1RP-0277

GW monitoring report

DATE: 2005

November 4, 2005

Mr. Daniel Sanchez New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division – Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

SUBJECT: TRANSMITTAL LETTER

2005 ANNUAL GROUNDWATER MONITORING REPORT

FORMER UNOCAL SOUTH VACUUM UNIT

SEC 35, T18S, R35E

LEA COUNTY, NEW MEXICO

CASE #1R0277

Dear Mr. Sanchez:

Enclosed is the 2005 Annual Groundwater Monitoring Report for the Former Unocal South Vacuum Unit site located in Lea County, New Mexico.

Please contact me at (432) 638-8740 or Achebe Hope of Unocal Corporation at (805) 547-5448 with any questions or comments.

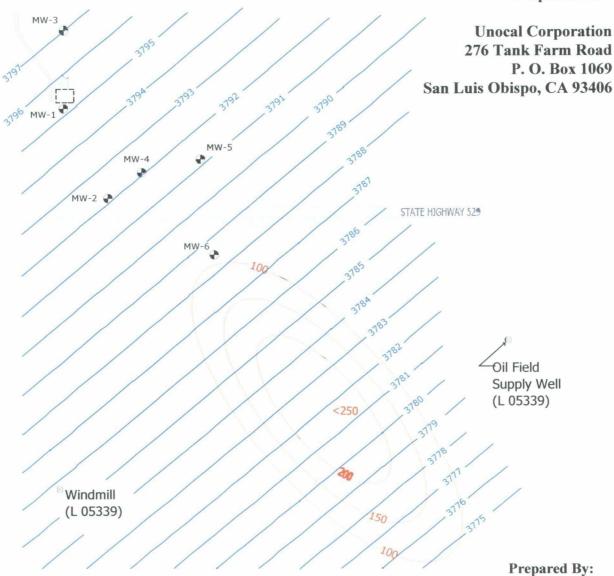
Sincerely,

Gilbert J. Van Deventer, REM, PG, NMCS

Trident Environmental - Midland, TX

Attachments

xc: Achebe Hope, Unocal – San Luis Obispo, CA


Chris Kocka, ENSR – Warrenville, IL

2005 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT SECTION 35, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

IR-0277

NOVEMBER 4, 2005

Prepared For:

P. O. Box 7624 Midland, Texas 79708

2005 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT SECTION 35, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

NOVEMBER 4, 2005

Prepared For:

MW-3 **Unocal Corporation** 276 Tank Farm Road P. O. Box 1069 San Luis Obispo, CA 93406 3196 MW-1 MW-5 STATE HIGHWAY 529 Oil Field Supply Well (L 05339) Windmill (L 05339) 150 Prepared By:

P. O. Box 7624 Midland, Texas 79708

2005 Annual Groundwater Monitoring Report Unocal Corporation Real Estate and Remediation Services Former Unocal South Vacuum Unit Lea County, New Mexico

Prepared by:

Trident Environmental

P. O. Box 7624 Midland, Texas 79708 (432) 638-8740 FAX (413) 403-9968

SUBMITTED BY:

Gilbert J. Van Deventer, PG, NMCS, REM

Project Manager

DATE:

11-4-05

TABLE OF CONTENTS

1.0	Executive Summary
2.0	Groundwater Sampling Procedures
3.0	Groundwater Elevations, Hydraulic Gradient and Flow Direction
4.0	Groundwater Quality Conditions
5.0	Fate and Transport Modeling Results
6.0	Conclusions6
7.0	Recommendations

 \Box

ت

디

□

u

ப

==

<u>---</u>

므

TABLES

Table 1	Summary of Groundwater	Elevations and Chloride and	TDS Concentrations

FIGURES

Figure 1	Groundwater Elevation Map
Figure 2	Groundwater Elevation Versus Time Graph
Figure 3	Chloride Concentration Map
Figure 4	TDS Concentration Map
Figure 5	Chloride Concentrations Versus Time (MW-1 through MW-6)
Figure 6	TDS Concentrations Versus Time (MW-1 through MW-6)
Figure 7A	34-Year Chloride Plume Simulation (1971 – 2005)
Figure 7B	34-Year TDS Plume Simulation (1971 – 2005)
Figure 8A	50-Year Chloride Plume Simulation (2005 – 2055)
Figure 8B	50-Year TDS Plume Simulation (2005-2055)
Figure 9A	88-Year Chloride Plume Simulation (2005-2093)
Figure 9B	88-Year TDS Plume Simulation (2005-2093)
Figure 10	153-Year Chloride Plume Simulation (2005-2158)

APPENDICES

Appendix A	Laboratory Analytical Reports and Chain-of-Custody Documentation
Appendix B	Monitoring Well Sampling Data Forms
Appendix C	Description of Fate and Transport Modeling

1.0 Executive Summary

Trident Environmental (Trident) was retained by ENSR Corporation (ENSR), on behalf of Unocal Corporation (Unocal), to perform the 2005 annual groundwater sampling and monitoring operations at the Former Unocal South Vacuum Unit, which is located at township 18 south, range 35 east, section 35 in Lea County, New Mexico. This report documents the 2005 annual sampling event performed by Trident at the site on August 10, 2005. This report contains the historical groundwater elevation and analytical data from monitoring wells MW-1 through MW-6. The sampling event was conducted in accordance with the November 2, 2000 Groundwater Remediation Plan submitted by Unocal and the requirements specified in the New Mexico Oil and Conservation Division (OCD) letter dated February 8, 2001.

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the Former Unocal South Vacuum Unit are evident:

- O Chloride and total dissolved solids (TDS) concentrations in MW-1, near the source area, have generally decreased since 1996. Similarly, chloride and TDS levels have decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in the remaining wells (MW-2, MW-3, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the contention that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock well (Windmill L 05339) lies approximately 3,200 feet south of the source.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,400 feet southeast of the source in approximately 153 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,200 feet in approximately 88 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.

- o Based on the modeling results and predicted natural attenuation processes (advection and dispersion), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former emergency overflow pit.
- o Groundwater elevations had steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; however during 2005 the groundwater table has increased to an elevation similar to the 1999 level. The recent rise may be attributed to higher than normal rainfall during 2004 and 2005.

Unocal has performed exemplary remedial actions to the source area, including plugging of the SWD well in 1971 and encapsulating the former surface impoundment area with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- o Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- o Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2006 annual groundwater monitoring report to OCD in January 2007 to document natural attenuation conditions.

2.0 Groundwater Sampling Procedures

Each of the six monitoring wells, MW-1 through MW-6, was gauged for depth to groundwater using a Solinst Model 101 electronic water indicator immediately prior to purging operations. A total of 36 gallons of groundwater was purged from each site monitoring well (5 to 10 gallons per well) using a decontaminated 2-inch diameter PVC bailer. After purging, groundwater samples were collected and parameters were measured using a Hanna Model 98130 pH-Conductivity-Temperature meter. Water samples for each monitoring well were transferred into 500 milliliter (ml) plastic containers for laboratory analysis of total dissolved solids (TDS) (EPA Method 160.1) and chloride (EPA Method 325.3). For each set of samples, chain of custody forms documenting sample identification numbers, collection times, and delivery times to the laboratory were completed. All water samples were placed in an ice-filled cooler immediately after collection and transported to SPL, Inc. in Houston, Texas for analysis.

3.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Depth to groundwater varies from approximately 49.58 to 70.33 feet below top of well casing at the site. Groundwater elevations are summarized in Table 1. A groundwater gradient map indicating the direction of groundwater flow is illustrated in Figure 1. A historical groundwater elevation graph is shown in Figure 2. The groundwater gradient direction is to the southeast with a hydraulic gradient of approximately 0.004 ft/ft. According to published reports (*Ground-Water Conditions in Northern Lea County, New Mexico*, Ash, 1963 and *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, Nicholson and Clebsch, 1961) the groundwater encountered at the site is that of the Tertiary Ogallala Formation. The Ogallala Formation unconformably overlies the impermeable red-beds of the Triassic Chinle Formation at an elevation of approximately 3700 feet above mean sea level (AMSL). Based on the current groundwater elevations measured on site and published data referenced, the saturated thickness of the Ogallala Formation at the site ranges from approximately 87 to 97 feet.

4.0 Groundwater Quality Conditions

Groundwater sample analytical results are presented in Table 1. The WQCC standards are presented for comparison. Those constituents that recorded concentrations above the WQCC standards are highlighted in boldface type. The WQCC standard of 250 mg/L for chloride was exceeded in MW-1 (774 mg/L), MW-2 (355 mg/L), and MW-4 (1,050 mg/L). The WQCC standard of 1,000 mg/L for TDS was exceeded in MW-1 (1,830 mg/L) and MW-4 (2,230 mg/L). The groundwater samples obtained from upgradient monitoring well MW-3 and downgradient wells MW-5 and MW-6 had chloride and TDS concentrations below WQCC standards.

The chloride and TDS concentrations are depicted graphically in Figure 3 and 4, respectively. The concentration isocons were drawn utilizing the Surfer® (version 6.0) contour modeling program (Kriging method). Since this contouring program does not take into account the known groundwater gradient, some of the isocons were manually converged into a more southeasterly orientation. Graphs depicting historical TDS and chloride concentrations in monitoring wells MW-1 through MW-6 are shown in Figures 5 and 6.

Chloride and TDS concentrations in MW-1, near the source area, have consistently decreased since 1996, with the exception of slight fluctuations since the 2003 sampling event. Similarly, chloride and TDS levels have decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride concentrations in monitoring well MW-3 have slightly increased since 2000, however TDS concentrations have continued to decline. Chloride and TDS levels in MW-2, MW-5, and MW-6 have remained relatively consistent with previous years.

5.0 Fate and Transport Modeling Results

Fate and transport modeling was performed by Trident to simulate the movement of the chloride and TDS groundwater plume over time. Simulations were conducted using the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. A more detailed discussion of the flow and transport parameters used, assumptions, model calibrations, and simulation results are described in Appendix C.

Figures 7A and 7B show the close match achieved by the chloride and TDS modeling simulations as compared to the current observed plume (Figures 3 and 4). Hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume, as depicted in Figures 8A and 8B (50 years from now). Advective flow moves the center of plume mass downgradient by a distance of approximately 1,500 feet from the former source area (SWD pit) and approximately 300 feet upgradient from well MW-6.

Continued attenuation by dilution and dispersion of the plume, after the maximum chloride and TDS concentrations decrease to levels below WQCC standards, is shown in Figures 9A (year 2158) and 9B (year 2093), respectively. The center of the chloride plume is approximately 3,400 ft away from the pit and well source in the year 2158. The center of the TDS plume is approximately 2,200 ft away from the pit and well source in the year 2093.

The portions of the chloride and TDS plumes that are above WQCC standards do not reach any of the identified potential receptors at any time during their attenuation. The updated fate and transport model is consistent with that determined in the previous annual reports, however the plumes attenuate sooner and at a reduced terminal distance as a result of inputting the most recent chloride and TDS concentrations.

6.0 Conclusions

Conclusions relevant to groundwater conditions and the remediation performance at the Former Unocal South Vacuum Unit are presented below.

- O Chloride and TDS concentrations in MW-1, near the source area, have generally decreased since 1996. Similarly, chloride and TDS levels have decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in the remaining wells (MW-2, MW-3, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the contention that the chloride and total dissolved solids (TDS) plume is not likely to impact existing sources of water supply, the closest of which, a livestock well (Windmill L 05339), lies approximately 3,200 feet south of the source.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,400 feet southeast of the source in approximately 153 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,200 feet in approximately 88 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- o Based on the modeling results and predicted natural attenuation processes (dispersion and dilution), there will be no adverse impact to human health and the environment nor will the livestock well (Windmill L 05339) exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former emergency overflow pit.
- o Groundwater elevations had steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; however during 2005 the groundwater table has increased to an elevation similar to the 1999 level. The recent rise may be attributed to higher than normal rainfall during 2004 and 2005.

7.0 Recommendations

Unocal has performed exemplary remedial actions to the source area, including plugging of the SWD well in 1971 and encapsulating the former surface impoundment area with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2006 annual groundwater monitoring report to OCD in January 2007 to document natural attenuation conditions.

TABLES

Table 1 Summary of Groundwater Sampling Results Former Unocal South Vacuum Unit

Monitoring Well	Sampling Date	Chloride (mg/L)	TDS (mg/L)	Depth to Groundwater (feet BTOC)	Top of Casing Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
						``.
	01/27/95	1174	2250	59.57	3858.37	3798.80
	05/18/95	983	2251	61.30	3858.37	3797.07
	08/28/96	1420	2730	61.57	3858.37	3796.80
	08/13/97	1400	2800	61.75	3858.37	3796.62
	09/30/99	1094	2318	62.51	3858.37	3795.86
MW-1	06/14/00	927	2040	62.85	3858.37	3795.52
	06/18/01	813	1790	63.07	3858.37	3795.30
İ	07/11/02	784	1680	63.28	3858.37	3795.09
	07/02/03	715	2090	63.66	3858.37	3794.71
	08/12/04	628	2050	63.83	3858.37	3794.54
	08/10/05	774	1830	62.62	3858.37	3795.75
	09/30/99	298	922	49.51	3841.64	3792.13
	06/14/00	317	852	49.81	3841.64	3791.83
	06/18/01	288	878	50.06	3841.64	3791.58
MW-2	07/11/02	284	808	50.29	3841.64	3791.35
	07/02/03	268	859	50.63	3841.64	3791.01
	08/12/04	451	931	50.81	3841.64	3790.83
	08/10/05	355	844	49.58	3841.64	3792.06
1	09/30/99	73.6	427	66.74	3864.73	3797.99
	06/14/00	75.5	433	67.01	3864.73	3797.72
	06/18/01	86.4	495	67.29	3864.73	3797.44
MW-3	07/11/02	103	509	67.59	3864.73	3797.14
	07/02/03	98.3	588	67.94	3864.73	3796.79
	08/12/04	111	605	68.07	3864.73	3796.66
	08/10/05	122	533	66.81	3864.73	3797.92
	09/30/99	1576	2981	60.18	3852.51	3792.33
	06/14/00	1500	2910	60.55	3852.51	3791.96
	06/18/01	1530	3180	60.78	3852.51	3791.73
MW-4	07/11/02	1290	2660	60.98	3852.51	3791.53
	07/02/03	1250	2610	61.34	3852.51	3791.17
	08/12/04	1130	2480	61.50	3852.51	3791.01
	08/10/05	1050	2230	60.25	3852.51	3792.26
	06/14/00	13.7	274	68.57	3859.84	3791.27
	06/18/01	13.6	322	68.80	3859.84	3791.04
MW-5	07/11/02	15.5	308	68.98	3859.84	3790.86
	07/02/03	12.5	359	69.32	3859.84	3790.52
ļ	08/12/04	15.3	375	69.46	3859.84	3790.38
	08/10/05	14.9	309	68.15	3859.84	3791.69
	06/14/00	48	382	70.79	3858.78	3787.99
	06/18/01	50.8	431	70.98	3858.78	3787.80
MW-6	07/11/02	50	422	71.26	3858.78	3787.52
ļ	07/02/03	46.5	471	71.52	3858.78	3787.26
	08/12/04	55.1	410	71.62	3858.78	3787.16
WOCCS	08/10/05	55	. 391	70.33	3858.78	3788.45
WQCC S	Standards	250	1000			

Total Dissolved Soilds (TDS) and chloride concentrations listed in milligrams per liter (mg/L)

Analyses performed by Trace Analysis Inc., Lubbock, TX (1995-1998) and SPL, Inc., Houston, TX (1999-2000).

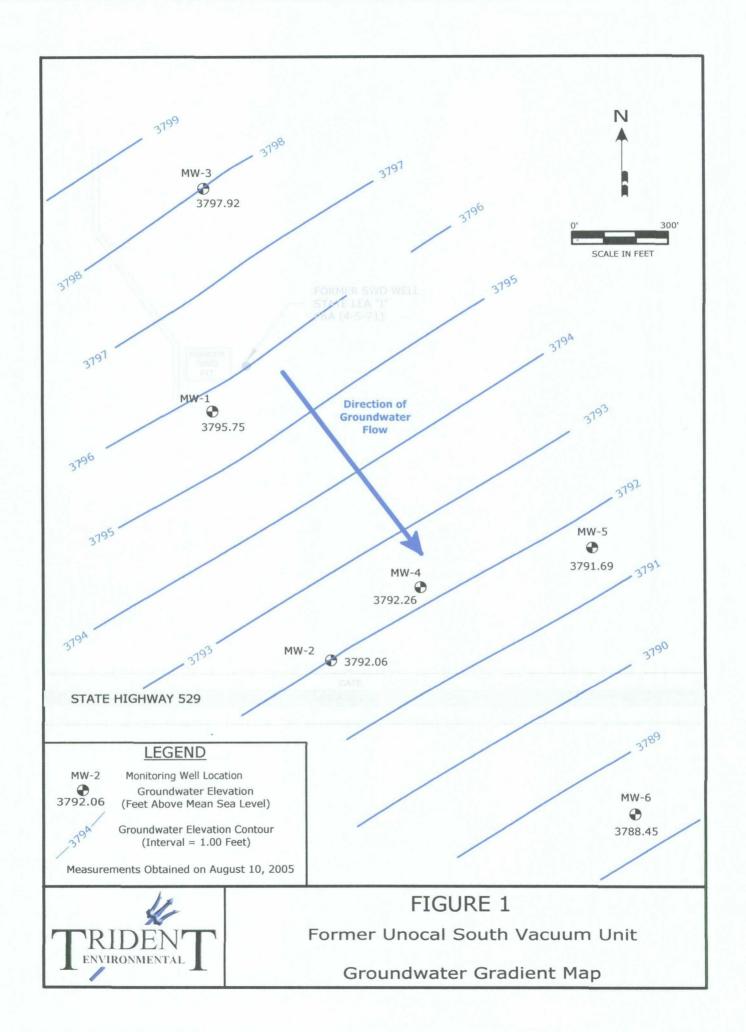
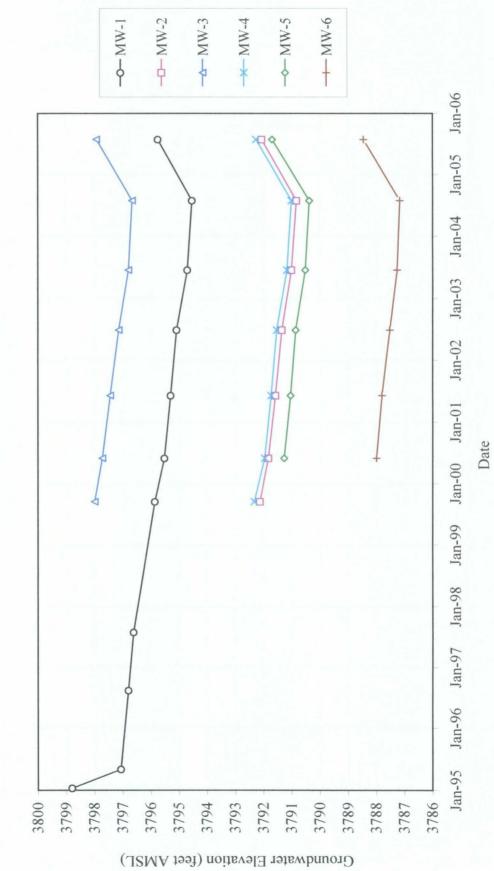
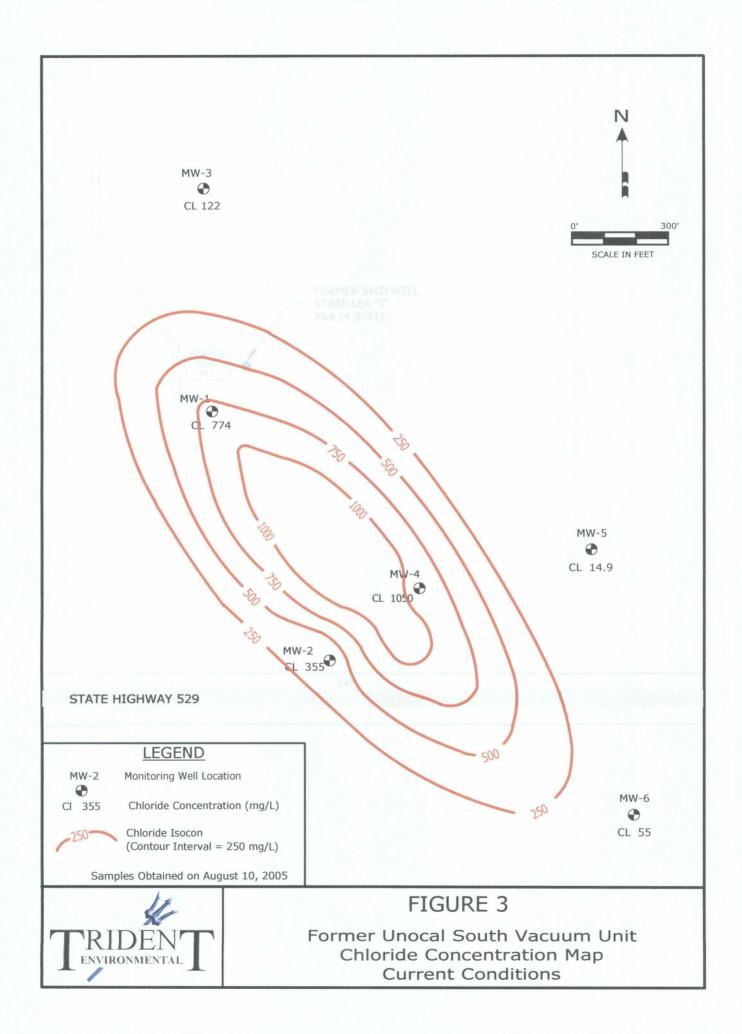
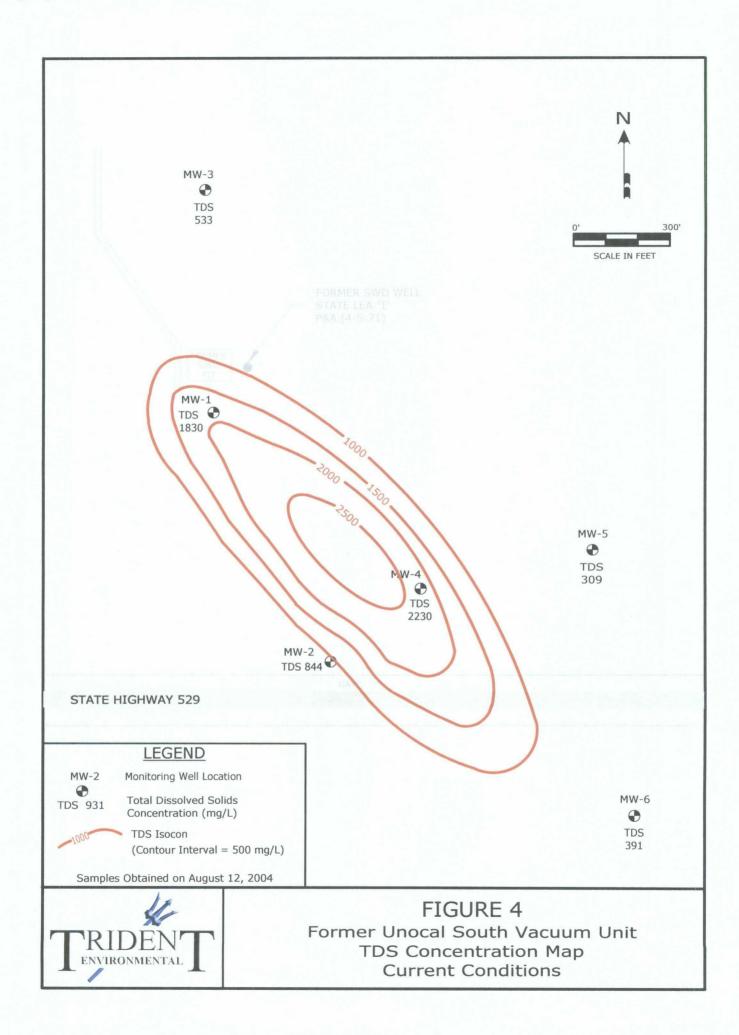
Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

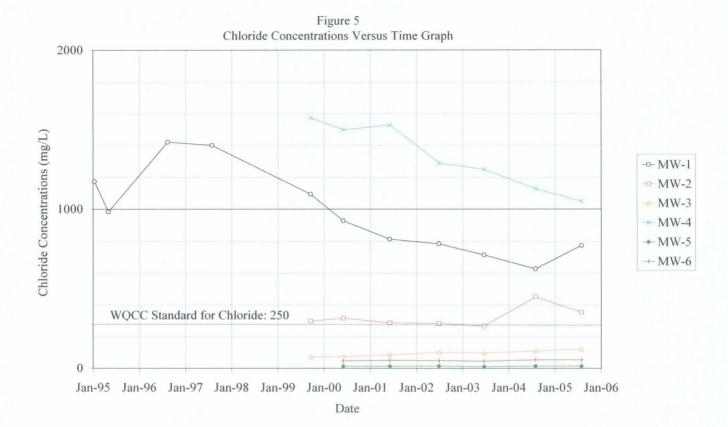
AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

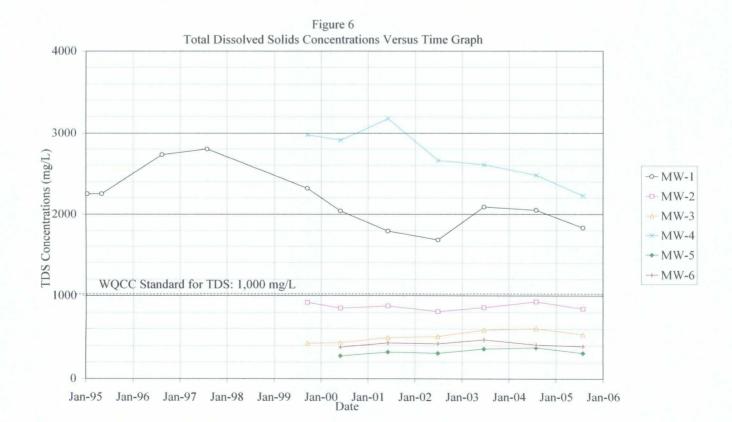
Groundwater flow direction is to the southeast with a gradient of approx. 0.004 ft/ft.

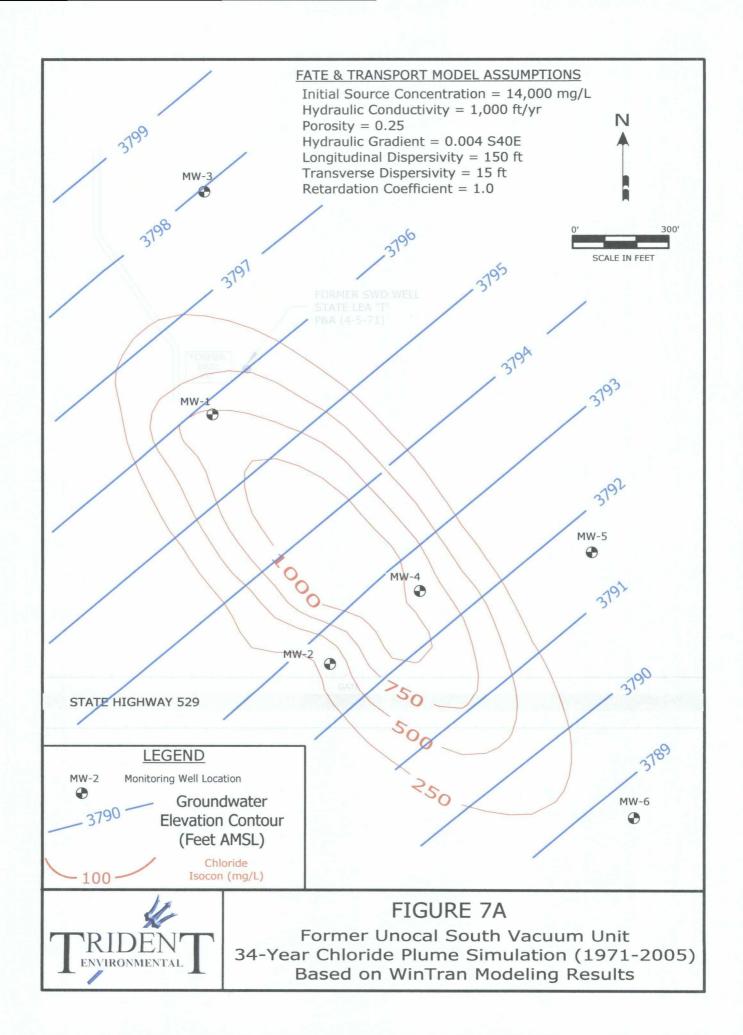
Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

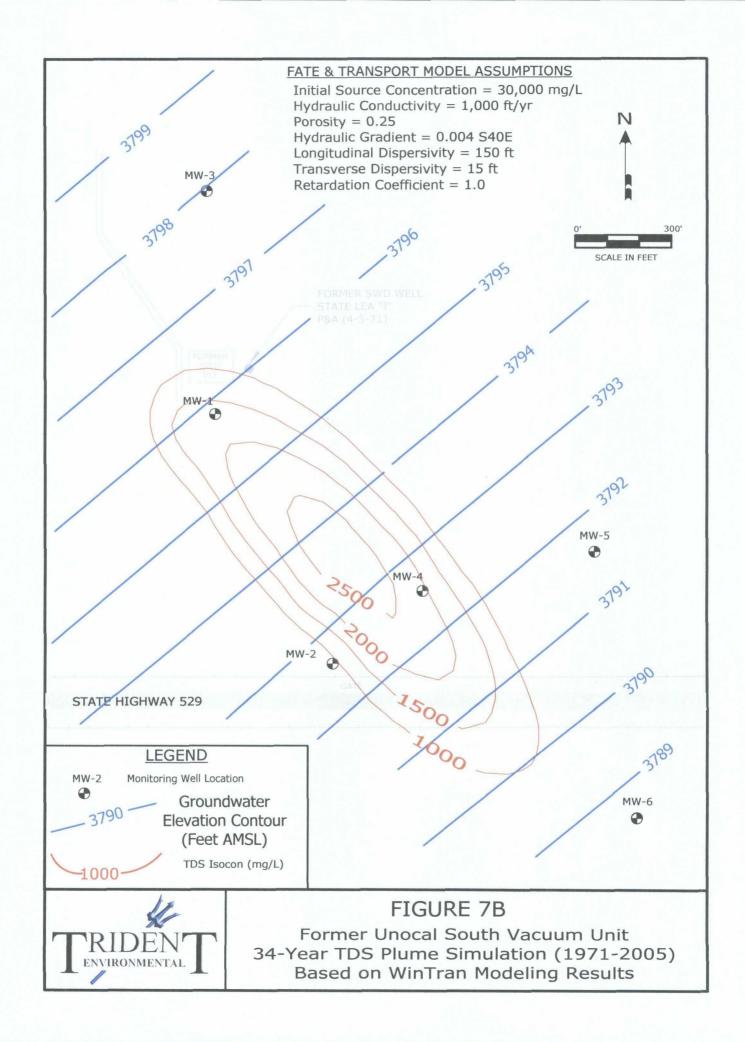
FIGURES

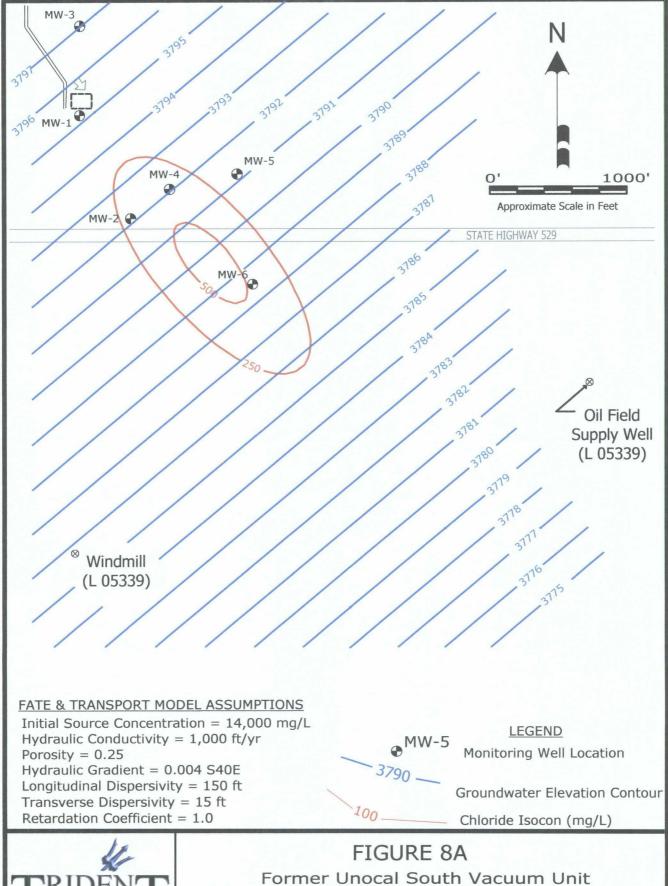





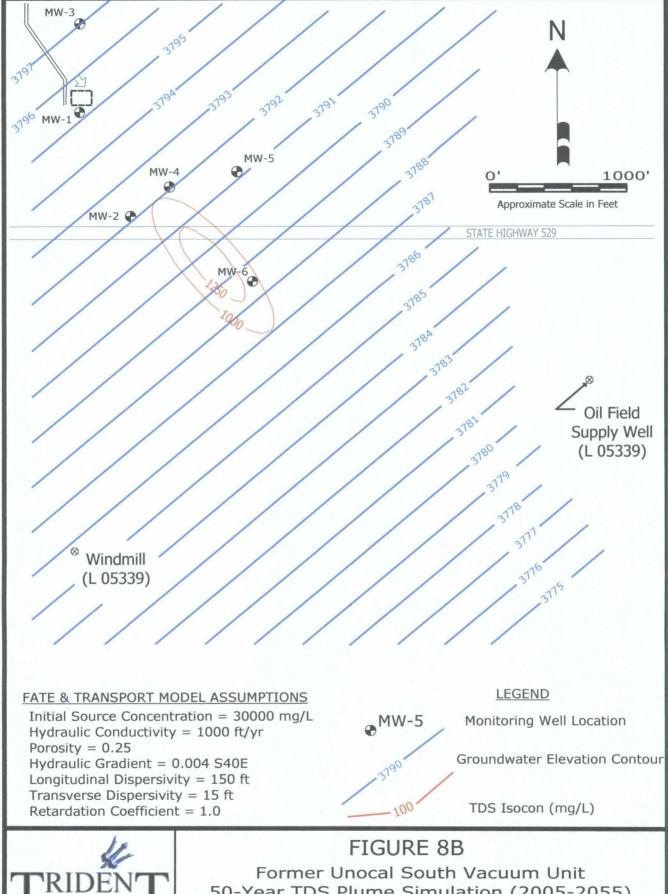

Figure 2 Historical Groundwater Elevations

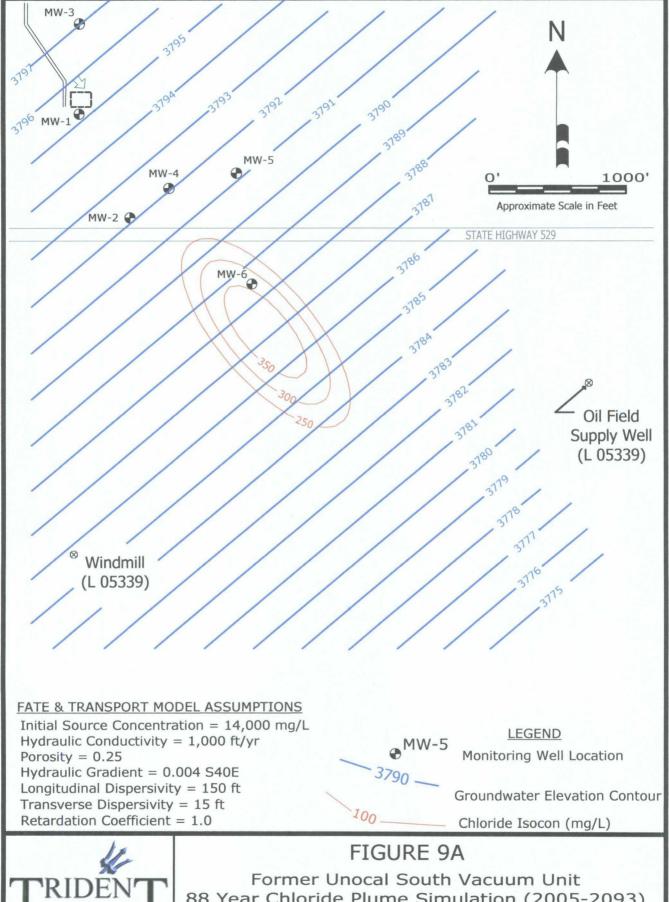




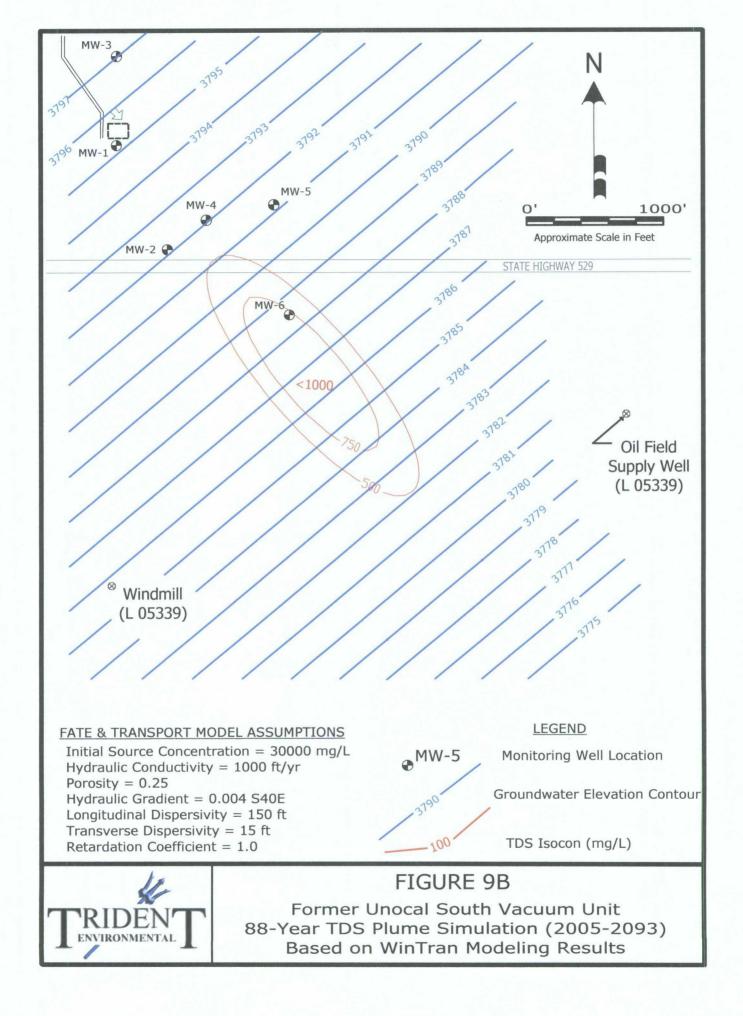








50-Year Chloride Plume Simulation (2005-2055) Based on WinTran Modeling Results



50-Year TDS Plume Simulation (2005-2055) Based on WinTran Modeling Results

88 Year Chloride Plume Simulation (2005-2093) Based on WinTran Modeling Results

Based on WinTran Modeling Results

APPENDIX A

Laboratory Analytical Reports

And

Chain-of-Custody Documentation

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Certificate of Analysis Number:

05080760

Report To:

ENSR International

Chris Kocka

27755 Diehl Road, Suite 100

Warrenville

60555-3998

ph: (630) 836-1700

fax:

Project Name:

Former Unocal South Vacuum Unit Sec 35-T185-R35E Lea County, NM

Site:

Site Address:

PO Number:

7963

State Cert. No.:

New Mexico

Date Reported:

8/31/2005

This Report Contains A Total Of 14 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8/31/2005

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Unocal Corporation

Certificate of Analysis Number: 05080760

Report To: Former Unocal South Vacuum Unit **Project Name:** Sec 35-T185-R35E Lea County, NM Site: **ENSR International** Chris Kocka Site Address: 27755 Diehl Road, Suite 100 7963 PO Number: Warrenville **New Mexico** State: IL 60555-3998 State Cert. No.: ph: (630) 836-1700 fax: 8/31/2005 **Date Reported:**

The samples in this report were received on the last day of holding time for the Total Dissoved Solids (TDS) analysis. The samples were analyzed for TDS on the day of sample receipt. Sample MW-5 (SPL ID: 05080760-05) had to be re-analyzed for TDS and the result reported is past the holding time.

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

ce_

S-

8/31/2005

8880 INTERCHANGE, DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Certificate of Analysis Number:

05080760

Report To:

ENSR International

Chris Kocka

27755 Diehl Road, Suite 100

Site:

State:

Sec 35-T185-R35E Lea County, NM

Former Unocal South Vacuum Unit

Site Address:

Project Name:

Warrenville

ΙL

60555-3998

ph: (630) 836-1700

fax: (630) 836-1711

PO Number:

7963

New Mexico

State Cert. No.:

Fax To:

Date Reported:

8/31/2005

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COCID	HOLD
MW-1	05080760-01	Water	8/10/2005 11:50:00 AM	8/17/2005 9:30:00 AM	227437	
MW-2	05080760-02	Water	8/10/2005 10:50:00 AM	8/17/2005 9:30:00 AM	227437	
MW-3	05080760-03	Water	8/10/2005 12:35:00 PM	8/17/2005 9:30:00 AM	227437	
MW-4	05080760-04	Water	8/10/2005 11:21:00 AM	8/17/2005 9:30:00 AM	227437	
MW-5	05080760-05	Water	8/10/2005 1:06:00 PM	8/17/2005 9:30:00 AM	227437	
MW-6	05080760-06	Water	8/10/2005 1:42:00 PM	8/17/2005 9:30:00 AM	227437	

8/31/2005

Date

Elessa Sommers

Senior Project Manager

Joel Grice **Laboratory Director**

Ted Yen Quality Assurance Officer

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-1 Collected: 08/10/2005 11:50 SPL Sample ID: 05080760-01

	Site: Sec 35-T185-R35E Lea County, NM							
Analyses/Method	Result	QUAL	Rep.Limit	Dil. Fact	or Date Ana	lyzed Analyst	Seq. #	
CHLORIDE, TOTAL				MCL	E325.2	Units: mg/L		
Chloride	774		10	10	08/18/05	12:26 T_H	2904971	
TOTAL DISSOLVED SOLIDS				MCL	E160.1	Units: mg/L		
Total Dissolved Solids (Residue.Filterable)	1830		10	1	08/17/05	16:00 A_E	2905335	

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

(Residue, Filterable)

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-2 Collected: 08/10/2005 10:50 SPL Sample ID: 05080760-02

•	Site: Sec 35-T185-R35E Lea County, NM								
Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor		r Date Analyzed Analyst		Seq. #	
CHLORIDE, TOTAL				MCL		E325.2	Units: mg/L		
Chloride	355		10		10	08/18/05	12:26 T_H	2904972	
TOTAL DISSOLVED SOLIDS				MCL		E160.1	Units: mg/L		
Total Dissolved Solids	844		10		1	08/17/05	16:00 A_E	2905336	

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-3

Collected: 08/10/2005 12:35 SP

SPL Sample ID:

05080760-03

	Site: Sec 35-T185-R35E Lea County, NM								
Analyses/Method	Result		Rep.Limit	Dil. Factor		r Date Analyzed Analyst		Analyst	Seq. #
CHLORIDE, TOTAL				MCL		E325.2	Ur	nits: mg/L	
Chloride	122		2		2	08/18/05	12:26	T_H	2904973
TOTAL DISSOLVED SOLIDS				MCL		E160.1	Ur	nits: mg/L	
Total Dissolved Solids (Residue,Filterable)	533		10		1	08/17/05	16:00	A_E	2905337

- B Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

- D Surrogate Recovery Unreportable due to Dilution
- MI Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-4 Collected: 08/10/2005 11:21 SPL Sample ID: 05080760-04

Site: Sec 35-T185-R35E Lea County, NM

Analyses/Method	Result	QUAL	Rep.Limit	D	il. Factor	Date Anal	yzed .	Analyst	Seq. #
CHLORIDE, TOTAL				MCL		E325.2	Unit	s: mg/L	
Chloride	1050		20		20	08/18/05	12:40 T	_H	2904975
TOTAL DISSOLVED SOLIDS			<u> </u>	MCL		E160.1	Unit	s: mg/L	
Total Dissolved Solids (Residue,Filterable)	2230		20		2	08/17/05	16:00 A	_E	2905338

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-5 Collected: 08/10/2005 13:06 SPL Sample ID: 05080760-05

	_		Site: Sec	35-T185-F	R35E L	ea County	, NM	
Analyses/Method	Result	QUAL	Rep.Limit	Dil	. Factor	Date Anal	yzed Anal	yst Seq. #
CHLORIDE, TOTAL				MCL		E325.2	Units: m	g/L
Chloride	14.9		1		1	08/18/05	12:04 T_H	2904968
TOTAL DISSOLVED SOLIDS				MCL		E160.1	Units: m	g/L
Total Dissolved Solids (Residue.Filterable)	309		10		1	08/29/05	17:30 A_E	2922005

ND/U - Not Detected at the Reporting Limit

- B Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

 Client Sample ID: MW-6
 Collected: 08/10/2005 13:42
 SPL Sample ID: 05080760-06

•	Site: Sec 35-T185-R35E Lea County, NM								
Analyses/Method	Result	QUAL	Rep.Limit	Di	I. Factor	Date Anal	yzed A	nalyst	Seq. #
CHLORIDE, TOTAL				MCL		E325.2	Units	: mg/L	
Chloride	55		1		1	08/18/05	12:04 T_	H	2904969
TOTAL DISSOLVED SOLIDS				MCL		E160.1	Units	: mg/L	
Total Dissolved Solids (Residue Filterable)	391		10		1	08/17/05	16:00 A_	E	2905340

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Analysis:

Chloride, Total

Method:

E325.2

Former Unocal South Vacuum Unit

WorkOrder:

05080760

Lab Batch ID:

R148341A

RunID:

KONELAB_050818A-29049 Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

05080760-01A

Client Sample ID

Analysis Date:

08/18/2005 11:04

 $\mathsf{T}_{_}\mathsf{H}$

MW-1

05080760-02A

05080760-03A

MW-2 MW-3

Analyte Chloride

Result Rep Limit NO

05080760-04A 05080760-05A MW-4 MW-5

05080760-06A

MW-6

Laboratory Control Sample (LCS)

RunID:

KONELAB_050818A-29049 Units:

mg/L

Analysis Date:

Method Blank

Analyst:

08/18/2005 11:04

T_H Analyst:

Analyte	Spike	Result	Percent	Lower	Upper
	Added		Recovery	Limit	Limit
Chloride	50.00	51.33	102.7	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

05080689-09

RunID:

KONELAB_050818A-29049 Units:

mg/L

Analysis Date:

08/18/2005 12:51

Analyst:

T_H

Analyte .	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chloride	27.98	50	75.69	95.43	, 50	76.99	98.02	1.700	20	76	131

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Former Unocal South Vacuum Unit

Analysis:

RunID:

Total Dissolved Solids

08/17/2005 16:00

Method:

Analysis Date:

E160.1

WorkOrder:

05080760

Lab Batch ID:

R148359

Method Blank

WET_050817P-2905332 -Units:

mg/L

A_E

Analyst:

Lab Sample ID 05080760-01A

Samples in Analytical Batch:

Client Sample ID MW-1

05080760-02A 05080760-03A MW-2

MW-3

05080760-04A Result Rep Limit

MW-4

Analyte Total Dissolved Solids (Residue, Filterable)

05080760-06A

MW-6

ND

Laboratory Control Sample (LCS)

RunID:

WET 050817P-2905334

Units: mg/L

Analysis Date:

08/17/2005 16:00

Analyst: A_E

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Total Dissolved Solids (Residue, Filterabl	200.0	199.0	99.50	95	107

Sample Duplicate

Original Sample:

05080762-01

WET_050817P-2905341

Units:

mg/L

Analysis Date:

RunID:

08/17/2005 16:00

Analyst: A_E

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Total Dissolved Solids (Residue,Filterabl	700	701	0.143	20

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Former Unocal South Vacuum Unit

Analysis:

Total Dissolved Solids

Method:

RunID:

E160.1

WorkOrder:

05080760

Lab Batch ID:

Method Blank

Samples in Analytical Batch:

R149434

WET_050829S-2921999

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

08/29/2005 17:30

A_E Analyst:

mg/L

05080760-05A

MW-5

Analyte	Result	Rep Limit
Total Dissolved Solids (Residue, Filterable)	ND	10

Laboratory Control Sample (LCS)

RunID:

WET_050829S-2922001

Units:

Analysis Date:

08/29/2005 17:30

mg/L Analyst: A_E

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Total Dissolved Solids (Residue,Filterabl	200.0	203.0	101.5	95	107

Sample Duplicate

Original Sample:

05081166-01

RunID:

WET_050829S-2922002

Units:

mg/L

Analysis Date:

08/29/2005 17:30

Analyst: A_E

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Total Dissolved Solids (Residue, Filterabl	1010	1007	0.199	20

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workorder:	05080760		Received By	NB
Date and Time Received:	8/17/2005 9:30:00 AM		Carrier name	Fedex-Priority
Temperature:	3.0°C		Chilled by:	Water Ice
1. Shipping container/co	poler in good condition?	Yes 🗹	No 🗆	Not Present
2. Custody seals intact	on shippping container/cooler?	Yes 🗹	No 🗆	Not Present
3. Custody seals intact	on sample bottles?	Yes	No 🗆	Not Present
4. Chain of custody pres	sent?	Yes 🗹	No □	·
5. Chain of custody sign	ned when relinquished and received?	Yes 🗹	No 🗆	
6. Chain of custody agree	ees with sample labels?	Yes 🗸	No 🗆	
7. Samples in proper co	ntainer/bottle?	Yes 🗹	No 🗌	
8. Sample containers in	tact?	Yes 🗹	No 🗆	
9. Sufficient sample vol	ume for indicated test?	Yes 🗸	No 🗌	
10. All samples received	within holding time?	Yes 🗹	No 🗆	
11. Container/Temp Blan	k temperature in compliance?	Yes 🗹	No 🗆	
12. Water - VOA vials hav	re zero headspace?	Yes	No 🗆 V	OA Vials Not Present
3. Water - Preservation	checked upon receipt (except VOA*)?	Yes 🗌	No 🗆	Not Applicable
*VOA Preservation CI	necked After Sample Analysis			
SPL Representati	ve:	Contact Date	& Time:	
Client Name Contact	ed:			
Non Conformance Issues:				
Client Instructions:				
L.				

PM review (initial): ☐ 459 Hughes Drive Traverse City MI 49686 (231) 947-5777 22743 Ice? 70. Temp: 3.0. 6 \$ page_ Requested Analysis 6. Received by Indantalora 000 SPI. Workorder No. Email X PDF X | Special Detection Limits (specify): 2. Received by: 4. Received by: Sa 190 time SOOph 500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775 time Number of Containers 1 Jalul Sep pres. X=other 3=H2SO4 (0) U Standard ON Level 3 QC Level 4 QC TX TRRP L LA RECAP 9 Analysis Request & Chain of Custody Record EONH=2 I=HCI 50/91/2 matrix bottle size 8=80z 16=160z X=other date 1=1 liter Laboratory remarks: A=arguer glass Tisiv= G=glass 0 P=plastic Fax SPL, Inc. X=otaci SL=sludge ζ \$ios=S W=water lio=O Special Reporting Requirements Results: Van Deventatemin: giletrident, environ Midland Tx 79708 Σ comp grab 413-403-9968 South Vacoum Unit Site Location: Sec 35-7 185-8356 Len (ounty トレンシウ かんりてん 1. Refundinshed hy Sampley 1306 1275 135 TIME 3-10-05 1050 150 121 Client/Consultant Remarks: Chock-Cerses com - Acheba Hope Phi 3. Relinquished by: 5. Relinquished by: 3-10-05 340-05 3-10-05 3-10-05 8-10-05 DATE 34 8880 Interchange Drive Phone/Fax: 432-1,38-8740 P 6 Box 7624 Standard X Requested TAT 72hr SAMPLE ID 7 Project Name/No.: # Invoice To: UNI 5 CA Site Name: FOW MP Client Contact: (5;) RW-3 MM-6 アラク ナースト NEW Client Name: TME Contract Address: Other 24hr 48hr

コアリコヨウもノクノク

Houston, TX 77054 (713) 660-0901

3.00

1

日本に

4 4

. .

And the second

reme.

電力

H. ...

い、一般の記録を開始し

(教教教をおして

・一般を表がいい

90000

N NA

APPENDIX B

Monitoring Well Sampling Data Forms

	CLIENT:	Un	ocal Corpora	ation	_	WELL ID:	MW-1
;	SITE NAME:	Former U	Inocal S. Va	cuum Unit	_	DATE	8/10/2005
PR	OJECT NO.		V-107		_	SAMPLER	Van Deventer
LIDCING	METHOD:		✓ Hand Bail	od Dum	o If Dumon T	Tuno:	
	METHOD:				•	•	Hose Oth€
	E EQUIPMEN		•			•	
	ZAlconox		Nater Rinse		TONE SAW	r LING THE	E WELL.
] Gloves	<u> </u>	C Build V	valei Niise	Oun	-		· · · · · · · · · · · · · · · · · · ·
ISPOSAL	METHOD O	F PURGE W	/ATER:	☐ Surface	Discharge	□ums	Di∰bsal Facility
	PTH OF WE	LL:	70.00	_Feet			
) WATER: F WATER C(OLUMN:	62.62 7.38	_Feet Feet		3.6	Minimum Gallons to purge 3 well volumes
ELL DIAI			Inch	_,	-	0.0	_ will main called to purge o well volumes
TIME	VOLUME	TEMP.	COND.	pН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
11:37	PURGED 0	<u>°F_</u>	mS/cm				
11:40	1	71.7	2.8	8.00	1		
11:43	2	68.9	2.81	7.79			
11:45	3	68.1	2.82	7.74			
11:47	4	67.7	2.78	7.87			
11:50	5	67.6	2.78	7.74			·
						11:53	Collected sample
							
				<u> </u>			

						<u> </u>	
0:13	:Total Time ((hr:min)	5	:Total Vol (gal)	0.38	:Average Flow Rate (gal/min)
OMMENT		<u> </u>				_	pH-Temperature-Conductivity meter.
	ced into 500						
	ample to SPI						

	CLIENT:	Unocal Corporation			_	WELL ID:	MW-2
-		Former Unocal S. Vacuum Unit V-107			DATE:		8/10/2005
					_	SAMPLER:	Van Deventer
PURGING M	METHOD:			led □ump	•		
SAMPLING	METHOD:		Disposab	le Bailer [☐rect from	Discharge H	lose Oth€
DESCRIBE	EQUIPMEN	T DECONTA	NOITANIMA	METHOD BE	FORE SAM	IPLING THE	EWELL:
☑ Gloves	☑Alconox	✓stilled \	Water Rinse	Oth€	-		
DISPOSAL I	METHOD O	F PURGE W	/ATER:	☐ Surface	Discharge	□ums	Di ⊈bsal Facility
TOTAL DEP DEPTH TO		LL:	71.00	_Feet Feet			
HEIGHT OF		OLUMN:	<u>49.58</u> <u>21.42</u>	_ Feet _ Feet	_	10.5	Minimum Gallons to purge 3 well volumes
WELL DIAM	ETER:	2.0	Inch	_			
TIME	VOLUME PURGED	TEMP. °F	COND. mS/cm	рН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
10:00	0						
10:07	2	70.6	1.10	7.36			
10:17	4	69.8	1.42	8.29			
10:24	6	68.2	1.46	8.36			
10:30	. 8	68.1	1.49	8.30_			
10:35	10	68.1	1.56	8.33			
_						10:50	Collected sample
		<u> </u>					
				·			
						· 	
			ļ				
	· .		1	 			
0:35 :	Total Time ((hr:min)	10	:Total Vol (g	ıal)	0.29	:Average Flow Rate (gal/min)
COMMENTS							pH-Temperature-Conductivity meter.
	•			put on ice in c			· · · · · · · · · · · · · · · · · · ·
			X) for Chloric				

	CLIENT:	Un	ocal Corpora	ation	_	WELL ID:	MW-3
• ;	SITE NAME:	Former L	Jnocal S. Va	cuum Unit	_	DATE	8/10/2005
PR	OJECT NO.		V-107_		_	SAMPLER	Van Deventer
PURGING	METHOD:		☑ Hand Bail	ed □um	p If Pump, T	уре:	
SAMPLING	METHOD:		☑ Disposab	le Bailer	☐rect from	Discharge I	Hose Oth€
DESCRIBE	EQUIPMEN	IT DECONTA	I NOITANIMA	METHOD BE	FORE SAM	PLING THE	E WELL:
☑ Gloves	☑Alconox	✓stilled \	Water Rinse	Oth€	_		
DISPOSAL	METHOD O	F PURGE W	/ATER:	☐ Surface	Discharge	□ums	Di⊈bsal Facility
DEPTH TO	PTH OF WEI WATER: F WATER CO METER:		77.00 66.81 10.19 Inch	_Feet _Feet _Feet	-	5.0	_Minimum Gallons to purge 3 well volumes
TIME	VOLUME PURGED	TEMP. °F	COND. mS/cm	рН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
12:15	0						
12:18	1	71.9	0.69	7.22			
12:21	2	68.9	0.74	7.19			
12:23	3	68.3	0.74	7.03			
12:30	4	67.7	0.74	7.09			
12:34	5	67.5_	0.75_	7.03			
			 	<u> </u>		12:35	Collected sample
			· ·				
0:19	:Total Time ((hr:min)	5	:Total Vol (gal)	0.26	:Average Flow Rate (gal/min)
OMMENT	S:	Parameters	obtained usir	ng a calibrate	ed Hanna Mo	del 98130	pH-Temperature-Conductivity meter.
Sample pla	ced into 500	ml plastic co	ntainer, and j	out on ice in	cooler.		· · · · · · · · · · · · · · · · · · ·
elivered s	ample to SPI	_ (Houston T	X) for Chlorid	le and TDS a	analyses.		

PROJECT NO.	;			ocal Corpora Inocal S. Va		-		MW-4 8/10/2005
Company Comp								
Company Comp	PURGING	METHOD:		☑ Hand Bail	ed □ump	olfPump, T	уре:	
Company	SAMPLING	METHOD:		☑ Disposabl	e Bailer [☐rect from	Discharge H	Hose Oth€
Supposal Method of Purge Water Surface Discharge	DESCRIBE	EQUIPMEN	T DECONTA	MINATION N	METHOD BE	FORE SAM	PLING THE	E WELL:
OTAL DEPTH OF WELL:	☑ Gloves	☑Alconox	☑stilled \	Water Rinse	Oth€	_		
DEPTH TO WATER 60.25 Feet 10.75 Feet 10	DISPOSAL	METHOD O	F PURGE W	ATER:	☐ Surface	Discharge	□ums	Di ⊈bsal Facility
Purged % ms/cm ph Do mg/L Turb Physical APPEARANCE AND REMARKS	DEPTH TO HEIGHT O	WATER: F WATER CO	OLUMN:	60.25 10.75	Feet	-	5.3	_Minimum Gallons to purge 3 well volumes
11:07	TIME				рН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
11:18	11:00	0					 .	
11:37	11:07	2	71.2	4.37	7.49			
0:37 :Total Time (hr:min) 6 :Total Vol (gal) 0.16 Average Flow Rate (gal/min) Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.	11:18	4	69.0	4.19	7.56			
0:37 :Total Time (hr:min) 6 :Total Vol (gal) 0.16 :Average Flow Rate (gal/min) COMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.	11:37	6	69.1	4.03	7.28			
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.							11:21	Sample collected
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.				,				
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.								
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.	<u></u>							
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.								
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.		, <u></u>						
OMMENTS: Parameters obtained using a calibrated Hanna Model 98130 pH-Temperature-Conductivity meter.								
	0:37	:Total Time	(hr:min)	6	:Total Vol (gal)	0.16	:Average Flow Rate (gal/min)
ample placed into 500 ml plastic container, and put on ice in cooler.	COMMENT	S:	Parameters	obtained usin	g a calibrate	d Hanna Mo	del 98130	pH-Temperature-Conductivity meter.
	Sample pla	ced into 500	ml plastic co	ntainer, and p	out on ice in o	cooler.		

			ocal Corpora		_		MW-5
SITE NAME: _ PROJECT NO.					_		8/10/2005 Van Deventer
110	03201110.		V 107		_	OAMI LLIV.	van Beventer
PURGING	METHOD:		☑ Hand Bai	led 🗌um	p If Pump, 1	Гуре:	
SAMPLING	METHOD:		☑ Disposab	le Bailer	☐rect from	Discharge I	Hose Othe⊡
DESCRIBE	EQUIPMEN	T DECONTA	I NOITANIMA	METHOD BE	FORE SAM	PLING THE	EWELL:
☑ Gloves	☑Alconox	☑stilled \	Water Rinse	Oth€⊟	_		
DISPOSAL	METHOD O	F PURGE W	/ATER:	☐ Surface	Discharge	□ums	Dit⊈bsal Facility
DEPTH TO	F WATER CO	OLUMN:	75.00 68.15 6.85 Inch	_Feet _Feet _Feet	-	3.4	_Minimum Gallons to purge 3 well volumes
TIME	VOLUME PURGED	TEMP. °F	COND. mS/cm	pH	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
12:52	0						
12:54	1	70.7	0.45	7.35			
12:56	_2	68.8	0.44	7.26	·	·	
12:59	3	68.3	0.44	7.26			
13:01	4	68.3	0.45	7.25		<u></u>	
13:04	5	68.5	0.43	7.29			
				ļ		13:07	Sample collected
				<u></u>	-		
				 			
				 		- 	
	·						
0:12	:Total Time (5	:Total Vol (0.42	:Average Flow Rate (gal/min)
COMMENT	•					odel 98130	pH-Temperature-Conductivity meter.
			ntainer, and				
elivered s	ample to SPI	_ (Houston T	X) for Chlorid	le and TDS a	analyses.		C:/FORMS/SAMPLING DATA F

	CLIENT:	Un	ocal Corpora	ation	_	WELL ID:	MW-6	
		Former Unocal S. Vacuum Unit			DATE:		8/10/2005	
			V-107			SAMPLER:	Van Deventer	
			☑ Hand Bail	·	-			
			·			_	Hose Oth€	
			NOITANIMA		FORE SAM	PLING THE	E WELL:	
⊴ Gloves	<u></u> ∆Alconox	[∡stilled \	Water Rinse	Oth€	-			
ISPOSAL	METHOD O	F PURGE W	/ATER:	☐ Surface	Discharge	ums	Di ⊡ bsal Facility	
EPTH TO		•	76.00 70.33	_Feet _Feet				
VELL DIA	F WATER CO METER:		5.67 Inch	_Feet	-	2.8	_Minimum Gallons to purge 3 well volumes	
TIME	VOLUME PURGED	TEMP. °F	COND. mS/cm	рН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS	
13:25	0							
13:28	1	72.0	0.59	7.30				
13:31	2	69.4	0. <u>5</u> 9	7.30				
13:35	3	68.1	0.59	7.25			·	
13:37	4	68.3	0.59	7.29				
13:39	5	68.0	0.59	7.23	ļ			
				İ		13:43	Sample collected	
_					1			
					+			
]	1				
								
			· · · · · · · · · · · · · · · · · · ·		1 1			
0:14	:Total Time ((hr:min)	5_	:Total Vol (gal)	0.36	:Average Flow Rate (gal/min)	
OMMENT	S:	Parameters	obtained usir	ng a calibrate	d Hanna Mo	odel 98130	pH-Temperature-Conductivity meter.	
ample pla	ced into 500	ml plastic co	ntainer, and p	out on ice in	cooler.			
elivered s	ample to SPL	_ (Houston T	X) for Chlorid	le and TDS a	nalyses.		C:/FORMS/SAMPLING DATA F	

APPENDIX C

Description of Fate and Transport Modeling

Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), was reportedly discharged into a surface pit and adjoining injection well for a period of about 10 years, until the well was plugged and abandoned in 1971. The chloride and TDS plume continued to migrate southeastwards for the next approximately 30 years after the source input was stopped, producing the configuration and constituent concentration distribution observed currently. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data in a TRW Inc. "Report of Additional Groundwater Investigation, Former Unocal South Vacuum Unit, Lea County, New Mexico" (July 18, 2000). This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map, edited with TurboCAD (Version 7), was exported to a universal drawing exchange file (DXF) file format. The DXF base map was imported into WinTran, which preserves the original units of measurement.

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aquifer top and bottom elevations, and reference head. The values used were based on the following sources:

- Hydraulic gradient measured gradient of 0.004 feet/foot from August 10, 2005 site measurements reported by Trident.
- Direction of flow measured direction of approximately S 40° E from August 10, 2005 site measurements reported by Trident.
- O Hydraulic conductivity no site measurements were available; therefore, a literature value based on the saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. Fetter (1988, Table 4.5, p. 80) cites an average range of 10⁻⁵ to 10⁻³ cm/sec for hydraulic conductivity of silty sands and fine sands. A conservative upper limit was selected, and converted from S.I. unit to 2.8 ft/day, or approximately 1000 ft/yr.
- o Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3700 feet reported by Trident. The top elevation for an unconfined aquifer must be greater than the reference head. An elevation of 4000 feet was assumed.
- Reference head measured unconfined head of 3795.5 feet adjacent to the former pit and upgradient well MW-1 from August 2005 measurements reported by Trident.

Transport Parameters

Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- O Longitudinal and transverse dispersivity no site measurements were available; therefore, a literature value based on the plume length was selected. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. For the current site scale and plume length of approximately 1500 feet, a value of 150 feet was selected for longitudinal dispersivity. According to the WinTran user's guide (ESI, 1995, p.11), longitudinal dispersivity is usually 5 to 10 times higher than transverse dispersivity; therefore, a value of 30 feet (i.e., one-fifth of the longitudinal value) was selected for transverse dispersivity.
- O Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.
- Diffusion coefficient this parameter is normally only relevant for very slow fluid movement, and is commonly assumed to be zero for advective-dominated transport, as in the present case.

- O Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological transformation of organic molecules); however, the species of interest in the present case are inorganic ions and are not expected to decay to any appreciable extent. A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.
- o Retardation coefficient this parameter accounts for sorption processes that slow the movement of contaminants relative to the groundwater velocity. Inorganic ions such as chloride are commonly taken as conservative tracers in groundwater and are not considered to be retarded; therefore, a value of 1.0 was selected for the retardation coefficient.

Flow Model Calibration

The vicinity of the site where water level measurements were recorded in August 10, 2005 is simulated closely by the flow model. It is known that groundwater levels in the Ogallala Formation are decreasing slowly (less than 0.5 ft/yr), but this effect cannot be reproduced in the steady-state flow model. Water levels were probably somewhat higher than the present day during the period of brine disposal and initial transport. Even if the declining trend continues into the future, it does not affect the transport model solution for long extrapolation times, since sufficient saturated thickness remains (i.e., above the assumed aquifer base elevation of 3700 feet) for a valid flow and transport solution.

The average groundwater velocity may be estimated using the darcy expression: $v = (k \cdot i) / n$ where k is the hydraulic conductivity (ft/yr), i is the hydraulic gradient (ft/foot), and n is the effective porosity (unitless). The resultant average velocity is 16 ft/yr.

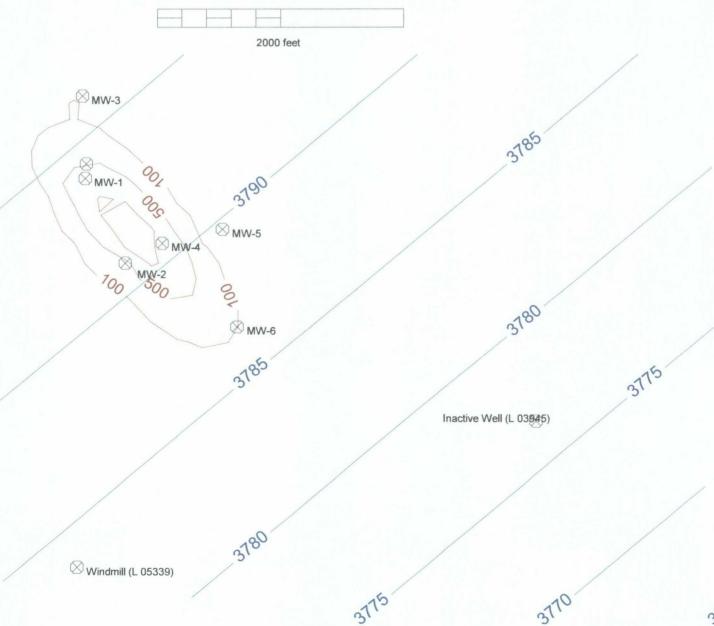
Transport Model Calibration

The objective of the transport modeling was to first obtain a plume configuration with concentration values that closely match current observed values. This was done by simulating an initial contaminant release to groundwater for a period of 11 years (c. 1960 to 1971) with a constant source concentration located at the pit and injection well, then simulating a 28-year transport period (c. 1971 to 1999) with no further contaminant input but restarting the model from the end of Year 11 by retaining the mass of contaminant from the initial plume. An iterative approach was needed to optimize the initial source concentration so that the plume at Year 39 resembled the actual plume conditions in 1999. An initial value of 14,000 mg/L for chloride and 30,000 mg/L for TDS were found to produce the best match. The initial chloride value was also chosen because it is typical of chloride concentrations within the producing formation (Devonian) in the South Vacuum Oil Field according to chemists at Martin Water Laboratories (verbal communication, 12-05-01). Actual disposal concentrations during the 1960s are unknown, and may have been higher than these values, but it is presumed that some attenuation and dilution may have occurred in the vadose zone, which is currently 48 to 68 feet thick. WinTran does not account for vadose zone transport, and the source input is treated as an injection well with instantaneous transfer of contaminant mass to groundwater.

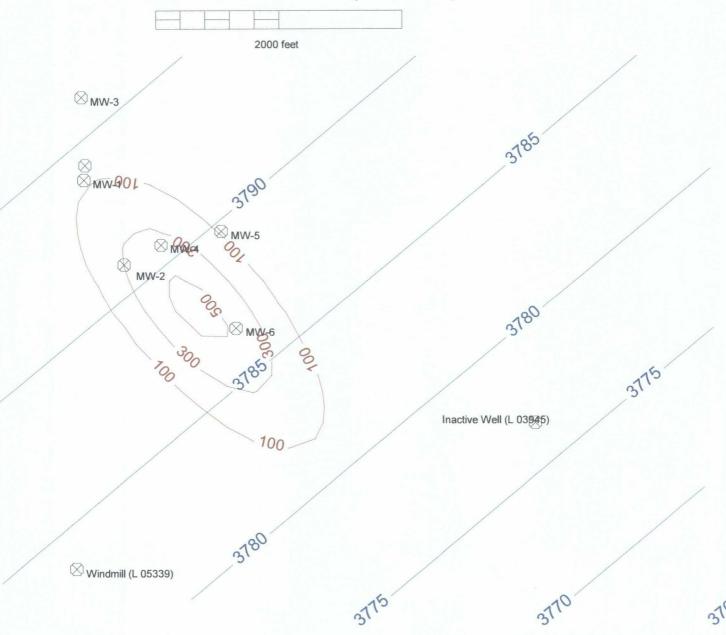
After calibrating the model such it corresponded to actual 1999 conditions, the model was again run for 6 years (1999 to 2005) at one-year increments after entering in the known concentrations at each monitoring well. Figures 7A and 7B show the close match achieved by the chloride and TDS simulations compared to the current observed plume.

Simulation of Fate and Transport

Estimation of chloride and TDS fate and transport was achieved by restarting the transport model from the end of Year 45 (2005) by retaining the distribution of contaminant mass and projecting for a further 50 years into the future. As depicted in Figures 8A and 8B, dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume. Advective flow moves the center of plume mass downgradient by a distance of approximately 1,500 feet from the former source area (SWD pit) and approximately 300 feet upgradient from well MW-6.

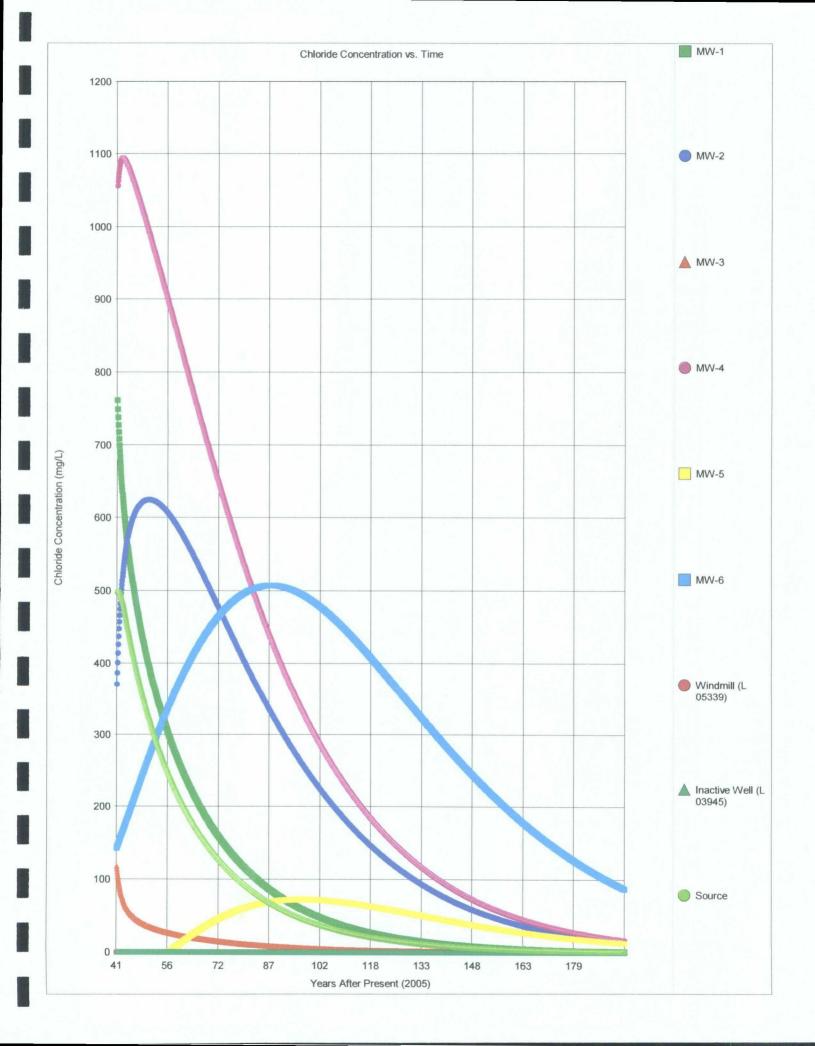

Running the model for 153 years in the future (Year 2158) produces a chloride plume center concentration of 249 mg/L (below the WQCC standard of 250 mg/L) as shown in Figure 9A. The center of the chloride plume is approximately 3,400 ft away from the former pit and well source at that time.

Running the model for 88 years in the future (Year 2093) produces a TDS plume center concentration of 995 mg/L (below the WQCC standard of 1,000 mg/L) as shown in Figure 9B. The center of the TDS plume is approximately 2,200 ft away from the pit and well source at that time.

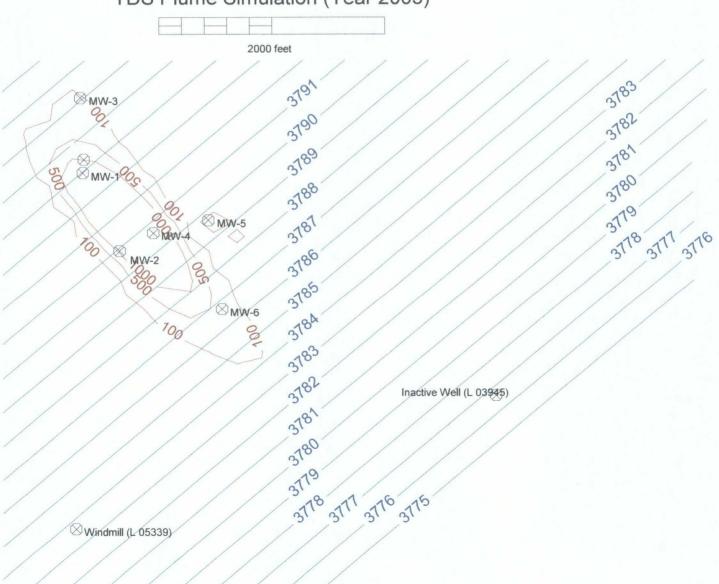

These results support the contention that the chloride and TDS plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. L05339) located approximately 3,000 feet south of the source.

The trend of decreasing concentration is not linear (exponential e^{-kt} function). Interestingly, the center of the plume moves at a greater rate (22 feet/year) over successive time intervals than would be assumed from the groundwater velocity alone (16 feet/year), due to the added effect of dispersion.

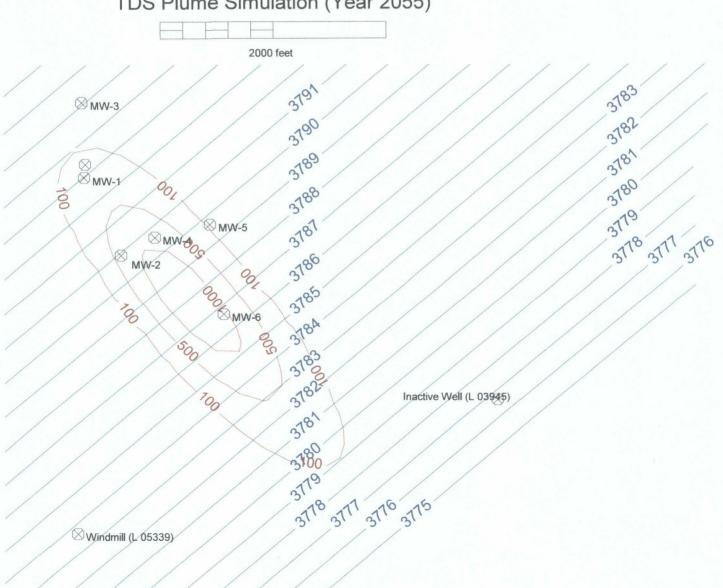
Chloride Plume Simulation (Year 2005)

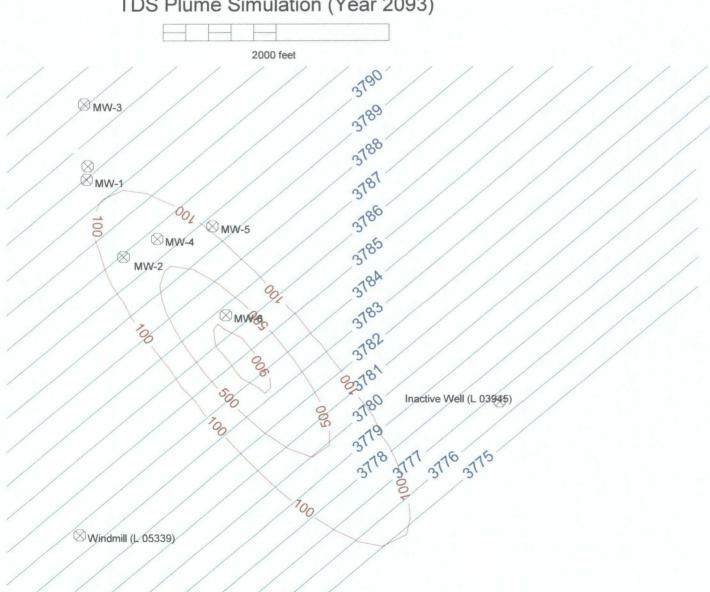


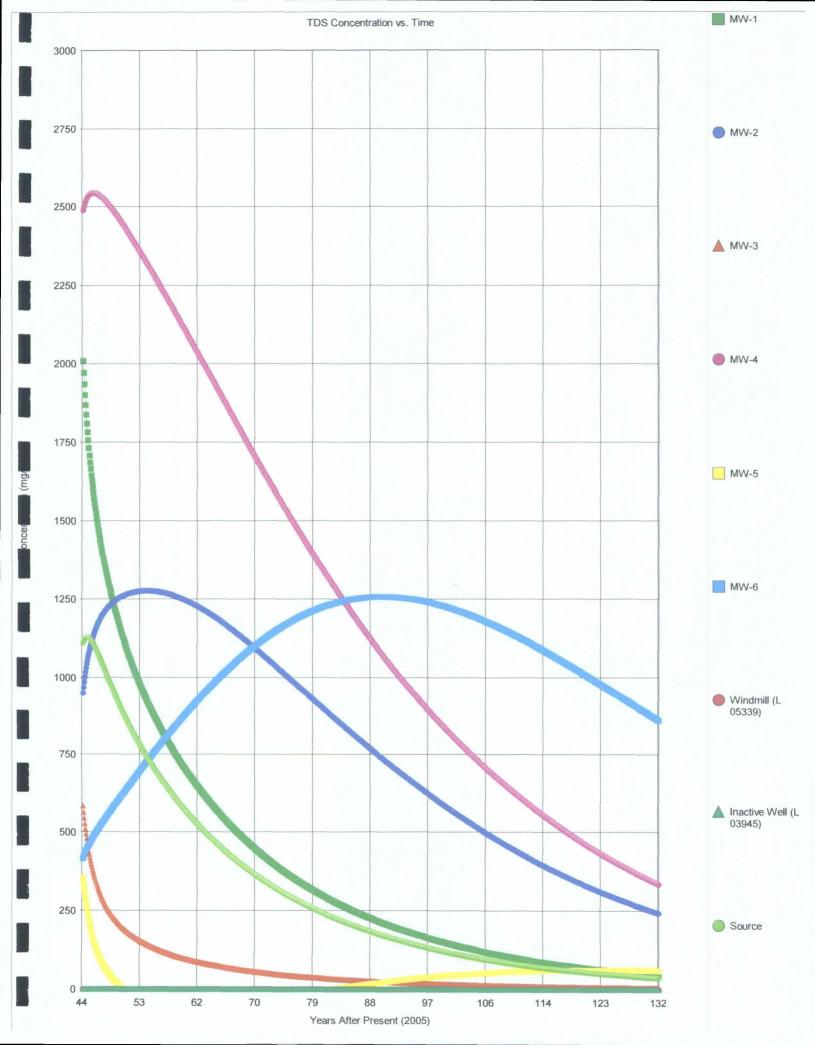
Chloride Plume Simulation (Year 2055)



Chloride Plume Simulation (Year 2093) 2000 feet ⊗_{MW-3} $\mathop{\otimes}_{\text{MW-1}}$ 3790 ⊗_{MW-5} \otimes_{MW-4} 001 MW-2 500 200 ⊗ MW-6 001 100 200 200 Inactive Well (L 03945) 100 700 ⊗ Windmill (L 05339)


Chloride Plume Simulation (Year 2158) 2000 feet \otimes_{MW-3} $\mathop{\otimes}_{\text{MW-1}}$ 3190 ⊗_{MW-5} ⊗_{MW-4} ⊗ MW-2 ⊗_{MW-6} 001 8 3185 500 Inactive Well (L 03945) 001 igotimes Windmill (L 05339)


TDS Plume Simulation (Year 2005)



TDS Plume Simulation (Year 2055)

TDS Plume Simulation (Year 2093)

