

QTR Groundwater Report

DATE: March 2010

KECEIVED . 2010 MAR 16 PM 1 23

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 (505) 237-8440

March 12, 2010

Mr. Glenn von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

> RE: ConocoPhillips Company Randleman #1 – September 2009 Quarterly Groundwater Monitoring Report, Aztec, New Mexico

Dear Mr. von Gonten:

Enclosed please find one copy of the above-referenced document as compiled by Tetra Tech, Inc., for this Aztec-area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (1)

QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY RANDLEMAN #I PRODUCTION FACILITY SAN JUAN COUNTY, NEW MEXICO

OCD # 3RP-340-0 API # 30-045-10698

Prepared for:

ConocoPhillips

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 1158690090

March 2010

ConocoPhillips Company

Se all

2 20 Ch

-

19. Yrs

Ball Same

24.4

Les B. C.

1.6.24

and the state

いた。

TABLE OF CONTENTS

1.0	INT	RODUCTION	I
	1.1	Site Background	. 1
2.0	MOI	NITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS	3
	2.1	Monitoring Summary	. 3
	2.2	Groundwater Sampling Methodology	. 3
	2.3	Groundwater Sampling Analytical Results	.4
3.0	COP	CLUSIONS AND RECOMMENDATIONS	6
4.0	REF	ERENCES	6

FIGURES

- I. Site Location Map
- 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map September 2009
- 5. BTEX Groundwater Concentration Map September 2009

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary (June September 2009)
- 3. Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
- 4. Groundwater Laboratory Analytical Results Summary, Quarterly Parameters (June September 2009)
- 5. Kiffen Canyon Wash Soil and Groundwater Analytical Results Summary (October 2009)

APPENDICES

- Appendix A Groundwater Sampling Field Forms
- Appendix B Groundwater Laboratory Analysis Report
- Appendix C Kiffen Canyon Wash Groundwater and Soil Analysis Report

QUARTERLY GROUNDWATER MONITORING REPORT RANDLEMAN #I, SAN JUAN COUNTY, NEW MEXICO SEPTEMBER 2009

I.0 INTRODUCTION

This report discusses the groundwater sampling event performed by Tetra Tech, Inc. (Tetra Tech) on September 23, 2009 at the ConocoPhillips Company Randleman #1 site located outside of Aztec, New Mexico (Site). The Site is located on private land in Section 13, Township 31N, Range 11W, of San Juan County, New Mexico, as can be seen on **Figure 1**. A Site detail map is included as **Figure 2**.

I.I Site Background

The historical timeline for the Site is summarized below, and is also presented in Table 1.

In April 1997, an unlined surface impoundment (**Figure 2**) was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman #3 site (Williams 2002). Three monitor wells were installed at the Site on May 14, 1997, and quarterly groundwater monitoring was conducted through March 1998. Evaluation of groundwater monitoring results initiated another excavation in April 1998 of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002). Quarterly groundwater monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site. In June 2002, OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitor wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in **Figure 2**.

On February 23, 2009, approximately 60 barrels of condensate were released from an on-Site production tank as a result of a hole in the tank. OCD Form C-141 was filled out by ConocoPhillips staff and notice was given to OCD via telephone. Form C-141 stated that the well was shut in, that the fluids remained in the berm surrounding the production tank, and that none of the fluids were recoverable. Form C-141 additionally stated that ConocoPhillips would remove the tank and would excavate hydrocarbon impacted soils and remove them from the Site.

On February 26, 2009, Envirotech Inc. of Farmington, NM (Envirotech) arrived on Site, performed the soil excavation, and collected soil samples for analysis. The area of release was excavated to approximately 42 feet by 51 feet by 7 feet deep. A total of 7 composite soil samples were collected from the excavation – I from each of the walls of the excavation and 3 samples from the bottom of the excavation. Soil samples were

collected in the field and were analyzed for total petroleum hydrocarbons (TPH) using Environmental Protection Agency (EPA) Method 418.1. Additionally, organic vapors were analyzed in the field using a photoionization detector (PID) and heated headspace techniques. TPH results ranged from 8 parts per million (ppm) in the soil sample collected from the north wall of the excavation to 1,080 ppm in the sample collected from the north wall of the excavation to 1,080 ppm in the sample collected from the south wall of the excavation. Depth of soil samples was not noted in the samples obtained from the walls of the excavation, but the samples obtained from the bottom of the excavation were obtained at 2.5 feet below ground surface (bgs) and at 3 feet bgs along the east and west sides of the excavation, respectively. The OCD recommended action level for TPH at the Site was determined to be 100 ppm. Organic vapor concentrations ranged from 6.8 ppm in the sample obtained from the north wall of the excavation. Due to levels of TPH and organic vapors above OCD action levels, the excavation was continued (Envirotech, 2009).

On February 27, 2009, Envirotech returned to the Site to continue the excavation and sampling activities. Due to the fact that soil samples collected from the north, west, and east ends of the excavation on February 26, 2009 were found to be below OCD action levels for TPH and organic vapor, the focus of the excavation on February 27, 2009 was the south wall, the southeast wall, and the bottom of the southeast corner. At the end of the day, the excavation measured 81 feet by 43 feet by 20 feet deep (total depth is given for the deepest part of the excavation; other areas determined to be below OCD action levels went to approximately 8 feet bgs). A total of 8 soil samples were collected and analyzed in the field for TPH and organic vapors. The excavation continued until all samples were found to be below the OCD action levels of 100 ppm for both TPH and organic vapors along all four walls and the bottom of the excavation. Using this excavation approach, the southeast corner became the focus of the excavation, where after obtaining soil samples at 8, 13, and 15 feet bgs with both TPH and organic vapor results greater than 100 ppm, soil sample results for both of these constituents were not detected at a depth of 20 feet bgs, and the excavation was discontinued (Envirotech, 2009). The excavation area is depicted in **Figure 2**.

On March 2, 2009, groundwater was found seeping into the southeast corner of the excavation at a depth of approximately 20 feet bgs. A Rock Springs vacuum truck was contracted by Envirotech to collect groundwater from the excavation; approximately 10 gallons of water were removed. After removal of collected groundwater, Envirotech obtained a soil sample from the southeast corner of the excavation at a depth of 20 feet bgs. TPH and organic vapor results were found to be above OCD action levels. During field analysis of the soil sample, more groundwater had seeped into the excavation. More water was then removed from the excavation, and additional excavation was performed in order to attempt to obtain a soil sample below OCD action levels. A groundwater sample was collected from the area where water continued to seep into the excavation, and was sent for laboratory analysis of volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above NMWQCC groundwater quality standards. Once this sample had been obtained, the excavation caved in, making further water removal via the vacuum truck impossible (Envirotech, 2009). The excavation area is depicted in **Figure 2**.

1.1.1

A total of 611 cubic yards of soil were removed from the Site and were transported to an OCD-permitted facility; clean fill was obtained from the landowner to backfill the excavation. Envirotech recommended the installation of groundwater monitor wells at the Site under OCD guidelines (Envirotech, 2009).

Tetra Tech installed four groundwater monitor wells at the Site between June 9, 2009 and June 10, 2009. From the soil boring data collected during monitoring well installation at the Site, a generalized geologic cross section was produced and can be seen as **Figure 3**. Tetra Tech conducted the first groundwater monitoring event at the Site on June 12, 2009. On June 18, 2009, the decision was made to place hydrocarbon absorbent socks into monitor wells MW-2 and MW-3 due to the presence of a spotty discontinuous sheen noticed in purge water removed from the wells. The absorbent socks will be monitored and replaced as necessary during subsequent monitoring events.

2.0 MONITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS

2.1 Monitoring Summary

A groundwater quality monitoring event at the Site was conducted on September 23, 2009. Prior to collection of groundwater samples from monitor well MW-1, MW-2, MW-3 and MW-4, depth to groundwater in each well was determined. Results are displayed in **Table 2**.

The casings for Site monitor wells were surveyed in June 2009 using an arbitrary reference-elevation of 100 feet above mean sea level (amsl). The data obtained from the Site survey and from the September 2009 sampling event was used to create a groundwater elevation map for the Site (**Figure 4**). Using these data, it was determined that the groundwater flow direction at the Site is to the east/southeast.

2.2 Groundwater Sampling Methodology

During the September 23, 2009 groundwater quality monitoring event, Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene dedicated bailer. While bailing each well, groundwater parameter data such as temperature, pH, conductivity, total dissolved solids (TDS), oxidation-reduction potential (ORP) and dissolved oxygen (DO) were collected using a YSI 556 multi-parameter sonde and results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Collected groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain-of-custody documentation. Analysis of all groundwater samples collected during the September 2009 groundwater monitoring event were performed by Southern Petroleum Laboratory (SPL) of Houston, Texas.

During the September 2009 groundwater monitoring event, each groundwater sample collected was analyzed for benzene, toluene, ethylbenzene, total xylenes (BTEX), and naphthalene by EPA Method 8260B; sulfate and chloride by EPA Method E300.0; total dissolved solids (TDS) by EPA Method 2540C; and dissolved aluminum, iron, manganese and chromium by EPA Method 6010B. This list of quarterly sampling parameters was determined based on baseline analyses done on samples collected on June 12, 2009

(**Table 3**). A summary of analytical results from the September 23, 2009 sampling event is displayed in **Table 4**. Tetra Tech has prepared **Table 4** as a historical analytical results table to include all quarterly analytical parameters to help document trends in constituent concentrations over time. Results from future groundwater monitoring events at the Site will be compiled in this table.

2.3 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitoring wells are discussed below.

Chloride

- The NMWQCC domestic water supply groundwater quality standard for chloride is 250 milligrams per liter (mg/L); the groundwater sample collected from monitor well MW-4 was found to contain chloride at concentration of 2,130 mg/L.
- Sulfate
 - The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L; groundwater samples collected from monitor well MW-1, MW-2, MW-3 and MW-4 were found to contain sulfate at concentrations of 1640 mg/L, 1390 mg/L, 1500 mg/L, and 3320 mg/L, respectively.

Dissolved Metals

Total metals testing was conducted during prior events as requested by the OCD in April of 2008; however, since all NMWQCC drinking water standards pertain to dissolved metals concentrations, with the exception of mercury, Tetra Tech requested and received approval from the OCD on September 8, 2009 to run dissolved metals analyses for only those metals which had exceeded the NMWQCC drinking water standards for metals previously run by total metals analysis. The dissolved metals samples were collected in unpreserved containers supplied by the laboratory, which were filtered and preserved by laboratory personnel prior to analysis for dissolved metals. Dissolved metals testing will continue for metals exceeding NMWQCC drinking water standards. With the exception of mercury, total metals data collected prior to September of 2009 cannot be compared to NMWQCC standards for dissolved metals

- o Aluminum
 - The NMWQCC aluminum groundwater quality standard for irrigation use is 5 mg/L; groundwater samples collected from all Site monitoring wells were found to be below the laboratory detection limit of 0.1 mg/L.

- o Iron
 - The NMWQCC domestic water supply groundwater quality standard for iron is I mg/L; groundwater samples collected from all Site monitoring wells were found to be below standard for dissolved iron.
- o Chromium
 - The human health NMWQCC groundwater quality standard for chromium is 0.05 mg/L; groundwater samples collected from all site monitoring wells were found to be below the laboratory detection limit of 0.005 mg/L.
- o Manganese
 - The NMWQCC domestic water supply groundwater quality standard for manganese is 0.2 milligrams per liter (mg/L). Groundwater samples collected from monitor wells MW-2, MW-3 and MW-4 were found to contain concentrations of manganese above the standard at 6.82 mg/L, 1.11 mg/L, and 2.73 mg/L, respectively.

Benzene

 \circ The human health NMWQCC groundwater quality standard for benzene is 10 μ g/L. Groundwater samples collected from monitoring wells MW-1 and MW-3 were above the standard with concentrations of 18 μ g/L and 13 μ g/L, respectively.

Ethylbenzene and Toluene

 \circ The human health NMWQCC groundwater quality standards for ethylbenzene and toluene are both 750 μ g/L. Groundwater samples collected from all Site monitoring wells were below the standards for ethylbenzene and toluene.

Total Xylenes

 \circ The human health NMWQCC groundwater quality standard for total xylenes is 620 µg/L, groundwater samples collected from MW-1, MW-3 and MW-4 were all found to be below standard for total xylenes however MW-2 exceeded the standard with a concentration of 720 µg/L.

Additional Sampling

On October 1, 2009 Tetra Tech employees visited the site to hand auger a soil boring down gradient and to the east of the Site within the Kiffen Canyon Wash. The boring location is shown on Figure 2. One soil sample and one groundwater sample was collected from the boring. The groundwater sample collected was analyzed for BTEX by EPA method 8260, with all constituents found to be below the laboratory detection limit of 1µg/L. The soil sample collected from the Kiffen Canyon Wash boring was analyzed for TPH Gasoline Range Organics (GRO) and TPH Diesel Range Organics (DRO) by EPA Method 8015, as well as BTEX by EPA Method 8021. TPH GRO was found to be below the laboratory detection limit of 8 mg/kg, and all BTEX constituents were found to be below the laboratory detection limit of 1.3 µg/kg.

The corresponding laboratory analytical report for the September 2009 groundwater sampling event, including quality control summaries, is included in **Appendix B**. The laboratory analytical report for the samples collected from the Kiffen Canyon Wash is included as **Appendix C**. A map showing BTEX concentrations in groundwater from Site monitoring wells during the September 2009 groundwater sampling event is included as **Figure 5**.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater quality results begin to indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

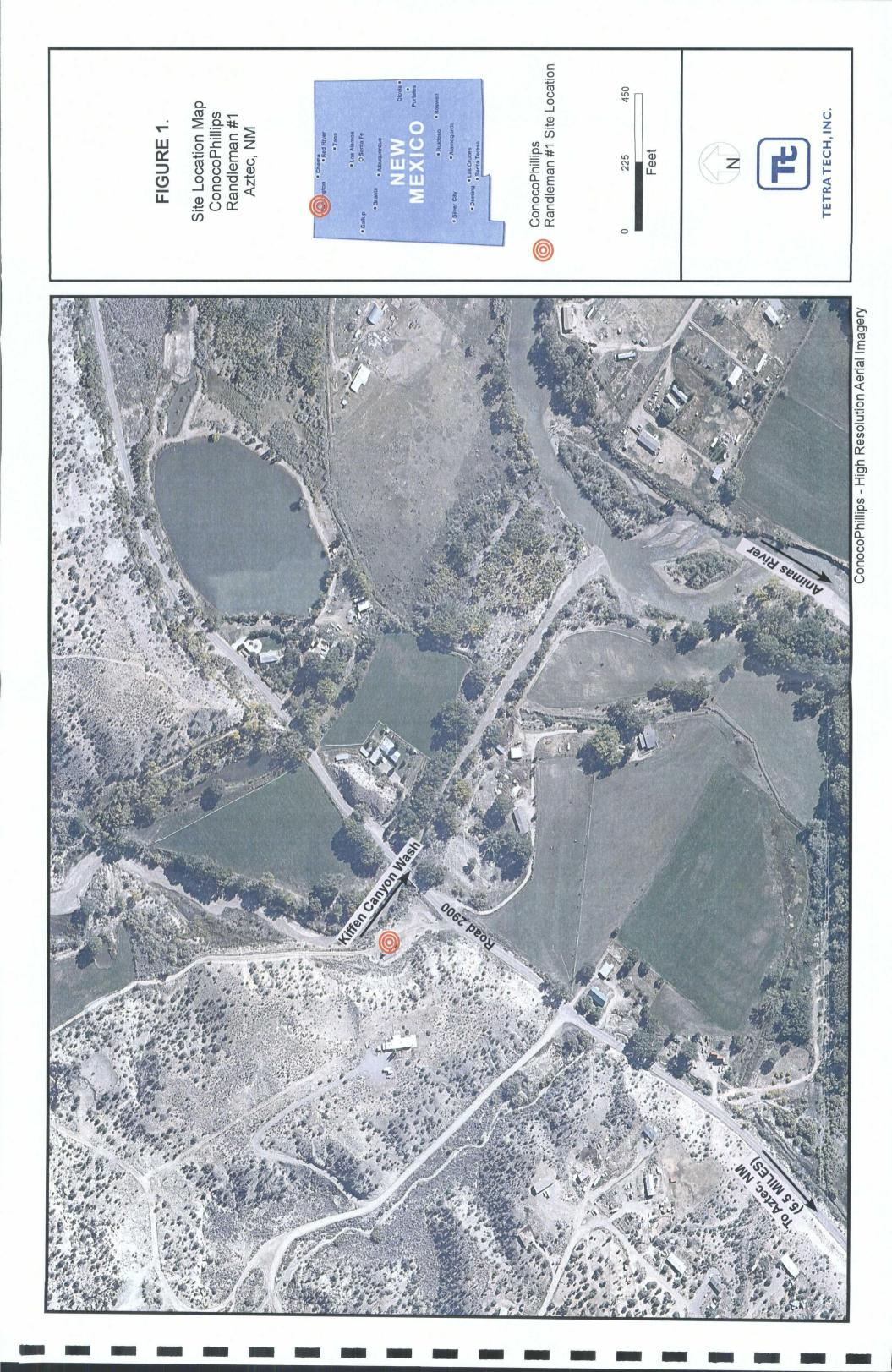
4.0 REFERENCES

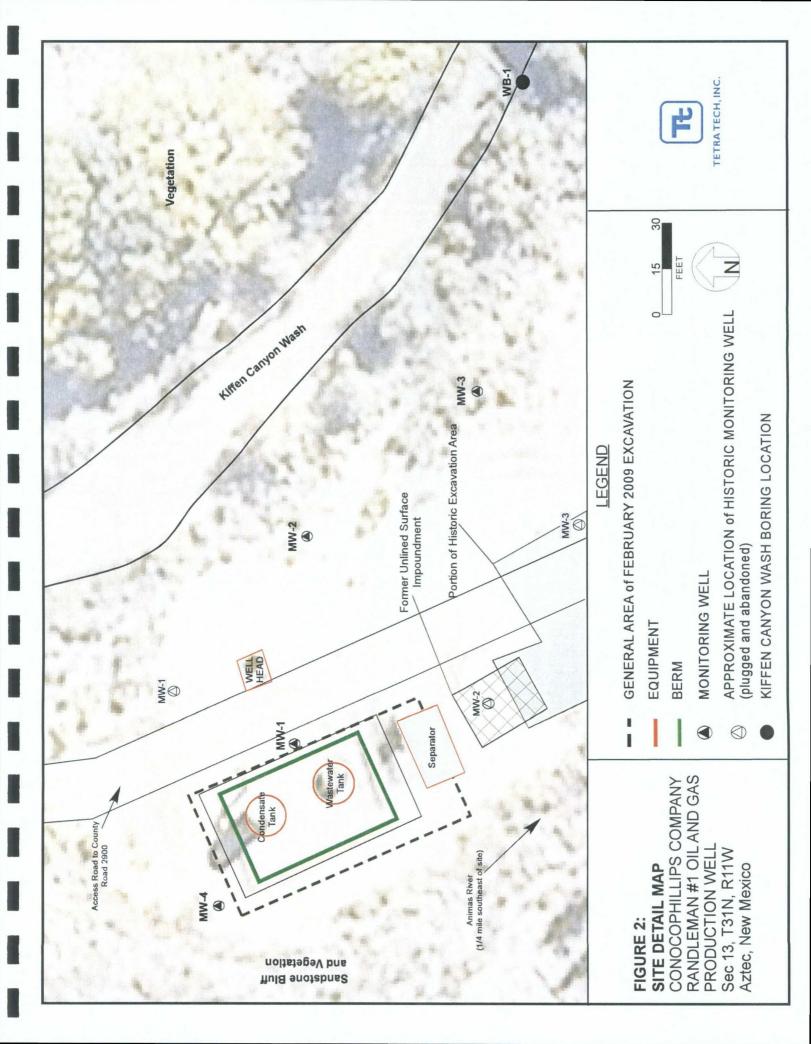
- Envirotech Incorporated (2009). Spill Cleanup Report, Located at: Burlington Resources [sic] Randleman #1 Well Site, Section 13, Township 31N, Range 11W, San Juan County, New Mexico. Prepared for ConocoPhillips. Report Dated February 2009. 3 pp (not including Figures, Tables, and Appendices).
- New Mexico Energy, Minerals and Natural Resources Department (2002). Case # 3R0-340, Randleman #1 Dehy Pit, San Juan County [sic], New Mexico. Letter from NMEMNRD to Williams Field Services. Dated June 14, 2002. 6 pp.
- Williams Environmental Services (2002). Randleman #1 Pit Remediation and Closure Report. Prepared for the New Mexico Oil Conservation Division. Report Dated February 11, 2002. 3 pp (not including Figures, Tables, and Appendices).

FIGURES

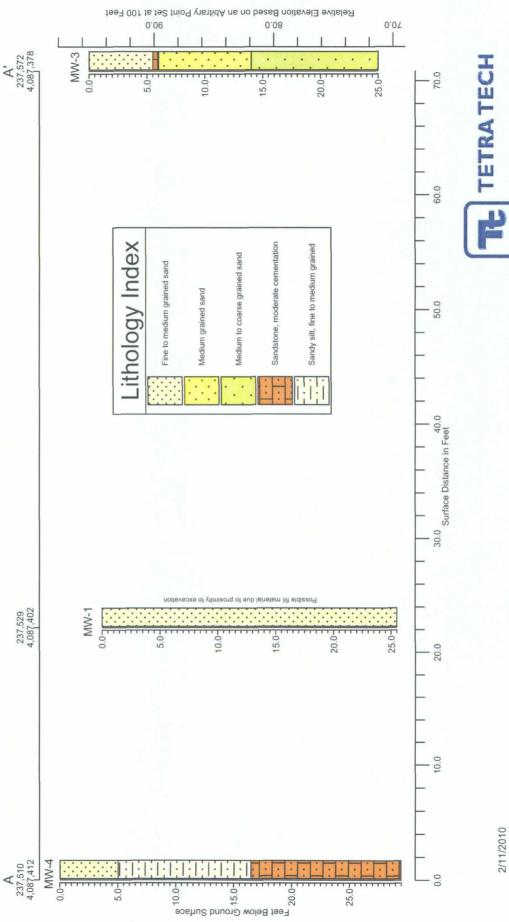
I. Site Location Map

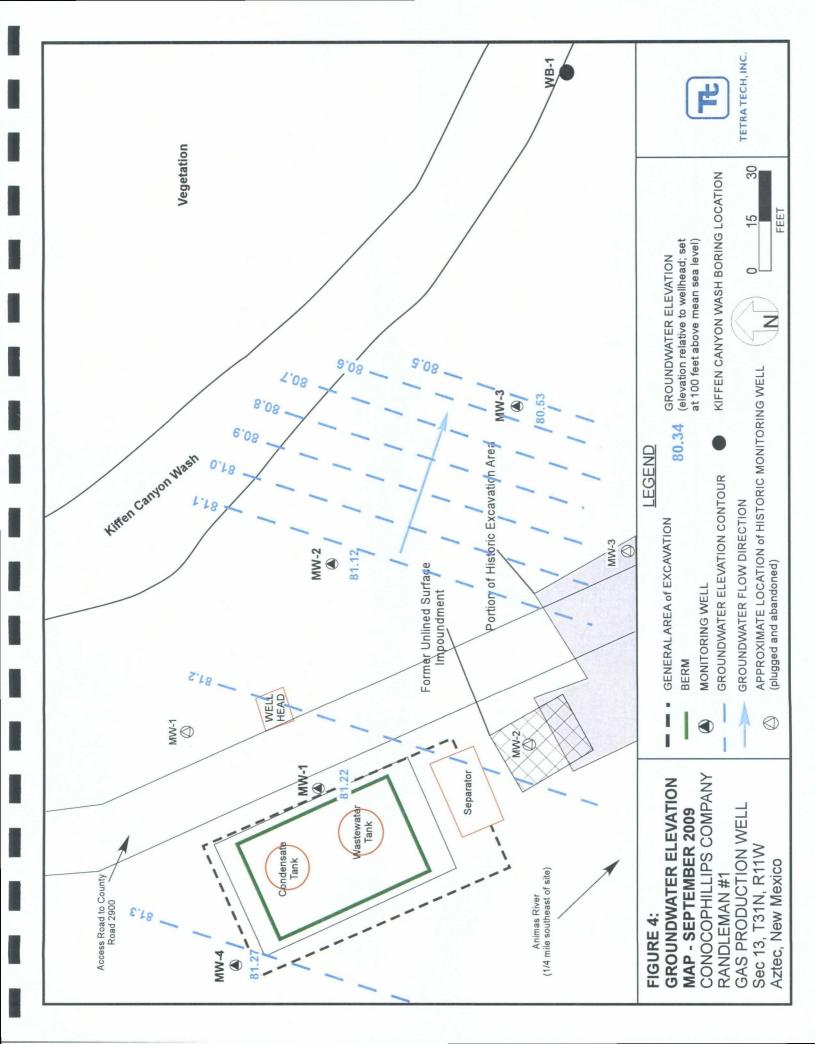
2. Site Detail Map

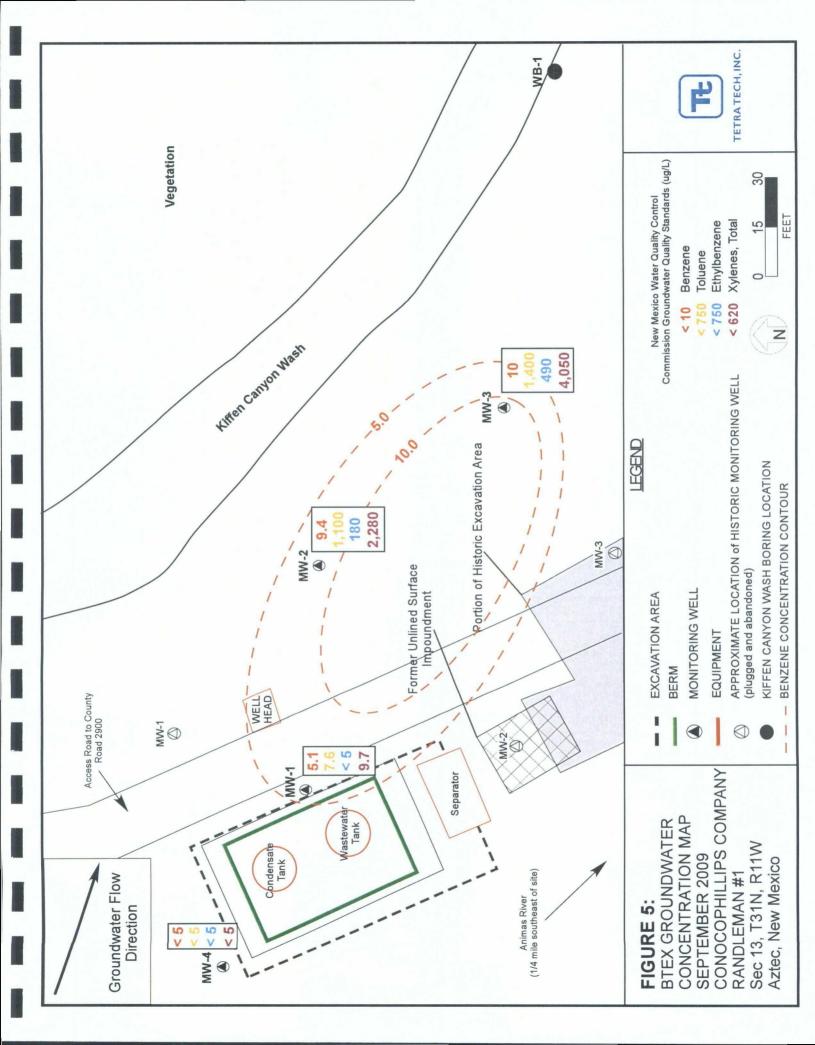

3. Generalized Geologic Cross Section


4. Groundwater Elevation Map – September 2009

5. BTEX Groundwater Concentration Map – September 2009


() ()


не - е,



TABLES

Site History Timeline
 Groundwater Elevation Data Summary (June – September 2009)
 Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
 Groundwater Laboratory Analytical Results Summary, Quarterly Parameters (June – September 2009)

5. Kiffen Canyon Wash Soil and Groundwater Analytical Results Summary (October 2009)

ale.

3. A. B.

8. P. 1

12.2 0

ماريشها مع

÷....

1. 18. C. C.

4 . Big &

3 - 5 GE

" a "

\$ are to a .

Total State

\$ 3 6 Y

6.2 th 9.2 th

10 May -

· C . 18 - 1

S . 8 . 3

3.

DATE	ACTIVITY
September 20, 1951	Well spudded by Southern Union Gas Company.
August 1, 1952	Well acquired by Aztec Oil and Gas Company.
December 1, 1976	Southland Royalty Company acquired Aztec Oil and Gas Company
November 22, 1985	Southland Royalty Company acquired by Burlington Resources.
April 1, 1997	An unlined surface impoundment was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman #3 site.
May 14, 1997	Three groundwater monitor wells were installed at the Site. Groundwater monitoring was initiated on a quarterly basis through March 1998.
April 1, 1998	Evaluation of groundwater monitoring results initiated another excavation of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002).
February 1, 2002	Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater quality monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site.
June 1, 2002	OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitoring wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in Figure 2.
March 31, 2006	ConocoPhillips Company acquired Burlington Resources and all assets
February 23, 2009	Approximately 60 barrels of condensate were found to have spilled from a hole located on the back side of an on-Site condensate tank into the bermed area. The spilled fluids remained in the berm and none of the condensate was recovered. Form C-141 stated that the spill impacted the soil on the ground surface around the tank, that the production tank was to be removed, and that the affected soils were to be excavated.
February 26, 2009	Envirotech Inc. of Farmington, NM (Envirotech) performed the soil excavation and collected soil samples for analysis. The area of release was excavated to approximately 42 feet by 51 feet by 7 feet deep. 7 composite soil samples were collected from the excavation – 1 from each wall and 3 samples from the bottom of the excavation. Soil samples were analyzed for total petroleum hydrocarbons (TPH) using EPA Method 418.1. Additionally, organic vapors were measured using a Photoionization Detector (PID). TPH results ranged from 8 parts per million (ppm) in the north wall sample to 1,080 ppm in the south wall sample. The OCD recommended action level for TPH at the Site was determined to be 100 ppm. Organic vapor concentrations ranged from 6.8 ppm from the north wall sample, to 898 ppm in the south wall sample. Due to high levels of TPH and organic vapors, the excavation was continued.
February 27, 2009	Envirotech continue the excavation and sampling activities. Samples collected from the north, west, and east ends of the excavation on February 26, 2009 were found to be below OCD action levels for TPH, the focus of the excavation on February 27, 2009 was the south wall, the southeast wall, and the bottom of the southeast corner. At the end of the day, the excavation measured 81 feet by 43 feet by 20 feet deep (total depth is given for the deepest part of the excavation; other areas determined to be below OCD action levels went to approximately 8 feet bgs). Eight soil samples were collected and analyzed in the field for TPH and organic vapors. Excavation continued until all samples were found to be below100 ppm for both TPH and organic vapors.
March 2, 2009	Groundwater began to seep into the southeast corner of the excavation at 20 feet bgs. A vacuum truck was contracted to remove groundwater from the excavation; approximately 10 gallons of water were removed. After removal of groundwater, a soil sample from the southeast corner of the excavation was collected. TPH and organic vapor results were found to be above OCD action levels. More water was then removed from the excavation, and additional soil removal was performed. A groundwater sample was collected from the area where water continued to seep into the excavation, and was analyzed for volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Once this sample had been obtained, the excavation caved in, making further water removal impossible (Envirotech, 2009). A total of 611 cubic yards of soil were romoved from the Site. Clean fill was used to backfill the excavation.
June 9 through 11, 2009	Tetra Tech installs 4 groundwater monitor wells at the Site; MW-1, MW-2, MW-3 and MW-4.
June 12, 2009	Tetra Tech conducts the first groundwater monitoring event at the Site.
June 17, 2009	Depth to water measurements were taken in Site monitor wells to determine if hydrocarbons were accumulating in the water column.
June 18, 2009	Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Tetra Tech.
September 23, 2009	Second quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
October 1, 2009	Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located downgradient and east of the Site. Groundwater and soil samples collected from boring.

1997 - 1998 - 1997 - 19

and the second

1. 2. 2. BC

Anar 3.

1. C. B. C.

A Carton Star

Relative Groundwater Elevation 81.23 81.22 81.16 81.12 80.31 80.34 80.53 81.15 81.31 81.21 81.22 81.27 Depth to Groundwater (ft below 13.98 13.96 15.78 17.68 17.56 TOC) 13.97 15.57 15.63 15.67 16.00 15.97 17.52 Table 2. Groundwater Elevation Data Summary - ConocoPhillips Company Randleman #1 **Date Measured** 6/12/2009 6/14/2009 9/23/2009 6/12/2009 6/14/2009 9/23/2009 6/12/2009 6/14/2009 6/14/2009 9/23/2009 6/12/2009 9/23/2009 *Elevation (ft) (TOC) 95.19 96.79 98.83 96.31 Interval (ft) 6.5 - 21.5 Screen 8.9 - 23.8 11 - 26 9 - 24 **Total Depth** (ft bgs) 25.5 23.80 22.00 29.50 Well ID MW-2 MW-3 MW-4 MW-1

E. Starter

1. 10 m 1.

مر يقريبه

14 A. A. A.

A the start of

5 - C - W - V - C

1 Sec. 1

The state

Mr. Hall

15. A.

4. 1. 1. 1. 1.

S 19 4

Sec. 20 4.

ft = Feet

TOC = Top of casing

bgs = below ground surface * Elevation relative to an arbitrary data point of 100 feet

Tetra Tech, Inc.

Constituent Ions Bromide Chloride Fluoride Orthophospate (as P) Sulfate Nitrate (as N) Nitrite (as N)	Method E300.0 E300.0 E300.0 E300.0 E300.0 E300.0	Units mg/L mg/L mg/L mg/L	<u>MW-1</u> < 0.5 119 0.518	<u>MW-2</u> <0.5 40.1	<u>MW-3</u> <0.5 40.3	Duplicate	<u>MW-4</u> < 0.5	NMWQCC Groundwater Quality Standard NE
Bromide Chloride Fluoride Orthophospate (as P) Sulfate Nitrate (as N) Nitrite (as N)	E300.0 E300.0 E300.0 E300.0 E300.0	mg/L mg/L mg/L	< 0.5 119	<0.5	<0.5	NA	< 0.5	Quality Standard NE
Bromide Chloride Fluoride Orthophospate (as P) Sulfate Nitrate (as N) Nitrite (as N)	E300.0 E300.0 E300.0 E300.0 E300.0	mg/L mg/L mg/L	< 0.5 119	<0.5	<0.5	NA	< 0.5	NE
Chloride Fluoride Orthophospate (as P) Sulfate Nitrate (as N) Nitrite (as N)	E300.0 E300.0 E300.0	mg/L		40.1	40.3	A14		
Orthophospate (as P)	E300.0 E300.0		0.518		1 40.0	NA	2,310	250
Sulfate Nitrate (as N) Nitrite (as N)	E300.0	mail	1 0.010	0.621	<0.5	NA	0.652	1.6
Nitrate (as N) Nitrite (as N)		I III III III III III III III III III	< 0.5	< 0.5	<0.5	NA	< 0.5	NE
Nitrite (as N)		mg/L	1,690	1,360	1,510	NA	4,190	600
	E300.0	mg/L	0.78	0.52	< 0.5	NA	< 0.5	10
	E300.0	mg/L	< 0.5	< 0.5	< 0.5	NA	< 0.5	NE
]					NMWQCC Groundwater
Metals, Total	Method	Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
Mercury	SW7470A	mg/L	< 0.0002	< 0.0002	< 0.0002	NA	< 0.0002	NE
Aluminum	SW6010B	mg/L	9.22*	2.99*	1.1*	NA	13.6*	NE
Boron	SW6010B	mg/L	0.135	<0.1	0.107	NA	0.523	NE
Calcium	SW6010B	mg/L	473	528	527	NA	496	NE
Iron	SW6010B	mg/L	6.81*	3.7*	1.65*	NA	20*	NE
Magnesium	SW6010B	mg/L	27.1	19.7	23.9	NA	32.2	NE
Potassium	SW6010B	mg/L	7.31	7.53	6	NA	19.1	NE
Sodium	SW6010B	mg/L	454	196	242	NA	2720	NE
Strontium	SW6010B	mg/L	8.51	8.54	10.5	NA	11.6	NE
Tin	SW6010B	mg/L	<0.005	<0.005	0.0061	NA	<0.005	NE
Antimony	SW6020A	mg/L	< 0.005	<0.005	< 0.005	NA	< 0.005	NE
Arsenic	SW6020A	mg/L	< 0.005	0.00759	< 0.005	NA	<0.005	NE
Barium	SW6020A	mg/L	0.0857	0.107	0.0537	NA	0.131	NE
Beryllium	SW6020A	mg/L	< 0.004	<0.004	<0.004	NA	0.00468	NE
Cadmium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	<0.005	NE
Chromium	SW6020A	mg/L	0.00601	< 0.005	< 0.005	NA	0.117*	NE
Cobalt	SW6020A	mg/L	0.0157	< 0.005	< 0.005	NA	0.0312	NE
Copper	SW6020A	mg/L	0.022	0.00699	< 0.005	NA	0.041	NE
Lead	SW6020A	mg/L	0.0124	0.00561	< 0.005	NA	0.0418	NE
Manganese	SW6020A	mg/L	4.79*	3.56*	3*	NA	4.92*	NE
Molybdenum	SW6020A	mg/L	< 0.01	< 0.01	< 0.01	NA	0.0146	NE
Nickel	SW6020A	mg/L	0.0185	0.0107	0.00971	NA	0.0372	NE
Selenium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NÁ	0.00558	NE
Silver	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NE
Thallium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NE
Vanadium	SW6020A	mg/L	0.012	0.00592	< 0.005	NA	0.0269	NE
Zinc	SW6020A	mg/L	0.0322	0.0152	<0.01	NA	0.103	NE
		Î.	1					NMWQCC Groundwater
SVOCS (detections only)	Method	Units	<u>MW-1</u>	MW-2	MW-3	Duplicate	MW-4	Quality Standard
2,4-Dimethylphenol	8270C	μg/L	<5	<5	18	NA	<5	NE
2-Methylnaphthalene	8270C	μg/L	<5	13	12	NA	<5	see
Naphthalene	8270C	μg/L	<5	14	20	NA	<5	below
Sum of 2-Methylnaphthalene & Naphthalene	8270C	μg/L		27	32	NA		30
Benzyl alcohol	8270C	μg/L	<5	6.8	<5		<5	NE
2-Methylphenol	8270C	μg/L	<5	<5	7.2	NA	<5	NE
3&4-Methylphenol	8270C	μg/L	<5	<5	8.3	NA	<5	NE
			<u> </u>					NMWQCC Groundwater
VOCs (detections and BTEX only)	Method	Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
1,2,4-Trimethylbenzene	8260B	μg/L	< 5	300	440	NA	< 5	NE NE
1,3,5-Trimethylbenzene	8260B	μg/L	< 5	96	140	NA	< 5	NE
4-Isopropyitoluene	8260B	μg/L μg/L	< 5	7.2	6.3	NA	< 5	NE
Isopropylbenzene	8260B	μg/L μg/L	< 5	24	46	NA	< 5	NE
Naphthalene	8260B		< 5	21	36	NA	< 5	30
n-Butylbenzene	8260B	μg/L	< 5	5.2	< 5	NA	< 5	NE
n-Propylbenzene	8260B	μg/L	< 5	25	48	NA	< 5	NE
sec-Butylbenzene	8260B	μg/L	< 5	6.6	6.1	NA	< 5	NE
Benzene	8260B	μg/L	5.1	9.4	10	10	< 5	10
Toluene	8260B	μg/L	7.6	1,100	1,400	1,400	< 5	750
	8260B	μg/L	< 5	180	490	540	< 5	750
	8260B	μg/L	9.7	2,280	4,050	4,300	< 5	620
	102000					ا ــــــــــــــــــــــــــــــــــــ	-	<u> </u>
		<u> </u>	I	[]	· · · · · · · · · · · · · · · · · · ·			NMWQCC Groundwater
Ethylbenzene Total Xylenes Other			MW-1	MW-2	MW-3	Duplicate	MW-4	NMWQCC Groundwater Quality Standard
Total XylenesOther	Method	Units	<u>MW-1</u> 165	<u>MW-2</u> 215	<u>MW-3</u> 99	Duplicate NA	<u>MW-4</u> 200	Quality Standard
Total Xylenes			<u>MW-1</u> 165 < 0.1	<u>MW-2</u> 215 0.76	<u>MW-3</u> 99 1.2	Duplicate NA NA	<u>MW-4</u> 200 < 0.1	

<u>, 1</u>

<u>Notes:</u> MW = monitoring well NMWQCC = New Mexico Water Quality Control Commission Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards

SVOCs = semi-volatile organic compounds SVOCs = semi-volatile organic compunds wg/L = milligrams per liter µg/L = micrograms per liter P = phosphate N = nitrogen NE = not established NA = not established

 NA = not analyzed
 * = Concentration of total metals. Cannot be compared directly to the NMWQCC standard for dissolved metals; but were used to determine which metals to use dissolved metals analysese for during future quarterly sampling events.

irterly Groundwater Analytical Results Summary

6/14/2009 5.1 7.6 <5		benzene Ioluene (µg/L) (µg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Naphthalene (µg/L)	Chloride (mg/L)	Sulfate (mg/L)	Aluminum (mg/L)	lron (mg/L)	Chromium (mg/L)	Manganese (mg/L)	Total Dissolved Solids (mg/L)
9/23/2009 18 5.4 1.3 11.6 <1 80.5 6/14/2009 9.4 1100 180 2280 21 40.1 9/23/2009 7.7 <1 110 720 16 39.4 9/23/2009 7.7 <1 110 720 16 39.4 9/23/2009 10 1400 490 4050 36 40.3 9/23/2009 13 8.5 89 320 36 40.3 6/14/2009 6/1 36.5 89 320 36.4 40.3	-	7.6	< 5	9.7	< 5	119	1690	9.22*	6.81*	.00601*	4.79*	NA
6/14/2009 9.4 1100 180 2280 21 40.1 9/23/2009 7.7 <1 110 720 16 39.4 6/14/2009 10 1400 490 4050 36 40.3 6/14/2009 13 8.5 89 320 36 40.3 6/14/2009 5 69 320 36 40.3 5 5		5.4	1.3	11.6	< 1	80.5	1640	< 0.1	< 0.02	< 0.005	0.17	2880
9/23/2009 7.7 <1 110 720 16 39.4 6/14/2009 10 1400 490 4050 36 40.3 9/23/2009 13 8.5 89 320 3.9 64.5		1100	180	2280	21	40.1	1360	2.99*	3.7*	< 0.005*	3.56*	NA
6/14/2009 10 1400 490 4050 36 40.3 9/23/2009 13 8.5 89 320 3.9 64.5		< 1	110	720	16	39.4	1390	< 0.1	0.0239	< 0.005	6.82	2480
9/23/2009 13 8.5 89 320 3.9 64.5 64.5 64.5 7310		1400	490	4050	36	40.3	1510	1.1*	1.65*	< 0.005*	3*	NA
		8.5	89	320	3.9	64.5	1500	< 0.1	0.0486	< 0.005	1.11	2720
	6/14/2009 < 5	< 5	< 5	< 5	< 5	2310	4190	13.9*	20*	0.117*	4.92*	NA
9/23/2009 <1 <1 <1 <1 2,130 3,320			۰ ۲			2,130	3,320	< 0.1	0.0308	< 0.005	2.73	8600
NMWQCC Standards 10 (µg/L) 750 (µg/L) 750 (µg/L) 620 (µg/L) 30 (µg/L) 250 (mg/L) 600 (mg/L)			750 (µg/L)	620 (µg/L)	30 (µg/L)	250 (mg/L)	600 (mg/L)	5 (mg/L)	1 (mg/L)	0.05 (mg/L)	0.2 (mg/L)	1000 (mg/L)

ExplanationND = Not DetectedND = Not DetectedNMWQCC = New Mexico Water Quality Control Commissionmg/L = miligrams per liter (parts per million)µg/L = micrograms per liter (parts per billion)µg/L = micrograms per liter (parts per billion)NA = Not Analyzed<0.7 = Below laboratory detection limit of 0.7 ug/L</td>Bold = concentrations that exceed the NMWQCC limits* = Results reported for total metals analysis, results cannot be compared to NMWQCC Standards for dissolved metals

2/10/2010

Page 1 of 1

ສ
Ξ
G
•
~
ö
ž
-
lemar
Ξ
Ð
Ð
Ē
Zar
S
≝
hilli
۲
Б
ŏ
0
Ö
ö.
0
4
a.
ž
불
Ë.

12 MART

L.

1997 Ser. 14-

144 July

2.1813

6在際主

Maria and

(. v.A)

A State

2 7*84 5 12

A. P

Tetra Tech, Inc.

1. W W

-180 M.

842 S. . .

10 m - 10 m

1. 8 M.

5 A.

10. A. S.

N. S. S.

8 4 21

1. A. 4.

N. Star

1004 - 2 B

4. 4 Br.

A. 4. 64

Boring WB-1 Matrix	Date	Benzene (µg/kg - dry)	Toluene (µg/kg - dry)	Ethylbenzene (µg/kg - dry)	Xylenes (µg/kg - dry)	TPH GRO (mg/kg - dry)	TPH DRO (mg/kg - dry)
Soil at 2 Feet	2 Feet 10/1/2009	< 1.3	< 1.3	< 1.3	< 1.3	< 0.13	ω
NMOCD A	NMOCD Action Level	10000 (µg/kg dry)	NE	NE	NE	100 (mg	100 (mg/kg - dry)

Table 5. Kiffen Canyon Wash Soil and Groundwater Analytical Results Summary (October 2009)

Boring WB-1 Matrix	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)
Groundwater	10/1/2009	< 1	< 1	< 1	< 1
NMWQCC	NMWQCC Standards	10 (hg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)

<u>Explanation</u>

ND = Not Detected NMOCD = New Mexico Oil Conservation Division NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) ug/L = micrograms per kilogram (parts per million) ug/kg = milligrams per kilogram (parts per million) NA = Not Analyzed <0.7 = Below laboratory detection limit of 0.7 ug/L

* = Results reported for total metals analysis, results cannot be compared to NMWQCC Standards for dissolved metals **Bold** = concentrations that exceed the NMWQCC limits

.

, ⁶""

-

1.1

. . .

1.0

9 94 2-1

.

.

APPENDICES

.

APPENDIX A

Groundwater Sampling Field Forms

AN THE P

SV2 44

1. 2 dar 4

340 %

and the second

and the second

A. 49. 6

12

* 2 4 3 the

205.000 -

A. 10

A. 2 . 4

No. Care Ser

4 to 100

Declark Mana					
-	Randleman 1			Page1 of _	4
Project No. Site Location	Aztec NM		<u> </u>		
		Coded/		alazina	
Site/Well No.	MW-1	Replicate No.	Date	Sampling	
Weather	<u>bie24, 11)</u>	Time Sampling 142 Began	20) Com;	bleted 14.20	
		EVACUATIO	N DATA		
Description of	Measuring Point (MP)	Fop of Casing			<u></u>
Height of MP	Above/Below Land Surfac	;e	MP Elevation	15.19	
	d Depth of Well Below MP	· · · · · · · · · · · · · · · · · · ·	Water-Level Elevation	8.22	
Held	_ Depth to Water Below	/MP1397	Diameter of Casing Gallons Pumped/Baile	2"	
Wet	Water Column in	Well 98	Prior to Sampling	6 gallons	
	Gallons per		Sampling Pump Intoka	J	
	Gallons in	Well67X3=1	17 Sampling Pump Intake (feet below land surface	e)	
Purging Equip	ment Purge pump / I	Bailer			
(<u>_</u>		SAMPLING DATA/FIEI		Tu	inhid DS
1425 5425	Temperature (°C)	pH Conductivity (µ 6/68 3430 6.65 3352	2.234 2.	30 20.6	793.2
4.30	6.27	6.65 3352			712 ,37.4
5 1433					
5 14 33					
Sampling Equ	ipment f	Purge Pump/Baile			
Sampling Equ	ipment f	Purge Pump/Baller Container Des		Preservative	
Sampling Equ				Preservative	
Sampling Equ	ituents Sampled	Container Des	HCI	Preservative	
Sampling Equ	ituents Sampled	<u>Container Des</u> <u>3 40mL VOA's</u>	HCI		
Sampling Equ <u>Const</u> <u>BTEX</u>	ituents Sampled	<u>Container Des</u> <u>3 40mL VOA's</u>	HCI	lone	
Sampling Equ <u>Const</u> BTEX, M Sulfit Dissoluted Remarks	ituents Sampled aph Haleile 2, Chlori de, TDC All, Fe, Mry, Cv	<u>Container Des</u> <u>3 40mL VOA's</u>	HCI	lone	
Sampling Equ <u>Const</u> <u>BTEX</u>	ituents Sampled aph Haleile 2, Chlori de, TDC All, Fe, Mry, Cv	<u>Container Des</u> <u>3 40mL VOA's</u>	HCI	lone	
Sampling Equ <u>Const</u> BTEX, M Sulfit Dissoluted Remarks	ituents Sampled aph Haleile 2, Chlori de, TDC All, Fe, Mry, Cv	<u>Container Des</u> <u>3 40mL VOA's</u> <u>1607. Plastic</u> <u>1662. Plastic</u> <u>1, AM</u>	HCI	lone	

.

R:\Share\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xis

. .

2011

- . .

÷ .

2 2

• •

Set W

.

(**9**

- P.

ş

		٠٠
TETRA TECH, INC.	WATER SAMPI	LING FIELD FORM
Project Name Randleman 1	······	Page 2 of 4
Project No.		
Site Location Aztec, NM		, , ,
Site/Well No. <u>MW-2</u>	Coded/ Replicate No.	Date <u>9/23/09</u>
Weather breezy, 70°	Time Sampling 1448 Began	Time Sampling' 1515 Completed 1515
	EVACUATION DATA	4
Description of Measuring Point (MP) Top	of Casing	A + 20
Height of MP Above/Below Land Surface		MP Elevation <u>96,79</u>
Total Sounded Depth of Well Below MP	-23-8 Ale. 39	Water-Level Elevation 81.12
Held Depth to Water Below MF	15.67	Diameter of Casing2"
Wet Water Column In Wel	10.72	Gallons Pumped Bailed 6.25 gallons
Gallons per Foo	t0.16	
Gallons in Wei	1.72×3=5.2	Sampling Pump Intake
Purging Equipment Purge pump// Bail	an)	
	SAMPLING DATA/FIELD PAR	
<u> </u>	pH Conductivity (µS/cm ³)	TDS (g/L) DO (mg/L) ORP (mV) Tubbidity
2 14159 13.62	6.6 2816	1980 1.75 -131.4 304.5
35 15:08 2.95 3.11 5 15:10 12.93	6.75 2965	1.863 1.54 -112.9 364.0
Sampling Equipment Purg	le Pump(Bailer)	
Constituents Sampled	Container Description	Preservative
BTEX	3 40mL VOA's	
Suffate, TDS, Chloride	1602 Plastic	None
Dissolved Al, Fe, Mn, Cr	1602 Plastic	None
Remarks Misting Noticed	on sock but no	real odar noticed. Purged Hzo
Sampling Personnel (1), (M, AN)	<u> </u>	
		ador
	Well Casing Volu	imes redox.
Gal./ft. $1 \frac{1}{2}$ " = 0.07 $1 \frac{1}{2}$ " = 0.10	$7 2^n = 0.16$ $2 \frac{1}{2}^n = 0.24$	3'' = 0.37 $4'' = 0.65$ biosivell $3'' \frac{1}{2} = 0.50$ $6'' = 1.46$

R:\Share\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xis

, . .

å

- 10¹-

. .

6 22 X

-

2

2 - 2 -

:

9								
A 184	TETR.	A TECH, INC.		WATER SAN	IPLING FIEI	.D FORM	1	
4	Project Name	Randleman 1	<u> </u>				Page <u>3</u>	of <u>4</u>
1040	Project No.	<u></u>						
3	Site Location	Aztec, NM	0.1.1/				1 1	
Acres 8	Site/Well No.	MW-3	Coded/ Replicate	No. <u>Du</u>	plicate.	Date	9/23/	09
4 6. T.	Weather	breezey, 70°	Time Sam Began	152	5	Time Sa Complet	ted5.	55
24)		2		EVACUATION D	ATA dup	icate	@ 1610	
A B Way	Description of	Measuring Point (MP)	Top of Casing				01	 •
	Height of MP	Above/Below Land Surfa			MP Elevation	l	96.31	
" and and	Total Sounde	d Depth of Well Below M	P	24.68	Water-Level	Elevation	80,	53
	Held	Depth to Water Belo	w MP5	. 78	Diameter of (Gallons Pum		2"	
Aural C	Wet	Water Column in	n Well <u>9.1</u>		Prior to Sam		4.30	jallons.
_		Gallons pe	r Foot	0.16	Comoline Du	ma Intolya Or		/
· J. Martin		Gallons in	well Hex	3=44	(feet below la	and surface)	etting	
_	Purging Equip	ment Purge pump	Bailer		-			······
ALL S				NG DATA/FIELD P			× 2564 (x-241)	
	Vol <u>Time</u>	Temperature (°C)	0,58	Conductivity (µS/ci	m ³) TDS (g/L)) DO (m 7 7.	30 ORP (mV	Turb 45.16
	15 1631 3 1540 4.5 1552	14.11	6.63	3201	2.08		$\frac{19}{12} - \frac{48}{250.9}$	52.34
								54.10
A CAR	Sampling Equ	ipment	Purge Purnp/Bat	ier >				
9 .		ituents Sampled		Container Descrip	ition		Preservativ	9
# 1. C.B.	BTEX NO	phalene	<u>3 40mL VC</u>	DA's		HCI		<u></u>
12 4 	Jutate,	Chloride, 70	> _[404	5 plastic		_ho		
	#D Lis	solved AT, FE, Cr, Mn	<u>le t</u>	<u>at plastic</u>		<u>no</u>	ne	
一般に時間	Remarks	clight cha	in radi	rod hin m	n (
17	Sampling Per	$\frac{1}{2} \frac{1}{2} \frac{1}$	1 AM	<u>car no n</u>	<u>, </u>			- <u></u>
4	Camping r er			a national definition of the second				
S. A. S. A. S. A.				Well Casing V	olumes			
1		Gal./ft. 1 ¼" = 1 ½" =		2" = 0.1 6 2 ½" = 0.24	3" 3" 1⁄3	= 0.37 = 0.50	4" = 0.65 6" = 1.46	
					. • * * * * * * * * * * * * * * * * * *			

R:\Share\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xls

N Star Sec. 1. A.

1. S. V.

\$ 3. 1. Call

20 A C

TE TETRA	TECH, INC.	WATE	R SAMP	LING FIELD	FORM	ñ		
Project Name	Randleman 1					Page	<u>4</u> 0	f <u>4</u>
Project No.				<u> </u>				
Site Location	Aztec, NM	A . 1. 14		· · · · · · · · · · · · · · · · · · ·			1	
Site/Well No.	<u>MW-4</u>	Coded/ Replicate No.			Date	9/23	105	
Weather	breezy, 70	Time Sampling Began	1353)	Time Sa Complet		141(<u></u>
	J	EVACU	JATION DAT	A				
Description of	Measuring Point (MP) Top	of Casing						
Height of MP	Above/Below Land Surface	<u></u>		MP Elevation		<u> 98.8</u>	3	
Total Sounded	Depth of Well Below MP	<u>29.5</u> JS.	<u>2</u> 5	Water-Level Ele	avation	81	27	
Heid	_ Depth to Water Below M		-	Diameter of Cas Galions Pumpe		2"		
Wet	Water Column in We		<u>).</u> (4	Prior to Samplin		_/	galle	n_{5}
	Gallons per Fo	ot0.1		Sampling Pumr	n Intaka Se	atting	0	
	Gallons in We	ell 1,71)	3=5.13	(feet below land	surface)			
Purging Equip	ment Purge pump Bai	ler	··			··	. .	-4
2 Time		SAMPLING DAT	A/FIELD PAR		DO (n		'(mV)	Turb
1 1357	Temperature (°C)	6147 25	35	8.149	2,1	12	2.9	449.2
3 1359 5 1405	15.97	6.88 128	337. 384	8.377	2.3		10 1	531.0 100
7 7411	15.36	6.81 120	<u>114</u>	8,395		4 5	.3 1	100
Sampling Equi	pment <u>Pur</u>	ge Pump/Bailer					·	
<u>Consti</u>	tuents Sampled	Contain	er Descriptio	n		Preser	vative	
BTEX, Nap	nthalene	3 40mL VOA's		<u> </u>				
Suffatly	Chloride, TDS	1602 Mas	tic		None			<u>. </u>
PISSONCO	A ALTES CANIN	1602 -10	ISTIC		Non	L		
Remarks				÷				
Sampling Pers	onnel <u>GD₁CM₁</u>	AM.						
		Well	Casing Volu	imes	*	· · · · · · · · · · · · · · · · · · ·	a ayaa a	7
	Gel./ft. 1 ¼" = 0.07 1 ½" = 0.10		0.16 0.24	3" = 3"½ =	0.37 0.50		0.65 1.46	

.

R:\Shara\Maxim Forms\Field Forms\Randleman 1 Water Sampling Field Forms.xis

ي بېلە بو

ę.

#¹*

2

4. A.

34.5

4. 1. 1.

1 14 14

1. 2. 2. 2.

~.* z

* * *

6

· • •

APPENDIX B

Groundwater Laboratory Analysis Report

ж М

.

Ň

4 . .

5

1. S. 1.

. . .

n

· • |

1. 1. 1. HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number: 09091283								
Report To:	Project Name: Randleman #1							
Tetra Tech, Inc.	Site: Aztec, NM							
Kelly Blanchard	Site Address:							
6121 Indian School Road, N.E.								
Suite 200 Albuquerque	PO Number:							
NM	<u>State:</u> New Mexico							
87110-	State Cert. No.:							
ph: (505) 237-8440 fax:	Date Reported: 10/6/2009							

This Report Contains A Total Of 18 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

10/7/2009

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for:

Conoco Phillips

...

. .

....

<u>09091283</u>									
Report To:	Project Name:	Randleman #1							
Tetra Tech, Inc.	Site:	Aztec, NM							
Kelly Blanchard	<u>Site Address:</u>								
6121 Indian School Road, N.E.									
Suite 200 Albuquerque	PO Number:								
NM	State:	New Mexico							
87110-	State Cert. No.:								
ph: (505) 237-8440 fax:	Date Reported:	10/6/2009							

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

Volatile Organics (8260):

Sample ID "Duplicate" (SPL ID: 09091283-05) was randomly selected for use in SPL's quality control program for Batch ID: R285202. The Matrix Spike (MS) recovery was outside of the advisable quality control limits due to possible matrix interference for the following analyte: Ethylbenzene. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

III. GENERAL REPORTING COMMENTS:

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

In Cardinas

09091283 Page 1 10/7/2009

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Sec. 2.

the grade of

1. S.

2.9 C 2.9 C

1990 B

· · · ·

E. 60. 14

1. S. C.

16 Sec. 14

her Stree

Sec. 2.

14 P

the state

and the second

Line 1

10.1

90.24 F. 6

0.000

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

		Certifi	cate of Analysis Nur	nber:				
<u>09091283</u>								
Report To:	Tetra Tech, Inc.			Project Name:	Randleman #1			
	Kelly Blanchard			Site:	Aztec, NM			
	6121 Indian School Ro	ad, N.E.		Site Address:				
	Suite 200			Olle Address.				
	Albuquerque							
	NM			PO Number:				
	87110-			State:	New Mexico			
	ph: (505) 237-8440	fax: (505) 881-3283		State Cert. No.:				
Fax To:								
<u>Fax 10.</u>				Date Reported:	10/6/2009			

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1	09091283-01	Water	9/23/2009 2:35:00 PM	9/26/2009 9:30:00 AM	331738	
MW-2	09091283-02	Water	9/23/2009 3:15:00 PM	9/26/2009 9:30:00 AM	331738	
MW-3	09091283-03	Water	9/23/2009 3:25:00 PM	9/26/2009 9:30:00 AM	331738	
MW-4	09091283-04	Water	9/23/2009 2:16:00 PM	9/26/2009 9:30:00 AM	331738	
Duplicate	09091283-05	Water	9/23/2009 4:10:00 PM	9/26/2009 9:30:00 AM	331738	
Trip Blank	09091283-06	Water	9/23/2009 4:15:00 PM	9/26/2009 9:30:00 AM	331738	

F. C. Cardinas 8

Erica Cardenas Project Manager

> Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> > Ted Yen Quality Assurance Officer

10/7/2009

Date

09091283 Page 2 10/7/2009 3:18:28 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-1		Collect	ed: 09/	/23/2009	14:35	SPL Sar	nple I	D : 0909	1283-01
			Site:	Azteo	, NM					
Analyses/Method	Result	QUAL	Rep.L	.imit	Di	I. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRA	PHY				MCL		E300.0	Ur	nits: mg/L	
Chloride	80.5			5		· 10	09/28/09	15:30	BDG	5222035
Sulfate	1640			250		500	09/28/09	16:37	BDG	5222039
METALS BY METHOD	0 6010B, DISSOLVED)			MCL	SI	V6010B	Ur	nits: mg/L	
Aluminum	ND			0.1		1	10/06/09	10:44	AB1	5233407
Chromium	ND		0	.005		1	10/06/09	10:44	AB1	5233407
Iron	ND			0.02		1	10/06/09	10:44	AB1	5233407
Manganese	0.17		0	.005		1	10/06/09	10:44	AB1	5233407
Prep Method	Prep Date	Prep Initials	Prep Fac	otor						
SW3005A	09/28/2009 10:00	R_V	1.00							
TOTAL DISSOLVED S	SOLIDS				MCL	SN	12540 C	Ur	nits: mg/L	
Total Dissolved Solids (Residue, Filterable)	2880			20		2	09/28/09	10:30	CFS	5221952
VOLATILE ORGANIC	S BY METHOD 8260E	3			MCL	SI	N8260B	Ur	nits: ug/L	
Benzene	18			1		1	09/30/09		LT	5226818
Ethylbenzene	1.3			1 ·		1	09/30/09	20:04	LT	5226818
Naphthalene	ND			1		1	09/30/09	20:04	LT	5226818
Toluene	5.4			1		1	09/30/09	20:04	LT	5226818
m,p-Xylene	10			2		1	09/30/09	20:04	LT	5226818
o-Xylene	1.6			1		1	09/30/09	20:04	LT	5226818
Xylenes,Total	11.6			1		1	09/30/09	20:04	LT	5226818
Surr: 1,2-Dichloroetha	ne-d4 92.9		% 78	-116		1	09/30/09	20:04	LT	5226818
Surr: 4-Bromofluorobe	enzene 95.4		% 74	-125		1	09/30/09	20:04	LT	5226818
Surr: Toluene-d8	91.5		% 82	-118		1	09/30/09	20:04	LT	5226818

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- $\ensuremath{\mathsf{B/V}}\xspace$ Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

- >MCL Result Over Maximum Contamination Limit(MCL)
- D Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09091283 Page 3 10/7/2009 3:18:42 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

						(,		
Client Sample ID:MV	N-2		Collect	ed: 09	9/23/2009 15:1	5 SPL San	n ple ID : 0909	1283-02
			Site:	Azte	c, NM			
Analyses/Method	Resul	t QUAL	Rep.L	imit	Dil. Fac	tor Date Anal	yzed Analyst	Seq. #
ION CHROMATOGR	APHY				MCL	E300.0	Units: mg/L	
Chloride	39.4			5	10	09/28/09	15:47 BDG	5222036
Sulfate	1390)		250	500	09/28/09	16:54 BDG	5222040
METALS BY METHO	D 6010B, DISSOLVE	D			MCL	SW6010B	Units: mg/L	• • • • • • • • •
Aluminum	ND			0.1	1	10/06/09		5233408
Chromium	ND)	0.	005	1	10/06/09	10:48 AB1	5233408
Iron	0.0239)		0.02	1	10/06/09	10:48 AB1	5233408
Manganese	6.82		0	005	1	10/06/09	10:48 AB1	5233408
Prep Method	Prep Date	Prep Initial	s Prep Fac	tor				
SW3005A	09/28/2009 10:00	R_V	1.00					
TOTAL DISSOLVED	SOLIDS				MCL	SM2540 C	Units: mg/L	
Total Dissolved Solids (Residue, Filterable)	2480			20	2	09/28/09	10:30 CFS	5221953
VOLATILE ORGANI	CS BY METHOD 8260	B			MCL	SW8260B	Units: ug/L	
Benzene	7.7	,		1	1	09/30/09		5226823
Ethylbenzene	110	}		1	1	09/30/09	20:32 LT	5226823
Naphthalene	16	i		1	1	09/30/09	20:32 LT	5226823
Toluene	ND			1	1	09/30/09	20:32 LT	5226823
m,p-Xylene	720)		10	5	10/05/09	4:24 LT	5231514
o-Xylene	ND			1	1	09/30/09	20:32 LT	5226823
Xylenes,Total	720)		5	5	10/05/09	94:24 LT	5231514
Surr: 1,2-Dichloroeth	iane-d4 89.2	!	% 78-	116	5	10/05/09	4:24 LT	5231514
Surr: 1,2-Dichloroeth	ane-d4 93.3		% 78-	116	1	09/30/09	20:32 LT	5226823
Surr: 4-Bromofluorot	benzene 96.6		% 74-	125	5	10/05/09	4:24 LT	5231514
Surr: 4-Bromofluorot	penzene 94.9)	% 74-	125	1	09/30/09	20:32 LT	5226823
Surr: Toluene-d8	92.0		% 82-	118	5	10/05/09	4:24 LT	5231514
Surr: Toluene-d8	91.5		% 82-	118	1	09/30/09	20:32 LT	5226823

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve
- TNTC Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-3		Colle	cted: 09	9/23/200	9 15:25	SPL Sar	nple l	D: 0909	1283-03
			Site:	Azte	c, NM					
Analyses/Method	Result	QUAL	Rep	.Limit		Dil. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRA	PHY				MCL		E300.0	Ur	nits: mg/L	
Chloride	64.5			5		10	09/28/09	16:04	BDG	5222037
Sulfate	1500			250		500	09/28/09	17: 11	BDG	5222041
METALS BY METHOD	6010B, DISSOLVED)			MCL	SI	N6010B	Ur	nits: mg/L	
Aluminum	ND			0.1		1	10/06/09	10:53	AB1	5233409
Chromium	ND			0.005		1	10/06/09	10:53	AB1	5233409
Iron	0.0486			0.02		1	10/06/09	10:53	AB1	5233409
Manganese	1.11			0.005		1	10/06/09	10:53	AB1	5233409
Prep Method	Prep Date	Prep Initials	Prep F	actor						
SW3005A	09/28/2009 10:00	R_V	1.00							
TOTAL DISSOLVED S	OLIDS				MCL	SI	12540 C	Ur	nits: mg/L	
Total Dissolved Solids (Residue,Filterable)	2720			20		2	09/28/09		¥	5221955
VOLATILE ORGANICS	S BY METHOD 8260E	3			MCL	SI	N8260B	Ur	nits: ug/L	
Benzene	13			1		1	10/05/0	9 3:57	LT	5231757
Ethylbenzene	89			1		1	10/05/0	9 3:57	LT	5231757
Naphthalene	3.9			1		1	10/05/0	9 3:57	LT	5231757
Toluene	8.5			1		1	10/05/0	9 3:57	LT	5231757
m,p-Xylene	210			2		1	10/05/0	9 3:57	LT	5231757
o-Xylene	110			1		1	10/05/0	9 3:57	LT	5231757
Xylenes,Total	320			1		1	10/05/0	9 3:57	LT	5231757
Surr: 1,2-Dichloroethar	ne-d4 88.9		% 7	78-116		1	10/05/0	9 3:57	LT	5231757
Surr: 4-Bromofluorober	nzene 95.4		% 7	74-125		1	10/05/0	9 3:57	LT	5231757
Surr: Toluene-d8	91.8		% 8	32-118		1	10/05/0	9 3:57	LT	5231757

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09091283 Page 5 10/7/2009 3:18:44 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-4		Collec	ted: 09	9/23/200	9 14:16	SPL Sar	nple l	D : 0909	1283-04
			Site:	Azte	c, NM					
Analyses/Method	Result	QUAL	Rep.L	.imit	C	il. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRA	PHY				MCL		E300.0	Ur	nits: mg/L	
Chloride	2130			250		500	09/28/09	16:21	BDG	5222038
Sulfate	3320			250		500	09/28/09	16:21	BDG	5222038
METALS BY METHOD	0 6010B, DISSOLVED				MCL	SI	V6010B	Ur	nits: mg/L	
Aluminum	ND			0.1		1	10/06/09	10:57	AB1	5233410
Chromium	ND		0	.005		1	10/06/09	10:57	AB1	5233410
Iron	0.0308			0.02		1	10/06/09	10:57	AB1	5233410
Manganese	2.73		0	.005		1	10/06/09	10:57	AB1	5233410
Prep Method	Prep Date	Prep Initials	Prep Fa	<u>ctor</u>						
SW3005A	09/28/2009 10:00	R_V	1.00							
TOTAL DISSOLVED S	OLIDS				MCL	SN	12540 C	Ur	nits: mg/L	
Total Dissolved Solids (Residue,Filterable)	8600			50		5	09/28/09		x	5221956
VOLATILE ORGANIC	S BY METHOD 8260E	3			MCL	SI	V8260B	Ur	nits: ug/L	
Benzene	ND			1		1	09/30/09		LT	5226827
Ethylbenzene	ND			1		1	09/30/09	21:27	LT	5226827
Naphthalene	ND			1		1	09/30/09	21:27	LT	5226827
Toluene	ND			1		1	09/30/09	21:27	LT	5226827
m,p-Xylene	ND			2		1	09/30/09	21:27	LT	5226827
o-Xylene	ND			1		1	09/30/09	21:27	LT	5226827
Xylenes,Total	ND			1		1	09/30/09	21:27	LT	5226827
Surr: 1,2-Dichloroetha	ne-d4 93.8		% 78	-116		1	09/30/09	21:27	LT	5226827
Surr: 4-Bromofluorobe	nzene 95.7		% 74	-125		1	09/30/09	21:27	LT	5226827
Surr: Toluene-d8	91.4		% 82	-118		1	09/30/09	21:27	LT	5226827

Qualifiers:

14 × 1

Ч(т. н.

2. S.

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)
 D - Surrogate Recovery Unreportable due to Dilution
 MI - Matrix Interference

09091283 Page 6 10/7/2009 3:18:45 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: Duplicate

1. 4. M. C.

SHUR A

10 1 - Car

t A

24.3%

Acres

n li Pol

2.5

1. A. C.

64 Y 4 Y

130 A

and the second

1 a. 4. 3. 10

the law of

Collected: 09/23/2009 16:10

SPL Sample ID: 09091283-05

			Sit	e: Azte	c, NM				
Analyses/Method	Result	QUAL	R	ep.Limit	Dil. Fact	or Date Anal	yzed	Analyst	Seq. #
VOLATILE ORGANICS BY ME	THOD 8260B				MCL	SW8260B	Un	its: ug/L	
Benzene	15			1	1	09/30/09	15:29	LT	5226810
Ethylbenzene	79			1	1	09/30/09	15:29	LT	5226810
Naphthalene	3.6			1	1	09/30/09	15:29	LT	5226810
Toluene	9.2			1	1	09/30/09	15:29	LT	5226810
m,p-Xylene	190			2	1	09/30/09	15:29	LT	5226810
o-Xylene	97			1	1	09/30/09	15:29	LT	5226810
Xylenes,Total	287			1	1	09/30/09	15:29	LT	5226810
Surr: 1,2-Dichloroethane-d4	89.4		%	78-116	1	09/30/09	15:29	LT	5226810
Surr: 4-Bromofluorobenzene	93.9		%	74-125	1	09/30/09	15:29	LT	5226810
Surr: Toluene-d8	93.0		%	82-118	1	09/30/09	15:29	LT	5226810

Qualifiers:

- ND/U Not Detected at the Reporting Limit B/V - Analyte detected in the associated Method Blank * - Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)
 D - Surrogate Recovery Unreportable due to Dilution
 MI - Matrix Interference

09091283 Page 7 10/7/2009 3:18:46 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client \$	Sample	ID:Trij	ა B	lanl	k
-----------	--------	---------	-----	------	---

.....

Collected: 09/23/2009 16:15

SPL Sample ID: 09091283-06

		Sit	e: Azte	ec, NM			
Analyses/Method	Result QUAL	Re	ep.Limit	Dil. Factor	Date Analyze	d Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B			MCL S	W8260B	Units: ug/L	
Benzene	ND		1	1	09/30/09 15:0	02 LT	5226809
Ethylbenzene	ND		1	1	09/30/09 15:0)2 LT	5226809
Naphthalene	ND		1	1	09/30/09 15:0)2 LT	5226809
Toluene	ND		1	1	09/30/09 15:0	02 LT	5226809
m,p-Xylene	ND		2	1	09/30/09 15:0	02 LT	5226809
o-Xylene	ND		1	1	09/30/09 15:0	02 LT	5226809
Xylenes,Total	ND		1	1	09/30/09 15:0	02 LT	5226809
Surr: 1,2-Dichloroethane-d4	89.7	%	78-116	1	09/30/09 15:0)2 L.T	5226809
Surr: 4-Bromofluorobenzene	96.8	%	74-125	1	09/30/09 15:0	02 LT	5226809
Surr: Toluene-d8	91.9	%	82-118	1	09/30/09 15:0	02 LT	5226809

Qualifiers:

644

- ND/U Not Detected at the Reporting Limit
- $\ensuremath{\mathsf{B/\!V}}$ Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve
- TNTC Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 09091283 Page 8 10/7/2009 3:18:46 PM

Quality Control Documentation

100

1223

1. 5 K

13.3 E

2920024

Sec. 1

* Bar

1.2.20

of the ...

Summer .

San San

Strates .

1.25

09091283 Page 9 10/7/2009 3:18:46 PM

Section Section

Sec. 64

1.10

Pin the

A. Wat

20 21

100

× 8

Iron

Manganese

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips Randleman #1

			Kanuleman	#1		
Analysis: Method:	Metals by Method 60 SW6010B)10B, Dissolv		WorkOrder: Lab Batch ID:	09091283 94143	
	Meth	nod Blank	· · · · · · · · · · · · · · · · · · ·	Samples in Analyti	cal Batch:	
RunID: ICP2_09	1006A-5233393	Units:	mg/L	Lab Sample ID	Client Sar	nple ID
Analysis Date:	10/06/2009 9:44	Analyst:	AB1	09091283-01C	MW-1	
Preparation Date:	09/28/2009 10:00	Prep By:	R_V Method SW3005A	09091283-02C	MW-2	
				09091283-03C	MW-3	
[Analyte		Result Rep Limit	09091283-04C	MW-4	
Alum	inum		ND 0.1			
Chro	mium		ND 0.005			

Laboratory Control Sample (LCS)

0.02 0.005

RunID: Analysis Date: Preparation Date:

ICP2_091006A-5233394 ate: 10/06/2009 9:48 Date: 09/28/2009 10:00

ND

ND

Units: mg/L Analyst: AB1 Prep By: R_V Method SW3005A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Aluminum	1.000	1.068	106.8	80	120
Chromium	1.000	1.044	104.4	80	120
Iron	1.000	1.053	105.3	80	120
Manganese	1.000	1.067	106.7	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	09091275-02		
RunID:	ICP2_091006A-5233396	Units:	mg/L
Analysis Date:	10/06/2009 9:57	Analyst:	AB1
Preparation Date:	09/28/2009 10:00	Prep By:	R_V Method SW3005A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Aluminum	ND	1	1.070	103.5	1	1.097	106.2	2.492	20	75	125
Chromium	ND	1	1.067	106.6	1	1.070	106.9	0.2808	20	75	125
iron	0.3398	1	1.416	107.6	1	1.413	107.3	0.2121	20	• 75	125
Manganese	0.02860	1	1.092	106.3	1	1.092	106.3	0	20	75	125

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091283 Page 10 10/7/2009 3:18:48 PM

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

10 2 Beelly

A Sugar

Sat Ba

300 20

9

1 B.

3000

1. C. . . .

Service ;

Mr. Ane

Server 35

1. A.

Qualifiers

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Method:	Volatile Organics by SW8260B	Method 826	0B			WorkOrder: Lab Batch ID:	09091283 R285202
	Met	od Blank		<u></u>	Samples in Analytic	al Batch:	······································
RunID: N_0909	930A-5226808	Units:	ug/L		Lab Sample ID	Client Sar	nple ID
Analysis Date:	09/30/2009 14:07	Analyst:	LT		09091283-01A	MW-1	
					09091283-02A	MW-2	
					09091283-04A	MW-4	
					09091283-05A	Duplicate	
	Analyte		Result	Rep Limit	09091283-06A	Trip Blank	
Ber	nzene		ND	1.0	00001200 0010		
Eth	ylbenzene		ND	1.0			
Na	phthalene		ND	1.0			
Tol	uene		ND	1.0			
m,r	o-Xylene		ND	2.0			
	vlene		ND	1.0			
	enes,Total		ND	1.0			
	Surr: 1,2-Dichloroethane-d4		90.1	78-116			

	Laboratory Control Sample (LCS)								
RunID:	N_090930A-5226807	Units:	ug/L						
Analysis Date:	09/30/2009 13:12	Analyst:	LT						

74-125

82-118

97.6

92.8

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	20.4	102	74	123
Ethylbenzene	20.0	19.5	97.4	72	127
Naphthalene	20.0	20.0	100	33	148
Toluene	20.0	19.4	97.0	74	126
m,p-Xylene	40.0	40.0	100	71	129
o-Xylene	20.0	20.0	100	74	130
Xylenes,Total	60	60	100	71	130
Surr: 1,2-Dichloroethane-d4	50.0	45	90.0	78	116
Surr: 4-Bromofluorobenzene	50.0	47.2	94.4	74	125
Surr: Toluene-d8	50.0	45.4	90.9	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

	Sample Spiked: RunłD: Analysis Date:	09091283-05 N_090930A-5226813 09/30/2009 15:57	Units: Analyst:	ug/L LT				
s:	ND/U - Not Detected at the Report	0	MI - Matrix Interference					
	B/V - Analyte detected in the assoc J - Estimated value between MDL a		D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits					

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

- TNTC Too numerous to count
- QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091283 Page 11 10/7/2009 3:18:48 PM

e 8 . .

Sec.

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Volatile Organics by Method 8260B Method: SW8260B										09091283 R285202		
	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene		14.9	20	31.9	85.2	20	31.5	83.0	1.3	3 22	70	124
Ethylhonzono		79.0	20	105	129 *	20	103	121	1.4	5 20	76	122

Ethylbenzene	78.9	20	105	128 *	20	103	121	1.45	20	76	122
Naphthalene	3.56	20	23.3	98.9	20	23.7	100	1.33	20	42	140
Toluene	9.18	20	26.0	84.3	20	25.5	81.5	2.19	24	80	117
m,p-Xylene	187	40	238	N/C	40	235	N/C	N/C	20	69	127
o-Xylene	97.3	20	130	N/C	20	127	N/C	N/C	20	84	114
Xylenes,Total	284	60	368	N/C	60	362	N/C	N/C	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	45	90.0	50	44.7	89.4	0.739	30	78	116
Surr: 4-Bromofluorobenzene	ND	50	47.3	94.6	50	47.2	94.3	0.274	30	74	125
Surr: Toluene-d8	ND	50	45.6	91.3	50	45.6	91.3	0.0368	30	82	118

Qualifiers:

46

1.2

1 1 S

1 . Ling

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

Blank D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091283 Page 12 10/7/2009 3:18:48 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX.77054

(713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Method:	Volatile Organics by SW8260B	y Method 8260)B		WorkOrder: Lab Batch ID:	09091283 R285486
	Met	hod Blank		Samples in Analytica	i Batch:	
RunID: N_0910	004C-5231513	Units:	ug/L	Lab Sample ID	Client Sar	nple ID
Analysis Date:	10/05/2009 3:29	Analyst:	LT	09091283-02A	MW-2	
				09091283-03A	MW-3	

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Naphthalene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	89.2	78-116
Surr: 4-Bromofluorobenzene	97.5	74-125
Surr: Toluene-d8	92.4	82-118

	Laboratory Control Sample (LC						
RunID:	N_091004C-5231512	Units:	ug/L				
Analysis Date:	10/05/2009 2:35	Analyst:	LT				

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	21.6	108	74	123
Ethylbenzene	20.0	21.4	107	72	127
Naphthalene	20.0	21.3	106	33	148
Toluene	20.0	21.4	107	74	126
m,p-Xylene	40.0	44.0	110	71	129
o-Xylene	20.0	22.1	110	74	130
Xylenes,Total	60.0	66.1	110	71	130
Surr: 1,2-Dichloroethane-d4	50.0	44.5	88.9	78	116
Surr: 4-Bromofluorobenzene	50.0	47.9	95.8	74	125
Surr: Toluene-d8	50.0	45.1	90.3	82	118

	Matrix Spike (MS) / Matrix Spike Duplicate (MSD)									
	Sample Spiked: RunID: Analysis Date:	09091283-02 N_091004C-5231515 10/05/2009 4:51	Units: Analyst:	ug/L LT						
Qualifiers:	ND/U - Not Detected at the Report	9		Interference						
	B/V - Analyte detected in the asso	clated Method Blank	D - Recover							
	J - Estimated value between MDL	and PQL	* - Recovery	y Outside Advisable QC Limits						
	E - Estimated Value exceeds calib	ration curve								
	N/C - Not Calculated - Sample cor	centration is greater that	n 4 times the a	amount of spike added. Control limits do not apply.						
	TNTC - Too numerous to count				83 Page 13					
	ented on the QC Summary Report have e SPL LIMS system are derived from Q			10/1/200	09 3:18:48 PM					

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Method:	Volatile Organio SW8260B	s by Method 826	0B					WorkOrder: Lab Batch I		91283 35486		
	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	Hìgh Limit
Benzene		8.64	100	104	95.1	100	103	94.2	0.897	22	70	124
Ethylbenzene		147	100	232	85.1	100	230	82.3	1.21	20	76	122
Naphthalene		17.5	100	113	95.3	100	117	99.8	3.89	20	42	140
Toluene		ND	100	94.9	93.1	100	94.0	92.1	0.986	24	80	117
m,p-Xylene		723	200	863	69.8	200	863	70.1	0.0644	20	69	127
o-Xylene		ND	100	97.4	95.0	100	97.0	94.6	0.410	20	84	114
Xylenes,Total		725.5	300	960.4	78.18	300	960.0	78.23	0.01637	20	69	127
Surr: 1,2-Dicl	hloroethane-d4	ND	250	224	89.5	250	224	89.6	0.0197	30	78	116
Surr: 4-Brom	ofluorobenzene	ND	250	238	95.3	250	237	94.9	0.458	30	74	125
Surr: Toluene	e-d8	ND	250	228	91.2	250	228	91.1	0.174	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091283 Page 14 10/7/2009 3:18:48 PM

00

ę .

. 53

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Method:	Total Dissolved So SM2540 C	olids						NorkOrder: _ab Batch II		0909128 R28490	
	Me	thod Blank	<u> </u>			Samples in	Analytical E	Batch:			
RunID: WE Analysis Date	ET_090928R-5221948 e: 09/28/2009 10:30	Units Analy	-			Lab Sample 09091283-0	<u>Client Sample ID</u> MW-1				
-Malysis Date	. 03/20/2003 10:30	Лнагу	31. 010	,		09091283-02B M					
						09091283-0		MW-3			
						09091283-0		MW-4			
	Analyte		Resu		ļ				•		
	Total Dissolved Solids (Residu	ue,Filterable)		<u>ND 10</u>]						
<u>.</u> .	Labora	tory Contr	ol Sample	e/Laboratory	Control Sam	ple Duplica	te (LCS/LCS	iD)			
	RunID:	w	ET_090928	3R-5221950	Units: m	ig/L					
	Analysis Da)/28/2009			FS					
	· ···· ·······························										
	Analyte	LCS	LCS	LCS	LCSD	LCSD	LCSD	RPD	RPD	Lower	Upper
		Spike Added	Result	Percent Recovery	Spike Added	Result	Percent Recovery		Limit	Limit	Limit
Total Dissolve	ed Solids (Residue, Filterabl	200.0	201.0	100.5	200.0	199.0	99.50	1.0) 10	95	107
			Analyte	ə	Sample	DUP	RPD	RPD			
			•			Recult		Limit			
	T		-	Posiduo Filtor	Result	Result	0.0905	Limit			
	Тс	otal Dissolve	-	Residue, Filter	Result		0.0805	Limit 10			
	Τα	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τσ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τα	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
	Τ	otal Dissolve	-	Residue,Filter	Result		0.0805				
Qualifiers:	To ND/U - Not Detected		ed Solids (Result abl 248						
Qualifiers:		d at the Rep	ed Solids (it	Result abl 248	p 2486	100	10			
Qualifiers:	ND/U - Not Detected	d at the Rep ed in the as	orting Lim	iit /iethod Blank	MI - Mat D - Reco	rix Interferer	nce prtable due to	10 Dilution			
Qualifiers:	ND/U - Not Detected B/V - Analyte detect	d at the Rep ed in the as between MD	orting Lim sociated M	iit Aethod Blank ℃	MI - Mat D - Reco	rix Interferer	100	10 Dilution			
Qualifiers:	ND/U - Not Detected B/V - Analyte detect J - Estimated value E - Estimated Value	d at the Rep ed in the as between ME exceeds ca	orting Lim sociated M DL and PQ libration c	iit Aethod Blank १∟ urve	MI - Mat D - Reco * - Reco	rix Interferer overy Unrepo very Outside	nce ortable due to Advisable Q	10 Dilution C Limits	its do no	t apply.	
Qualifiers:	ND/U - Not Detected B/V - Analyte detect J - Estimated value	d at the Rep ed in the as between ME exceeds ca d - Sample o	orting Lim sociated M DL and PG libration c concentrat	iit Aethod Blank १∟ urve	MI - Mat D - Reco * - Reco	rix Interferer overy Unrepo very Outside	nce ortable due to Advisable Q	10 Dilution C Limits	its do no		9091283 Page

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

15 15

Conoco Phillips Randleman #1

Analysis: Method:	Ion Chromatograph E300.0	y .				WorkOrder: Lab Batch ID:	09091283 R284904
	Met	nod Blank			Samples in Analytic	cal Batch:	
RunID: IC2_0	0928A-5222022	Units:	mg/L		Lab Sample ID	Client Sa	mple ID
Analysis Date:	09/28/2009 9:56	Analyst:	BDG		09091283-01B	MW-1	
					09091283-02B	MW-2	
					09091283-03B	MW-3	
[Analyte		Result	Rep Limit	09091283-04B	MW-4	
CH	loride		ND	0.50			
Su	Ifate		ND	0.50			

Laboratory Cont	trol Sampl	e (LCS)
IC2_090928A-5222023	Units:	mg/L

Units:

Analyst:

mg/L

BDG

RunID:	
Analysis	Date:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloride	10.00	9.768	97.68	85	1
Sulfate	10.00	10.25	102.5	85	1.

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	09091282-01		
RunID:	IC2_090928A-5222044	Units:	mg/L
Analysis Date:	09/28/2009 18:01	Analyst:	BDG

09/28/2009 10:12

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chloride	ND	500	514.8	99.58	500	462.0	89.04	10.79	20	80	120
Sulfate	428.9	500	984.7	111.2	500	909.4	96.10	7.947	20	80	120

Qual	ifiers:
------	---------

ND/U - Not Detected at the Reporting Limit

E - Estimated Value exceeds calibration curve

B/V - Analyte detected in the associated Method Blank

```
MI - Matrix Interference
```

D - Recovery Unreportable due to Dilution J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091283 Page 16 10/7/2009 3:18:49 PM Sample Receipt Checklist And Chain of Custody

.

.

09091283 Page 17 10/7/2009 3:18:49 PM

i.

58 s.

с. С. 1 2

م ... م م

. . . .

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workorder: 0909	1283		Received By:	AMV
	2009 9:30:00 AM		Carrier name:	Fedex-Priority
				-
Temperature: 1.6°C	; 	·	Chilled by:	Water Ice
1. Shipping container/cooler in	n good condition?	Yes 🗹	No 🗌	Not Present
2. Custody seals intact on ship	opping container/cooler?	Yes 🔽	No 🗔	Not Present
3. Custody seals intact on sam	ple bottles?	Yes 🗌	No 🗌	Not Present
4. Chain of custody present?		Yes 🗹	No 🗌	
5. Chain of custody signed wh	en relinquished and received?	Yes 🔽	No 🗌	
	h sample labels? as collected at 15:15 but container ates "MW-3" was collected at 15:25 v	Yes 🗌	No 🗹	
7. Samples in proper containe	r/bottle?	Yes 🗹	No 🗀	
8. Sample containers intact?		Yes 🗹	No	
9. Sufficient sample volume fo	r indicated test?	Yes 🔽	No 🗌	
0. All samples received within	holding time?	Yes 🔽	No	
1. Container/Temp Blank temp	erature in compliance?	Yes 🗹	No	
2. Water - VOA vials have zero	headspace?	Yes 🗹	No 🗌 VC	DA Vials Not Present
3. Water - Preservation checke	d upon receipt (except VOA*)?	Yes 🗹	No	Not Applicable
*VOA Preservation Checked	After Sample Analysis			
SPL Representative:		Contact Date	e & Time:	
Non Conformance 1/2. Logg Issues:	ed in per COC.			
Client Instructions:				

	J				-				-	
Analysis Request & Chain of Custody Record	of Custody Record				- F	-			page	of
			er B	bottle size	pres.		ŀ	Req	Requested /	Analysis
JLC SILL SILL	2	37710uri	il A=≲ X=oth S260	glass Sther glass				501	J.	
37.8440	~ '	6 1/0101 = 101	0=0	07	50	, I Iets	a)(15	5	ina.	
Client Contact: JUIN DIGNUM W. CI Project Name/No.: ZOVEX PMGU #	Email: KV-	A DANK NARV HOTOPHI M.C.W	ouə=2 105	Z0	oyo=) NH=	iisino 110	AUL INC	an	060 1'14	
			d 92		-7	v v v	か つ	40	110 U 1	
, NM			Spn	161 183	I	<u>с</u> 19	γ x=	15	211	
Encophillips	Ρh			:1g=	ZH= OH=	quin	$\frac{n}{n}$	મી	JU JSI	
SAMPLE ID	DATE TIME	C comp grab	IS M	=[9_	=1	<u>-</u> N		nS	V D	
MIW-1 4	4/23/09 1435			1 - 40		$\frac{2}{2}$	\times			
0-1 9	9123 109 1435	X		191	×,	2		\times	×	
2 9	9123/09 1515			140		3	\times			
MW-2. 91	9123/09 1515	X		<u>(</u>)	179	2	 	×	X	
NW-3 91	R R			100		$\frac{1}{2}$	\times			
MW-3 9	123 69 1529			<u>9</u>	Nº 4	7		\times	×	
19 H- MU	1	X	ß	140		$\frac{1}{2}$	X			
MW-H 61	1414	X	R	91 0	Nr.S.	2		\times	X	
Ixale. 9	33	X	\mathbb{N}	140	` 	$\frac{1}{2}$	V			
ank 9	2101 10152) 		à				
Client/Consultant Remarks:		Laboratory remarks:							Intact?	- 17 - 17
Place fi Ikrandpreshe netak contaivarpr	iteiverprise to a hallysis								Ice? Temp:	יין ין ין ין י
Requested TAT Special Reporting Requirym	ng Requirements Results:	Fax 🔲 Email 🕅	M PDF		Special Detection Limits (specify):	Limits	specify)			PMreview (initial):
tract	Level 3 OC I Ida 4 QC	TX TRRP 🔲 LA	LA RECAP							5
Standard 1. Relinquished by Sample	by Sample	Gate	15 09	time T	ri P	2. Received by:	d by:			
3. Relinquished by:	by:	date	Ť.	time	4	4. Received by:	ed by:			
Other Other 5. Relinquished by: Rush TAT r#quires prior notice	by:	0115	1119	10:21	20	6 Received by	1-1-2	aboratory	MANN	ΪÌΛ

A. 2 . 4.

1. A.

and the gard on the

3. 2 8 8. F.

a hand

41. E. B. 40

NAME.

1990 B.C.

Sec. Car.

" Sale of

北戸しま 、 大学 、 大学を

38.52 May

2 Mar a Sor

APPENDIX C

Kiffen Canyon Wash Soil and Groundwater Laboratory Analysis Report

, ° , *

424

the second

2 . A.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

	Analysis Number: 100145	· · · ·
Report To:	Project Name:	Randleman #1
Tetra Tech, Inc.	<u>Site:</u>	San Juan County, NM
Kelly Blanchard	Site Address:	
6121 Indian School Road, N.E.		
Suite 200 Albuquerque	PO Number:	
NM	State:	New Mexico
87110-	State Cert. No.:	
ph: (505) 237-8440 fax:	Date Reported:	10/16/2009

This Report Contains A Total Of 15 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

10/19/2009

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Conoco Primps Certificate of Analysis Number:

09100145

Report To:	Project Name:	Randleman #1
Tetra Tech, Inc.	<u>Site:</u>	San Juan County, NM
Kelly Blanchard	Site Address:	
6121 Indian School Road, N.E.		
Suite 200	PO Number:	
Albuquerque	<u>PO Number.</u>	
NM	<u>State:</u>	New Mexico
87110-	State Cert. No .:	
ph: (505) 237-8440 fax:	Date Reported:	10/16/2009

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

a Cardenas

09100145 Page 1 10/19/2009

Erica Cardenas Project Manager

5 . Be

8

2 Andrew

· . (Se

, , L.,

Ser Section

. . .

Sugar.

3. 4. M. .

14 2 A

1 (3) 8 A

State of

Que . 6 . .

.

с. . HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

		Certificate of Analysis Number: 09100145	
Report To:	Tetra Tech, Inc. Kelly Blanchard 6121 Indian School Road, N.E. Suite 200	<u>Project Na</u> Site: Site Addr	San Juan County, NM
	Albuquerque NM 87110- ph: (505) 237-8440 fax: (505) 8	PO Numb State: 1-3283 State Cert	New Mexico
<u>Fax To:</u>		Date Repo	

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
WB1	09100145-01	Water	10/1/2009 11:25:00 AM	10/3/2009 9:30:00 AM		
WB1 (2ft)	09100145-02	Soil	10/1/2009 11:15:00 AM	10/3/2009 9:30:00 AM		
Trip Blank	09100145-03	Water	10/2/2009 11:15:00 AM	10/3/2009 9:30:00 AM		

E. Q. Cardinas

Erica Cardenas Project Manager 10/19/2009

Date

Kesavalu M. Bagawandoss Ph.D., J.D.

Laboratory Director

Ted Yen Quality Assurance Officer

> 09100145 Page 2 10/19/2009 2:47:29 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:WB1

"Barrier

1. N. S.

N 4. R. W.

1.1.4

1 Sec. 4.

18 S. 1.

9 m

1100

- Are

5. 19

1. S. 3

1 Sec. 1.

Collected: 10/01/2009 11:25 SPL Sample ID: 09100145-01

		Sit	e: San	Juan County,	NM				
Analyses/Method	Result QUAL	R	ep.Limit	Dil. Fact	or Date	Anal	yzed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B			MCL	SW8260)B	Un	nits: ug/L	
Benzene	ND		1	1	10/	13/09	1:59	JC	5245268
Ethylbenzene	ND		1	1	10/	13/09	1:59	JC	5245268
Toluene	ND		1	1	10/	13/09	1:59	JC	5245268
m,p-Xylene	ND		1	1	10/	13/09	1:59	JC	5245268
o-Xylene	ND		1	1	10/	13/09	1:59	JC	5245268
Xylenes,Total	ND		1	1	10/	13/09	1:59	JC	5245268
Surr: 1,2-Dichloroethane-d4	95.4	%	78-116	1	10/	13/09	1:59	JC	5245268
Surr: 4-Bromofluorobenzene	100	%	74-125	1	10/	13/09	1:59	JC	5245268
Surr: Toluene-d8	96.9	%	82-118	1	10/	13/09	1:59	JC	5245268

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- $\ensuremath{\mathsf{B/V}}$ Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 09100145 Page 3 10/19/2009 2:47:41 PM

-

19.00

B. L. S. Vas

Sec. 2

3.8 400

and a set

で、海

. **8**. .

100 - 100 -

A 34. 4

5 B. 6

10° - 10°

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:WB1 (2ft)			Col	lected: 10	0/01/2009	11:15	SPL Sam	iple l	D: 0910	0145-02
			Si	e: San	Juan Co	unty, NI	M			
Analyses/Method	Result	QUAL	R	ep.Limit	D	il. Factor	Date Anal	yzed	Analyst	Seq. #
DIESEL RANGE ORGANICS					MCL	SV	V8015B	Ur	nits: mg/k	g-dry
Diesel Range Organics (C10-C28)	8			6.4		1	10/09/09	10:21	NW	5240636
Surr: n-Pentacosane	81.5		%	20-154		1	10/09/09	10:21	NW	5240636
Prep Method Prep Dat	<u>e</u>	Prep Initials	Prep	Factor						
SW3550B 10/05/20	09 9:43	FAK	1.00							
GASOLINE RANGE ORGANIC	S				MCL	SV	V8015B	Ur	nits: mg/k	g-dry
Gasoline Range Organics	ND			0.13		1	10/08/09	9:08	WLV	5237254
Surr: 1,4-Difluorobenzene	97.0		%	63-142		1	10/08/09	9:08	WLV	5237254
Surr: 4-Bromofluorobenzene	102		%	50-159		1	10/08/09	9:08	WLV	5237254
Prep Method Prep Date	<u>e</u>	Prep Initials	Prer	Factor						
SW5030B 10/07/20	09 11:52	XML	1.00							
PERCENT MOISTURE					MCL	-	D2216	Ur	nits: wt%	
Percent Moisture	21.4			0		1	10/05/09	15:41	CFS	5232242
PURGEABLE AROMATICS					MCL	SV	V8021B	Ur	nits: ug/kg	g-dry
Benzene	ND			1.3		1	10/08/09			5237452
Toluene	ND			1.3		1	10/08/09	9:08	WLV	5237452
Ethylbenzene	ND			1.3		1	10/08/09	9:08	WLV	5237452
m,p-Xylene	ND			1.3		1	10/08/09	9:08	WLV	5237452
o-Xylene	ND			1.3		1	10/08/09	9:08	WLV	5237452
Xylenes,Total	ND			1.3		1	10/08/09	9:08	WLV	5237452
Surr: 1,4-Difluorobenzene	95.0		%	70-130		1	10/08/09	9:08	WLV	5237452
Surr: 4-Bromofluorobenzene	100		%	63-145		1	10/08/09	9:08	WLV	5237452
Prep Method Prep Date		Prep Initials	Bror	Factor						

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	10/07/2009 11:52	XML	1.00

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

- >MCL Result Over Maximum Contamination Limit(MCL)
- D Surrogate Recovery Unreportable due to Dilution
- MI Matrix Interference

09100145 Page 4 10/19/2009 2:47:42 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID: Trip Blank

10 - 20. - 10 - 20.

Same -

1960 . 14 . S.

2. 21. 3

1 18. 19

A. 8.78.

74

80 × 2

38 4 V

1. S. B. 10

E. Stra

1000

Sec. 15

6. - B

2.4

Collected: 10/02/2009 11:15 SPL Sample ID:

09100145-03

		Sit	e: San	Juan Cou	inty, NM	И			
Analyses/Method	Result (ep.Limit	Dii	. Factor	Date Analy	zed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B			MCL	SV	V8260B	Un	its: ug/L	
Benzene	ND		1		1	10/13/09	1:32	JC	5245267
Ethylbenzene	ND		1		1	10/13/09	1:32	JC	5245267
Toluene	ND		1		1	10/13/09	1:32	JC	5245267
m,p-Xylene	ND		1		1	10/13/09	1:32	JC	5245267
o-Xylene	ND		1		1	10/13/09	1:32	JC	5245267
Xylenes,Total	ND		1		1	10/13/09	1:32	JC	5245267
Surr: 1,2-Dichloroethane-d4	99.2	%	78-116		1	10/13/09	1:32	JC	5245267
Surr: 4-Bromofluorobenzene	100	%	74-125		1	10/13/09	1:32	JC	5245267
Surr: Toluene-d8	98.6	%	82-118		1	10/13/09	1:32	JC	5245267

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve TNTC - Too numerous to count
- >MCL Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

09100145 Page 5 10/19/2009 2:47:42 PM

Quality Control Documentation

FI'N "

е. Нр. 6

발음 걸나요.

4. 1. A. 1. 2

- ₹ ∰E. .

E.

P. 2. 4

Sec. 9.

* 1 S

40 . T. .

09100145 Page 6 10/19/2009 2:47:42 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Method:	Diesel Range Organ SW8015B	lics			WorkOrder: Lab Batch ID:	09100145 94364
	Met	hod Blank		Samples in Analytic	cal Batch:	
RunID: HP_V_09	91006E-5240620	Units:	mg/kg	Lab Sample ID	Client Sam	<u>iple ID</u>
Analysis Date:	10/06/2009 2:15	Analyst:	NW	09100145-02A	WB1 (2ft)	
Preparation Date:	10/05/2009 9:43	Prep By:	FAK Method SW3550B			

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	5.0
Surr: n-Pentacosane	85.4	20-154

Laboratory Control Sample (LCS)

RunID:	HP_V_091006E-5240621
Analysis Date:	10/06/2009 2:35
Preparation Date:	10/05/2009 9:43

10/06/2009 2:35 10/05/2009 9:43 Units: mg/kg Analyst: NW Prep By: FAK Method SW3550B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	33.3	29.8	89.4	57	150
Surr: n-Pentacosane	1.66	1.36	82.1	20	154

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	09100141-08		
RunID:	HP_V_091006E-5240624	Units:	mg/kg-dry
Analysis Date:	10/06/2009 7:42	Analyst:	NW
Preparation Date:	10/05/2009 9:43	Prep By:	FAK Method SW3550B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Diesel Range Organics (C10-C28)	ND	37	30.1	77.8	37	31.3	81.2	4.07	50	21	175
Surr: n-Pentacosane	ND	1.85	1.42	76.7	1.85	1.42		0.267	30	20	154

Qualifiers:

ND/U - Not Detected at the Reporting Limit

J - Estimated value between MDL and PQL

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 7 10/19/2009 2:47:44 PM

1. A. A.

3 . o .

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Analysis Date: 10/08/2009 0:32 Analysi: WLV 09100145-02A WB1 (2 Preparation Date: 10/08/2009 0:32 Prep By: Method SW5030B WB1 (2 Matrix Spire (A-Divorbenzene 10/08/2009 0:32 Prep By: Method SW5030B WB1 (2 Matrix Spire (A-Bromofluorobenzene 10/08/2009 0:32 ND 0:10 0:10 Surr: 14-Divorobenzene 10/08/2009 0:03 Analysis: mg/kg Analysis Date: 10/08/2009 0:03 Analysi: WLV Preparation Date: 10/08/2009 0:03 Analysi: WLV Preparation Date: Upper Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Difluorobenzene 0.100 0.100 1.02 63 142 Surr: 1,4-Difluorobenzene 0.100 0.100 1.02 63 142 Surr: 1,4-Difluorobenzene 0.100 0.100 1.06 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Matrix Spike (MS) /	Lab Batch ID: R285831 dical Batch: Client Sample ID WB1 (2ft) SW5030B Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
RunID: HP_Q_091007C-5237240 Units: mg/kg Lab Sample ID Client S Analysis Date: 10/08/2009 0:32 Analyst: WLV 09100145-02A WB1 (2 Preparation Date: 10/08/2009 0:32 Prep By: Method SW5030B WB1 (2 Image: Split Control Sample (LCS) Analyte Result Rep Limit Result Result Rep Limit Surr: 14-Bromofuoroberzene 104.8 50-159 Surr: 4-Bromofuoroberzene Units: mg/kg Analyte HP_Q_091007C-5237239 Units: mg/kg Analyst: WLV Preparation Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: Upper Analyte HP_Q_091007C-5237239 Units: mg/kg Analyst: Upper Analyte 10/08/2009 0:03 Prep By: Method SW5030B Method SW5030B Matrix Spike (MS) / Matrix Spike Result Percent Lower Upper Limit Gasoline Range Organics 1.00 1.02 102 63 142 Surr: 1.4-Diff	Client Sample ID WB1 (2ft) SW5030B Lower Upper Limit 130 63 142 50 159 SW5030B SW5030B	
Analysis Date: 10/08/2009 0:32 Analysi: WLV 09100145-02A WB1 (2 Preparation Date: 10/08/2009 0:32 Prep By: Method SW5030B WB1 (2 Matrix Spite Result Rep Limit 0100145-02A WB1 (2 Gasoline Range Organics ND 0.10 0.10 0.10 Surr: 14-Binomofluorobenzene 100.4.5 50-159 Source (LCS) RunID: HP_Q_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analysi: WLV Preparation Date: 10/08/2009 0:03 Analysi: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Matrix Spike Result Percent Lower Upper Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1.4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Dupl	WB1 (2ft) SW5030B Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B SW5030B	
Preparation Date: 10/08/2009 0:32 Prep By: Method SW5030B	SW5030B Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B MSD % RPD RPD	
Analyte Result Rep Limit Gasoline Range Organics ND 0.10 Surr: 14-Difluorobenzene 100.8 63-142 Surr: 4-Bromofluorobenzene 104.5 50-159 Laboratory Control Sample (LCS) RunID: HP_O_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analysi: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Imit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1.4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 1.4-Difluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Matrix Spike (MS) / Matrix Spike Duplicate (MSD) NS Malysis Date: 10/08/2009 3:25 Analysis MLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Gasoline Range Organics ND 0.10 Surr: 1.4-Diffuorobenzene 100.8 63-142 Surr: 4-Bromofluorobenzene 104.5 50-159 Laboratory Control Sample (LCS) RunID: HP_O_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW 5030B Matrix Spike Added Recovery Limit Limit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1.4-Diffuorobenzene 0.100 0.102 102 63 142 Surr: 1.4-Diffuorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Gasoline Range Organics ND 0.10 Surr: 1.4-Diffuorobenzene 100.8 63-142 Surr: 4-Bromofluorobenzene 104.5 50-159 Laboratory Control Sample (LCS) RunID: HP_O_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW 5030B Matrix Spike Added Recovery Limit Limit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1.4-Diffuorobenzene 0.100 0.102 102 63 142 Surr: 1.4-Diffuorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Surr: 1,4-Diffuorobenzene 100.8 63-142 Surr: 4-Bromofluorobenzene 104.5 50-159 Laboratory Control Sample (LCS) RunID: HP_O_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analysi: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Analyte Spike Result Percent Lower Upper Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Diffuorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 NulD: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML MsD % MSD % MSD % MSD % Result R	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Surr: 4-Bromofluorobenzene 104.5 50-159 Laboratory Control Sample (LCS) RunID: HP_O_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Analysis Date: 10/08/2009 0:03 Prep By: Method SW5030B Matrix Spike Result Percent Lower Upper Limit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
RunID: HP_0_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Image: Spike Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Diffuorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_0_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
RunID: HP_0_091007C-5237239 Units: mg/kg Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Image: Spike Analyte Spike Result Percent Lower Upper Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Diffuorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 mg/kg-dry RunID: HP_0_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS % MSD MSD % Recovery	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Image: Spike Added Ad	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Analysis Date: 10/08/2009 0:03 Analyst: WLV Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Analyte Spike Added Result Recovery Percent Limit Lower Limit Upper Limit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 mg/kg-dry RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS % MSD MSD %	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Preparation Date: 10/08/2009 0:03 Prep By: Method SW5030B Analyte Spike Result Percent Lower Upper Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Diffuorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 mg/kg-dry RunID: HP_0_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS% MSD MSD % Recovery	Lower Upper Limit Limit 70 130 63 142 50 159 SW5030B	
Added Recovery Limit Limit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 mg/kg-dry RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	Limit Limit 70 130 63 142 50 159 SW5030B	
Added Recovery Limit Limit Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 mg/kg-dry RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	Limit Limit 70 130 63 142 50 159 SW5030B	
Gasoline Range Organics 1.00 1.03 103 70 130 Surr: 1,4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 mg/kg-dry RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/07/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B	70 130 63 142 50 159 SW5030B MSD % RPD	
Surr: 1,4-Difluorobenzene 0.100 0.102 102 63 142 Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS % MSD MSD %	63 142 50 159 SW5030B MSD % RPD RPD	
Surr: 4-Bromofluorobenzene 0.100 0.106 106 50 159 Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_O_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS % MSD MSD MSD % Recovery	50 159 SW5030B MSD % RPD RPD	
Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Sample Spiked: 09100141-01 RunID: HP_0_091007C-5237244 Units: mg/kg-dry Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS MS % MSD MSD MSD % MSD % Result MSD % Recovery	SW5030B	
Analysis Date: 10/08/2009 3:25 Analyst: WLV Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS% MSD MSD MSD % Analyte Sample MS MS Resoult Recovery Spike Result Recovery	MSD % RPD RPD	
Preparation Date: 10/07/2009 11:33 Prep By: XML Method SW5030B Analyte Sample MS MS MS % MSD MSD MSD % Result Spike Result Recovery Spike Result Recovery	MSD % RPD RPD	
Result Spike Result Recovery Spike Result Recovery		
Added Added		Low High Limit Limit
Sasoline Range Organics ND 1.24 0.889 71.8 1.24 1.04 84.3	.04 84.3 16.0 50	26 14
Surr: 1,4-Difluorobenzene ND 0.124 0.005 71.0 1.24 1.04 64.3		63 14
Surr: 4-Bromofluorobenzene ND 0.124 0.127 103 0.124 0.130 105		50 159
Suit. 4-Biointonoberizerie ND 0.124 0.121 103 0.124 0.130 103		

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 8 10/19/2009 2:47:44 PM

J. 48.

-

100

6. A.

Same a

Sec.

1

4.48

g after Est

P-SSEPT1

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

n.:....

			r i i i i i i i i i i i i i i i i i i i		#1					
Analysis: Method:	Purgeable Aromatics SW8021B							Order: Batch ID:	09100145 R285847	
	Metho	d Blank			Samp	les in Analyt	tical Batch	ו:		
RunID: HP_O_(091007E-5237440	Units:	ug/kg		Lab S	ample ID		Client San	nple ID	
Analysis Date:	10/08/2009 0:32	Analyst:	WLV		09100	145-02A		WB1 (2ft)		
Preparation Date:	: 10/08/2009 0:32	Prep By:	Method S	W5030B						
	Analyte		Result Rep Lim	iit						
	izene		ND 1.	.0						
	ylbenzeneuene		ND 1.							
	o-Xylene		2.2 1							
0-X	ylene		ND 1.	.0						
	enes,Total		2.21.							
	Surr: 1.4 Difluorobonzono		00 2 70 13	101						
	Surr: 1,4-Difluorobenzene Surr: 4-Bromofluorobenzene		98.3 70-13 103.1 63-14	.5	ample (I ((8)			···	
				<u>·</u> Control S		<u>CS)</u> g/kg			<u></u>	
	Surr: 4-Bromofluorobenzene	Date:	103.1 63-14 Laboratory	<u>5</u> 2 Control S 37439 Ur	iits: u					
	Surr: 4-Bromofluorobenzene RunID:		103.1 63-14 Laboratory HP_O_091007E-52	<u>5</u> 7 Control S 37439 Ur An	iits: u	g/kg /LV	SW5030B			
	Surr: 4-Bromofluorobenzene RunID: Analysis I		103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	<u>5</u> 7 Control S 37439 Ur An	iits: u alyst: W	g/kg /LV	SW5030B Lower Limit	Upper Limit	<u>,,</u> ,	
	Surr: 4-Bromofluorobenzene RunID: Analysis I	on Date:	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	<u>5</u> 2 Control S 37439 Ur An Pru Spike	iits: u alyst: W ep By:	g/kg /LV Method	Lower Limit 70	Upper	<u></u>	
	Surr: 4-Bromofluorobenzene RunID: Analysis I Preparatio	on Date: Analyt	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	5 7 Control S 37439 Ur An Pro Spike Added	iits: us alyst: W ep By: Result 17.1 16.9	g/kg /LV Method Percent Recovery	Lower Limit 70 75	Upper Limit 130 122		
	Surr: 4-Bromofluorobenzene RunID: Analysis I Preparatio Benzene	on Date: Analyt	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	5 7 Control S 37439 Ur An Pro Spike Added 20.0 20.0 20.0 20.0	iits: ug alyst: W ep By: Result 17.1 16.9 17.4	g/kg /LV Method Percent Recovery 85.3	Lower Limit 70 75 75	Upper Limit 130 122 123		
	Surr: 4-Bromofluorobenzene RunID: Analysis I Preparatio Benzene Ethylbenzen Toluene m,p-Xylene	on Date: Analyt	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	5 7 Control S 37439 Ur An Pru Spike Added 20.0 20.0 20.0 20.0 40.0	iits: us alyst: W ep By: Result 17.1 16.9 17.4 33.8	g/kg /LV Method Recovery 85.3 84.4 87.0 84.6	Lower Limit 70 75 75 74	Upper Limit 130 122 123 122	<u></u>	
	Surr: 4-Bromofluorobenzene RunID: Analysis I Preparatio Benzene Ethylbenzen Toluene	on Date: Analyt	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	5 7 Control S 37439 Ur An Pro Spike Added 20.0 20.0 20.0	iits: ug alyst: W ep By: Result 17.1 16.9 17.4	g/kg /LV Method Recovery 85.3 84.4 87.0	Lower Limit 70 75 75 75 74 70	Upper Limit 130 122 123		
	Surr: 4-Bromofluorobenzene RunID: Analysis I Preparatio Benzene Ethylbenzen Toluene m,p-Xylene	on Date: Analyt	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35	5 7 Control S 37439 Ur An Pru Spike Added 20.0 20.0 20.0 20.0 40.0	iits: us alyst: W ep By: Result 17.1 16.9 17.4 33.8	g/kg /LV Method Recovery 85.3 84.4 87.0 84.6	Lower Limit 70 75 75 74	Upper Limit 130 122 123 122		
	Surr: 4-Bromofluorobenzene RunID: Analysis I Preparatio Benzene Ethylbenzen Toluene m,p-Xylene o-Xylene Xylenes,Tot	on Date: Analyt	103.1 63-14 Laboratory HP_O_091007E-52: 10/07/2009 23:35 10/07/2009 23:35 ie	5 7439 Ur 37439 Ur An Pr Added 20.0 20.0 20.0 20.0 20.0 20.0	its: us alyst: W ep By: Result 17.1 16.9 17.4 33.8 16.6	g/kg /LV Method Recovery 85.3 84.4 87.0 84.6 83.0	Lower Limit 70 75 75 75 74 70	Upper Limit 130 122 123 122 122 130		_

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: RunID: Analysis Date: Preparation Date:

09100141-01 HP_O_091007E-5237456 10/08/2009 2:27 10/07/2009 11:33

Units: ug/kg-dry Analyst: WLV Prep By:

XML Method SW5030B

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

D - Recovery Unreportable due to Dilution

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 9 10/19/2009 2:47:44 PM

2.00

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Purgeable Aron Method: SW8021B	natics						WorkOrder Lab Batch		00145 85847		
Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	24.8	20.7	83.8	24.8	21.1	85.1	1.52	31	41	133
Ethylbenzene	ND	24.8	19.7	79.6	24.8	20.2	81.4	2.28	39	31	129
Toluene	ND	24.8	20.7	83.5	24.8	21.2	85.6	2.42	25	34	130
m,p-Xylene	ND	49.5	38.2	77.2	49.5	39.4	79.5	2.98	26	35	123
o-Xylene	ND	24.8	19.1	77.2	24.8	19.3	78.0	0.996	35	33	124
Xylenes,Total	ND	74.3	57.3	77.2	74.3	58.7	79.0	2.32	35	33	124
Surr: 1,4-Difluorobenzene	ND	124	121	97.8	124	120	96.7	1.07	30	70	130
Surr: 4-Bromofluorobenzene	ND	124	130	105	124	128	103	1.47	30	63	145

Qualifiers: ND/U - Not Detected at the Reporting Limit

......

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 10 10/19/2009 2:47:44 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Method:	Volatile Organics by SW8260B	Method 826)B		WorkOrder: Lab Batch ID:	09100145 R286355	
	Meth	nod Blank		Samples in Analytical	Batch:		
RunID: Q_091	012C-5245261	Units:	ug/L	Lab Sample ID	Client Sa	nple ID	
Analysis Date:	10/12/2009 22:50	Analyst:	JC	09100145-01A	WB1		
				09100145-03A	Trip Blank		

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	102.6	78-116
Surr: 4-Bromofluorobenzene	103.7	74-125
Surr: Toluene-d8	100.0	82-118

	Laboratory Control Sample (LCS)						
RunID:	Q_091012C-5245260	Units:	ug/L				
Analysis Date:	10/12/2009 21:57	Analyst:	JC				

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	20.5	103	74	123
Ethylbenzene	20.0	20.1	100	72	127
Toluene	20.0	20.2	101	74	126
m,p-Xylene	40.0	40.8	102	71	129
o-Xylene	20.0	21.3	107	74	. 130
Xylenes,Total	60.0	62.1	104	71	130
Surr: 1,2-Dichloroethane-d4	50.0	50.9	102	78	116
Surr: 4-Bromofluorobenzene	50.0	52.1	104	74	125
Surr: Toluene-d8	50.0	49.7	99.3	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: RunID: Analysis Date: 09100426-01 Q_091012C-5245263 10/12/2009 23:44

Units: ug/L Analyst: JC

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 11 10/19/2009 2:47:44 PM

State and

1.00

- design

100 × 100 -

-14

2. 34 -

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Randleman #1

Analysis: Method:	Volatile Organic SW8260B	s by Method 826	0B					WorkOrder: Lab Batch ID		00145 36355		
	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	······································	ND	20	19.4	97.0	20	19.7	98.3	1.34	22	• 70	124
Ethylbenzene		ND	20	18.5	92.7	20	19.1	95.6	3.13	20	76	122
Toluene		ND	20	18.4	92.1	20	18.6	93.0	1.02	24	80	117
m,p-Xylene		ND	40	37.3	93.4	40	38.0	95.1	1.81	20	69	127
o-Xylene		ND	20	19.4	97.2	20	19.9	99.6	2.46	20	84	114
Xylenes,Total		ND	60	56.7	94.6	60	57.9	96.6	2.03	20	69	127
Surr: 1,2-Dic	hloroethane-d4	ND	50	50.4	101	50	48.0	96.1	4.73	30	78	116
Surr: 4-Brom	ofluorobenzene	ND	50	51.7	103	50	50.3	101	2.88	30	74	125
Surr: Toluene	ə-d8	ND	50	48.3	96.7	50	48.8	97.6	0.974	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

- D Recovery Unreportable due to Dilution
 - * Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 12 10/19/2009 2:47:44 PM

		12/	8					8880 INTERCI HOUSTON	ABORATORY HANGE DRIVE J, TX 77054	
1990 - 29 - 29 - 1990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990 - 2990		Quali	ty Control Rep	ort Conoco	Phillips	;		(713) 6	60-0901	
¥.					eman #1					
1000 1000	Analysis: Method:	PERCENT MOIS D2216	STURE					VorkOrder: _ab Batch ID:	09100145 R285537A	
					Sa	amples in	Analytical E	Batch:	<u></u>	
3 . T						ab Sample 0100145-02		<u>Client S</u> WB1 (2f	<u>ample ID</u> t)	
S. State				Sample	Duplicate					
A CONTRACTION			Original Sample: RunID: Analysis Date:	09100145-02 WET_091005i-523224 10/05/2009 15:41	2 Units Analy					
6. M.S.			Ar	alyte	Sample	DUP	RPD	RPD		
			Percent Moisture		Result 21.4	Result 21.44	0.138	Limit 20		
日際と										
18										
8 - and a large										

Qualifiers: ND/U - Not Detected at the Reporting Limit

6.3 A.

Billion

the second

1. May 1.

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100145 Page 13 10/19/2009 2:47:45 PM Sample Receipt Checklist And Chain of Custody

.

L. 16 . E.

and a straight on

2. 9. 2 2 20

de la Ba

والمعلمة

1. A. W.

* (A. E. S.

1. 18 St.

S. Same

Service .

10 B. M. B. S.

1. 1. 1. 1. T.

A TRUE

S Marca

のなた

09100145 Page 14 10/19/2009 2:47:45 PM

Sec. 20%

1. A.

Restaus

S. Stands

8 20. 2 T ...

Strate + 0

Sugar.

Ser Barray

2. 2. 2. 2. C.

1. A. A. A.

N. Sec.

A. 6. 2. 1

Sec. S.

「東」なり

H. 863

5 de

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Date and Time Received: 10/3/2009 9:30:00 AM Temperature: 1.0°C		Carrier name: Chilled by:	Fedex-Priority Water Ice
1. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present
2. Custody seals intact on shippping container/cooler?	Yes 🗹	No 🗀	Not Present
3. Custody seals intact on sample bottles?	Yes 🗌	No	Not Present
4. Chain of custody present?	Yes 🔽	No	
5. Chain of custody signed when relinquished and received?	Yes 🔽	No 🗌	
6. Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
7. Samples in proper container/bottle?	Yes 🗹	No 🗌	
8. Sample containers intact?	Yes 🗹	Νο	
9. Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
0. All samples received within holding time?	Yes 🗹	No 🗔	
1. Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	
2. Water - VOA vials have zero headspace?	Yes 🔽		A Vials Not Present
3. Water - Preservation checked upon receipt (except VOA*)?	Yes	Νο	Not Applicable
*VOA Preservation Checked After Sample Analysis			
SPL Representative:	Contact Date	& Time:	
Non Conformance Issues:			
Client Instructions:			

REQUESTED ANALYSIS PM revier Nortenter No. VINCENON 1-0% REK 1208 ØZ 108)02(2 × 019 Hel BTEX · 8260 Manda NC M HCL Analysis Request and Chain of Custody Record S W HO Preservalive And A Laboratory Remarks: Received by: Consultant Remarks: Received by Container Type 64 M Number Containers 130 0,20 Sampling Event Description Soil Studge Other 10-2-09 1 LV.3 GA/QC Level Cth.er 10/3/09 Other (describe below) WC-Waste Char. Semi-Annual ۹. Quarterly Warde TRRP STD Side Address Chisting Mathenis/Cassie Brown Sampled By Christing Mathenis/Cassie Brown Samples Special Reporting Requirements (Specify) 2500 Project Namendo: Memory Manual CONCI CIMON #1 Special Detection Limits (Specify): mail Address kelly.blanchard@tetratech.com Address: 6121 Indian School Rd. NE, Ste. 200 Company Name: Tetra Tech / Conoco Phillips Phone/Fax: (505) 237-8440 / (505) 237-8556 conoco Phillips 8680 Interchange Orive, Houston, TX 77054 -10 Contact: Kelly Blanchard 72h 20 day 20 day ^aurchase Order No: TAT Relinquistied by Noice To: \Box 4854 2444 Other.

A. 4. 40.00

1 . all 1

£ 1. A.S.

1. 1. 1. C

1923

2 8. 1

6 ° c 3 20

12. 24

1.2

1. 100 C

· . 200 - 2

1 . 1 . A.

1 . A.

Sec. 6. 3. 3

1. N. N. H.

14.00 mm