3RP-340

QTR Groundwater Report

DATE: AUG 2010

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 (505) 237-8440

August 19, 2010

Mr. Glen von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: ConocoPhillips Company Randleman #1 - Groundwater Monitoring Report, Aztec, New Mexico

Dear Mr. von Gonten:

Enclosed please find one copy of the above-referenced document as compiled by Tetra Tech, Inc., for this Aztec-area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Cc: Brandon Powell, NMOCD

Enclosures (1)

Sec.

2010	귀
aus	\mathbb{C}
2H	
υ	$\overline{\bigcirc}$
رب	S
	\Box

QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY RANDLEMAN NO.I PRODUCTION FACILITY SAN JUAN COUNTY, NEW MEXICO

OCD # 3RP-340-0 API # 30-045-10698

Prepared for:

1745

والمشارك الم

aadi. a

4

الم مالي

ConocoPhillips

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 1158690090

August 2010

TABLE OF CONTENTS

1.0	INT	RODUCTION	. I
	[°] 1.1	Site Background	I
2.0	MO	NITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS	. 2
	2.1	Monitoring Summary	2
	2.2	Groundwater Sampling Methodology	3
	2.3	Groundwater Sampling Analytical Results	3
3.0	со	NCLUSIONS AND RECOMMENDATIONS	. 4
4.0	REF	ERENCES	. 4

FIGURES

- 1. Site Location Map
- 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map April 2010
- 5. BTEX Groundwater Concentration Map April 2010

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary (June 2009 April 2010)
- 3. Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
- 4. Groundwater Laboratory Analytical Results Summary, Quarterly Parameters (June 2009 April 2010)

APPENDICES

Appendix A - Groundwater Sampling Field Forms

Appendix B - Groundwater Laboratory Analytical Report

- 13 E.

i

QUARTERLY GROUNDWATER MONITORING REPORT RANDLEMAN NO.I, SAN JUAN COUNTY, NEW MEXICO APRIL 2010

1.0 INTRODUCTION

This report discusses the groundwater sampling event performed by Tetra Tech, Inc. (Tetra Tech) on April I, 2010 at the ConocoPhillips Company Randleman No. 1 site located outside of Aztec, New Mexico (Site). The Site is situated on private land in Section 13, Township 31N, Range 11W, of San Juan County, New Mexico. A site location map and detail map are included as **Figures I** and **2**, respectively.

I.I Site Background

The historical timeline for the Site is summarized below, and is also presented in Table I.

In April 1997, an unlined surface impoundment (**Figure 2**) was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman No. 3 site (Williams 2002). Three monitor wells were installed at the Site on May 14, 1997, and quarterly groundwater monitoring was conducted through March 1998. Evaluation of groundwater monitoring results initiated another excavation in April 1998 of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002). Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site. In June 2002, OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitor wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in **Figure 2**.

On February 23, 2009, a release of approximately 60 barrels of condensate occurred as a result of a hole in an on-Site production tank. Envirotech Inc. of Farmington, NM (Envirotech) excavated an area of approximately 42 ft. x 51 ft. x 7 ft. deep on February 26, 2009. Seven composite soil samples were collected during excavation activities and were field analyzed for total petroleum hydrocarbons (TPH) using Environmental Protection Agency (EPA) Method 418.1. Additionally, samples were field analyzed for organic vapors using a photoionization detector (PID) and heated headspace techniques. TPH results ranged from 8 to 1,080 parts per million (ppm) in the walls of the excavation. Organic vapor concentrations ranged from 6.8 ppm to 898 ppm. Due to levels of TPH and organic vapors above OCD action levels, the excavation was continued on February 27, 2009 (Envirotech, 2009). The total area of excavation measured 81 ft x 43 ft x 20 ft. deep. The excavation area is depicted in **Figure 2**.

1

1.3° . E

منياري إندري

On March 2, 2009, groundwater was found seeping into the southeast corner of the excavation at a depth of approximately 20 feet bgs. A vacuum truck operated by Rock Springs was contracted by Envirotech to collect groundwater from the excavation; approximately 10 gallons of water were removed. After removal of collected groundwater, Envirotech obtained a soil sample from the southeast corner of the excavation at a depth of 20 feet bgs. TPH and organic vapor results were found to be above OCD action levels. During field analysis of the soil sample, groundwater continued to seep into the excavation. Groundwater was again removed from the excavation, and additional excavation was performed to obtain a soil sample below OCD action levels. A groundwater sample was collected and sent for laboratory analysis of volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above NMWQCC groundwater quality standards. Soon after the groundwater sample was taken, the excavation caved in making further water removal via the vacuum truck impossible (Envirotech, 2009). The excavation area is depicted in **Figure 2**.

A total of 611 cubic yards of soil were removed from the Site and were transported to an OCD-permitted facility; clean fill was obtained from the landowner to backfill the excavation. Envirotech recommended the installation of groundwater monitor wells at the Site under OCD guidelines (Envirotech, 2009).

Tetra Tech installed four groundwater monitor wells at the Site between June 9, 2009 and June 10, 2009. A generalized geologic cross section was produced using soil boring data collected during monitoring well installation (**Figure 3**). Following drilling activities in June 2009, the casings for Site monitor wells were surveyed using an arbitrary reference-elevation of 100 feet above mean sea level (amsl). Data obtained from the Site survey is used in conjunction with quarterly monitoring data to produce groundwater elevation maps for the Site (**Figure 4**). Groundwater flow direction at the Site is to the east/southeast.

Tetra Tech began conducting groundwater monitoring events at the Site on June 12, 2009. Hydrocarbon absorbent socks were placed in Monitor Wells MW-2 and MW-3 on June 18, 2009 due to the presence of a spotty, discontinuous light non-aqueous phase liquid (LNAPL) sheen present in purge water during sampling. The absorbent socks will be monitored and replaced as necessary during subsequent monitoring events. Soil and groundwater samples were also collected from the Kiffen Canyon Wash on October 21, 2009 and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX). In both the soil and groundwater collected from Kiffen Canyon Wash, BTEX constituents were found to be below standards.

2.0 MONITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS

2.1 Monitoring Summary

A groundwater sampling event was conducted at the Site on April 1, 2010. Prior to collection of groundwater samples from Monitor Wells MW-1, MW-2, MW-3 and MW-4, depth to groundwater in each well was measured using a dual interface probe (**Table 2**). A groundwater elevation contour map reflecting April 1, 2010 groundwater elevation is presented as **Figure 4**.

2

2.2 Groundwater Sampling Methodology

During the April 1, 2010 groundwater monitoring event, Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene dedicated bailer. While bailing each well, groundwater parameters were collected using a YSI 556 multi-parameter sonde and results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Southern Petroleum Laboratory (SPL) of Houston, Texas.

April 2010 groundwater samples were analyzed for BTEX by EPA Method 8260B; sulfate and chloride by EPA Method E300.0; TDS by EPA Method 2540C; and dissolved manganese by EPA Method 6010B (**Table 3**). A summary of analytical results from the April 1, 2010 sampling event is displayed in **Table 4**. Tetra Tech has prepared **Table 4** as a historical analytical results table to include all quarterly analytical parameters to help document trends in constituent concentrations over time. Results from future groundwater monitoring events at the Site will be compiled in this table.

2.3 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitoring wells are discussed below.

Chloride

• The NMWQCC domestic water supply groundwater quality standard for chloride is 250 milligrams per liter (mg/L); the groundwater sample collected from MW-4, the up gradient monitoring well, was found to contain chloride at concentration of 2,350 mg/L.

• Sulfate

The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L; groundwater samples collected from Monitor Wells MW-1, MW-2, MW-3 and MW-4 were found to contain sulfate at concentrations of 1,440 mg/L, 1,170 mg/L, 796 mg/L, and 3,110 mg/L, respectively.

Manganese

The NMWQCC domestic water supply groundwater quality standard for manganese is 0.2 milligrams per liter (mg/L). Groundwater samples collected from Monitor Wells MW-2, MW-3, and MW-4 were found to contain concentrations of manganese above the standard at 4.1 mg/L, 1.04 mg/L, and 1.52 mg/L, respectively.

• Benzene

 \circ The human health NMWQCC groundwater quality standard for benzene is 10 μ g/L. Groundwater samples collected from Monitor Well MW-3 was above the standard with a concentration of 18 μ g/L.

Total Xylenes

 The human health NMWQCC groundwater quality standard for total xylenes is 620 μg/L. The groundwater samples collected from all Monitor Wells were below the NMWQCC standard for total xylenes; representing the first quarter of NMWQCC compliance for total xylenes at the Site.

Total Dissolved Solids

 The human health NMWQCC groundwater quality standard for total dissolved solids is I,000 mg/L. Groundwater samples collected from Monitor Wells MW-1, MW-2, MW-3 and MW-4 were above the standard with concentrations of 2,850 μg/L; 2,460 μg/L; 1,650 μg/L and 4,720 μg/L, respectively.

The corresponding laboratory analytical report for the April 2010 groundwater sampling event, including quality control summaries, is included in **Appendix B**. A map showing BTEX concentrations in groundwater from Site monitoring wells during the April 2010 groundwater sampling event is included as **Figure 5**.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater analytical results indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

4.0 **REFERENCES**

- Envirotech Incorporated (2009). Spill Cleanup Report, Located at: Burlington Resources [sic] Randleman #1 Well Site, Section 13, Township 31N, Range 11W, San Juan County, New Mexico. Prepared for ConocoPhillips. Report Dated February 2009. 3 pp (not including Figures, Tables, and Appendices).
- New Mexico Energy, Minerals and Natural Resources Department (2002). Case # 3R0-340, Randleman #1 Dehy Pit, San Juan County [sic], New Mexico. Letter from NMEMNRD to Williams Field Services. Dated June 14, 2002. 6 pp.
- Williams Environmental Services (2002). Randleman #1 Pit Remediation and Closure Report. Prepared for the New Mexico Oil Conservation Division. Report Dated February 11, 2002. 3 pp (not including Figures, Tables, and Appendices).

FIGURES

I. Site Location Map

2. Site Detail Map

3. Generalized Geologic Cross Section

4. Groundwater Elevation Map – April 2010

5. BTEX Groundwater Concentration Map – April 2010

Sale of the second s

Star 2

t all got

ない 「「「

1949-

are all the

1. St. 2

1.3.38

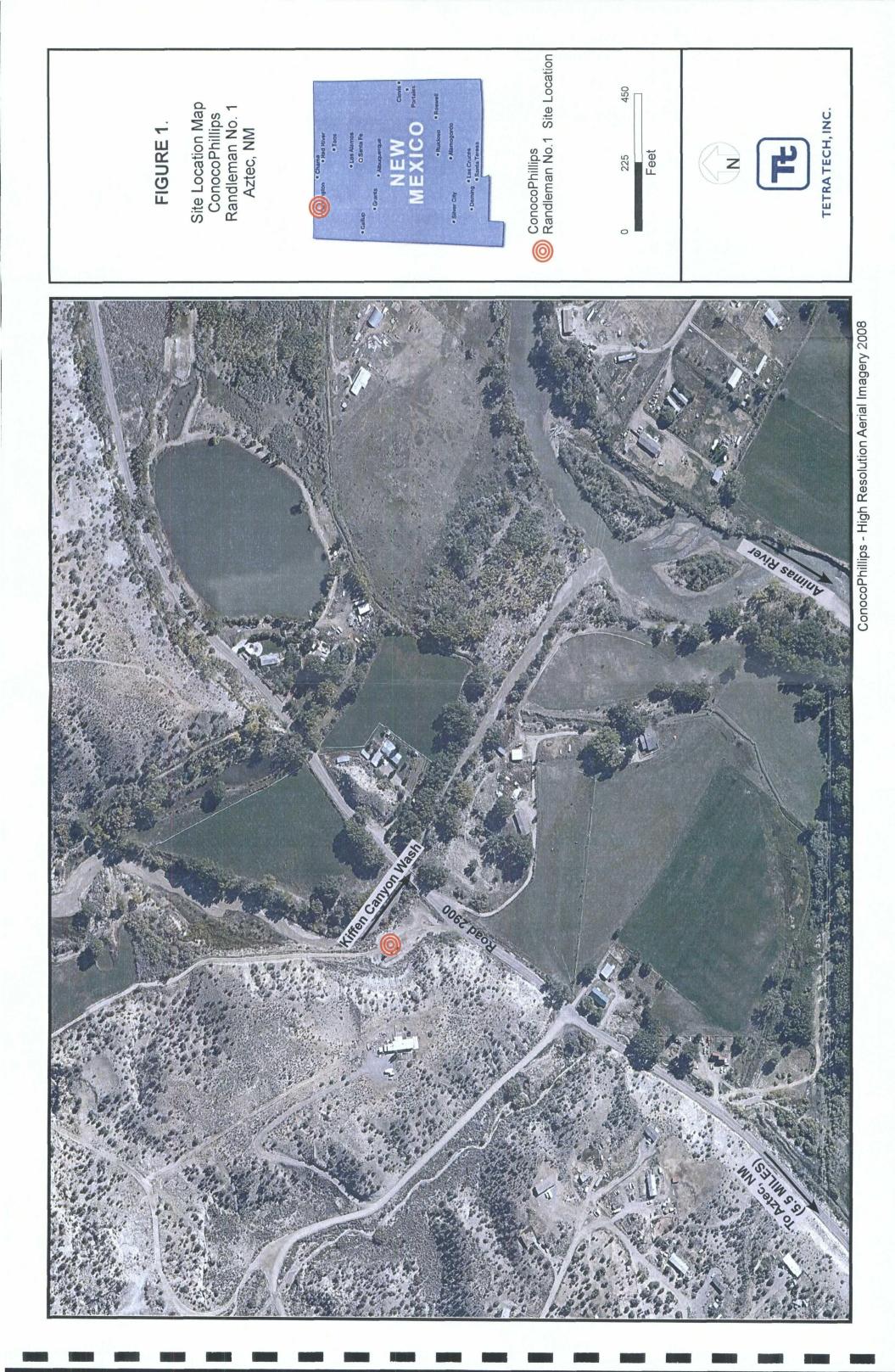
21.112

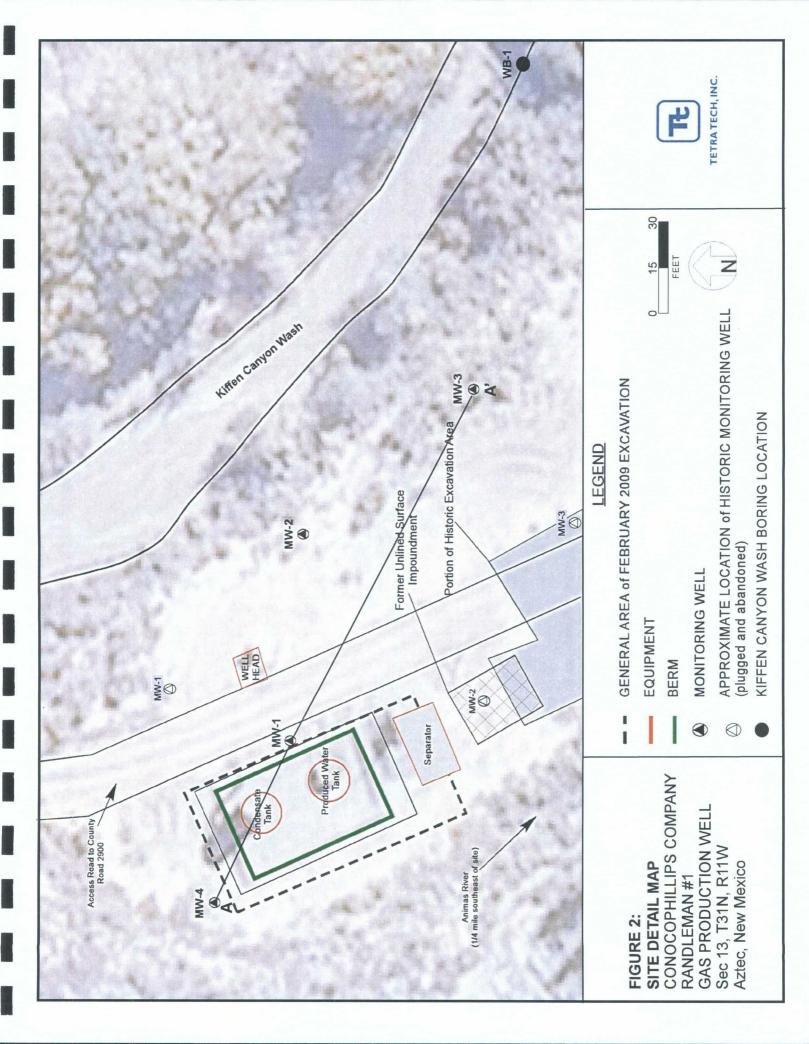
S. Strange

S. State of the

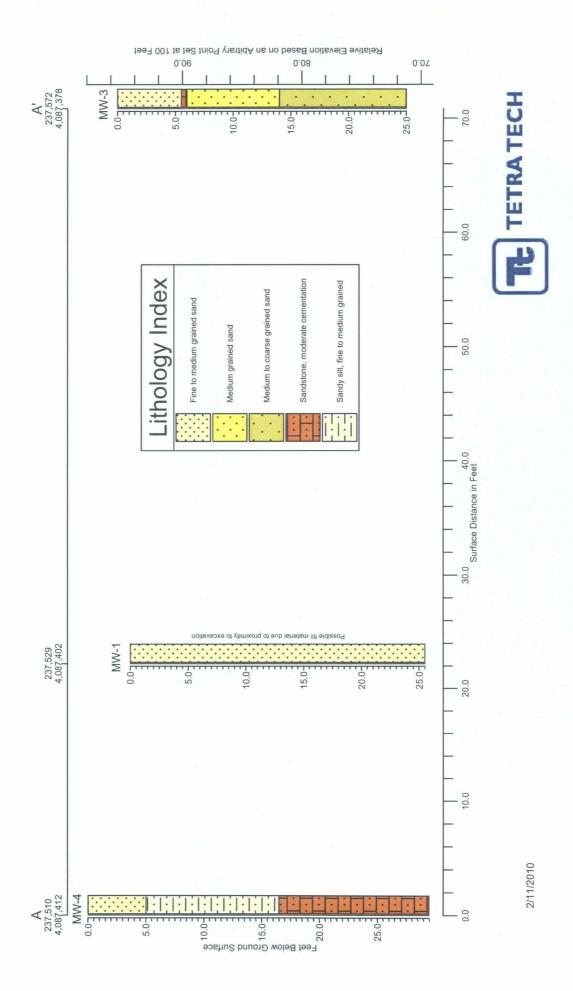
1.2.8.2

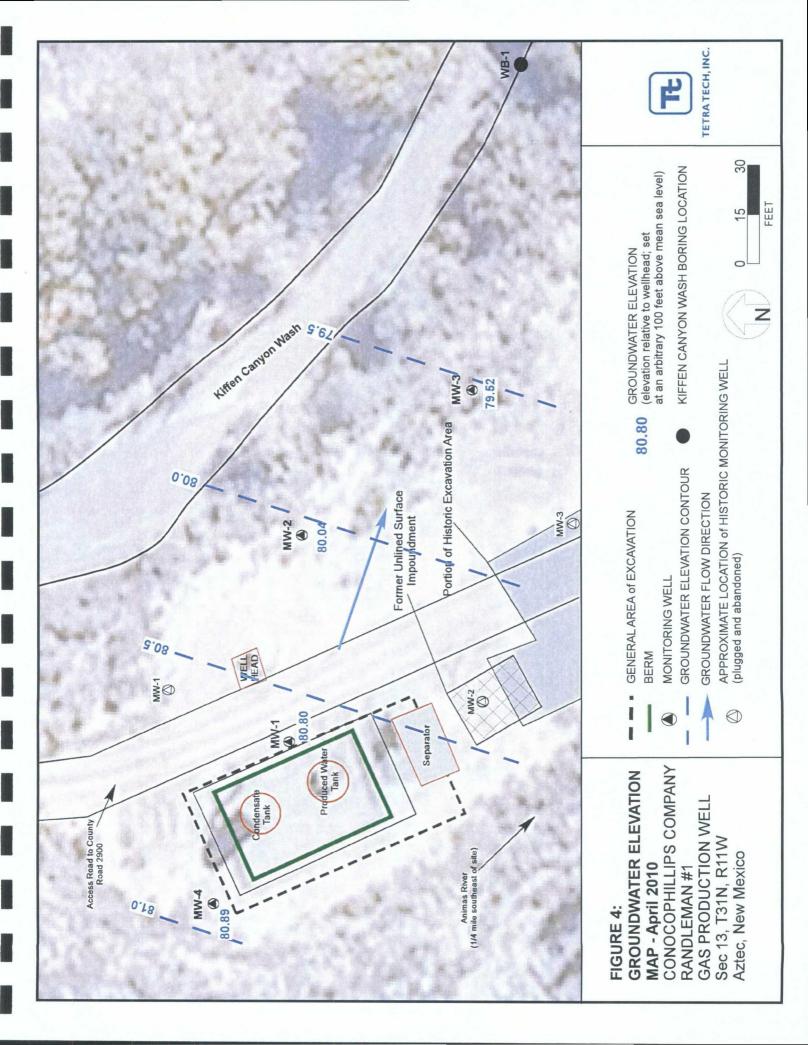
. And the second

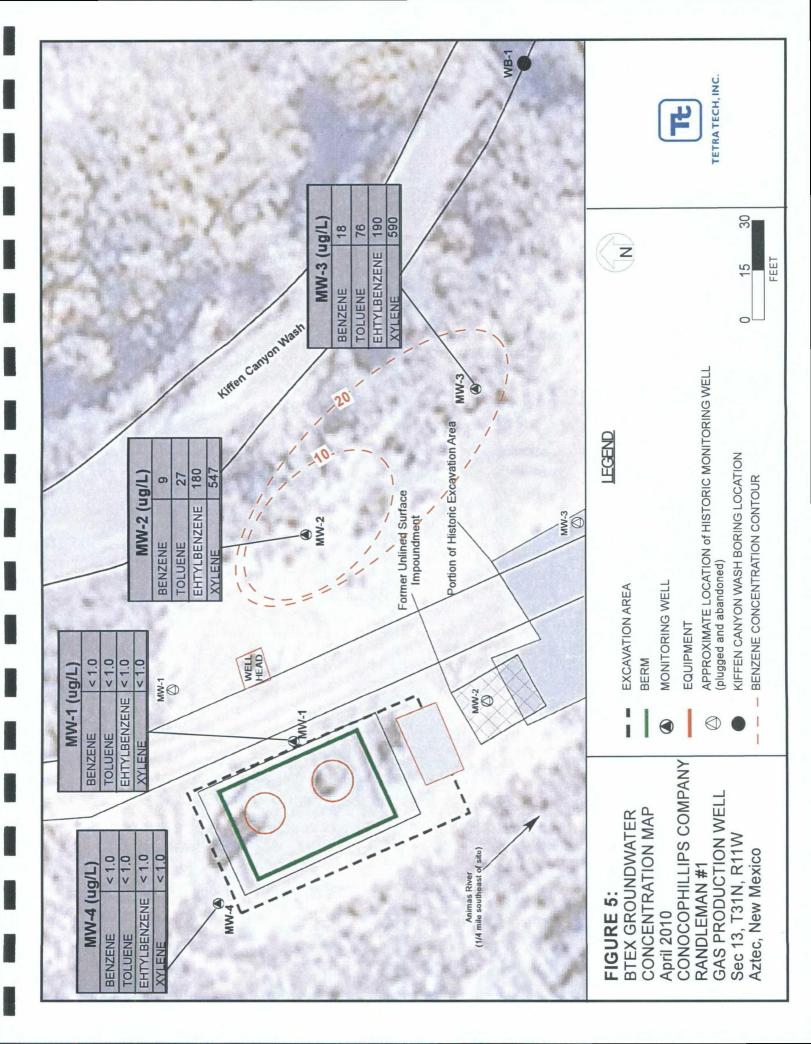

Ser and


である

「ないのの


Same -


- Ser 145



TABLES

Site History Timeline
 Groundwater Elevation Data Summary (June 2009 – April 2010)
 Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
 Groundwater Laboratory Analytical Results Summary, Quarterly Parameters

н. а <u>3</u>

i.

3.

(June 2009 - April 2010)

DATE	ACTIVITY
September 20, 1951	Well spudded by Southern Union Gas Company.
August 1, 1952	Well acquired by Aztec Oil and Gas Company.
December 1, 1976	Southland Royalty Company acquired Aztec Oil and Gas Company.
November 22, 1985	Southland Royalty Company acquired by Burlington Resources.
April 1, 1997	An unlined surface impoundment was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman #3 site.
May 14, 1997	Three groundwater monitor wells were installed at the Site. Groundwater monitoring was initiated on a quarterly basis through March 1998.
April 1, 1998	Evaluation of groundwater monitoring results initiated another excavation of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002).
February 1, 2002	Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater quality monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site.
June 1, 2002	OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitoring wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in Figure 2.
March 31, 2006	ConocoPhillips Company acquired Burlington Resources and all assets.
February 23, 2009	Approximately 60 barrels of condensate were found to have spilled from a hole located on the back side of an on-Site condensate tank into the bermed area. The spilled fluids remained in the berm and none of the condensate was recovered. Form C-141 stated that the spill impacted the soil on the ground surface around the tank, that the production tank was to be removed, and that the affected soils were to be excavated.
February 26, 2009	Envirotech Inc. of Farmington, NM (Envirotech) performed the soil excavation and collected soil samples for analysis. The area of release was excavated to approximately 42 feet by 51 feet by 7 feet deep. 7 composite soil samples were collected from the excavation and were analyzed for total petroleum hydrocarbons (TPH) using EPA Method 418.1. Additionally, organic vapors were measured using a Photoionization Detector (PID). TPH results ranged from 8 parts per million (ppm) in the north wall sample to 1,080 ppm in the south wall sample. The OCD recommended action level for TPH at the Site was determined to be 100 ppm. Organic vapor concentrations ranged from 6.8 ppm from the north wall sample, to 898 ppm in the south wall sample. Due to high levels of TPH and organic vapors, the excavation was continued on February 27, 2009.
February 27, 2009	Envirotech continue the excavation and sampling activities. Samples collected from the north, west, and east ends of the excavation on February 26, 2009 were found to be below OCD action levels for TPH, the focus of the excavation on February 27, 2009 was the south wall, the southeast wall, and the bottom of the southeast corner. At the end of the day, the excavation measured 81 feet by 43 feet by 20 feet deep (total depth is given for the deepest part of the excavation; other areas determined to be below OCD action levels went to approximately 8 feet bgs). Eight soil samples were collected and analyzed in the field for TPH and organic vapors. Excavation continued until all samples were found to be below100 ppm for both TPH and organic vapors.
March 2, 2009	Groundwater began to seep into the southeast corner of the excavation at 20 feet bgs. A vacuum truck was contracted to remove groundwater from the excavation; approximately 10 gallons of water were removed. After removal of groundwater, a soil sample from the southeast corner of the excavation was collected. TPH and organic vapor results were found to be above OCD action levels. More water was then removed from the excavation, and additional soil removal was performed. A groundwater sample was collected from the area where water continued to seep into the excavation, and was analyzed for volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Once this sample had been obtained, the excavation caved in, making further water removal impossible (Envirotech, 2009). A total of 611 cubic yards of soil were romoved from the Site. Clean fill was used to backfill the excavation.
June 9 through 11, 2009	Tetra Tech installs 4 groundwater monitor wells at the Site; MW-1, MW-2, MW-3 and MW-4.
June 12, 2009	Tetra Tech conducts the first groundwater monitoring event at the Site.
June 17, 2009	Depth to water measurements were taken by Tetra Tech in Site monitor wells to determine if hydrocarbons were accumulating in the water column. Hydrocarbon sheen was detected in MW-2 and MW-3.

Particular Se

Table 1. Randleman #1 Site History Timeline

Phillippe

1.20

Same a

S.S. States

Parts and

有深度

このない

And Side ...

W. Arig

28.5

32.5.53

The star

- Aller

10 Januar

Sec. 1

10 M. 3. 3.

書を

June 18, 2009	Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Tetra Tech.
September 23, 2009	Second quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
October 1, 2009	Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located downgradient and east of the Site. Groundwater and soil samples collected from boring.
December 16, 2009	Third quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
April 1, 2010	Fourth quarterly groundwater monitoring event at the Site conducted by Tetra Tech.

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Well ID Total Depth Screen *Elevation Date Measured Depth to Ground (ft bgs) Interval (ft) (ft) (ft) (TOC) Date Measured Total Depth to Ground	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				6/12/2009	13.98	81.21
				6/14/2009	13.96	81.23
MW-1	25.5	9 - 24	95.19	9/23/2009	13.97	81.22
				12/16/2009	14.30	80.89
				4/1/2010	14.39	80.80
				6/12/2009	15.57	81.22
		_		6/14/2009	15.63	81.16
MW-2	23.80	8.9 - 23.8	96.79	9/23/2009	15.67	81.12
				12/16/2009	16.41	80.38
				4/1/2010	16.75	80.04
				6/12/2009	16.00	80.31
				6/14/2009	15.97	80.34
MW-3	22.00	6.5 - 21.5	96.31	9/23/2009	15.78	80.53
				12/16/2009	16.77	79.54
				4/1/2010	16.79	79.52
				6/12/2009	17.68	81.15
				6/14/2009	17.52	81.31
MW-4	29.50	11 - 26	98.83	9/23/2009	17.56	81.27
				12/16/2009	17.86	80.97
				4/1/2010	17.94	80.89

,

.

ft = Feet
TOC = Top of casing
bgs = below ground surface
* Elevation relative to an arbitrary data point of 100 feet

1 of 1

a martine

調査が

調整に

Star Street

and the second

A BARRARY

Sec. 20

Conduction of the

いまであ

Sec.

S. Townson

A State

1878 See

いた

Sec. I

and the second

a sugar

N. Contraction

Tetra Tech, Inc.

ConocoPhillips Company - Randleman #1

Constituent		GroundwaterBaseline Analytical Results Summary - June 2009 Sample ID (samples collected on June 12, 2009)						
Constituent			Sample	i i U (samp	les collect	ed on June	12, 2009)	NMWQCC Groundwater
lons	Method	Units	MW-1	MW-2	MW-3	Duplicate	<u>M</u> W-4	Quality Standard
Bromide	E300.0	mg/L	< 0.5	<0.5	<0.5	NA	< 0.5	NE
Chloride	E300.0	mg/L	119	40.1	40.3	NA	2,310	250
Fluoride	E300.0	mg/L	0.518	0.621	< 0.5	NA	0.652	1.6
Orthophospate (as P)	E300.0	mg/L	< 0.5	< 0.5	<0.5	NA	< 0.5	NE
Sulfate	E300.0	mg/L	1,690	1,360	1,510	NA	4,190	600
Nitrate (as N)	E300.0	mg/L	0.78	0.52	< 0.5	NA	< 0.5	10
Nitrite (as N)	E300.0	mg/L	< 0.5	< 0.5	< 0.5	NA	< 0.5	NE
			T					NMWQCC Groundwater
Metals, Total	Method	Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
Mercury	SW7470A	mg/L	< 0.0002	<0.0002	< 0.0002	NA	< 0.0002	NE
Aluminum	SW6010B	mg/L	9.22*	2.99*	1.1*	NA	13.6*	NE
Boron	SW6010B	mg/L	0.135	<0.1	0.107	NA	0.523	NE
Calcium	SW6010B	mg/L	473	528	527	NA	496	NE
Iron	SW6010B	mg/L	6.81*	3.7*	1.65*	NA	20*	NE
Magnesium	SW6010B	mg/L	27.1	19.7	23.9	NA	32.2	NE
Potassium	SW6010B	mg/L	7.31	7.53	6	NA	19.1	NE
Sodium	SW6010B	mg/L	454	196	242	NA	2720	NE
Strontium	SW6010B	mg/L	8.51	8.54	10.5	NA	11.6	NE
Tin	SW6010B	mg/L	<0.005	< 0.005	0.0061	NA	<0.005	NE
Antimony	SW6020A	mg/L	< 0.005	<0.005	<0.005	NA	< 0.005	NE
Arsenic	SW6020A	mg/L	< 0.005	0.00759	< 0.005	NA	<0.005	NE
Barium	SW6020A	mg/L	0.0857	0.107	0.0537	NA	0.131	NE
Beryllium	SW6020A	mg/L	< 0.004	< 0.004	< 0.004	NA	0.00468	NE
Cadmium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NE
Chromium	SW6020A	mg/L	0.00601	< 0.005	< 0.005	NA	0.117*	NE
Cobalt	SW6020A	mg/L	0.0157	< 0.005	< 0.005	NA	0.0312	NE
Copper	SW6020A	mg/L	0.022	0.00699	< 0.005	NA	0.041	NE
Lead	SW6020A	mg/L	0.0124	0.00561	< 0.005	NA	0.0418	NE
Manganese	SW6020A	mg/L	4.79*	3.56*	3*	NA	4.92*	NE
Molybdenum	SW6020A	mg/L	< 0.01	< 0.01	< 0.01	NA	0.0146	NE
Nickel	SW6020A	mg/L	0.0185	0.0107	0.00971	NA	0.0372	NE
Selenium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	0.00558	NE
Silver	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NÉ
Thallium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NE
Vanadium	SW6020A	mg/L	0.012	0.00592	< 0.005	NA	0.0269	NE
Zinc	SW6020A	mg/L	0.0322	0.0152	<0.01	NA	0.103	NE
		i	1					NMWQCC Groundwater
SVOCS (detections only)	Method	Units	MW-1	MW-2	MW-3	Duplicate	<u>M</u> W-4	Quality Standard
2,4-Dimethylphenol	8270C	μg/L	<5	<5	18	NA	<5	NE
2-Methylnaphthalene	8270C	μg/L	<5	13	12	NA	<5	see
Naphthalene	8270C	μ <u>g/L</u>	<5	14	20	NA	<5	below
Sum of 2-Methylnaphthalene & Naphthalene	8270C	μg/L		27	32	NA		30
Benzyl alcohol	8270C	μg/L	<5	6.8	<5		<5	NE NE
						NA		
2-Methylphenol	8270C	μg/L	<5	<5	7.2	NA NA	<5	NE
						NA NA		NE NE
2-Methylphenol 384-Methylphenol	8270C 8270C	μg/L μg/L	<5 <5	<5 <5	7.2 8.3	NA	<5 <5	NE NE NMWQCC Groundwater
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only)	8270C 8270C <u>Method</u>	μg/L μg/L <u>Units</u>	<5 <5 <u>MW-1</u>	<5 <5 <u>MW-2</u>	7.2 8.3 <u>MW-3</u>	NA Duplicate	<5 <5 <u>MW-4</u>	NE NE <u>NMWQCC Groundwater</u> Quality Standard
2-Methylphenol <u>38</u> 4-Methylphenol VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene	8270C 8270C <u>Method</u> 8260B	μg/L μg/L <u>Units</u> μg/L	<5 <5 <u>MW-1</u> < 5	<5 <5 <u>MW-2</u> 300	7.2 8.3 <u>MW-3</u> 440	NA Duplicate NA	<5 <5 <u>MW-4</u> < 5	NE NE <u>NMWQCC Groundwater</u> Quality Standard NE
2-Methylphenol <u>38</u> 4-Methylphenol <u>VOCs (detections and BTEX only)</u> 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene	8270C 8270C Method 8260B 8260B	μg/L μg/L <u>Units</u> μg/L μg/L	<5 <5 <u>MW-1</u> < 5 < 5	<5 <5 <u>MW-2</u> 300 96	7.2 8.3 <u>MW-3</u> 440 140	NA Duplicate NA NA	<5 <5 <u>MW-4</u> < 5 < 5	NE NE MMWQCC Groundwater Quality Standard NE NE
2-Methylphenol 3&4-Methylphenol VOCs (detections and BTEX only) 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-Isopropyltoluene	8270C 8270C <u>Method</u> 8260B 8260B 8260B	μg/L μg/L <u>μg/L</u> μg/L μg/L μg/L	<5 <5 MW-1 < 5 < 5 < 5 < 5	<5 <5 MW-2 300 96 7.2	7.2 8.3 <u>MW-3</u> 440 140 6.3	NA Duplicate NA NA NA	<5 <5 MW-4 < 5 < 5 < 5 < 5	NE NE MWQCC Groundwater Quality Standard NE NE NE
2-Methylphenol <u>38</u> 4-Methylphenol <u>VOCs (detections and BTEX only)</u> 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropyltonzene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 MW-1 < 5 < 5 < 5 < 5 < 5 < 5	<5 <5 300 96 7.2 24	7.2 8.3 <u>MW-3</u> 440 140 6.3 46	NA Duplicate NA NA NA NA	<5 <5 MW-4 < 5 < 5 < 5 < 5 < 5	NE NE MMWQCC Groundwater Quality Standard NE NE NE NE
2-Methylphenol <u>38</u> 4-Methylphenol <u>VOCs (detections and BTEX only)</u> 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropyltoluene Maphthalene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<5 <5 300 96 7.2 24 21	7.2 8.3 440 140 6.3 46 36	NA Duplicate NA NA NA NA NA	<5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE Quality Standard NE NE NE NE 30
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<5 <5 300 96 7.2 24 21 5.2	7.2 8.3 440 140 6.3 46 36 < 5	NA Duplicate NA NA NA NA NA	<5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	NE NE Quality Standard NE NE NE NE 30 NE
2-Methylphenol 38-4-Methylphenol VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	<5 <5 300 96 7.2 24 21 5.2 25	7.2 8.3 440 140 6.3 46 36 < 5 48	NA Duplicate NA NA NA NA NA NA	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE Quality Standard NE NE NE NE 30 NE NE NE NE
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-Isopropyltoluene Isopropyltenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	<5 <5 300 96 7.2 24 21 5.2 25 6.6	7.2 8.3 440 140 6.3 46 36 < 5 48 6.1	NA Duplicate NA NA NA NA NA NA NA	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE MMWQCC Groundwater Quality Standard NE NE NE 30 NE NE NE NE NE
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4	7.2 8.3 440 140 6.3 46 36 < 5 48 6.1 10	NA Duplicate NA NA NA NA NA NA NA NA NA 10	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	NE NE Quality Standard NE NE NE NE 30 NE NE NE NE NE 10
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene Benzene Benzene Benzene Toluene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	7.2 8.3 440 140 6.3 46 36 < 5 48 6.1 10 1,400	NA Duplicate NA NA NA NA NA NA NA 10 1,400	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE Quality Standard NE NE NE NE 30 NE NE NE NE NE NE 10 750
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropyltoluene Isopropyltonzene n-Butylbenzene n-Butylbenzene n-Propylbenzene Benzene Toluene Ethylbenzene	8270C 8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4 9.4 1,100 180	7.2 8.3 440 140 6.3 46 36 < 5 48 6.1 10 1,400 490	NA Duplicate NA S40	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE Quality Standard NE 10 750
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene Benzene Benzene Benzene Toluene	8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	7.2 8.3 440 140 6.3 46 36 < 5 48 6.1 10 1,400	NA Duplicate NA NA NA NA NA NA NA 10 1,400	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE Quality Standard NE NE NE NE NE NE 10 750 620
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene sec-Butylbenzene Benzene Benzene Toluene Ethylbenzene Total Xylenes	8270C 8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100 180 2,280	7.2 8.3 440 140 6.3 46 36 36 36 48 46 4.0 1,400 490 4,050	NA Duplicate NA NA NA NA NA NA 10 1,400 540 4,300	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE NMWQCC Groundwater Quality Standard NE NE NE NE NE NE NE 10 750 750 620 NMWQCC Groundwater
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-isopropyltoluene Isopropylbenzene Naphthalene n-Broylbenzene sec-Butylbenzene Benzene Benzene Toluene Ethylbenzene Total Xylenes Other	8270C 8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100 180 2,280 MW-2	7.2 8.3 440 140 6.3 46 36 < 5 48 6.1 10 1,400 490 4,050 MW-3	NA Duplicate NA Duplicate </td <td><5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <</td> <td>NE NE Quality Standard NE NE NE NE 30 NE NE 10 750 750 620 MWQCC Groundwater Quality Standard</td>	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	NE NE Quality Standard NE NE NE NE 30 NE NE 10 750 750 620 MWQCC Groundwater Quality Standard
2-Methylphenol 384-Methylphenol VOCs (detections and BTEX only) 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene sec-Butylbenzene Benzene Benzene Toluene Ethylbenzene Total Xylenes	8270C 8270C 8270C 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<5 <5 MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<5 <5 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100 180 2,280	7.2 8.3 440 140 6.3 46 36 36 36 48 46 4.0 1,400 490 4,050	NA Duplicate NA NA NA NA NA NA 10 1,400 540 4,300	<5 <5 <5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	NE NE NMWQCC Groundwater Quality Standard NE NE NE NE NE NE NE 10 750 750 620 NMWQCC Groundwater

-... ~~~~

1. 19 A. 1

· Han all

のない

A BORNE

S. Ball

の法理書

No. of Concession, Name

BEAR PART

1. Sec.

A Salation

22.6

10,000

Contraction of

A. Carlo

1. T. S. S.

1. 2. 2. 2. Bay

1. E. - 2 . 6 . 14

The subscription

N. S. 24

 Notes:

 MW = monitoring well

 NMWQCC = New Mexico Water Quality Control Commission

 Constituents in BOLD are in excess of NMWQCC groundwater quality standards

 SVOCs = semi-volatile organic compounds

 VOCs = volatile organic compounds

 WGL = milligrams per liter

 µg/L = micrograms per liter

 P = phosphate

 N = not established

 NA = not analyzed

NA = not analyzed

* = Concentration of total metals. Cannot be compared directly to the NMWQCC standard for dissolved metals; but were used to determine which metals to use dissolved metals analyses for during future quarterly sampling events.

「「「 -調査部 日間にある

STATE:

い、朝田

1. Jac. 10

ERRE EN

上間に

素種

A STATE

の法にない

「「「

Table 4. ConocoPhillips Randleman No. 1 - Quarterly Groundwater Analytical Results Summary

6/14/2009	(hg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Naphthalene (µg/L)	Chloride (mg/L)	Sulfate (mg/L)	Aluminum (mg/L)	lron (mg/L)	Chromium (mg/L)	Manganese (mg/L)	Dissolved Solids (mg/L)
	5.1	7.6	< 5	9.7	< 5	119	1690	9.22*	6.81*	.00601*	4.79*	AN
MW-1 9/23/2009	18	5.4	1.3	11.6	<1	80.5	1640	< 0.1	< 0.02	< 0.005	0.17	2880
12/16/2009	<1 <	< 1	<1	<1	NA	127	1960	NA	NA	AN	0.108	3140
4/1/2010	< 1	< 1	< 1	<1	NA	72.3	1440	NA	NA	NA	0.0849	2850
6/14/2009	9.4	1100	180	2280	21	40.1	1360	2.99*	3.7*	< 0.005*	3.56*	NA
MW-2 9/23/2009	7.7	, ,	110	720	16	39.4	1390	< 0.1	0.0239	< 0.005	6.82	2480
12/16/2009	20	7.9	240	777.8	NA	63.3	1510	NA	NA	NA	5.26	2390
4/1/2010	6	27	180	547	NA	56.5	1170	NA	NA	NA	4.1	2460
6/14/2009	10	1400	490	4050	36	40.3	1510	1.1*	1.65*	< 0.005*	3*	NA
MW-3 9/23/2009	13	8.5	68	320	3.9	64.5	1500	< 0.1	0.0486	< 0.005	1.11	2720
12/16/2009	18	17	96	280	NA	99.1	1920	AN	NA	NA	0.932	2560
4/1/2010	18	76	190	590	NA	5.34	796	NA	NA	NA	1.04	1650
6/14/2009	< 5	< 5	< 5	< 5	< 5	2310	4190	13.9*	20*	0.117*	4.92*	NA
MW-4 9/23/2009	<u>،</u>	, 1	< 1 <	, ,	÷	2130	3320	< 0.1	0.0308	< 0.005	2.73	8600
12/16/2009	, ,	۰ ۲	<1 <1	۰ ۲	NA	3,430	4,110	AN	NA	NA	1.8	9600
4/1/2010	<1	<1	<1	< 1	NA	2,350	3,110	NA	NA	NA	1.52	8560
NMWQCC Standards 1	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	30 (µg/L)	250 (mg/L)	600 (mg/L)	5 (mg/L)	1 (mg/L)	0.05 (mg/L)	0.2 (mg/L)	1000 (mg/L)

Explanation ND = Not Detected NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) ug/L = micrograms per liter (parts per billion) NA = Not Analyzed -0.7 = Below laboratory detection limit of 0.7 ug/L Bold = concentrations that exceed the NMWQCC limits = Results reported for total metals analysis, results cannot be compared to NMWQCC Standards for dissolved metals

Tetra Tech, Inc.

7/7/2010

¥ € weter

Sec. 20

を見た

ので、中心ない

の変か

Station L.

S Strang

an the main

1. 18 M

A Strategy

100 A

A. C. Martin

A REAL PROPERTY.

25.25

: 6, 9 c. 4 .

5 . B. B. 2

.

.

APPENDICES

APPENDIX A

Groundwater Sampling Field Forms

.

2 a - 1 a -

e 1 9

30° -

\$4.57 ×

- 1999

7, 540

*

-642

TETRA TECH, INC. WATER SAMPLING) FORM		
Project Name	Randleman 1				Page	e <u> </u>	of
Project No.							
Site Location	Aztec, NM	<u> </u>					
Site/Well No.	MW-1	Coded/ Replicate		N/A	Date	L-1-10	
Weather	Cloudy, 40	Time Sar Began	153	2	Time Samplir Completed	¹⁹ 34	5
	y , z		EVACUATION D	ATA			
Description o	f Measuring Point (MP)	Top of Casing					
-	Above/Below Land Surface			MP Elevation			
Total Sounde	ed Depth of Well Below MF			Water-Level Ele	vation		
Heid	Depth to Water Below	v MP 14	34	Diameter of Cas	sing <u>2"</u>		
Wet	Water Column in	Well 11.	11	Gallons Pumped Prior to Samplin		5.5	
	Gallons per	Foot	0.16				
	Gallons in	Well	78 13	Sampling Pump (feet below land	Intake Setting surface)		
Purging Equi	pment Purge pump	Bailer	= 5.		·		
1 di gin g - qui			.ING DATA/FIELD P			<u> </u>	
Tîme	Temperature (°C)	pH	Conductivity (µS/cm	n ³) TDS (g/L)	DO (mg/L)	ORP (mV)	00
	1.23.	7,03	3363	2.168	2:08	-45.8	19,4
1227_	1 A #	7.06	3362	20185	2.24	-466	20
1337	11.05	775	2020	100			
13:37 13:38 13:38 13:39	11.05	7.07	33452	2.22	2.20	-46.6	20
1337 1338 1338 1339		7.07	33452	2.22	2020	-46.6	20
337 338 1339 Sampling Equ	11, 34	7.07 Purge Pump/B	3362	2.22	2020	-46,6	20
Sampling Eq	uipment	7:07	2	ion	2020		
Sampling Equ	11, 34	7:07	Container Descript		HCI	Preservative	
Sampling Eq	uipment	7807 Purge Pump/B	Container Descript	ion			
Sampling Equ Cons	uipment	<u>Ja07</u> Purge Pump/B <u>3 40mL \</u>	Container Descript /OAs astic	ion			
Sampling Equ Cons BTEX Chloride, Sul	uipment	<u>JeO 7</u> Purge Pump B <u>3 40mL \</u> <u>32 oz Pla</u>	Container Descript /OAs astic	ion	HCI None		
Sampling Equ Cons BTEX Chloride, Sul	tituents Sampled	<u>7</u> 207 Purge Pump/B <u>3 40mL V</u> <u>32 oz Pla</u> <u>16 oz Pla</u>	Container Descript /OAs astic astic	ion	HCI None		
Sampling Equ Cons BTEX Chloride, Sul Dissolved MM	tituents Sampled	<u>JeO 7</u> Purge Pump B <u>3 40mL \</u> <u>32 oz Pla</u>	Container Descript /OAs astic astic	ion	HCI None		
Sampling Equ Cons BTEX Chloride, Sul Dissolved MM Remarks	tituents Sampled	<u>JeO 7</u> Purge Pump/B <u>3 40mL V</u> <u>32 oz Pla</u> <u>16 oz Pla</u>	Container Descript /OAs astic astic		HCI None		
Sampling Equ Cons BTEX Chloride, Sul Dissolved MM Remarks	tituents Sampled	<u>JeO</u> Purge Pump/B <u>3 40mL V</u> <u>32 oz Pla</u> <u>16 oz Pla</u>	Container Descript VOAs astic astic Blanchard	olumes	HCI None		

R:\Share\MaxIm Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xis

٠,

;

ħ	TETRA TECH, INC.

14

WATER SAMPLING FIELD FORM

	Project Name	Randleman 1			Page <u>2</u> of <u>4</u>
	Project No.		·		
	Site Location	Aztec, NM	·····	、	
4 10	Site/Well No.	<u>MW-2</u>	Coded/ Replicate No.	plinte (1415) Date	4-1-10
	Weather	Cloudy windy	Time Sampling Began [3 44 EVACUATION	Comple	ampling 1405
	Description of	Measuring Point (MP) <u>1</u>			
	Height of MP	Above/Below Land Surfac	e	MP Elevation	
a series and a series of	Total Sounded	Depth of Well Below MP	23.8	Water-Level Elevation	
	Held	_ Depth to Water Below	MP 16.75	Diameter of Casing	
nta. Sue	Wet	Water Column in N	Nell7. 025	Gallons Pumped/Bailed	3.5
		Gallons per l Gallons in \	<u> </u>	Sampling Pump Intake (feet below land	
	Purging Equip			· ·	
	Time	Temperature (°C)	SAMPLING DATA/FIEL pH Conductivity (μ		ng/L) ORP (mV)
2.5	1355	9.88 10.09	pH Conductivity (μ 7.57 2402 7.55 2653	$\frac{S/cm^{3}}{1.723} TDS (g/L) DO (m) 1.723 II.32$	2 -244,1 12.5
9.5	1359	19 25	7.53 2747-	1. 802 1.4	
	Sampling Equi	pment <u>F</u>	Purge Purap/Bailer		
See .	<u>Consti</u>	tuents Sampled	Container Dese	cription	Preservative
	BTEX		3 40mL VOAs		
	Chloride, Sulfa	te, TDS	32 oz Plastic	None	
an and a second s	Dissolved MN		16 oz Plastic	None	
_	Remarks	Ho dark gro	y-black, stron	a weathered big or	lag venu venuslian
	Sampling Pers	onnel <u>K. Dan</u>	chard, C. Mathews	2	discontinuaus
* 虎張		· ·	Well Casing	J Volumes	
		Gal./ft. 1 ¼" = 0. 1 ½" = 0.		3'' = 0.37 $3'' \frac{1}{2} = 0.50$	4" = 0.65 6" = 1.46

.

R:\Share\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xls

TŁ	
_	

TETRATECH, INC.

WATER SAMPLING FIELD FORM

Project Name	Randleman 1			. F	vage <u>3</u>	of
Project No.	<u></u>					
Site Location	Aztec, NM					
Site/Well No.	<u>MW-3</u>	Coded/ Replicate No.	<u> </u>	Date _	4-1-10	·
Weather	Chardy, windy,	Time Sampling Began	1408	Time Sam Completed		20
	400	EVACU	ATION DATA			
Description of	Measuring Point (MP) To	p of Casing				
Height of MP A	Above/Below Land Surface		_ MP Elevati	on		
Total Sounded	Depth of Well Below MP	22	Water-Leve	el Elevation		
Held	Depth to Water Below	NP 1679	- Diameter o	f Casipg2	<u>2</u> "	
Wet	- Water Column in W	52		mped/Bailed	2.75	
	- Gallons per Fo	oot 0.16	3			
	Gallons in W	10- 7		Pump Intake Sett (land surface)		
Purging Equip	ment Purge pume / Ba		.54	· _		
		SAMPLING DATA	VFIELD PARAMETERS			
Time	Temperature (°C)		vity (µS/cm ³) TDS (g/	/L) DO (mg/	/L) ORP (mV) -214.7	00%
15 1414	8,12	7.35 18	24 118	6 211	-214,5	18.3
275 14,6	<u> </u>	7,41 18	28 1.18	<u>o 219</u>	-7460	21.2
Sampling Equi	noment Pu	Irge Purto/Bailer	I	<u>_</u>		
	tuents Sampled		er Description		Preservative	
BTEX	tuenta campied	3 40mL VOAs		HCI	Teservauve	
Chloride, Sulfa	te. TDS	32 oz Plastic		None	·	
Dissolved MN		16 oz Plastic		None		
					*1	
Remarks	170 Clark gray	, strang liegt	hered ador, ver	y time W	hite suspe	red
Sampling Pers	onnel <u>C. Mathe</u>	US R. Blan	chard.		· · · · · · · ·	
		Well	Casing Volumes			Solid:
	Gal./ft. 1 ¼" = 0.0).16 3"	= 0.37	4" = 0.65	
	1 ½" = 0.1	0 21/2" = 0).24 3" ½	² = 0.50	6" = 1.46	

R:\Share\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xls

TETRATECH, INC.

ļ

イリック

ł

WATER SAMPLING FIELD FORM

Project Name Randleman 1		Page <u>4</u> of <u>4</u>
Project No.)	
Site Location Aztec, NM		_
Site/Well No. <u>M</u> W-4	Coded/ Replicate No.	Date <u>4~1~10</u>
Weather <u>Cold, Crindy</u> ~ ² Cloudy	Ho Time Sampling 3. 10	Time Sampling Completed 1325
cloudy "	EVACUATION DATA	
Description of Measuring Point (MP)	Top of Casing	
Height of MP Above/Below Land Surfac	ce MP Elevati	ion
Total Sounded Depth of Well Below MF	29.5 Water-Lev	el Elevation
Held Depth to Water Below	MP 17.94 Diameter c	of Casing2"
Wet Water Column in	Gallons Pu	imped/Bailed 5.75
Gallons per	Foot 0.16	
Gallons in		Pump Intake Setting v land surface)
Purging Equipment Purge pump	- 54	
	SAMPLING DATA/FIELD PARAMETERS	
TimeTemperature (°C)13:1813:20	pH Conductivity (µS/cm ³) TDS (g	
7 13.19 13.23	7.18 2262 7.97	6 58 -52.5 15.7
5 13:21 13:26	7.18 2267 7.980	2 1.42 - 54.3 14.0
Sampling Equipment	Purge Pump(Bailer	
Constituents Sampled	Container Description	Preservative
BTEX	3 40mL VOAs	
Chloride, Sulfate, TDS	32 oz Plastic	None
Dissolved MN	16 oz Plastic	None
Remarks		
Sampling Personnel <u>(, Mah</u>	news, K. Blanchard	
	Well Casing Volumes	
Gal./ft. 1¼" = 0	-	= 0.37 4" = 0.65
1 ½" = 0	0.10 2 1/2" = 0.24 3" 1	√ ₂ = 0.50 6" = 1.46
·····		

R:\Share\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xis

APPENDIX B

Groundwater Laboratory Analysis Report

· · · · · ·

وللمصالحة

1. T. T.

4 - T.T.

1. A.

a to a constant

مرغ عصده

Ar she w

1. eres (

20

. . . .

in the second

Jest - 200

.

ł

.

- جزاوية

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis April 15, 2010

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Workorder: H10040051

Project: Randleman No.1 Project Number: Randleman No.1 Site: Aztec, NM PO Number: ENFOS #4512439414 NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 26 Pages

Excluding Any Attachments

.

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901

Fax: (713) 660-8975

Certificate of Analysis
Workorder: H10040051
Project: Randleman No.1
Project Number: Randleman No.1
Site: Aztec, NM
PO Number: ENFOS #4512439414
NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

Ser and

100

1. A. A.

Sale Car

200

能感染

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Report ID: H10040051_6089

Printed: 04/15/2010 18:59

The Billion

1. A. S. B. A.

and the second

and they

「「「「

1.000

S. Salar

See and

記書を

an in the

A. Salt

" taking int

Sale and

Mar Sile

A. Real.

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

	Certificate of Analysis
April 15, 2010	Workorder: H10040051
Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110	Project: Randleman No.1
	Project Number: Randleman No.1
	Site: Aztec, NM
	PO Number: ENFOS #4512439414
	NELAC Cert. No.: T104704205-09-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

記載の

Ser. 1

and the second

+ Reputer

· 2. 2. 2. 2.

A. 7. 18

も記念

للألالية

Section Section

たいない

B. S. Ber

漫劇的

· · · · ·

1. 2. 2 A

State of the second

Section 2

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID	Sample ID	Matrix	Date/Time Collected	Date/Time Received
H10040051001	MW-1	Water	4/1/2010 13:45	4/2/2010 09:15
H10040051002	MW-2	Water	4/1/2010 14:05	4/2/2010 09:15
H10040051003	MW-3	Water	4/1/2010 14:20	4/2/2010 09:15
H10040051004	MW-4	Water	4/1/2010 13:25	4/2/2010 09:15
H10040051005	Duplicate	Water	4/1/2010 14:15	4/2/2010 09:15
H10040051006	Trip Blank	Water	4/1/2010 14:30	4/2/2010 09:15

3.2

The second

· +++ +

Aus Loort

Sec. 1

1. H.

.

100 A. 124

1. 4. A. 1.

Constant of

Stranger B

· Salger

The site

A ac a start

5 1 E

· 4- - 5-

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

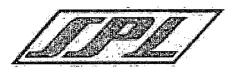
Lab ID:	H10040051001	Date/Time Received:	4/2/2010 09:15	Matrix:	Water
Sample ID:	MW-1	Date/Time Collected:	4/1/2010 13:45		

Analysis Desc: EPA 300.0	Analytical Batches: Batch: 1239 EPA 300.0 on	04/02/2010 16:55 l	oy CFS D	F = 1000.	
	Batch: 1245 EPA 300.0 on	04/09/2010 13:31 1	oy CFS D	F = 10.	
	Results	Bosod Limit	MDL	DF	Batch Information RegLmt Prep Analysis
Parameters Chloride	mg/l Qual 72.3	5.00	1.26	10	RegLmt Prep Analysis 1245
Sulfate	1440	500	43.5	1000	1239

WET CHEMISTRY

	Analytical Batches: Batch: 1544 SM 2540 C on	04/05/2010 16:40	by CFS		
Parameters	Results mg/I Qual	Report Limit	MDL	DF R	Batch Information
Residue, Filterable (TDS)	2850	20.0	. 7.88	2	1544

ICP DISSOLVED METALS


Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1638 SW-846 3010	0A on 04/05/2010	0 17:00 by R_V		99. C.M	1994 (c)	
	Analytical Batches:						
	Batch: 1334 SW-846 6010)B on 04/11/2010) 17:14 by EBC	}			
			1				
a statution of the approximation of the approximati	Results		L/D)	55		Batch Info	600000-00-00-000009
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep A	nalysis
Manganese	0.0849	0.00500	0.000300	1		1638	1334

VOLATILES

Analysis Desc: SW-846 8260B	W-846 5030Analytical Ba	tches:		Mes alertiti	
	atch: 1715 SW-846 8260	0B on 04/07/2010	18:42 by JM	C	
Parameters	Results ug/i Qual	Report Limit	MDL	DF RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1	1715
Ethylbenzene	ND	1.0	0.15	1	1715
Toluene	ND	1.0	0.29	1	1715
m,p-Xylene	ND	1.0	0.18	1	1715
o-Xylene	ND	1.0	0.13	1	1715
Xylenes, Total	ND	1.0	0.13	1	1715
4-Bromofluorobenzene (S)	92.2 %	74-125		1	1715

Report ID: H10040051_6089

Printed: 04/15/2010 18:59

ATT Dord

14-14-29-2

The states

19 . S. W. .

- 5 - 3 - S

C. Strang

1. A. 1. A.

4, 28 8 0°

· 16 3 .

÷.

10 AN -

4. 1. 1.

a alter and

والمراجعة وال

Sa. Jul.

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID:	H10040051001	Date/Time Received:	4/2/2010 09:15	Matrix:	Water
Sample ID:	MW-1	Date/Time Collected:	4/1/2010 13:45		

	Results				Batch Information
Parameters	. Qu	ual Report Limit	MDL D	F RegLmt	Prep Analysis
1,2-Dichloroethane-d4 (S)	97.6 %	70-130		1	1715
Toluene-d8 (S)	96.4 %	82-118		1	1715

in and

Sale and

stry agene

C. C. C. Star

要的是

State 1

S. Barris

の調査

P.E.E.

·States

高い

1. C. C. C.

the set

No.

いた

をいます

Callence

3005

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

	Workorder:	H10040051	:	Randleman No.1	
--	------------	-----------	---	----------------	--

Project Number: Randleman No.1

Lab ID:	H10040051002	Date/Time Received:	4/2/2010 09:15	Matrix:	Water
Sample ID:	MW-2	Date/Time Collected:	4/1/2010 14:05		
Analysis De	sc: EPA 300.0	Analytical Batches:			
vnalysis De	sc: EPA 300.0	Batch: 1239 EPA 300.0 on 04/02/201			
Analysis De:	sc: EPA 300.0				

Parameters	mg/I Qual	Report Limit	MDL	DF	RegLmt Prep Analysis
Chloride	56.5	5.00	1.26	10	1245
. Sulfate	1170	500	43.5	1000	1239

WET CHEMISTRY

	2460	20.0	7.88		1544
Parameters		Report Limit	MDL	DF R	egLmt Prep Analysis
	Results				Batch Information
E	Batch: 1544 SM 2540 C on ()4/05/2010 16:40	by CFS		
Analysis Desc: SM 2540 C	Analytical Batches:				

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B Pre	eparation Batches:						
Ba	tch: 1638 SW-846 301	10A on 04/05/2010	0 17:00 by R_	V			
An	alytical Batches:					8-1 -	
Ba	tch: 1334 SW-846 601	10B on 04/11/2010) 17:20 by EB	G			
	Results	Report Limit	MDL	DF	l RegLmt	Batch Infor Prep A	mation nalvsis
Parameters	mg/l Qual	ReportEntit	NUC	Di	RegLint		
Manganese	4.10	0.00500	0.000300	1		1638	1334

Analysis Desc: SW-846 8260B	SW-846 5030Analytical I	Batches:				
	Batch: 1715 SW-846 82	260B on 04/07/2010 1	19:10 by JM	DF =	1.	
	Batch: 1733 SW-846 82	260B on 04/11/2010 2	21:56 by JM	DF =	10.	
	Results					Batch Information
Parameters	ug/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Benzene	9.0	1.0	0.10	1		1715
Ethylbenzene	180	10	1.5	10		1733
Toluene	87	1.0	0.29	1		1715
m,p-Xylene	520	10	1.8	10		1733
o-Xylene	27	1.0	0.13	1		1715

Report ID: H10040051_6089

Printed: 04/15/2010 18:59

the second second

「「「「「「「」」」

"Warnager"

Statistics.

a Ball

A. Sheek

1. E. M. B.

State and

N. Bar

1000.000

. And the second

1 Color 20

Art oak

2000

Constant.

1. The second

うち

J. 200 . 3

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID: H10040051002 Sample ID: MW-2	Da Da	Matrix: Water						
Parameters	Results	Qual	Report Limit	MDL	DF	RegLmt	Batch Ir Prep	nformation Analysis
Xylenes, Total	27		1.0	0.13	1			1715
4-Bromofluorobenzene (S)	94.4 %		74-125		10			1733
4-Bromofluorobenzene (S)	99.1 %		74-125		1			1715
1,2-Dichloroethane-d4 (S)	94.7 %		70-130		1			1715
1,2-Dichloroethane-d4 (S)	99.2 %		70-130		10			1733
Toluene-d8 (S)	99.5 %		82-118		10			1733
Toluene-d8 (S)	101 %		82-118		1			1715

1200

Section and and

State State

いた

And the second

なたち

金麗

1

a state and

変換が

14 A. B.

Subjection of

- Allen

S. Salar

が下す

1. 1. M.

のないない

Se 14.9

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID:	H10040051003	Date/Time Received:	4/2/2010 09:15	Matrix:	Water
Sample ID:	MW-3	Date/Time Collected:	4/1/2010 14:20		

Analysis Desc: EPA 300.0	Analytical Batches: Batch: 1239 EPA 300.0 or	04/02/2010 17:28	by CFS D	F = 1000		
	Batch: 1245 EPA 300.0 or					
	Results	Descentional	MDL	DF	Page mt	Batch Information Prep Analysis
Parameters Chloride	mg/l Qual 5.34	Report Limit	0.126	0F 1	RegLmt	1245
Sulfate	796	500	43.5	1000		1239

WET CHEMISTRY

	ytical Batches: h: 1544 SM 2540 C or Results mg/I Qual			DF RegLmt	Batch Information Prep Analysis
Residue, Filterable (TDS)	1650	10.0	3.94	1	1544

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B Prepa	ration Batches:						
Batch	: 1638 SW-846 301	0A on 04/05/2010	0 17:00 by R_\	1			
Analy	tical Batches:						
Batch	: 1334 SW-846 601	0B on 04/11/2010) 17:25 by EB0	3			
	Results				CONTRACTOR DE 2007 - 2 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000	tch Inforr	100000000000000000000000000000000000000
Parameters	mg/l Qual	Report Limit	MDL	DF F	RegLmt P	rep Ar	nalysis
Manganese	1.04	0.00500	0.000300	1	1	638	1334

VOLATILES

diaman and the second

000

Analysis Desc: SW-846 8260B

	88 -	1000	0.00		20227 2003	7797 R	مىۋە مەركەيى	a thank a star	2222-2295	280000000	888223	*****		CCCC	110		eren para a	1000
	©ъ	VV-84	6.51	130Ai	nalyti	cal B	atch	ies:/	39.XXX	2224777	- 19 A B B			an a	S. 1963	20103607527	Statistik (
	S. T.	- (S. 1986)	WHERE IN	92 (16 gel) (1	CONTRACT AND	2002.: c .	515.83		xxxxxXX	XXXX	22/200	X (2,2)//	2000					399
×*****	333200			02000		Salation	S. S. S. S. S.					<0000000	******	9893454	0000	000000000	200.000255	203
	20 m		4.77 4	E	ALCO A	C 00	COD		1/10-	7/20	10 1	0.27	b	UC I	ヽ ⊏ [⊘] ≧®	6.122 22		
CC ()	S D	atch	©1/~1	ວແຂວ	W-84	0 02	OUD	OUL	J 4/U	1/20	10-1	9.37	UY JI	VIC	していてい	21 - 28 A A	in call	90
38 Y.	20065			60.80.8	\$97. V Z			10310B		02000	10309					87000 X X X X X X X	2224 ,8942	20
	000/NY		899 (* L	Same &	88 M 22		200 <i>220</i> 2	ee oo oo oo oo	- 206,2602	800 - O	-1992					a waa a		29
	B	atch	173	2 × C	W-84	6.82	ANR:	on (14/11	1/201	10 2	2.23	hvell	ACSI)F =	10		
i ka	99 - 1 96	aton	0.0	J		States		CHIN	100.00	112 V	1000	~.~ ~;	Dy Oi	81 0 .21	6336	8. 9		88X
	v diata s	1000000		undinadi	566000 X	Sandanak	XX				31. DA					000330/07		88
80) ⁽	680.055	1.55		uninaa	s distriction of the second	contration of	- 10 CM	y. y y y y y y y		an territe	× 2,2,2,6		2/0 X X					æ

and a second second Second second	Results				Batch Information
Parameters	ug/l Qual	Report Limit	MDL	DF F	RegLmt Prep Analysis
Benzene	18	1.0	0.10	1	1715
Ethylbenzene	190	1.0	0.15	1	1715
Toluene	76	1.0	0.29	1	1715
m,p-Xylene	390	10	1.8	10	1733
o-Xylene	200	1.0	0.13	1	1715

Report ID: H10040051_6089

Printed: 04/15/2010 18:59

A.S. BERT

皆妻

P. Lange

NE ST

a and

J. S. LAN

22.3

Street,

Same of Frank

1. S. S.

- Later

いいの

and the second

8. 3 Ban 2

H. Carl

Sec. 1

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID:	H10040051003	Date/Time Received: 4/2/2010 09:15 Matrix: Water	
Sample ID:	MW-3	Date/Time Collected: 4/1/2010 14:20	
		Results Batch Informat	

Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
590	1.0	0.13	10			1733
96.6 %	74-125		10			1733
97.7 %	74-125		1			1715
92.2 %	70-130		1			1715
94.8 %	70-130		10		,	1733
95.5 %	82-118		1			1715
102 %	82-118		10			1733
	590 96.6 % 97.7 % 92.2 % 94.8 % 95.5 %	590 1.0 96.6 % 74-125 97.7 % 74-125 92.2 % 70-130 94.8 % 70-130 95.5 % 82-118	590 1.0 0.13 96.6 % 74-125 97.7 % 74-125 92.2 % 70-130 94.8 % 70-130 95.5 % 82-118	590 1.0 0.13 10 96.6 % 74-125 10 97.7 % 74-125 1 92.2 % 70-130 1 94.8 % 70-130 10 95.5 % 82-118 1	590 1.0 0.13 10 96.6 % 74-125 10 97.7 % 74-125 1 92.2 % 70-130 1 94.8 % 70-130 10 95.5 % 82-118 1	590 1.0 0.13 10 96.6 % 74-125 10 97.7 % 74-125 1 92.2 % 70-130 1 94.8 % 70-130 10 95.5 % 82-118 1

Salar Bar

San And

STAR BAR

の見た

Strates .

1. 12 53 m

1000

A STATE

「「「「「

1.1

1. A.

2.30%

Contraction of

あるの

- Ball

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID:	H10040051004	Date/Tir	ne Received:	4/2/2010 09:15	Matrix:	Water
Sample ID:	MW-4	Date/Tir	me Collected:	4/1/2010 13:25		

and the second secon	Batch: 1239 EPA 300.0 on	04/02/2010 17:45	by CFS D	F = 1000.	
	Batch: 1245 EPA 300.0 on	04/09/2010 14:21	by CFS D	F = 200.	
Parameters	Results mg/l ^{Qua} l	Report Limit	MDL	DF RegL	Batch Information mt Prep Analysis
Chloride	2350	100	25.2	200	· 1245
Sulfate	3110	500	43.5	1000	1239

	lue, Filterable (TDS)	8560	50.0	19.7	5	1544
Para	nelers	Results mg/I Qual F	Report Limit	MDL	DF Re	Batch Information
		Batch: 1544 SM 2540 C on 0	4/05/2010 16:40	by CFS		ant _{stanti} s statistics Alexan
Analy	sis Desc: SM 2540 C	Analytical Batches:				

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:					
	Batch: 1638 SW-846 301	0A on 04/05/2010	0 17:00 by R_\	/		
	Analytical Batches:					
	Batch: 1334 SW-846 601	0B on 04/11/2010	0 17:31 by EBC	3	4197	
Parameters	Results	Report Limit	MDI	DE Be		formation Analysis
				1		1334
Parameters Manganese	ng/l Qual	Report Limit	MDL.	DF Re	California Contracting to the state of the second	*****

VOLATILES

Analysis Desc: SW-846 8260B SW-846 5030Analytical Batches:

Analysis bess. on one of contraction	Batch: 1715 SW-846 8260B on 04/07/2010 20:05 by JMC						
Parameters	Results ug/i Qual	Report Limit	MDL	DF RegLmt	Batch Information Prep Analysis		
Benzene	ND	1.0	0.10	1	1715		
Ethylbenzene	ND	1.0	0.15	1	1715		
Toluene	ND	1.0	0.29	1	1715		
m,p-Xylene	ND	1.0	0.18	1	1715		
o-Xylene	ND	1.0	0.13	1	1715		
Xylenes, Total	ND	1.0	0.13	1	1715		
4-Bromofluorobenzene (S)	93.9 %	74-125		1	1715		

Report ID: H10040051_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

|--|

Project Number: Randleman No.1

Lab ID: Sample ID:	H10040051004 MW-4			e Received: 4/2/2 e Collected: 4/1/2		Matrix	Water	
Parameters		Results	Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis

i alametera	Quar	Report Einit	MIDE		Regent	i ieb	Analysis
1,2-Dichloroethane-d4 (S)	102 %	70-130		1			1715
Toluene-d8 (S)	98 %	82-118		1			1715

1. Salar

高等 あん

电影派他

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

H10040051005

Project Number: Randleman No.1

Date/Time Received: 4/2/2010 09:15 Water Matrix: Date/Time Collected: 4/1/2010 14:15

VOLATILES

Sample ID: Duplicate

Lab ID:

State of

ALC: NO

States -

Star B

Kroks.

新いい、

いたの

22

and the second

軍業的

South State

North

1.66 Mar

Contraction of the

States.

記録

Server and

Analysis Desc: SW-846 8260B	SW-846:5030Analytical Batches: Batch: 1715 SW-846 8260B on 04/07/2010 20:32 by JMC DF = 1.							
	Batch: 1733 SW-846 8260)B on 04/11/2010 2	22:51 by JM0	DF =	10.			
Parameters	.Results ug/I ^{Qual}	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis		
Benzene	8.6	1.0	0.10	1		1715		
Ethylbenzene	190	10	1.5	10		1733		
Toluene	40	1.0	0.29	1		1715		
m,p-Xylene	520	10	1.8	10		1733		
o-Xylene	13	1.0	0.13	1		1715		
Xylenes, Total	533	1.0	0.13	10		1733 ´		
4-Bromofluorobenzene (S)	94.9 %	74-125		10		1733		
4-Bromofluorobenzene (S)	97.8 %	74-125		1		1715		
1,2-Dichloroethane-d4 (S)	93.3 %	70-130		1		1715		
1,2-Dichloroethane-d4 (S)	94.7 %	70-130		10		1733		
Toluene-d8 (S)	98.1 %	82-118		1		1715		
Toluene-d8 (S)	100 %	82-118		10		1733		

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID:	H10040051006	Date/Time Received:	4/2/2010 09:15	Matrix:	Water
Sample ID:	Trip Blank	Date/Time Collected:	4/1/2010 14:30		

VOLATILES

南山市北

1

NAS-

語の書

New Mark

Constant of

a state

で調ぎ

と言語

1.

and like

いいない

1.18

S. S. S. S.

AUTON S

r enters

Analysis Desc. SW-846 8260B	SW-846 5030Analytical Ba Batch: 1715 SW-846 826		18:14 by JM	C	
Parameters	Results ug/l Qual	Report Limit	MDL	DF	Batch Information RegLmt Prep Analysis
Benzene	ND	1.0	0.10	1	1715
Ethylbenzene	ND	1.0	0.15	1	1715
Toluene	ND	1.0	0.29	1	1715
m,p-Xylene	ND	1.0	0.18	1	1715
o-Xylene	ND	1.0	0.13	1	1715
Xylenes, Total	ND	1.0	0.13	1	1715
4-Bromofluorobenzene (S)	94 %	74-125		1	1715
1,2-Dichloroethane-d4 (S)	103 %	70-130		1	1715
Toluene-d8 (S)	101 %	82-118		1	1715

Part of the

Star Bar

" Allegary &

1

and the second

学校で

Collectore.

の時間の

and the second

all all

1. A. A.

Parties S

·御, 戒治。

No. of Street

1. C. C. C.

Sum Bar

の思想に

「「「「「

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040051 : Randler	nan No.1				Pr	oject Number: Ra	indleman No.
QC Batch: IC/1239		Analysis Meth	od: EP	A 300.0			
QC Batch Method: EPA 300.0							
Associated Lab Samples: H10	040051001 H1004005	1002 H1004005	51003	H10040051004			
METHOD BLANK: 37459							
Analysis Date/Time Analyst:	04/02/2010 16:21 CFS						
Parameter	Units	Blank Result Qualif	iers	Reporting Limit			
Sulfate	mg/l	ND		0.500			
LABORATORY CONTROL SAMP	LE: 37460						
Analysis Date/Time Analyst:	04/02/2010 16:38 CFS						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec		Rec imits	
Sulfate	mg/l	10	10.33	103	. 85	5-115	
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 37461	37462		Original: H1	0040051004		
MS Analysis Date/Time Analyst:	04/02/2010 18:01	CFS					
MSD Analysis Date/Time Analyst:	04/02/2010 18:18	CFS					
Parameter	Original Units Result	Spike MS Conc. Result	MSD Result	=	MSD % Rec	% Rec Limit RPD	Max RPD
Sulfate	mg/l 3110	10000 12930	12930	98.2	98.2	80-120 0.0	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040051_6089

Printed: 04/15/2010 18:59

Page 15 of 26

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040051 : Randleman No.1

1 within

ALC: NOT

States 2

a distance of

fore Bill a

Sec. Sec.

金属

The States

San San

変態器

State State

をないない

S. S. S.

ALC: NO

Sales of

a state a

Constant of

Sec. Sec.

Project Number: Randleman No.1

						,				
	M/1638			nalysis Meth reparation:		/-846 6010B 05/2010 17:00 by	BV			
QC Batch Method: SW-8	346 3010A		PI	eparation:	04/0	5/2010 17:00 by	R_V			
Associated Lab Samples:	H10040019001 H10040021003 H10040049002 H10040051003	H100400 H100400 H100400 H100400	21004 49003	H100400 H100400 H100400	25001	H10040019004 H10040025002 H10040050001	H10040	0021001 0025003 0051001	H10040 H10040 H10040	049001
METHOD BLANK: 37509										
Analysis Date/Time Analys	t: 04/11/2010 1	3:44 EBG								
Parameter	Units			Blank Result Quali	fiers	Reporting Limit				
Manganese	mg/l			ND		0.00500				
LABORATORY CONTROL	SAMPLE: 37510									
Analysis Date/Time Analys	t: 04/11/2010	13:49 EBG								
Parameter	Units			pike onc.	LCS Result	LCS % Rec		% Rec Limits		
Manganese	mg/l			0.10	0.1052	105	8	0-120		·
MATRIX SPIKE & MATRIX	SPIKE DUPLICATE	E: 37507		- 37508		Original: H10	004002500	2		
MS Analysis Date/Time An	alyst: 04/*	11/2010 14:00	D EBG							
MSD Analysis Date/Time A	nalyst: 04/'	11/2010 14:06	6 EBG							
		Original	Spike	MS	MSD	-	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD
Manganese	mg/l	0.136	0.10	0.2285	0.2325	92.9	96.9	75-125	1.7	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040051_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040051 : Randleman No.1

and services

State State

Sec. Contraction

1. Sale

A STATE

2.16.00

a contra

The second se

Logale .

湯南村

な話が

Presso

20 AL

Services.

1.12

district.

Project Number: Randleman No.1

QC Batch: W	ETS/1544		Analys	is Method:	SM	2540 C				
QC Batch Method: SN	A 2540 C									
Associated Lab Samples	: H10040051001	H10040051	002 H1	004005100)3	H10040051004	ŀ			
METHOD BLANK: 3764	В									
Analysis Date/Time Ana	lyst: 04/05/2010	16:40 CFS								
Parameter	Units		Blank Resul	t Qualifiers		Reporting Limit				
Residue, Filterable (TDS) mg/l		NE)		10.0				
LABORATORY CONTRO	Analyst: 04/05/20	10 16:40 CFS	3.	7651						
LCSD Analysis Date/Time	e 04/05/20 ⁻	10 16:40 CFS								
Parameter	Units	Spike Conc.	LCS Result	LCSD Result %	LCS 6 Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	
Residue, Filterable (TDS) mg/l	200	202.0	199.0	101	99.5	95-107	1.5	10	
SAMPLE DUPLICATE: ;	37650		Original:	H100400	51004	<u> </u>				
Parameter	Units	Original Result	DU Resu		RPD	Max RPD	DI	=		
WET CHEMISTRY							5			
Residue, Filterable (TDS) mg/l	8560	856	0	0.1	10	5			

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040051_6089

100

が見いたい

State of

Sale and

2000

10.00

Ser.

Service Service

きも

Same a

1000

and the second

97 - 12 A

1. to 22

Same -

12 C. La

1. CE

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

QC Batch: QC Batch Method:	 //1714 846 5030		Analysis Method: Preparation:	SW-846 8260B 04/07/2010 00:00 by	JMC	
Associated Lab Sam	 H10040014001	H10040014002	•	,	H10040050001	H10040050002
	H10040050003 H10040051006	H10040051001 H10040057016			H10040051004	H10040051005

METHOD BLANK: 38036

Analysis Date/Time Analyst: 04/07/2010 10:50 JMC

Parameter	Units	Blank Result Qualifiers	Reporting Limit
Benzene	ug/l	ND	1.0
Ethylbenzene	ug/l	ND	1.0
Toluene	ug/l	ND	1.0
m,p-Xylene	ug/l	ND	1.0
o-Xylene	ug/l	ND	1.0
Xylenes, Total	ug/l	ND	1.0
4-Bromofluorobenzene (S)	%	94.9	74-125
1,2-Dichloroethane-d4 (S)	%	96.8	70-130
Toluene-d8 (S)	%	99.8	82-118

LABORATORY CONTROL SAMPLE: 38037

Analysis Date/Time Analyst: 04/07/2010 10:23 JMC

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	
Benzene	ug/l	20	19.7	98.5	74-123	
Ethylbenzene	ug/l	20	20.0	100	72-127	
Toluene	ug/l	20	19.2	96.1	74-126	
m,p-Xylene	ug/l	40	40.2	100	71-129	
o-Xylene	ug/l	20	20.0	100	74-130	
Xylenes, Total	ug/l	60	60.19	100	71-130	
4-Bromofluorobenzene (S)	%			100	74-125	
1,2-Dichloroethane-d4 (S)	%			93.8	70-130	
Toluene-d8 (S)	%			100	82-118	

MATRIX SPIKE & MATRIX SPIK	E DUPLI	ICATE: 38042		38043		Original:	H10040014002			
MS Analysis Date/Time Analyst:		04/07/2010 11:46	5 JMC							
MSD Analysis Date/Time Analys	t:	04/07/2010 12:13	3 JMC							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD

ND 20 20.4 20.4 102 Benzene ug/l 102 70-124 0.1 20 Ethylbenzene ND 20 20.4 19.7 ug/l 102 98.3 35-175 3.9 20 QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using

any detected value greater than the MDL.

Report ID: H10040051_6089

Workorder: H10040051 : Randleman No.1

Sale of

and the second

きまま

を始まい

1.000.00

E.F.

「日本の

「聖史」に

1000

いないない

1.22155

An Soft

Sale ...

Profession &

to the a

東京間

の変換

Mary Con

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901

Fax: (713) 660-8975

QUALITY CONTROL DATA

Project Number: Randleman No.1

MATRIX SPIKE & MATRIX SPIKE	DUPLI	CATE: 38042		38043		Original:	H10040014002			
MS Analysis Date/Time Analyst:		04/07/2010 11:46	5 JMC							
MSD Analysis Date/Time Analyst:		04/07/2010 12:13	з ЈМС							
		Original	Spike	MS	MSD	MS	MSD	% Rec		Мах
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD
Toluene	ug/l	ND	20	20.6	20.3	103	101	70-131	1.4	20
m,p-Xylene	ug/l	ND	40	41.9	40.0	105	99.9	35-175	4.7	20
o-Xylene	ug/l	ND	20	21.4	19.8	107	98.8	35-175	8.0	20
Xylenes, Total	ug/l	ND	60	63.3	59.75	106	99.6	35-175	5.8	20
4-Bromofluorobenzene (S)	%	92.8				103	95.5	74-125		30
1,2-Dichloroethane-d4 (S)	%	97.3				96.1	97.2	70-130		30
Toluene-d8 (S)	%	98				100	99.9	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040051_6089

でない

Sec. Sec.

「「「 」 「 」 「 」

to the second

A. Sankille

the set

State Ba

ALL THE

Care and

Stratig

Setting of

きるいので

大学ない

10000

Part - Sale

NY Bal

の時間

1. 1. A.

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040051 : Randler	nan No.1					P	roject Numb	er: Ranc	lleman No.1
QC Batch: IC/1245		An	alysis Meth	od: EP	A 300.0				
QC Batch Method: EPA 300.0									
Associated Lab Samples: H10	040051001 H1004	0051002	H1004005	51003	H10040051004	H10040	0188001	H10040	188002
METHOD BLANK: 38567									
Analysis Date/Time Analyst:	04/09/2010 10:45 CF	S							
Parameter	Units	_	Blank esult Qualif	iers	Reporting Limit				
Chloride	mg/l		ND		0.500	8 1			
LABORATORY CONTROL SAMP	LE: 38568								
Analysis Date/Time Analyst:	04/09/2010 11:02 C	FS							
Parameter	Units	•	bike bnc.	LCS Result	LCS % Rec		% Rec Limits		
Chloride	mg/l		10	9.328	93.3	8	35-115		
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 38569		38570		Original: H10	004005100	3		
MS Analysis Date/Time Analyst:	04/09/2010 1	6:35 CFS							
MSD Analysis Date/Time Analyst:	04/09/2010 1	6:51 CFS							
Parameter	Original Units Result		MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Chloride	mg/l 5.34	10	15.31	15.2	99.7	98.6	80-120	0.8	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040051_6089

white a

Som Carly

語電影

建設著

1. P. 3.

tering fight

an pathon of

Sec. 2.

A. 10. 0

ALC A

. att .

ARCH THE

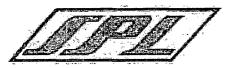
THE FALLS

then of

1. S. 1.

物に読む

Printing the


T. T. Mary

QUALITY CONTROL DATA

QC Batch: MSV/17	'32		An	alysis Meth	od: SV	V-846 8260B				
QC Batch Method: SW-846	5030		Pre	eparation:	04/	11/2010 00:00 by	JMC			
	H10040050002 H10040157003	H100400510 H100401570		H1004005 H1004016		H10040051005 H10040163002		40157001 40163003	H10040	157002
METHOD BLANK: 38623										
Analysis Date/Time Analyst:	04/11/2010 1	5:30 JMC								
			В	lank		Reporting				
Parameter	Units		Re	esult Qualif	iers	Limit				
Ethylbenzene	ug/l			ND		1.0				
m,p-Xylene	ug/l			ND		1.0				
Xylenes, Total	ug/l			ND		1.0				
4-Bromofluorobenzene (S)	%			89.9		74-125				
1,2-Dichloroethane-d4 (S)	%			98.5		70-130				
Toluene-d8 (S)	%			102		82-118				
Analysis Date/Time Analyst:	04/11/2010	15:03 JMC	Sp	ike	LCS	LCS		% Rec		
Parameter	Units		Co	nc.	Result	% Rec		Limits		
Ethylbenzene	ug/l			20	20.2	101		72-127		
m,p-Xylene	ug/l			40	40.4	101		71-129		
Xylenes, Total	ug/l			60	60.52	101		7 1 -130		
4-Bromofluorobenzene (S)	%					95.1		74-125		
1,2-Dichloroethane-d4 (S)	%					91.6		70-130		
Toluene-d8 (S)	%					99.9		82-118		
MATRIX SPIKE & MATRIX SP	IKE DUPLICATE	: 38625		38626		Original: H1	00401570	01		
MS Analysis Date/Time Analys	st: 04/1	1/2010 18:43	JMC							
MSD Analysis Date/Time Anal	lyst: 04/1	1/2010 19:10	JMC	•						
Parameter	Units		Spike	MS Result	MSD		MSD	% Rec		Max
			conc.		Result		% Rec		RPD	RPD
	ug/l	ND	20	18.3	16.3		81.3	35-175	11.9	20
•		ND	40	38.2	33.8		84.5	35-175	12.2	20
m,p-Xylene	ug/l		~ ~							
m,p-Xylene Xylenes, Total	ug/l	ND	60	56.99	51.07		85.1	35-175	11.0	
m,p-Xylene Xylenes, Totai 4-Bromofluorobenzene (S)	ug/l %	ND 94.4	60	56.99	51.07	95.2	96.1	74-125	11.0	
Ethylbenzene m,p-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	ug/l	ND	60	56.99	51.07				11.0	20 30 30 30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040051_6089

, "g-1

19. 197 197

1

"唐人"

. . . .

1. 1. L.

đ

2

4 H - -

1

с. . Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description	
MI	Matrix Interference	
1	Estimated value, between MDL and PQL (Florida)	
JN	The analysis indicates the presence of an analyte	
С	MTBE results were not confirmed by GCMS	
NC	Not Calculated - Sample concentration > 4 times the spike	
*	Recovery/RPD value outside QC limits	
Е	Results exceed calibration range	
н	Exceeds holding time	
J	Estimated value	
Q	Received past holding time	
В	Analyte detected in the Method Blank	
Ν	Recovery outside of control limits	
D	Recovery out of range due to dilution	
NC	Not Calculable (Sample Duplicate)	
Р	Pesticide dual column results, greater then 25%	

きい

12537632

2952 TEB 24

Contraction of

日の湯を

4000

and the

Taket E

ないの

Status, "

Sec. 2

1000

Pane 201

言語す

A States

S. Com

「「「「「」」

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10040051 : Randleman No.1

Project Number: Randleman No.1

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10040051001	MW-1	EPA 300.0	IC/1239		
H10040051002	MW-2	EPA 300.0	IC/1239		
H10040051003	MW-3	EPA 300.0	IC/1239		
H10040051004	MW-4	EPA 300.0	IC/1239		
H10040051001	MW-1	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040051002	MW-2	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040051003	MW-3	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040051004	MW-4	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040051001	MW- 1	SM 2540 C	WETS/1544		
H10040051002	MW-2	SM 2540 C	WETS/1544		
H10040051003	MW-3	SM 2540 C	WETS/1544		
H10040051004	MW-4	SM 2540 C	WETS/1544		
H10040051001	MW-1	SW-846 5030	MSV/1714	SW-846 8260B	MSV/1715
H10040051002	MW-2	SW-846 5030	MSV/1714	SW-846 8260B	MSV/1715
H10040051003	MW-3	SW-846 5030	MSV/1714	SW-846 8260B	MSV/1715
H10040051004	MW-4	SW-846 5030	MSV/1714	SW-846 8260B	MSV/1715
H10040051005	Duplicate	SW-846 5030	MSV/1714	SW-846 8260B	MSV/1715
H10040051006	Trip Blank	SW-846 5030	MSV/1714	SW-846 8260B	MSV/1715
H10040051001	MW-1	EPA 300.0	IC/1245		
H10040051002	MW-2	EPA 300.0	IC/1245		
H10040051003	MW-3	EPA 300.0	IC/1245		
H10040051004	MW-4	EPA 300.0	IC/1245		
H10040051002	MW-2	SW-846 5030	MSV/1732	SW-846 8260B	MSV/1733
H10040051003	MW-3	SW-846 5030	MSV/1732	SW-846 8260B	MSV/1733
H10040051005	Duplicate	SW-846 5030	MSV/1732	SW-846 8260B	MSV/1733

The start

Sec.

and and the

E. S. F.

distant.

- W 8

いたい

San and

1. W. W. +

14.3° A

State of the

Charles 2 4

L.S. and

The Hard

のないの

at a

Sec. 2. 8. 10

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901

Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:	H10040051	Received By	LOG
Date and Time	04/02/2010 09:15	Carrier Name:	FEDEXS
Temperature:	2.0°C	Chilled By:	Water Ice
1. Shipping container/c	ooler in good condition?		YES
2. Custody seals intact	on shipping container/cooler?		YES
3. Custody seals intact	on sample bottles?		Not Present
4. Chain of custody pre	sent?		YES
5. Chain of custody sig	ned when relinquished and received?		YES
6. Chain of custody agr	rees with sample labels?		YES
7. Samples in proper co	ontainer/bottle?		YES
8. Samples containers	intact?		YES
9 Sufficient sample vol	ume for indicated test?		YES
10. All samples received	within holding time?		YES
11. Container/Temp Blar	nk temperature in compliance?		YES
12. Water - VOA vials ha	ave zero headspace?		VOA Vials Not Present
13. Water - Preservation	checked upon receipt(except VOA*)?		YES
*VOA Preservation C	Checked After Sample Analysis		
SPL Representative:		Contact Date & Time:	

SPL Representative: Client Name Contacted: Client Instructions: Contact Date & Time:

20-16-4

. € <u>.</u> .

. Stanks

1. A.

1 4 92

~ ~ ~

<u>_</u>

1.00

Phone: (713) 660-0901 Fax: (713) 660-8975

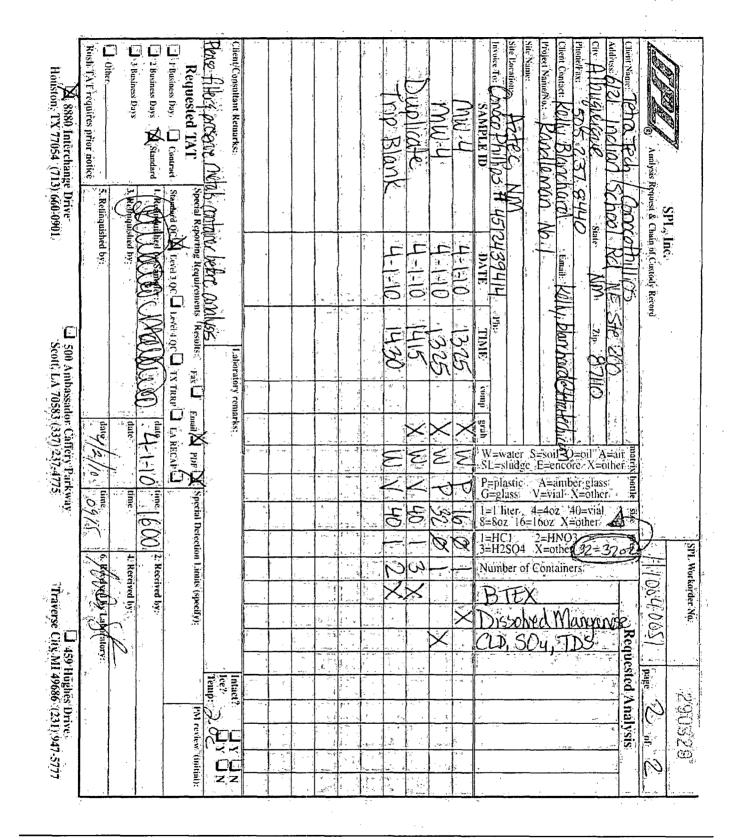
	A Received by A Rece	2/20		A Business Dates M. Standard C. Martinghisher by:	d TAT Sherrar reporting requirements results (10C) TX JRRP I: DA RECAP D	melak container vielace on alysts	Chent/Consultant Remarks:	MW 4 4 4 10 13 25 1 X W V 40 L 4	MW-3 4-1-10 1420 X W P 320	MW-3 [4-1-10] 1420 [V.IV] 7 [6] Ø[TMW-3. THA HOLINZO IN XINO THE	MW-Z 4-1-10 14.05 X W- P 32 0	2 MW X 50h 00-1-1-1 2 MW	1 1 01 1 N X SOM 01-1-10 10-1-2 MW		MW-1 U-10 1345 X W P 16 Ø	1 1 1 0 V W X W 3 V V V V V V V V V V V V V V V V V V		8oz HCI H2S	H_{10} AIM	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	anib ial iz X= INO other	i = 0 i =	1014 OILS The State NM The Solution of the Sol	1
--	--	------	--	---	--	-----------------------------------	---------------------------	----------------------------------	----------------------------	------------------------------------	--------------------------------	-------------------------------	--------------------------	------------------------------------	--	---------------------------	---	--	-------------------	--------------	--	---	--	--	---

31.080

2 . O. 2

B. Name

1.8.2.5


11

71. g mili

1

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

