
3R-098

QTR GW monitoring report Sampling event

DATE: October 2008

3RP-98

March 4, 2009

Mr. Glen von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

RE: (1) ConocoPhillips Shepherd & Kelsey 1E 2008 Quarterly Report
Bloomfield, New Mexico
(2) ConocoPhillips Faye Burdette No. 1 2008 Quarterly Report
Aztec, New Mexico
(3) ConocoPhillips El Paso 1A 2008 Quarterly Report
Blanco, New Mexico

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced documents as compiled by Tetra Tech, Inc., formerly Maxim Technologies, for these Farmington area sites.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (3)

QUARTERLY GROUNDWATER MONITORING REPORT OCTOBER 2008 SAMPLING EVENT

2.4

1111年1日

10 AL - 1

Sec. 25.

ing a set of the

4.4

10.00

10000

4 4

CONOCOPHILLIPS SHEPHERD & KELSEY IE BLOOMFIELD, NEW MEXICO

OCD # 3RP-98-0

Prepared for:

ConocoPhillips

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

Tł	

TETRA TECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 9690121.100

February 11, 2009

Quarterly Groundwater Monitoring Report Shepherd & Kelsey 1E, Bloomfield, New Mexico OCD #3RP-98-0

TABLE OF CONTENTS

I
1
I

FIGURES

10 L

P. C.

1. S. S.

the second

- 10-22

1. 2

a de la

i e n da

ਹੀਰ ਦੇ ਸਾਹਿਤ ਇ

and the second

1.0

and the second

1917 - I.

- I. Site Location Map
- 2. Site Layout Map

TABLES

Ι.	Site	History	Timeline
••	0100	11100017	1 11 11 11 11 11 11

2. Groundwater Laboratory Analytical Results Summary (October 2008)

APPENDICES

- Appendix A. Groundwater Sampling Field Form
- Appendix B. Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS SHEPHERD & KELSEY IE, BLOOMFIELD, NEW MEXICO

I.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on October 23, 2008, at the ConocoPhillips, formerly Burlington Resources, Shepherd & Kelsey IE Site in Bloomfield, New Mexico. This event represents the first quarter of groundwater sampling conducted by Tetra Tech at the site.

The site is located near the intersection of Highway 64 and county road 5097 in Bloomfield, NM. The site can be reached by turning onto county road 5097 from Highway 64 and making an immediate left onto county road 5095. Follow 5095 until the road dead ends and then make a right onto the private drive which leads down to the site on the left. The site consists of a gas production well head and associated equipment and installations. The location and general features of the Shepherd & Kelsey IE site are shown on **Figures 1** and **2**, respectively.

I.I Site History

The history of the ConocoPhillips Shepherd & Kelsey IE Site is outlined in Table I.

2.0 METHODOLOGY AND RESULTS

The following subsections describe the groundwater monitoring methodology and sampling analytical results.

2.1 Groundwater Monitoring Methodology

Groundwater sampling

Monitor well MW-1 was sampled during this event to initiate quarterly groundwater monitoring at the site. Approximately 4 gallons of water, or greater than three well volumes, were purged from the monitoring well before sampling was performed. The purged water was disposed of in the waste water tank located on site (**Figure 2**). A 1.5-inch dedicated bailer was used to purge and collect groundwater samples. The samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain of custody documentation to Southern Petroleum Laboratory located in Houston, Texas. The samples were analyzed for presence of volatile organic compounds (VOC) including but not limited to benzene, toluene, ethyl-benzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B, semi-volatile organics compounds (SVOC) by EPA Method 8270C, total petroleum hydrocarbons (TPH) by EPA Method SW8015B, ion chromatography by EPA Method E300.0, metals including mercury by EPA Methods SW7470A, 6010B, 6020A, and nitrogen by EPA Method E353.2.

2.2 Groundwater Sampling Analytical Results

The October 2008 analysis of the collected groundwater samples indicates that all contaminants of concern are below the NMWQCC standards. Laboratory analytical data from the October 2008 sampling are summarized on **Table 2**. The field groundwater sampling form is presented in **Appendix A** and the laboratory analytical report is presented in **Appendix B**.

3.0 CONCLUSIONS

Tetra Tech recommends continued quarterly groundwater monitoring of MW-1 and the additional three monitoring wells MW-2, MW-3 and MW-4 that were installed in late January of 2009 in order to provide sufficient data for site closure. If results indicate all constituents of concern are below NMWQCC standards, groundwater monitoring will be discontinued and site closure will be requested.

FIGURES

I. Site Location Map

連載調整

のため

22.22

語言

1997

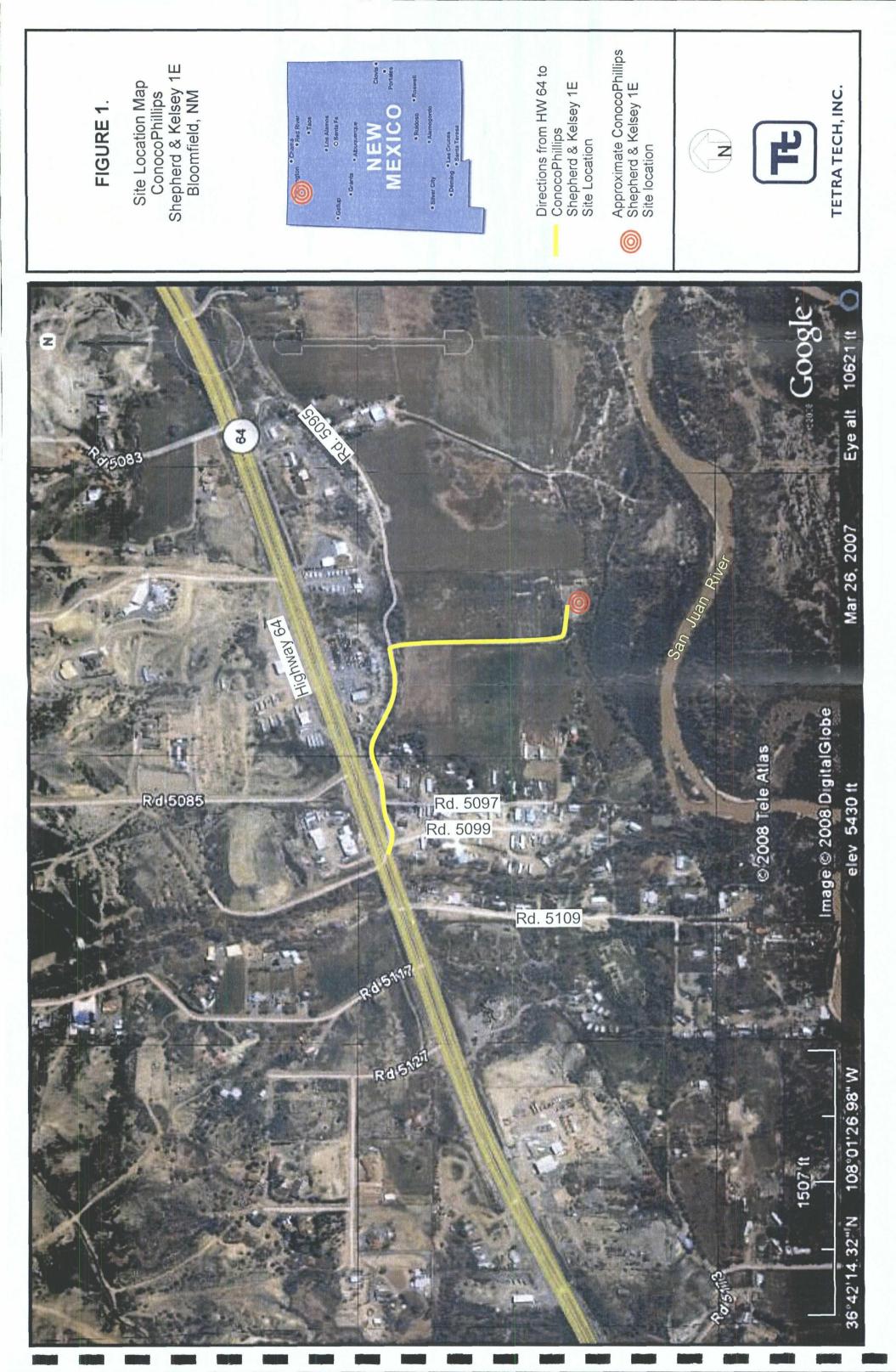
ちちちちち

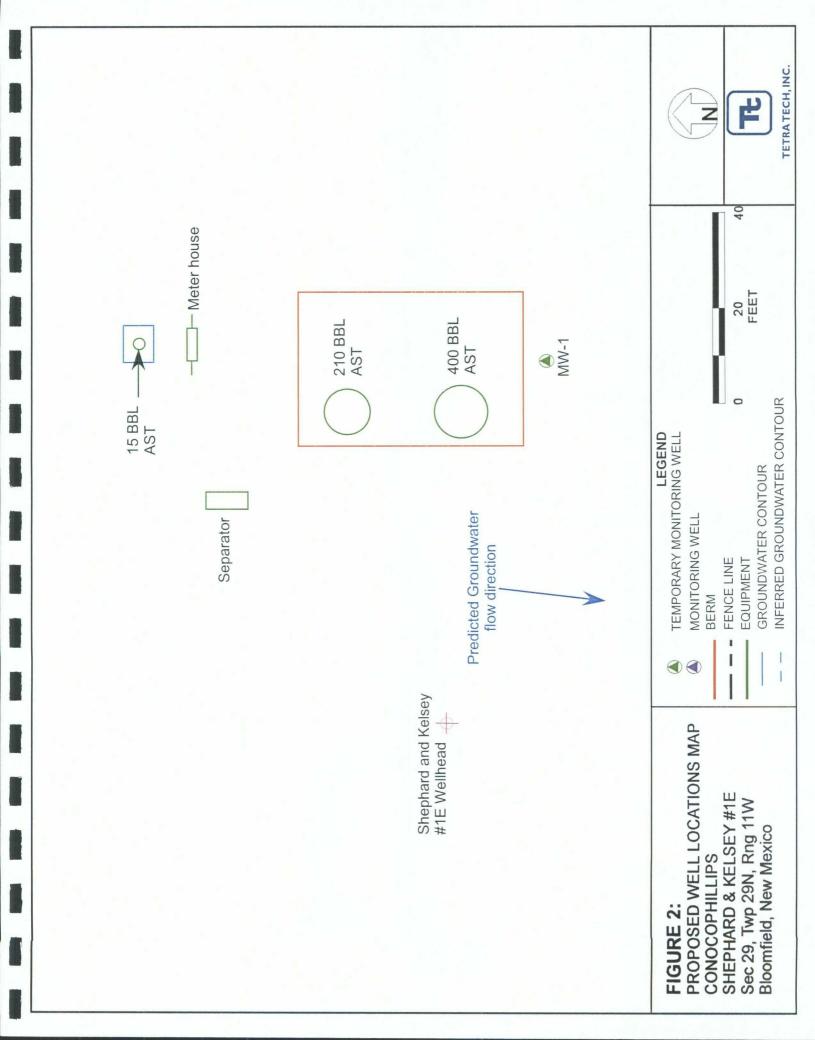
ないない

Sec. 10

演業記録

S. Salar


悪い思い


調理を

田田

,

2. Site Layout Map

TABLES

I. Site History Timeline

2. Laboratory Analytical Data Summary (October 2008)

an an an

Table 1. Site History Timeline - ConocoPhillips Shepherd and Kelsey 1E

HA INST

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

諸軍援

にの加速

and the second

187 - A.A.

and and a second

14. A.

19 B

Strate at

DATE	ACTIVITY
5-Jun-07	Contaminated soil discovered during routine maintenance of the Site. Soil excavation was performed at the Site, and three soil samples were obtained. Sample results showed total petroleum hydrocarbon (TPH) concentrations below the NMOCD regulations of 100 parts per million (ppm). Original source of contamination is unknown.
12-Jun-07	A separate area of TPH soil contamination discovered.
June 15-18, 2007	A 50 foot by 20 foot by 4 foot excavation completed. Soil samples taken from the second excavation show TPH at 992 ppm, and water samples obtained show benzene and total xylenes above State of New Mexico drinking water standards.
26-Sep-07	Ground water monitoring well installed to a depth of ten (10) feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). Depth to groundwater recorded at four (4) feet bgs. Soil and groundwater samples obtained for TPH, benzene, and, toluene, ethylbenzene and total xylenes (BTEX) were below the respective NMOCD regulations of 100 ppm, 10 ppm and 50 ppm.
Nov-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring well and a no further action determination for the Site (Envirotech, 2007).
Apr-08	Oil Concervation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten
23-Oct-08	1st quarter sampling of MW-1 by Tetra Tech
Jan-09	Installed additional monitoring wells MW-2, MW-3 and MW-4
30-Jan-09	2nd quarter sampling of MW-1 by Tetra Tech

12 ° C に構成 大学学生 記録で ない a states and the second s 12.4 の時代の S. S. S. State of the 語言に

Service of

and the second

Table 2.

Analytical Data Shepherd & Kelsey 1E October 23,2008

Izene	Stnadards	Standards	1-WW
zene			
Benzene Toluene Ethylbenzene Vulosoo	e Organic Cor	Volatile Organic Compounds (ug/L)	
Toluene Ethylbenzene Vultanoo	10	5	<5
Ethylbenzene	750	1	<5
Vulgase	750	700	<5
vyielles	620	1	<5
Diesel Range Organics	1	1	3.7
Ō	General Chemistry (mg/L	stry (mg/L)	
Chloride	250	250	22.8
Nitrate	•	•	2.8
Sulfate	600	250 / 400	438
Inor	Inorganic Contaminants (mg/L	inants (mg/L)	
Calcium	E .		141
Iron	4-	0.3	2.59
Magnesium			18.3
Sodium	1		245
Arsenic	0.1	0.05	<0.005
Lead	0.05	0.015	0.00509
Barium	1	2	0.0459
Manganese	0.2	0.05	0.417
Mercury	0.002	0.002	<.0002

Notes

Concentrations marked **bold** exceed NMWQCC standards Only detected constituents are included on Table 2.

APPENDIX A

GROUNDWATER SAMPLING FIELD FORM

113.87%

南北

作用化

1997

あいま

No. of the other

調査

「作業

W.L.

1944 A

ert er

	TETRA	TECH, INC.	WA	TER SAN	IPLING FIE	ld fori	Л	
	Project Name	Shepherd and Kelsey #	1E			Pa	age <u>1</u>	_ of
_	Project No.			····				
	Site Location	San Juan County, NM		. <u></u>				
a line and	Site/Well No.	MW-1	Coded/ Replicate			Date	10/23/	08
形式	Weather	Windy, Sunny	Time San Began	16:4		Completed		
			EV	ACUATION D	ATA			
非關	Description of	Measuring Point (MP)	10					
	Height of MP A	bove/Below Land Surface	ce		MP Elevation			
PALANCE A	Total Sounded	Depth of Well Below M	· <u>1</u> 2.	00	Water-Level Ele	evation		
19553	Heid	Depth to Water Below	w MP 4,	02	Diameter of Ca Gallons Pumpe			2"
	Wet	Water Column in	Well 7.	98	Prior to Samplin		4	gallons
HAN I		Gallons per			Sampling Pump		ng	U
		Gallons in		N G C	(feet below land 2 9	surface)		
79-10-1	Purging Equipr	nent <u>bailer / purge</u>		<u> </u>	0			
大学	Time	Temperature (C ^o)	pН	DATA/FIELD I Conductivity	TDS in g/L	ORP (m)	/) DO] .
	1645 1648	15.72 15.80	7.28 7.24	1.813	10179	-28.		
建作	1649	15.72	7.25	1.790	1.164	- 25.5	2.36	
	Sampling Equi	pment	Disposable poly	vethvlene baile	<u>ا</u> ۲			
		tuents Sampled		ontainer Descr			Preservati	Ve
	BTEX (V(YS: SUDCE			2 Ambers	HCL 1H	110	
	Total Y	Notals, Gen	, Znlasti		plastic 320			
	Chem	? Anions, TPI						
御御	Remarks	mur	cy, brown	<u>no odo</u>	v			<u> . . </u>
	Sampling Pers	onnel Christine Matl	néws, Ana More	eno				
				Well Casing V		na na serie de la companya de la com	ing the second	
		Gal./ft. 1 ¼" = (1 ½" = (2" = 0.16 $2\frac{1}{2}" = 0.24$		0.37 0.50	4" = 0. 6" = 1.	8

÷

.

CHERKEN AND

APPENDIX B

LABORATORY ANALYTICAL REPORT

1000

がいる

理論など

181. effe

語を

ない

構造

and and

記念書で

な調査

• 7

「肉」

the Fridday

1. 19 A. 2. 3.

1000

343 P.S.

調査

A Street

14 - 16 A.

「日本の

10-20

and the second

花花

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number: 08101658 COP Shepherd Kelsey #1E Report To: Project Name: Site: Bloomfield, NM Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: 4509668194 Albuquerque State: New Mexico NM 87110-State Cert. No.: ph: (505) 237-8440 fax: Date Reported: 11/21/2008

This Report Contains A Total Of 32 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

<u>08101658</u>

Report To:	Project Name:	COP Shepherd Kelsey #1E
Tetra Tech, Inc. Kelly Blanchard	<u>Site:</u> Site Address:	Bloomfield, NM
6121 Indian School Road, N.E. Suite 200		
Albuquerque NM	PO Number: State:	4509668194 New Mexico
87110- ph: (505) 237-8440 fax:	<u>State Cert. No.:</u> Date Reported:	11/21/2008

All samples received outside the 48-hour hold time for Nitrate and Orthophosphate analysis. Per historical records SPL, Inc continued with analysis.

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 84925 for the Diesel Range Organics analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:84949 for the Semivolatile Organics analysis by SW846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Your sample ID "MW-1" (SPL ID:08101658-01) was randomly selected for use in SPL's quality control program for the Volatile Organics analysis by SW846 Method 8260. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) recoveries were outside of the advisable quality control limits for 2-Chloroethyl vinyl ether (Batch ID: R256001) due to compound decomposition as a result of acid preservation. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

a Cardenas

08101658 Page 1 11/21/2008

Erica Cardenas Project Manager

an an

Test results meet all requirements of NELAC, unless specified in the narrative.

		DEL /	7			HOUSTON LABORAT 8880 INTERCHANGE I HOUSTON, TX 770	ORIVE	
中語			C	onoco F	Philline	(713) 660-0901		
事業		<i>.</i>			lysis Number:			
圓				<u>08101</u>	<u>658</u>			
	<u>Report To:</u>	Tetra Tech, Inc. Kelly Blanchard			Project Nam Site:	e: COP Shepherd Kel Bloomfield, NM	sey #1E	
		6121 Indian School Road, N Suite 200 Albuquerque	l.E.		Site Address	<u>5.</u>		
		NM 87110-			<u>PO Number:</u> <u>State:</u>	4509668194 New Mexico		
	<u>Fax To:</u>	ph: (505) 237-8440 f	ax: (505) 881-3283		<u>State Cert. N</u> Date Reporte			
					T	I		
	MW-1	Client Sample ID	Lab Sample ID 08101658-01	Matrix Water	Date Collected 10/23/2008 5:00:00 PM	Date Received 10/28/2008 9:30:00 AM		

E-a Cordinas

Erica Cardenas Project Manager

が開始の

and the second

HE SHE

影響

A LAND

「「ない」

記録が

18. A.

11/21/2008

Date

Richard R. Reed Laboratory Director

Ted Yen Quality Assurance Officer

الأستقعين و

1000

t'rat

i i i i i i i

1 - 2 - C

Sark ...

100

4 <u>6 4</u>

diates .

10 - 10 - 10 - 10 - 10

4 J . 4

1.100

1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-1		Collect	ed: 1	10/23/2008	17:00	SPL San	nple I	D : 0810	1658-01
			Site:	Blo	omfield, N	M				
Analyses/Method	Result	QUAL	Rep.L	imit	Di	I. Factor	Date Ana	lyzed	Analyst	Seq.
DIESEL RANGE ORG	ANICS				MCL	SV	V8015B	Un	its: mg/L	
Diesel Range Organics (C10-C28) 3.7			1		10	11/02/08	23:09	NW	475038
Surr: n-Pentacosane	110		% 20-	150		10	11/02/08	23:09	NW	475038
Prep Method	Prep Date	Prep Initials	Prep Fac	tor						
SW3510C	10/30/2008 10:38	JDM	1.00							
ION CHROMATOGRA	РНҮ				MCL		E300.0	Un	its: mg/L	
Chloride	22.8			2		4	11/10/08	22:26	TW	476603
Fluoride	ND			2		4	11/10/08	22:26	TW	476603
Ortho-phosphate (As P)	ND			5		10	11/20/08	3 8:10	TW	478077
Sulfate	438			50		100	11/11/08	16:22	TW	476645
MERCURY, TOTAL					MCL	SV	V7470A	Un	its: mg/L	
Mercury	ND		0.0	002		1	11/06/08	14:30	F_S	475569
Prep Method	Prep Date	Prep Initials	Prep Fac	tor						
SW7470A	11/06/2008 13:18	F_S	1.00							
METALS BY METHOD	6010B, TOTAL				MCL	SV	V6010B	Un	its: mg/L	
Calcium	141			0.1		1	11/04/08		s_c	475207
Iron	2.59		(0.02		1	11/04/08	23:48	s_c	475207
Magnesium	18.3			0.1		1	11/04/08	23:48	S_C	475207
Manganese	0.417		0.	005		1	11/04/08	23:48	s_c	475207
Sodium	245			0.5		1	11/04/08	23:48	S_C	475207
Prep Method	Prep Date	Prep Initials	Prep Fac	tor						
SW3010A	,10/31/2008 15:00	BDG	1.00							
METALS BY METHOD	6020A, TOTAL				MCL	SV	V6020A	Un	its: mg/L	
Arsenic	ND		0.	005		1	11/06/08	14:07	AL_H	475559
Barium	0.0459		0.	005		1	11/06/08	14:07	AL_H	475559
Cadmium	ND		0.	005		1	11/06/08	14:07	AL_H	475559
Chromium	ND		0.	005		1	11/06/08	14:07	AL_H	475559
Lead	0.00509		0.	005		1	11/06/08	14:07	AL_H	475559
Selenium	ND		0.	005		1	11/06/08	14:07	AL_H	475559
Silver	ND		0.	005		1	11/06/08	14:07	AL_H	475559
Prep Method	Prep Date	Prep Initials	Prep Fac	tor						
SW3010A	10/31/2008 15:00	BDG	1.00							
NITRATE NITROGEN	(AS N), TOTAL				MCL		E353.2	Un	its: mg/L	
Nitrogen, Nitrate (As N)	2.8			0.5		1	11/03/08			475760

Qualifiers:

ND/U - Not Detected at the Reporting Limit

 $\ensuremath{\mathsf{B/\!V}}\xspace$ - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08101658 Page 3 11/21/2008 4:15:56 PM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW-1

- 1 B

1. S. 1. S. 1.

(ang si shi

1. 2 de

چېند مغد م

14. 2ª ------

"June

A 9.0000

a a falange

33. 44

Collected: 10/23/2008 17:00

SPL Sample ID: 08101658-01

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	Y METHOD 8270C		MCL SV	V8270C Ur	nits: ug/L	
1,2,4-Trichlorobenzene	ND	5	1	11/06/08 16:58	GY	4755962
1,2-Dichlorobenzene	ND	5	1	11/06/08 16:58	GY	4755962
1,2-Diphenylhydrazine	ND	10	1	11/06/08 16:58	GY	4755962
1,3-Dichlorobenzene	ND	5	1	11/06/08 16:58	GY	4755962
1,4-Dichlorobenzene	ND	5	1	11/06/08 16:58	GY	4755962
2,4,5-Trichlorophenol	ND	10	1	11/06/08 16:58	GY	4755962
2,4,6-Trichlorophenol	ND	. 5	1	11/06/08 16:58	GY	4755962
2,4-Dichlorophenol	ND	5	1	11/06/08 16:58	GY	4755962
2,4-Dimethylphenol	ND	5	1	11/06/08 16:58	GY	4755962
2,4-Dinitrophenol	ND	25	1	11/06/08 16:58	GY	4755962
2,4-Dinitrotoluene	ND	5	1	11/06/08 16:58	GY	4755962
2,6-Dinitrotoluene	ND	5	1	11/06/08 16:58	GY	4755962
2-Chloronaphthalene	ND	5	1	11/06/08 16:58	GY	4755962
2-Chlorophenol	ND	5	1	11/06/08 16:58	GY	4755962
2-Methylnaphthalene	ND	5	. 1	11/06/08 16:58	GY	4755962
2-Nitroaniline	ND	25	1	11/06/08 16:58	GY	4755962
2-Nitrophenol	ND	5	1	11/06/08 16:58	GY	4755962
3.3'-Dichlorobenzidine	ND	10	1	11/06/08 16:58	GY	4755962
3-Nitroaniline	ND	25	1	11/06/08 16:58	GY	4755962
4,6-Dinitro-2-methylphenol	ND	25	1	11/06/08 16:58	GY	4755962
4-Bromophenyl phenyl ether	ND	5	1	11/06/08 16:58	GY	4755962
4-Chloro-3-methylphenol	ND	5	1	11/06/08 16:58	GY	4755962
4-Chloroaniline	ND	5	1	11/06/08 16:58	GY	4755962
4-Chlorophenyl phenyl ether	ND	5	1	11/06/08 16:58	GY	4755962
4-Nitroaniline	ND	25	1	11/06/08 16:58	GY	4755962
4-Nitrophenol	ND	25	1	11/06/08 16:58	GY	4755962
Acenaphthene	ND	5	1	11/06/08 16:58	GY	4755962
Acenaphthylene	ND	5	1	11/06/08 16:58	GY	4755962
Aniline	ND	5	1	11/06/08 16:58	GY	4755962
Anthracene	ND	5	1	11/06/08 16:58	GY	4755962
Benz(a)anthracene	ND	5	1	11/06/08 16:58	GY	4755962
Benzo(a)pyrene	ND	5	1	11/06/08 16:58	GY	4755962
Benzo(b)fluoranthene	ND	5	. 1	11/06/08 16:58	GY	4755962
Benzo(g,h,i)perylene	ND	5	1	11/06/08 16:58	GY	4755962
Benzo(k)fluoranthene	ND	5	1	11/06/08 16:58	GY	4755962
Benzoic acid	ND	25	1	11/06/08 16:58	GY	4755962
Benzyl alcohol	ND	5	1	11/06/08 16:58	GY	4755962
Bis(2-chloroethoxy)methane	ND	5	1	11/06/08 16:58	GY	4755962
Bis(2-chloroethyl)ether	ND	5	1	11/06/08 16:58	GY	4755962

Qualifiers:

ND/U - Not Detected at the Reporting Limit

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

* - Surrogate Recovery Outside Advisable QC Limits

B/V - Analyte detected in the associated Method Blank

- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

1 B 2

ل رای مولود را د در معطول

2.40

5 B. C

a strate

وبعراديات

Service .

A Carl

Section 2.

5. 1. 2. 2. 2.

م في الم

the water

4- 4-9-

Collected: 10/23/2008 17:00

SPL Sample ID:

le ID: 08101658-01

A (/A) ()				field, NM	Data Analysis d	A	
Analyses/Method	Result	QUAL Rep.		Dil. Factor	Date Analyzed	Analyst	Seq. #
Bis(2-chloroisopropyl)ether	ND		5	1	11/06/08 16:58	GY	4755962
Bis(2-ethylhexyl)phthalate	ND		5	1	11/06/08 16:58	GY	4755962
Butyl benzyl phthalate	ND		5	1	11/06/08 16:58	GY	4755962
Carbazole	ND		5	1	11/06/08 16:58	GY	4755962
Chrysene	ND	· · · · · · · · · · · · · · · · · · ·	5	1	11/06/08 16:58	GY	4755962
Dibenz(a,h)anthracene	ND		5		11/06/08 16:58	GY	4755962
Dibenzofuran	ND		5	1	11/06/08 16:58	GY	4755962
Diethyl phthalate	ND		5	1	11/06/08 16:58	GY	4755962
Dimethyl phthalate	ND		5	1	11/06/08 16:58	GY	4755962
Di-n-butyl phthalate	ND		5	1	11/06/08 16:58	GY	4755962
Di-n-octyl phthalate	ND		5	1	11/06/08 16:58	GY	4755962
Fluoranthene	ND		5	1	11/06/08 16:58	GY	4755962
Fluorene	ND		5	1	11/06/08 16:58	GY	4755962
Hexachlorobenzene	ND		5	1	11/06/08 16:58	GY	4755962
Hexachlorobutadiene	ND		5	1	11/06/08 16:58	GY	4755962
Hexachlorocyclopentadiene	ND		5	. 1	11/06/08 16:58	GY	4755962
Hexachloroethane	ND		5	1	11/06/08 16:58	GY	4755962
Indeno(1,2,3-cd)pyrene	ND		5	1	11/06/08 16:58	GY	4755962
Isophorone	ND		5	1	11/06/08 16:58	GY	4755962
Naphthalene	ND		5	1	11/06/08 16:58	GY	4755962
Nitrobenzene	ND		5	1	11/06/08 16:58	GY	4755962
N-Nitrosodi-n-propylamine	ND		5	1	11/06/08 16:58	GY	4755962
N-Nitrosodiphenylamine	ND		5	1	11/06/08 16:58	GY	4755962
Pentachlorophenol	ND		25	1	11/06/08 16:58	GY	4755962
Phenanthrene	ND		5	1	11/06/08 16:58	GY	4755962
Phenol	ND		5	1	11/06/08 16:58	GY	4755962
Pyrene	ND		5	1	11/06/08 16:58	GY	4755962
Pyridine	ND		5	1	11/06/08 16:58	GY	4755962
2-Methylphenol	ND		5	1	11/06/08 16:58	GY	4755962
3 & 4-Methylphenol	ND		5	1	11/06/08 16:58	GY	4755962
Surr: 2,4,6-Tribromophenol	66.7	% 10)-123	1	11/06/08 16:58	GY	4755962
Surr: 2-Fluorobiphenyl	72.0	% 23	3-116	1	11/06/08 16:58	GY	4755962
Surr: 2-Fluorophenol	37.3	· · · · · · · · · · · · · · · · · · ·	5-110	1	11/06/08 16:58	GY	4755962
Surr: Nitrobenzene-d5	70.0	· · · · · · · · · · · · · · · · · · ·	-114	1	11/06/08 16:58	GY	4755962
Surr: Phenol-d5	28.0)-110	1	11/06/08 16:58	GY	4755962
Surr: Terphenyl-d14	72.0		2-141	1	11/06/08 16:58	GY	4755962

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	10/30/2008 16:53	LLL	1.00

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

12.2

and the second

1.00

125-327

100

R.

1. S. 1.

17. 12 B

Sec. 22

1. S. S. S.

P.L. But

A.

13.0 AL

TANC- ST

All and

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW-1		Collected: 10	/23/2008 17:00	SPL Sample II) : 0810	1658-01
· ·		Site: Bloo	mfield, NM			
 Analyses/Method	Result QUAL	. Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	THOD 8260B		MCL SV	V8260B Uni	its: ug/L	
1,1,1,2-Tetrachloroethane	ND	5	1	11/04/08 16:40	LT	4752371
1,1,1-Trichloroethane	ND	5	1	11/04/08 16:40	LT	4752371
1,1,2,2-Tetrachloroethane	ND	5	1	11/04/08 16:40	LT	4752371
1,1,2-Trichloroethane	ND	5	1	11/04/08 16:40	LT	4752371
1,1-Dichloroethane	ND	5	1	11/04/08 16:40	LT	4752371
1,1-Dichloroethene	ND	5	1	11/04/08 16:40	LT	4752371
1,1-Dichloropropene	ND	5	1	11/04/08 16:40	LT	4752371
1,2,3-Trichlorobenzene	ND	5	1	11/04/08 16:40	LT	4752371
1,2,3-Trichloropropane	ND	5	1	11/04/08 16:40	LT	4752371
1,2,4-Trichlorobenzene	ND	5	1	11/04/08 16:40	LT	4752371
1,2,4-Trimethylbenzene	ND	5	1	11/04/08 16:40	LT	4752371
1,2-Dibromo-3-chloropropane	ND	5	1	11/04/08 16:40	LT	4752371
1,2-Dibromoethane	ND	5	1	11/04/08 16:40	LT	4752371
1,2-Dichlorobenzene	ND	5	1	11/04/08 16:40	LT	4752371
1,2-Dichloroethane	ND	5	1	11/04/08 16:40	LT	4752371
1,2-Dichloropropane	ND	5	1	11/04/08 16:40	LT	4752371
1,3,5-Trimethylbenzene	ND	5	1	11/04/08 16:40	LT	4752371
1,3-Dichlorobenzene	ND	5	1	11/04/08 16:40	LT	4752371
1,3-Dichloropropane	ND	5	1	11/04/08 16:40	LT	4752371
1,4-Dichlorobenzene	ND	5	1	11/04/08 16:40	LT	4752371
2,2-Dichloropropane	ND	5	1	11/04/08 16:40	LT	4752371
2-Butanone	ND	20	1	11/04/08 16:40	LT	4752371
2-Chloroethyl vinyl ether	ND	10	1	11/04/08 16:40	LT	4752371
2-Chlorotoluene	ND	5	1	11/04/08 16:40	LT	4752371
2-Hexanone	ND	10	1	11/04/08 16:40	LT	4752371
4-Chlorotoluene	ND	5	1	11/04/08 16:40	LT	4752371
4-Isopropyltoluene	ND	5	1	11/04/08 16:40	LT	4752371
4-Methyl-2-pentanone	ND	10	1	11/04/08 16:40	LT	4752371
Acetone	ND	100	1	11/04/08 16:40	LT	4752371
Acrylonitrile	ND	50	1	11/04/08 16:40	LT	4752371
Benzene	ND	5	1	11/04/08 16:40	LT	4752371
Bromobenzene	ND	5	1	11/04/08 16:40	LT	4752371
Bromochloromethane	ND	5	1	11/04/08 16:40	LT	4752371
Bromodichloromethane	ND	5	1	11/04/08 16:40	LT	4752371
0	ND			14/04/00 10 10		1750074

5

10

5

5

5

Qualifiers:

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Carbon tetrachloride

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

ND

ND

ND

ND

ND

- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

11/04/08 16:40

11/04/08 16:40

11/04/08 16:40

11/04/08 16:40

11/04/08 16:40

LT

LT

LT

LT

LT

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

1

1

1

1

1

08101658 Page 6 11/21/2008 4:15:56 PM

4752371

4752371

4752371

4752371

4752371

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

08101658-01

(713) 660-0901

Client Sample ID:MW-1

1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1000

1

1.4

-186 - F

Section of the other

J. Pro

1. 2.

¥. 1.82

- 43- 1 H

- <u>19</u>-

4-465 °C3

中田の

Collected: 10/23/2008 17:00

SPL Sample ID:

0	-	-	u	Р	10	•	-	•	

					3/2008 17.00	SPL Sample I	D : 00	101030-01
			Sit	te: Bloom	field, NM			
Analyses/Method	Result	QUAL	R	ep.Limit	Dil. Factor	Date Analyzed	Analys	t Seq. #
Chloroethane	ND			10	1	11/04/08 16:40	LT	4752371
Chloroform	ND			5	1	11/04/08 16:40	LT	4752371
Chloromethane	ND			10	1	11/04/08 16:40	LT	4752371
Dibromochloromethane	ND			5	1	11/04/08 16:40	LT	4752371
Dibromomethane	ND			5	1	11/04/08 16:40	LT	4752371
Dichlorodifluoromethane	ND			10	1	11/04/08 16:40	LT	4752371
Ethylbenzene	ND			5	1	11/04/08 16:40	LT	4752371
Hexachlorobutadiene	ND			5	1	11/04/08 16:40	LT	4752371
Isopropylbenzene	ND			5	1	11/04/08 16:40	LT	4752371
Methyl tert-butyl ether	ND			5	1	11/04/08 16:40	LT	4752371
Methylene chloride	ND			5	1	11/04/08 16:40	LT	4752371
Naphthalene	ND			5	1	11/04/08 16:40	LT	4752371
n-Butylbenzene	ND			5	1	11/04/08 16:40	LT	4752371
n-Propylbenzene	ND			5	1	11/04/08 16:40	LT	4752371
sec-Butylbenzene	ND			5	1	11/04/08 16:40	LT	4752371
Styrene	ND			5	1	11/04/08 16:40	LT	4752371
tert-Butylbenzene	ND			5	1	11/04/08 16:40	LT .	4752371
Tetrachloroethene	ND			5	1	11/04/08 16:40	LT	4752371
Toluene	ND			5	1	11/04/08 16:40	LT	4752371
Trichloroethene	ND			5	1	11/04/08 16:40	LT	4752371
Trichlorofluoromethane	ND			5	1	11/04/08 16:40	LT	4752371
Vinyl acetate	ND			10	1	11/04/08 16:40	LT	4752371
Vinyl chloride	ND			10	1	11/04/08 16:40	LT	4752371
cis-1,2-Dichloroethene	ND			5	1	11/04/08 16:40	LT	4752371
cis-1,3-Dichloropropene	ND			5	1	11/04/08 16:40	LT	4752371
m,p-Xylene	ND			5	1	11/04/08 16:40	LT	4752371
o-Xylene	ND			5	1	11/04/08 16:40	LT	4752371
trans-1,2-Dichloroethene	ND			5	1	11/04/08 16:40	LT	4752371
trans-1,3-Dichloropropene	ND			5	1	11/04/08 16:40	LT	4752371
1,2-Dichloroethene (total)	ND			5	1	11/04/08 16:40	LT	4752371
Xylenes,Total	ND			5	1	11/04/08 16:40	LT	4752371
Surr: 1,2-Dichloroethane-d4	104		%	62-130	1	11/04/08 16:40	LT	4752371
Surr: 4-Bromofluorobenzene	94.0		%	70-130	1	11/04/08 16:40	LT	4752371

%

74-122

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank * - Surrogate Recovery Outside Advisable QC Limits

104

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

11/04/08 16:40

LT

1

08101658 Page 7 11/21/2008 4:15:57 PM

4752371

教育は

語には語

能学 劉

1.1

Strate St

があたい

法部部

ないない

Sec.

States,

である

Part of

語を調査

Estativ

記録が

08101658 Page 8 11/21/2008 4:15:57 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

	Analysis: Method:	Diesel Range Organics SW8015B				WorkOrder: Lab Batch ID:	08101658 84925
	<u> </u>	Method	Blank		Samples in Analytical	Batch:	
动管	RunID: HP_Z_081	102B-4750378	Units:	mg/L	Lab Sample ID	Client Sam	ple ID
٩Ň	Analysis Date:	11/02/2008 15:11	Analyst:	NW	08101658-01C	MW-1	
A TO BE	Analysis Date: Preparation Date:	10/30/2008 10:38	Prep By:	JDM Method SW3510C			

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	0.10
Surr: n-Pentacosane	85.6	20-150

		Duplicate (LCS/LCSD)	

RunID:
Analysis Date:
Preparation Date:

 HP_Z_081102B-4750379
 Units:
 mg/L

 11/02/2008 15:33
 Analyst:
 NW

 10/30/2008 10:38
 Prep By:
 JDM M

(5:33 Analyst: NW(0:38 Prep By: JDM Method SW3510C

100 mm 200	Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
	Diesel Range Organics (C10-C28)	2.00	2.09	104	2.00	2.03	102	2.7	20	21	130
	Surr: n-Pentacosane	0.0500	0.0469	93.8	0.0500	0.0440	88.0	6.4	30	20	150

Qualifiers:

1.13 E.M.

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 9 11/21/2008 4:15:59 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

A	Matelal	Mathed CO	100 T-1-1		COP She		130 9 #1	-		14/	kOrder:	004	01658		
Analysis: Method:	SW6010B	Method 60	10B, Totai								Batch IE				
		Meth	od Blank				San	nples	in Analyt	ical Batc	h:				
RunID: TJA_0	81104A-475205	7	Units:	mg/L			Lab	Sam	ple ID		<u>Client</u>	Sample ID			
Analysis Date:	11/04/200	8 22:40	Analyst:	S_C			081	01658	3-01E		MW-1				
Preparation Date	: 10/31/200	8 15:00	Prep By:	BDG I	Method SW	3010A									
		Analyte		Result	Rep Limit										
Ca	lcium	<u> </u>													
	gnesium			ND	0.1										
	nganese dium				1										
				La	aboratory C	ontrol S	ample (LCS)							<u></u>
		RunID:		TJA_081	104A-475205	8 Uni	ts:	mg/L							
		Analysis	s Date:	11/04/20	08 22:44			s_c							
		Prepara	ation Date:	10/31/20	008 15:00	Pre			Method	SW3010A	A Contraction				
			Analyt	e		Spike	Result		ercent	Lower	Upper				
						Added			ecovery	Limit	Limit				
		Calcium				1.000	1.05		105.2	80	12	-			
		Iron				1.000	1.00		100.5	80					
		Magnesiur				1.000	1.00		100.5	80	12				
		Manganes Sodium	e			1.000	1.01 1.07	_	101.6 107.9	80 80	12 12	_			
		Socialiti				1.000		5	107.9		12				
<u></u>			Matrix	Spike (N	MS) / Matrix	Spike D	uplicate	e (MS	<u>D)</u>		<u></u>	<u> </u>			
		Samn	le Spiked:	08101											
		Runic			31104A-47520	060 U	nits:	mg/	۲L						
			sis Date:		2008 22:53		nalyst:	s_c							
		Prepa	ration Date:	10/31/2	2008 15:00		rep By:		G Method	SW3010	A				
	Analyte		Sample	MS	MS	MS %	•	ISD	MSD		D %	RPD	RPD	Low	Hig
			Result	Spike Added	Result	Recov		pike dded	Result	Rec	overy		Limit	Limit	Lim
Calaium		·	4000		400	1									
Calcium ron			1026 0.5156	1	100 1.48		N/C 3.44	1 1		055 502	N/C 98.59	N/C 1.440	20 20	75 75	1:
Magnesium	• ········		1406	1	137		N/C	1		442	98.59 N/C	1.440 N/C	20	75	12
Manganese			18.28	1	18.8		N/C	1).79	N/C	N/C	20	75	
Qualifiers:	ND/II - N	ot Detected :	at the Reporti	na Limit		MI -	Matrix I	nterfe	rence						
Quannel 3.			in the assoc	-	thod Blank				eportable	due to Dili	ition				
								,							
	J - Estima	ated value be	tween MDL a	Ind PQL		* - R	ecoverv	Outs	ide Advisa	able OC L	imits				
			etween MDL a xceeds calibra		ve	* - R	ecovery	Outs	ide Advisa	able QC L	imits				

TNTC - Too numerous to count

4

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 10 11/21/2008 4:15:59 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

COP Shepherd Keisey #1E

A	Analysis: Method:	Metals by Meth SW6010B	hod 6010B, Total						WorkOrder Lab Batch	-	08101658 85019	1		
100			Matrix	Spike (N	<u> 1S) / Matrix S</u>	pike Dupli	cate (M	SD)						
Strate of			Sample Spiked: RunID: Analysis Date: Preparation Date:	11/04/2	725-02 1104A-475206 2008 22:53 2008 15:00	0 Units: Analy: Prep 8	st: S_	g/L _C DG Method	SW3010A					
	,	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added		MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit	

4547

N/C

1

4751

N/C

N/C

20

75

125

Qualifiers:

ا جعيدة

د ليديدون

Sodium

3

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

4678

1

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 11 11/21/2008 4:15:59 PM

Chromium

Selenium

Lead

Silver

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

	Analysis: Method:		Metals by Method 60 SW6020A	20A, Total				WorkOrder: Lab Batch ID:	08101658 85019d-l	
対対に			Meth	od Blank			Samples in Analyti			
1. A	RunID: ICPM	/IS_081	1104A-4750503	Units:	mg/L		Lab Sample ID	Client San	nple ID	
198	Analysis Date:		11/04/2008 13:42	Analyst:	AL_H		08101658-01E	MW-1		
	Analysis Date: Preparation Da	ate:	10/31/2008 15:00	Prep By:	BDG N	1ethod SW3010A				
	-		p+17			<u></u>				
and the second			Analyte		Result	Rep Limit				
	I A	Arsenic			ND	0.005				
19	E	Barium	·····		ND	0.005				
	C	Cadmiu	im		ND	0.005				

Laboratory	Control	Sample	(ICS)
<u>Lan</u> or atory	0011101	oumpre	75001

RunID:
Analysis Date:
Preparation Date:

ICPMS_081104A-4750511 11/04/2008 14:41 10/31/2008 15:00

ND

ND

ND ND 0.005

0.005 0.005

0.005

mg/L Units: Analyst: AL_H Prep By: BDG Method SW3010A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Arsenic	0.1000	0.1014	101.4	80	120
Barium	0.1000	0.09790	97.90	80	120
Cadmium	0.1000	0.09410	94.10	80	120
Chromium	0.1000	0.09262	92.62	80	120
Lead	0.1000	0.09830	98.30	80	120
Selenium	0.1000	0.1038	103.8	80	120
Silver	0.1000	0.09411	94.11	80	120

「「「「「「」」」

a the first of the second

Post Digestion Spike (PDS) / Post Digestion Spike Duplicate (PDSD)

	Sample Spiked:	08101725-02		
湖谷	RunID:	ICPMS_081104A-4750512	Units:	mg/L
	RunID: Analysis Date:	11/04/2008 14:46	Analyst:	AL_H

予加		Analyte Sam Res	•	PDS Spike Added	PDS Result	PDS % Recovery	PDSD Spike Added	PDSD Result	PDSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
	Arsenic Cadmium	0.0	00857	0.1	0.08618	77.61	0.1	0.0854	76.83	0.9092	20	75	125
ŧ.	Cadmium		ND	0.1	0.06186	61.86 *	0.1	0.06181	61.81 *	0.08086	20	75	125
	Qualifiers:	ND/U - Not Detected at the	Report	ing Limit		MI - Ma	trix Interfe	rence					

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 12 11/21/2008 4:15:59 PM

	Qua	ality Control Re	port					8880 INTER HOUST	N LABORAT RCHANGE ON, TX 770) 660-0901	DRIVE		·
Conoco Phillips												
				COP Shept	nerd Kelsey	#1E						
Analysis: Method:	Metals by Me SW6020A	thod 6020A, Total						WorkOrder: Lab Batch II		01658 19d-l		
Silver		ND	0.1	0.06299	62.99 *	0.1	0.06274	62.74 *	0.3977	20	75	12
	Analyte	Sample Spiked: RunID: Analysis Date: Preparation Date: Sample	11/04/2	081104A-4750 2008 13:56 2008 15:00 MS	Analys	_		W3010A MSD %	RPD	RPD	Low	High
		Result	Spike Added	Result	Recovery	Spike Added	Result	Recovery		Limit	Limit	Limit
Arsenic		0.008570	0.1	0.08153	72.96 *	0.1	0.08008	71.51 *	1.794	20	75	12
Barium		0.03462	0.1	0.1285	93.88	0.1	0.1218	87.18	5.354	20	75	12
Cadmium		ND	0.1	0.06051	60.51 *	0.1	0.05932	59.32 *	1.986	20		
Chromium		ND	0.1	0.07857	78.57	0.1	0.07566	75.66	3.774	20	75	
ead		ND	0.1	0.1001	100.1	0.1	0.1008	100.8	0.6969	20		
Selenium		0.02830	0.1	0.1066	78.30	0.1	0.1125	84.20	5.386	20		
Silver		ND	0.1	0.06497	64.97 *	0.1	0.06439	64.39 *	0.8967	20	75	12

Qualifiers:

Sec. 1

A STATE OF

Sugar t

の書語

金融に

(Jahan

10.00

A STATE

the second for

s: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 13 11/21/2008 4:16:00 PM

1

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

Analysis: Mercury, Total Method: SW7470A Method Blank Samples in Analytical RunID: HGLC_081106A-4755670 Units: mg/L Lab Sample ID Analysis Date: 11/06/2008 13:32 Analyst: F_S 08101658-01E Preparation Date: 11/06/2008 13:18 Prep By: F_S Method SW7470A Mercury ND 0.0002 Laboratory Control Sample (LCS) 1000000000000000000000000000000000000	WorkOrder: Lab Batch ID: I Batch: <u>Client Sa</u> MW-1	08101658 85178 ample ID	
RunID: HGLC_081106A-4755670 Units: mg/L Lab Sample ID Analysis Date: 11/06/2008 13:32 Analyst: F_S 08101658-01E Preparation Date: 11/06/2008 13:18 Prep By: F_S Method SW7470A Analyte Result Rep Limit Mercury ND 0.0002	<u>Client Sa</u>	ample ID	
Analysis Date: 11/06/2008 13:32 Analyst: F_S 08101658-01E Preparation Date: 11/06/2008 13:18 Prep By: F_S Method SW7470A Analyte Result Rep Limit Mercury ND 0.0002		ample ID	
Analysis Date: 11/06/2008 13:32 Analyst: F_S 08101658-01E Preparation Date: 11/06/2008 13:18 Prep By: F_S Method SW7470A Analyte Result Rep Limit Mercury ND 0.0002			
Mercury ND 0.0002			
Laboratory Control Sample (LCS)			
	- <u></u> , <u>-</u>		
RunID: HGLC_081106A-4755671 Units: mg/L			
Analysis Date: 11/06/2008 13:35 Analyst: F_S Preparation Date: 11/06/2008 13:18 Prep By: F_S Method SW	7470A		
	wer Upper imit Limit 80 120		
Matrix Spike (MS) / Matrix Spike Duplicate (MSD)			
Sample Spiked: 08101734-09 RunID: HGLC_081106A-4755673 Units: mg/L			
Analysis Date:11/06/2008 13:39Analyst:F_SPreparation Date:11/06/2008 13:18Prep By:F_SMethod	W7470A		
Analyte Sample MS MS MS% MSD MSD Result Spike Result Result Result Result Added	MSD % N Recovery	RPD RPD Low Limit Limi	
Mercury ND 0.002 0.001885 94.26 0.002 0.001843	92.14	2.266 20 7	5 12

Qualifiers: ND/U - Not Detected at the Reporting Limit MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

- D Recovery Unreportable due to Dilution
- * Recovery Outside Advisable QC Limits
- E Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 14

11/21/2008 4:16:00 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

			CONOCO Ph P Shepherd Ko	•		
nalysis: lethod:	Semivolatile Organio SW8270C		onepheru Ki		WorkOrder: Lab Batch ID:	08101658 84949
		od Blank		Samples in Analyt		
	Meti			Samples in Analyt	ical balcii.	
RunID: H_08	1106B-4755273	Units: ug/L		Lab Sample ID	Client Sar	nple ID
Analysis Date:	11/06/2008 10:56	Analyst: GY		08101658-01D	MW-1	<u> </u>
•		-	1 01/05400	00101030-010	1414.4 - 1	
Preparation Dat	e: 10/30/2008 16:53	Prep By: LLL Metho	d SW3510C			
	Analita	Result Rec	Limit			
ŀ	Analyte					
	2,4-Trichlorobenzene	ND ND	5.0			
	2-Dichlorobenzene 2-Diphenylhydrazine	ND ND	10			
	3-Dichlorobenzene	ND	5.0			
	4-Dichlorobenzene	ND ND	5.0			
	4,5-Trichlorophenol	ND	10			
	4.6-Trichlorophenol	ND	5.0			
	4-Dichlorophenol	ND	5.0			
	4-Dimethylphenol	ND	5.0			
2.	4-Dinitrophenol	ND	25			
2,	4-Dinitrotoluene	ND	5.0			
	6-Dinitrotoluene	ND	5.0			
	Chloronaphthalene	ND	5.0			
	Chlorophenol	ND	5.0			
	Methylnaphthalene	ND	5.0			
	Nitroaniline	ND	25			
	Nitrophenol	ND	5.0			
	3'-Dichlorobenzidine	ND ND	10			
	Nitroaniline	ND ND	25			
	6-Dinitro-2-methylphenol Bromophenyl phenyl ether	ND ND	<u>25</u> 5.0			
	Chloro-3-methylphenol	ND	5.0			
	Chloroaniline	ND	5.0			
	Chlorophenyl phenyl ether	ND	5.0			
	Nitroaniline	ND	25			
	Nitrophenol	ND	25			
	cenaphthene	ND	5.0			
A	cenaphthylene	ND	5.0			
	niline	ND	5.0			
	nthracene	ND	5.0			
	enz(a)anthracene	ND	5.0			
	enzo(a)pyrene	ND	5.0			
	enzo(b)fluoranthene	ND ND	5.0			
	enzo(g,h,i)perylene	ND ND	5.0			
	enzo(k)fluoranthene	ND ND	5.0 25			
	enzyl alcohol	ND	5.0			
	s(2-chloroethoxy)methane	ND ND	5.0			
	s(2-chioroethyl)ether	ND	5.0			
	s(2-chloroisopropyl)ether	ND	5.0			
	s(2-ethylhexyl)phthalate	ND	5.0			
	utyl benzyl phthalate	ND	5.0			
	arbazole	ND	5.0			
	nrysene	ND	5.0			
	benz(a,h)anthracene	ND	5.0			
اما	benzofuran	ND	5.0			

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

N.

100

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 15 11/21/2008 4:16:00 PM

Quality Control Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

Analysis: Semivola Method: SW82700		e Organics by Metho	d 8270C	WorkOrder: Lab Batch ID:	08101658 84949	
		Method Blank				
BuniD	H 0811068-4755273	Linite:	uo/l			

RunID: H_0811	06B-4755273	Units:	ug/L	
Analysis Date:	11/06/2008 10:56	Analyst:	GY	
Preparation Date:	10/30/2008 16:53	Prep By:	LLL	Method SW3510C

Analyte	Result	Rep Limit
Diethyl phthalate	ND	5.0
Dimethyl phthalate	ND	5.0
Di-n-butyl phthalate	ND	5.0
Di-n-octyl phthalate	ND	5.0
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isophorane	ND	5.0
Naphthalene	ND	5.0
Nitrobenzene	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	ND	5.0
Pentachlorophenol	ND	25
Phenanthrene	ND	5.0
Phenol	ND	5.0
Pyrene	ND	5.0
Pyridine	ND	5.0
2-Methylphenol	ND	5.0
3 & 4-Methylphenol	ND	5.0
Surr: 2,4,6-Tribromophenol	76.0	10-123
Surr: 2-Fluorobiphenyl	82.0	23-116
Surr: 2-Fluorophenol	78.7	16-110
Surr: Nitrobenzene-d5	76.0	21-114
Surr: Phenol-d5	85.3	10-110
Surr: Terphenyl-d14	80.0	22-141

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:	
Analysis Date:	
Preparation Date:	

H_081106B-4755274 11/06/2008 11:26 10/30/2008 16:53

274 Units:26 Analyst:53 Prep By:

ug/L st: GY 3y: LLL Method SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
1,2,4-Trichlorobenzene	25.0	19.0	76.0	25.0	20.0	80.0	5.1	39	21	120
1,2-Dichlorobenzene	25.0	20.0	80.0	25.0	20.0	80.0	0.0	50	20	150

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

Qualifiers:

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 16 11/21/2008 4:16:00 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

		COP Shepherd Kelsey #1E									
Analysis: Method:	Semivolatile O SW8270C	rganics by Me	thod 8270	с				NorkOrder: .ab Batch ID		0810165 84949	58
	Lat	poratory Conti	rol Sample	/Laboratory	Control Sa	mple Duplica	te (LCS/LCS	<u>D)</u>			
	RunID:		_081106B-4	755274		ug/L					
	Analysi	s Date: 1	1/06/2008	11:26	Analyst:	GY					
	Prepara	ation Date: 1	0/30/2008	16:53	Prep By:	LLL Method	SW3510C				
	Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
1,2-Diphenylhyd	Irazine	25.0	18.0	72.0	25.0	19.0	76.0	5.4	50	10	25
1,3-Dichloroben	zene	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	20	150
1,4-Dichloroben	zene	25.0	20.0	80.0	25.0	20.0	80.0	0.0	45	20	150
2,4,5-Trichlorop	henol	25.0	20.0	80.0	25.0	23.0	92.0	14.0	50	30	15
2,4,6-Trichlorop	henol	25.0	20.0	80.0	25.0	22.0	88.0	9.5	50	30	15
2,4-Dichlorophe	nol	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	30	15
2,4-Dimethylphe	enol	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	32	14
2,4-Dinitropheno	ol l	25.0	14.0	56.0	25.0	15.0	60.0	6.9	50	10	16
2,4-Dinitrotoluer	ne	25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	30	15
2,6-Dinitrotoluer	1e	25.0	20.0	80.0	25.0	23.0	92.0	14.0	50	30	15
2-Chloronaphtha	alene	25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	30	15
2-Chlorophenol		25.0	21.0	84.0	25.0	22.0	88.0	4.7	40	23	134
2-Methylnaphtha	alene	25.0	22.0	88.0	25.0	23.0	92.0	4.4	50	20	17(
2-Nitroaniline		25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	20	16
2-Nitrophenol		25.0	. 19.0	76.0	25.0	22.0	88.0	14.6	50	29	18:
3,3'-Dichlorober	nzidine	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	30	20
3-Nitroaniline		25.0	19.0	76.0	25.0	22.0	88.0	14.6	50	20	16
4,6-Dinitro-2-me	ethylphenol	25.0	17.0	- 68.0	25.0	18.0	72.0	5.7	50	. 10	16
4-Bromophenyl	phenyl ether	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	30	15
4-Chloro-3-meth	ylphenol	25.0	20.0	80.0	25.0	22.0	88.0	9.5	42	25	16
4-Chloroaniline	- <u></u>	25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	20	16
4-Chlorophenyl	phenyl ether	25.0	23.0	92.0	25.0	24.0	96.0	4.3	50	25	15
4-Nitroaniline		25.0	20.0	80.0	25.0	24.0	96.0	18.2	50	20	16
4-Nitrophenol		25.0	18.0	72.0	25.0	20.0	80.0	10.5	50	10	13
Acenaphthene		25.0	21.0	84.0	25.0		88.0	4.7	· 31	30	15
Acenaphthylene	·	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	33	25
Aniline		50.0	41.0	82.0	50.0	44.0	88.0	7.1	50	10	13
Anthracene		25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	27	13
Benz(a)anthrace		25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	33	14
Benzo(a)pyrene		25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	17	16
Benzo(b)fluoran	thene	25.0	20.0	80.0	25.0	22.0	88.0	9.5	50	24	15
Benzo(g,h,i)pery		25.0	22.0	88.0	25.0	23.0	92.0	4.4	50	30	16
Benzo(k)fluorant	thene	25.0	23.0	92.0	25.0	22.0	88.0	4.4	50	11	162

Qualifiers:

日本

18.44

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

imated value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 17 11/21/2008 4:16:00 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

				COP She	epherd Kels	ey #1E					
Analysis: Method:	Semivolatile O SW8270C	rganics by Met	thod 8270	с				WorkOrder: Lab Batch ID		0810165 84949	58
	Lai	poratory Contr	oi Sample	e/Laboratory	Control Sa	mple Duplica	te (LCS/LC	<u>SD)</u>			
	RunID:	-	_081106B-4			ug/L					
	Analysi Prepara		1/06/2008)/30/2008			GY LLL Method	SW3510C				
	Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Benzoic acid		25.0	40.0	160	25.0	40.0	160	0.0	50	10	400
Benzyl alcohol		25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	30	160
Bis(2-chloroetho	xy)methane	25.0	33.0	132	25.0	36.0	144	8.7	50	33	184
Bis(2-chloroethy	I)ether	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	12	158
Bis(2-chloroisop	ropyl)ether	25.0	23.0	92.0	25.0	24.0	96.0	4.3	50	20	160
Bis(2-ethylhexyl)	phthalate	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	10	158
Butyl benzyl phth	nalate	25.0	22.0	88.0	25.0	23.0	92.0	4.4	50	30	160
Carbazole		25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	150
Chrysene		25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	17	168
Dibenz(a,h)anthi	racene	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	30	160
Dibenzofuran		25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	150
Diethyl phthalate	•	25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	30	160
Dimethyl phthala	ite	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	160
Di-n-butyl phthal	ate	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	160
Di-n-octyl phthal	ate	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	20	150
Fluoranthene		25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	26	137
Fluorene		25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	30	150
Hexachlorobenze	ene	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	20	150
Hexachlorobutad	liene	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	. 20	140
Hexachiorocyclo	pentadiene	25.0	17.0	68.0	25.0	18.0	72.0	5.7	50	10	150
Hexachloroethan	e	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	14	120
Indeno(1,2,3-cd)	pyrene	25.0	23.0	92.0	25.0	24.0	96.0	4.3	50	30	160
Isophorone		25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	21	196
Naphthalene		25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	21	133
Nitrobenzene		25.0	20.0	80.0	25.0				50	20	160
N-Nitrosodi-n-pro	opylamine	25.0	22.0	88.0	25.0		92.0	4.4	38	- 30	160
N-Nitrosodiphen	ylamine	50.0	51.0	102	50.0		104		50	30	150
Pentachlorophen	ol	25.0	14.0	56.0	25.0		60.0		50	14	176
Phenanthrene		25.0	20.0	80.0	25.0	· /	84.0		50	10	140
Phenol		25.0	21.0	84.0	25.0		92.0		42	40	132
Pyrene		25.0	22.0	88.0	25.0		88.0	0.0	38	30	150
Pyridine		50.0	35.0	70.0	50.0		68.0	2.9	50	10	150
2-Methylphenol		25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	30	160

Qualifiers:

Are append

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

B/V - Analyte detected in the associated Method Blank

PQL * - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 18 11/21/2008 4:16:00 PM

ALC: LANG

開ま

No. of Lot of Lo

Sec. 2

B 12-16

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

	•								WorkOrder: Lab Batch ID:		08101658 84949		
		Labora	tory Contr	ol Sample	e/Laboratory	<u>Control Sa</u>	mple Duplica	te (LCS/LCS	<u>SD)</u>				
-		RunID:	н	_081106B-4	1755274	Units:	ug/L						
		Analysis Da	ite: 1	1/06/2008	11:26	Analyst:	GY						
1000		Preparation	Date: 1	0/30/2008	16:53	Prep By:	LLL Method	SW3510C					
Г		·····						1.000	000	DDD	1		
	Analyte		LCS Spike	LCS Result	LCS Percent	LCSD Spike	LCSD Result	LCSD Percent	RPD	RPD Limit	Lower Limit	Upper Limit	
			Added	, tooun	Recovery	Added	, toodit	Recovery		2	2		
	3 & 4-Methylphenol		25.0	19.0	76.0	25.0	21.0	84.0	10.0	50	10	160	
1	Surr: 2,4,6-Tribromopl	henol	75.0	64.0	85.3	75.0	70.0	93.3	9.0	30	10	123	
	Surr: 2-Fluorobiphenyl		50.0	42.0	84.0	50.0	41.0	82.0	2.4	30	23	116	
	Surr: 2-Fluorophenol		75.0	62.0	82.7	75.0	65.0	86.7	4.7	30	16	110	
a [Surr: Nitrobenzene-d5		50.0	40.0	80.0	50.0	42.0	84.0	4.9	30	21	114	
full addressed a	Surr: Phenol-d5		75.0	65.0	86.7	75.0	69.0	92.0	6.0	30	10	110	
	Surr: Terphenyl-d14		50.0	42.0	84.0	50.0	42.0	84.0	0.0	30	22	141	

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 19 11/21/2008 4:16:00 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Shepherd Kelsey #1E

Analysis:	Volatile Organics by	Method 8260B		WorkOrder:	08101658		
Method:	SW8260B				Lab Batch ID:	R256001	
	Meth	od Blank		Samples in Analyti	cal Batch:		
RunID: N_081	104A-4752370	Units: ug/L		Lab Sample ID	Client Sample ID		
Analysis Date:	11/04/2008 16:12	Analyst: LT		08101658-01A	MW-1		
Preparation Date			/lethod				
Toparation Date		1 iop Dy	ilounou il				
	Analyte		Rep Limit				
	1,1,2-Tetrachloroethane	ND					
	1,1-Trichloroethane	ND					
	1,2,2-Tetrachloroethane	ND					
	1,2-Trichloroethane	ND					
	1-Dichloroethane	ND					
	I-Dichloroethene	ND ND					
	1-Dichloropropene	ND					
	2,3-Trichlorobenzene 2,3-Trichloropropane	ND ND					
	2,3-Trichlorobenzene						
	2,4-Trimethylbenzene	ND ND					
	2-Dibromo-3-chloropropane	ND					
	2-Dibromoethane	ND					
and the second se	2-Dichlorobenzene	ND					
	2-Dichloroethane	ND					
	2-Dichloropropane	ND					
	3,5-Trimethylbenzene	ND					
	B-Dichlorobenzene	ND					
	3-Dichloropropane	ND					
	I-Dichlorobenzene	ND					
	2-Dichloropropane	ND					
	Butanone	ND					
2-0	Chloroethyl vinyl ether	ND					
2-0	Chlorotoluene	ND	5.0				
2-+	Hexanone	ND	10				
4-0	Chlorotoluene	ND					
	sopropyltoluene	ND					
	Methyl-2-pentanone	ND					
	etone	ND					
	rylonitrile	ND					
	nzene	ND					
	omobenzene	ND					
	omochloromethane	ND ND					
	omodichloromethane	ND ND					
	omoform	ND ND					
	omomethane						
<u> </u>	rbon tetrachloride	ND					
	llorobenzene						
	loroethane						
	lloroform		· · · · · · · · · · · · · · · · · · ·				
	loromethane	ND ND					
	promochloromethane	ND					
	promomethane	ND					
	chlorodifluoromethane	ND					
	nylbenzene	ND					

Qualifiers:

-Weight

and the second

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 20 11/21/2008 4:16:01 PM

11/04/2008 16:12

11/04/2008 16:12

10 - S.

i an

يانية الم

Analysis Date: Preparation Date:

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

		COP Shepherd Kelse	₂y #1E	
Analysis	: Volatile Organics by Method	260B	WorkOrder:	08101658
Method:	SW8260B		Lab Batch ID:	R256001
·	Method Blank			
RunID:	N_081104A-4752370 Units	ug/L		

Analyte	Result	Rep Limit
Hexachlorobutadiene	ND	5.0
Isopropylbenzene	ND	5.0
Methyl tert-butyl ether	ND	5.0
Methylene chloride	ND	5.0
Naphthalene	ND	5.0
n-Butylbenzene	ND	5.0
n-Propylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
Styrene	ND	5.0
tert-Butylbenzene	ND	5.0
Tetrachloroethene	- ND	5.0
Toluene	ND	5.0
Trichloroethene	ND	5.0
Trichlorofluoromethane	ND	5.0
Vinyl acetate	ND	1(
Vinyl chloride	ND	1(
cis-1,2-Dichloroethene	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
m,p-Xylene	ND	5.0
o-Xylene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,2-Dichloroethene (total)	ND	5.0
Xylenes,Total	ND	5.0
Surr: 1,2-Dichloroethane-d4	106.0	62-130
Surr: 4-Bromofluorobenzene	96.0	70-130
Surr: Toluene-d8	106.0	74-122

Analyst:

Prep By:

LT

Method

Laboratory Control Sample (LCS)

RunID:	N_081104A-4752369	Units:	ug/L	
Analysis Date:	11/04/2008 15:32	Analyst:	LT	
Preparation Date:	11/04/2008 15:32	Prep By:		Method

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1,1,2-Tetrachloroethane	20.0	19.0	95.0	71	136
1,1,1-Trichloroethane	20.0	20.0	100	66	132
1,1,2,2-Tetrachloroethane	20.0	19.0	95.0	55	139
1,1,2-Trichloroethane	20.0	20.0	100	70	130
1,1-Dichloroethane	20.0	20.0	100	67	131

ND/U - Not Detected at the Reporting Limit Qualifiers:

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution

E - Estimated Value exceeds calibration curve

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 21 11/21/2008 4:16:01 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

COR Shophard Kalcov #15

	COP	Shepherd K	elsey #1E				
Analysis: Method:	Volatile Organics by Method 8260B SW8260B					Order: Batch ID:	08101658 R256001
	Laborat	ory Control S	ample (L	CS)			
	RunID:N_081104A-475Analysis Date:11/04/2008 155Preparation Date:11/04/2008 155	:32 An	its: uo alyst: L ⁻ ep By:	g/L F Method			
	Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit	
	1,1-Dichloroethene	20.0	19.0	95.0	71	146	
	1,1-Dichloropropene	20.0	19.0	95.0	59	138	
	1,2,3-Trichlorobenzene	20.0	17.0	85.0	37	155	
	1,2,3-Trichloropropane	20.0	21.0	105	70	145	
	1,2,4-Trichlorobenzene	20.0	17.0	85.0	39	133	
	1,2,4-Trimethylbenzene	20.0	18.0	90.0	53	147	
	1,2-Dibromo-3-chloropropane	20.0	18.0	90.0	43	137	
	1.2-Dibromoethane	20.0	19.0	95.0	63	126	
	1,2-Dichlorobenzene	20.0	18.0	90.0	70	130	
	1,2-Dichloroethane	20.0	19.0	95.0	64	150	
	1,2-Dichloropropane	20.0	19.0	95.0	76	124	
	1,3,5-Trimethylbenzene	20.0	17.0	85.0	57	146	
	1,3-Dichlorobenzene	20.0	19.0	95.0	72	134	
	1,3-Dichloropropane	20.0	19.0	95.0	78	130	
	1,4-Dichlorobenzene	20.0	18.0	90.0	70	130	
	2,2-Dichloropropane	20.0	21.0	105	45	156	
	2-Butanone	120	83.0	69.2	20	235	
	2-Chloroethyl vinyl ether	20.0	23.0	115	13	179	
	2-Chlorotoluene	20.0	18.0	90.0	64	122	
	2-Hexanone	20.0	17.0	85.0	34	182	
	4-Chlorotoluene	20.0	18.0	90.0	64	142	
	4-Isopropyltoluene	20.0	17.0	85.0	60	134	
	4-Methyl-2-pentanone	20.0	17.0	85.0	11	145	
	Acetone	200	100	50.0	13	386	
	Acrylonitrile	100	100	100	43	194	
	Benzene	20.0	20.0	100	76	126	
	Bromobenzene	20.0	19.0	95.0	70	130	
	Bromochloromethane	20.0	18.0	90.0	63	131	
	Bromodichloromethane	20.0	20.0	100	77	138	
	Bromoform	20.0	17.0	85.0	55	129	
	Bromomethane	20.0	20.0	100	58	148	
	Carbon disulfide	20.0	18.0	90.0	46	146	
	Carbon tetrachloride	20.0	19.0	95.0	66	137	
	Chlorobenzene	20.0	18.0	90.0	67	136	
Qualifiers:	ND/U - Not Detected at the Reporting Limit		Matrix Inte				

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 22 11/21/2008 4:16:01 PM

1.11

S. Andre

s = nguite

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

nalysis: ethod:	Volatile Org SW8260B	anics by Method 82	60B					Order: Batch ID:	08101658 R256001
	· · · · ·		Laboratory	Control S	ample /I ((21			
			Laboratory	Control		291			
		RunID:	N_081104A-4752369	9 Un	its: ug	J/L			
		Analysis Date:	11/04/2008 15:32	An	alyst: L1				
		Preparation Date:	11/04/2008 15:32	Pro	ер Ву:	Method			
	_								
		Analy	/te	Spike	Result	Percent	Lower	Upper	
	-			Added		Recovery	Limit	Limit	
		Chloroethane		20.0	19.0	95.0	50	137	
	-	Chloroform		20.0	19.0	95.0	70	135	
	-	Chloromethane		20.0	23.0	115	51	140	
	-	Dibromochloromethan	e	20.0	18.0	90.0	69	127	
	L	Dibromomethane		20.0	20.0	100	74	130	
	-	Dichlorodifluorometha	ne	20.0 20.0	22.0 18.0	110 90.0	32 67	161 122	
		Ethylbenzene Hexachlorobutadiene		20.0	18.0	75.0	43	122	
	Ļ	Isopropylbenzene		20.0	15.0	75.0	43 60	135	
		Methyl tert-butyl ether		40.0	35.0	87.5	48	160	
		Methylene chloride		20.0	20.0	100	52	143	
	-	Naphthalene		20.0	17.0	85.0	24	150	
	-	n-Butylbenzene		20.0	16.0	80.0	50	140	
	- F	n-Propylbenzene		20.0	16.0	80.0	62	137	
		sec-Butylbenzene		20.0	15.0	75.0	66	126	
		Styrene		20.0	18.0	90.0	60	139	
	Ī	tert-Butylbenzene		20.0	17.0	85.0	67	140	
	-	Tetrachloroethene		20.0	22.0	110	26	200	
	[Toluene		20.0	20.0	100	70	131	
	[Trichloroethene		20.0	19.0	95.0	64	137	
	-	Trichlorofluoromethan	e	20.0	21.0	105	46	167	
	-	Vinyl acetate		20.0	20.0	100	10	193	
	H	Vinyl chloride		20.0	20.0	100	31	147	
	H	cis-1,2-Dichloroethene	······	20.0	19.0	95.0	70	142	
		cis-1,3-Dichloroproper	1e	20.0	17.0	85.0	61	134	
	-	m,p-Xylene		40.0	37.0	92.5	72	150	
	H	o-Xylene	200	20.0	19.0	95.0	78	141	
	-	trans-1,2-Dichloroethe		20.0	19.0 17.0	95.0 85.0	67 56	141 136	
	F	1,2-Dichloroethene (to		20.0 40	38	85.0 95	56 73	136	
	F	Xylenes,Total		40 60	56	95	73	139	
	ľ	Surr: 1,2-Dichloroet	hane-d4	50.0	48	95.0	62	130	
	ŀ	Surr: 4-Bromofluoro		50.0	51	102	70	130	
	F	Surr: Toluene-d8		50.0	52	102	70	122	

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

en Di

14.254

1

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 23 11/21/2008 4:16:01 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Analysis: Method:

の日本の

12.12

14 A 16

の時間

Volatile Organics by Method 8260B SW8260B

WorkOrder: Lab Batch ID:

08101658

R256001

•			

Sample Spiked: RunID: Analysis Date:

08101658-01 N_081104A-4752372 11/04/2008 17:07

Units: ug/L Analyst: ĻΤ

Be an and the	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
	1,1,1,2-Tetrachloroethane	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
é,	1,1,1-Trichloroethane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
State State	1,1,2,2-Tetrachloroethane	ND	20	20.0	100	20	20.0	100	0	20	35	175
	1,1,2-Trichloroethane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
Į.	1,1-Dichloroethane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
ALS A VERY	1,1-Dichloroethene	ND	20	18.0	90.0	20	17.0	85.0	5.71	22	61	145
£¶.	1,1-Dichloropropene	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
_	1,2,3-Trichlorobenzene	ND	20	15.0	75.0	20	15.0	75.0	0	20	27	187
	1,2,3-Trichloropropane	ND	20	21.0	105	20	19.0	95.0	10.0	20	35	175
鑢	1,2,4-Trichlorobenzene	ND	20	14.0	70.0	20	14.0	70.0	0	20	34	150
	1,2,4-Trimethylbenzene	. ND	20	16.0	80.0	20	16.0	80.0	0	20	35	175
рр s R	1,2-Dibromo-3-chloropropane	ND	20	20.0	100	20	18.0	90.0	10.5	20	15	175
「ないない」	1,2-Dibromoethane	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
	1,2-Dichlorobenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
10 10	1,2-Dichloroethane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
	1,2-Dichloropropane	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
評	1,3,5-Trimethylbenzene	ND	20	16.0	80.0	20	16.0	80.0	0	20	35	175
	1,3-Dichlorobenzene	ND	20	18.0	90.0	20	17.0	85.0	5.71	20	35	175
都派	1,3-Dichloropropane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
Щ,	1,4-Dichlorobenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
	2,2-Dichloropropane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
хîр Хір	2-Butanone	ND	20	31.0	155	20	27.0	135	13.8	20	10	230
	2-Chloroethyl vinyl ether	ND	20	0	0*	20	0	0 *	0	20	10	250
1 (1.1.	2-Chlorotoluene	ND	20	18.0	90.0	20	18.0	90.0	0	20	31	175
9E-	2-Hexanone	ND	20	24.0	120	20	24.0	120	0	20	10	250
	4-Chlorotoluene	ND	20	18.0	90.0	20	18.0	90.0	0	20	31	175
織	4-Isopropyltoluene	ND	20	15.0	75.0	20	15.0	75.0	0	20	35	175
	4-Methyl-2-pentanone	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	10	175
語を読	Acetone	ND	100	140	140	100	140	140	0	20	10	400
	Acrylonitrile	ND	200	. 190	95.0	200	180	90.0	5.41	20	15	250
	Qualifiers: ND/U - Not Detect	cted at the Report	ng Limit		MI - Mati	ix Interfer	ence					

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

B/V - Analyte detected in the associated Method Blank

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 24 11/21/2008 4:16:01 PM

Analysis Date:

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

COP Shepherd Kelsey #1E

Analyst:

LT

9%;								
	Analysis:	Volatile Organics by Method 82	260B			WorkOrder:	08101658	
	Method:	SW8260B				Lab Batch ID:	R256001	
		Matr	ix Spike (MS) / Matrix Sp	ike Duplica	te (MSD)			
		Sample Spiked:	08101658-01					
		RuniD:	N_081104A-4752372	Units:	ug/L			

11/04/2008 17:07

_												
	Analyte	Sample Result	MS Spike Added	MS Result	MS % [.] Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
調査	Benzene	ND	20	19.0	95.0	20	19.0	95.0	0	22	76	127
	Bromobenzene	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
	Bromochloromethane	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
100	Bromodichloromethane	ND	20	19.0	95.0	· 20	18.0	90.0	5.41	20	35	175
線に	Bromoform	ND	20	17.0	85.0	20	18.0	90.0	5.71	20	35	175
Ma.	Bromomethane	ND	20	17.0	85.0	20	16.0	80.0	6.06	20	35	175
65	Carbon disulfide	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	30	225
1	Carbon tetrachloride	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
5	Chlorobenzene	ND	20	19.0	95.0	20	19.0	95.0	0	21	70	130
	Chloroethane	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	35	175
轥	Chloroform	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	35	175
瘽	Chloromethane	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
	Dibromochloromethane	ND	20	18.0	90.0	20	19.0	. 95.0	5.41	20	35	175
僌	Dibromomethane	ND	20	19.0	95.0	20	20.0	100	5.13	_ 20	35	175
轚	Dichlorodifluoromethane	ND	20	14.0	70.0	20	12.0	60.0	15.4	20	35	175
	Ethylbenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
215	Hexachlorobutadiene	ND	20	14.0	70.0	20	14.0	70.0	0	20	43	144
	Isopropylbenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
	Methyl tert-butyl ether	ND	20	18.0	90.0	20	17.0	85.0	5.71	20	35	175
	Methylene chloride	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
1) 1	Naphthalene	ND	20	16.0	80.0	20	15.0	75.0	6.45	20	20	210
	n-Butylbenzene	ND	20	14.0	70.0	20	14.0	70.0	0	20	35	175
	n-Propylbenzene	ND	20	16.0	80.0	20	16.0	80.0	0	20	35	175
影	sec-Butylbenzene	ND	20	14.0	70.0		14.0	70.0	0	20	35	
	Styrene	ND	20	19.0	95.0		19.0	95.0	0	20	35	175
101	tert-Butylbenzene	ND	20	16.0	80.0	20	15.0	75.0	6.45	20	35	
J.V.	Tetrachloroethene	ND	20	17.0	85.0	20	17.0	85.0	0	20		
	Toluene	ND	20	19.0	95.0	20	19.0	95.0	0	24		
li)	Trichloroethene	ND	20	19.0	95.0		19.0	95.0	0	21	.60	
	Trichlorofluoromethane	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	17	250
	Vinyl acetate	ND	20	20.0	100	20	19.0	95.0	5.13	20	10	
指	Vinyl chloride	ND	20	16.0	80.0	20	16.0	80.0	0	20	35	175

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

B/V - Analyte detected in the associated Method Blank J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 25 11/21/2008 4:16:01 PM

Analysis Date:

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

LT

Analyst:

COP Shepherd Kelsey #1E

	Analysis: Method:	Volatile Organics by Method 826 SW8260B	60B			WorkOrder: Lab Batch ID:	08101658 R256001	
		Matrix	c Spike (MS) / Matrix Sp	ike Duplica	te (MSD)			
		Sample Spiked:	08101658-01					
17		RunID:	N_081104A-4752372	Units:	ug/L			

11/04/2008 17:07

	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
	cis-1,2-Dichloroethene	ND	20	20.0	100	20	18.0	90.0	10.5	20	35	175
	cis-1,3-Dichloropropene	ND	20	17.0	85.0	20	18.0	90.0	5.71	20	35	175
	m,p-Xylene	ND	40	36.0	90.0	40	36.0	90.0	0	20	35	175
	o-Xylene	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
	trans-1,2-Dichloroethene	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	35	175
	trans-1,3-Dichloropropene	ND	20	17.0	85.0	20	17.0	85.0	0	20	35	175
¢٩	1,2-Dichloroethene (total)	ND	40	39	98	40	36	90	8.0	20	35	175
	Xylenes,Total	ND	60	55	92	60	55	92	0	20	35	175
98	Surr: 1,2-Dichloroethane-d4	ND	50	50	100	50	48.0	96.0	4.08	30	62	130
	Surr: 4-Bromofluorobenzene	ND	50	51	102	50	53.0	106	3.85	30	70	130
	Surr: Toluene-d8	ND	50	54	108	50	53.0	106	1.87	30	74	122

Qualifiers:

調加

のないの

Sal and

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 26 11/21/2008 4:16:01 PM

		ity Control Re	nort						380 INTEI HOUST	N LABORA RCHANGE FON, TX 77 3) 660-0901	DRIVE		
響	Quai		port	Cor	noco Ph	illine			(1 · · ·	,			
和風味					loco Fil	-							
	Analysis: Nitrate Nitroger	n (as N), Total							orkOrder:		01658		
	Method: E353.2								b Batch I	D: R2	56285A	\	
States and a state of the state		Method Blank				Samp	les in Analy	tical Ba					
	RunID: WET_081103ZD-4757587 Analysis Date: 11/03/2008 15:1	Units: 7 Analyst:	mg/L TW				ample ID 658-01F		<u>Clien</u> MW-	i <u>t Sample II</u> 1	<u>0</u>		
	Analyt Nitrogen,Nitrate (As N)	9	Result ND	Rep Lim 0.5	→								
			La	boratory	Control	Sample (L	CS)						
100 C	R	unID:	_	1103ZD-47			ıg/L						
	А	nalysis Date:	11/03/20	08 15:17	Ar	alyst: T	W .						
		Analy	e		Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit				
	Nitro	ogen,Nitrate (As N)			5.000	5.372	107.4	9	10 1	10			
		Matrix	Spike (N	IS) / Mati	rix Spike I	Duplicate ((MSD)						
		Sample Spiked: RunID: Analysis Date:		526-01 81103ZD-4 2008 15:1			mg/L TW						
84- 													
	Analyte	Sample Result	MS Spike Added	MS Result	MS Reco		ke Resu		SD % ecovery	RPD	RPD Limit	Low Limit	High Limit
	Nitrogen,Nitrate (As N)	ND	5	4.4	471 89	43 *	5 4	.920	98.39	9.548	20	90	110
S. S	Qualifiers: ND/U - Not Det	ected at the Report	ing limit		K A I	- Matrix Int	orforonco						
	B/V - Analyte de J - Estimated va E - Estimated V	etected in the associate the second s	ciated Met and PQL ration curv	/e	< D - * - I	Recovery Recovery C	Unreportable Dutside Advis	sable QC	Limits				
	N/C - Not Calcu TNTC - Too nur QC results presented on the QC Sur			-		·		e added. (Control lin	nits do not a	08		Page 27 4:16:02 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Analysis: Method:	lon Chrom E300.0							WorkOrder: Lab Batch I		01658 56813A	۱	
		Method Blank			S	amples	in Analytical	Batch:				
RunID: IC1	1_081110B-4766166	Units:	mg/L		L	ab Sam	ple ID	<u>Clien</u>	t Sample ID	<u>)</u>		
nalysis Date	e: 11/10/2008	21:54 Analyst:	ΤW		0	8101658	8-01F	MW-	1			
		nalyte		Rep Limit								
	Chloride Fluoride		ND ND	0.50 0.50								
				horstony C	ontrol Samp							
				-								
			11/10/200	0B-4766017	Units:	mg/L TW						
		Analysis Date:	11/10/200	0 10.31	Analyst:	IVV						
		Analyt	e		pike Res	1		wer Uppe mit Limit				
		Chloride				.409	94.09		15			
		Fluoride				0.03	100.3		15			
		L										
		Matrix	Spike (M	S) / Matrix	Spike Duplic	cate (MS	<u>D)</u>					
		Sample Spiked:	081016	58-01								
		RunID:		110B-476603		Ŷ						
		Analysis Date:	11/10/2	008 22:43	Analys	st: TW						
	Analyte	Sample	MS	MS	MS %	MSD	MSD	MSD %	RPD	RPD	Low	High
	7	eampre	Spike	Result	Recovery	Spike Added	Result	Recovery		Limit	Limit	Limi
	, indigite	Result	Added			Auueu						1
Chloride				61.19		40 40	62.16		1.575 1.872			

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 28 11/21/2008 4:16:02 PM

6

					·					8880 INTEF	I LABORA RCHANGE ON, TX 770	DRIVE		•
		Q	uality C	ontrol Re	port) 660-0901			
							o Phillip nerd Kelsey							
	Analysis: Method:	Ion Chrom E300.0	atography	·						WorkOrder: Lab Batch II		01658 56827A		
			Meth	od Blank				Samples	in Analytical					
38F	RunID: IC1_08111	1A-4766450		Units:	mg/L			.ab Sam			t Sample II	2		
に調査	Analysis Date:	11/11/2008	15:49	Analyst:	ΤW		C	8101658	-01F	MW-1				
新聞	Sulfate		nalyte		Result NC	Rep Limit								
	<u> </u>			· · · · · · · · · · · · · · · · · · ·	Lá	boratory Co	ntrol Samp	le (LCS)						
			RunID:		IC1_0811	11A-4766451	Units:	mg/L						
2			Analysi	s Date:	11/11/20	008 16:06	Analyst:	ΤW						
I. LEVIL			Sulfate	Analyt	e		pike Res dded 10.00 9		ercent Lov covery Lir 94.96	mit Limit				
				Matrix	Spike (N	AS) / Matrix S	Spike Dupli	cate (MS						
1 <u>88</u>			Samr	le Spiked:	08101									
and the second			Runi		IC1_08	1111A-476645: 2008 16:39	3 Units: Analys	mg/l st: TW	L					
No.														
2	Ana	alyte		Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
	Sulfate			437.9	1000	1350	91.23	1000	1344	90.62	0,4506	20	80	120
「「「「「「」」」														
	Qualifiers:		Detected	at the Desert	na Limit		BAL BAck	iv Interfer						
		B/V - Analy J - Estimate	te detected ed value be	at the Reporti d in the assoc etween MDL a	iated Met ind PQL	hod Blank		very Unre	ence portable due t de Advisable (

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

いまた

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 29 11/21/2008 4:16:02 PM

	lon Chro E300.0												
Method: RunID: IC1_08						oco Philli pherd Kelse							
		matograph	у		COP She		:y #12		WorkOrder Lab Batch I		101658 57651A		
		Met	hod Blank				Sample	s in Analytica	I Batch:				
Analysis Date:	81119A-4780752 11/19/200		Units: Anałyst:	mg/L TW			<u>Lab Sar</u> 0810165		<u>Clier</u> MW-	nt Sample II 1	2		
Or	tho-phosphate (Analyte As P)		Result ND	Rep Limit								
<u> </u>	<u> </u>			La	boratory C	Control Sam	ple (LCS	<u>.</u>					. <u> </u>
		RunID Analys	: is Date:	IC1_0811 11/19/20	19A-4780753 08 19:01	3 Units: Analys	mg/ st: TW	L					
			Analyt	e		Spike R Added			ower Uppe .imit Limit				
			1 4 (A D										
		Ortho-ph	osphate (As P)		10.00	9.167	91.67	85 1	15			
		Ortho-ph			1S) / Matrix	10.00			85 1	15			
	<u>.</u>	Sam	<u>Matrix</u> ple Spiked:	Spike (M 081015 1C1_081		<u>Spike Dup</u>	licate (M	<u>SD)</u> g/L	85 1	15			
	Analyte	Sam	<u>Matrix</u> ple Spiked: D:	Spike (M 081015 1C1_081	59 7-01 1119A-47807	67 Unit	licate (M s: m yst: T\ MSD	SD) g/L N MSD Result	85 1 MSD % Recovery	15 RPD	RPD Limit	Low Limit	High Limi

Qualifiers:

a la la la

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL * - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08101658 Page 30 11/21/2008 4:16:02 PM Sample Receipt Checklist And Chain of Custody

C. Sala

Sec. 1

語の語

間に離

の理想

New York

評問し

110-1-3-15

いいの

調査

時期福

でいい

記述の

いいない

Selection of

08101658 Page 31 11/21/2008 4:16:03 PM

が見

調査部

語るが

「日本の

R.L. AL

朝に

調査

1000

で消耗

State State

書いた

の書き

a state

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Date and Time Received:	10/28/2008 9:30:00 AM		Received By: Carrier name:	RE Fedex-Priority	
Temperature:	3.0°C		Chilled by:	Water Ice	
1. Shipping container/co	oler in good condition?	Yes 🔽	No 🗌	Not Present	
2. Custody seals intact o	n shippping container/cooler?	Yes 🔽	No 🗔	Not Present	
3. Custody seals intact o	n sample bottles?	Yes	No	Not Present	
4. Chain of custody pres	ent?	Yes 🔽	No 🗌		
5. Chain of custody sign	ed when relinquished and received?	Yes 🗹	No 🗌		
6. Chain of custody agre	es with sample labels?	Yes 🔽	No 🗌		
7. Samples in proper cor	ntainer/bottle?	Yes 🗹	Νο		
8. Sample containers inta	act?	Yes 🔽	No		
9. Sufficient sample volu	me for indicated test?	Yes 🗹	No 🗌		
0. All samples received w 2.Recieved Nitrate and	vithin holding time? I Ortho out of hold collected on 10/23/08.	Yes	No 🗹		
1. Container/Temp Blank	temperature in compliance?	Yes 🗹	Νο		
2. Water - VOA vials have	e zero headspace?	Yes	Νο 🗌 🛛 νολ	A Vials Not Present	
3. Water - Preservation c	hecked upon receipt (except VOA*)?	Yes 🗌	No 🗌	Not Applicable	
*VOA Preservation Ch	ecked After Sample Analysis				
SPL Representativ	re: Elder, Allen	Contact Date	& Time: 10/29/2008 3:	00:00 PM	7
Client Name Contacte	d: Kelley Blanchard				
Non Conformance 1.L Issues:	ogged in analysis per containers received.2.0	Continue with analy	sis.		

	Reingusted by:	Binding 25		anduissed by Som siet	10 Y - Six		à.	umpround Time Requirements					A					Mul-1	Somple ID	م کیکردیکی ملک کر کر ایک ایک ر	Bomphar Bri Contra Children	O. Number:	Projact Name: Shephard Kelsey	ty: Alouquerque	Address: 6121 endion School		T Kelly Shanch	lient Tetro Tech/ Conoco		
	و المحمد الم		A COLO		Preservoirse l'ypes	and the Twinster		Peoularients Remains Anional C. B. PO& SOS					A A					11 52 0	Ude 15rm	Collected	5)		1907 ¥15	ā	Road, NE	<u> </u>	ing fech	co Philites		A A A A A A A A A A A A A A A A A A A
		***		•				Nicagas Cl			- 	 						00	(Comp)	(duya)				Zie Code	8	itkelty.blong			Chain	
	000	Dota	0.27.08	Date	T NOR	1 3/60ml Vials		NOS \$04 B					イン	K V		X X X	XIX	XX	550		Kiw Diri			0006127110		emai:kely.blanchbid@teitateon.c			C.	
	Time	Time	TZ3	5141	રુક ક	the 2 11 Games	-			. . 					5				Snit	Notix is	YP+		, , , , ,					145	Custody A	
	Received	ineceived i			3. HC						••••••••		5	5		5	3	53	<u>.</u>		elize nten		:** *** 18	*****	 			St! Worksider ?	Record	
	\$V 371- ho	ţ,		5	Ŀ.	DENC 4. 11 AF				······································		د 		- 			×			(D- B (5- G	ко ко							Nucritaen		
,		:			Q4	li Antoar Close	Ismpermuter	1123012	ar ,4yr - au										824	15-D NG-Y			c'	- - -		Requested		01,801		
						5. Suz Pizzlic	niure:	: 4 0 2 2	·····					XX			 	「「「」」	Tel	Setel	VGC Inite(··· · •·		10	Requested Analysis				
							1	***	••••				X							10 M 01	cila-6i							•••		

S. S. S. W.S.