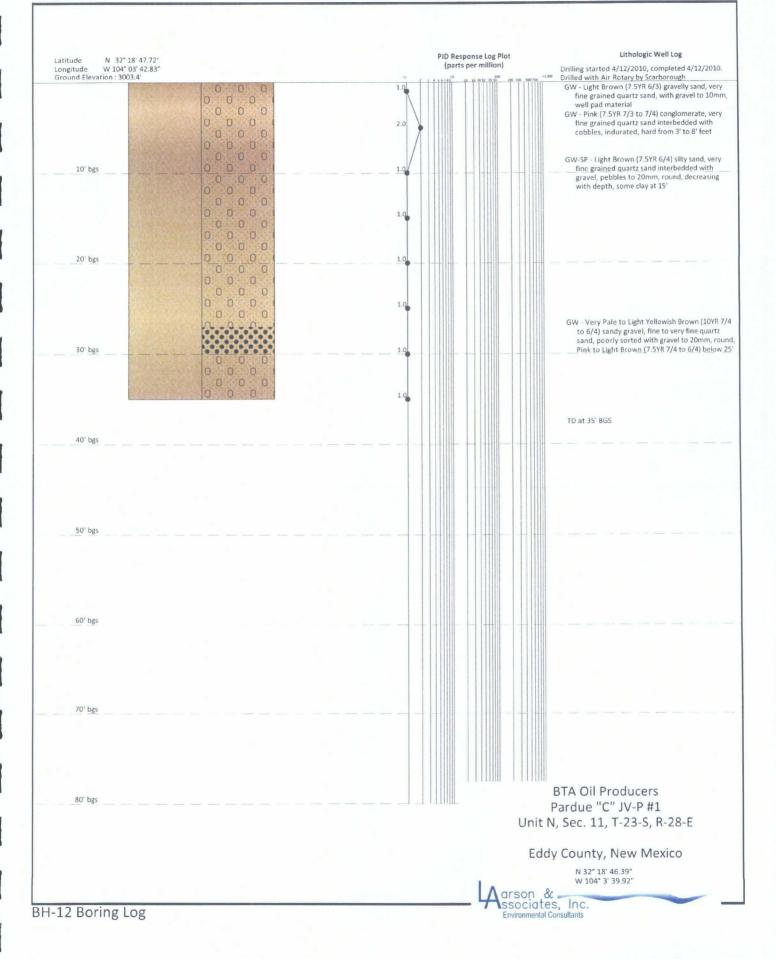


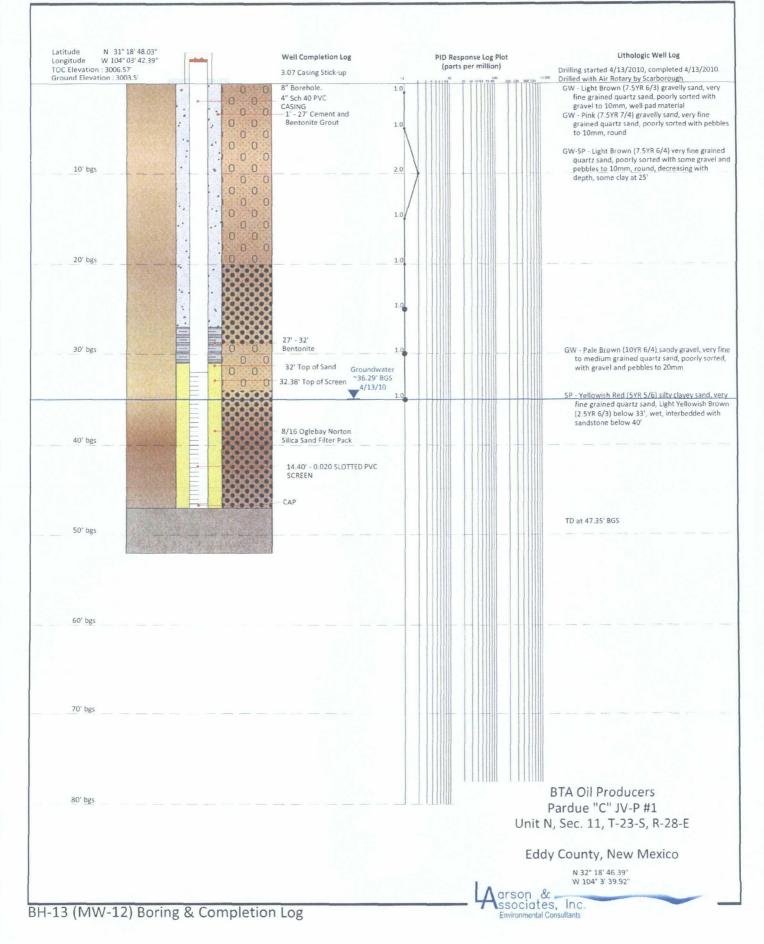


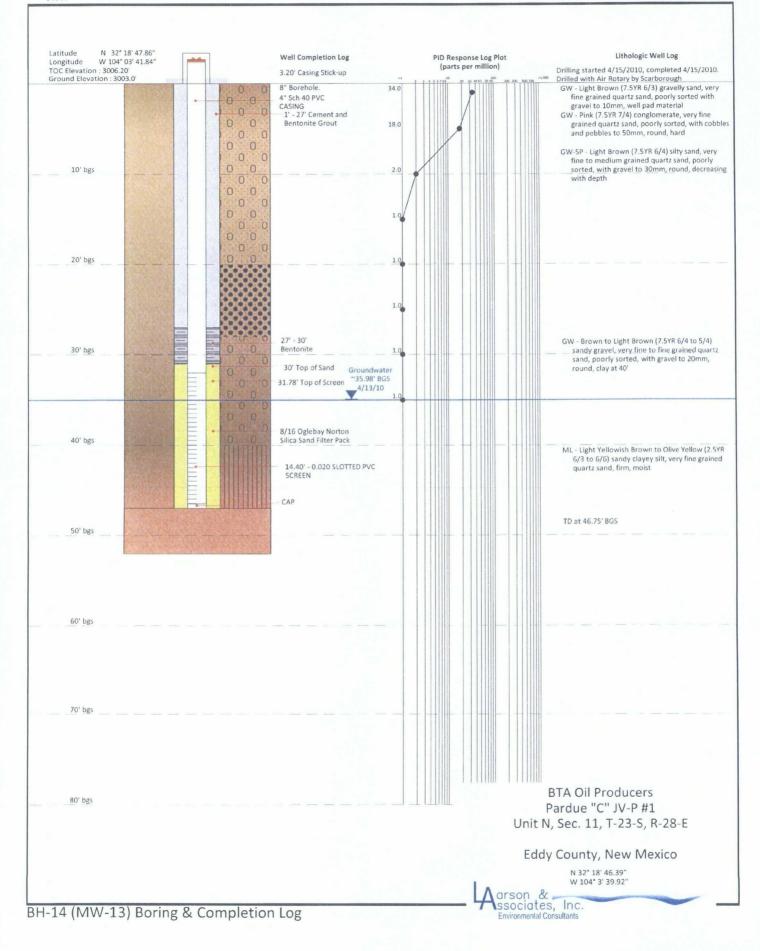


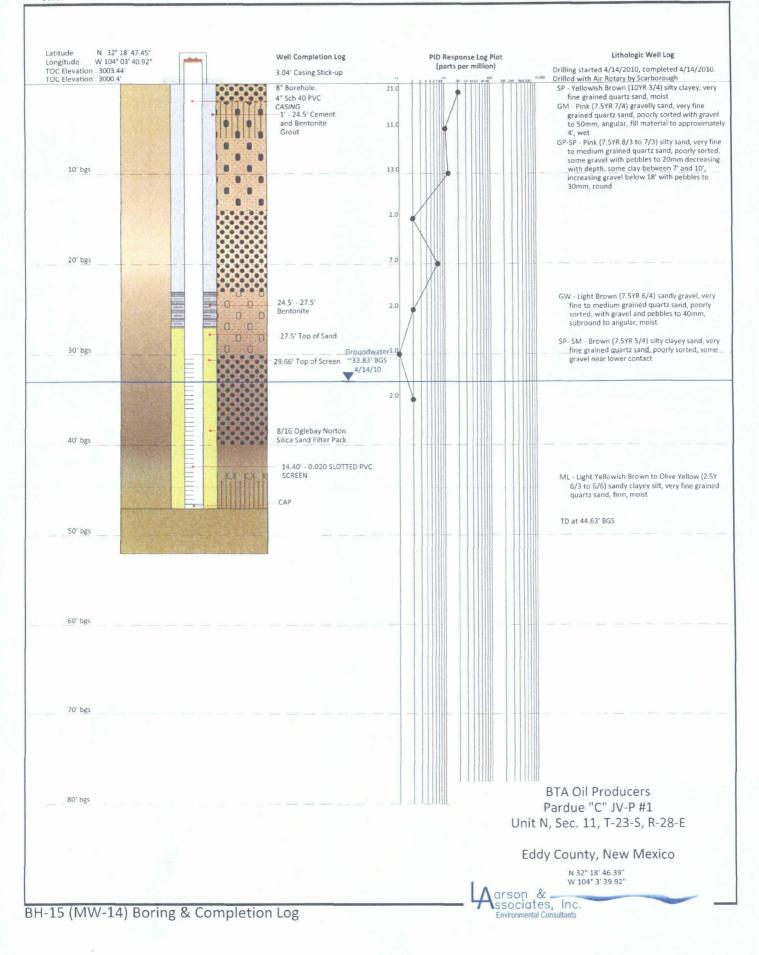
atitude N 32" 18' 47.17" ongitude W 104" 03' 40.27" OC Elevation : 3004.93' fround Elevation : 3001.9'	Well Completion Log 3.03' Casing Stick-up	PID Response Log Plot (parts per million)	Lithologic Well Log Drilling started 4/14/2010, completed 4/14/2010 Drilled with Air Rotary by Scarborough
10' bgs	8" Borehole. 4" Sch 40 PVC CASING 0 0 C CASING 1 - 27' Cement and Bentonite Grout 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		 CL - Brown to Yellowish Brown (10/R 5/3 to 5/4 silty clay, very fine grained quartz sand, firm GW - Pink (7.5YR 7/4) conglomerate, very fine grained quartz sand, poorly sorted with pebito approximately 20mm, round, hard GW-SP - Pink (7.5YR 8/3 to 7/4) very fine to medium grained quartz sand, poorly sorted, gravel with pebbles to 20mm, round, decrea gravel with depth, very fine to fine grained quartz sand below 12°, some clay below 23°
20' bgs		1.0	
30' bgs	0 0 27' - 30' 0 0 Bentonite 0 0 30' Top of Sand 0 0 32.08' Top of Screen 0 0 32.08' Top of Screen 0 0 4/8/ 0 0 4/8/	" BGS 1.0	GW - Light Brown (7.5YR 6/4) sandy gravel, ver fine to medium grained quartz sand, poorly sorted, with gravel and pebbles to 20mm, so clay at 35', wet
40' bgs	0 0 8/16 Oglebay Norton 0 0 Silica Sand Filter Pack	c	ML - Light Yellowish Brown (2.5YR 6/3) sandy clayey silt, very fine grained quartz sand, fir moist
50' bgs			TD at 47.05' BGS
60' bgs			
70' bgs			
80' bgs		Uni	BTA Oil Producers Pardue "C" JV-P #1 t N, Sec. 11, T-23-S, R-28-E
		Ec	ddy County, New Mexico N 32" 18' 46.39" W 104* 3' 39.92"

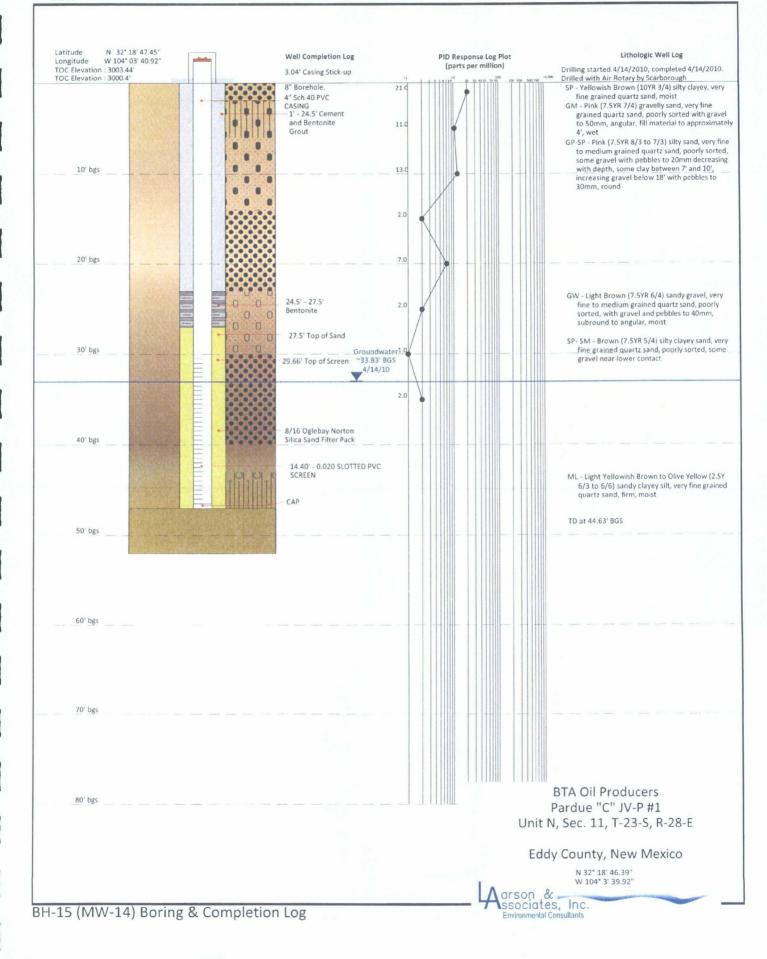


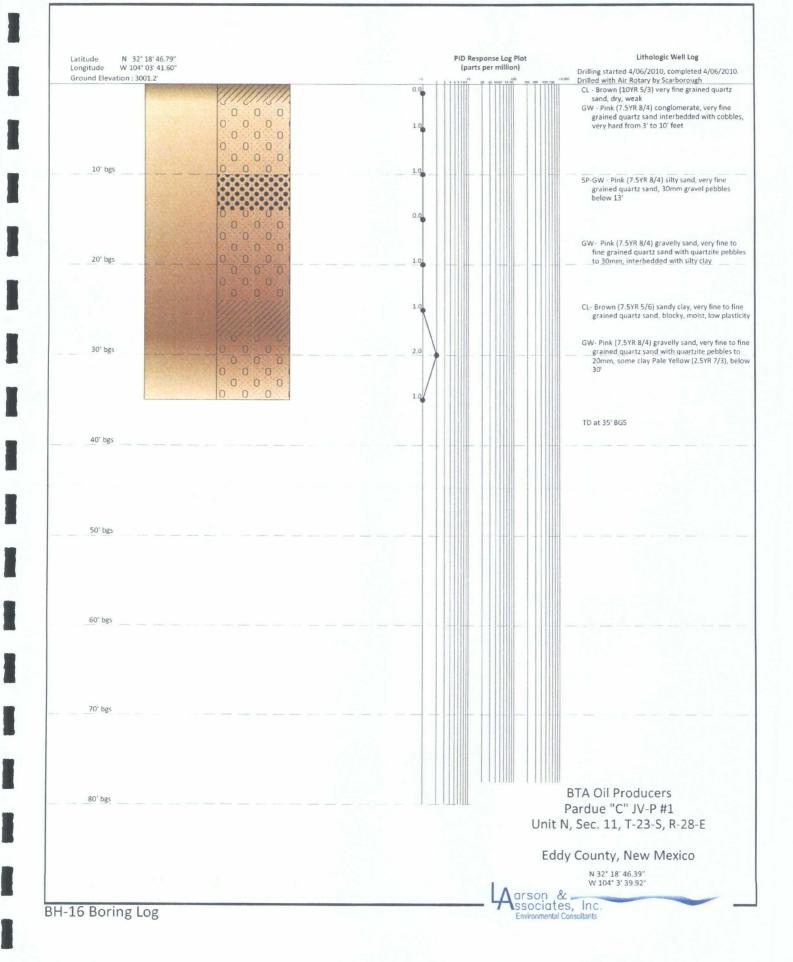


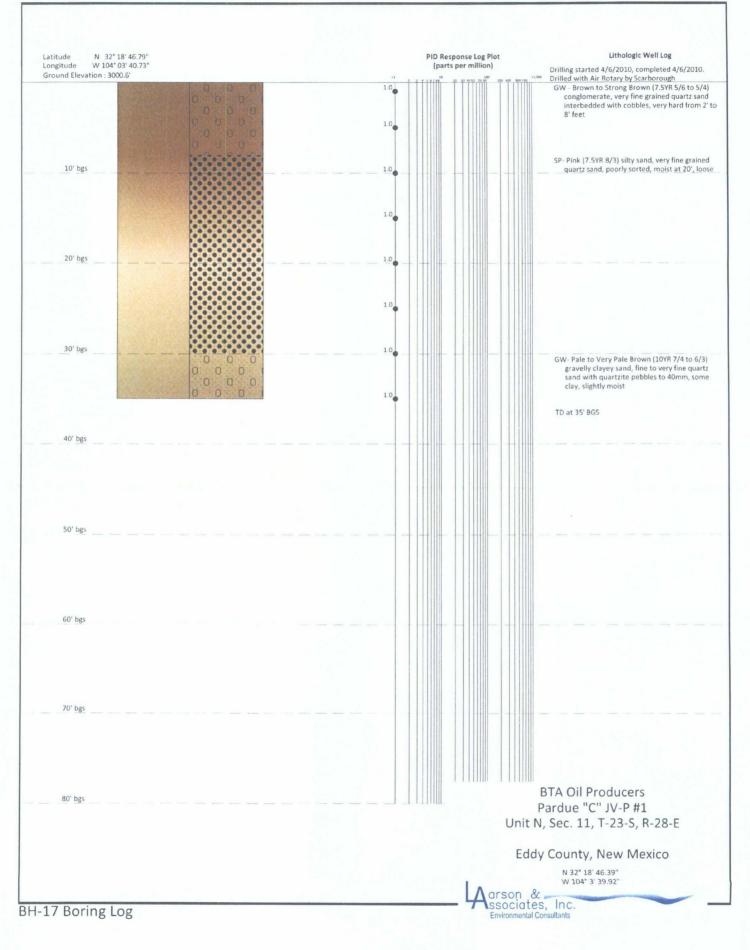


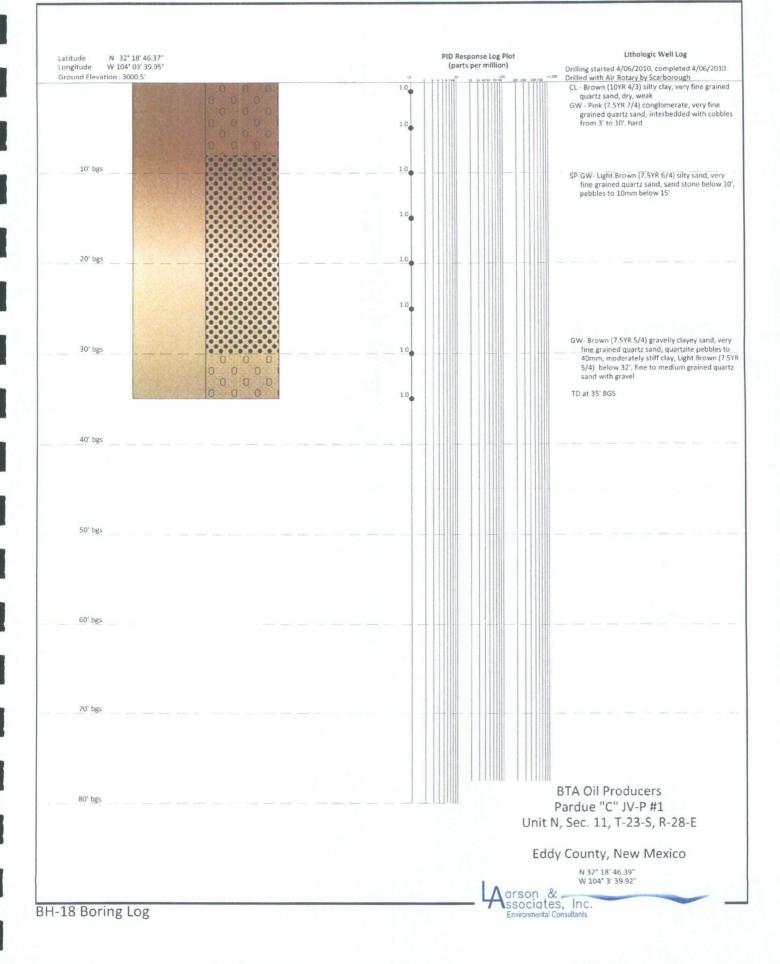



Latitude N 31° 57' 38.8" Longitude W 102° 06' 00.9" Ground Elevation : 3002.9'		4	PID Response Log Plot (parts per million)	Lithologic Well Log Drilling started 4/13/2010, completed 4/13/2010.
10' bgs		1.0 1.0 1.0		GW - Light Brown (7.5YR 6/3) gravelly sand, very fine grained quartz sand with gravel to 10mm well pad material GW - Pink (7.5YR 7/4) gravelly sand, very fine to medium grained quartz sand, poorly sorted w pebbles to 10mm round GW-SP - Light Brown (7.5YR 6/4) silty sand, very fine to fine grained quartz sand, poorly sorted with some gravel and pebbles to 10mm round decreasing with depth
20' bgs		1.0		
30' bgs				GW - Very Pale to Light Yellowish Brown (10YR 7 to 6/4) conglomerate, very fine to medium grained quartz sand with pebbles and cobble- very well cemented, hard GW - Pale Brown (10YR 7/4) sandy gravel, very fi to medium grained quartz sand and gravel wi pebbles to 20mm round TD at 35' BGS
40' bgs				
50' bgs	,			
60' bgs				
70' bgs				
80° bgs			Ec	BTA Oil Producers Pardue "C" JV-P #1 t N, Sec. 11, T-23-S, R-28-E ddy County, New Mexico
-10 Boring Log			Aarson	& - tes, Inc. tal Consultants









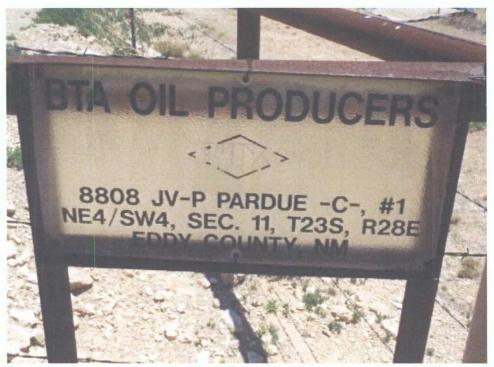


Photo Documentation

Location Sign

Drilling at BH-9 Looking Northeast

Photo Documentation

Installing Conductor Casing at BH-9 Looking South

Grouting Conductor Casing at BH-9 Looking Southwest

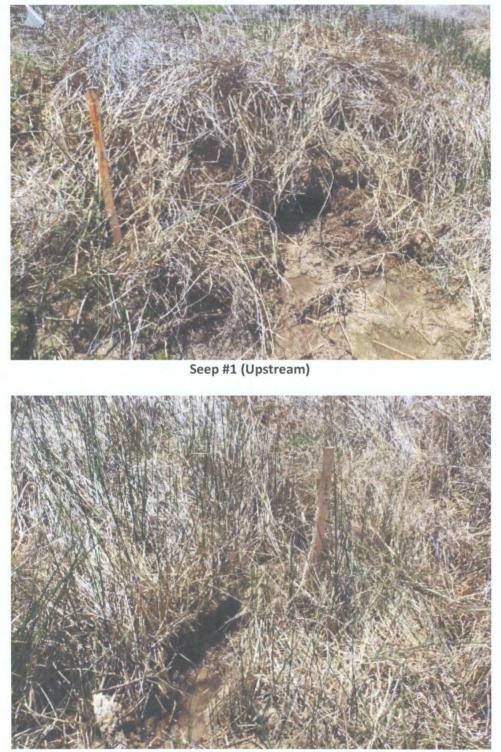
Photo Documentation

Installing Monitoring Well MW-14 Looking West

Boring BH-16 Looking East

Photo Documentation

Monitoring Wells MW-10 (Foreground) and MW-14 (Background) Looking West



Collecting Samples at Seep #1 (Upstream) Looking South

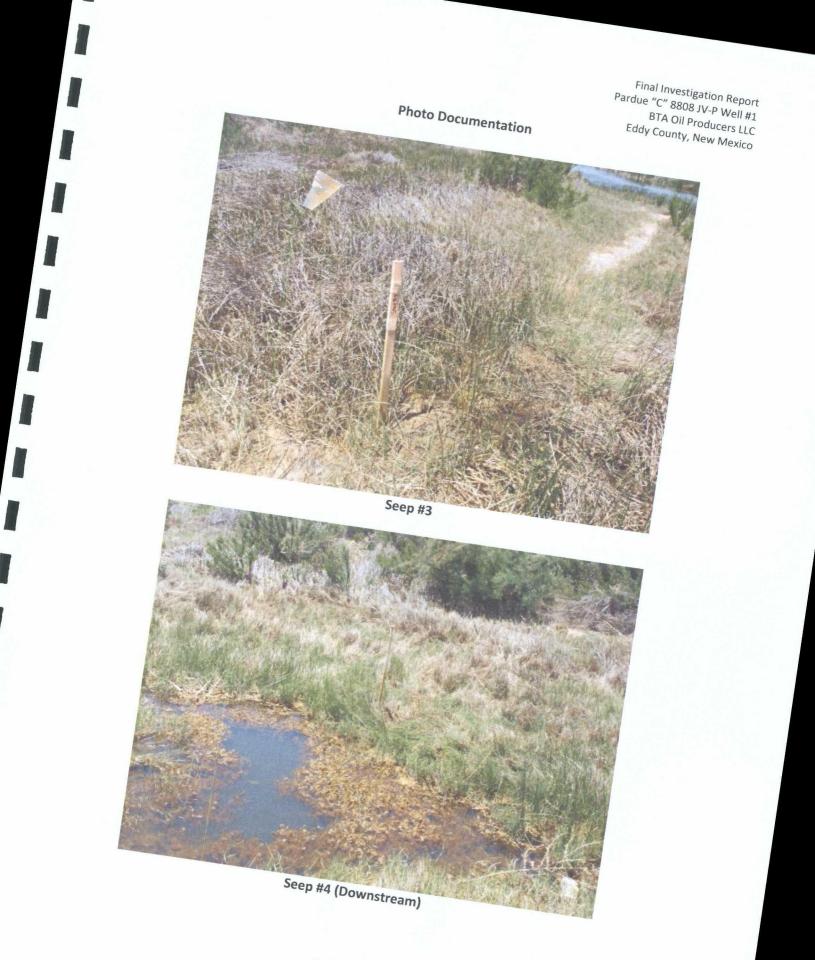
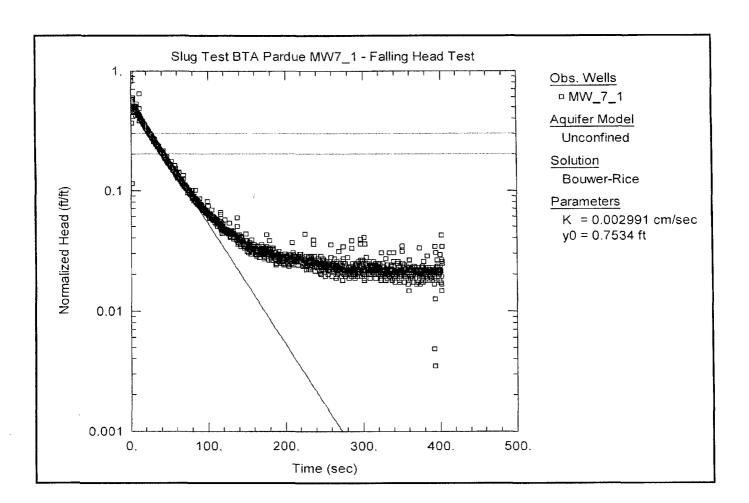

Page 4 of 6

Photo Documentation


No.

Seep #2

Page 6 of 6

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-7

AQUIFER DATA

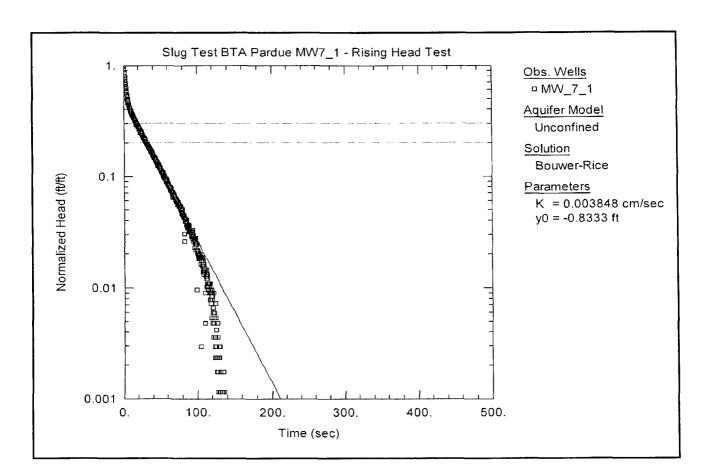
1. A. S. S.

6. 1. 1.

2883.2

25.00

Sec. 2


ESTATE

die.

Saturated Thickness: 29.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.456 ft Static Water Column Height: 12.05 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.05 ft Total Well Penetration Depth: 12.05 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-7

AQUIFER DATA

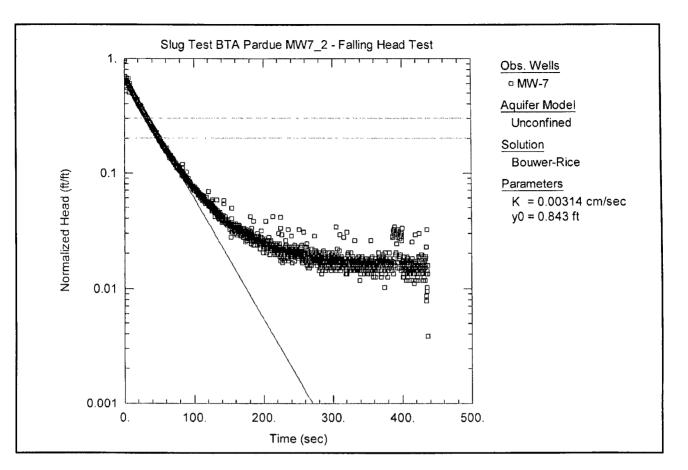
S TO DE

10 - 10 A

Der 3.6

Se starte

14 M

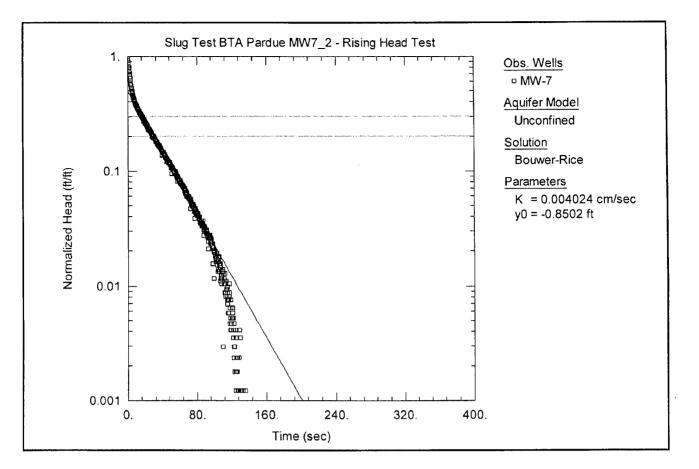

State Set.

10. 10. 10.

Saturated Thickness: 29.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.657 ft Static Water Column Height: 12.05 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.05 ft Total Well Penetration Depth: 12.05 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

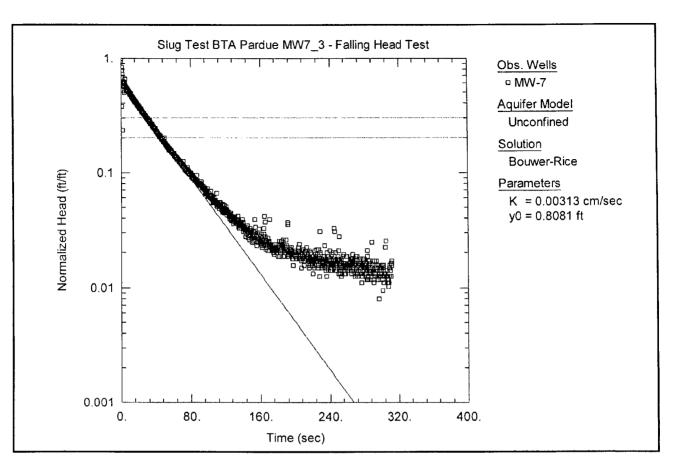

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-7

AQUIFER DATA

Saturated Thickness: 29.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.266 ft Static Water Column Height: 12.05 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.05 ft Total Well Penetration Depth: 12.05 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

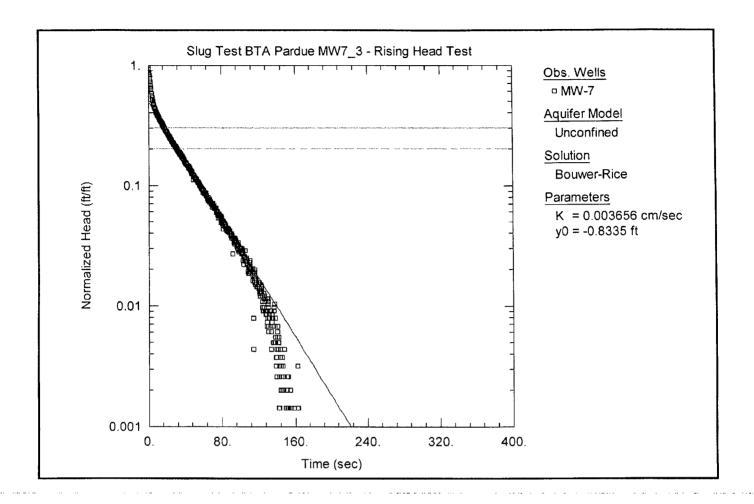

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-7

AQUIFER DATA

Saturated Thickness: 29.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.732 ft Static Water Column Height: 12.05 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.05 ft Total Well Penetration Depth: 12.05 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

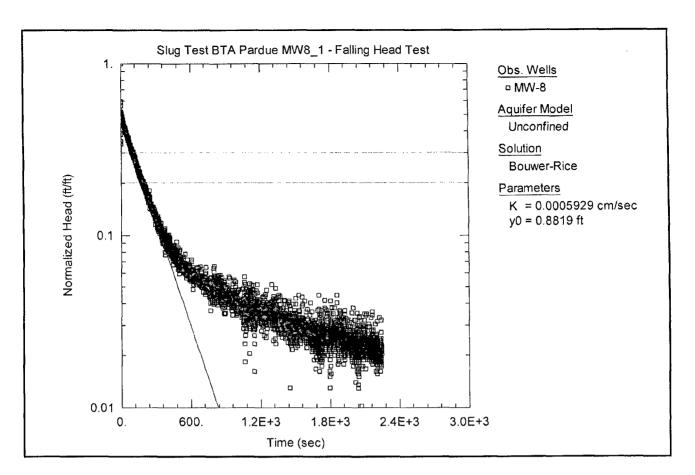

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-7

AQUIFER DATA

Saturated Thickness: 29.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.329 ft Static Water Column Height: 12.05 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.05 ft Total Well Penetration Depth: 12.05 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3


Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-7

AQUIFER DATA

Saturated Thickness: 29.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.693 ft Static Water Column Height: 12.05 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.05 ft Total Well Penetration Depth: 12.05 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

PROJECT INFORMATION

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-8

AQUIFER DATA

. J. & . W

Part of

 $\psi^{(i)} \in \mathcal{I}$

1994 1994 1994


1. 200

÷ -4- - 5

Saturated Thickness: 29.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.832 ft Static Water Column Height: 12.49 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.49 ft Total Well Penetration Depth: 12.49 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-8

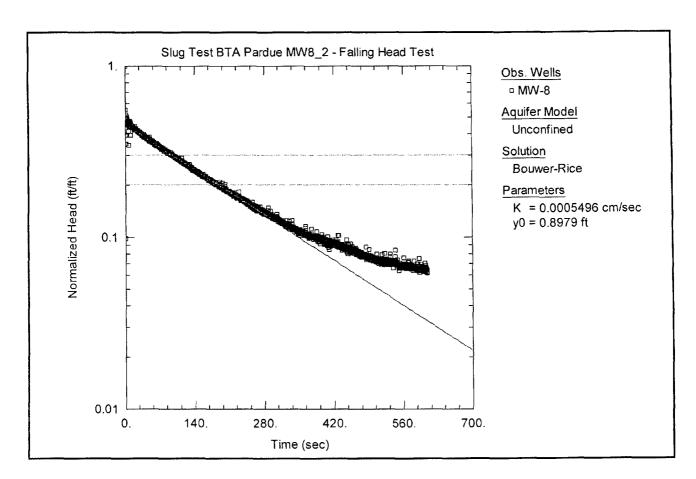
AQUIFER DATA

14 M

. 68

and the second

1.7 42 1


語

24.42

Saturated Thickness: 29.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.774 ft Static Water Column Height: 12.49 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.49 ft Total Well Penetration Depth: 12.49 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-8

AQUIFER DATA

1. A. A.

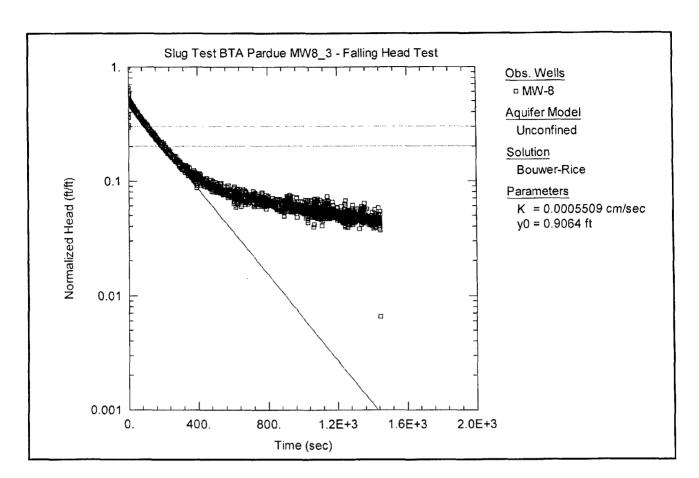
N. 1

-

Sugar.

1.2.5

1. the second


195 195 195

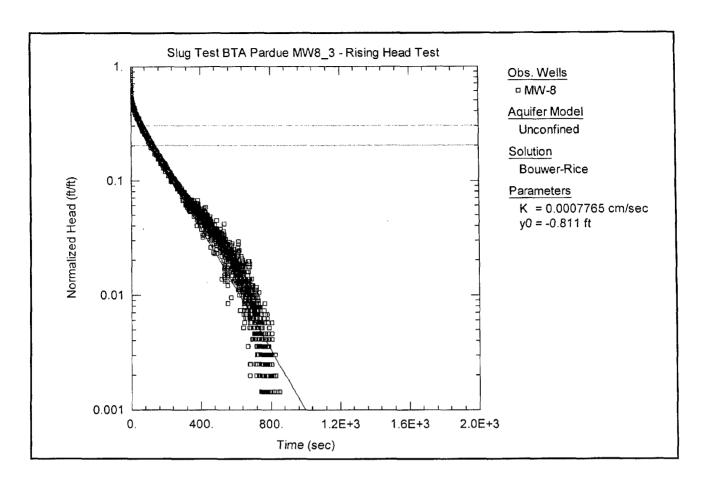
2.4.2

Saturated Thickness: 29.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.998 ft Static Water Column Height: 12.49 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.49 ft Total Well Penetration Depth: 12.49 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-8


AQUIFER DATA

Saturated Thickness: 29.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

14 - T.

Initial Displacement: 1.875 ft Static Water Column Height: 12.49 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.49 ft Total Well Penetration Depth: 12.49 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-8

AQUIFER DATA

100

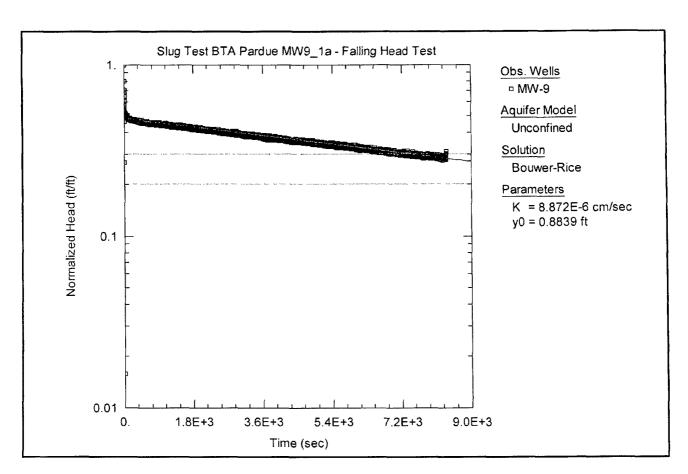
÷. 25. 4

1. T. S. A.

100

17 ST 1

Law Sort


の時に

1 . W. 1

Saturated Thickness: 29.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.876 ft Static Water Column Height: 12.49 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 12.49 ft Total Well Penetration Depth: 12.49 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-91a

AQUIFER DATA

5. 67. 84

Constant of

1. Carlie

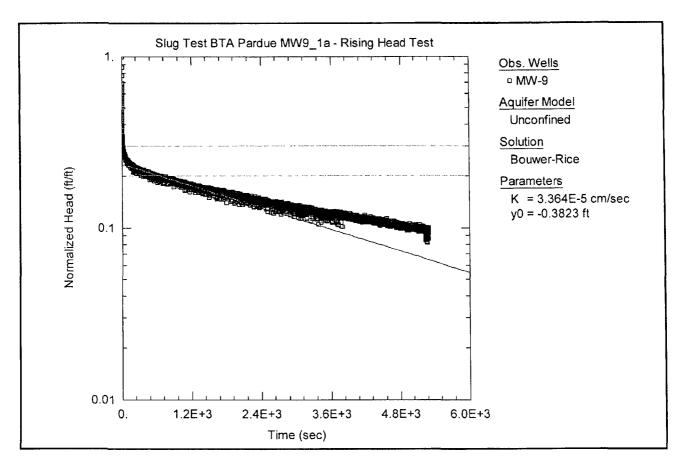
18-18 X

S. ac.

12 58 3

Sec. De la

14 A.

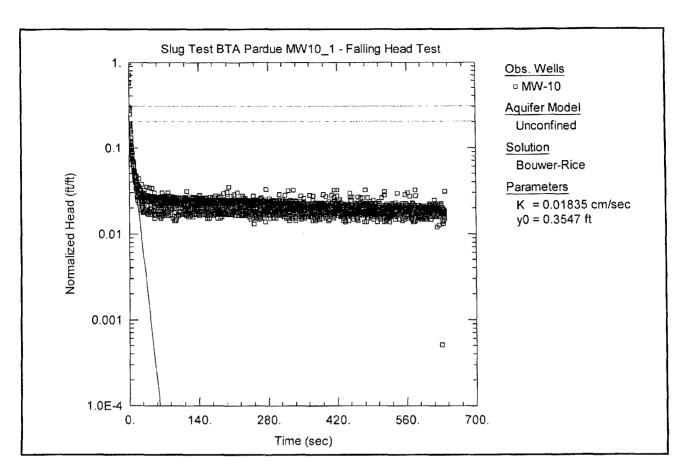

1.60

g.

Saturated Thickness: 29.24 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.833 ft Static Water Column Height: 10.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.89 ft Total Well Penetration Depth: 10.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3


Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-91a

AQUIFER DATA

Saturated Thickness: 29.24 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

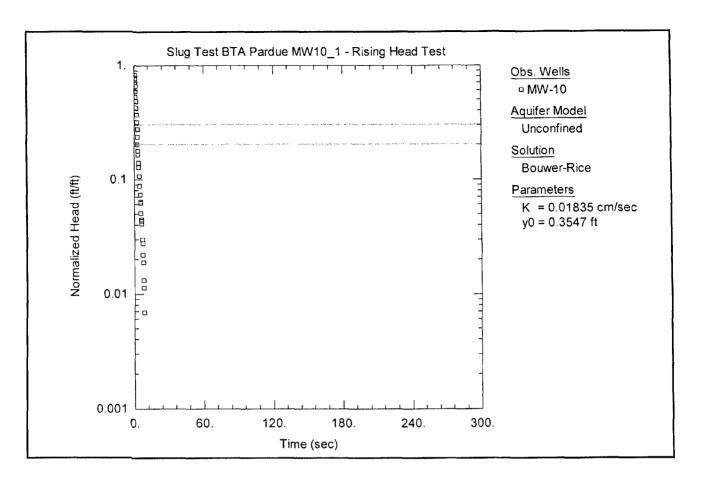
Initial Displacement: -1.632 ft Static Water Column Height: 10.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.89 ft Total Well Penetration Depth: 10.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-10

AQUIFER DATA

1.14

and the second


10.00

1. Sec. 1.

Saturated Thickness: 27.54 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.911 ft Static Water Column Height: 9.69 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 9.69 ft Total Well Penetration Depth: 9.69 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-10

AQUIFER DATA

Saturated Thickness: 27.54 ft Anisotropy Ratio (Kz/Kr): 1.

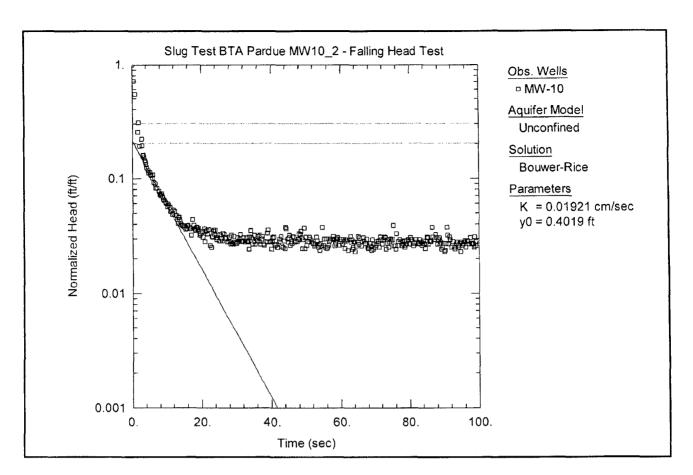
WELL DATA

San Street

1.1

A

-18-


14.1

1. A.

1. A.

8. g

Initial Displacement: -1.6 ft Static Water Column Height: 9.69 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 9.69 ft Total Well Penetration Depth: 9.69 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-10

AQUIFER DATA

Saturated Thickness: 27.54 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

10 A 10

1 2 B

10 Mar 10

Carl S

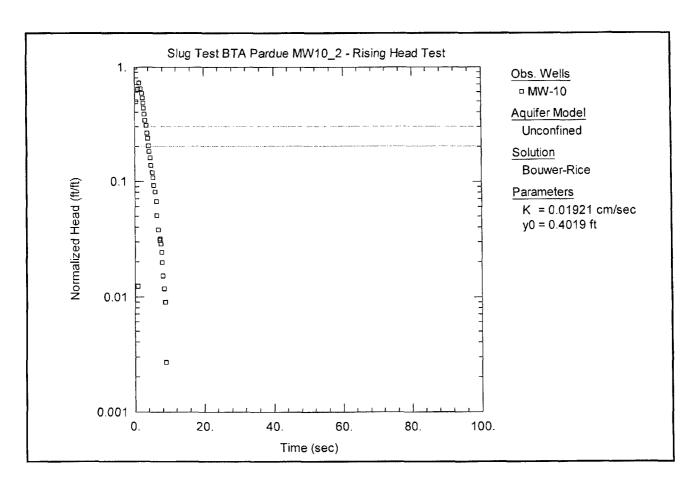
1.23

200

1.5

A. and

200


19.50 19.50

1.75

10 - C

the Lot of

Initial Displacement: 1.911 ft Static Water Column Height: 9.69 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 9.69 ft Total Well Penetration Depth: 9.69 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-10

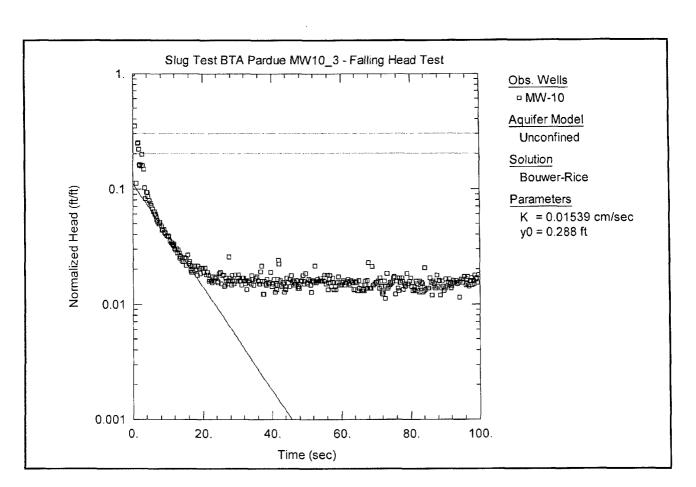
AQUIFER DATA

10.00

đ. đ. t

5.88° -

1. A. S. S.


A.

5 S

Saturated Thickness: 27.54 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.758 ft Static Water Column Height: 9.69 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 9.69 ft Total Well Penetration Depth: 9.69 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-10

AQUIFER DATA

1 - 2 - 2 - 2

語で対応

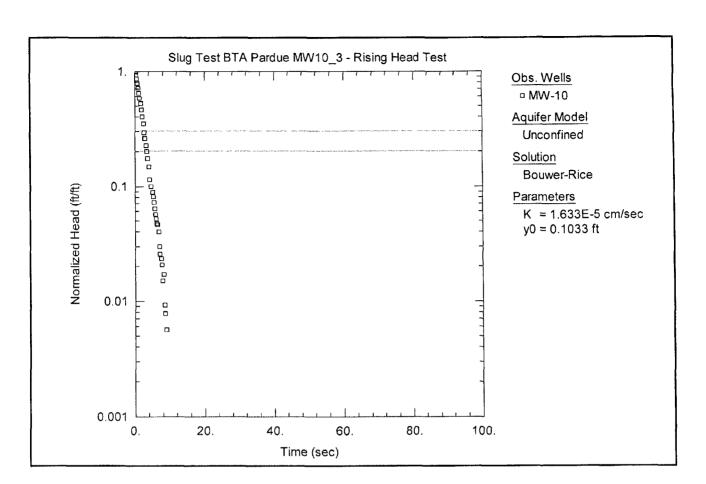
Sec. No.

Angerthan State

Service Service

T. Alverta

de buter


1. M.T. 24

100

Saturated Thickness: 27.54 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 2.619 ft Static Water Column Height: 9.69 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 9.69 ft Total Well Penetration Depth: 9.69 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-10

AQUIFER DATA

19 A

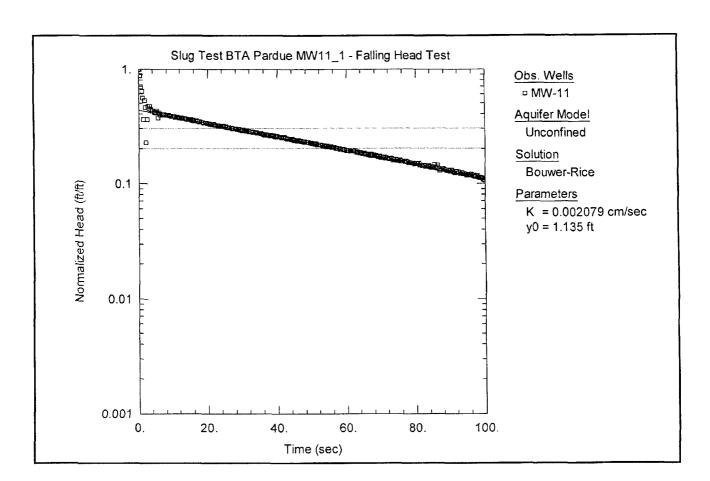
- 3. Sr.

1 - N

W. W. E

10.0

A Strate


diam'r.

.a. ..e.

Saturated Thickness: 27.54 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.402 ft Static Water Column Height: 9.69 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 9.69 ft Total Well Penetration Depth: 9.69 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-11

AQUIFER DATA

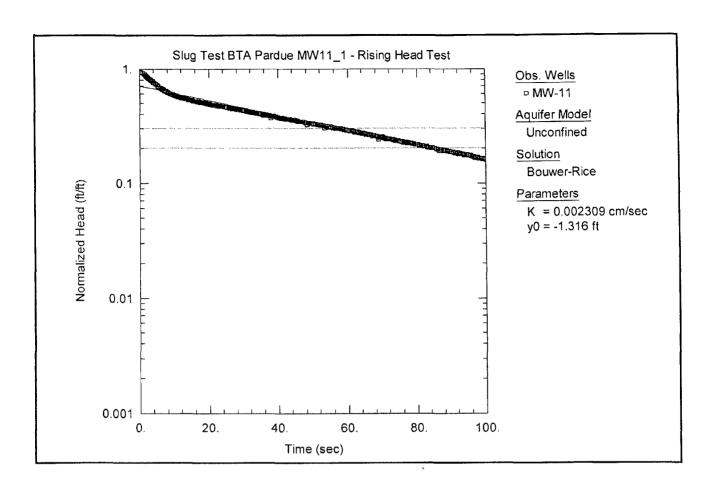
1.1

1. 1. 2. S.

C.

1.4 1.8

÷ .


1 1 E

1. R. &

Saturated Thickness: 28.96 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 2.609 ft Static Water Column Height: 8.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 8.89 ft Total Well Penetration Depth: 8.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-11

AQUIFER DATA

100

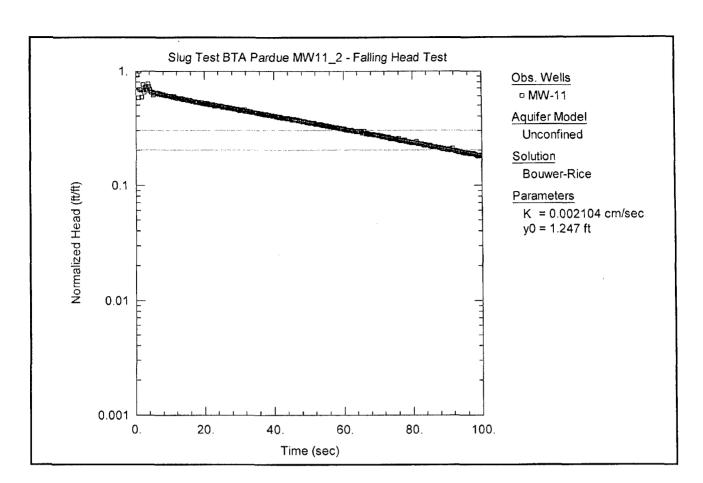
Sugare.

a. 19. 19.

A. 2. A.

1. 2 2 3 S

1.00


3.0 4.24

194. e 1

Saturated Thickness: 28.96 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.864 ft Static Water Column Height: 8.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 8.89 ft Total Well Penetration Depth: 8.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

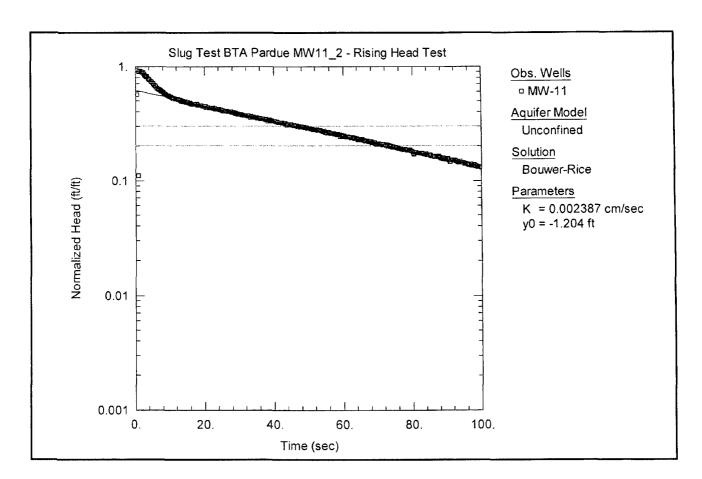
Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-11

AQUIFER DATA

- ANA

1

1 . St. -


10

Marker ...

Saturated Thickness: 28.96 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.805 ft Static Water Column Height: 8.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 8.89 ft Total Well Penetration Depth: 8.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-11

AQUIFER DATA

a. 2020 d

- 23.00

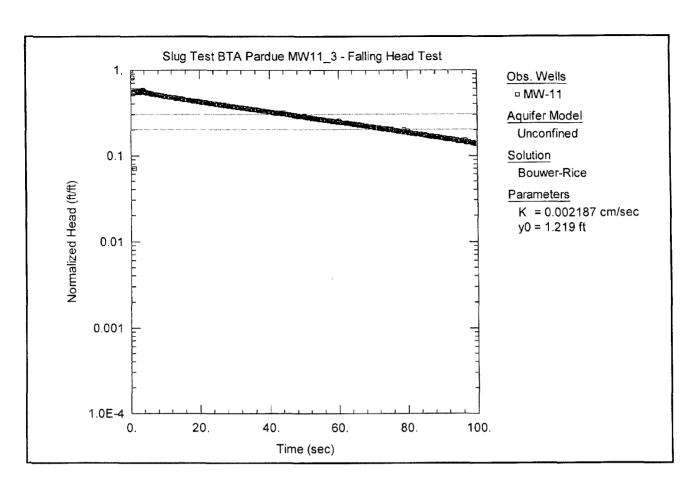
Sec. 1

1. A. A.

1. C. ...

194

Harris C


سقد إعداله

an ^{ton}tar

Saturated Thickness: 28.96 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

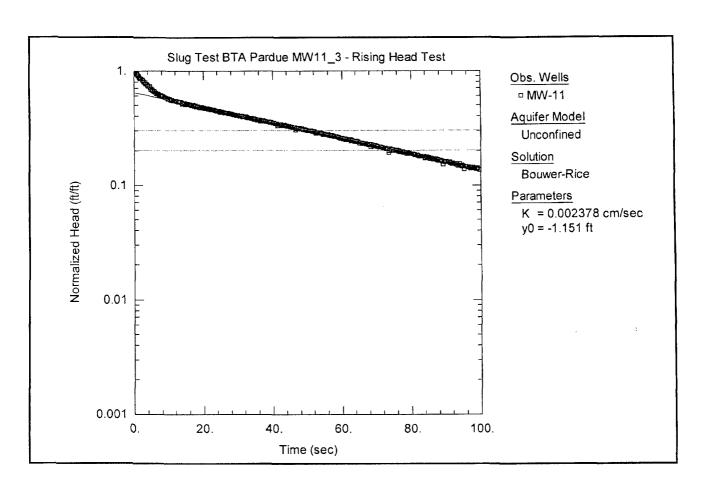
Initial Displacement: -1.942 ft Static Water Column Height: 8.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 8.89 ft Total Well Penetration Depth: 8.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-11

AQUIFER DATA

180 S

10 2.0


14.3

o mest

Saturated Thickness: 28.96 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 2.112 ft Static Water Column Height: 8.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 8.89 ft Total Well Penetration Depth: 8.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-11

AQUIFER DATA

Saturated Thickness: 28.96 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.783 ft Static Water Column Height: 8.89 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 8.89 ft Total Well Penetration Depth: 8.89 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

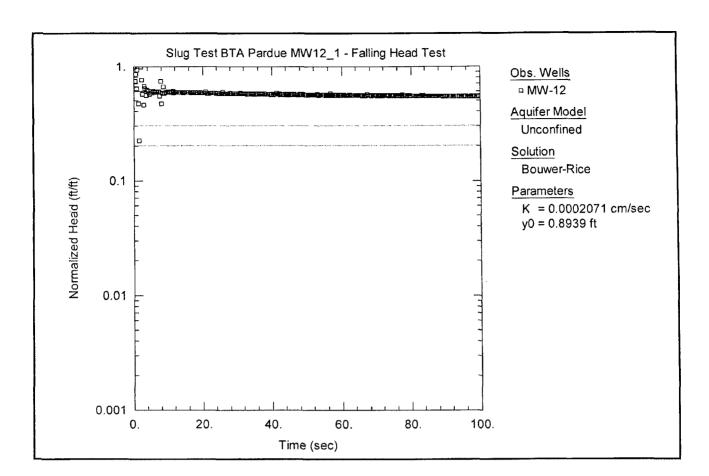
2 4 Y 16 .

3.∰.±.

3. A.

, 94° 4, 6 6

44. An - B - -


48 × . .

Sec. Sec.

- hafer

te ser de

2 - 10 C

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-12

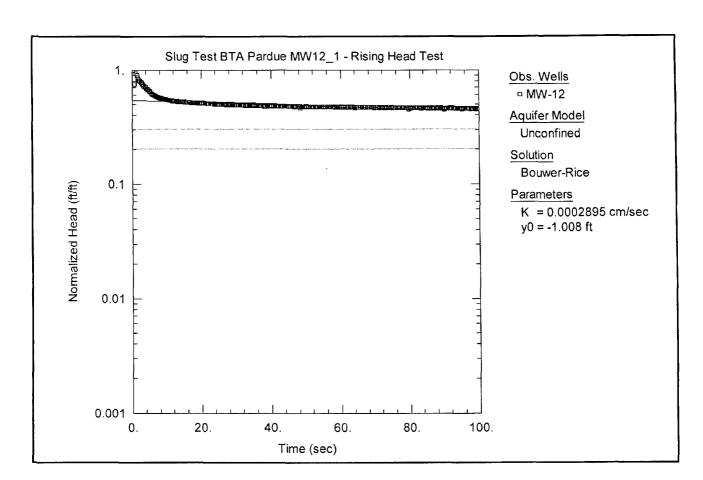
AQUIFER DATA

1 22 S

14

a Bread

19 C


Reline.

1 . A. .

Saturated Thickness: 28.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.48 ft Static Water Column Height: 10.93 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.93 ft Total Well Penetration Depth: 10.93 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-12

AQUIFER DATA

26 24

10 - 2 C

2. B. C. S

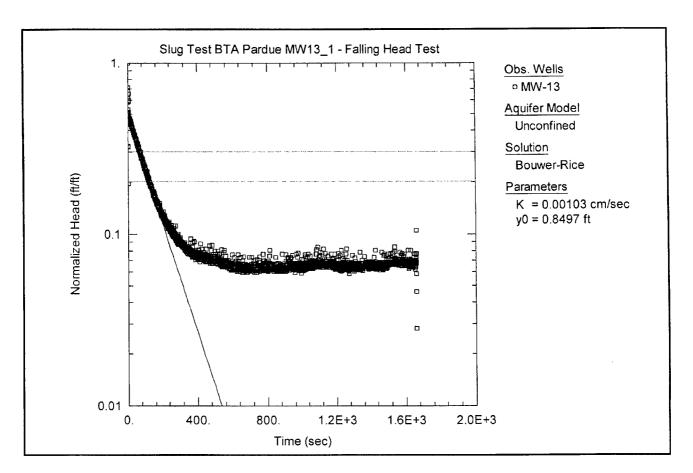
Safe S

Same Service

Sec. 1

1.4

of the


200 0

and ex

Saturated Thickness: 28.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.869 ft Static Water Column Height: 10.93 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.93 ft Total Well Penetration Depth: 10.93 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-13

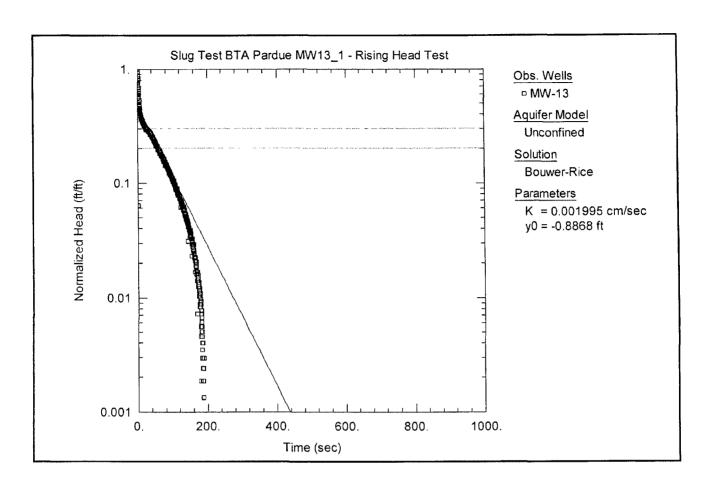
AQUIFER DATA

860 C

102.5

12 60

1. 1. S. 0.


1

100

Saturated Thickness: 28.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.727 ft Static Water Column Height: 10.6 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.6 ft Total Well Penetration Depth: 10.6 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-13

AQUIFER DATA

and and and

100×

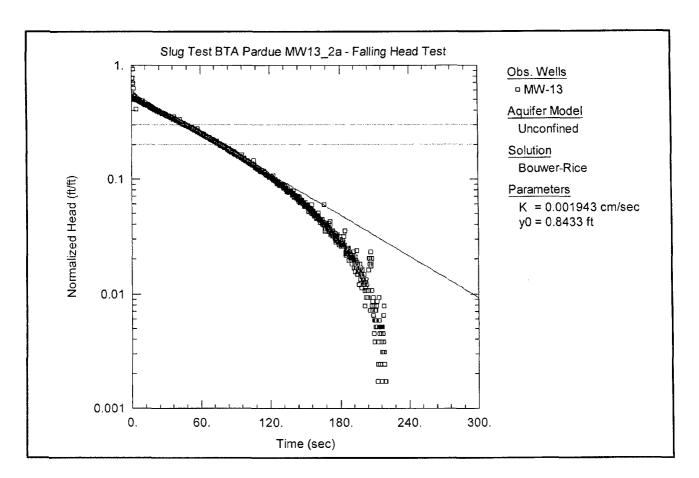
響きいり

a Bille a

Sec. 3 at

見上来

\$ 3.0


18-8 v

1.10

Saturated Thickness: 28.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -1.878 ft Static Water Column Height: 10.6 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.6 ft Total Well Penetration Depth: 10.6 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-13

AQUIFER DATA

Part Sec.

Ser and

St. Start

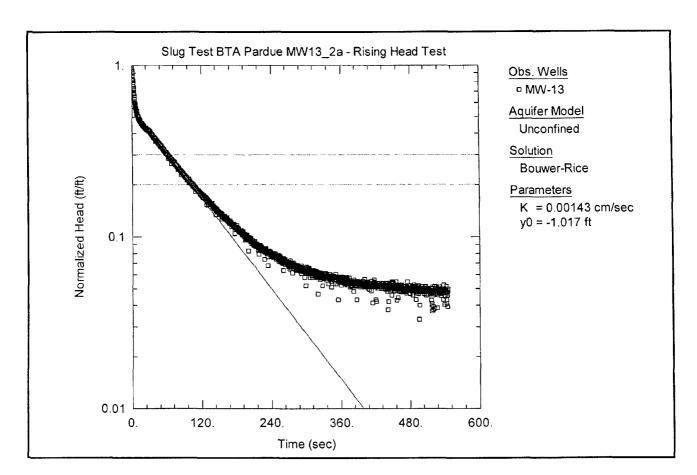
1.1.1

Alto Beau

4 14 A

C.3/3. 8

14 . al


10 TE (10)

1 . A

Saturated Thickness: 28.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.455 ft Static Water Column Height: 10.6 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.6 ft Total Well Penetration Depth: 10.6 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-13

AQUIFER DATA

Saturated Thickness: 28.75 ft Anisotropy Ratio (Kz/Kr): 1.

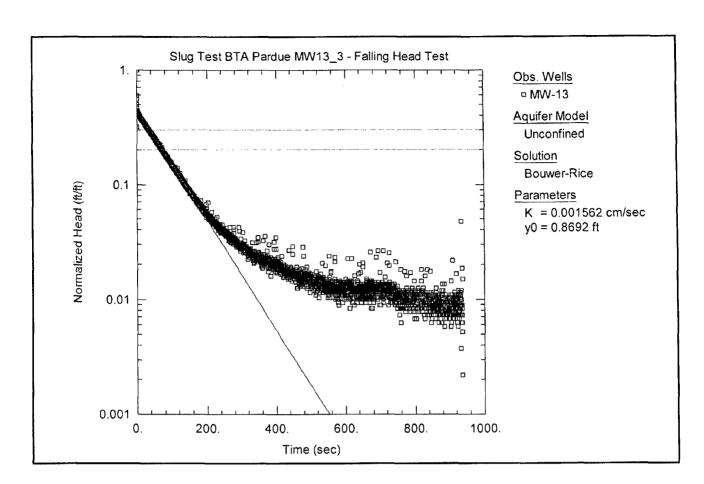
WELL DATA

Initial Displacement: -1.793 ft Static Water Column Height: 10.6 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.6 ft Total Well Penetration Depth: 10.6 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

and a second a second of a

A. V.

1,240 . 245


4 . 4.

14 . H. C.

anti- S

2.00

1.00

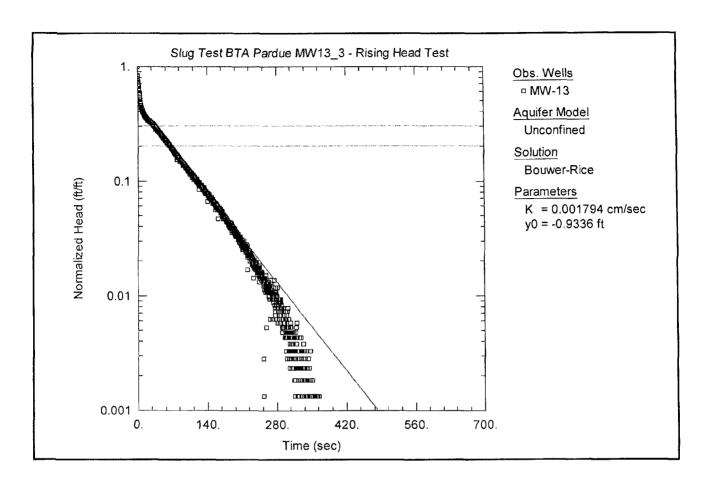
Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-13

AQUIFER DATA

- 1 Mar

でいた

10. 0.0


"" Sam

C. Salar

Saturated Thickness: 28.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.954 ft Static Water Column Height: 10.6 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.6 ft Total Well Penetration Depth: 10.6 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

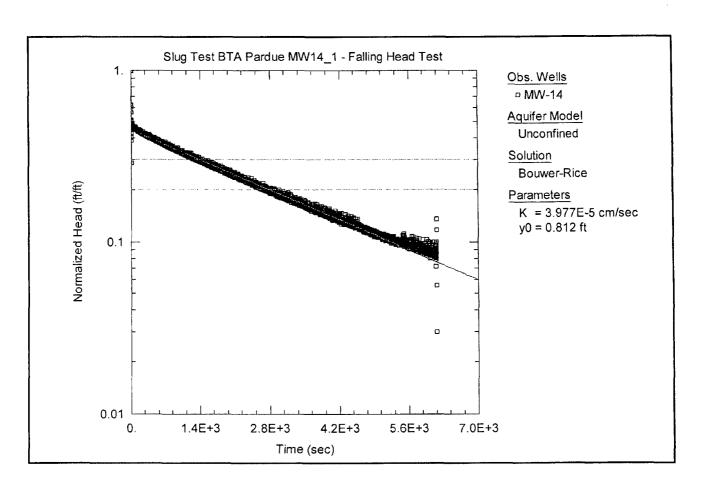
Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-13

AQUIFER DATA

75 30.1

1. A. A.

. К. ж. ж. с.


100

1

Saturated Thickness: 28.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -2.016 ft Static Water Column Height: 10.6 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.6 ft Total Well Penetration Depth: 10.6 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-14

AQUIFER DATA

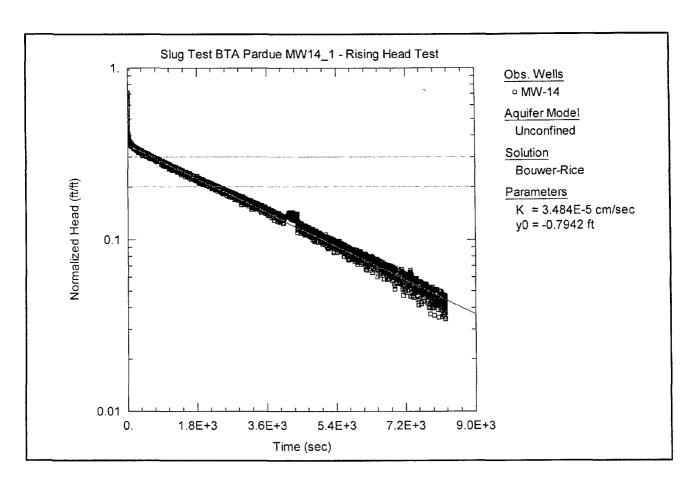
5 4 B

A. 4. 4.

1.6

1. Y

3


1. 10 C

1. A.

Saturated Thickness: 31.15 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.825 ft Static Water Column Height: 10.79 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.79 ft Total Well Penetration Depth: 10.79 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-14

AQUIFER DATA

1.

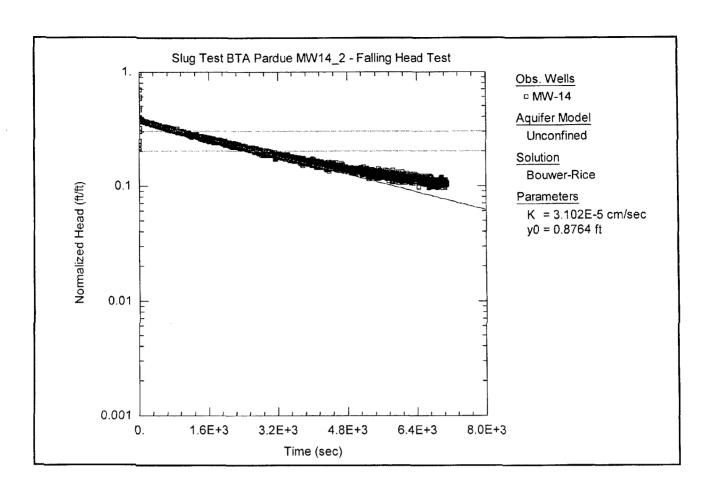
and the

12 10

1.1

Surge at

1


174 B

T. Turk

Saturated Thickness: 31.15 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -2.269 ft Static Water Column Height: 10.79 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.79 ft Total Well Penetration Depth: 10.79 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-14

AQUIFER DATA

ALL BASE

15 1 S. W.

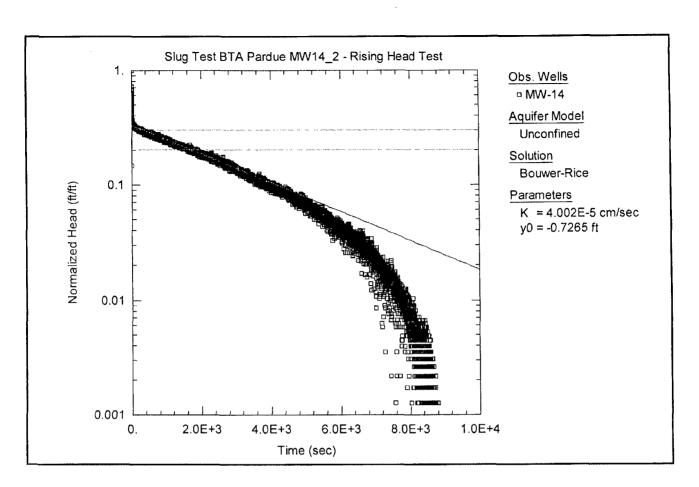
100

あったる

AP. 3.3. 1

4

200 000


C. and

Sec. State

Saturated Thickness: 31.15 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 2.377 ft Static Water Column Height: 10.79 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.79 ft Total Well Penetration Depth: 10.79 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

Company: Larson & Associates Client: BTA Project: 10-0101 Location: Pardue C JVP #1 Test Date: 05-04-10 Test Well: MW-14

AQUIFER DATA

0-71. 34

Salar .

Charles B.

5. (B)

*

Saturated Thickness: 31.15 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: -2.211 ft Static Water Column Height: 10.79 ft Casing Radius: 0.167 ft Well Radius: 0.333 ft Well Skin Radius: 0.333 ft Screen Length: 10.79 ft Total Well Penetration Depth: 10.79 ft Corrected Casing Radius (Bouwer-Rice Method): 0.2098 ft Gravel Pack Porosity: 0.3

The second

34 T. 20

S. 82.8 9

2 # 3.5

100 CT. 1

3 . B. F.

- 14 d 1

BENTOMAT[®] CL BENTOMAT[®] CLT

GEOSYNTHETIC CLAY LINER SPECIFICATION GUIDELINES

This specification is intended for use as a GENERAL GUIDELINE for developing a specification for a specific project. It is NOT intended as a substitute for a detailed specification, which must be written to address site-specific conditions. Shaded areas of this guideline indicate items that are typically considered specific to certain applications.

TR-400cl Revised 05/07

Page 1 of 13

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, <u>www.cetco.com</u>. A wholly owned subsidiary of AMCOL International Corporation. The information and data contained herein are believed to be accurate and

reliable, CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

1.0 GENERAL

1.1 Scope

This specification covers the technical requirements for the furnishing and installation of the geosynthetic clay liner described herein. All materials used shall meet the requirements of this specification, and all work shall be performed in accordance with the procedures provided herein and the contract drawings.

1.2 Definitions

For the purposes of this specification guideline, the following terms are defined below:

<u>Geosynthetic Clay Liner (GCL)</u>. A manufactured hydraulic barrier consisting of clay bonded to a layer or layers of geosynthetics.

<u>Geomembrane</u>. An essentially impermeable geosynthetic composed of one or more geosynthetic sheets.

Geotextile. Any permeable geosynthetic comprised solely of textiles.

<u>Minimum Average Roll Value</u>. For geosynthetics, the value calculated as the typical value minus two (2) standard deviations from documented quality control test results for a defined population from one specific test method associated with one specific property.

<u>Overlap</u>. Where two adjacent GCL panels contact, the distance measuring perpendicular from the overlying edge of one panel to the underlying edge of the other.

<u>Typical Value.</u> The mean value calculated from documented manufacturing quality control test results for a defined population obtained from one test method associated with one specific property.

1.3 Unit Prices

1

Measurement will be made of the total surface area in square feet covered by the GCL as shown on the contract drawings. Final quantities will be based on as-built conditions. Allowance will be made for GCL in anchor and drainage trenches but no allowance will be made for waste, overlap, or materials used for the convenience of the Contractor. GCL installed and accepted will be paid for at the respective contract unit price in the bidding schedule.

Page 2 of 12 800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

A wholly owned subsidiary of AMCOL International Corporation. The information and data contained herein are believed to be accurate and reliable, CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

1.4 Submittals

- A. With the bid, the Contractor shall furnish the following information:
 - 1. Conceptual description of the proposed plan for placement of the GCL panels over the area of installation.
 - 2. GCL manufacturer's MQC Plan for documenting compliance to Sections 2.1 and 2.2 of these specifications.
 - 3. GCL manufacturer's historical data for multi-axial tension testing of the laminated GCL per Section 2.1D.
 - 4. A copy of GCL manufacturer's ISO quality Certificate of Registration.
- B. At the Engineer's or Owner's request the Contractor shall furnish:
 - 1. A representative sample of the GCLs.
 - 2. A project reference list for the GCL(s) consisting of the principal details of at least ten projects totaling at least 10 million square feet (100,000 square meters) in size.
- C. Upon shipment, the Contractor shall furnish the GCL manufacturer's Quality Assurance/Quality Control (QA/QC) certifications to verify that the materials supplied for the project are in accordance with the requirements of this specification.
- D. As installation proceeds, the Contractor shall submit certificates of subgrade acceptance, signed by the Contractor and CQA Inspector (see Sections 1.6 and 3.3) for each area that is covered by the GCL.

1.5 Qualifications

- A. GCL Manufacturer must have produced at least 10 million square feet (1 million square meters) of GCL, with at least 8 million square feet (800,000 square meters) installed.
- B. The GCL Installer must either have installed at least 1 million square feet (100,000 square meters) of GCL, or must provide to the Engineer satisfactory evidence that the GCL will be installed in a competent, professional manner, through 1) similar experience in the installation of other types of geosynthetics, or 2) appropriate training.

TR-400cl Revised 05/07

Page 3 of 12

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

A wholly owned subsidiary of AMCOL International Corporation. The information and data contained herein are believed to be accurate and reliable, CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

1.6 Construction Quality Assurance (CQA)

- A. The Owner and Engineer shall provide a third-party inspector for CQA of the GCL installation. The inspector shall be an individual or company who is independent from the manufacturer and installer, who shall be responsible for monitoring and documenting activities related to the CQA of the GCL, throughout installation. The inspector shall have provided CQA services for the installation of the proposed or similar GCL for at least 5 completed projects totaling not less than 1 million square feet (100,000 square meters).
- B. Testing of the GCL, as necessary to support the CQA effort, shall be performed by a third party laboratory retained by the Contractor and independent from the GCL manufacturer and installer. The laboratory shall have provided GCL CQA testing of the proposed or similar GCL for at least 5 completed projects totaling not less than 1 million square feet (100,000 square meters).
- C. CQA shall be provided in accordance with the GCL CQA Manual provided by the engineer.

2.0 PRODUCTS

- A. The GCLs shall consist of a layer of natural sodium bentonite clay encapsulated between two geotextiles and laminated to either a thin flexible membrane liner (CL) or a 20-mil textured HDPE geomembrane (CLT). The GCL shall comply with all of the criteria listed in this Section.
- B. Prior to using an alternate GCL, the Contractor must furnish independent test results demonstrating that the proposed alternate material meets all requirements of this specification. The Contractor also must obtain prior approval of the alternative GCL by the Project Engineer.

2.1 Materials

- A. Acceptable reinforced GCL products are Bentomat CL and Bentomat CLT, as manufactured by CETCO, 1500 West Shure Drive, Arlington Heights, Illinois 60004 USA (847-392-5800), or an engineer-approved equal.
- B. The GCL and its components shall have the properties shown in the Bentomat CL and/or Bentomat CLT Certified Properties tables.
- C. The laminated GCL shall have multi-axial tension testing data per ASTM D5617. The GCL shall achieve a minimum multi-axial strain of 9.49%.
- D. The minimum acceptable dimensions of full-size GCL panels shall be 150 feet (45.7 m) in length. Short rolls [(those manufactured to a length greater than 70 feet (21 m) but less than a full-length roll)] may be supplied at a rate no greater than 3 per truckload or 3 rolls every 36,000 square feet (3,500 square meters) of GCL, whichever is less.

Page 4 of 12

For the most up-to-date product information, please visit our website, www.cetco.com.

E. A 6-inch (150 mm) overlap guideline shall be imprinted on both edges of the upper geotextile component of the GCL as a means for providing quality assurance of the overlap dimension. Lines shall be printed in easily visible, non-toxic ink.

2.2 Product Quality Documentation

The GCL manufacturer shall provide the Contractor or other designated party with manufacturing QA/QC certifications for each shipment of GCL. The certifications shall be signed by a responsible party employed by the GCL manufacturer and shall include:

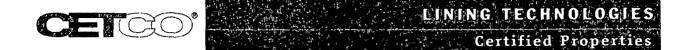
- A. Certificates of analysis for the bentonite clay used in GCL production demonstrating compliance with the parameters swell index and fluid loss shown in the Bentomat CL and/or Bentomat CLT Certified Properties tables.
- B. Manufacturer's test data for finished GCL product(s) of bentonite mass/area, GCL tensile strength and GCL peel strength (reinforced only) demonstrating compliance with the index parameters shown in the Bentomat CL and/or Bentomat CLT Certified Properties tables.
- C. GCL lot and roll numbers supplied for the project (with corresponding shipping information).

Manufacturer's test data for finished GCL product(s), including GCL index flux, permeability and hydrated internal shear strength data, which demonstrate compliance with the performance parameters shown in the Bentomat CL and/or Bentomat CLT Certified Properties tables, are available upon request of the manufacturer.

2.3 Product Labeling

A. Prior to shipment, the GCL manufacturer shall label each roll, identifying:

1. Product identification information (Manufacturer's name and address, brand product code).


- 2. Lot number and roll number.
- 3. Roll length, width and weight.

2.4 Packaging

- A. The GCL shall be wound around a rigid core whose diameter is sufficient to facilitate handling. The core is not necessarily intended to support the roll for lifting but should be sufficiently strong to prevent collapse during transit.
- B. All rolls shall be labeled and bagged in packaging that is resistant to photodegradation by ultraviolet (UV) light.

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

BENTOMAT® CL CERTIFIED PROPERTIES

MATERIAL PROPERTY	TEST METHOD	TEST FREQUENCY ft ² (m ²)	REQUIRED VALUES	
Bentonite Swell Index ¹	ASTM D 5890	1 per 50 tonnes	24 mL/2g min.	
Bentonite Fluid Loss ¹	ASTM D 5891	1 per 50 tonnes	18 mL max.	
Bentonite Mass/Area ²	ASTM D 5993	40,000 ft ² (4,000 m ²)	0.75 lb/ft² (3.6 kg/m²) min	
GCL Grab Strength ³	ASTM D 6768	200,000 ft ² (20,000 m ²)	45 lbs/in (78 N/cm) MARV	
GCL Peel Strength ³	ASTM D 6496	40,000 ft ² (4,000 m ²)	3.5 lbs/in (4.4 N/cm) min	
GCL Index Flux ⁴	ASTM D 5887	Periodic	$1 \times 10^{-9} \text{ m}^3/\text{m}^2/\text{sec max}$	
GCL Hydraulic Conductivity ⁴	ASTM D 5887	Periodic	5 x 10 ⁻¹⁰ cm/sec max	
GCL Hydrated Internal Shear Strength ⁵	ASTM D 5321 ASTM D 6243	Periodic	500 psf (24 kPa) typical	

Bentomat CL is a reinforced GCL consisting of a layer of sodium bentonite between two geotextiles, which are needlepunched together and laminated to a thin flexible membrane liner.

Notes

Bentonite property tests performed at a bentonite processing facility before shipment to CETCO's GCL production facilities.

² Bentonite mass/area reported at 0 percent moisture content.

³ All tensile strength testing is performed in the machine direction using ASTM D 6768. All peel strength testing is performed using ASTM D 6496. Upon request, tensile and peel results can be reported per modified ASTM D 4632 using 4 inch grips.

⁴ ASTM D5887 Index flux and hydraulic conductivity testing with deaired distilled/deionized water at 80 psi (551 kPa) cell pressure, 77 psi (531 kPa) headwater pressure and 75 psi (517 kPa) tailwater pressure. Reported value is equivalent to 92 gal/acre/day. This flux value is equivalent to a permeability of 5x10⁻¹⁰ cm/sec for typical GCL thickness. ASTM D 5887 testing is performed only on a periodic basis because the membrane is essentially impermeable.

⁵ Peak value measured at 200 psf (10 kPa) normal stress for a specimen hydrated for 48 hours. Site-specific materials, GCL products, and test conditions must be used to verify internal and interface strength of the proposed design.

TR-400cl Revised 05/07

Page 6 of 12

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

BENTOMAT® CLT CERTIFIED PROPERTIES

MATERIAL PROPERTY	TEST METHOD	TEST FREQUENCY ft²(m²)	REQUIRED VALUES	
Bentonite Swell Index ¹	ASTM D 5890	1 per 50 tonnes	24 mL/2g min.	
Bentonite Fluid Loss ¹	ASTM D 5891	1 per 50 tonnes	18 mL max.	
Bentonite Mass/Area ²	ASTM D 5993	40,000 ft ² (4,000 m ²)	0.75 lb/ft² (3.6 kg/m²) min	
GCL Grab Strength ³	ASTM D 6768	200,000 ft ² (20,000 m ²)	45 lbs/in (78 N/cm) MARV	
GCL Peel Strength ³	ASTM D 6496	40,000 ft ² (4,000 m ²)	3.5 lbs/in (4.4 N/cm) min	
GCL Index Flux ⁴	ASTM D 5887	Periodic	1 x 10 ⁻⁹ m ³ /m ² /sec max	
GCL Hydraulic Conductivity ⁴	ASTM D 5887	Periodic	5 x 10 ⁻¹⁰ cm/sec max	
GCL Hydrated Internal Shear Strength ⁵	ASTM D 5321 ASTM D 6243	Periodic	500 psf (24 kPa) typical	

Bentomat CLT is a reinforced GCL consisting of a layer of sodium bentonite between two geotextiles, which are needlepunched together and laminated to a 20-mil (0.5mm) <u>textured</u> HDPE geomembrane.

Notes

¹ Bentonite property tests performed at a bentonite processing facility before shipment to CETCO's GCL production facilities.

²Bentonite mass/area reported at 0 percent moisture content.

³All tensile strength testing is performed in the machine direction using ASTM D 6768. All peel strength testing is performed using ASTM D 6496. Upon request, tensile and peel results can be reported per modified ASTM D 4632 using 4 inch grips.

⁴ ASTM D5887 Index flux and hydraulic conductivity testing with deaired distilled/deionized water at 80 psi (551 kPa) cell pressure, 77 psi (531 kPa) headwater pressure and 75 psi (517 kPa) tailwater pressure. Reported value is equivalent to 92 gal/acre/day. This flux value is equivalent to a permeability of 5x10⁻¹⁰ cm/sec for typical GCL thickness. ASTM D 5887 testing is performed only on a periodic basis because the membrane is essentially impermeable.

⁵ Peak value measured at 200 psf (10 kPa) normal stress for a specimen hydrated for 48 hours. Site-specific materials, GCL products, and test conditions must be used to verify internal and interface strength of the proposed design.

19

Page 7 of 12

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

2.5 Accessory Bentonite

A. The granular bentonite sealing clay used for overlap seaming, penetration sealing and repairs shall be made from the same natural sodium bentonite as used in the GCL and shall be as recommended by the GCL manufacturer. Seaming of GCLs shall be conducted in accordance with the manufacturer's specifications for each particular GCL. Please refer to the installation guidelines for Bentomat/Claymax GCLs.

3.0 EXECUTION

3.1 Shipping and Handling

- A. The manufacturer assumes responsibility for initial loading the GCL. Shipping will be the responsibility of the party paying the freight. Unloading, on-site handling and storage of the GCL are the responsibility of the Contractor, Installer or other designated party.
- B. A visual inspection of each roll should be made during unloading to identify if any packaging has been damaged. Rolls with damaged packaging should be marked and set aside for further inspection. The packaging should be repaired prior to being placed in storage.
- C. The party responsible for unloading the GCL should contact the Manufacturer prior to shipment to ascertain the appropriateness of the proposed unloading methods and equipment.

3.2 Storage

- A. Storage of the GCL rolls shall be the responsibility of the installer. A dedicated storage area shall be selected at the job site that is away from high traffic areas and is level, dry and well drained.
- B. Rolls should be stored in a manner that prevents sliding or rolling from the stacks and may be accomplished by the use of chock blocks. Rolls should be stacked at a height no higher than that at which the lifting apparatus can be safely handled (typically no higher than four).
- C. All stored GCL materials and the accessory bentonite must be covered with a plastic sheet or tarpaulin until their installation.
- D. The integrity and legibility of the labels shall be preserved during storage.

Page 8 of 12 800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

3.3 Earthwork

- A. Any earthen surface upon which the GCL is installed shall be prepared and compacted in accordance with the project specifications and drawings. The surface shall be smooth, firm, and unyielding, and free of:
 - 1. Vegetation.
 - 2. Construction Debris.
 - 3. Sticks.
 - 4. Sharp rocks.
 - 5. Void spaces.
 - 6. Ice.
 - 7. Abrupt elevation changes.
 - 8. Standing water.
 - 9. Cracks larger than one-quarter inch (6 mm) in width.
 - 10. Any other foreign matter that could contact the GCL.
- B. Subgrade surfaces consisting of granular soils or gravels may not be acceptable due to their large void fraction and puncture potential. Subgrade soils should range between fines and 1 inch (25 mm). In high-head applications (greater than 1 foot or 30.48 cm), CETCO recommends a membrane-laminated GCL (Bentomat CL or Bentomat CLT).
- C. Immediately prior to GCL deployment, the subgrade shall be final-graded to fill in all voids or cracks and then smooth-rolled to provide the best practicable surface for the GCL. At completion of this activity, no wheel ruts, footprints or other irregularities shall exist in the subgrade. Furthermore, all protrusions extending more than one-half inch (12 mm) from the surface shall either be removed, crushed or pushed into the surface with a smooth-drum compactor.
- D. On a continuing basis, the project CQA inspector shall certify acceptance of the subgrade before GCL placement.
- E. It shall be the installer's responsibility thereafter to indicate to the Engineer any change in the condition of the subgrade that could cause the subgrade to be out of compliance with any of the requirements listed in this Section.
- F. At the top of sloped areas of the job site, an anchor trench for the GCL shall be excavated or an equivalent runout shall be utilized in accordance with the project plans and specifications and as approved by the CQA inspector. When utilizing an anchor trench design, the trench shall be excavated and approved by the CQA inspector prior to GCL placement. No loose soil shall be allowed at the bottom of the trench and no sharp corners or protrusions shall exist anywhere within the trench.

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

3.4 GCL Placement

- A. Unreinforced GCL shall be placed on the flatter areas of the site; reinforced GCL shall be placed on the more steeply sloped areas. The Installer and Project engineer shall review and agree upon which GCL shall be placed on these areas prior to installation.
- B. GCL rolls should be delivered to the working area of the site in their original packaging. Immediately prior to deployment, the packaging should be carefully removed without damaging the GCL. The orientation of the GCL (i.e., which side faces up) should be in accordance with the Engineer's recommendations.
- C. Equipment, which could damage the GCL, shall not be allowed to travel directly on it. If the installation equipment causes rutting of the subgrade, the subgrade must be restored to its originally accepted condition before placement continues.
- D. Care must be taken to minimize the extent to which the GCL is dragged across the subgrade in order to avoid damage to the bottom surface of the GCL. A temporary geosynthetic subgrade covering commonly known as a slip sheet or rub sheet may be used to reduce friction damage during placement.
- E. The GCL panels shall be placed parallel to the direction of the slope.
- F. All GCL panels should lie flat on the underlying surface, with no wrinkles or fold, especially at the exposed edges of the panels.
- G. Only as much GCL shall be deployed as can be covered at the end of the working day with soil, a geomembrane, or a temporary waterproof tarpaulin. The GCL shall not be left uncovered overnight. If the GCL is hydrated when no confining stress is present, it may be necessary to remove and replace the hydrated material. The project Engineer, CQA inspector, and GCL supplier should be consulted for specific guidance if premature hydration occurs.

3.5 Anchorage

A. As directed by the project drawings and specifications, the end of the GCL roll shall be placed in an anchor trench at the top of the slope or an equivalent runout design shall be utilized. When utilizing an anchor trench design, the front edge of the trench should be rounded so as to eliminate any sharp corners. Loose soil should be removed from the floor of the trench. The GCL should cover the entire trench floor but does not extend up the rear trench wall.

> TR-400cl Revised 05/07

Page 10 of 12

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com.

3.6 Seaming

- A. The GCL seams are constructed by overlapping their adjacent edges. Care should be taken to ensure that the overlap zone is not contaminated with loose soil or other debris. Bentonite-enhanced seams are required for installation of Bentomat CL and Bentomat CLT.
- B. The minimum dimension of the longitudinal overlap should be 6 inches (150 mm). End-of-roll overlapped seams should be similarly constructed, but the minimum overlap should measure 24 inches (600 mm).
- C. Seams at the ends of the panels should be constructed such that they are shingled in the direction of the grade to prevent the potential for runoff flow to enter the overlap zone.
- D. Bentonite-enhanced seams are constructed between the overlapping adjacent panels described above. The underlying edge of the longitudinal overlap is exposed and then a continuous bead of granular sodium bentonite is applied along a zone defined by the edge of the underlying panel and the 6-inch (150 mm) line. A similar bead of granular sodium bentonite is applied at the end-of-roll overlap. The granular bentonite shall be applied at a minimum application rate of one quarter pound per lineal foot (0.4 kg/m).

3.7 Detail Work

- A. The GCL shall be sealed around penetrations and embedded structures embedded in accordance with the design drawings and the GCL Manufacturer.
- B. Cutting the GCL should be performed using a sharp utility knife. Frequent blade changes are recommended to avoid damage to the geotextile components of the GCL during the cutting process.

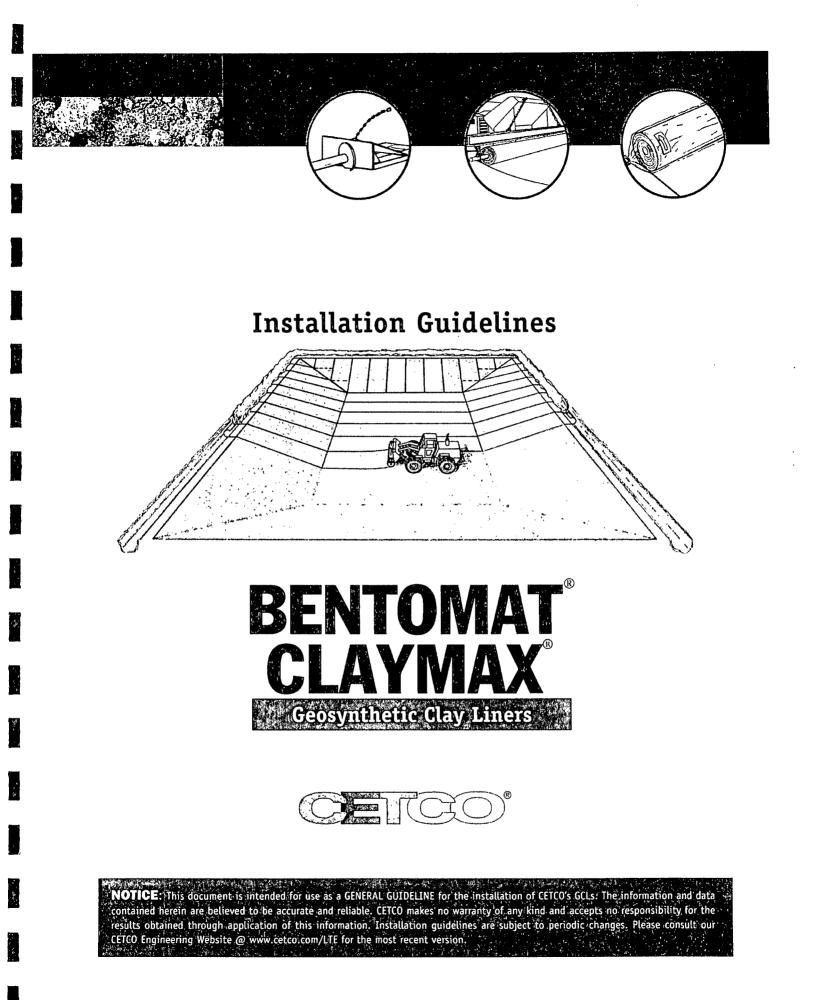
3.8 Damage Repair

A. If the GCL is damaged (torn, punctured, perforated, etc.) during installation, it may be possible to repair it by cutting a patch to fit over the damaged area. The patch shall be obtained from a new GCL roll and shall be cut to size such that a minimum overlap of 12 inches (300 mm) is achieved around all of the damaged area. Granular bentonite or bentonite mastic should be applied around the damaged area prior to placement of the patch. It may be desirable to use an adhesive to affix the patch in place so that it is not displaced during cover placement.

800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, www.cetco.com,

3.9 Cover Placement


- A. Cover soils shall be free of angular stones or other foreign matter that could damage the GCL. Cover soils should be approved the project Engineer with respect to particle size, uniformity and chemical compatibility. Cover soils with high concentrations of calcium (e.g., limestone, dolomite) are not acceptable.
- B. Soil cover shall be placed over the GCL using construction equipment that minimizes stresses on the GCL. A minimum thickness of 1foot (300 mm) of cover should be maintained between the equipment tires/tracks and the GCL at all times during the covering process. This thickness recommendation does not apply to frequently trafficked areas or roadways, for which a minimum thickness of 2 feet (600 mm) is required.
- C. Soil cover should be placed in a manner that prevents the soil from entering the GCL overlap zones. Cover soil shall be pushed up slopes, not down slopes, to minimize tensile forces on the GCL.
- D. Although direct vehicular contact with the GCL is to be avoided, lightweight, low ground pressure vehicles (such as 4-wheel all-terrain vehicles) may be used to facilitate the installation of any geosynthetic material placed over the GCL. The GCL supplier or CQA engineer should be contacted with specific recommendations on the appropriate procedures in this situation.
- E. When a textured geomembrane is installed over the GCL, a temporary geosynthetic covering known as a slip sheet or rub sheet should be used to minimize friction during placement and to allow the textured geomembrane to be more easily moved into its final position.
- F. Cyclical wetting and drying of GCL covered with geomembrane can cause overlap separation. Soil cover should be placed promptly to avoid this problem. Geomembranes should be covered with a white geotextile and/or operations layer without delay to prevent the geomembrane from absorbing heat and desiccating the bentonite in the GCL. If the GCL is covered only with a geomembrane for an extended period, the overlapping of the longitudinal seams needs to be increased to 12".
- G. To avoid seam separation, the GCL should not be put in excessive tension by the weight or expansion of textured geomembrane on steep slopes. The project Engineer should be consulted about the potential for GCL tension to develop.

TR-400cl Revised 05/07

Page 12 of 12

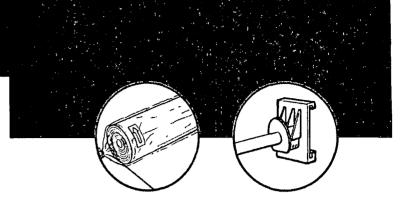
800.527.9948 Fax 847.577.5566

For the most up-to-date product information, please visit our website, <u>www.cetco.com</u>.

TABLE OF CONTENTS

1 9 an

F


₽.

. Ч

. 6

F

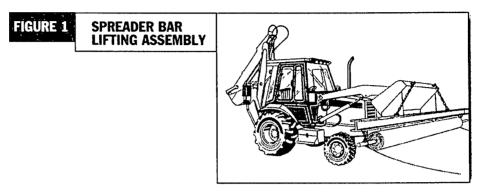
-

1.	Introduction
2.	Equipment Requirements
3.	Shipping, Unloading, and Storage5
4.	Subgrade Preparation 6
5.	Installation
6.	Anchorage
7.	Seaming 10
8.	Sealing Around Penetrations and Structures 11
9.	Damage Repair
10.	Cover Placement 14
11.	Hydration

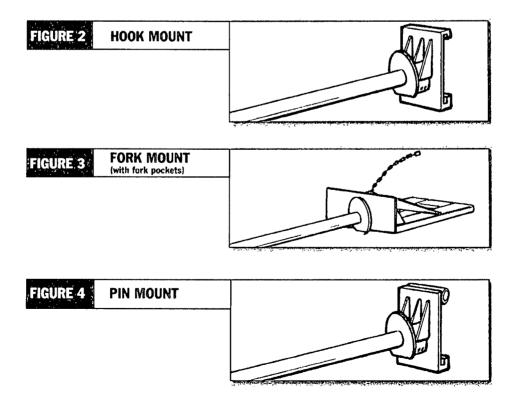
GETCO BENTOMAT/CLAYMAX Installation Guidelines

INTRODUCTION

- **1.1** This document provides procedures for the installation of CETCO's GCLs in a manner that maximizes safety, efficiency, and the physical integrity of the GCL.
- **1.2** These guidelines are based upon many years of experience at a variety of sites and should be generally applicable to any type of lining project using CETCO's GCLs. Variance from these guidelines is at the engineer's discretion.
- **1.3** The performance of the GCL is wholly dependent on the quality of its installation. It is the installer's responsibility to adhere to these guidelines, and to the project specifications and drawings, as closely as possible. It is the engineer's and owner's responsibility to provide construction quality assurance (CQA) for the installation, to ensure that the installation has been executed properly. This document covers only installation procedures.
- 1.4 For additional guidance, refer to ASTM D5888 (Standard Guide For Storage and Handling of Geosynthetic Clay Liners) and ASTM D 6102 (Standard Guide For Installation of Geosynthetic Clay Liners).


EQUIPMENT REQUIREMENTS

2.1 CETCO GCLs are delivered in rolls typically 2,600-2,950 lbs (1180-1340 kg). Roll dimensions and weights will vary with the dimensions of the product ordered. It is necessary to support this weight using an appropriate core pipe as indicated in Table 1. For any installation, the core pipe must not deflect more than 3 inches (75 mm) as measured from end to midpoint when a full GCL roll is lifted.


TABLE 1 CORE REQUI	REMENTS					
Product(s)	Nominal GCL Ro W × Dia. Ft. (n in. (nm)	ll Size Typi 1) x Roll Ibs.	cal GCL Wt.; (kg)	Interior Core Size, in. (mm)	Core Pipe Length × Diameter, ft. × in. (m × mm)	Minimum Core Pipe Strength
Bentomat DN, SDN	16' x 24" (4.9 x 6	510) 2,65	0 (1200)	3 3/4 (100)	20 x 3.5″0.D.(6.1 m x 89 mm)	ххн
Bentomat ST	16' x 24" (4.9 x 6	510) 2,60	0 (1180)	3 3/4 (100)	20 x 3.5"0.D.(6.1 m x 89 mm)	ХХН
Bentomat CLT	16' x 26" (4.9 x 6	560) 2,95	0 (1340)	3 3/4 (100)	20 x 3.5"0.D.(6.1 m x 89 mm)	ХХН
Claymax 200R	16' x 20" (4.9 x 5	510) 2,75	0 (1250)	3 3/4 (100)	20 x 3.5"0.D.(6.1 m x 89 mm)	ХХН
Bentomat CL	16' x 25" (4.9 x 6	535) 2,67	5 (1213)	3 3/4 (100)	20 x 3.5"0.D.(6.1 m x 89 mm)	ХХН

CETCO BENTOMAT/CLAYMAX Installation Guidelines

2.2 Lifting chains or straps appropriately rated should be used in combination with a spreader bar made from an I-beam as shown in Figure 1.

- **2.3** The spreader bar ensures that lifting chains or straps do not chafe against the ends of the GCL roll, allowing it to rotate freely during installation. Spreader bar and core pipe kits are available through CETCO.
- 2.4 A front end loader, backhoe, dozer, or other equipment can be utilized with the spreader bar and core pipe or slings. Alternatively, a forklift with a "stinger" attachment may be used for on-site handling. A forklift without a stinger attachment should not be used to lift or handle the GCL rolls. Stinger attachments (Figure 2-4) are specially fabricated to fit various forklift makes and models.

- **2.5** When installing over certain geosynthetic materials, a 4-wheel, all-terrain vehicle (ATV) can be used to deploy the GCL. An ATV can be driven directly on the GCL provided that no sudden stops, starts, or turns are made.
- 2.6 Additional equipment needed for installation of CETCO's GCLs includes:
 - Utility knife and spare blades (for cutting the GCL),
 - Granular bentonite for end-of-roll GCL seams and for sealing around structures and details. Granular bentonite is available from CETCO.
 - Waterproof tarpaulins (for temporary cover on installed material as well as for stockpiled rolls).
 - Optional flat-bladed vise grips (for positioning the GCL panel by hand).
- 2.7 The CETCO Easy Roller™ GCL Deployment System is a preferred method of installing geosynthetic clay liners. Use of the Easy Roller system eliminates the need for spreader bars and heavy core pipes. Installation speed and worker safety are significantly increased. For further details, contact CETCO.

SHIPPING, UNLOADING & STORAGE

- **3.1** All lot and roll numbers should be recorded and compared to the packing list. Each roll of GCL should also be visually inspected during unloading to determine if any packaging has been damaged. Damage, whether obvious or suspected, should be recorded and the affected rolls marked.
- **3.2** Major damage suspected to have occurred during transit should be reported immediately to the carrier and to CETCO. The nature of the damage should also be indicated on the bill of lading with the specific lot and roll numbers. Accumulation of some moisture within roll packaging is normal and does not damage the product.
- **3.3** The party directly responsible for unloading the GCL should refer to this manual prior to shipment to ascertain the appropriateness of their unloading equipment and procedures. Unloading and on-site handling of the GCL should be supervised.
- 3.4 In most cases, CETCO GCLs are delivered on flatbed trucks. There are three methods of unloading: core pipe and spreader bar; slings; or stinger bar. To unload the rolls from the flatbed using a core pipe and spreader bar, first insert the core pipe through the core tube. Secure the lifting chains or straps to each end of the core pipe and to the spreader bar mounted on the lifting equipment. Hoist the roll straight up and make sure its weight is evenly distributed so that it does not tilt or sway when lifted.
- **3.5** At the customer's request, CETCO GCLs may be delivered with two 2" x 12' (50 mm x 3.65 m) Type V polyester endless slings on each roll. Before lifting, check the position of the slings. Each sling should be tied off in the choke position approximately one third (1/3) from the end of the roll. Hoist the roll straight up so that it does not tilt or sway when lifted.

- **3.6** In some cases, GCL rolls will be stacked in three pyramids on flatbed trucks. If slings are not used, rolls will require unloading with a stinger bar and extendible boom fork lift. Spreader bars will not work in this situation because of the limited access between the stacks of GCL. Three types of stingers are available from CETCO (Figures 2-4). To unload, guide the stinger through the core tube before lifting the GCL roll and removing from the truck.
- **3.7** An extendible boom fork lift with a stinger bar is required for unloading vans. Rolls in the nose and center of van should first be carefully pulled toward the door using the slings provided on the rolls.
- **3.8** Rolls should be stored at the job site away from high-traffic areas but sufficiently close to the active work area to minimize handling. The designated storage area should be flat, dry and stable. Moisture protection of the GCL is provided by its packaging; however, an additional tarpaulin or plastic sheet is recommended.
- **3.9** Rolls should be stacked in a manner that prevents them from sliding or rolling. This can be accomplished by chocking the bottom layer of rolls. Rolls should be stacked no higher than the height at which they can be safely handled by laborers (typically no higher than four layers of rolls). Rolls should never be stacked on end.

4 SUBGRADE PREPARATION

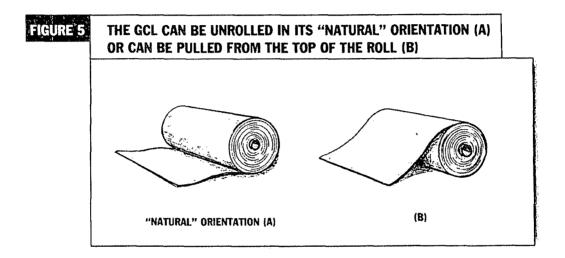
- 4.1 Subgrade surfaces consisting of granular soils or gravels are not acceptable due to their large void fraction and puncture potential. In applications where the GCL is the only barrier, subgrade soils should have a particle-size distribution at least 80 percent finer than the #60 sieve (0.25 mm). In other applications, subgrade soils should range between fines and 1 inch (25 mm). In high-head applications (greater than 1 foot or 30.48 cm), CETCO recommends a membrane-laminated GCL (Bentomat CL or Bentomat CLT).
- **4.2** When the GCL is placed over an earthen subgrade, the subgrade surface must be prepared in accordance with the project specifications. The engineer's approval of the subgrade must be obtained prior to installation. The finished surface should be firm and unyielding, without abrupt elevation changes, voids, cracks, ice, or standing water.
- **4.3** The subgrade surface must be smooth and free of vegetation, sharp-edged rocks, stones, sticks, construction debris, and other foreign matter that could contact the GCL. The subgrade should be rolled with a smooth-drum compactor to remove any wheel ruts greater than 1 inch in depth, footprints, or other abrupt grade changes. Furthermore, all protrusions extending more than 0.5 inch (12 mm) from the subgrade surface shall be removed, crushed, or pushed into the surface with a smooth-drum compactor. The GCL may be installed on a frozen subgrade, but the subgrade soil in the unfrozen state should meet the above requirements.

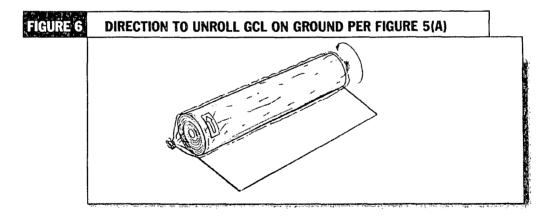
INSTALLATION

Ser l'and

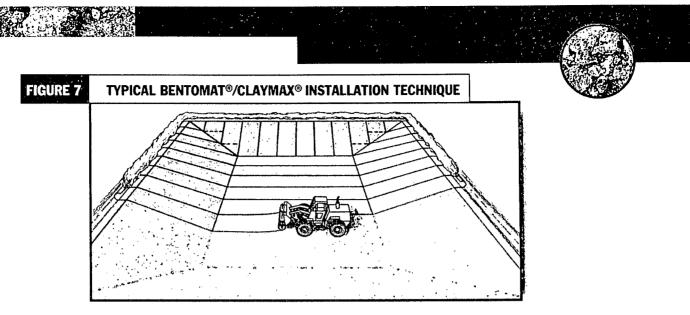
10 M

1. 1. K.

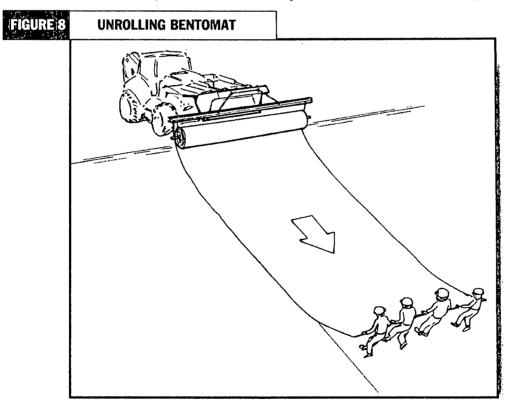

10 19 20


26

AL AL

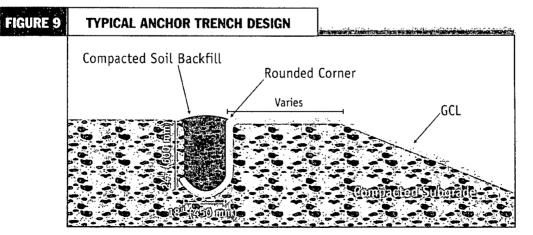

1.1

5.1 GCL rolls should be taken to the work area of the site in their original packaging. The orientation of the GCL (i.e., which side faces up) may be important if the GCL has two different types of geosynthetics. Check with the project engineer in order to determine if there is a preferred installation orientation for the GCL. If no specific orientation is required, allow the roll to unwind from the bottom rather than pulling from the top (Figure 5). The arrow sticker on the plastic sleeve indicates the direction the GCL will naturally unroll when placed on the ground (Figure 6). Prior to deployment, the packaging should be carefully removed without damaging the GCL.



5.2 Equipment which could damage the GCL should not be allowed to travel directly on it. Acceptable installation, therefore, may be accomplished such that the GCL is unrolled in front of backwards-moving equipment (Figure 7). If the installation equipment causes rutting of the sub-grade, the subgrade must be restored to its originally accepted condition before placement continues.

- **5.3** If sufficient access is available, GCL may be deployed by suspending the roll at the top of the slope with a group of laborers pulling the material off of the roll and down the slope (Figure 8).
- 5.4 GCL rolls should not be released on the slope and allowed to unroll freely by gravity.
- 5.5 Care must be taken to minimize the extent to which the GCL is dragged across the subgrade in order to avoid damage to the bottom surface of the GCL. Care must also be taken when adjusting Bentomat CLT panels to avoid damage to the geotextile surface of one panel of GCL by the textured sheet of another panel of GCL. A temporary geosynthetic subgrade covering, commonly known as a slip sheet or rub sheet, may be used to reduce friction damage during placement.

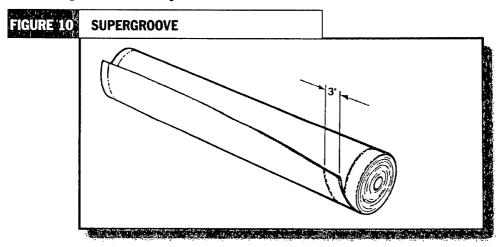

CEICO' BENTOMAT/CLAYMAX Installation Guidelines

- 5.6 The GCL should be placed so that seams are parallel to the direction of the slope. End-of-panel seams should also be located at least 3 ft (1m) from the toe and crest of slopes steeper than 4H:1V. End-of-roll seams on slopes should be used only if the liner is not expected to be in tension.
- **5.7** All GCL panels should lie flat, with no wrinkles or folds, especially at the exposed edges of the panels. When Bentomat with SuperGroove® is repositioned, it should be gripped inside the SuperGroove by folding the edge.
- **5.8** The GCL should not be installed in standing water or during rainy weather. Only as much GCL shall be deployed as can be covered at the end of the working day with soil, geomembrane, or a temporary waterproof tarpaulin. The GCL shall not be left uncovered overnight. If the GCL is hydrated when no confining stress is present, it may be necessary to remove and replace the hydrated material. CETCO recommends that premature hydration be evaluated on a case-by-case basis. The project engineer, CQA inspector, and CETCO's TR-312 should be consulted for specific guidance if premature hydration occurs. The type of GCL, duration of exposure, degree of hydration, location in the liner system, and expected bearing loads should be considered. In many instances, a needlepunch reinforced GCL may not require removal/replacement if the following are true: (1) the geotextiles have not been separated, torn or otherwise damaged; (2) there is no evidence that the needlepunching between the two geotextiles has been compromised; (3) the Bentomat does not leave deep indentations when stepped upon; and (4) any overlapped seams with bentonite enhancement (see Section 7) are intact.
- 5.9 For the convenience of the installer, hash marks are placed on Bentomat every 5' (1.5 m) of length.

6 ANCHORAGE

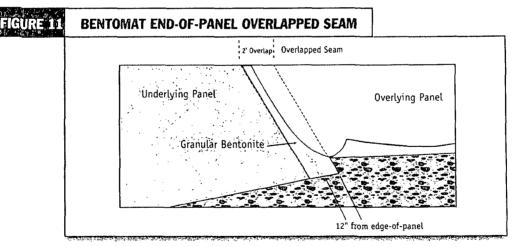
Carden -

6.1 If required by the project drawings, the end of the GCL roll should be placed in an anchor trench at the top of a slope. The front edge of the trench should be rounded to eliminate any sharp corners that could cause excessive stress on the GCL. Loose soil should be removed or compacted into the floor of the trench.



BENTOMAT/CLAYMAX Installation Guidelines

- **6.2** If a trench is used for anchoring the end of the GCL, soil backfill should be placed in the trench to provide resistance against pullout. The size and shape of the trench, as well as the appropriate backfill procedures, should be in accordance with the project drawings and specifications. Typical dimensions are shown in Figure 9.
- **6.3** The GCL should be placed in the anchor trench such that it covers the entire trench floor but does not extend up the rear trench wall.
- **6.4** Sufficient anchorage may alternately be obtained by extending the end of the GCL roll back from the crest of the slope, and placing cover soil. The length of this "runout" anchor should be prepared in accordance with project drawings and specifications.


SEAMING

7.1 GCL seams are constructed by overlapping adjacent panel edges and ends. Care should be taken to ensure that the overlap zone is not contaminated with loose soil or other debris. Supplemental bentonite is not required for Claymax 200R. Bentomat ST, DN, and SDN with Supergroove® have self-seaming capabilities in their longitudinal overlaps (Figure 10) and do not require supplemental bentonite. For pond applications, supplemental bentonite must be used in longitudinal seams regardless of the CETCO GCL used.

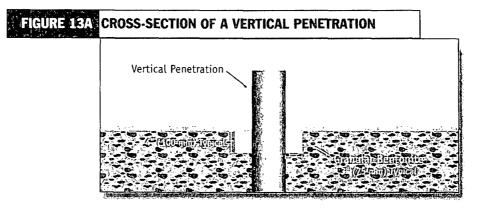
- 7.2 Longitudinal seams should be overlapped a minimum of 6 inches (150mm) for Bentomat and 12 inches (300mm) for Claymax. For high-head applications (greater than 1 foot or 30.48 cm) involving Bentomat CL or Bentomat CLT, a minimum longitudinal seam overlap of 12 inches (300 mm) and supplemental bentonite per Section 7.6 is recommended.
- **7.3** End-of-panel overlapped seams should be overlapped 24 inches (600mm) for Bentomat and 48 inches (1,200mm) for Claymax.

- 7.4 End-of-panel overlapped seams are constructed such that they are shingled in the direction of the grade to prevent runoff from entering the overlap zone. End-of-panel seams on slopes are permissible, provided adequate slope stability analysis has been conducted (i.e., the GCL is not expected to be in tension). Bentonite-enhanced seams are required for all Bentomat end-of-panel overlapped seams.
- 7.5 Bentomat end-of-panel, bentonite-enhanced, overlapped seams are constructed first by overlapping the adjacent panels, exposing the underlying panel, and then applying a continuous bead or fillet of granular sodium bentonite 12" from the edge of the underlying panel (Figure 11). The minimum application rate at which the bentonite is applied is one-quarter pound per linear foot (0.4 kg/m).
- 7.6 If longitudinal bentonite enhanced seams are required for Bentomat ST, DN, or SDN, they are constructed first by overlapping the adjacent panels by a minimum 6-inches (150 mm), exposing the underlying edge, and applying a continuous bead of granular bentonite approximately 3-inches (75 mm) from the edge. For pond applications involving Bentomat CL or CLT, longitudinal seams are constructed by overlapping adjacent panels by 12-inches (300 mm), exposing the underlying edge and applying a continuous bead of bentonite approximately 6-inches (150 mm) from the edge. The minimum application rate for the granular bentonite is one quarter pound per linear foot (0.4 kg/m).

SEALING AROUND PENETRATIONS AND STRUCTURES

- **8.1** Cutting the GCL should be performed using a sharp utility knife. Frequent blade changes are recommended to avoid irregular tearing of the geotextile components of the GCL during the cutting process.
- 8.2 The GCL should be sealed around penetrations and structures embedded in the subgrade in accordance with Figures 12 through 14. Granular bentonite shall be used liberally (approx. 2 lbs. /ln ft. or 3 kg/m) to seal the GCL to these structures.

BENTOMAT/CLAYMAX Installation Guidelines


1. W. S.

the and the second

Sec. 16

FIGURE 12A **CROSS-SECTION OF A HORIZONTAL PIPE PENETRATION** Primary GCL Layer Granular Bentonite Secondary GCL Collar-1 ft. (300 mm, min. overlap) Subgrade FIGURE 12B **ISOMETRIC VIEW OF A COMPLETED HORIZONTAL PIPE PENETRATION** Secondary GCL Collar Primary GCL Layer

8.3 When the GCL is placed over a horizontal pipe penetration, a "notch" should be excavated into the subgrade around the penetration (Figure 12a). The notch should then be backfilled with granular bentonite. A secondary collar of GCL should be placed around the penetration as shown in Figure 12b. It is helpful to first trace an outline of the penetration on the GCL and then cut a "star" pattern in the collar to enhance the collar's fit to the penetration. Granular bentonite should be applied between the primary GCL layer and the secondary GCL collar.

1. C. M.

C. 8. 4. 5.

State - State

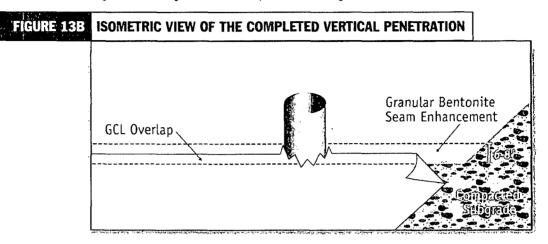
A. 20. 22

Sec. 2

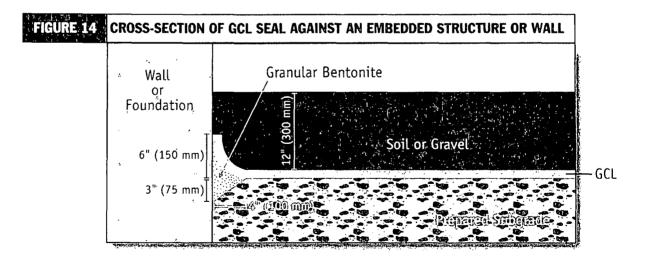
3. E. W.S.

1272

1. 40° 8.


山田あ

See 200

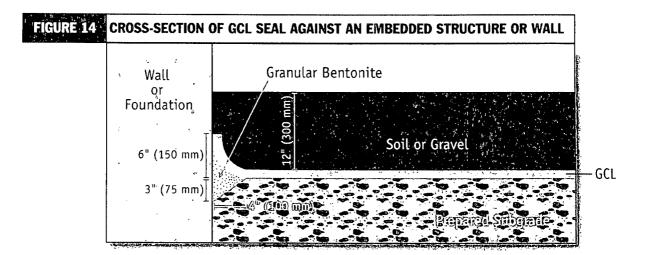

Cardina ?

18 JUN 19

8.4 Vertical penetrations are prepared by notching into the subgrade as shown in Figure 13a. The penetration can be completed with two separate pieces of GCL as shown in Figure 13b. Alternatively, a secondary collar can be placed as in Figure 12a or 12b.

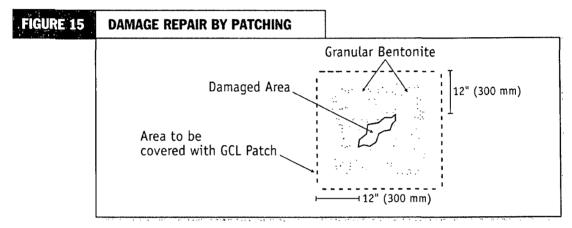


8.5 When the GCL is terminated at a structure or wall that is embedded into the subgrade on the floor of the containment area, the subgrade should be notched as described in Sections 8.3 and 8.4. The notch is filled with granular bentonite, and the GCL should be placed over the notch and up against the structure (Figure 14). Connection to the structure can be accomplished by placement of soil or stone backfill in this area. When structures or walls are at the top of a slope, additional detailing may be required. Contact CETCO for specific guidance.



.

8.4 Vertical penetrations are prepared by notching into the subgrade as shown in Figure 13a. The penetration can be completed with two separate pieces of GCL as shown in Figure 13b. Alternatively, a secondary collar can be placed as in Figure 12a or 12b.


8.5 When the GCL is terminated at a structure or wall that is embedded into the subgrade on the floor of the containment area, the subgrade should be notched as described in Sections 8.3 and 8.4. The notch is filled with granular bentonite, and the GCL should be placed over the notch and up against the structure (Figure 14). Connection to the structure can be accomplished by placement of soil or stone backfill in this area. When structures or walls are at the top of a slope, additional detailing may be required. Contact CETCO for specific guidance.

GEICO[®] BENTOMAT/CLAYMAX Installation Guidelines

DAMAGE REPAIR

9.1 If the GCL is damaged (torn, punctured, perforated, etc.) during installation, it may be possible to repair it by cutting a patch to fit over the damaged area (Figure 15). The patch should be cut to size such that a minimum overlap of 12 inches (300 mm) is achieved around all parts of the damaged area. Granular bentonite should be applied around the damaged area prior to placement of the patch. It may be necessary to use an adhesive such as wood glue to affix the patch in place so that it is not displaced during cover placement. Smaller patches may be tucked under the damaged area to prevent patch movement.

COVER PLACEMENT

- **10.1** The final thickness of soil cover on the GCL varies with the application. A minimum cover layer must be at least 1 foot (300 mm) thick to provide confining stress to the GCL, eliminate the potential for seam separation and prevent damage by equipment, erosion, etc.
- **10.2** Cover soils should be free of angular stones or other foreign matter that could damage the GCL. Cover soils should be approved by the Engineer with respect to particle size, uniformity, and chemical compatibility. Consult CETCO if cover soils with high concentrations of calcium (e.g., limestone, dolomite, gypsum, seashell fragments) are present.
- **10.3** Recommended cover soils should have a particle size distribution ranging between fines and 1 inch (25 mm), unless a cushioning geotextile is specified.
- **10.4** Soil cover shall be placed over the GCL using construction equipment that minimizes stresses on the GCL. A minimum thickness of 1 foot (300 mm) of cover soil should be maintained between the equipment tires/tracks and the GCL at all times during the covering process. In frequently high-traffic areas or roadways, a minimum thickness of 2 feet (600 mm) is required.
- 10.5 Soil cover should be placed in a manner that prevents the soil from entering the GCL overlap zones. Soil cover should be pushed up slopes, not down slopes, to minimize tensile forces on the GCL.

- **10.6** When a textured geomembrane is installed over the GCL, a temporary geosynthetic covering known as a slip sheet or rub sheet should be used to minimize friction during placement and to allow the textured geomembrane to be more easily moved into its final position.
- 10.7 Claymax must be covered with a geomembrane and/or 12" (300 mm) of cover material within8 hours of deployment to prevent the potential for shrinkage by desiccation.
- **10.8** Cyclical wetting and drying of GCL covered only with geomembrane can cause overlap separation. Soil cover should be placed promptly whenever possible. Geomembranes should be covered with a white geotextile and/or operations layer without delay to minimize the intensity of wet-dry cycling. If there is the potential for unconfined cyclic wetting and drying over an extended period of time, the longitudinal seam overlaps should be increased based on the project engineer's recommendations.
- 10.9 To avoid seam separation, the GCL should not be put in excessive tension by the weight or movement of textured geomembrane on steep slopes. If there is the potential for unconfined geomembrane expansion and contraction over an extended period of time, the longitudinal seam overlaps should be increased based upon the project engineer's recommendations.

HYDRATION

A. 9. 2. 2. 20

- **11.1** Hydration is usually accomplished by natural rainfall and/or absorption of moisture from soil. However, in cases where the containment of non-aqueous liquid is required, it may be necessary to hydrate the covered GCL with water prior to use.
- **11.2** If manual hydration is necessary, water can be introduced by flooding the covered lined area or using a sprinkler system.
- 11.3 If the GCL is hydrated when no confining stress is present, it may be necessary to remove and replace the hydrated material. As discussed in Section 5.8, in many instances, a needlepunch reinforced GCL may not require removal/replacement if the following are true: (1) the geotextiles have not been separated, torn, or otherwise damaged; (2) there is not evidence that the needlepunching between the two geotextiles has been compromised; (3) the Bentomat does not leave deep indentations when stepped upon, and (4) any overlapped seams with bentonite enhancement (see Section 7) are intact.

BENTOMAT/CLAYMAX Installation Guidelines

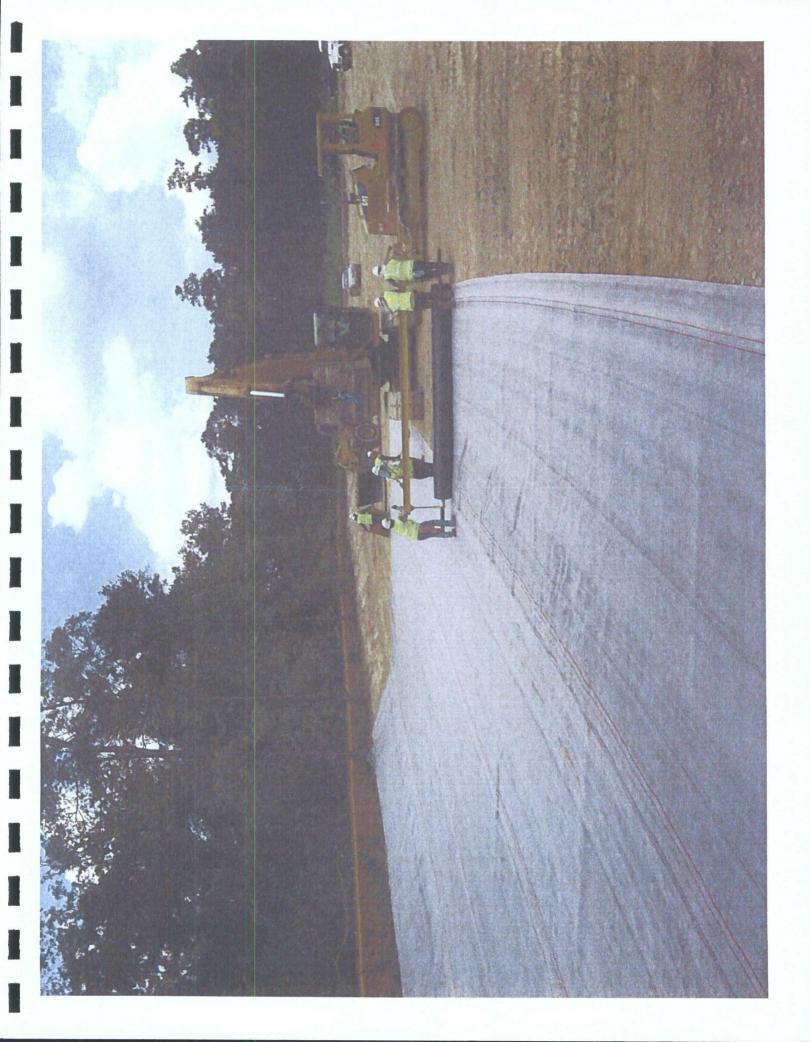
BENTOMAT[®] CL CERTIFIED PROPERTIES

MATERIAL PROPERTY	TEST METHOD	TEST FREQUENCY ft ² (m ²)	REQUIRED VALUES	
Bentonite Swell Index ¹	ASTM D 5890	1 per 50 tonnes	24 mL/2g min.	
Bentonite Fluid Loss ¹	ASTM D 5891	1 per 50 tonnes	18 mL max.	
Bentonite Mass/Area ²	ASTM D 5993	40,000 ft ² (4,000 m ²)	0.75 lb/ft² (3.6 kg/m²) min	
GCL Grab Strength ³	ASTM D 6768	200,000 ft ² (20,000 m ²)	45 lbs/in (78 N/cm) MARV	
GCL Peel Strength ³	ASTM D 6496	40,000 ft ² (4,000 m ²)	3.5 lbs/in (6.1 N/cm) min	
GCL Index Flux⁴	ASTM D 5887	Periodic	1 x 10 ⁻⁹ m³/m²/sec max	
GCL Hydraulic Conductivity ⁴	ASTM D 5887	Periodic	5 x 10 ⁻¹⁰ cm/sec max	
GCL Hydrated Internal Shear Strength⁵	ASTM D 5321 ASTM D 6243	Periodic	500 psf (24 kPa) typical	

Bentomat CL is a reinforced GCL consisting of a layer of sodium bentonite between two geotextiles, which are needlepunched together and laminated to a thin flexible membrane liner.

Notes

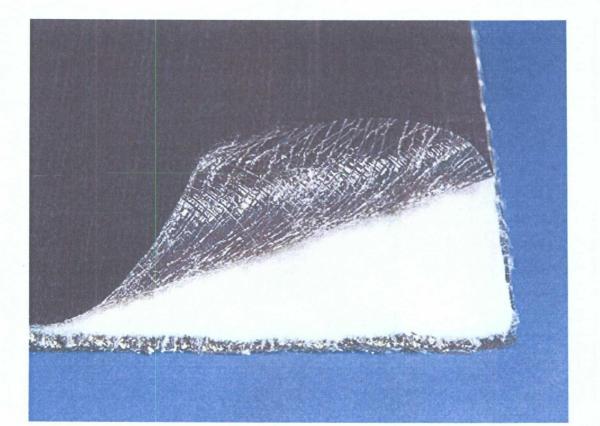
- Bentonite property tests performed at a bentonite processing facility before shipment to CETCO's GCL production facilities.
- ² Bentonite mass/area reported at 0 percent moisture content.
- ³ All tensile strength testing is performed in the machine direction using ASTM D 6768. All peel strength testing is performed using ASTM D 6496. Upon request, tensile and peel results can be reported per modified ASTM D 4632 using 4 inch grips.


⁴ ASTM D5887 Index flux and hydraulic conductivity testing with deaired distilled/deionized water at 80 psi (551 kPa) cell pressure, 77 psi (531 kPa) headwater pressure and 75 psi (517 kPa) tailwater pressure. Reported value is equivalent to 92 gal/acre/day. This flux value is equivalent to a permeability of 5x10⁻¹⁰ cm/sec for typical GCL thickness. ASTM D 5887 testing is performed only on a periodic basis because the membrane is essentially impermeable.

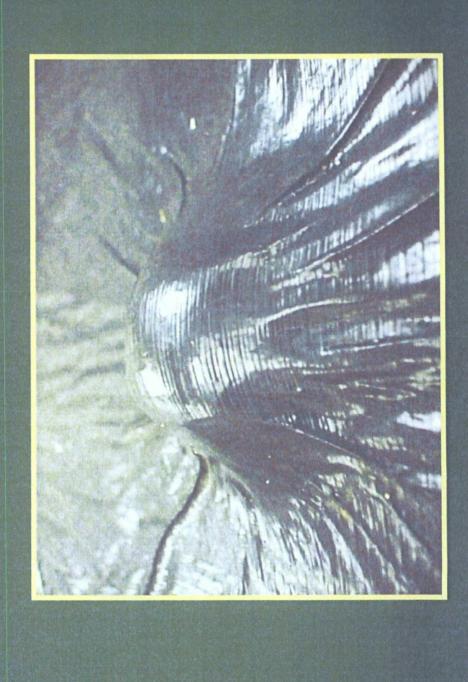
⁵ Peak value measured at 200 psf (10 kPa) normal stress for a specimen hydrated for 48 hours. Site-specific materials, GCL products, and test conditions must be used to verify internal and interface strength of the proposed design.

TR 401-BMCL 05/07

800.527.9948 Fax 847.577.5566


For the most up-to-date product information, please visit our website, <u>www.cetco.com.</u> A wholly owned subsidiary of AMCOL International Corporation. The information and data contained herein are believed to be accurate and reliable, CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

Bentomat-CL A membrane-backed GCL


A composite of high swelling sodium bentonite sandwiched between two geotextiles, needle-punched for internal shear strength, and laminated w/ a thin membrane.

Published permeability 5x10-10 cm/sec under normal load.

Membrane Deformation

