SIT	e in	NFO	RMA	TION

100 CAN

A Carl

a salar

A ALE TOTAL

f B. Stranger

rearrist for a si

a harana

2015 BRID

ALL ALL ALL

	Report Type: Closure								
General Site Info	rmation: 2RP-44	3							
Site:		Tex Mack 11	Federal #35						
Company:		COG Operat	ting LLC						
Section, Townsh	ip and Range	11	175	31E					
Lease Number:		API-30-015-3	37667						
County:		Eddy Count	у						
GPS:			32.84437° N	103.84547° W					
Surface Owner:		Federal							
Mineral Owner:									
Directions:		From the inter 2m, turn left of	section of Hwy 529 n lease road travel (and the Lovi 0.3m, turn rig	ngton Hwy travel east on the Lovington Hwy for ht travel 1.5m, turn left travel 0.5m arrive at site.				
Release Data									
Date Released:	an and the set of the second	7/27/2010	 The second se Second second seco	and The Constant	கலாகை, கூலுக்கு எருதாக நாற்றார். காண்டன் வர்தென்றேடிய தேரிருந்துத்துக்கு இந்திருந்து இருக்குகள் இந்து "பிரிலில் கலாகை				
Type Release:		Produced Flu	uid						
Source of Contan	nination:	Wellbore							
Fluid Released:		70 bbls							
Fluids Recovered	Fluids Recovered: 60 bbls								
Official Commun	nication:								
Name:	lame: Pat Filis			Jeff Kindlev					
Company:					Totra Toch				
Company.	easi EEO M/ Taxaa Ava Sta 1200								
Address:	550 W. Texas Ave. Ste. 1300				1910 N. Big Spring				
P.U. Box									
City:	Midland Texas, 797	/01			Midland, Texas				
Phone number:	(432) 686-3023			(432) 631-0348					
Fax:	(432) 684-7137								
Email:	pellis@conchoreso	urces.com			jeff.kindley@tetratech.com				
Ranking Criteria									
Barth to Oracit			Dentition German	1					
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>			Ranking Score		Site Data				
50-99 ft			10		<u></u>				
>100 ft.	·····		0		0				
			······						
WellHead Protecti	on:		Ranking Score		Site Data				
Water Source <1,0	000 ft., Private <200 f	t	20	L					
vvater Source >1,0	00 II., PTIVATE >200 f	l	U U	L	U				
Surface Body of W	/ater:		Ranking Score		Site Data				
<200 ft.			20						
200 ft - 1,000 ft.			10						
> 1,000 tt.		······	0		U				
Contraction Tot	al Ranking Score.		0		RECEIVED				
		Accepta	ble Soil RRAL (n	ng/ka) 🚱	FFR 1 / 2011				
Benzene			Total BTEX	TPH					
	10			5,000	NMOCD ARTESIA				

February 2, 2011

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 1301 West Grand Avenue Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., Tex Mack 11 Federal #35, Unit M, Section 11, Township 17 South, Range 31 East, Eddy County, New Mexico. (2RP-443)

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the Tex Mack 11 Federal #35 located in Unit M, Section 11, Township 17 South, Range 31 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.84437°, W 103.84547°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on July 27, 2010, when approximately seventy (70) barrels of produced fluid was released from the wellbore. To alleviate the problem, COG personnel repaired the wellbore. A vacuum truck was utilized to recover sixty (60) barrels of standing fluids. The spill extended west to east with dimensions of 120' x 120' and tapering to 75'. The initial and final C-141's are enclosed in Appendix A.

Groundwater

No water wells were listed within Section 11. According to the NMOCD groundwater map, the average depth to groundwater in this area is greater than 200' below surface. The groundwater information is enclosed in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On August 8, 2010, Tetra Tech personnel inspected and sampled the spill area. A total of six (6) auger holes (AH-1 through AH-6) were installed using a stainless steel hand auger to assess the impacted soils. Select samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, none of the samples at AH-1, AH-2, AH-3, and AH-6 exceeded the RRAL for TPH or BTEX. Auger holes (AH-4 and AH-5) did show TPH and BTEX concentrations above RRAL at 0-1' and 5.0' below ground surface (bgs), respectively. The deeper samples declined below the RRAL at AH-4 (1.0'-1.5') and AH-5 (6.0'-6.5') bgs. The chloride impact was defined in AH-1, AH-2, AH-3, AH-4, and AH-6, at a depth of 1.0' bgs. Auger hole (AH-5) had an increase in chloride concentrations near the bottom of the hole, with chloride concentrations of 1,220 mg/kg at 7.0' and 1,060 mg/kg at 9.0'.

Corrective Action

As per the approved work plan dated October 1, 2010, Tetra Tech personnel were onsite to oversee the excavation of hydrocarbon impacted soils at the site. The soils were excavated along the footprint of the spill to a depth of 1.0' in the areas of AH-1, AH-2, AH-3, AH-4 and AH-6. The deepest impact was encountered in the area of AH-5 and excavated the area 25' x 25' at a depth of 6-6.5'. A confirmation samples (CS-1) was collected from the bottom of the excavation and installed a backhoe trench (T-1) to assess

And Street

2-24

1381-44 1

1.2.2.2

the bottom of the excavation. Based on the results, the bottom was overexcavated to remove the soils exceeding the RRAL. In addition, side wall samples were collected for analysis of BTEX, TPH, and chlorides. Laboratory analysis verified that the TPH, BTEX and chlorides were below the RRAL. Upon completion of the excavation, approximately 720 cubic yards of hydrocarbon/chloride impacted soils were removed and transported offsite for disposal at Controlled Recovery Inc. (CRI) of Carlsbad, NM. The site was backfilled with clean caliche and brought up to surface grade. See Figure 4 for excavation dimensions.

Closure Request

Based upon the remediation performed at this site, COG Operating LLC respectfully requests closure of this site. A form C-141 final is included in Appendix A. If you have any question or comments concerning the activities performed at the Site, please call me at (432) 682-4559.

Respectfully submitted, TETRA TECH

Jeff Kindley, P.G. Senior Project Manager

cc: Pat Ellis – COG cc: Terry Gregston – BLM

Table 1COG Operating LLC.TEX-MACK 11 FEDERAL #35Eddy County, New Mexico

CLACOC - AA

Constant and

A Providence

(Calcil

1913041 (1916) 1917 - 1917

1.

778 ER

Sec.

•

2 1. 2.1

Sample ID	Sample	Sample	Depth	Soi	Status	T	PH (mg/k	(g)	Benzene Toluene		oluene Ethlybenzene	Xylene	Total	Chloride
	Date	Depth (ft)	(BEB)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX	(mg/kg)
AH-1	8/12/2010	0-1'			X	3.01	51.6	54.6	<0:0200	<0.0200	<0.0200	<0.0200	<0.0200	1,520
	н	1-1.5'		X		-	-	-	-	-	-	-		317
	11	2-2.5'		Х		-	-	-	-	-	-	-		206
	II	3-3.5'		X		-	-	-	-	-	-	-		212
	11	4-4.5'		X		-	-	-	-	-	-	-		<200
												• • • • • • •		-
AH-2	8/12/2010	0-1'			X	9.77	<50.0	9.77	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	3,320
	n	1-1.5'		X		-	-	-	-	-	-	-		808
	H	2-2.5'		X		-	-	-	-	-	-	-		351
	ų	3-3.5'		X		-	-	-	-	-	-	-		<200
	11	4-4.5'		X		-	-	-	-	-	-	-		<200
	μ	5-5.5'		X		-	-	-	-	-	-	~		1,890
	IJ	6-6.5'		X		-	-	-	-	-	-	-		351
	ti.	6.5-7'		X		-	-	-	-	-	-	~		<200
AH-3	8/12/2010	0-1'			X	<2.00	<50.0	<50.0						2,100
	11	1-1.5'		X		-	-	-	-	-	-	-		233
	14	2-2.5'		X		-	-	-	-	-	-	-		<200
	11	3-3.5'		X		-	-	-	-	-	-	-		<200
	11	4-4.5'		X		-	-	-	_	-	-	-		<200
AH-4	8/12/2010	0-1'			2 X	1,910	4,580	6,490	1.15	14.6	26.8	33.3	75.85	731
	н	1-1.5'		X		<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200		<200
	11	2-2.5'		X		-	-	-	-	-	-	-		<200
	u	3-3.5'		Х		-	-	-	-	-				<200
	ti .	4-4.5'		X		-	-	-	-	-	-	-		<200

Table 1COG Operating LLC.TEX-MACK 11 FEDERAL #35Eddy County, New Mexico

ر

San Long

450 A. 17

Single C

Sample ID	Sample	Sample	Depth	Soil	Status	TI	TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	(BEB)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX	(mg/kg)
AH-5	8/12/2010	· 0-1'			X	2,720	2,590	5,310	6.43	36.0	32.0	36.5	110.93	1,620
	n	.1-1.5'			X	4,320	6,940	11,260	22.4	104	81.8	95.6	303.8	704
	n	2-2.5'			X	2,610	4,470	7,080	7.78	67.6	58.1	67.6	201.08	307
	n	3-3.5'			X	2,940	3,430	6,370	4.16	60.8	58.8	67.2	190.96	302
	11	4-4.5'			X ,	1,060	4,040	5,100	1.71	22.2	22.1	24.9	70.91	222
	11	5-5.5'			X	2,310	4,460	6,770	12.0	86.9	77.6	83.1	259.6	<200
	11	6-6.5'		Х		2.40	<50.0	2.40	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	291
	11	7-7.5'		Х		-	-	-	-	-	-			1,220
	n	8-8.5'		Х		-	-	-	-	-	-	-		1,360
	н	9-9.5'		Х		-	-	-	-	-	u.	÷		1,060
CS-1	10/21/2010	6-6.5'		X		112	2.58	115	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<200
(bottom hole)														
T-1	10/21/2010	8-8.5'		X		1860	3020	4880	7.38	57.4	60.1	69.6	194.48	<200
(trench)		10-10.5	Х			<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	207
		12-12.5	X			-	-	-	-	-	-	-		864
		14-14.5	Х			-	-		-	-	-	-		<200
North wall	10/21/2010	-				<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<200
East wall	10/21/2010	-				<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<200
Southwall	10/21/2010	-			-	<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<200
west wall	10/21/2010	-				<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<200

Table 1COG Operating LLC.TEX-MACK 11 FEDERAL #35Eddy County, New Mexico

0.0

199.00

100000000

Sample ID	Sample Date	Sample	Depth	Soil Status		TPH (mg/kg)			Benzene	Toluene	e Ethlybenzene	Xylene	Total	Chloride
		Depth (ft)	(BEB)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX	(mg/kg)
AH-6	8/12/2010	0-1'			X	<2.00	<50.0	<50.0						1,280
	u	1-1.5'		Х		-	-	-		-	-	-		<200
	11	2-2.5'		Х		-	-	-	-	-	-	-		<200
	n	3-3.5'		Х		-	-	-	-	-	-			<200
	11	4-4.5'		X		-	-	-	-	-	-	-		<200
0.50	D C													

BEB Below Excavation Bottom

Not Analyzed

Excavation Depths

(---)

APPENDIX A INITIAL/FINAL C-141

.

Sec. No.

のない

			Γ	RECI	EIVE	D
ustrict 1 625 N. French Dr., Hobbs, NM 88240	State of	New Mexi	co	AUG -	6 2010	Form C-141
istrict II i01 W. Grand Avenue, Artesia, NM 88210	nergy Minerals	and Natura	Resource		A	Revised October 10, 2003
<u>strict III</u> 100 Rio Brazos Road, Aztec. NM 87410	Oil Conser	vation Div	vision	VMOCD	AHTE	District Office in accordance
ISTREE IV 120 S. St. Francis Dr., Santa Fc. NM 87505	Santa F	1.51, France, NM 875	05 05			side of form
Release	Notificatio	n and Co	orrective	Action		
MUB1027952232		OPERA	FOR	2	🛛 Initial	Report 🗌 Final Repor
Name of Company COG OPERATING LL	<u>C 229 137</u> TX 79701	Contact		Pat Ellis	1	
Facility Name Tex Mack 11 Federal #35	, 1/////	Facility Typ	e	Well		
Surface Owner Federal	Mineral Owner			T	Lease No	. (API#) 30-015-37667
	LOCATIO	N OF REI	LEASE			
Unit Letter Section Township Range Feet M 11 17S 31E	from the North 920	/South Line SOUTH	Feet from t 1024	he East/We WF	est Line (ST	County EDDY
La	titude 32 50.659	Longitu	ide 103 50.	721		
	NATURE	OF REL	EASE	·····		
Type of Release Produced Fluid Source of Release Wellbore (casing)		Date and I	Release 701 four of Occu	rrence	Volume Re Date and H	our of Discovery
Was Immediate Nation Given?		07/27/2010) . 	1	07/27/2010	1:00 p.m.
Yas minediate (Volice Given:	🗌 Not Required	11 (1.5, 10	1.4440.000	Mike Bra	atcher—OC	D
By Whom? Josh Russo		Date and H	lour 07/28/2	2010 10:52 a	.m.	
Was a Watercourse Reached?		If YES, Ve	olume Impac	ung the Waler	course.	
If a Watercourse was Impacted, Describe Fully.*						
					•	
Describe Cause of Problem and Remedial Action Tak	.eп.*					
The well was flowing up the backside and a shallow h escaped into the wellbore due to an improper seal bet	nole in the 5 ½ casis ween the 5 ½ and 8	ng allowed flu 5/8 casing. T	id to escape i he well is in	into the 8 5/8 c the process of	casing. The being repai	fluid in the 8 5/8 casing then ired and put back into service.
Describe Area Affected and Cleanup Action Taken.*						
Initially 70bbls of produced fluid escaped from the we vacuum truck. All released fluid remained on the we the release and we will present a remediation work pl	ellbore covering ro I pad location. Tet an to the NMOCD/	ughly 40% of ra Tech will s BLM for appr	the well pad ample the spi oval prior to	in fluid. We w ill site area to c any significan	vere able to delineate an t remediation	rccover 60bbls of fluid with a y possible contamination from on work.
I hereby certify that the information given above is tr regulations all operators are required to report and/or public health or the environment. The acceptance of should their operations have failed to adequately inve- or the environment. In addition, NMOCD acceptance federal, state, or local laws and/or regulations.	the and complete to file certain release a C-141 report by t stigate and remedia of a C-141 report	the best of my notifications a he NMOCD n ite contaminat does not reliev	r knowledge and perform c harked as "Fi ion that pose we the operate	and understand corrective action nal Report [#] do a threat to gro or of responsib	d that pursu ons for relea oes not relie ound water, pility for con	ant to NMOCD rules and uses which may endanger ve the operator of liability surface water, human health npliance with any other
$\neg \neg$			<u>OIL C</u>	ONSERV	ATION I	DIVISION
Signature: Printed Name: Josh Russo		Approved by	DiSignsd	By Mile	1 Brens	ulion
Title: HSE Coordinator		Approval Da		6 2010 E	xpiration E)atc:
E-mail Address: jrusso@conchoresources.co	m	Conditions of	of Approval:			Attached
Date: 08/03/2010 Phone: 432-2	12-2399	REME	DIATION F	per OCD Ru	les and	
Attach Additional Sheets If Necessary MLB102 79,54858		Guidelin PROPOS	es. <u>SUBMI</u> AL BY: P	operal	Recicl	2RP-443
	:		101	4/10		

.

1

A VI TH

			RECEIVE	D				
District I State of 1625 N. French Dr., Hobbs, NM 88240 Energy Minera	of New Mexi ls and Natura	ico l Resources	FEB 16 201	Form C-141 Revised October 10, 2003				
1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 District III 1000 Oil Cons	ervation Div	vision N		Submit 2 Copies to appropriate				
1000 Rto Brazos Road, Aztec, NM 87410 District IV 1220 Sou	uth St. Franc	is Dr.		with Rule 116 on back				
1220 S. SI, Francis Dr., Santa Fe, NM 87505 Santa	Fe, NM 875	05	-	side of form				
Release Notificati	on and Co	orrective A	Action	:				
	OPERA7	<u>FOR</u>	🔲 Initial	Report 🛛 Final Report				
Address 550 W. Texas, Suite 1300 Midland, Texas 79701	Telephone No. (432) 685-4332							
Facility Name Tex Mack 11 Federal #35	Facility Typ	e Well		·····				
Surface Owner: Federal Mineral Owner	×r		Lease No	o. API 30-015-37667				
LOCATI	ON OF REI	FASE						
Unit LetterSectionTownshipRangeFeet from theNoM1117S31E920	rth/South Line South	Feet from the 1024	East/West Line West	County Eddy				
Latitude N 32 50.65	59° Longitud	e W 103 50.7	21°					
NATUR	E OF REL	EASE						
Source of Release: Wellbore (casing)	Date and H	Release 70 bbls	s Volume Re ice Date and H	lour of Discovery				
Was Immediate Marine Cine 0	7/27/10	<u> \\ //0</u>	7/27/10	1:00 p.m.				
Yes No Not Require	ed Mike Brat	cher - OCD						
By Whom? Josh Russo	Date and H	lour 7/28/10 10):52 a.m.					
Yes X No	N/A	nume impacting	, me watercourse.					
If a Watercourse was Impacted, Describe Fully.*								
N/A								
Describe Cause of Problem and Remedial Action Taken.*		**************************************	· · · · · · · · · · · · · · · · · · ·					
The well was flowing up the backside and a shallow hole in the 5 ½ ca escaped into the wellbore due to an improper seal. The well is in the pr	sing allowed flui ocess of being re	d to escape into epaired and put b	the 8 5/8 casing. The back into service.	fluid in the 8 5/8 casing then				
Describe Area Affected and Cleanup Action Taken.*								
Tetra Tech inspected site and collected samples to define spills extent. was then brought up to surface grade with clean backfill material. Tetra	Soil that exceed a Tech prepared	ed RRAL was re closure report an	emoved and hauled av nd submitted to NMO	way for proper disposal. Site ICD for review.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
		<u>OIL CON</u>	NSERVATION	DIVISION				
Signature: Stim Kindly for the Tannin as a fort for COG	Approved by	District Supervi	isor:					
Title: Project Manager	Approval Da	le:	Expiration D	Date:				
E-mail Address: Ike.Tavarez@TetraTech.com	Conditions of	f Approval:		Attached				
Date: Fels many Ha Attached								

Attach Additional Sheets If Necessary

APPENDIX B WATER WELL REPORT

i

の記録が

Water Well Data Average Depth to Groundwater (ft) COG - Tex Mack 11 Federal #35 Eddy County, New Mexico

	16 9	South	3	0 Eas	t		16 1	South	3	1 East			16	South
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21
30	- 29	28	27	26	25	30	29	28	27	26	25	30	29	28
31	32	33	34	35	36	31 290	32	33	34	35	36	31	32	33
	17 :	South	3	0 Eas	2		17 :	South	3	1 East	_	-	17	South
6	5	4	3	2	1	6	5	4	3	2	1] 6	5	4
7	8	9	10	11	12	7	8	9	10	11 SITE	12	7	8	9
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21
30	29	28	27	26	25	30	29	28	27	26	25	30 11	30 29	28
31	32	33	34	35	36	31	32	33	34 271	35	36	31	32	33
	18 :	South	3	0 Easi	t	<u></u>	18 :	South	3	1 East			18	South
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4
7	8	9	10	11	12	7	8	9	10	11	12	7 460	8	9
18	17	16	15	14	13	18	17	16	15	14	13	82 18	17	16
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21
30	29	28	27	26	25	30	29	28	27	26	25	30	164 29	28
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33

6	5	4	3	2	1							
			65	265	265							
7	8	9	10	11	12							
	i				215							
1B	17	16	15	14	13							
		221			215							
19	20	21	22	23	24							
220		210		210								
30	29	28	27	26	25							
				243								
31	32	33	34	35	36							
	·	I			260							
17 South 32 East												
6	15	4 02	12	2 60	1 225							
Ŭ	ľ	4 02	175	2 00	1 225							
7	8	a	10	11 70	12 120							
ľ	Ŭ			88	12 120							
18	17	16	15	14	13							
	l.,				10							
19	20	21	22	23	24							
30 180	2 9	28	27	26	25							
dry												
31	32	33	34	35	36							
				L	L							
	18 Sc	outh	32	East								
6	5	4 65	3	2	1							
7 460	8	9	10	11	12							
82												
18	17	16	15	14	13							
		84										
19	20	21	22	23	24							
	164		429									
30	29	28	27	26	25							
31	32	33	34	35	36							
			117									

32 East

New Mexico State Engineers Well Reports

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy. County, NM

NMOCD - Groundwater Data

Field water level

New Mexico Water and Infrastructure Data System

APPENDIX C LABORATORY ANALYSIS

The second

調整する

No.

is child

7. 1. S. S. S.

の必要

を変

A CONTRACT OF

Strates -

MUULIN	MUMMIT	RACEAN	ALYSIS	, INC.M		
	6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110	Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703 Ft. Worth, Texas 76132	800•378•1296 888•588•3443	806•794•1296 915•585•3443 432•689•6301 817•201•5260	FAX 806•794•1298 FAX 915•585•4944 FAX 432•689•6313	
		E-Mail: lab@	tificati	ons		
WE	BENC: 237019	HUB: NCTRCA	175243974 WFWB38	3100-86536 444Y0909	DBE:	VN 20657
		NELAP	Certif	ications	5	
Lubbock:	T104704219-08-TX LELAP-02003 Kansas E-10317	El Paso	: T104704 LELAP-	221-08-TX 02002	Midlar	nd: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

1000

時間に行

Series Con

19.90

Cardenta Co

taria.

Sec.

Report Date: August 23, 2010

Work Order: 10081616

Project Location:Eddy County, NMProject Name:COG/Tex-Mark 11 Fed. #35Project Number:114-6400627

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
241117	AH-1 0-1'	soil	2010-08-12	00:00	2010-08-13
241118	AH-1 1-1.5'	soil	2010-08-12	00:00	2010-08-13
241119	AH-1 2-2.5'	soil	2010-08-12	00:00	2010-08-13
241120	AH-1 3-3.5'	soil	2010-08-12	00:00	2010-08-13
241121	AH-1 4-4.5'	soil	2010-08-12	00:00	2010-08-13
241122	AH-2 0-1'	soil	2010-08-12	00:00	2010-08-13
241123	AH-2 1-1.5'	soil	2010-08-12	00:00	2010-08-13
241124	AH-2 2-2.5'	soil	2010-08-12	00:00	2010-08-13
241125	AH-2 3-3.5'	soil	2010-08-12	00:00	2010-08-13
241126	AH-2 4-4.5'	soil	2010-08-12	00:00	2010-08-13

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
241127	AH-2 5-5.5'	soil	2010-08-12	00:00	2010-08-13
241128	AH-2 6-6.5'	soil	2010-08-12	00:00	2010-08-13
241129	AH-2 6.5-7'	soil	2010-08-12	00:00	2010-08-13
241130	AH-3 0-1'	soil	2010-08-12	00:00	2010-08-13
241131	AH-3 1-1.5'	soil	2010-08-12	00:00	2010-08-13
241132	AH-3 2-2.5'	soil	2010-08-12	00:00	2010-08-13
241133	AH-3 3-3.5'	soil	2010-08-12	00:00	2010-08-13
241134	AH-3 4-4.5'	soil	2010-08-12	00:00	2010-08-13
241135	AH-4 0-1'	soil	2010-08-12	00:00	2010-08-13
241136	AH-4 1-1.5'	soil	2010-08-12	00:00	2010-08-13
241137	AH-4 2-2.5'	soil	2010-08-12	00:00	2010-08-13
241138	AH-4 3-3.5'	soil	2010-08-12	00:00	2010-08-13
241139	AH-4 4-4.5'	soil	2010-08-12	00:00	2010-08-13
241140	AH-5 0-1'	soil	2010-08-12	00:00	2010-08-13
241141	AH-5 1-1.5'	soil	2010-08-12	00:00	2010-08-13
241142	AH-5 2-2.5'	soil	2010-08-12	00:00	2010-08-13
241143	AH-5 3-3.5'	soil	2010-08-12	00:00	2010-08-13
241144	AH-5 4-4.5'	soil	2010-08-12	00:00	2010-08-13
241145	AH-5 5-5.5'	soil	2010-08-12	00:00	2010-08-13
241146	AH-5 6-6.5'	soil	2010-08-12	00:00	2010-08-13
241147	AH-5 7-7.5'	soil	2010-08-12	00:00	2010-08-13
241148	AH-5 8-8.5'	soil	2010-08-12	00:00	2010-08-13
241149	AH-5 9-9.5'	soil	2010-08-12	00:00	2010-08-13
241150	AH-6 0-1'	soil	2010-08-12	00:00	2010-08-13
241151	AH-6 1-1.5'	soil	2010-08-12	00:00	2010-08-13
241152	AH-6 2-2.5'	soil	2010-08-12	00:00	2010-08-13
241153	AH-6 3-3.5'	soil	2010-08-12	00:00	2010-08-13
241154	AH-6 4-4.5'	soil	2010-08-12	00:00	2010-08-13

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 43 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael Ale

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

Sate Street

1. A.

a series and the

 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Page 2 of 43

Case Narrative

Samples for project COG/Tex-Mark 11 Fed. #35 were received by TraceAnalysis, Inc. on 2010-08-13 and assigned to work order 10081616. Samples for work order 10081616 were received intact at a temperature of 18.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	62330	2010-08-18 at 09:15	72769	2010-08-18 at 11:58
BTEX	S 8021B	62422	2010-08-20 at 12:00	72806	2010-08-20 at 15:59
Chloride (Titration)	SM 4500-Cl B	62281	2010-08-16 at 10:09	72663	2010-08-16 at 16:28
Chloride (Titration)	SM 4500-Cl B	62282	2010-08-16 at 10:10	72664	2010-08-16 at $16:29$
Chloride (Titration)	SM 4500-Cl B	62283	2010-08-16 at 10:10	72665	2010-08-16 at 16:29
Chloride (Titration)	SM 4500-Cl B	62284	2010-08-16 at 10:10	72666	2010-08-16 at 16:30
Chloride (Titration)	SM 4500-Cl B	62286	2010-08-16 at 10:11	72667	2010-08-16 at 16:31
TPH DRO - NEW	S 8015 D	62397	2010-08-19 at 10:46	72774	2010-08-19 at 10:46
TPH DRO - NEW	S 8015 D	62429	2010-08-20 at 13:56	72814	2010-08-20 at 13:56
TPH DRO - NEW	S 8015 D	62460	2010-08-23 at 15:02	72851	2010-08-23 at 15:02
TPH GRO	S 8015 D	62330	2010-08-18 at 09:15	72770	2010-08-18 at 12:25
TPH GRO	S 8015 D	62422	2010-08-20 at 12:00	72807	2010-08-20 at 16:27

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 10081616 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

Samples received on ice.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Page 3 of 43

Report Date: August 23, 2010 114-6400627

Analytical Report

Sample: 241117 - AH-1 0-1'

Laboratory: Midland							
Analysis: BTEX		Analytical	Method:	S 8021B		Prep Met	hod: S 5035
QC Batch: 72806		Date Anal	yzed:	2010-08-20		Analyzed	By: AG
Prep Batch: 62422		Sample Pr	eparation:	2010-08-20		Prepared	By: AG
		RJ	L				
Parameter	Flag	Resul	t	Units	D	ilution	RL
Benzene		< 0.020	0	mg/Kg		1	0.0200
Toluene		< 0.020	0	mg/Kg		1	0.0200
Ethylbenzene		< 0.020	0	mg/Kg		1	0.0200
Xylene		< 0.020	0	mg/Kg		1	0.0200
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.03	mg/Kg	1	2.00	102	52.8 - 137
4-Bromofluorobenzene (4-Bl	FB)	1.90	mg/Kg	1	2.00	95	38.4 - 157
	and the second sec			· · · · · · · · · · · · · · · · · · ·			

Sample: 241117 - AH-1 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72663 62281	Analytical Method: Date Analyzed: Sample Preparation	SM 4500-Cl B 2010-08-16 a: 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride	· · · · · · · · · · · · · · · · · · ·	1520	mg/Kg	, <u>100</u>	4.00

Sample: 241117 - AH-1 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEW 72774 62397	Analytical I Date Analy Sample Pre	Method: S 8015 D zed: 2010-08-19 paration: 2010-08-19	Prep Metho Analyzed B Prepared B	od: N/A y: kg y: kg
		RL			
Parameter	Flag	Result	\mathbf{Units}	Dilution	RL
DRO		51.6	mg/Kg	1 .	50.0

STR.

22.22

教育の

Series and

Server 2

1. 40 Er

14, 24, 24

1,200,000

No. and a second

1. S. A. B.

3. J. S. J. S.

114-6400627	e: August 23, 20	010	W COG	/ork Order: /Tex-Mark	: 10081616 (11 Fed. #3	35	Page Nu Edd	umber: 5 of y County, 1	NM
Surrogate	Flag	Result	Units	Dilu	ition	Spike Amount	Percent Recovery	Recove Limit	very its
n-Tricosane		101	mg/Kg	1	1	100	101	70 - 1	130
G 1 04	1111 2 ATT 1	0.11							
Sample: 24	Midland	0-1'							
Analysis:	TPH GRO		Analytical	Method:	S 8015 D		Prep Met	thod: S 50	035
QC Batch:	72770		Date Anal	vzed:	2010-08-18	3	Analyzed	By: AG	 r
Prep Batch:	62330		Sample Pr	eparation:	2010-08-18	3	Prepared	By: AG	r
			\mathbf{RL}						
Parameter	I	Flag	Result		Units	,	Dilution		RL
GRO			3.01		mg/Kg		1	2	2.00
						Spike	Percent	Recove	ery
Surrogate		Flag	Result	Units	Dilution	n Amount	Recovery	Limit	\mathbf{ts}
Trifluorotolu	ene (TFT)	1	0.832	mg/Kg	1	2.00	42	48.5 - 1	152
Trifluorotolu 4-Bromofluo	ene (TFT) robenzene (4-B	FB)	0.832 0.879	mg/Kg mg/Kg	1 1	2.00	42 44	48.5 - 1 42 - 1	152 59
Trifluorotolu 4-Bromofluor Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	ene (TFT) robenzene (4-B 4 1118 - AH-1 Midland Chloride (Tit 72663 62281	FB) 1-1.5' ration)	0.832 0.879 Analyt Date A Sampl RL	mg/Kg mg/Kg Sical Metho Analyzed: e Preparati	1 1 od: SM 45 2010-0 ion: 2010-0	2.00 2.00 00-Cl B 8-16 8-16	42 44 Prep M Analyz Prepare	48.5 - 1 42 - 1 Iethod: N ed By: A ed By: A	152 .59 .7 R R
Trifluorotolu 4-Bromofluor Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	ene (TFT) robenzene (4-B H 1118 - AH-1 Midland Chloride (Tit 72663 62281	FB) 1-1.5' ration)	0.832 0.879 Analy Date A Sampl RL Result	mg/Kg mg/Kg cical Metho Analyzed: e Preparati	1 1 2010-0 ion: 2010-0 Units	2.00 2.00 00-Cl B 8-16 8-16	42 44 Prep M Analyz Prepare Dilution	48.5 - 1 42 - 1 Iethod: N ed By: A ed By: A	152 59 J/A R R RL
Trifluorotolu 4-Bromofluor Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride	ene (TFT) robenzene (4-B 41118 - AH-1 Midland Chloride (Tit 72663 62281 F	FB) 1-1.5' ration) Flag	0.832 0.879 Analyt Date A Sampl RL Result 317	mg/Kg mg/Kg cical Metho Analyzed: e Preparati	1 1 2010-0 ion: 2010-0 Units mg/Kg	2.00 2.00 00-Cl B 8-16 8-16	42 44 Prep M Analyz Prepare Dilution 50	48.5 - 1 42 - 1 42 - 1 ed By: A ed By: A ed By: A	152 .59 I/A R R RL I.00
Trifluorotolu 4-Bromofluon Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 24	ene (TFT) robenzene (4-B 41118 - AH-1 Midland Chloride (Tit 72663 62281 F H1119 - AH-1	FB) 1-1.5' ration) Flag 2-2.5'	0.832 0.879 Analyt Date A Sampl RL Result 317	mg/Kg mg/Kg Sical Metho Analyzed: e Preparati	1 1 od: SM 45 2010-0 ion: 2010-0 <u>Units</u> mg/Kg	2.00 2.00 00-Cl B 8-16 8-16	42 44 Prep M Analyz Prepare Dilution 50	48.5 - 1 42 - 1 42 - 1 Iethod: N ed By: A ed By: A	152 .59 J/A R R R L 1.00
Trifluorotolu 4-Bromofluor 4-Bromofluor Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Prep Batch:	ene (TFT) robenzene (4-B H1118 - AH-1 Midland Chloride (Tit 72663 62281 H1119 - AH-1 Midland Chloride (Tit 72663 62281	FB) 1-1.5' ration) Plag 2-2.5' ration)	0.832 0.879 Analyt Date A Sampl RL Result 317 Analyt Date A Sampl BI	mg/Kg mg/Kg Sical Metho Analyzed: e Preparati	1 1 2010-0 2010-0 ion: 2010-0 Units mg/Kg od: SM 45 2010-0 ion: 2010-0	2.00 2.00 00-Cl B 8-16 8-16 00-Cl B 8-16 8-16	42 44 Prep M Analyz Prepare Dilution 50 Prep M Analyz Prepare	48.5 - 1 42 - 1 42 - 1 42 - 1 N ed By: A ed By: A lethod: N ed By: A ed By: A	152 .59 V/A R R L L .00
Trifluorotolu 4-Bromofluor 4-Bromofluor Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Prep Batch: Prep Batch: Prep Batch:	ene (TFT) robenzene (4-B H1118 - AH-1 Midland Chloride (Tit 72663 62281 H1119 - AH-1 Midland Chloride (Tit 72663 62281	FB) 1-1.5' ration) Flag 2-2.5' ration)	0.832 0.879 Analyt Date A Sampl RL Result 317 Analyt Date A Sampl RL Result	mg/Kg mg/Kg Sical Metho Analyzed: e Preparati	1 1 1 1 1 1 2010-0 ion: 2010-0 Units mg/Kg 2010-0 ion: 2010-0 Units	2.00 2.00 00-Cl B 8-16 8-16 8-16 8-16 8-16 8-16	42 44 Prep M Analyz Prepare Dilution 50 Prep M Analyz Prepare	48.5 - 1 42 - 1 42 - 1 42 - 1 N ed By: A ed By: A ed By: A ed By: A	152 59 V/A R R L 1.00 V/A R R L 1.00

¹Surrogate out due to peak interference.

ALC: NO

、認識法

200

S. States

Tellan.

環境に

Report Date: August 23, 2010	Work Order: 10081616	Page Number: 6 of 43
114-6400627	COG/Tex-Mark 11 Fed. #35	Eddy County, NM

Sample: 241120 - AH-1 3-3.5'

がある

調査

KUTTER B

1212

No.

No. of Street, or Stre

States and

S. The second

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72663 62281	Analytical Method: Date Analyzed: Sample Preparation	SM 4500-Cl B 2010-08-16 1: 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		212	mg/Kg	50	4.00

Sample: 241121 - AH-1 4-4.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72664 62282	Analytical Method: Date Analyzed: Sample Preparation	SM 4500-Cl B 2010-08-16 : 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		<200	mg/Kg	50	4.00

Sample: 241122 - AH-2 0-1'

÷

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 72769 62330		·	Analytical Date Analy Date Analy Sample Pre	Method: zed: paration:	S 8021B 2010-08-18 2010-08-18		Prep Metl Analyzed Prepared	nod: S 5035 By: AG By: AG
				RL					
Parameter		Flag		Result		Units	Ľ	Dilution	RL
Benzene				< 0.0200		mg/Kg		1	0.0200
Toluene				< 0.0200)	mg/Kg		1	0.0200
Ethylbenzene	9			< 0.0200		m mg/Kg		1	0.0200
Xylene	,,			< 0.0200		mg/Kg		1	0.0200
G					TT		Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)			1.18	mg/Kg	1	2.00	59	52.8 - 137
4-Bromofluor	obenzene (4-B	FB)		1.21	mg/Kg	1	2.00	60	38.4 - 157

	,		COG/1	ex-Mark 11 Fed	. #35	Eddy	County, NN
Sample: 241	1122 - AH-2 0	-1'					
Laboratory:	Midland		4 1			D 14	
Analysis:	Unioride (Titra	tion)	Analytica Data Ana	Method: SN	VI 4500-CI B	Prep Me	d Dui AD
Prep Batch:	62282		Sample F	Preparation: 20	10-08-16	Prepare	d By: AR
			BL				
Parameter	Fl	ag	Result	Un	nits	Dilution	RI
	L 10						
Chloride Sample: 241 Laboratory: Analysis: QC Batch:	1122 - AH-2 0 Midland TPH DRO - N 72774	-1' EW	3320 Analytic Date Ar	mg/l cal Method: S nalyzed: 20	Kg 8015 D 010-08-19	100 Prep Me Analyze	4.0 ethod: N/A d By: kg
Chloride Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch:	1122 - AH-2 0 Midland TPH DRO - N 72774 62397	-1' EW	3320 Analytic Date Ar Sample RL	mg/l cal Method: S nalyzed: 20 Preparation: 20	Kg 8015 D 010-08-19 010-08-19	100 Prep Me Analyze Prepare	4.0 ethod: N/A d By: kg d By: kg
Chloride Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	1122 - AH-2 0 Midland TPH DRO - N 72774 62397 Fla	-1' EW	3320 Analytic Date Ar Sample RL Result	mg/l al Method: S alyzed: 20 Preparation: 20 Un	Kg 8015 D 010-08-19 010-08-19 iits	100 100 Prep Me Analyze Prepare Dilution	4.0 ethod: N/A d By: kg d By: kg R.
Chloride Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter DRO	1122 - AH-2 0 Midland TPH DRO - N 72774 62397 Fla	-1' EW	3320 Analytic Date Ar Sample RL Result <50.0	mg/l al Method: S halyzed: 20 Preparation: 20 Un mg/l	Kg 8015 D 010-08-19 010-08-19 nits Kg	100 100 Prep Me Analyze Prepare Dilution 1	4.0 ethod: N/A d By: kg d By: kg RJ 50.
Chloride Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter DRO	1122 - AH-2 0 Midland TPH DRO - N 72774 62397 Fla	-1' EW	3320 Analytic Date Ar Sample RL Result <50.0	mg/l al Method: S alyzed: 20 Preparation: 20 Un mg/l	Kg 8015 D 010-08-19 010-08-19 hits Kg Spike	100 100 Prep Mo Analyze Prepare Dilution 1 Percent	4.0 ethod: N/A d By: kg d By: kg Rl 50. Recover;
Chloride Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: DRO Surrogate	1122 - AH-2 0 Midland TPH DRO - N 72774 62397 Flag	-1' EW ag Result	3320 Analytic Date Ar Sample RL Result <50.0 Units	mg/l cal Method: S halyzed: 20 Preparation: 20 Un mg/l Dilution	Kg 8015 D 010-08-19 010-08-19 nits Kg Spike Amount	100 100 Prep Mo Analyze Prepare Dilution 1 Percent Recovery	4.0 ethod: N/A d By: kg d By: kg Rl 50. Recover, Limits

QC Batch:	72770		Date Anal	yzed:	2010-08-18		Analyzed	By: AG
Prep Batch:	62330		Sample Pr	reparation:	2010-08-18		Prepared	By: AG
			RL					
Parameter	Flag		Result		Units	Ľ	Dilution	RL
GRO			9.77		mg/Kg		1	2.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	iene (TFT)		1.35	mg/Kg	1	2.00	68	48.5 - 152
4-Bromofluo	robenzene (4-BFB)		1.64	mg/Kg	1	2.00	82	42 - 159

読み

記録

ないない

「「「

の変換

の理論を

Report Date 114-6400627	: August 23, 2010	Work Order: COG/Tex-Mark	: 10081616 < 11 Fed. #35	Page Number: Eddy Coun	8 of 43 ty, NM
Sample: 24	1123 - AH-2 1-1.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Metho	od: SM 4500-Cl B	Prep Method:	N/A
QC Batch:	72664	Date Analyzed:	2010-08-16	Analyzed By: Propagad By:	AK
r rep batch:	02202	Sample Preparati	1011: 2010-08-10	r repared by:	An
_		RL		D	
Parameter	Flag	Result	Units	Dilution	RL
Chloride		808	mg/Kg	50	4.00
Sample: 24	1124 - AH-2 2-2.5'				
Laboratory:	Midland				~~ / .
Analysis:	Chloride (Titration)	Analytical Metho	od: SM 4500-Cl B	Prep Method:	N/A
QU Batch:	(2004 60080	Date Analyzed:	2010-08-16	Analyzed By:	
rrep Batch:	02282	Sample Preparati	1011: 2010-08-16	Frepared By:	АΚ
		RL			
Parameter	Flag	Result	Units	Dilution	- RL
Parameter Chloride	Flag	Result 351	Units mg/Kg	Dilution 50	RL 4.00
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282	Result 351 Analytical Metho Date Analyzed: Sample Preparati	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16	Dilution 50 Prep Method: Analyzed By: Prepared By:	RL 4.00 N/A AR AR
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16	Dilution 50 Prep Method: Analyzed By: Prepared By:	RL 4.00 N/A AR AR
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution	RL 4.00 N/A AR AR RL
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50	RL 4.00 N/A AR AR AR RL 4.00
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag 1126 - AH-2 4-4.5'	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50	RL 4.00 N/A AR AR AR RL 4.00
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag 1126 - AH-2 4-4.5' Midland Chloride (Titration)	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200	Units mg/Kg d: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50	RL 4.00 N/A AR AR RL 4.00
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 24 Laboratory: Analysis: OC Batch:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag 1126 - AH-2 4-4.5' Midland Chloride (Titration) 72664	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200 Analytical Metho Date Analyzed:	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Applyzed By:	RL 4.00 N/A AR AR RL 4.00
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag 1126 - AH-2 4-4.5' Midland Chloride (Titration) 72664 62282	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200 Analytical Metho Date Analyzed: Sample Preparati	Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg od: SM 4500-Cl B 2010-08-16 ion: 2010-08-16	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By: Prepared By:	RL 4.00 N/A AR AR 4.00 N/A AR AR
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag 1126 - AH-2 4-4.5' Midland Chloride (Titration) 72664 62282	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200 Analytical Metho Date Analyzed: Sample Preparati	Units mg/Kg d: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg d: SM 4500-Cl B 2010-08-16 ion: 2010-08-16	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By: Prepared By: Prepared By:	RL 4.00 N/A AR AR 4.00 N/A AR AR
Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch:	Flag 1125 - AH-2 3-3.5' Midland Chloride (Titration) 72664 62282 Flag 1126 - AH-2 4-4.5' Midland Chloride (Titration) 72664 62282 Flag	Result 351 Analytical Metho Date Analyzed: Sample Preparati RL Result <200 Analytical Metho Date Analyzed: Sample Preparati RL Result	Units mg/Kg d: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 Units mg/Kg d: SM 4500-Cl B 2010-08-16 ion: 2010-08-16 ion: 2010-08-16	Dilution 50 Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By: Prepared By: Prepared By:	RL 4.00 N/A AR AR RL 4.00 N/A AR AR AR

8.0 M

State of the

建美洲

and the second

たの言葉

121

1226

All and a second

Star Bark

Report Date: August 23, 2010 114-6400627		Work Ord COG/Tex-Ma	er: 10081616 ark 11 Fed. #35	Page Number: 9 of 43 Eddy County, NM		
Sample: 24	1127 - AH-2 5-5.5'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytical Met	hod: SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	72664	Date Analyzed	: 2010-08-16	Analyzed By:	\mathbf{AR}	
Prep Batch: 62282		Sample Prepar	ation: 2010-08-16	Prepared By:	AR	
		RL				
Parameter	Flag	Result	Units	Dilution	RL	
Chloride		1890	mg/Kg	100	4.00	
Sample: 24	1128 - AH-2 6-6.5'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytical Met	hod: SM 4500-Cl B	Prep Method:	N/A	

	QC Batch:	72664	Date Analyzed:	2010-08-16	Analyzed By:	\mathbf{AR}
•	Prep Batch:	62282	Sample Preparation	2010-08-16	Prepared By:	\mathbf{AR}
			RL			
	Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
	Chloride		351	mg/Kg	50	4.00

Sample: 241129 - AH-2 6.5-7'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72664 62282	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2010-08-16 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		RL			
Parameter	\mathbf{Flag}	Result	Units	Dilution	\mathbf{RL}
Chloride		<200	mg/Kg	50	4.00

Sample: 241130 - AH-3 0-1'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	72664	Date Analyzed:	2010-08-16	Analyzed By:	AR
Prep Batch:	62282	Sample Preparation:	2010-08-16	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		2100	mg/Kg	100	4.00

的成計

Carlo and

S. Mars

100.25

12,22,20

Entraises

記念を

認める

Report Date: August 23, 2010 114-6400627			W COG	Work Order: 10081616 COG/Tex-Mark 11 Fed. #35				Page Number: 10 of 43 Eddy County, NM	
Sample: 24	1130 - AH-3	0-1'							
Laboratory:	Midland								
Analysis:	TPH DRO - N	NEW	Analy	ytical Metho	od: S 8015 I	О [.]	Prep M	ethod: N/A	
QC Batch:	72774		Date	Analyzed:	2010-08-	-19	Analyze	ed By: kg	
Prep Batch:	62397		Samp	ole Preparat	ion: 2010-08-	-19	Prepare	ed By: kg	
			\mathbf{RL}						
Parameter	F	lag	Result		Units		Dilution	RI	
DRO			<50.0		mg/Kg		1	50.0	
					ç	Spike	Percent	Recovery	
Cumorata	Flag	Result	Units	Dilu	tion A	mount	Recovery	Limits	
Surrogate	~ ~ ~		/	mg/Kg 1 100		100	104	70 120	
n-Tricosane	1130 - AH-3	104 0-1'	mg/Kg	1	· <u>····</u>	100	104		
Sample: 24 Laboratory: Analysis:	1130 - AH-3 Midland TPH GRO	<u>104</u> 0-1'	mg/Kg Analytical	Method:	S 8015 D	100	Prep Met	hod: S 503	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1130 - AH-3 Midland TPH GRO 72770 62330	<u>104</u> 0-1'	mg/Kg Analytical Date Anal Sample Pr	Method: lyzed: reparation:	S 8015 D 2010-08-18 2010-08-18	100	Prep Met Analyzed Prepared	hod: S 5033 By: AG By: AG	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1130 - AH-3 Midland TPH GRO 72770 62330	104 0-1'	mg/Kg Analytical Date Anal Sample Pr RL	Method: lyzed: reparation:	S 8015 D 2010-08-18 2010-08-18	100	Prep Met Analyzed Prepared	hod: S 5033 By: AG By: AG	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	1130 - AH-3 Midland TPH GRO 72770 62330 F	104 0-1'	mg/Kg Analytical Date Anal Sample Pr RL Result	Method: lyzed: reparation:	S 8015 D 2010-08-18 2010-08-18 Units	100	Prep Met Analyzed Prepared Dilution	hod: S 503; By: AG By: AG RI	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter GRO	1130 - AH-3 Midland TPH GRO 72770 62330 F	104 0-1'	mg/Kg Analytical Date Anal Sample Pr RL Result <2.00	I Method: lyzed: reparation:	S 8015 D 2010-08-18 2010-08-18 Units mg/Kg	100	Prep Met Analyzed Prepared Dilution 1	hod: S 5033 By: AG By: AG RI 2.00	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter GRO	1130 - AH-3 Midland TPH GRO 72770 62330 F	104 0-1'	mg/Kg Analytical Date Anal Sample Pr RL Result <2.00	I Method: lyzed: reparation:	S 8015 D 2010-08-18 2010-08-18 Units mg/Kg	Spike	Prep Met Analyzed Prepared Dilution 1 Percent	hod: S 5033 By: AG By: AG RI 2.00 Recovery	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: GRO	1130 - AH-3 Midland TPH GRO 72770 62330 F	104 0-1'	mg/Kg Analytical Date Anal Sample Pr RL Result <2.00 Result	I Method: lyzed: reparation: Units	S 8015 D 2010-08-18 2010-08-18 Units mg/Kg Dilution	100 Spike Amount	Prep Met Analyzed Prepared Dilution 1 Percent Recovery	hod: S 503 By: AG By: AG RI 2.00 Recovery Limits	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: GRO Surrogate Trifluorotolu	1130 - AH-3 Midland TPH GRO 72770 62330 F ene (TFT)	104 0-1' Flag	mg/Kg Analytical Date Anal Sample Pr RL Result <2.00 Result 1.64	Units	S 8015 D 2010-08-18 2010-08-18 Units mg/Kg Dilution	Spike Amount 2.00	Prep Met Analyzed Prepared Dilution 1 Percent Recovery 82	hod: S 503 By: AG By: AG RL 2.00 Recovery Limits 48.5 - 152	

all and the

Sufficiency of

調整に

1.200

122345

The second second

No. of Street, or

and the second

ないない

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 72665 62283	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2010-08-16 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		RL			
Parameter	\mathbf{Flag}	Result	Units	Dilution	RL
Chloride		233 r	ng/Kg	50	4.00
			· · · · · · · · · · · · · · · · · · ·	Annald Barriel and a second	

.

,

.

Report Date: August 23, 2010 114-6400627		Work Order: 10 COG/Tex-Mark 11	Work Order: 10081616 COG/Tex-Mark 11 Fed. #35		
Sample: 24	1132 - AH-3 2-2.5'				
Laboratory: Analysis: OC Batch:	Midland Chloride (Titration) 72665	Analytical Method:	SM 4500-Cl B 2010-08-16	Prep Method:	N/A
Prep Batch:	62283	Sample Preparation	2010-08-16	Prepared By:	AR
D	ורד	RL	TT . !		ЪŤ
Parameter	Flag	Kesult	Units	Dilution	
		<200		50	4.00
Sample: 24	1133 - AH-3 3-3.5'				
Laboratory:	Midland	A 1 (* 156 (1 1	Chi Aroo Chip		NT (A
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-CI B	Prep Method:	N/A
QC Batch:	72005	Date Analyzed:	2010-08-16	Analyzed By:	AR
Prep Batch:	02283	Sample Preparation	2010-08-16	Prepared By:	АК
Parameter	Flag	RL Result	Units	Dilution	BL
Chloride	· · ·	<200	mg/Kg	50	4.00
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1134 - AH-3 4-4.5' Midland Chloride (Titration) 72665 62283	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2010-08-16 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
D I		RL	TT		ът
Chlorida	Flag	Kesut <200		Dilution	KL
Sample: 24	1135 - AH-4 0-1' Midland		001D		1 5005
Analysis:	BTEX 79760	Analytical Method: S 8	U21B	Prep Method: S	5 5035 NC
QU Batch: Prop Batch:	(4(09 62330	Sample Propagation 201	10-00-10	Analyzed By: A	
r rep Batch:	04330	Sample Preparation: 201	0-00-10	Frepared By: A	1G

Constant of

a state of the second se

Line in

1998 B

5.45

and the

の変化

No.

Same S

ON STOR

All Martin

	RL			
Flag	Result	Units	Dilution	RL
······································	1.15	mg/Kg	20	0.0200
	14.6	mg/Kg	20	0.0200
	Flag	RL Flag Result 1.15 14.6	RLFlagResultUnits1.15mg/Kg14.6mg/Kg	RLUnitsDilutionFlagResultUnitsDilution1.15mg/Kg2014.6mg/Kg20

continued ...

Report Date: August 23, 2010	Work Order: 10081616	Page Number: 12 of 43
114-6400627	COG/Tex-Mark 11 Fed. #35	Eddy County, NM

sample 241135 continued

Sec. Sec.

構成が

and the

1,3,2,83

NU A

States and

2800 A.S.S

議論部

Section 1

		RL					
Parameter	Flag	Result		Units	Di	lution	RL
Ethylbenzene		26.8		mg/Kg		20	0.0200
Xylene		33.3		mg/Kg		20	0.0200
			T T 1 .		Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	2	9.91	mg/Kg	20	20.0	50	52.8 - 137
4-Bromofluorobenzene (4-BF	B)	19.1	mg/Kg	20	20.0	96	38.4 - 157

Sample: 241135 - AH-4 0-1'

Laboratory:	Midland				`
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	72665	Date Analyzed:	2010-08-16	Analyzed By:	AR
Prep Batch:	62283	Sample Preparation	2010-08-16	Prepared By:	AR
		RL			
Parameter	\mathbf{Flag}	Result	Units	Dilution	RL
Chloride		731	mg/Kg	50	4.00

Sample: 241135 - AH-4 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	ooratory: Midland alysis: TPH DRO - NEW Batch: 72774 p Batch: 62397		Analyti Date Ai Sample	Analytical Method: Date Analyzed: Sample Preparation:		Prep Method: Analyzed By: Prepared By:		N/A kg kg
Parameter	F	au	RL Bosult		Unite	Dilution		ВI
DRO	<u> </u>	lag	4580	m	g/Kg	5		$\frac{\pi L}{50.0}$
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recc Lin	overy nits
n-Tricosane	3	357	mg/Kg	5	100	357	70 -	130

Sample: 241135 - AH-4 0-1'

Laboratory:	Midland				
Analysis:	TPH GRO	Analytical Method:	S 8015 D	Prep Method:	S 5035
QC Batch:	72770	Date Analyzed:	2010-08-18	Analyzed By:	AG
Prep Batch:	62330	Sample Preparation:	2010-08-18	Prepared By:	AG

²Surrogate out due to peak interference.
³High surrogate recovery due to peak interference.

Report Date: August 23, 2010 114-6400627			W COG	ork Order: /Tex-Mark	10081616 11 Fed. #35	Page Number: 13 of 43 Eddy County, NM			
Parameter	Flag		RL Result		Units	E	vilution	RL	
GRO			1910		mg/Kg		20	2.00	
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)			$\begin{array}{c} 19.4 \\ 28.5 \end{array}$	mg/Kg mg/Kg	20 20	$\begin{array}{c} 20.0\\ 20.0\end{array}$	97 142	48.5 - 152 42 - 159	

Sample: 241136 - AH-4 1-1.5'

ないである

12、 建立

ALC: NO.

State of the

A. LER

建設が

Carlos and

1.000

語言語

62.03.7d

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 72806 62422			Analytical I Date Analy Sample Pre	Method: zed: paration:	S 8021B 2010-08-20 2010-08-20		Prep Meth Analyzed Prepared	nod: S 5035 By: AG By: AG
				\mathbf{RL}					
Parameter	F	lag		Result		Units	D	lution	RL
Benzene				< 0.0200		mg/Kg		1	0.0200
Toluene				< 0.0200		mg/Kg		1	0.0200
Ethylbenzene	9			< 0.0200		mg/Kg		1 .	0.0200
Xylene				< 0.0200		mg/Kg		1	0.0200
~							Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)			1.69	mg/Kg	1	2.00	84	52.8 - 137
4-Bromofluor	obenzene (4-BFI	B)		1.59	mg/Kg	1	2.00	80	38.4 - 157

Sample: 241136 - AH-4 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72665 62283	Analytical Method: Date Analyzed: Sample Preparation	SM 4500-Cl B 2010-08-16 : 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
_	-	RL			-
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

114-6400627	August 23, 20	10	W COG	Vork Order: 1 /Tex-Mark 1	0081616 1 Fed. #35		Page Number: 14 of 43 Eddy County, NM		
Sample: 241	1136 - AH-4 1	1-1.5'							
Laboratory:	Midland								
Analysis:	TPH DRO - N	IEW	Anal	ytical Method	d: S 8015 l)	Prep M	fethod: N/	
QC Batch:	72814		Date	Analyzed:	2010-08-	-20	Analyz	ed By: kg	
Prep Batch:	62429		Samp	ple Preparatio	on: 2010-08	-20	Prepar	ed By: kg	
			RL					_	
Parameter	F	lag	Result		Dilution	R			
DRO			<50.0		mg/Kg		1	50	
_					5	Spike	Percent	Recover	
Surrogate	Flag	Result	Units	Diluti	on A	mount	Recovery	Limits	
n-Tricosane		231	mg/Kg	1		100	231	70 - 13	
QC Batch:	72807		Date Anal	lyzed:	2010-08-20		Analyzed	By: AG	
QC Batch: Prep Batch:	72807 62422		Date Anal Sample Pr RL	lyzed: reparation:	2010-08-20 2010-08-20		Analyzed Prepared	By: AG By: AG	
QC Batch: Prep Batch: Parameter	72807 62422 Fl	ag	Date Anal Sample Pr RL Result	lyzed: reparation:	2010-08-20 2010-08-20 Units		Analyzed Prepared Dilution	By: AG By: AG R	
QC Batch: Prep Batch: Parameter GRO	72807 62422 Fl	lag	Date Anal Sample Pr RL Result .<2.00	lyzed: reparation:	2010-08-20 2010-08-20 Units mg/Kg		Analyzed Prepared Dilution 1	By: AG By: AG R 2.0	
QC Batch: Prep Batch: Parameter GRO	72807 62422 Fl	lag	Date Anal Sample Pr RL Result <2.00	lyzed: reparation:	2010-08-20 2010-08-20 <u>Units</u> mg/Kg	Spike	Analyzed Prepared Dilution 1 Percent	By: AG By: AG R 2.0 Recover	
QC Batch: Prep Batch: Parameter GRO Surrogate	72807 62422 Fl	lag Flag	Date Anal Sample Pr RL Result .<2.00 Result	lyzed: : : : : : : : : : : : : : : : : : :	2010-08-20 2010-08-20 Units mg/Kg Dilution	Spike Amount	Analyzed Prepared Dilution 1 Percent Recovery	By: AG By: AG R 2.0 Recover Limits	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue	72807 62422 Fl	Flag	Date Anal Sample Pr RL Result .<2.00 Result 1.87	lyzed: reparation: Units mg/Kg	2010-08-20 2010-08-20 <u>Units</u> mg/Kg Dilution	Spike Amount 2.00	Analyzed Prepared Dilution 1 Percent Recovery 94	By: AG By: AG R 2.0 Recover Limits 48.5 - 15	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro	72807 62422 Fl me (TFT) obenzene (4-BF	lag Flag B)	Date Anal Sample Pr RL Result <2.00 Result 1.87 1.73	lyzed: reparation: Units mg/Kg mg/Kg	2010-08-20 2010-08-20 <u>Units</u> <u>mg/Kg</u> <u>Dilution</u> 1 1	Spike Amount 2.00 2.00	Analyzed Prepared Dilution 1 Percent Recovery 94 86	By: AG By: AG R 2.0 Recover Limits 48.5 - 15 42 - 159	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro Sample: 241	72807 62422 Fl ene (TFT) obenzene (4-BF 1137 - AH-4 2	Flag 'B) 2-2.5'	Date Anal Sample Pr RL Result .<2.00 Result 1.87 1.73	lyzed: reparation: Units mg/Kg mg/Kg	2010-08-20 2010-08-20 <u>Units</u> mg/Kg <u>Dilution</u> 1 1	Spike Amount 2.00 2.00	Analyzed Prepared Dilution 1 Percent Recovery 94 86	By: AG By: AG Recover Limits 48.5 - 15 42 - 155	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory:	72807 62422 Fl ene (TFT) obenzene (4-BF 1137 - AH-4 2 Midland	Flag B) 2-2.5'	Date Anal Sample Pr RL Result .<2.00 Result 1.87 1.73	lyzed: reparation: Units mg/Kg mg/Kg	2010-08-20 2010-08-20 Units mg/Kg Dilution 1 1	Spike Amount 2.00 2.00	Analyzed Prepared Dilution 1 Percent Recovery 94 86	By: AG By: AG R 2.0 Recover Limits 48.5 - 15 42 - 155	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis:	72807 62422 Fl me (TFT) obenzene (4-BF 1137 - AH-4 2 Midland Chloride (Titr	Flag Flag B) 2-2.5' ation)	Date Anal Sample Pr RL Result <2.00 Result 1.87 1.73	lyzed: reparation: Units mg/Kg mg/Kg tical Method:	2010-08-20 2010-08-20 Units mg/Kg Dilution 1 1 SM 4500-	Spike Amount 2.00 2.00 Cl B	Analyzed Prepared Dilution 1 Percent Recovery 94 86 Prep M	By: AG By: AG Recover Limits 48.5 - 15 42 - 159	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch:	72807 62422 Fl me (TFT) obenzene (4-BF 1137 - AH-4 2 Midland Chloride (Titr. 72665 62283	Flag 'B) 2-2.5' ation)	Date Anal Sample Pr RL Result .<2.00 Result 1.87 1.73 Analy Date A Sampl	lyzed: reparation: Units mg/Kg mg/Kg tical Method: Analyzed: e Preparatior	2010-08-20 2010-08-20 Units mg/Kg Dilution 1 1 1 SM 4500- 2010-08-1 a: 2010-08-1	Spike Amount 2.00 2.00 Cl B 6 6	Analyzed Prepared Dilution 1 Percent Recovery 94 86 Prep M Analyze Prepare	By: AG By: AG Recover Limits 48.5 - 15 42 - 159 (ethod: N/ ed By: AR ed By: AR	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch:	72807 62422 Fl ene (TFT) obenzene (4-BF 1137 - AH-4 2 Midland Chloride (Titr. 72665 62283	Flag 'B) 2-2.5' ation)	Date Anal Sample Pr RL Result .<2.00 Result 1.87 1.73 Analy Date A Sampl RL	lyzed: reparation: Units mg/Kg mg/Kg tical Method: Analyzed: e Preparatior	2010-08-20 2010-08-20 Units mg/Kg Dilution 1 1 1 SM 4500- 2010-08-1 1: 2010-08-1	Spike Amount 2.00 2.00 Cl B 6 6	Analyzed Prepared Dilution 1 Percent Recovery 94 86 Prep M Analyze Prepare	By: AG By: AG Recover Limits 48.5 - 15 42 - 159 Iethod: N/A ed By: AR ed By: AR	
QC Batch: Prep Batch: Parameter GRO Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch:	72807 62422 Fl me (TFT) obenzene (4-BF 1137 - AH-4 2 Midland Chloride (Titr. 72665 62283	Flag B) 2-2.5' ation)	Date Anal Sample Pr RL Result .<2.00 Result 1.87 1.73 Analy Date A Sampl RL Result	lyzed: reparation: Units mg/Kg mg/Kg tical Method: Analyzed: e Preparatior	2010-08-20 2010-08-20 Units mg/Kg Dilution 1 1 1 SM 4500- 2010-08-1 h: 2010-08-1 Units	Spike Amount 2.00 2.00 Cl B 6 6	Analyzed Prepared Dilution 1 Percent Recovery 94 86 Prep M Analyze Prepare	By: AG By: AG Recover Limits 48.5 - 15 42 - 159 (lethod: N/. ed By: AR ed By: AR	

•

7

⁴High surrogate recovery. Sample non-detect, result bias high.

and the second

業であった。

設備が

10 A 2 A 2 A

1. C. C. C.

Surger State

Star and

意義を

14.13A

100

1245.25

の言語が

(The second

Report Date: August 23, 2010	Work Order: 10081616	Page Number: 15 of 43
114-6400627	COG/Tex-Mark 11 Fed. #35	Eddy County, NM

Sample: 241138 - AH-4 3-3.5'

States of

語な話

北京省

Sal Salar

調査部

語の教

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72665 62283	Analytical Method Date Analyzed: Sample Preparation	: SM 4500-Cl B 2010-08-16 n: 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

Sample: 241139 - AH-4 4-4.5'

Chloride		<200	mg/Kg	50	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	62283	Sample Preparat	ion: 2010-08-16	Prepared By:	AR
QC Batch:	72665	Date Analyzed:	2010-08-16	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytical Metho	od: SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

Sample: 241140 - AH-5 0-1'

Laboratory: Midland Analysis: BTEX QC Batch: 72769 Prep Batch: 62330			Analytical M Date Analyz Sample Prej	Aethod: zed: paration:	S 8021B 2010-08-18 2010-08-18		Prep Meth Analyzed I Prepared I	aod: S 5035 By: AG By: AG
			RL					
Parameter F	lag		Result		Units	D	ilution	\mathbf{RL}
Benzene			6.43		mg/Kg		20	0.0200
Toluene			36.0		mg/Kg		20	0.0200
Ethylbenzene			32.0		mg/Kg		20	0.0200
Xylene			36.5		mg/Kg	····	20	0.0200
						Spike	Percent	Recovery
Surrogate	F	lag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			17.0	mg/Kg	20	20.0	85	52.8 - 137
4-Bromofluorobenzene (4-BFE	3)		26.2	mg/Kg	20	20.0	131	38.4 - 157

Report Date: 114-6400627	: August 23,	2010		W COG	ork Order: /Tex-Mark	10081616 11 Fed. #3	5	Page Number: 16 of 43 Eddy County, NM		
Sample: 24	1140 - AH-	5 0-1'								
Laboratory:	Midland									
Analysis:	Chloride (T	itratio	n)	Analyt	ical Metho	d: SM 450	00-Cl B	Prep M	lethod:	N/A
QC Batch:	72665			Date A	analyzed:	2010-0	8-16	Analyz	ed By:	AR
Prep Batch:	62283			Sample	e Preparati	on: 2010-0	8-10	Prepare	ed By:	AK
_				RL						
Parameter		Flag	<u> </u>	Result		Units		Dilution		RL
Chloride				1620		mg/Kg	<u> </u>	100		4.00
	~!									
Sample: 24	1140 - AH-	5 0-1'								
Laboratory:	Midland									
Analysis:	TPH DRO	- NEW	7	Analy	tical Meth	od: S 801	5 D	Prep M	ethod:	N/A
QC Batch:	72774			Date	Analyzed:	2010-0)8-19	Analyzed By:		kg
Prep Batch:	62397			Samp	le Preparat	tion: 2010-0)8-19	Prepare	ed By:	kg
				\mathbf{RL}						
Parameter		Flag		Result		Units		Dilution		RL
DRO				2590		mg/Kg		5		50.0
							Spike	Percent	Re	covery
Surrogate	Flag		Result	Units	Dilu	tion	Amount	Recovery	\mathbf{L}	imits
n-Tricosane	5		195	mg/Kg	5	<u>;</u>	100	195	70	- 130
Sample: 24 Laboratory: Analysis: QC Batch:	1140 - AH- Midland TPH GRO 72770	5 0-1'		Analytical Date Anal	Method: yzed:	S 8015 D 2010-08-18		Prep Met Analyzed	hod: S By: J	S 5035 AG
Prep Batch:	62330			Sample Pr	eparation:	2010-08-18		Prepared	By: A	AG
				RL		Unite		Dilution		RI.
Parameter		Flag		Recult		Unito		L'HUMMUN		1017
Parameter GRO		Flag				mg/Kg		20		2.00
Parameter GRO		Flag		2720		mg/Kg	······································	20		2.00
Parameter GRO		Flag	Flag	Result 2720	Units	mg/Kg	Spike	20 Percent Becovery	Rec	2.00 covery
Parameter GRO Surrogate	2ne (TFT)	Flag	Flag 6	Result 2720 Result	Units mg/Kg	mg/Kg Dilution	Spike Amount	20 Percent Recovery 216	Rec Li	2.00 covery mits

⁵High surrogate recovery due to peak interference.

5. N. C. S.

「「「「

の主要にあ

が変わって

調整

S. States

Sec. 1

and the

記録

見ないの

ないない

⁶High surrogate recovery due to peak interference. ⁷High surrogate recovery due to peak interference.

Report Date: August 23, 2010	Work Order: 10081616	Page Number: 17 of 43
114-6400627	COG/Tex-Mark 11 Fed. #35	Eddy County, NM

Sample: 241141 - AH-5 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 72806 62422			Analytical M Date Analyz Sample Prep	fethod: ed: paration:	S 8021B 2010-08-20 2010-08-20		Prep Meth Analyzed Prepared	hod: By: By:	S 5035 AG AG
				RL						
Parameter	Fla	ıg		Result		Units	D	ilution		RL
Benzene				22.4		mg/Kg		100		0.0200
Toluene				104		mg/Kg		100		0.0200
Ethylbenzene				81.8		mg/Kg		100		0.0200
Xylene				95.6		mg/Kg		100		0.0200
							Spike	Percent	Re	ecovery
Surrogate]	Flag	Result	Units	Dilution	Amount	Recovery	Ι	Limits
Trifluorotolue	ne (TFT)			92.8	mg/Kg	100	100	93	52	.8 - 137
4-Bromofluor	obenzene (4-BFB)			107	mg/Kg	100	100	107	38	.4 - 157

Sample: 241141 - AH-5 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72666 62284	Analytical Method: Date Analyzed: Sample Preparation	SM 4500-Cl B 2010-08-16 2010-08-16	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Paramotor	Flag	RL Bosult	Unite	Dilution	RI.
Chloride	Tiag	704	mg/Kg	50	4.00

Sample: 241141 - AH-5 1-1.5'

Laboratory:	Midland						
Analysis:	TPH DRO - NEW		Analytical Method:		S 8015 D	Prep M	fethod: N/A
QC Batch:	72814		Date A	nalyzed:	2010-08-20	Analyz	ed By: kg
Prep Batch:	62429	29		Sample Preparation:		Prepar	ed By: kg
			RL				
Parameter	\mathbf{Flag}		Result		Units	Dilution	\mathbf{RL}
DRO			6940	mg/Kg		10	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane	8	499	mg/Kg	10	100	499	70 - 130

⁸High surrogate recovery due to peak interference.

Sales and

12. 20.20

12-20-21

Sara and

Sand Strate

S.L.R.

eric des
Report Date: August 23, 2010 Work Order: 10081616 Page Nu 114-6400627 COG/Tex-Mark 11 Fed. #35 Edd	lumber: 18 of 43 Idy County, NM
--	------------------------------------

Sample: 241141 - AH-5 1-1.5'

Laboratory	Midland								
Analysis [,]	TPH GRO		Analytical	Method:	S 8015 D		Prep Met	hod: S	5 503
QC Batch:	72807		Date Anal	vzed:	2010-08-20		Analyzed	By: A	4G
Prep Batch:	62422		Sample Pi	eparation:	2010-08-20		Prepared	By: A	AG
			\mathbf{RL}						
Parameter	Flag		Result		Units		Dilution		RI
GRO			4320		mg/Kg		100		2.00
						Spike	Percent	Bec	overv
		Flag	Result	Units	Dilution	Amount	Becovery	Li	mits
Surrogate				011100	Bilderoin	Timoano	100001015		
Surrogate Trifluorotolue	ne (TFT)	Plag	106	mø/Kø	100	100	106	48.5	- 152
Surrogate Trifluorotolue 4-Bromofluoro	ne (TFT) obenzene (4-BFB)		106 124	mg/Kg mg/Kg	100 100	100 100	106 124	48.5 42	- 152 - 159
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5 '	Tiag	106 124	mg/Kg mg/Kg	100 100	100 100	106 124	48.5 42	- 15: - 159
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory:	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5' Midland	<u></u>	106 124	mg/Kg mg/Kg	100 100	100 100	106 124	48.5 42	- 152 - 159
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis:	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5 ' Midland Chloride (Titration)	<u></u>	106 124 Analy	mg/Kg mg/Kg tical Method	100 100	100 100 Cl B	106 124 Prep M	48.5 42 ethod:	- 152 - 159 N/A
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch:	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5 ' Midland Chloride (Titration) 72666	<u></u>	106 124 Analy Date	mg/Kg mg/Kg tical Method Analyzed:	100 100 : SM 4500- 2010-08-1	100 100 Cl B 6	106 124 Prep M Analyze	48.5 42 ethod: ed By:	- 152 - 159 N/A AR
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch:	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5' Midland Chloride (Titration) 72666 62284		106 124 Analy Date A Sampl	mg/Kg mg/Kg tical Method Analyzed: e Preparation	100 100 : SM 4500- 2010-08-1 a: 2010-08-1	100 100 Cl B 6 6	106 124 Prep M Analyze Prepare	48.5 42 ethod: ed By: ed By:	- 152 - 159 N/A AR AR
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch:	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5' Midland Chloride (Titration) 72666 62284	<u></u>	106 124 Analy Date A Sampl RL	mg/Kg mg/Kg tical Method Analyzed: e Preparation	100 100 : SM 4500- 2010-08-1 n: 2010-08-1	100 100 Cl B 6 6	106 124 Prep M Analyze Prepare	48.5 42 ethod: ed By: ed By:	- 152 - 159 N/A AR AR
Surrogate Trifluorotolue 4-Bromofluoro Sample: 241 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	ne (TFT) obenzene (4-BFB) 1 142 - AH-5 2-2.5' Midland Chloride (Titration) 72666 62284 Flag	<u></u>	106 124 Analy Date A Sampl RL Result	mg/Kg mg/Kg tical Method Analyzed: e Preparation	100 100 : SM 4500- 2010-08-1 n: 2010-08-1 Units	100 100 Cl B 6 6	106 124 Prep M Analyze Prepare Dilution	48.5 42 ethod: ed By: ed By:	- 152 - 159 N/A AR AR AR

Sample: 241142 - AH-5 2-2.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - N 72851 62460	IEW	Analytic Date Ar Sample	cal Method: nalyzed: Preparation:	S 8015 D 2010-08-23 2010-08-23	Prep M Analyz Prepare	lethod: N/A ed By: kg ed By: kg
Parameter	F	ar	RL Bosult		Units	Dilution	BL
DRO		lag	4470	m	g/Kg	10	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane	9	329	mg/Kg	10	100	329	70 - 130

⁹High surrogate recovery due to peak interference.

が気候

State State

お書

antis -

A Carlos

and and a

Superior Sec.

である

Sec. B. State

114-6400627		Worl COG/T	c Order: 1008 ex-Mark 11 F	81616 Fed. #35	Page Number: 19 of 4 Eddy County, NN		
.143 - AH-5 3	-3.5'						
Midland Chloride (Titra 72666 62284	ation)	Analytica Date Ana Sample F	al Method: alyzed: Preparation:	SM 4500-Cl B 2010-08-16 2010-08-16	Prep Method Analyzed By Prepared By	l: N/A : AR : AR	
Fl	ລອ	RL Besult		Units	Dilution	BL	
	~6	302	n	ng/Kg	50	4.00	
02400		Sample RL Descult	Preparation:	2010-08-23	Prepared By	: kg	
F1	ag	<u>3430</u>	m	omis ng/Kg	10	50.0	
				Spike	Percent H	Recovers	
Flag	Result	Units	Dilution	Amount	Recovery	Limits	
-	143 - AH-5 3 Midland Chloride (Titra 72666 62284 Fl: .143 - AH-5 3 Midland TPH DRO - N 72851 62460 Fl	143 - AH-5 3-3.5' Midland Chloride (Titration) 72666 62284 Flag .143 - AH-5 3-3.5' Midland TPH DRO - NEW 72851 62460 Flag	143 - AH-5 3-3.5' Midland Chloride (Titration) Analytica 72666 Date Ana 62284 Sample H RL Result Flag Result 302 302 143 - AH-5 3-3.5' Midland TPH DRO - NEW Analytic 72851 Date Ara 62460 Sample RL RL Flag RL	143 - AH-5 3-3.5' Midland Chloride (Titration) Analytical Method: 72666 Date Analyzed: 62284 Sample Preparation: RL Result 143 - AH-5 3-3.5' 302 Midland TPH DRO - NEW 72851 Date Analyzed: 62460 Sample Preparation: RL Result	143 - AH-5 3-3.5' Midland Chloride (Titration) Analytical Method: SM 4500-Cl B 72666 Date Analyzed: 2010-08-16 62284 Sample Preparation: 2010-08-16 RL Flag Result Units 302 mg/Kg 143 - AH-5 3-3.5' Midland TPH DRO - NEW Analytical Method: S 8015 D 72851 Date Analyzed: 2010-08-23 62460 Sample Preparation: 2010-08-23 RL RL RL Flag Result Units	143 - AH-5 3-3.5' Midland Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method 72666 Date Analyzed: 2010-08-16 Analyzed By 62284 Sample Preparation: 2010-08-16 Prepared By RL Flag Result Units Dilution 302 mg/Kg 50 .143 - AH-5 3-3.5' Midland TPH DRO - NEW Analytical Method: S 8015 D Prep Method: 72851 Date Analyzed: 2010-08-23 Analyzed By 62460 Sample Preparation: 2010-08-23 Prep Method: RL Flag Result Units Dilution	

Parameter	Flag	Result	Units	Dilution	RL
Chloride		222	mg/Kg	50	4.00

Sample: 241145 - AH-5 5-5.5'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	72666	Date Analyzed:	2010-08-16	Analyzed By:	AR
Prep Batch:	62284	Sample Preparation:	2010-08-16	Prepared By:	\mathbf{AR}

¹⁰High surrogate recovery due to peak interference.

M. ANG

The state of the s

記録

· State

12:25.5

1. C. C. M.

RL ChlorideParameterFlagResultUnitsDilution1Chloride<200 mg/Kg 504Sample: 241146 - AH-5 6-6.5'Laboratory:Midland Analysis:Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method:N, QC Batch:QC Batch:72666Date Analyzed:2010-08-16Analyzed By:A'Prep Batch:62284Sample Preparation:2010-08-16Prepared By:A'ParameterFlagResultUnitsDilutionIChloride291 mg/Kg 504Sample: 241147 - AH-5 7-7.5'Laboratory:Midland Analysis:Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method:N, QC Batch:Prep Batch:62284Sample Preparation:2010-08-16Prepared By:A'ParameterFlagResultUnitsDilutionFChloride1220 mg/Kg 1004.Sample: 241148 - AH-5 8-8.5'Laboratory:Midland Analysis:Chloride1220 mg/Kg 1004.Sample: 241148 - AH-5 8-8.5'Laboratory:Midland Analysis:Chloride1220 mg/Kg 1004.Prep Batch:62284Sample Preparation:2010-08-16Prep Method:N, Prep Method:Prep Batch:62284Sample Preparation:2010-08-16Prep Method:N, Prep Method	Report Date 114-6400627	: August 23, 2010	Work Order: 10 COG/Tex-Mark 11	081616 Fed. #35	Page Number: 20 of 43 Eddy County, NM		
Parameter Plag Result Units Diution I Chloride <200 mg/Kg 50 4 Sample: 241146 - AH-5 6-6.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A Parameter Flag Result Units Dilution 1 Chloride 291 mg/Kg 50 4 Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: AI Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: AI Parameter Flag Result Units Dilution IF Choride <t< th=""><th></th><th></th><th>RL</th><th>TT T.</th><th></th><th>DI</th></t<>			RL	TT T .		DI	
Chloride 2.00 mg/Kg 50 4 Sample: 241146 - AH-5 6-6.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N. QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A. Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A: RL Rit Units Dilution 1 Chloride 291 mg/Kg 50 4. Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N. QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A: QC Batch: 72666 Date Analyzed: 2010-08-16 Prep Method: N. QC Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A: Parameter Flag Result Units Dilution F Chloride Titration) <	Parameter	Flag	Kesult	Units	Dilution		
Sample: 241146 - AH-5 6-6.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A Parameter Flag Result Units Dilution I Chloride 291 mg/Kg 50 4. Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A) Parameter Flag Result Units Dilution F Chloride 1220 mg/Kg 100 4. Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analyzical Method: SM 4500-Cl B	Chloride		< 200	ing/Kg	50	4.00	
Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A Parameter Flag Result Units Dilution I Chloride 291 mg/Kg 50 4. Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analyzis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai Parameter Flag Result Units Dilution F Chloride 1220 mg/Kg 100 4 Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method	Sample: 24	1146 - AH-5 6-6.5'					
Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A Parameter Flag Result Units Dilution 1 Chloride 291 mg/Kg 50 4 Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analyzeit: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Prepared By: A Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analyzed: 2010-08-16 Analyzed By: A Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analyzed: 2010-08-16 Analyzed By:	Laboratory:	Midland					
QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A RL RL RL Dilution J J Chloride 291 mg/Kg 50 4 Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Analyzed By: A Prep Batch: 62284 Sample Preparation: 2010-08-16 Analyzed By: A Parameter Flag Result Units Dilution H Chloride 1220 mg/Kg 100 4. Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/ QC Batch:	Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A	
Prop Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: A RL RL Inits Dilution 1 Chloride 291 mg/Kg 50 4 Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Parameter Flag Result Units Dilution H Chloride 1220 mg/Kg 100 4 Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/ GC Batch: 72666 Date Analyzed: 2010-08-16 Analysis Analysis: Chloride 1220 mg/Kg 100 4 Analysis: Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/ QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai	QC Batch:	72666	Date Analyzed:	2010-08-16	Analyzed By:	AR	
Parameter Flag Result Units Dilution I Chloride 291 ng/Kg 50 4 Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai Parameter Flag Result Units Dilution H Chloride 1220 rng/Kg 100 4. Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai GC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Analyzed By: Ai Prep Batch: 62284<	Prep Batch:	62284	Sample Preparation	: 2010-08-16	Prepared By:	AR	
Parameter Flag Result Units Dilution I Chloride 291 mg/Kg 50 4. Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai RL RL It units Dilution H It units Dilution H Chloride 1220 mg/Kg 100 4. It units It units <td></td> <td></td> <td>RL</td> <td></td> <td></td> <td></td>			RL				
Chloride 291 mg/Kg 50 4 Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Al Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Al RL Result Units Dilution I Chloride 1220 mg/Kg 100 4. Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Al Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Al Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Al Parameter Flag Result Units Dilution F Parameter Flag Result Units Dilution F Chloride 1360 mg/Kg 100 4. <td>Parameter</td> <td>Flag</td> <td>Result</td> <td>Units</td> <td>Dilution</td> <td>RI</td>	Parameter	Flag	Result	Units	Dilution	RI	
Sample: 241147 - AH-5 7-7.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai Parameter Flag Result Units Dilution I Chloride 1220 mg/Kg 100 4. Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N, QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: Ai RL RL RL RL RL	Chloride		291	mg/Kg	50	4.00	
Parameter Flag Result Onits Dilution Flag Flag Flag Dilution Flag Dilution Flag Flag Dilution Flag Dilution Flag Dilution Flag Dilution Flag Flag Dilution Flag <th< th=""><th>Prep Batch:</th><th>62284</th><th>Sample Preparation RL</th><th>2010-08-10 : 2010-08-16</th><th>Prepared By:</th><th>AR</th></th<>	Prep Batch:	62284	Sample Preparation RL	2010-08-10 : 2010-08-16	Prepared By:	AR	
Sample: 241148 - AH-5 8-8.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/ QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: AI Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: AI RL Parameter Flag Result Units Dilution F Chloride 1360 mg/Kg 100 4.	Chloride	Tag	1220	mg/Kg	100	4.0	
Analysis:Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method:N,QC Batch:72666Date Analyzed:2010-08-16Analyzed By:AlPrep Batch:62284Sample Preparation:2010-08-16Prepared By:AlRLRLParameterFlagResultUnitsDilutionFChloride1360mg/Kg1004.	Sample: 24 Laboratory:	1148 - AH-5 8-8.5' Midland					
QC Batch:72666Date Analyzed:2010-08-16Analyzed By:AlPrep Batch:62284Sample Preparation:2010-08-16Prepared By:AlRLRLDilutionFChloride1360mg/Kg1004.	Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A	
Prep Batch:62284Sample Preparation:2010-08-16Prepared By:AlRLParameterFlagResultUnitsDilutionFChloride1360mg/Kg1004.	QC Batch:	72666	Date Analyzed:	2010-08-16	Analyzed By:	AR	
RLParameterFlagResultUnitsDilutionHChloride1360mg/Kg1004.	Prep Batch:	62284	Sample Preparation	: 2010-08-16	Prepared By:	AR	
ParameterPlagResultOnitsDilutionPlagChloride1360mg/Kg1004.	Denenenten	Tele m	RL Bacult	TI:::40	Dilution	DI	
Chieffic 1000 ing/itg 100 1.	1 arameter	r lag	1360	mg/Kg	100	 	
	Chlorida		1300	mg/mg	100	4.00	

Dabbratory.	mana				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	72666	Date Analyzed:	2010-08-16	Analyzed By:	AR
Prep Batch:	62284	Sample Preparation:	2010-08-16	Prepared By:	\mathbf{AR}

調整

S. Lorde

and the

and the second

1.2.2

Carata S

arap: 26

2.464

No. No.

を見る

Ser and Barris

Constant.

RL ChlorideDilutionRI ChlorideChloride1060 mg/Kg 1004.00Sample: 241150 - AH-6 0-1'Laboratory: Midland Analysis: Chloride (Thration) Chloride (Thration) QC Batch: Prep Batch: 62284Analytical Method: Sample Preparation: 2010-08-16Prep Method: N/A QL 01-08-16Prep Method: N/A Analyzed By: ARParameterFlag ResultResult UnitsUnitsDilutionRI Chloride (Thration)ParameterFlag ResultResultUnitsDilutionRI ChlorideChloride1280 mg/Kg 1004.00Sample: 241150 - AH-6 0-1'Laboratory: Midland Analysis: TPH DRO - NEW QC Batch: C2307Analytical Method: Sample Preparation: 2010-08-19Prep Method: N/A Analysis: DilutionN/A Analysis RILParameterFlag ResultResultUnitsDilutionRI DilutionDRO < 50.0 mg/Kg 1 50.0 SurrogateFlag ResultUnitsDilutionRI DilutionLaboratory: Midland Analysis: n-Tricosane100 mg/Kg 1Sample: 241150 - AH-6 0-1'Laboratory: Laboratory: Midland Analysis: n-TricosaneN/A analytical Method: S 8015 DPrep Method: S 5035 QC Batch: Prep Method: S 2330Sample Preparation: Sample Preparation: 2010-08-18Prepared By: AGParameterFlag ResultUnitsDilutionRL Prepared By: AGParameterFlag Resul	Report Date 114-6400627	: August 23, 20	010	W COG	/ork Order: /Tex-Mark	10081616 11 Fed. #3	5	Page Nur Edd	mber: 21 of 4 y County, NM
Parameter Flag Result Units Dilution RI Chloride 1060 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysia: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 72666 Date Analyzed: 2010-08-16 Prepared By: AR Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: AR Parameter Flag Result Units Dilution RI Chloride 1280 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH DRO - NEW Analytical Method: S 8015 D Prep Method: N/A QC Batch: 72774 Date Analyzed: 2010-08-19 Prepared By: kg Prop Batch: 62397 Sample Percent Recovery Limits DRO <50.0 mg/Kg 1 000 70 - 130 Surrogate Flag				\mathbf{RL}					
Chloride 1060 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 72666 Date Analyzed: 2010-08-16 Analyzed By: AR Parameter Flag Result Units Dilution RI Parameter Flag Result Units Dilution RI Chloride 1280 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analyzed: 2010-08-19 Analyzed By: kg VC Batch: 62397 Sample Preparation: 2010-08-19 Prepared By: kg Parameter Flag Result Units Dilution RI DRO <50.0 mg/Kg 1 500 500 Surrogate Flag Result Units Dilution RI Laboratory: Midland Analysei 1 <	Parameter	F	lag	Result		Units		Dilution	RL
Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 62284 Sample Preparation: 2010-08-16 Analyzed By: AR Parameter Flag Result Units Dilution RI Chloride 1280 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analyzed: 2010-08-19 Analyzed By: kg QC Batch: 72774 Date Analyzed: 2010-08-19 Analyzed By: kg Parameter Flag Result Units Dilution RL QC Batch: 62397 Sample Preparation: 2010-08-19 Analyzed By: kg Parameter Flag Result Units Dilution RL BRO <50.0	Chloride			1060		mg/Kg		100	4.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Some las 94	1120 112	0.12					х	
Laboratory: Midland Analysis: Chloride (Titration) QC Batch: 72666 Date Analyzed: 2010-08-16 Prep Batch: 62284 RL Parameter Flag Result Units Dilution RI Chloride 1280 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH DRO - NEW Analytical Method: S 8015 D Prep Method: N/A QC Batch: 72774 Date Analyzed: 2010-08-19 Analyzed By: Kg Prep Batch: 62397 RL Parameter Flag Result Units Dilution RI DRO <50.0 mg/Kg 1 50.0 Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 100 mg/Kg 1 100 100 70 - 130 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH DRO - NEW Analytical Method: S 8015 D Prep Method: N/A Date Analyzed: 2010-08-19 Prep Atch: 62397 Sample Preparation: 2010-08-19 Analyzed By: Kg Parameter Flag Result Units Dilution RI DRO <50.0 mg/Kg 1 50.0 Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 100 mg/Kg 1 100 100 70 - 130 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH GRO Analytical Method: S 8015 D Prep Method: S 5035 QC Batch: 72770 Date Analyzed: 2010-08-18 Analyzed By: AG Prep Batch: 62330 Sample Preparation: 2010-08-18 Analyzed By: AG Prep Batch: 6230 Sample Preparation: 2010-08-18 Analyzed By: AG Prep Result Units Dilution RL GRO <2.00 mg/Kg 1 2.00 RL Parameter Flag Result Units Dilution RL GRO <2.00 mg/Kg 1 2.00 RL Parameter Flag Result Units Dilution RL GRO <2.00 mg/Kg 1 2.00 RE Spike Percent Recovery Limits Trifluorotoluene (TFT) 1.57 mg/Kg 1 2.00 RE	Sample: 24	1150 - A H- 0	0-1						
Analysis: Chloride (litration) Analytical Method: SM 4500-Cl B Prep Method: NA QC Batch. 72666 Date Analyzed: 2010-08-16 Prepared By: AR Prep Batch: 62284 Sample Preparation: 2010-08-16 Prepared By: AR Parameter Flag Result Units Dilution RI Chloride 1280 mg/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analyzed: 2010-08-19 Analyzed By: Kg QC Batch: 72774 Date Analyzed: 2010-08-19 Analyzed By: Kg Prep Batch: 62397 Sample Preparation: 2010-08-19 Prepared By: Kg Parameter Flag Result Units Dilution RL DRO <60.0	Laboratory:	Midland							
QC Batch: $r2005$ Date Analyzed: $2010-08-16$ Analyzed By:ARPrep Batch: 62284 Sample Preparation: $2010-08-16$ Prepared By:ARParameterFlagResultUnitsDilutionRIChloride1280mg/Kg1004.00Sample:241150 - AH-6 0-1'Laboratory:MidlandAnalyzis:TPH DRO - NEWAnalytical Method:S 8015 DPrep Method:QC Batch:72774Date Analyzed: $2010-08-19$ Analyzed By:kgPrep Batch:62397Sample Preparation: $2010-08-19$ Analyzed By:kgParameterFlagResultUnitsDilutionRIDRO<50.0	Analysis:	Chloride (Tit	ration)	Analy	tical Metho	a: SM 45	00-CI B	Prep N	lethod: N/A
Prep Batch: 62284 Sample Preparation: $2010-08-16$ Prepared By:ARParameterFlagResultUnitsDilutionRIChloride1280mg/Kg1004.00Sample:241150 - AH-6 0-1'Laboratory:MidlandLaboratory:MidlandAnalysis:Prep Method:S 8015 DPrep Method:QC Batch:72774Date Analyzed:2010-08-19Analyzed By:kgPrep Batch:62397Sample Preparation:2010-08-19Prepared By:kgParameterFlagResultUnitsDilutionRLDRO<50.0	QC Batch:	72666		Date .	Anaiyzed:	2010-0	8-16	Analyz	ed By: AR
RL ParameterFlagResultUnitsDilutionRI ChlorideChloride1280mg/Kg1004.00Sample: 241150 - AH-6 0-1'Laboratory:Midland Analysis: TPH DRO - NEWAnalytical Method: S 8015 DS 8015 DPrep Method: N/A QC Batch: 2010-08-19Prep Method: Prep Method: N/A Preparation: 2010-08-19Prep Method: Preparation: Prepared By: kgParameterFlagResultUnitsDilutionRL Prepared By: kgParameterFlagResultUnitsDilutionRL PercentSurrogateFlagResultUnitsDilutionAmount RecoveryLimits hanlyzed: 2010-08-18Sample:241150 - AH-6 0-1'Laboratory:Midland Analyzed: 2010-08-18Prep Method: S 5035 QC Batch: 27770Analytical Method: S 8015 DPrep Method: S 5035 QC Batch: 27770Prep Atthod: S 2030S 5035 Somple Preparation: 2010-08-18Prep Method: Analyzed By: AGParameterFlagResultUnitsDilutionRL Analyzed: 2010-08-18Prepared By: AGParameterFlagResultUnitsDilutionRL 2.00GRO<2.00	Prep Batch:	62284		Sampl	le Preparatio	on: 2010-0	8-16	Prepare	ed By: AR
ParameterFlagResultUnitsDilutionKIChloride1280 mg/Kg 1004.00Sample: 241150 - AH-6 0-1'Laboratory:MidlandAnalysis:TPH DRO - NEWAnalytical Method:S 8015 DPrep Method:N/AQC Batch:72774Date Analyzed:2010-08-19Analyzed By:kgPrep Batch:62397Sample Preparation:2010-08-19Prepared By:kgParameterFlagResultUnitsDilutionRLDRO<50.0				RL		~		-	
Chloride 1280 ng/Kg 100 4.00 Sample: 241150 - AH-6 0-1' Laboratory: Midland Prep Analytical Method: S 8015 D Prep Method: N/A QC Batch: 72774 Date Analyzed: 2010-08-19 Analyzed By: kg Prep Batch: 62397 Sample Preparation: 2010-08-19 Prepared By: kg Parameter Flag Result Units Dilution RL DRO <50.0	Parameter	F	'lag	Result	<u>.</u>	Units		Dilution	RL
Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH DRO - NEW Analytical Method: S 8015 D Prep Method: N/A QC Batch: 72774 Date Analyzed: 2010-08-19 Analyzed By: kg Prep Batch: 62397 Sample Preparation: 2010-08-19 Prepared By: kg Parameter Flag Result Units Dilution RL DRO <50.0	Chloride			1280		mg/Kg		100	4.00
Sample: 241150 - AH-6 0-1'Laboratory: Midland Analysis: TPH DRO - NEW QC Batch: 72774Analytical Method: Date Analyzed: 2010-08-19Prep Method: Analyzed By: kgPrep Batch: 6239762397Sample Preparation: Sample Preparation: 2010-08-19Prep Method: Prepared By: kgParameterFlagResultUnitsDilutionRLDRO < 50.0 mg/Kg1 50.0 SurrogateFlagResultUnitsDilutionRecoverySurrogateFlagResultUnitsDilutionRecoverySample: 241150 - AH-6 0-1'Analyzical Method: Sample: 241150 - AH-6 0-1'SolitonRecoveryLaboratory: Midland Analysis: CP Batch: 62330Gample Preparation: Sample Preparation: 2010-08-18Prep Method: Prep Method: S 5035 Analyzed By: AGParameterFlagResultUnitsDilutionRL ResultGROAnalyzed: 2010-08-18DilutionRL Prepared By: AGParameterFlagResultUnitsDilutionRL COGRO < 2.00 mg/Kg1 2.00 7848.5 - 152									•
Laboratory: Midland Analysis: TPH DRO - NEW QC Batch: 72774Analytical Method: Date Analyzed: Sample Preparation: 2010-08-19Prep Method: Analyzed By: kg Prepared By: kgParameterFlagRL ResultUnitsDilutionRL DROParameterFlagResultUnitsDilutionRL RecoverySurrogateFlagResultUnitsDilutionRecoverySample:241150 - AH-6 0-1'UnitsDilutionAnalyzed: SourogateSolidSolidSample:241150 - AH-6 0-1'Laboratory: Midland Analysis:Midland Analyzed: 2010-08-18Prep Method: Solid-S	Sample: 24	1150 - AH-6	0-1'						
Laboratory:Initialid Manalysis:TPH DRO - NEWAnalytical Method:S 8015 DPrep Method:N/AQC Batch:72774Date Analyzed:2010-08-19Analyzed By:kgPrep Batch:62397Sample Preparation:2010-08-19Prepared By:kgParameterFlagResultUnitsDilutionRLDRO<50.0	T a b a un t a un t	Midland							
Analysis: IPH DRO - NEW Analytical Method: S 8015 D Prep Method: N/A QC Batch: 72774 Date Analyzed: 2010-08-19 Analyzed By: kg Prep Batch: 62397 Sample Preparation: 2010-08-19 Prepared By: kg Parameter Flag Result Units Dilution RL DRO <50.0	Laboratory:		NTEXT7	A 1.		J. C 001	r D	Dum M	
Date Analyzet: 2010-08-19 Analyzet By: kg Prep Batch: 62397 Sample Preparation: 2010-08-19 Prepared By: kg RL RL Dilution RL DRO <50.0	Analysis:	1PH DRU - 1	IN E. W	Anar	A paluzodi	DU: 5 801		A malan	ethod: N/A
Parameter Flag Result Units Dilution RL DRO <50.0	QU Batch:	12114		Date	Analyzeu:	2010- iom: 2010	00-19	Anaiyz Daenen	ed Dy: kg
RL ParameterFlagResultUnitsDilutionRI RI 50.0DRO <50.0 mg/Kg1 50.0 DRO <50.0 mg/Kg1 50.0 SurrogateFlagResultUnitsDilutionAmountRecoveryLimitsn-Tricosane100mg/Kg1 100 100 $70 - 130$ Sample: 241150 - AH-6 0-1'Laboratory:Midland Analysis:TPH GROAnalytical Method: $$8015 D$ Prep Method: $$5035$ QC Batch: 72770 Date Analyzed: $2010-08-18$ Analyzed By:AGPrep Batch: 6230 Sample Preparation: $2010-08-18$ Prepared By:AGRLRlInitsDilutionRL RL GRO <2.00 mg/Kg1 2.00 2.00 SurrogateFlagResultUnitsDilutionRLGRO <2.00 mg/Kg1 2.00 78 $48.5 - 152$	r rep Batch:	02397		Jamp	në r reparat	1011: 2010-	06-19	r repare	еа Бу: кg
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				RL					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	· F	Flag	Result		Units		Dilution	RL
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DRO			<50.0		mg/Kg		1	50.0
SurrogateFlagResultUnitsDilutionAmountRecoveryLimitsn-Tricosane100mg/Kg110010070 - 130Sample: 241150 - AH-6 0-1'Laboratory:MidlandAnalysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5035QC Batch:72770Date Analyzed:2010-08-18Analyzed By:AGPrep Batch:62330Sample Preparation:2010-08-18Prepared By:AGRLRLGRO<2.00						•	Spike	Percent	Recovery
n-Tricosane 100 mg/Kg 1 100 100 70 - 130 Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH GRO Analytical Method: S 8015 D Prep Method: S 5035 QC Batch: 72770 Date Analyzed: 2010-08-18 Analyzed By: AG Prep Batch: 62330 Sample Preparation: 2010-08-18 Prepared By: AG RL Parameter Flag Result Units Dilution RL GRO <2.00 mg/Kg 1 2.00 Spike Percent Recovery Limits Trifluorotoluene (TFT) 1.57 mg/Kg 1 2.00 78 48.5 - 152	Surrogate	Flag	Result	Units	Dilu	tion	Amount	Recovery	Limits
Sample: 241150 - AH-6 0-1' Laboratory: Midland Analysis: TPH GRO Analytical Method: S 8015 D Prep Method: S 5035 QC Batch: 72770 Date Analyzed: 2010-08-18 Analyzed By: AG Prep Batch: 62330 Sample Preparation: 2010-08-18 Prepared By: AG RL RL Parameter Flag Result Units Dilution RL GRO <2.00	n-Tricosane		100	mg/Kg	1	_	100	100	70 - 130
Sample: 241150 - AH-6 0-1Laboratory:MidlandAnalysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5035QC Batch:72770Date Analyzed:2010-08-18Analyzed By:AGPrep Batch:62330Sample Preparation:2010-08-18Prepared By:AGRLREParameterFlagResultUnitsDilutionRLGRO<2.00	G 1 04	11K0 ATT 0	0.13						
Laboratory:MidlandAnalysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5035QC Batch:72770Date Analyzed:2010-08-18Analyzed By:AGPrep Batch:62330Sample Preparation:2010-08-18Prepared By:AGRLRLInitsDilutionRLGRO<2.00	Sample: 24	1150 - AH-0	0-1					,	
Analysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5035QC Batch:72770Date Analyzed:2010-08-18Analyzed By:AGPrep Batch:62330Sample Preparation:2010-08-18Prepared By:AGRLRLInitsDilutionRLGRO<2.00	Laboratory:	Midland			A	0.0015 5		D M	1 1 0 8005
QC Batch:12/10Date Analyzed:2010-08-18Analyzed By:AGPrep Batch:62330Sample Preparation:2010-08-18Prepared By:AGRLRLDilutionRLGRO<2.00	Analysis:	TPH GRO		Analytical	Method:	S 8015 D		Prep Met	hod: 55035
Prep Batch:02330Sample Preparation:2010-08-18Prepared By:AGRLRLParameterFlagResultUnitsDilutionRLGRO<2.00	QC Batch:	(2770		Date Anal	yzea:	2010-08-18		Analyzed	By: AG
RL ParameterRL FlagResultUnitsDilutionRLGRO<2.00	Prep Batch:	02330		Sample Pi	reparation:	2010-08-18		Prepared	ву: AG
FrageResultUnitsDilutionRLGRO<2.00	D	•	N	RL Der li		1 7*r		Dilation	57
Surrogate Flag Result Units Dilution Amount Recovery Trifluorotoluene (TFT) 1.57 mg/Kg 1 2.00	rarameter CBO	Ŀ	lag			Units		Dilution 1	RL 2.00
SurrogateFlagResultUnitsDilutionAmountRecoveryLimitsTrifluorotoluene (TFT)1.57mg/Kg12.007848.5 - 152	GNU			<2.00		mg/rrg		<u>1</u>	2.00
SurrogateFlagResultUnitsDilutionAmountRecoveryLimitsTrifluorotoluene (TFT)1.57mg/Kg12.007848.5 - 152	~		-	.	. .		Spike	Percent	Recovery
Triffuorotoluene (TFT) 1.57 mg/Kg 1 2.00 78 48.5 - 152	Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
	Trifluorotolue	ene (TFT)		1.57	mg/Kg	1	2.00	78	48.5 - 152

.

Part Dech

Street State

「「「「

See and

法学会成

Sec. 14

S. M. S.

(JANA)

Sec. 19

Statistical Section

Raining

11. AC

.

Report Date 114-6400627	:: August 23, 2010		W COG	Page I E	Page Number: 22 of 43 Eddy County, NM				
sample contin	$nued \ldots$					Cnilo	Dovcord	+ Do	
Surrogate		Flag	Result	Units	Dilution	Amount	Recover	v Li	mits
4-Bromofluor	cobenzene (4-BFB)	0	1.44	mg/Kg	1	2.00	72	42	- 159
	· · ·						······································		
Sample: 24	1151 - AH-6 1-1.5'								
Laboratory:	Midland								
Analysis:	Chloride (Titration)		Analy	tical Method:	SM 4500-C	l B	Prer	Method:	N/A
QC Batch:	72667		Date A	Analyzed:	2010-08-16		Ana	lyzed By:	AR
Prep Batch:	62286		Sampl	e Preparation:	2010-08-16		Prep	pared By:	AR
			RL						
Parameter	Flag		Result		Units		Dilution		RL
Chloride			<200		mg/Kg		50		4.00
Sample: 24	1152 - AH-6 2-2.5'						•		
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286		Analy Date A Sampl	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16	I B	Preț Ana Preț	o Method: lyzed By: bared By:	N/A AR AR
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286		Analy Date A Sampl RL	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16	ΊΒ	Preț Ana Preț	o Method: lyzed By: bared By:	N/A AR AR
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag		Analy Date A Sampl RL Result	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units	I B	Prep Ana Prep Dilution) Method: lyzed By: pared By:	N/A AR AR RL
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag		Analy Date A Sampl RL Result <200	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg	ΙB	Prep Ana Prep Dilution 50	o Method: lyzed By: bared By:	N/A AR AR RL 4.00
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag Flag		Analy Date A Sampl RL Result <200	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg	I B	Prep Ana Prep Dilution 50	o Method: lyzed By: bared By:	N/A AR AR RL 4.00
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag Flag 1153 - AH-6 3-3.5' Midland		Analy Date A Sampl RL Result <200	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg	ΙB	Prep Ana Prep Dilution 50	o Method: lyzed By: bared By:	N/A AR AR RL 4.00
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag 1153 - AH-6 3-3.5' Midland Chloride (Titration)		Analy Date Sampl RL Result <200	tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg SM 4500-C	1 B	Prep Ana Prep Dilution 50 Prer	o Method: lyzed By: oared By:	N/A AR AR RL 4.00
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag 1153 - AH-6 3-3.5' Midland Chloride (Titration) 72667		Analy Date A Sampl RL Result <200 Analy Date A	tical Method: Analyzed: e Preparation: tical Method: Analyzed:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg SM 4500-C 2010-08-16	1 B 1 B	Prep Ana Prep Dilution 50 Prep Ana	o Method: lyzed By: oared By:	N/A AR AR 4.00 N/A AR
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag 1153 - AH-6 3-3.5' Midland Chloride (Titration) 72667 62286		Analy Date A Sampl RL Result <200 Analy Date A Sampl	tical Method: Analyzed: e Preparation: tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg SM 4500-C 2010-08-16 2010-08-16	1 B	Prep Ana Prep Dilution 50 Prep Ana Prep	o Method: lyzed By: oared By: o Method: lyzed By: oared By:	N/A AR AR 4.00 N/A AR AR
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag 1153 - AH-6 3-3.5' Midland Chloride (Titration) 72667 62286		Analy Date A Sampl RL Result <200 Analy Date A Sampl RL	tical Method: Analyzed: e Preparation: tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg SM 4500-C 2010-08-16 2010-08-16	1 B 1 B	Prep Ana Prep Dilution 50 Prep Ana Prep	o Method: lyzed By: oared By: o Method: lyzed By: oared By:	N/A AR AR 4.00 N/A AR AR
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter	1152 - AH-6 2-2.5' Midland Chloride (Titration) 72667 62286 Flag 1153 - AH-6 3-3.5' Midland Chloride (Titration) 72667 62286 Flag		Analy Date A Sampl RL Result <200 Analy Date A Sampl RL Result	tical Method: Analyzed: e Preparation: tical Method: Analyzed: e Preparation:	SM 4500-C 2010-08-16 2010-08-16 Units mg/Kg SM 4500-C 2010-08-16 2010-08-16 Units	1 B 1 B	Prep Ana Prep Dilution 50 Prep Ana Prep Dilution	o Method: lyzed By: oared By: o Method: lyzed By: oared By:	N/A AR AR 4.00 N/A AR AR AR AR

うないない

のないである

調が

がかな

の意思

al and a second

State State

100 M

200.63

14.4.4.5

語調を

Report Date: 114-6400627	August 23, 2010	Work Ord COG/Tex-Ma	er: 10081616 ark 11 Fed. #35	P	age Number: 23 Eddy Count	3 of 43 y, NM
Sample: 241	154 - AH-6 4-4.5'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 72667 62286	Analytical Me Date Analyzed Sample Prepar	thod: SM 4500-Cl B l: 2010-08-16 ration: 2010-08-16		Prep Method: Analyzed By: Prepared By:	N/A AR AR
		RL				
Parameter Chloride	Flag	Result <200	Units mg/Kg	Dilutio 5	n 0 .	$\frac{\text{RL}}{4.00}$
				<u> </u>		
Method Blar	nk (1) QC Batch: 72663					
QC Batch: Prep Batch:	72663 62281	Date Analyzed: QC Preparation:	2010-08-16 2010-08-16		Analyzed By: Prepared By:	AR AR
D		M	DL	Unite		Ρĭ
Parameter Chloride	Flag		.18	mg/Kg		<u></u> 4
				-		
Method Blar	nk (1) QC Batch: 72664	,				
QC Batch: Prep Batch:	72664 62282	Date Analyzed: QC Preparation:	2010-08-16 2010-08-16		Analyzed By: Prepared By:	AR AR
		M	DL			
Parameter	Flag	Res	ult	Units		RL
Chloride	J	<2	.18	mg/Kg		4
Method Blaı	nk (1) QC Batch: 72665					
QC Batch: Prep Batch:	72665 62283	Date Analyzed: QC Preparation:	2010-08-16 2010-08-16		Analyzed By: Prepared By:	AR AR
2		M	DL	TT ••		DI
Parameter Chlorida	Flag	Res	ult 18	Units		
		< 4	.10	ш _б / 11 <u>6</u>		<u>ч</u>

the and

No.

調読を

がたが

の資源の

11848

2.00%

1. St.

蒙拉人 [1]

AND AND

S. Salar

とうな

and the second

(14-6400627		Wo COG/	ork Orde /Tex-Mai	r: 10081616 rk 11 Fed. #35	Page Number: 24 of Eddy County, N			of 43 y, NM
Method Blank (1)	QC Batch: 72666							
QC Batch: 72666 Prep Batch: 62284		Date Anal QC Prepa	lyzed: tration:	2010-08-16 2010-08-16		Analyz Prepar	ed By: ed By:	AR AR
Parameter	Flag		MD Resu	L lt	Unit	s		RL
Chloride			<2.1	18	mg/K	۲. See		4
Method Blank (1)	QC Batch: 72667							
QC Batch: 72667 Prep Batch: 62286		Date Anal QC Prepa	lyzed: ration:	2010-08-16 2010-08-16		Analyz Prepar	ed By: ed By:	AR AR
Parameter	Flag		MD Resu	L lt	Unit	S		RL
Chloride			<2.1	18	mg/K	g		4
Method Blank (1)	QC Batch: 72769							
Method Blank (1) QC Batch: 72769 Prep Batch: 62330	QC Batch: 72769	Date Anal QC Prepa	lyzed: ration:	2010-08-18 2010-08-18		Analyz Prepar	ed By: ed By:	AG AG
Method Blank (1) QC Batch: 72769 Prep Batch: 62330	QC Batch: 72769	Date Anal QC Prepa	lyzed: ration: M	2010-08-18 2010-08-18 1DL		Analyz Prepar	ed By: ed By:	AG AG
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter	QC Batch: 72769 Flag	Date Anal QC Prepa	lyzed: ration: Re	2010-08-18 2010-08-18 IDL sult	Unit	Analyz Prepar 15	ed By: ed By:	AG AG RL
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter Benzene Toluono	QC Batch: 72769 Flag	Date Anal QC Prepa	lyzed: ration: <u>Ne</u> <0.0	2010-08-18 2010-08-18 IDL sult 0150	Unit mg/H	Analyz Prepar Ss Kg	ed By: ed By:	AG AG RL 0.02
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter Benzene Toluene Ethylbenzene	QC Batch: 72769 Flag	Date Anal QC Prepa	lyzed: ration: <u>Re</u> <0.0 <0.0 <0.0	2010-08-18 2010-08-18 IDL sult 0150 0950 0106	Unit mg/H mg/H	Analyz Prepar Ss Kg Kg	ed By: ed By:	AG AG RL 0.02 0.02
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter Benzene Toluene Ethylbenzene Xylene	QC Batch: 72769 Flag	Date Anal QC Prepa	lyzed: ration: <u>Re</u> <0.0 <0.0 <0.0 <0.0	2010-08-18 2010-08-18 IDL sult 0150 0950 0106 0930	Unit mg/F mg/F mg/F mg/F	Analyz Prepar Ss Cg Cg Cg Cg Cg	ed By: ed By:	AG AG 0.02 0.02 0.02 0.02
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter Benzene Toluene Ethylbenzene Xylene	QC Batch: 72769 Flag	Date Anal QC Prepa	lyzed: ration: 	2010-08-18 2010-08-18 1DL sult 0150 0950 0106 0930	Unit mg/F mg/F mg/F Spike	Analyz Prepar Ss Kg Kg Kg Percent	ed By: ed By: Recc	AG AG 0.02 0.02 0.02 0.02 0.02
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate	QC Batch: 72769 Flag Flag	Date Anal QC Prepa	lyzed: ration: <u>N</u> Re <0.0 <0.0 <0.0 <0.0 <0.0	2010-08-18 2010-08-18 IDL sult 0150 0950 0106 0930 Dilution	Unit mg/H mg/H mg/H Spike Amount	Analyz Prepar Ss Kg Kg Kg Kg Percent Recovery	ed By: ed By: Recc Lin	AG AG 0.02 0.02 0.02 0.02 0.02 0.02
Method Blank (1) QC Batch: 72769 Prep Batch: 62330 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotoluene (TFT)	QC Batch: 72769 Flag Flag	Date Anal QC Prepa Result 1.78	lyzed: ration:	2010-08-18 2010-08-18 1DL sult 1150 1950 1016 1930 Dilution 5 1	Unit mg/H mg/H mg/H Spike Amount 2.00	Analyz Prepar Ss Kg Kg Kg Kg Percent Recovery 89	ed By: ed By: Recc Lin 66.6	AG AG RL 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0

Sec. Sec. Sec.

22.22

などの

State and

「なたない」

S. Tables

が高齢

812 A.W.

1. A. J. M. M.

ないため

QC Batch:	72770	Date Analyzed:	2010-08-18	Analyzed By:	\mathbf{AG}
Prep Batch:	62330	QC Preparation:	2010-08-18	Prepared By:	\mathbf{AG}

Report Date: August 23, 2 114-6400627	010	W COG	ork Order: 1 /Tex-Mark 1	.0081616 1 Fed. #3	5	Page Num Eddy	ber: 25 of 43 County, NM
D. (MDL		T * .		T. *
Parameter	Flag		Result			ts	
GRO			<1.65		ng/	Kg	2
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.99	mg/Kg	1	2.00	100	67.6 - 150
4-Bromofluorobenzene (4-B	FB)	1.60	mg/Kg	1	2.00	80	52.4 - 130
Method Blank (1)	2C Batch: 72774						
QC Batch: 72774		Date An	alvzed: 20	10-08-19		Analy	zed By: kg
Prep Batch: 62397		QC Prep	aration: 20	10-08-19		Prepa	red By: kg
			MDL				
Parameter	Flag		Result		Uni	ts	RL
DRO			<14.5		mg/l	Kg	50
		TT T .			Spike	Percent	Recovery
Surrogate Flag	Result	Units		ion	Amount	Recovery	Limits
Method Blank (1) G)C Batch: 72806	Data Ana	lyzad 201	0-08-20		A nalvz	ed But AG
Prep Batch: 62422		QC Prepa	aration: 201	10-08-20		Prepare	ed By: AG
Parameter	Flag		MDI Resul	_ t	Un	its	\mathbf{RL}
Benzene			< 0.015	0	mg/	Kg	0.02
Toluene			< 0.0095	0	mg/	Kg	0.02
Ethylbenzene			< 0.010	6	mg/	Kg	0.02
Тутепе			< 0.0093	0	mg/	Kg	0.02
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.76	mg/Kg	1	2.00	88	66.6 - 122
4-Bromofluorobenzene (4-B	<u>FB)</u>	1.51	mg/Kg	<u>l</u>	2.00	76	55.4 - 132
Method Blank (1)	2C Batch: 72807						
QC Batch: 72807		Date Ana	lyzed: 201	0-08-20		Analyz	ed By: AG
Prep Batch: 62422		QC Prepa	ration: 201	0-08-20		Prepar	ed By: AG

-

学校であ

California de la califo

No. Theory

学会を

Ser. Ser.

2445

The second

14 P. C.

S. S. S. S. S. S. Constants

State in a

Report Date 114-6400627	: August 23	, 2010	Wo COG/	ork Order: 1 'Tex-Mark 1	10081616 1 Fed. #3	5	Page Nur Edd	Page Number: 26 of Eddy County, N			
		ادر		MDL			.,				
Parameter		Flag		Result		Un	its		<u></u>		
GRU		**************************************		<1.00		mg,	/Kg		2		
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Reco Lir	overy nits		
Trifluorotolu	ene (TFT)		2.03	mg/Kg	1	2.00	102	67.6	- 150		
4-Bromofluor	robenzene (4	-BFB)	1.63	mg/Kg	1	2.00	82	52.4	- 130		
Method Bla	ank (1)	QC Batch: 72814									
QC Batch: Prep Batch:	$72814 \\ 62429$		Date Ana QC Prepa	lyzed: 20 aration: 20	10-08-20 10-08-20		Analy Prepa	zed By: red By:	kg kg		
D				MDL							
Parameter		Flag		Result		Un	lts		$\frac{RL}{50}$		
DRU				<14.5		mg/	Kg		- 50		
						Spike	Percent	Reco	overy		
Surrogate	Flag	Result	Units	Dilut	ion	Amount	Recovery	Lir	nits		
n-Tricosane		95.2	mg/Kg	1		100	95	70 -	130		
Method Bla	ank (1)	QC Batch: 72851									
QC Batch:	72851		Date Ana	lvzed: 20	10-08-23		Analy	zed Bv·	kø		
Prep Batch:	62460		QC Prepa	ration: 20	10-08-23		Prepa	red By:	kg		
							-		0		
		ות		MDL			• .				
Parameter		Flag		Result		Un	its Va		RL FO		
	,, . ,			<14.0			<u>ng</u>	;			
7	1.11		TI */	10 H		Spike	Percent	Reco	overy		
Surrogate	Flag	Kesult	Units	Diluti	on	Amount	Recovery	Lin	nits		
II- Iricosane		88.1	mg/Kg	<u>l</u>		100	88	70 -	130		
Laboratory	Control S	pike (LCS-1)									
QC Batch:	72663		Date Anal	vzed: 201	0-08-16		Analyz	ed Bv∙	AR		
Prep Batch:	62281		QC Prepar	ration: 201	0-08-16		Prepare	ed By:	AR		
	continued			<u>. </u>							

States and

心戦

記述は

「「「「

調整調整

29.102 E

A. 1. 1.

1.2.2

1

12 P. P.

CAR A

ant gan

Report Date: August 23, 201 114-6400627		COG	ork Ord /Tex-Ma	er: 10081616 ark 11 Fed. =	5 #35 		Page	Number: Eddy Co	: 27 of 4 unty, NI
control spikes continued									_
	LCS		_	-	Spike	Ma	trix		Rec.
Param	Resul	t l	Units	Dil.	Amount	Re	sult	Rec.	Limit
	LCS				Spike	Ma	trix		Rec.
Param	Resul	t I	Units	Dil.	Amount	Re	sult	Rec.	Limit
Chloride	97.0	m	ıg/Kg	1	100	<2	2.18	97	85 - 11
Percent recovery is based on	the spike result. R	PD is ba	ased on t	the spike and	d spike duj	plicate r	esult.		
	LCSD			Spike	Matrix		Rec.		RPI
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Lim
Chloride	104	mg/Kg	1	100	<2.18	104	85 - 115	7	20
Laboratory Control Spike	e (LCS-1)		ibod on v	ine opine and	a opnio aa _f		cours.		
	. (==== =))	1	2010 00 16				alasad T) AT
$\frac{2004}{2004}$	1	Date Ana	uyzea:	2010-08-10			A: D	anyzed E	ру: Ал 1997 Ал
riep Datch: 02202		20 Fiepa		2010-08-10	,			epared D	у. А н
	LCS				Spike	Ma	ıtrix		Rec.
Param	Resul	t (Units	Dil.	Amount	Re	sult	Rec.	Limit
Chloride	96.0	m	ıg/Kg	1	100	<2	2.18	96	85 - 11
Percent recovery is based on	the spike result. R	PD is ba	ased on t	the spike and	d spike dup	olicate r	esult.		
	LCSD			Spike	Matrix		Rec.		RPI
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Lim
Chloride	101	mg/Kg	1	100	<2.18	101	85 - 115	5	20
Laboratory Control Spike QC Batch: 72665 Prep Batch: 62283	e (LCS-1)	Date Ana QC Prepa	lyzed: aration:	2010-08-16 2010-08-16	a spike dut	Jillate 1	Aı Pı	nalyzed E repared B	By: AH Sy: AH
	LCS		· T •.	,	Spike	Ma	trix	`	Rec.
Chlorida	Kesul	<u>t (</u>	Units	<u>Dil.</u>	Amount	Ke		<u></u>	Limit
Percent recovery is based on	the spike result R	PD is h	us/mg	he spike and	d snike dur	licate r	esult	30	
r creent recovery is based off	one spike result. It	u 17 15 Uč	aseu on t	ne spike all	a opine uti	meant I	court.		
Deware	LCSD	TT!	וית	Spike	Matrix	Dr	Rec.	מתת	RP:
Chlorido	Kesult	Units	DII.	Amount	Kesult	<u>109</u>	Limit	<u></u>	Lim
	1117							/1	21

State of the

114-6400627	ugust 23, 2010	. (Work Ord COG/Tex-Ma	er: 100816 ark 11 Fed.	16 . #35		Page N Ec	umber: Idy Cou	28 of 4 inty, NM
Laboratory Co	ontrol Spike (LCS-1)								
QC Batch: 72 Prep Batch: 62	666 284	Date QC I	Analyzed: Preparation:	2010-08-1 2010-08-1	16 16		Anal Prep	yzed B ared B	y: AR y: AR
Param		LCS Result	Units	Dil.	Spike Amount	Matriz Result	x t Re	c	Rec. Limit
Chloride		98.1	mg/Kg	1	100	<2.18	98	3	85 - 118
Percent recovery	is based on the spike re	esult. RPD	is based on t	the spike a	nd spike duj	plicate resu	lt.		
Param	LC Res	SD sult Un	its Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	10	03 mg/	Kg 1	100	<2.18	103 8	5 - 115	. 5	20
Percent recovery	is based on the spike re	sult. RPD	is based on	the spike a	nd spike duj	plicate resu	lt.		
Laboratory Cc QC Batch: 72 Prep Batch: 62	ontrol Spike (LCS-1) 667 286	Date QC I	Analyzed: Preparation:	2010-08-1 2010-08-1	16 16		Anal Prep	yzed B ared B	y: AR y: AR
Param		LCS Besult	Units	Dil	Spike Amount	Matriz	x Be	•	Rec. Limit
Chloride		97.4	mg/Kg	1	100	<2.18	97		85 - 11
Percent recovery	is based on the spike re	sult. RPD	is based on	the spike a	nd spike duj	plicate resu	lt.		
	LC	SD		Snike	Matrix		Bec		RPD
Param	Rea	sult Un	its Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	1()2 mg/	Kg 1	100	<2.18	102 8	5 - 115	5	20
Laboratory Co QC Batch: 72 Prep Batch: 62	ontrol Spike (LCS-1) 769 330	Date QC F	Analyzed: Preparation:	2010-08-1 2010-08-1	18 18	Jincate Tesu	Anal Prep	yzed By ared By	y: AG /: AG
Param		LCS Result	Units	Dil	Spike Amount	Matrix Besult	Bec		Rec. Limit
Benzene	W	1.96	mg/Kg	1	2.00	<0.0150	98	81	.9 - 108
T 1		1.89	mg/Kg	1	2.00	< 0.00950	94	81	.9 - 107
Foluene		1.76	mg/Kg	1	2.00	<0.0106	88	78	5.4 - 107
foluene Ethylbenzene Xylene		5 24	malka	1	6,181	ZD DD030	80		

Salary.

20. N. N. N.

「「「ない」」の

Report Date: August 23, 2010 114-6400627		CO	Work (G/Tex-	Order: 1008 -Mark 11 Fe	1616 ed. #3	5			Page Nu Edd	mber: ly Cou	29 of 43 nty, NM
Param	LCSD Result	Units	Dil.	Spike Amount	Ma Ro	atrix esult	Rec.	R Li	lec. imit	RPD	RPD Limit
Benzene	1.97	mg/Kg	1	2.00	<0	.0150	98	81.9	- 108	0	20
Toluene	1.91	mg/Kg	1	2.00	<0.	00950	96	81.9	- 107	1	20
Ethylbenzene	1.77	mg/Kg	1	2.00	<0	.0106	88	78.4	- 107	1	20
Xylene	5.38	mg/Kg	1	6.00	<0.	00930	90	79.1	- 107	1	20
Percent recovery is based on the	spike result.	RPD is	based of	on the spike	and s	pike du	plicate	e result.			
	LCS	LC	CSD			Spi	ke	LCS	LCSD)	Rec.
Surrogate	Resu	lt Re	sult	Units	Dil.	Amo	unt	Rec.	Rec.		Limit
Trifluorotoluene (TFT)	1.76	5 1	.73	mg/Kg	1	2.0	0	88	86	70	.2 - 114
4-Bromofluorobenzene (4-BFB)	1.65	<u> </u>	.64	mg/Kg	1	2.0	0	82	82	69	.8 - 121
QC Batch: 72770 Prep Batch: 62330		Date A: QC Pre	nalyzed paratic	l: 2010-08 on: 2010-08	3-18 3-18				Analy Prepa	zed By red By	v: AG v: AG
D		S	TT . 14 -	D:1	Sr	oike	Ma	ıtrix	D		Rec.
Param	Kesi		Units		Am	ount	Ke	sult		60	Limit
	<u></u>		ng/ng	L			<u> </u>	1.00	10	09.	9 - 90.4
Percent recovery is based on the	spike result.	RPD 15	based (on the spike	and s	pike du	plicate	e result.			
	LCSD			Spike	Ma	atrix		Re	ec.		RPD
Param	Result	Units	Dil.	Amount	Re	sult	Rec.	Lir	nit	RPD	Limit
GRO	14.4	mg/Kg	1	20.0	<	1.65	72	69.9 -	- 95.4	5	20
Percent recovery is based on the	spike result.	RPD is	based o	on the spike	and s	pike du	plicate	e result.			
	LCS	S LC	CSD			Spi	ke	LCS	LCSD		Rec.
Surrogate	Resu	lt Re	sult	Units	Dil.	Amo	unt	Rec.	Rec.		Limit
Trifluorotoluene (TFT)	2.00) 1.	.64	mg/Kg	1	2.0	0	100	82	61	.9 - 142
4-Bromofluorobenzene (4-BFB)	1.78	3 1.	.59	mg/Kg	1	2.0	0	89	80	68	.2 - 132
Laboratory Control Spike (Le QC Batch: 72774 Prep Batch: 62397	CS-1)	Date A QC Pre	nalyzec eparatio	d: 2010-0 on: 2010-0	8-19 8-19				Anal Prep	yzed B ared B	y: kg y: kg
~	LCS	5			Spi	ike	Mat	rix	-	I	Rec.
	Regi	16	Unite	1);]	Ame	unt	Ree	1111	Roc	T	imit
Param	I LCSU	.16	177					<u>un</u>	1100.	L	102

Contraction of the second

57220

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

.

Report Date: August 114-6400627	t 23, 2010			Page Number: 30 of Eddy County, N								
Param		LCSD Result	Units mg/Ke	Dil.	Spike Amount 250	Mat Res	trix sult 4.5	Rec.	Re Lin 57.4 -	c. nit 133.4	RPD 5	RPD Limit 20
Percent recovery is by	ased on the s	nike result	RPD is	hased	on the spike	and su	nike di	unlicate	result			
refectivite.covery is be	abed on one b	pike result.	101 10 10	Dasca	on one spike	and b	pine u	upiican	result.			
-	LCS	LCSD	_			Sp	pike	L	\mathbf{CS}	LCSD		Rec.
Surrogate	Result	Result	1	Units	Dil.	Am	ount	R	ec.	Rec.		Limit
n-Tricosane	116	103	m	ng/Kg	1	1	.00	1	16	103		70 - 130
Laboratory Contro	ol Spike (LC	CS-1)										
QC Batch: 72806 Prep Batch: 62422			Date A QC Pr	analyzeo eparatio	l: 2010-0 on: 2010-0	8-20 8-20				Analy Prepa	zed B ared By	y: AG y: AG
		LC	S			Spi	ke	Ma	trix			Rec.
Param		Resu	ılt	Units	Dil.	Amo	unt	Re	sult	Rec.		Limit
Benzene		1.9	8 1	ng/Kg	1	2.0	0	< 0.	0150	99	8	1.9 - 108
Toluene		1.9	1 r	ng/Kg	1	2.0	0	<0.0	0950	96	81	1.9 - 107
Ethylbenzene		1.78	8 r	mg/Kg	1	2.0	0	<0.	0106	89	78	8.4 - 107
Aylene		5.4	1 0	ng/Kg	1	6.0	10	<0.0	10930	90		9.1 - 107
Percent recovery is ba	ased on the s	pike result.	RPD is	based	on the spike	e and sp	pike dı	uplicate	e result.			
		LCSD			Spike	Ma	atrix		R	ec.		RPD
Param		Result	Units	Dil.	Amount	Re	sult	Rec.	Li	mit	RPD	Limit
Benzene		2.00	mg/Kg	; 1	2.00	<0.	0150	100	81.9	- 108	1	20
Toluene		1.93	mg/Kg	: 1	2.00	<0.0	00950	96	81.9	- 107	1	20
Ethylbenzene		1.80	mg/Kg	: 1	2.00	<0.	0106	90	78.4	- 107	1	20
Xylene		5.46	mg/Kg	; 1	6.00	<0.0	00930	91	79.1	- 107	1	20
Percent recovery is ba	ased on the s	pike result.	RPD is	based	on the spike	and sp	pike dı	uplicate	e result.			
		LC	S L	CSD			Sp	ike	LCS	LCSI)	Rec.
Surrogate		Resu	ilt R	esult	Units	Dil.	Am	ount	Rec.	Rec.		Limit
Trifluorotoluene (TF.	Γ)	1.87	7 1	1.85	mg/Kg	1	2.	00	94	92	70).2 - 114
Laboratory Contro	l Spike (LC		J 1	1.19	ing/ Kg		2.			90	0:	9.0 - 121
OC Patch: 79807	n opine (iie	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Data A	nalurac	1. 2010.00	0 <u>0</u> 0				Anal	and D	
Prep Batch: 62422			QC Pro	eparatio	on: $2010-08$	8-20				Prepa	ared By	y: AG
_		LC	S			\mathbf{Sp}	oike	Ma	trix	_		Rec.
Param		Rest	ult	Units	Dil.	Am	ount	Re	sult	Rec.		Limit
GRO		15.	1	mg/Kg	1	2(0.0	<1	1.65	76	69	.9 - 95.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

142.24

State State

Production of the

722.22

Report Date: Augus 114-6400627	t 23, 2010		CO	Work (G/Tex-	Order: 10081 -Mark 11 Fe	l616 d. #35			F	Page Nu Ede	imber: ly Cou	31 of 43 inty, NM
		LCSD			Spike	Mat	rix		Re	с.		RPD
Param		Result	Units	Dil.	Amount	Res	ult Re	ec	Lim	nit	RPD	Limit
GRO		15.0	mg/Kg	1	20.0	<1.	65 7	5 (69.9 -	95.4	1	20
Percent recovery is b	ased on the s	pike result.	RPD is	based o	on the spike	and spi	ike duplio	cate re	esult.			
		LCS	S LC	$^{\rm CSD}$			Spike	I	CS	LCSI)	Rec.
Surrogate		Resu	lt Re	sult	Units	Dil.	Amount	t F	lec.	Rec.		Limit
Trifluorotoluene (TF	<u>T)</u>	2.08	3 1.	.95	mg/Kg	1	2.00]	04	98	6	1.9 - 142
4-Bromofluorobenzer	ne (4-BFB)	1.83	1.	.66	mg/Kg	1	2.00		90	83	68	8.2 - 132
Laboratory Contro QC Batch: 72814 Prep Batch: 62429	ol Spike (LC	2S-1)	Date A QC Pre	nalyze eparati	d: 2010-00 on: 2010-00	8-20 8-20				Ana Prep	lyzed I bared I	By: kg By: kg
		LC	3			Spik	æ l	Matrix	ζ			Rec.
Param		Resu	lt	Units	Dil.	Amou	int	Result		Rec.]	Limit
DRO		247	′ n	ng/Kg	1	250)	$<\!14.5$		99	57.4	4 - 133.4
Percent recovery is b	ased on the s	pike result.	RPD is	based o	on the spike	and spi	ike duplie	cate re	sult.			
		LCSD			Spike	Matı	ix		Rec			RPD
Param		Result	Units	Dil.	Amount	Rest	ilt Red	<u>.</u>	Lim	it	RPD	Limit
DRO		238	mg/Kg	1	250	<14	.5 95	5	7.4 - 1	.33.4	4	20
Percent recovery is b	ased on the s	pike result.	RPD is	based of	on the spike	and spi	ike duplio	cate re	esult.			
	LCS	LCSD				Spi	ike	LCS		LCSD		Rec.
Surrogate	Result	Result	U	nits	Dil.	Amo	ount	Rec.		Rec.		Limit
n-Tricosane	118	115	mį	g/Kg	1	10	00	118		115		70 - 130
Laboratory Contro QC Batch: 72851 Prep Batch: 62460	ol Spike (LC	CS-1)	Date A QC Pre	nalyzec eparatic	1: 2010-00 on: 2010-00	8-23 8-23				Anal Prep	yzed I ared E	By: kg By: kg
Down		LCS	5	TT:4	D:I	Spik	ie l	Matrix	Ľ	Dee	1	Rec.
			11L	$\frac{1}{\sqrt{K_{\pi}}}$	<u> </u>	AIII01)	$\frac{1}{\sqrt{14}}$	1	88	57/	122 A
Percent recovery is h	ased on the s	oike result		15/115 hased /	n the spike	and eni	, ike dunlir	~ 14.0	sult	00	01.4	1.00.4
r croent recovery IS D	aseu on the S	pine result.	10 13	vaseu (m the spike	anu sp	ive rubu	ate it	auit.			
		LCSD			Spike	Mati	rix		Rec	•		RPD
_		m 1.	TT	D'1	A /	D	14 D		Т :	• •	מתנו	T · · ·
Param		Result	Units	Dil.	Amount	Kesi	ilt Red		LIM	It	RPD	Limit

14. S. S.

教教的

10. L. 10.

Sec. Ports

Statute and

CLEAR R

and the second

いい

を読む

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

114-6400627	t 23, 2010		Work Ord COG/Tex-Ma	ler: 100816 ark 11 Fed.	16 #35		Page Number: 32 of 4 Eddy County, NM				
Surrogate	LCS Result	LCSD Result	Units	Dil.	Spike Amount	LCS Rec.	LCS Rec	D 2.	Rec. Limit		
n-Tricosane	100	98.1	mg/Kg	1	100	100	98		70 - 130		
Matrix Spike (MS QC Batch: 72663 Prep Batch: 62281	-1) Spiked	Sample: 2411 Da Qu	20 ate Analyzed: C Preparation:	2010-08-1 2010-08-1	16 16		Ana Pre	alyzed B pared B	y: AR y: AR		
_		MS			Spike	Matr	rix		Rec.		
Param		Result	Units		Amount	Resu	$\frac{1}{2}$ $\frac{1}{2}$	ec.	Limit		
	1 .1	10200	mg/Kg	100	10000	<21		JU	69 - 116		
Percent recovery is b	ased on the sp	oike result. Rh	D is based on	the spike a	nd spike duj	plicate res	sult.				
		MSD		Spike	Matrix		Rec.		RPI		
Param		Result	Units Dil.	Amount	Result	Rec.	Limit	RPD	Limi		
Chloride		10500 m	ng/Kg = 100	10000	<218	103	85 - 115	3	20		
Matrix Spike (MS QC Batch: 72664	-1) Spiked	Sample: 2411 Da	30 ate Analyzed:	2010-08-1	.6		Ana	lyzed B	y: AF		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282	-1) Spiked	Sample: 2411 Da Qu MS	30 ate Analyzed: C Preparation:	2010-08-1 2010-08-1	.6 .6 Spike	Matr	Ana Prej	lyzed B pared B	y: AF y: AF Bec		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param	-1) Spiked	Sample: 2411 Da Qu MS Result	30 ate Analyzed: C Preparation: Units	2010-08-1 2010-08-1 Dil.	.6 .6 Spike Amount	Matr Resu	Ana Prej ix lt Re	lyzed B pared B ec.	y: AF y: AF Rec. Limit		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride	-1) Spiked	Sample: 2411 Da Qu MS Result 11500	30 ate Analyzed: C Preparation: Units mg/Kg	2010-08-1 2010-08-1 Dil. 100	.6 .6 Spike <u>Amount</u> 10000	Matr Resu 2100	Ana Prej ix ilt Re 0 9	alyzed B pared B ec. 4	y: AF y: AF Rec. Limit 85 - 11		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride Percent recovery is b	-1) Spiked	Sample: 2411 Da Qu MS Result 11500 pike result. RF	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on	2010-08-1 2010-08-1 Dil. 100 the spike as	6 6 Amount 10000 nd spike duj	Matr Resu 2100 Dlicate res	Ana Prej lix lit Re 0 9 sult.	alyzed B pared B ec. 4	y: AF y: AF Rec. Limit 85 - 11		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride Percent recovery is b Param	-1) Spiked	Sample: 2411 Da Qu MS Result 11500 bike result. RF MSD Result	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on Units Dil.	2010-08-1 2010-08-1 Dil. 100 the spike a Spike Amount	6 5 <u>Spike</u> <u>Amount</u> 10000 nd spike du Matrix Result	Matr Resu 2100 plicate res Rec.	Ana Prej ix i <u>lt Re</u> 0 9 sult. Rec. Limit	alyzed B pared B ec. 4 RPD	y: AF y: AF Rec. Limit 85 - 11 RPI Lim		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param <u>Chloride</u> Percent recovery is b <u>Param</u> <u>Chloride</u>	-1) Spiked	Sample: 2411 Da Qa MS Result 11500 bike result. RF MSD Result 11800 n	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on Units Dil. ng/Kg 100	2010-08-1 2010-08-1 Dil. 100 the spike a Spike Amount 10000	.6 .6 Amount 10000 nd spike dup Matrix Result 2100	Matr Resu 2100 plicate res Rec. 97	Ana Prej ix ilt Re 0 9 sult. Rec. Limit 85 - 115	alyzed B pared B ec. 4 RPD 3	y: AF y: AF Rec. Limit 85 - 11 RPI Lim 20		
Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Matrix Spike (MS	-1) Spiked ased on the sp ased on the sp -1) Spiked	Sample: 2411 Da Qu MS Result 11500 bike result. RF MSD Result 11800 n bike result. RF Sample: 2411	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on Units Dil. ng/Kg 100 PD is based on D is based on 40	2010-08-1 2010-08-1 Dil. 100 the spike as Spike Amount 10000 the spike as	.6 .6 Spike Amount 10000 nd spike dup Matrix Result 2100 nd spike dup	Matr Resu 2100 blicate res <u>Rec.</u> 97 blicate res	Ana Prej ix ilt Re 0 9 sult. Rec. Limit 85 - 115 sult.	alyzed B pared B ec. 4 RPD 3	y: AF y: AF Rec. Limit 85 - 11 RPI Lim 20		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Matrix Spike (MS QC Batch: 72665 Prep Batch: 62283	-1) Spiked ased on the sp ased on the sp -1) Spiked	Sample: 2411 Da Qu MS Result 11500 oike result. RF MSD Result 11800 m oike result. RF Sample: 2411 Da Qu	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on Units Dil. ng/Kg 100 PD is based on 40 ate Analyzed: C Preparation:	2010-08-1 2010-08-1 Dil. 100 the spike at Spike Amount 10000 the spike at 2010-08-1 2010-08-1	.6 .6 <u>Spike</u> <u>Amount</u> 10000 nd spike dup <u>Matrix</u> <u>Result</u> 2100 nd spike dup .6 .6	Matr Resu 2100 plicate res <u>Rec.</u> 97 plicate res	Ana Prej ix lt Re o 9 sult. Rec. Limit 85 - 115 sult. Ana Prej	alyzed B pared B ec. 4 <u>RPD</u> 3 alyzed B pared B	y: AF y: AF Rec. Limit 85 - 11 RPI Lim 20 y: AF y: AF		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Matrix Spike (MS QC Batch: 72665 Prep Batch: 62283 Baram	-1) Spiked ased on the sp ased on the sp -1) Spiked	Sample: 2411 Da Qu MS Result 11500 oike result. RF MSD Result 11800 m oike result. RF Sample: 2411 Da Qu MS	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on 1 Units Dil. ng/Kg 100 PD is based on 1 40 ate Analyzed: C Preparation:	2010-08-1 2010-08-1 Dil. 100 the spike at Spike Amount 10000 the spike at 2010-08-1 2010-08-1	.6 .6 Spike Amount 10000 nd spike dup Matrix Result 2100 nd spike dup .6 .6 .6	Matr Resu 2100 plicate res <u>Rec.</u> 97 plicate res	Ana Prej ix it Re 0 9 sult. Rec. Limit 85 - 115 sult. Ana Prej ix	alyzed B pared B ec. 4 RPD 3 alyzed B pared B	y: AR y: AR Rec. Limit 85 - 11 RPI Limi 20 y: AR y: AR y: AR		
Percent recovery is b Matrix Spike (MS QC Batch: 72664 Prep Batch: 62282 Param Chloride Percent recovery is b Matrix Spike (MS QC Batch: 72665 Prep Batch: 62283 Param Chloride	-1) Spiked ased on the sp ased on the sp -1) Spiked	Sample: 2411 Da Qu MS Result 11500 bike result. RF MSD Result 11800 n bike result. RF Sample: 2411 Da Qu MS Result 11700	30 ate Analyzed: C Preparation: Units mg/Kg PD is based on Units Dil. ng/Kg 100 PD is based on 40 ate Analyzed: C Preparation: Units mg/Kg	2010-08-1 2010-08-1 Dil. 100 the spike as Spike Amount 10000 the spike as 2010-08-1 2010-08-1 2010-08-1 2010-08-1	.6 .6 Spike <u>Amount</u> 10000 nd spike dup Matrix Result 2100 nd spike dup .6 .6 .6 .6 .5 Spike <u>Amount</u> 10000	Matr Resu 2100 olicate res <u>Rec.</u> 97 olicate res Matr Resu 1620	Ana Prej ix it Rec 0 9 sult. Rec. Limit 85 - 115 sult. Ana Prej ix lt Rec	alyzed B pared B ec. 4 RPD 3 alyzed B pared B pared B	y: Al y: Al Rec. Limit 85 - 1: RP Lim 20 y: Al y: Al Rec. Limit 85 - 1:		

ないた

A. S. S.

にに

•

14 Mars

Report Date: August 114-6400627	23, 2010		/ork Ord /Tex-M	er: 1008161 ark 11 Fed.	6 #35		Page	Number: Eddy Cou	33 of 43 nty, NM
Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	12400	mg/Kg	100	10000	1620	108	85 - 115	6	20
Percent recovery is ba	sed on the spike result	. RPD is ba	ased on	the spike an	d spike du	plicate r	esult.		
Matrix Spike (MS-	1) Spiked Sample: 2	241150							
QC Batch: 72666 Prep Batch: 62284		Date Ana QC Prepa	alyzed: aration:	2010-08-16 2010-08-16	5		Aı Pr	alyzed By epared By	y: AR y: AR
n	Ν	1S		5.1	Spike	Ma	trix		Rec.
Param		$\frac{\text{sult}}{700}$ m	Jnits		Amount	Re 1	sult I	tec.	$\frac{\text{Limit}}{95 - 115}$
	10	<u>700 m</u>	ig/Kg	100	10000	14		94	85 - 115
Percent recovery is ba	sed on the spike result	. RPD is b	ased on	the spike an	d spike du	plicate r	esult.		
Param	$egin{array}{c} \mathrm{MSD} \ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	11400	mg/Kg	100	10000	1280	101	85 - 115	6	20
QC Batch: 72667 Prep Batch: 62286	1) Spiked Sample: 2	Date Ana QC Prepa	alyzed: aration:	2010-08-16 2010-08-16	5		Ar Pr	alyzed By epared By	y: AR 7: AR
	ð	ſĊ			Spiko	Ма	triv		Roc
Param	Re	sult I	Inits	Dil.	Amount	Re	sult F	Rec.	Limit
Chloride	10	100 m	g/Kg	100	10000	<	218	99	85 - 115
Percent recovery is ba	sed on the spike result	. RPD is ba	ased on 1	the spike an	d spike du	plicate r	esult.		
Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	10300	mg/Kg	100	10000	<218	101	85 - 115	2	20
Percent recovery is ba Matrix Spike (MS-	sed on the spike result 1) Spiked Sample: 2	. RPD is ba 241219	ased on (the spike and	d spike duj	olicate r	esult.		
QC Batch: 72769 Prep Batch: 62330	,	Date Ana QC Prepa	lyzed: aration:	2010-08-18 2010-08-18			Ar Pr	alyzed By epared By	y: AG y: AG
								• •	

A CONTRACT

な調整

al and a second

構成が

MS Resu MS Resu 2.15	lt U lt U	nits	Dil.	Spik Amou Spik	e nt	Mat Res Mat	rix ult	Rec.		Rec. Limit
MS Resu MS Resu 2.15	lt U lt U	nits nits	Dil.	Spik Amou Spik	e nt e	Mat Res Mat	rix ult rix	Rec.		Rec. Limit
Resu MS Resu 2.15	lt U lt U	nits nits	Dil.	Amou Spike	nt	Res Mat	ult	Rec.		Limit
MS Resu 2.15	lt_U	nits	D:I	Spik	9	Mat	rix			
Resu 2.15	lt U	nits	D:1	. •			* ***			Rec.
2.15		*** 000	DII.	Amou	nt	Res	ult	Rec.		Limit
	- mg	g/Kg	1	2.00		< 0.0	150	108	80	.5 - 11
2.13	mg	g/Kg	1	2.00		< 0.00	950	106	82	.4 - 11
2.15	mg	g/Kg	1	2.00		< 0.0	106	108	83	9 - 11
6.47	m	g/Kg_	1	6.00		< 0.00)930	108	84	4 - 114
spike result.	RPD is b	ased o	on the spike	and spi	ke dup	licate	result.			
MSD			Snike	Mai	riv		R	or		RĐI
Result	Units	Dil.	Amount	Res	alt	Rec.	Li	mit	RPD	Lim
1.52	mg/Kg	1	2.00	<0.0)150	76	80.5	- 112	34	20
1.50	mg/Kg	1	2.00	<0.0	0950	75	82.4	- 113	35	20
1.51	mg/Kg	1	2.00	<0.0)106	76	83.9	- 114	35	20
4.57	mg/Kg	1	6.00	< 0.0	0930	76	84 -	114	34	20
spike result.	RPD is b	ased o	on the spike	and spi	ke dup	licate	result.			
MC	М	m			C:	-	ме	MCD		Dee
Resu	lt Res	ult	Units	กม	Amo	unt	Roc		;	hec. Limit
1 74	10 100	18	mg/Kg	1	2	<u></u>	87	<u> </u>	41	$\frac{3}{3} - 11$
1.67	· 1.	14	mg/Kg	1	2		84	57	35	5 - 12
	6.47 6.47 pike result. MSD Result 1.52 1.50 1.51 4.57 pike result. MS Resu 1.74 1.67	6.47 mg 6.47 mg spike result. RPD is b MSD Result Units 1.52 mg/Kg 1.50 mg/Kg 1.51 mg/Kg 4.57 mg/Kg spike result. RPD is b MS MS Result Res 1.74 1.1	2.10 mg/Rg 6.47 mg/Kg spike result. RPD is based of MSD mg/Kg 1.52 mg/Kg 1.50 mg/Kg 1.51 mg/Kg 4.57 mg/Kg spike result. RPD is based of MS MSD Result Result 1.74 1.18 1.67 1.14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.47 mg/Kg 1 2.00 spike result. RPD is based on the spike and spike dup MSD Spike Matrix Result Units Dil. Amount Result 1.52 mg/Kg 1 2.00 <0.0150	6.47 mg/Kg 1 2.00 <0.0 6.47 mg/Kg 1 6.00 <0.00 spike result. RPD is based on the spike and spike duplicate MSD Spike Matrix Result Units Dil. Amount Result Rec. 1.52 mg/Kg 1 2.00 <0.0150 76 1.50 mg/Kg 1 2.00 <0.00950 75 1.51 mg/Kg 1 2.00 <0.0106 76 4.57 mg/Kg 1 6.00 <0.00930 76 spike result. RPD is based on the spike and spike duplicate MS MSD Spike Result Result Units Dil. Amount 1.74 1.18 mg/Kg 1 2 1.67 1.14 mg/Kg 1 2	6.47 mg/Kg 1 2.00 <0.0100 spike result. RPD is based on the spike and spike duplicate result. MSD Spike Matrix Result MSD Spike Matrix Romanne 1.52 mg/Kg 1 2.00 <0.0150 76 80.5 1.50 mg/Kg 1 2.00 <0.0150 76 80.5 1.50 mg/Kg 1 2.00 <0.0150 76 80.5 1.50 mg/Kg 1 2.00 <0.00950 75 82.4 1.51 mg/Kg 1 2.00 <0.0106 76 83.9 4.57 mg/Kg 1 6.00 <0.00930 76 84 -600 spike result. RPD is based on the spike and spike duplicate result. MS MS MS MS MSD Spike MS Result Units Dil. Amount Rec. MS MSD Spike MS Result Result Spike MS <	1.10 1.03 1.00 1.00 1.00 1.00 6.47 mg/Kg 1 6.00 <0.00930 108 spike result. RPD is based on the spike and spike duplicate result. MSD Spike Matrix Rec. MSD Spike Matrix Rec. Limit 1.52 mg/Kg 1 2.00 <0.0150 76 $80.5 - 112$ 1.50 mg/Kg 1 2.00 <0.00950 75 $82.4 - 113$ 1.51 mg/Kg 1 2.00 <0.0106 76 $83.9 - 114$ 4.57 mg/Kg 1 6.00 <0.00930 76 $84 - 114$ spike result. RPD is based on the spike and spike duplicate result. MS MSD Spike MS MSD Result Result Units Dil. Amount Rec. 1.74 1.18 mg/Kg 1 2 87 59 1.67 1.14 mg/Kg 1 2 84 57	6.47 mg/Kg 1 2.00 <0.0100 100 300 spike result. RPD is based on the spike and spike duplicate result. MSD Spike Matrix Rec. Result Units Dil. Amount Result Rec. Limit RPD Spike Matrix Rec. Limit RPD Spike Matrix Rec. Limit Dil. Amount Result Rec. Limit RPD 1.52 mg/Kg 1 2.00 <0.0150 76 $80.5 - 112$ 34 1.50 mg/Kg 1 2.00 <0.00950 75 $82.4 - 113$ 35 1.51 mg/Kg 1 2.00 <0.0106 76 $83.9 - 114$ 35 4.57 mg/Kg 1 6.00 <0.00930 76 $84 - 114$ 34 Spike MSD Spike MS MSD Result Result Units Dil. Amount Rec. Her. 1.67 1.14

ALC: NO

Sec. 1

Same Same

なため

1. S. S.

State State

調整地

Percent recovery is based on the spike result. KPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	15.7	mg/Kg	1	20.0	<1.65	78	61.8 - 114	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

¹¹Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ¹²Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ¹³Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ¹⁴Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

114-6400627	3, 2010		C	Work C OG/Tex-	rder: 10081 Mark 11 Fe	.616 d. #35			Page Nı Ed	ımber: dy Cou	35 of 43 nty, NM
Guuno goto		M	S	MSD	Iluita		Spike	MS	MS	SD	Rec.
Surrogate				Result	Units	$\frac{DII.}{1}$		- Rec	. <u>Re</u>	<u>.</u>	LIIIII
4-Bromofluorobenzene (4	I-BFB)	1.1	.6	$1.23 \\ 1.27$	mg/Kg mg/Kg	1	$\frac{2}{2}$	58	6- 6-	2 4	50 - 162 50 - 162
Matrix Spike (MS-1)	Spiked	Sample: 2	41291					·			
QC Batch: 72774 Prep Batch: 62397			Date QC P	Analyzec reparatic	l: 2010-08 on: 2010-08	3-19 3-19			Ana Prej	lyzed E pared B	By: kg By: kg
		MS	5	TT	ויס	Spike	Matr	ix	D	T	Rec.
Param		Kesu		Units	<u>1</u>	Amount	Kesu		Rec.	1	$\frac{1671}{1671}$
		220	J	mg/Kg	1	200	<14.	5	88	35.2	- 107.1
Percent recovery is based	l on the sp	ike result.	RPD is	s based c	n the spike	and spike o	luplicate	result.			
		MSD			Spike	Matrix		Re	c.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Lin	nit	RPD	Limit
DRO		228	mg/Kg	g 1	250	<14.5	91	35.2 -	167.1	4	20
Democrat an account in hear	l on the sn	ike result	RPD i	e based o	n the spike	and spike d	luplicate	result			
r ercent recovery is based	a on one sp	inc repuie.	TOTION	s based o	a one opine	and spine c	apricate ,	couro.			
rercent recovery is based	MC MC	MCTOMIN.	101 12 11	s Dascu U	n one spine	Cuileo	apricate .	0	MOD		Daa
Surrogate	MS Bosult	MSD Besult		I Inite	Dil	Spike	M B	IS	MSD Boc		Rec. Limit
Surrogate	MS Result	MSD Result	;	Units	Dil.	Spike Amount	M <u>Re</u>	IS ec.	MSD Rec.		Rec. Limit 70 - 130
Surrogate n-Tricosane	MS Result 107	MSD Result 106	;1	Units ng/Kg	Dil.	Spike Amount 100	M Re 10	IS ec. 07	MSD Rec. 106		Rec. Limit 70 - 130
Surrogate n-Tricosane Matrix Spike (MS-1)	MS Result 107 Spiked	MSD Result 106 Sample: 2	41117	Units ng/Kg	Dil.	Spike Amount 100	M <u> </u>	IS ec. 07	MSD Rec. 106		Rec. Limit 70 - 130
Surrogate n-Tricosane Matrix Spike (MS-1)	MS Result 107 Spiked	MSD Result 106 Sample: 24	41117	Units ng/Kg	Dil1	Spike Amount 100	M 5 Re 10	IS ec. 07	MSD Rec. 106		Rec. Limit 70 - 130
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422	MS Result 107 Spiked	MSD Result 106 Sample: 24	41117 Date A	Units ng/Kg Analyzed	Dil. 1 2010-08	Spike Amount 100	M Re 10	S ec. 07	MSD Rec. 106	yzed By	Rec. Limit 70 - 130 7: AG
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422	MS Result 107 Spiked	MSD Result 106 Sample: 24	41117 Date A QC Pr	Units mg/Kg Analyzed	Dil. 1 2010-08 n: 2010-08	Spike Amount 100 -20 -20	M Re 10	[S ec.)7	MSD Rec. 106 Analy Prepa	yzed By ared By	Rec. Limit 70 - 130 7: AG 7: AG
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422	MS Result 107 Spiked	MSD Result 106 Sample: 2-	41117 Date A QC Pr	Units ng/Kg Analyzed	Dil. 1 2010-08 n: 2010-08	Spike Amount 100 -20 -20 Spike	Mat	5 5 6 7 7	MSD Rec. 106 Analy Prepa	yzed By ared By	Rec. Limit 70 - 130 72 - AG 72 - AG 72 - AG
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param	MS Result 107 Spiked	MSD Result 106 Sample: 2 MS Resu	41117 Date A QC Pr	Units ng/Kg Analyzed reparatio	Dil. 1 2010-08 n: 2010-08 Dil.	Spike Amount 100 -20 -20 Spike Amount	Matu Re 10	rix	MSD Rec. 106 Analy Prepa	yzed By ared By	Rec. Limit 70 - 130 7: AG 7: AG Rec. Limit
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene	MS Result 107 Spiked	MSD Result 106 Sample: 24 MS Resu 2.24	41117 Date A QC Pr	Units mg/Kg Analyzed reparatio Units mg/Kg	Dil. 1 2010-08 n: 2010-08 Dil. 1	Spike Amount 100 -20 -20 Spike Amount 2.00	Mata Mata Rest <0.0	rix llt	MSD Rec. 106 Analy Prepa Rec. 112	yzed By ared By 80	Rec. Limit 70 - 130 7: AG 7: AG Rec. Limit .5 - 112
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene	MS Result 107 Spiked	MSD Result 106 Sample: 24 MS Resu 2.24 2.20	41117 Date A QC Pr	Units mg/Kg Analyzed reparation Units mg/Kg	Dil. 2010-08 n: 2010-08 Dil. 1 1	Spike Amount 100 -20 -20 Spike Amount 2.00 2.00	Mat. Mat. Rest <0.00 <0.00	rix 11t 150 950	MSD Rec. 106 Analy Prepa Rec. 112 110	yzed By ared By 80 82	Rec. Limit 70 - 130 7: AG 7: AG 7: AG 8: AG Rec. Limit 1.5 - 112 2.4 - 113
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene	MS Result 107 Spiked	MSD Result 106 Sample: 24 Sample: 24 2.24 2.20 2.18	41117 Date A QC Pr	Units mg/Kg Analyzed ceparatio Units mg/Kg mg/Kg	Dil. 2010-08 n: 2010-08 Dil. 1 1 1 1	Spike Amount 100 -20 -20 Spike Amount 2.00 2.00 2.00	Matz 	rix 11t 150 950 106	MSD Rec. 106 Analy Prepa Rec. 112 110 109	yzed By ared By 80 82 83	Rec. Limit 70 - 130 7: AG 7: AG 7: AG 8: AG Rec. Limit 0.5 - 112 2.4 - 113 3.9 - 114
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene	MS Result 107 Spiked	MSD Result 106 Sample: 2 Sample: 2 MS Resu 2.24 2.20 2.18 6.60	41117 Date A QC Pr	Units ng/Kg Analyzed reparatio Units mg/Kg mg/Kg mg/Kg	Dil. 2010-08 n: 2010-08 Dil. 1 1 1 1 1 1	Spike Amount 100 -20 -20 Spike Amount 2.00 2.00 2.00 6.00	Matz Ress <0.00 <0.00 <0.00 <0.00	rix 11t 150 950 106 930	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110	yzed By ared By 80 82 83 83 83	Rec. Limit 70 - 130 7: AG 7: AG 7: AG Rec. Limit 1.5 - 112 2.4 - 113 3.9 - 114 4 - 114
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based	MS Result 107 Spiked	MSD Result 106 Sample: 24 Sample: 24 MS Resu 2.24 2.20 2.18 6.60 ike result.	41117 Date A QC Pr Guilt A RPD is	Units mg/Kg Analyzed reparatio Units mg/Kg mg/Kg mg/Kg mg/Kg s based o	Dil. 2010-08 n: 2010-08 Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 100 -20 -20 Spike Amount 2.00 2.00 2.00 6.00 and spike d	Mata Mata Mata Resu <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	rix 11t 150 930 result.	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110	yzed By ared By 80 82 83 83 8	Rec. Limit 70 - 130 7: AG 7: AG 7: AG 8: AG Rec. Limit 1.5 - 112 2.4 - 113 3.9 - 114 4 - 114
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based	MS Result 107 Spiked	MSD Result 106 Sample: 2 Sample: 2 MS Resu 2.24 2.20 2.18 6.60 ike result. MSD	41117 Date A QC P1 Glit A RPD is	Units ng/Kg Analyzed reparatio Units mg/Kg mg/Kg mg/Kg mg/Kg s based o	Dil. 1 2010-08 n: 2010-08 Dil. 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Spike Amount 100 -20 -20 -20 Spike Amount 2.00 2.00 2.00 6.00 and spike d Matrix	Mata Mata Resu <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	rix 150 950 106 930 result. R	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110	yzed By ared By 80 82 83 83 8	Rec. Limit 70 - 130 77 - 130 77 - AG 7: AG 7: AG 8: AG
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based Param	MS Result 107 Spiked	MSD Result 106 Sample: 24 Sample: 24 MS Result 2.24 2.26 2.18 6.60 ike result. MSD Result	41117 Date A QC Pr QC Pr dlt 4 RPD is	Units mg/Kg Analyzed reparatio Units mg/Kg mg/Kg mg/Kg s based o Dil.	Dil. 2010-08 n: 2010-08 Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 100 -20 -20 -20 Spike Amount 2.00 2.00 6.00 and spike d Matrix Result	Mata Resu <0.00 <0.00 <0.00 luplicate of Rec.	rix 15 15 10 10 10 10 10 10 10 10 10 10	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110 ec. mit	yzed By ared By 80 82 83 8 8 8 8 8 8	Rec. Limit 70 - 130 72 AG 72 AG 72 AG 73 AG 84 AG 84 - 112 85 - 112 85 - 112 85 - 112 85 - 112 85 - 114 87 AG 87 AG 88 AG 89 - 114 88 PD Limit
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based Param Benzene	MS Result 107 Spiked	MSD Result 106 Sample: 24 Sample: 24 MS Result 2.24 2.20 2.18 6.60 ike result. MSD Result 2.04	41117 Date A QC Pr QC Pr S ult A RPD is Units mg/Kg	Units mg/Kg Analyzed reparation Units mg/Kg mg/Kg mg/Kg s based o Dil. 5 1	Dil. 2010-08 2010-08 n: 2010-08 Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 100 -20 -20 -20 Spike Amount 2.00 2.00 6.00 and spike d Matrix Result <0.0150	Mati Rest <0.00 <0.00 <0.00 uplicate n Rec. 102	rix 11 150 950 106 930 result. R Lin 80.5	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110 ec. mit - 112	yzed By ared By 80 82 83 8 8 8 8 8 8 9	Rec. Limit 70 - 130 7: AG 7: AG 7: AG 8: AG Rec. Limit 2:4 - 113 3:9 - 114 4 - 114 RPD Limit 20
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based Param Benzene Toluene	MS Result 107 Spiked	MSD Result 106 Sample: 24 Sample: 24 MSS Result 2.24 2.20 2.18 6.60 ike result. MSD Result 2.04 2.00	41117 Date A QC Pr QC Pr s ult 4 RPD is mg/Kg mg/Kg	Units mg/Kg Analyzed reparation Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg s based o Dil. 5 1 5 1	Dil. 1 2010-08 n: 2010-08 Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 100 -20 -20 -20 Spike Amount 2.00 2.00 2.00 6.00 and spike d Matrix Result <0.0150 <0.00950	Mati Resu <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 0.00 0.00 0.00 0 0 0	rix 11 150 950 106 930 result. R. Lin 80.5 82.4	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110 ec. mit - 112 - 113	yzed By ared By 80 82 83 8 8 8 8 8 8 9 10	Rec. Limit 70 - 130 7: AG 7: AG 7: AG 8: AG Rec. Limit 2:4 - 113 3:9 - 114 4 - 114 RPD Limit 20 20
Surrogate n-Tricosane Matrix Spike (MS-1) QC Batch: 72806 Prep Batch: 62422 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based Param Benzene Toluene Ethylbenzene Toluene Ethylbenzene	MS Result 107 Spiked	MSD Result 106 Sample: 24 Sample: 24 Sample: 24 2.24 2.24 2.26 2.18 6.60 ike result. MSD Result 2.04 2.00 1.96	41117 Date A QC Pr QC Pr s ilt 4 3 RPD is mg/Kg mg/Kg mg/Kg	Units mg/Kg Analyzed reparation Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg s based of	Dil. 1 2010-08 1 2010-08 Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 100 -20 -20 -20 Spike Amount 2.00 2.00 2.00 6.00 and spike d Matrix Result <0.0150 <0.00950 <0.0106	Mata Res <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 0.00 0.00 0.00 0 0 0	rix 15 15 107 107 106 930 106 930 result. R. Lin 80.5 82.4 83.9	MSD Rec. 106 Analy Prepa Rec. 112 110 109 110 ec. mit - 112 - 113 - 114	yzed By ared By 80 82 83 8 8 8 8 8 9 10 11	Rec. Limit 70 - 130 7: AG 7: AG 7: AG 8: A

.

\$274.IS

2.2.2.2

114-6400627			CO(G/Tex-l	rder: 10081 Mark 11 Fee	616 d. #35			Page N Ed	umber: dy Cou	inty, NM
Surrogate		MS Resul	M: It Res	SD sult	Units	Dil. A	Spike Imount	MS Rec.	MSI Rec) 	Rec. Limit
Trifluorotoluene (TFT) 4-Bromofluorobenzene	(4-BFB)	$\frac{1.54}{1.56}$	1. 1.	13 15	mg/Kg mg/Kg	1 1	$\frac{2}{2}$	77 78	56 58	4	1.3 - 117 5.5 - 129
Matrix Spike (MS-1) Spiked	Sample: 24	0437								
QC Batch: 72807 Prep Batch: 62422	, -	•	Date An QC Prep	alyzed: paration	2010-08- 1: 2010-08-	-20 -20			Anal Prep	yzed B ared B	y: AG y: AG
Param		MS Resu	lt 1	Units	Dil.	Spike Amour	M t R	latrix lesult	Rec.		Rec. Limit
GRO		47.9	n	ng/Kg	1	20.0	3	1.242	83	6	1.8 - 114
Percent recovery is base	ed on the spi	ike result. MSD	RPD is t	based of	n the spike Spike	and spike Matri	duplicat x	e result. R	.ec.		RPD
Param		Result	Units	Dil.	Amount	Resul	t Rec.	. Li	mit	RPD	Limi
CPO	15	62.9	mg/Kg	1	20.0	31.24	2 158	61.8	- 114	27	20
Percent recovery is base	ed on the spi	ike result. MS	RPD is t M	based or	n the spike	and spike	duplicat Spike	e result. MS	MS	SD	Rec.
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene	ed on the spi (4-BFB)	ike result. MS Resu 1.51 2.09	RPD is t M lt Re 2.	oased or SD sult .58 .47	units Units mg/Kg mg/Kg	and spike Dil. 1 1	duplicat Spike Amount 2 2	e result. MS Rec 76 104	MS . Re 7 . 12	SD ec. 9 24	Rec. Limit 50 - 16: 50 - 16:
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429	ed on the spi (4-BFB)) Spiked f	ike result. MS Resu 1.51 2.09 Sample: 24	RPD is t M It Re 2. 1593 Date Ar QC Prej	SD SU 58 47 nalyzed: paration	n the spike <u>Units</u> mg/Kg mg/Kg : 2010-08 n: 2010-08	and spike Dil. 1 1 3-20 3-20	duplicat Spike Amount 2 2	e result. MS Rec 76 104	Ana Prej	SD 9 24 Nyzed F pared E	Rec. Limit 50 - 162 50 - 162 39: kg 3y: kg
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429 Param	ed on the spi (4-BFB)) Spiked S	MS Resu 1.51 2.09 Sample: 24 MS Resul	t. U	pased of SD sult 58 47 nalyzed: paration	n the spike Units mg/Kg mg/Kg : 2010-08 n: 2010-08 Dil.	Dil. 1 1 3-20 3-20 Spike Amount	duplicat Spike Amount 2 2 Ma Re	e result. MS Rec 76 104	Ana Prej	SD 9 24 Nyzed H pared H	Rec. Limit 50 - 162 50 - 162 39: kg By: kg Rec. Limit
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO	ed on the spi (4-BFB)) Spiked S	MS Resu 1.51 2.09 Sample: 24 MS Resul 237	t U	pased of SD sult .58 .47 nalyzed paration finits g/Kg	n the spike Units mg/Kg mg/Kg : 2010-08 n: 2010-08 Dil. 1	and spike Dil. 1 3-20 3-20 Spike Amount 250	duplicat Spike Amount 2 2 Ma Re <1	trix sult.	Ana Prej Rec. 95	SD 9 24 llyzed F pared E	Rec. Limit 50 - 162 50 - 162 39: kg 3y: kg Rec. Limit 2 - 167.1
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO Percent recovery is base	ed on the spi (4-BFB)) Spiked S ed on the spi	MS Result. 1.51 2.09 Sample: 24 MS Resul 237 ike result.	t U	pased or SD sult .58 .47 nalyzed: paration units g/Kg pased or	n the spike Units mg/Kg mg/Kg : 2010-08 n: 2010-08 Dil. 1 n the spike	Dil. 1 1 3-20 5-20 Spike Amount 250 and spike	duplicat Spike Amount 2 2 2 Ma Re <1 duplicat	trix sult 4.5 e result.	Ana Prej Rec. 95	SD 9 24 llyzed F pared F 1 35.2	Rec. Limit 50 - 162 50 - 162 By: kg By: kg Rec. Limit 2 - 167.
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO Percent recovery is base Param	ed on the spi (4-BFB)) Spiked S ed on the spi	MS Result. MS Resu 1.51 2.09 Sample: 24 Sample: 24 MS Result MSD Result	t Units	pased or SD sult 58 47 halyzed: paration g/Kg pased or Dil.	n the spike Units mg/Kg mg/Kg : 2010-08 n: 2010-08 Dil. 1 n the spike Amount	and spike Dil. 1 3-20 3-20 3-20 and spike Matrix Result	duplicat Spike Amount 2 2 Ma Re <1 duplicat Rec.	trix sult 4.5 e result. Re Lin	Ana Prej Rec. 95	SD 9 24 llyzed H pared H 35.2 RPD	Rec. Limit 50 - 163 50 - 163 39: kg By: kg Rec. Limit 2 - 167. RPD Limi
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO Percent recovery is base Param DRO	ed on the spi (4-BFB)) Spiked f ed on the spi	MS Result 1.51 2.09 Sample: 24 MS Result 237 ike result. MSD Result 255	t Units	Dased on SD sult 58 47 halyzed: paration g/Kg based on Dil. 1	units mg/Kg mg/Kg mg/Kg : 2010-08 n: 2010-08 Dil. 1 n the spike Spike Amount 250	and spike Dil. 1 1 3-20 3-20 3-20 3-20 and spike Matrix Result <14.5	duplicat Spike Amount 2 2 2 Ma Re <1 duplicat Rec. 102	trix sult 4.5 e result. Re Lin 35.2 -	MS . Re 7 12 Ana Prej <u>Rec.</u> 95 ec. nit 167.1	SD 9 24 llyzed H pared H 35.2 RPD 7	Rec. Limit 50 - 162 50 - 162 3y: kg By: kg By: kg Communication kg Rec. Limit 2 - 167.1 RPD Limit 20
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO Percent recovery is base Param DRO Percent recovery is base	ed on the spi (4-BFB)) Spiked S ed on the spi ed on the spi	MS Result. MS Resul 2.09 Sample: 24 MS Result 237 ike result. MSD Result 255 ike result.	RPD is t M It Re 2. 1593 Date Ar QC Prej t U RPD is t Units mg/Kg RPD is t	pased or SD sult 58 .47 nalyzed: paration finits g/Kg pased or Dil. 1 pased or	units mg/Kg mg/Kg mg/Kg : 2010-08 n: 2010-08 Dil. 1 n the spike Amount 250 n the spike	and spike Dil. 1 1 3-20 3-20 3-20 3-20 and spike Matrix Result <14.5 and spike	duplicat Spike Amount 2 2 Ma Re <1 duplicat Rec. 102 duplicat	trix sult 4.5 e result. Re Lin 35.2 - e result.	MS Rec. 95 ec. nit 167.1	SD ec. 9 24 llyzed F pared F 35.2 <u>RPD</u> 7	Rec. Limit 50 - 162 50 - 162 39: kg 39: kg Rec. Limit 2 - 167.1 RPD Limit 20
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO Percent recovery is base Param DRO Percent recovery is base	ed on the spi (4-BFB)) Spiked S ed on the spi ed on the spi MS Descrift	MS Resul 1.51 2.09 Sample: 24 MS Resul 237 ike result. MSD Result 255 ike result. MSD Result	t Units RPD is t M It Re 2. 1593 Date Ar QC Prej t U m RPD is t	pased or SD sult 58 47 halyzed paration paration g/Kg pased or Dil. 1 pased or	Units Mg/Kg Mg/Kg Mg/Kg 2010-08 n: 2010-08 Dil. 1 n the spike Amount 250 n the spike	and spike Dil. 1 1 3-20 3-20 3-20 3-20 3-20 3-20 3-20 3-20	duplicat Spike Amount 2 2 2 Ma Re <1 duplicat Rec. 102 duplicat	e result. MS Rec 76 104 4.5 e result. Re Lin 35.2 - e result. MS	MS Rec. 7 12 Ana Prej <u>Rec.</u> 95 ec. nit 167.1	SD ec. 9 24 Allyzed H pared H 35.2 RPD 7	Rec. Limit 50 - 162 50 - 162 39: kg By: kg Rec. Limit 2 - 167.1 RPD Limit 20 Rec.
Percent recovery is base Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene Matrix Spike (MS-1) QC Batch: 72814 Prep Batch: 62429 Param DRO Percent recovery is base Param DRO Percent recovery is base Surrogate a Trigogano	ed on the spi (4-BFB)) Spiked S ed on the spi ed on the spi MS Result	MS Result 1.51 2.09 Sample: 24 MS Result 237 ike result. MSD Result 255 ike result. MSD Result	t Units mg/Kg RPD is t M It Re 1. 2. 1593 Date Ar QC Prej t U mi RPD is t	pased or SD Sult 58 47 halyzed: paration ynits g/Kg based or Dil. 1 based or nits	Units Mg/Kg Mg/Kg Mg/Kg : 2010-08 n: 2010-08 Dil. 1 n the spike Amount 250 n the spike Dil.	and spike Dil. 1 1 3-20 3-20 3-20 Spike Amount 250 and spike Matrix Result <14.5 and spike Spike Amount 100	duplicat Spike Amount 2 2 2 Ma Re <1 duplicat Rec. 102 duplicat	trix sult 4.5 e result. Re Lin 35.2 - e result. MS Rec. 115	MSD Rec. 95	SD ec. 9 24 llyzed H pared H 35.2 RPD 7	Rec. Limit 50 - 16 50 - 16 By: kg By: kg Rec. Limit 20 Rec. Limit 70 - 122

10.00

		TT •4		0	<u>_</u>	1	D		r • :	٨	1 1
				ICVs True	I Fe	CVs ound	ICVs Percent	F R	Percent ecovery		Date
Standard (QC Batch:	1CV-1) 72664			Date A	Analyzed:	2010-08-1	.6		Analy	zed By	r: AR
Chloride	0	mg/K	g	100		98.0	98	8	5 - 115	201	0-08-1
Param	Flag	Units	ì	True Conc.	E E	ound Sonc.	Percent Recoverv	R	ecovery Limits	Ar	Date nalyze
				CCVs	C	CVs	CCVs	I	Percent		
Standard (QC Batch:	CCV-1) 72663			Date A	Analyzed:	2010-08-1	.6		Analy	yzed By	: Al
Chloride		ng/K	<u>g</u>	100		102	102	C	<u>9 - 119</u>	201	.0-08
Param	Flag	Units	<u>.</u>	Conc.	C	onc.	Recovery		Limits	Ar	halyze
				ICVs True	I Fi	CVs ound	ICVs Percent	l R	Percent Lecovery		Date
QC Batch:	72663			Date A	Analyzed:	2010-08-1	16		Anal	yzed By	y: A
Standard ((ICV-1)										
n-Tricosane		93.2	93.1	r	ng/Kg	1	100	93	93		70 - 1
Surrogate		MS Result	MSD Result		Units	Dil.	Spike Amount	MS Rec	MSD		Rec. Limi
Percent reco	overy is base	d on the spil	ke result.	RPD is	s based or	n the spike	and spike d	uplicate re	sult.		
DRO	····		237	mg/Ke	g 1	250	<14.5	95 33	5.2 - 167.1	1	20
Param			MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RP Lin
Percent reco	overy is base	d on the spil	ke result.	RPD is	s based or	the spike	and spike d	uplicate re	sult.		
DRO			234		mg/Kg	1	250	<14.5	94	35.2	2 - 16'
Param			MS Resu	lt	Units	Dil.	Spike Amount	Matrix Result	Rec.	I	Rec. Limit
QC Batch: Prep Batch:	72851 62460			Date A QC Pr	Analyzed: reparatior	2010-08 n: 2010-08	3-23 3-23		Ana Pre	llyzed E pared E	By: A By: A
Matrix Spi	ike (MS-1)	Spiked S	ample: 24	2100							

Suta ni t

1.5

See 2 .

 $: \mathcal{F}_{i}^{s}$

2 . T. S. S.

1999 1997 1997

1. S. 2000

A Star weter

a state

ang ng sa

A Stranger

114-640062	e: August 23, 7	2010	We COG	ork Order: 1008 /Tex-Mark 11 F	81616 Fed. #35	Page N Ed	umber: 38 of 43 Idy County, NM
Standard	(CCV-1)						
QC Batch:	72664		Date Ana	lyzed: 2010-08	3-16	Anal	yzed By: AR
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride	· · · · · · · · · · · · · · · · · · ·	mg/Kg	100	101	101	85 - 115	2010-08-16
Standard	(ICV-1)						
QC Batch:	72665		Date Ana	lyzed: 2010-08	3-16	Anal	yzed By: AR
Denen		TT	ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Chloride	Flag	mg/Kg			101 Recovery		2010-08-16
Standard	(CCV-1)						
OC Datah.	72665		Date Ana	lvzed· 2010-08	8-16	Anal	vzed By: AR
QU Datch:	12000		2000 1110	<i>y</i> 2010 00			.j.sea = j. 1110
QU Datch:	12000		CCVs	CCVs	CCVs	Percent	<u> </u>
QC Datch:	12000		CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param Chlorida	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Param Chloride	Flag	Units mg/Kg	CCVs True Conc. 100	CCVs Found Conc. 99.0	CCVs Percent Recovery 99	Percent Recovery Limits 85 - 115	Date Analyzed 2010-08-16
Param Chloride Standard	Flag(ICV-1)	Units mg/Kg	CCVs True Conc. 100	CCVs Found Conc. 99.0	CCVs Percent Recovery 99	Percent Recovery Limits 85 - 115	Date Analyzed 2010-08-16
Param Chloride Standard QC Batch:	Flag (ICV-1) 72666	Units mg/Kg	CCVs True Conc. 100 Date Anal	CCVs Found Conc. 99.0	CCVs Percent Recovery 99	Percent Recovery Limits 85 - 115 Anal	Date Analyzed 2010-08-16 yzed By: AR
Param Chloride Standard QC Batch:	Flag (ICV-1) 72666	Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True	CCVs Found Conc. 99.0 yzed: 2010-08 ICVs Found	CCVs Percent Recovery 99 3-16 ICVs Percent	Percent Recovery Limits 85 - 115 Anal Percent Recovery	Date Analyzed 2010-08-16 yzed By: AR Date
Param Chloride Standard QC Batch: Param	Flag (ICV-1) 72666 Flag	Units mg/Kg Units	CCVs True Conc. 100 Date Anal ICVs True Conc.	CCVs Found Conc. 99.0 yzed: 2010-08 ICVs Found Conc.	CCVs Percent Recovery 99 3-16 ICVs Percent Recovery	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits	Date Analyzed 2010-08-16 yzed By: AR Date Analyzed
Param Chloride Standard QC Batch: Param Chloride	Flag (ICV-1) 72666 Flag	Units mg/Kg Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True Conc. 100	CCVs Found Conc. 99.0 Lyzed: 2010-08 ICVs Found Conc. 99.0	CCVs Percent Recovery 99 3-16 ICVs Percent Récovery 99	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	Date Analyzed 2010-08-16 yzed By: AR Date Analyzed 2010-08-16
Param Chloride Standard QC Batch: Param Chloride Standard	Flag (ICV-1) 72666 Flag (CCV-1)	Units mg/Kg Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True Conc. 100	CCVs Found Conc. 99.0 yzed: 2010-08 ICVs Found Conc. 99.0	CCVs Percent Recovery 99 3-16 ICVs Percent Recovery 99	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	Date Analyzed 2010-08-16 yzed By: AR Date Analyzed 2010-08-16
Param Chloride Standard QC Batch: Param Chloride Standard QC Batch:	Flag (ICV-1) 72666 Flag (CCV-1) 72666	Units mg/Kg Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True Conc. 100 Date Anal	CCVs Found Conc. 99.0 yzed: 2010-08 ICVs Found Conc. 99.0	CCVs Percent Recovery 99 3-16 ICVs Percent Récovery 99	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115 Anal	Date Analyzed 2010-08-16 yzed By: AR Date Analyzed 2010-08-16 yzed By: AR
Param Chloride Standard QC Batch: Param Chloride Standard QC Batch:	Flag (ICV-1) 72666 Flag (CCV-1) 72666	Units mg/Kg Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True Conc. 100 Date Anal CCVs	CCVs Found Conc. 99.0 yzed: 2010-08 ICVs Found Conc. 99.0	CCVs Percent Recovery 99 3-16 ICVs Percent Récovery 99 3-16 CCVs	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115 Anal Percent Percent	Date Analyzed 2010-08-16 yzed By: AR Date Analyzed 2010-08-16 yzed By: AR
Param Chloride Standard QC Batch: Param Chloride Standard QC Batch: Param	Flag (ICV-1) 72666 Flag (CCV-1) 72666	Units mg/Kg Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True Conc. 100 Date Anal CCVs True Conc	CCVs Found Conc. 99.0 lyzed: 2010-08 ICVs Found Conc. 99.0 lyzed: 2010-08 CCVs Found Corc	CCVs Percent Recovery 99 3-16 ICVs Percent Recovery 99 3-16 CCVs Percent Becovery	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits	Date Analyzed 2010-08-16 yzed By: AR Date Analyzed 2010-08-16 yzed By: AR Date Analyzed

The state

114-640062	e: August 23, 20 7	010	Wor COG/2	rk Order: 1008 Tex-Mark 11 Fe	1616 ed. #35	Page N Ed	umber: 39 of 43 dy County, NM
Standard ((ICV-1)						
QC Batch:	72667		Date Analy	zed: 2010-08-	-16	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.8	99	85 - 115	2010-08-16
Standard	(CCV-1)						
QC Batch:	72667		Date Analy	zed: 2010-08-	-16	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	101	101	85 - 115	2010-08-16
Standard (OC Batch:	(CCV-1) 72769		Date Analy	zed: 2010-08-	18	Anal	vzed Bv: AG
Standard (QC.Batch:	(CCV-1) 72769		Date Analy	zed: 2010-08-	18	Anal	yzed By: AG
Standard (QC Batch:	(CCV-1) 72769		Date Analy CCVs	zed: 2010-08- CCVs	18 CCVs	Anal Percent	yzed By: AG
Standard (QC.Batch:	(CCV-1) 72769		Date Analy CCVs True	zed: 2010-08- CCVs Found	18 CCVs Percent	Anal Percent Recovery	yzed By: AG Date
Standard (QC.Batch: Param	(CCV-1) 72769 Flag	Units	Date Analy CCVs True Conc.	zed: 2010-08- CCVs Found Conc.	18 CCVs Percent Recovery	Anal Percent Recovery Limits	yzed By: AG Date Analyzed
Standard (QC.Batch: Param Benzene	(CCV-1) 72769 Flag	Units mg/Kg	Date Analy CCVs True Conc. 0.100	zed: 2010-08- CCVs Found Conc. 0.0958	18 CCVs Percent Recovery 96	Anal Percent Recovery Limits 80 - 120	yzed By: AG Date Analyzed 2010-08-18
Standard (QC Batch: Param Benzene Toluene	(CCV-1) 72769 Flag	Units mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921	18 CCVs Percent Recovery 96 92	Anal Percent Recovery Limits 80 - 120 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18
Standard (QC. Batch: Param Benzene Foluene Ethylbenzer	(CCV-1) 72769 Flag	Units mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.220	18 CCVs Percent Recovery 96 92 85 07	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene	(CCV-1) 72769 Flag	Units mg/Kg mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260	18 CCVs Percent Recovery 96 92 85 85 87	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard ((CCV-1) 72769 Flag ne (CCV-2)	Units mg/Kg mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260	18 CCVs Percent Recovery 96 92 85 85 87	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120	yzed By: AG Date <u>Analyzed</u> 2010-08-18 2010-08-18 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch:	(CCV-1) 72769 Flag ne (CCV-2) 72769	Units mg/Kg mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300 Date Analy	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08-	18 CCVs Percent Recovery 96 92 85 85 87	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch:	(CCV-1) 72769 Flag ne (CCV-2) 72769	Units mg/Kg mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300 Date Analy CCVs	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08- CCVs	18 CCVs Percent Recovery 96 92 85 87 18 CCVs	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 Anal Percent	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch:	(CCV-1) 72769 Flag ne (CCV-2) 72769	Units mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300 Date Analy CCVs True	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08- CCVs Found	18 CCVs Percent Recovery 96 92 85 87 18 18 CCVs Percent	Analy Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 Analy Percent Recovery	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch: Param	(CCV-1) 72769 Flag ne (CCV-2) 72769 Flag	Units mg/Kg mg/Kg mg/Kg Mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300 Date Analy CCVs True Conc.	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08- CCVs Found Conc.	18 CCVs Percent Recovery 96 92 85 87 87 18 18 CCVs Percent Recovery	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 Anal Percent Recovery Limits	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 yzed By: AG Date Analyzed
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch: Param Benzene	(CCV-1) 72769 Flag ne (CCV-2) 72769 Flag	Units mg/Kg mg/Kg mg/Kg Units mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.300 Date Analy CCVs True Conc. 0.100	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08- CCVs Found Conc. 0.0980	18 CCVs Percent Recovery 96 92 85 87 87 18 18 CCVs Percent Recovery 98	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 Anal Percent Recovery Limits 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18 yzed By: AG Date Analyzed 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch: Param Benzene Toluene	(CCV-1) 72769 Flag ne (CCV-2) 72769 Flag	Units mg/Kg mg/Kg mg/Kg Mg/Kg units mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.300 Date Analy CCVs True Conc. 0.100 0.100	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08- CCVs Found Conc. 0.0980 0.0947	18 CCVs Percent Recovery 96 92 85 87 18 CCVs Percent Recovery 98 95	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 Percent Recovery Limits 80 - 120 80 - 120 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 yzed By: AG Date Analyzed 2010-08-18 2010-08-18
Standard (QC Batch: Param Benzene Toluene Ethylbenzer Xylene Standard (QC Batch: Param Benzene Toluene Ethylbenzen	(CCV-1) 72769 Flag ne (CCV-2) 72769 Flag	Units mg/Kg mg/Kg mg/Kg Mg/Kg mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 0.100 0.100 0.100 0.300 Date Analy CCVs True Conc. 0.100 0.100 0.100 0.100	zed: 2010-08- CCVs Found Conc. 0.0958 0.0921 0.0853 0.260 zed: 2010-08- CCVs Found Conc. 0.0980 0.0947 0.0888	18 CCVs Percent Recovery 96 92 85 87 18 CCVs Percent Recovery 98 95 89	Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	yzed By: AG Date Analyzed 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18 2010-08-18

Standard (CCV-1)

S.S.S.

100 A

QC Batch: 72770

Date Analyzed: 2010-08-18

Analyzed By: AG

•

Report Da 114-640062	te: August 23 27	, 2010	COC	Vork Order: 100 /Tex-Mark 11)81616 Fed. #35	Page N Ec	umber: 40 of 4 ldy County, NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO		mg/Kg	1.00	0.972	97	80 - 120	2010-08-18
Standard	(CCV-2)						
QC Batch:	72770		Date Ana	alyzed: 2010-0	8-18	Ana	lyzed By: AG
D	~	T T . ()	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
GRO Param	Flag	Units mg/Kg	Conc	Conc.	Recovery 107	Limits 80 - 120	2010-08-11
				1.01		00 - 120	2010-00-10
Standard	(CCV-3)					,	
QC Batch:	72770		Date Ana	alyzed: 2010-0	8-18	Ana	yzed By: AG
			CCVs True	CCVs Found	CCVs	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
		mg/rg	1.00	0.013	00	80 - 120	2010-08-1
Standard	(CCV-1)						
QC Batch:	72774		Date An	alyzed: 2010-0)8-19	Ana	alyzed By: kg
~			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param DRO	Flag	Units	<u> </u>	Conc.	Recovery	Limits	Analyzed
Standard QC Batch:	(CCV-2) 72774	<u> </u>	Date An	alyzed: 2010-0)8-19	Ana	alyzed By: kg
			CCVs	CCVs	CCVs	Percent	÷
Param	Flag	Unite	True Conc	Found	Percent	Recovery	Date
DRO	r tag	mg/Kg	250	233	<u>93</u>	80 - 120	2010-08-19
Standard QC Batch:	(CCV-3) 72774		Date An	alyzed: 2010-0	98-19	Ana	lyzed By: kg

2:22

語の

1. Sec. 1

a contra

Report Date 114-6400627	e: August 23, 2	010	Wor COG/T	k Order: 1008 Tex-Mark 11 Fe	1616 ed. #35	Page N Ed	umber: 41 of 43 dy County, NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		mg/Kg	250	233	93	80 - 120	2010-08-19
Standard (CCV-4)						
QC Batch:	72774		Date Analy	zed: 2010-08	-19	Ana	alyzed By: kg
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		mg/Kg	250	228	91	80 - 120	2010-08-19
Standard (QC Batch:	CCV-1) 72806		Date Analy	zed: 2010-08-	-20	Anal	yzed By: AG
Danam	Elar	Unite	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param Renzene	Flag	Units	Conc.	0 102	102		2010-08-20
Toluene		mg/Kg	0.100	0.102	99	80 - 120	2010-08-20
Ethylbenzen	e	mg/Kg	0.100	0.0937	94	80 - 120	2010-08-20
Xylene		mg/Kg	0.300	0.283	94	80 - 120	2010-08-20
Standard (CCV-2)						·
QC Batch:	72806		Date Analyz	zed: 2010-08-	20	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0996	100	80 - 120	2010-08-20
Toluene		mg/Kg	0.100	0.0951	95	80 - 120	2010-08-20
Ethylbenzen	e	mg/Kg	0.100	0.0873	87	80 - 120	2010-08-20
Xylene		mg/Kg	0.300	0.265	88	80 - 120	2010-08-20
Standard (CCV-3)						
QC Batch:	72806		Date Analyz	zed: 2010-08-	20	Anal	yzed By: AG

a di

 $\sum_{i=1}^{n-1} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i$

14 J. M.

1997 B

the state

and g

)с. Т.

Report Dat 114-640062	e: August 23, 2 7	2010	Wo COG/	rk Order: 1008 Tex-Mark 11 F	1616 ed. #35	Page N Ed	umber: 42 of 43 dy County, NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene	1145	mg/Kg	0.100	0.101	101	80 - 120	2010-08-20
Toluene		mg/Kg	0.100	0.0969	97	80 - 120	2010-08-20
Ethylbenzer	ne	mg/Kg	0.100	0.0892	89	80 - 120	2010-08-20
Xylene		mg/Kg	0.300	0.269	90	80 - 120	2010-08-20
Standard ((CCV-1)						
QC Batch:	72807		Date Analy	zed: 2010-08	-20	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO	·····	mg/Kg	1.00	0.984	98	80 - 120	2010-08-20
: Standard ((CCV-2)						
QC Batch:	72807		Date Analy	vzed: 2010-08	-20	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO	· · · · · · ·	mg/Kg	1.00	1.00	100	80 - 120	2010-08-20
Standard ((CCV-3)						
QC Batch:	72807		Date Analy	zed: 2010-08	-20	Analy	vzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.14	114	80 - 120	2010-08-20
Standard ((CCV-1)					ø	
QC Batch:	72814		Date Anal	yzed: 2010-08	-20	Ana	lyzed By: kg
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	240	96	80 - 120	2010-08-20

8.2.2.A

Carlor.

26.20 E

行為に

114-640062	te: August 23 7	, 2010	W COG	Vork Order: 100 /Tex-Mark 11	81616 Fed. #35	Page N Ed	umber: 43 of 43 ldy County, NM
Standard	(CCV-2)						
QC Batch:	72814		Date An	alyzed: 2010-0	08-20	Ana	alyzed By: kg
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param DRO	Flag	Units mg/Kg	250	244	98	80 - 120	Analyzed 2010-08-20
Standard	(CCV-3)						
QC Batch:	72814		Date An	alyzed: 2010-0	08-20	Ana	alyzed By: kg
P	ard (CCV-3) tch: 72814 Flag Units mg/K	T T N	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
	()						
QC Batch:	72814		Date An	alyzed: 2010-0	08-20	Ana	alyzed By: kg
QC Batch:	72814		Date An CCVs True	alyzed: 2010-0 CCVs Found)8-20 CCVs Percent	Ana Percent Becovery	alyzed By: kg
QC Batch: Param	72814 Flag	Units	Date An CCVs True Conc.	alyzed: 2010-(CCVs Found Conc.)8-20 CCVs Percent Recoverv	Ana Percent Recovery Limits	alyzed By: kg Date Analyzed
QC Batch: Param DRO	72814 Flag	Units mg/Kg	Date An CCVs True Conc. 250	alyzed: 2010-0 CCVs Found Conc. 256	08-20 CCVs Percent Recovery 102	Ana Percent Recovery Limits 80 - 120	Date Analyzed 2010-08-20
QC Batch: Param DRO Standard	72814 Flag (CCV-2)	Units mg/Kg	Date An CCVs True Conc. 250	alyzed: 2010-0 CCVs Found Conc. 256	08-20 CCVs Percent Recovery 102	Ana Percent Recovery Limits 80 - 120	alyzed By: kg Date <u>Analyzed</u> 2010-08-20
QC Batch: Param DRO Standard QC Batch:	72814 Flag (CCV-2) 72851	Units mg/Kg	Date An CCVs True Conc. 250 Date An	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0	08-20 CCVs Percent Recovery 102 08-23	Ana Percent Recovery Limits 80 - 120 Ana	alyzed By: kg Date <u>Analyzed</u> 2010-08-20
QC Batch: Param DRO Standard QC Batch:	72814 Flag (CCV-2) 72851	Units mg/Kg	Date An CCVs True Conc. 250 Date An CCVs True	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery	alyzed By: kg Date <u>Analyzed</u> 2010-08-20 alyzed By: kg Date
QC Batch: Param DRO Standard QC Batch: Param DRO	72814 Flag (CCV-2) 72851 Flag	Units mg/Kg Units mg/Kg	Date An CCVs True Conc. 250 Date An CCVs True Conc. 250	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found Conc. 240	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent Recovery 96	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits 80 - 120	Date Analyzed 2010-08-20 alyzed By: kg Date Analyzed 2010-08-23
QC Batch: Param DRO Standard QC Batch: Param DRO	72814 Flag (CCV-2) 72851 Flag	Units mg/Kg Units mg/Kg	Date An CCVs True Conc. 250 Date An CCVs True Conc. 250	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found Conc. 240	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent Recovery 96	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits 80 - 120	alyzed By: kg Date Analyzed 2010-08-20 alyzed By: kg Date Analyzed 2010-08-23
QC Batch: Param DRO Standard QC Batch: Param DRO Standard	72814 Flag (CCV-2) 72851 Flag (CCV-3)	Units mg/Kg Units mg/Kg	Date An CCVs True Conc. 250 Date An CCVs True Conc. 250	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found Conc. 240	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent Recovery 96	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits 80 - 120	alyzed By: kg Date Analyzed 2010-08-20 alyzed By: kg Date Analyzed 2010-08-23
QC Batch: Param DRO Standard QC Batch: Param DRO Standard QC Batch:	72814 Flag (CCV-2) 72851 Flag (CCV-3) 72851	Units mg/Kg Units mg/Kg	Date An CCVs True Conc. 250 Date An CCVs True Conc. 250 Date An	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found Conc. 240 alyzed: 2010-0	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent Recovery 96 08-23	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits 80 - 120 Ana	alyzed By: kg Date <u>Analyzed</u> 2010-08-20 alyzed By: kg Date <u>Analyzed</u> 2010-08-23 alyzed By: kg
QC Batch: Param DRO Standard QC Batch: Param DRO Standard QC Batch:	72814 Flag (CCV-2) 72851 Flag (CCV-3) 72851	Units mg/Kg Units mg/Kg	Date An CCVs True Conc. 250 Date An CCVs True Conc. 250 Date An CCVs True	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found Conc. 240 alyzed: 2010-0 CCVs Found	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent Recovery 96 08-23 CCVs Percent	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery	Alyzed By: kg Date Analyzed 2010-08-20 Alyzed By: kg Date Analyzed 2010-08-23 Alyzed By: kg
QC Batch: Param DRO Standard QC Batch: Param DRO Standard QC Batch: Param	72814 Flag (CCV-2) 72851 Flag (CCV-3) 72851 Flag	Units mg/Kg Units mg/Kg Units	Date An CCVs True Conc. 250 Date An CCVs True Conc. 250 Date An CCVs True COVs True Conc.	alyzed: 2010-0 CCVs Found Conc. 256 alyzed: 2010-0 CCVs Found Conc. 240 alyzed: 2010-0 CCVs Found COVs Found CCVs	08-20 CCVs Percent Recovery 102 08-23 CCVs Percent Recovery 96 08-23 CCVs Percent Recovery	Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits 80 - 120 Ana Percent Recovery Limits	Alyzed By: kg Date Analyzed 2010-08-20 Alyzed By: kg Date Analyzed 2010-08-23 Alyzed By: kg Date Analyzed

0.500

調測者

A CARE OF

ALC: NO.

1000

Analy	eie F	20	5	11	Det	f	Ch	ain	f Cue	stody	/ F	20	CC	r	4								PA	GE:		1		OF:		1	
Anary	515 1	iC P	4	u E	50					sious				// \						() Circl	ANAI e or	LYSIS	S RE	:QUI Meti	EST hod	Na.)				
				R	J	1910 Midla (432) 6	N. Big N. Big Ind, Te 82-4559	TEC Spring SI xas 79705 • Fax (432) 6	₩ t. 5 682-3946								5 (Ext. to C35)		Vr Pd Hg Se									ac	3		
CO/-						SITE	MANAG	ER:			ERS		PRE	SER	VATIVI	E	TX100					0/624	70/625					F	1		
PROJECT NO .:		PF	CO	EC1 61 /	NAME: Tex-	Mack	1) Fee	1 # 35			CONTAIN	R I	T	Γ		-	AOD		8 A 9 As	2	olatiles	240/828	. Vol. 82	808		6	Fi	03) ·(^ation	2		i
LAB I.D. NUMBER	TIME	MATRIX	COMP	GRAB		Edd	(o, NA SAMP	C PLE IDENTIFIC	CATION		NUMBER OF	FILTERED (Y	HNO3	ICE	NONE	BTEX 8021B	2108 H <u>H</u>	PAH 8270	TCLP Metals	TCLP Volatile	TCLP Semi V RCI	GC.MS Vol. 8	GC.MS Semi	PCB's 8080/	Chloride	Gamma Spe	Alpha Beta (/	PLM (Asbest Mainr Anion			
4117 8/12	1	5		×	AH-1		0-1	<u></u>			1		1	X		1	K	1			1				X		Π	T	\square		
118		17		7	AH-1		1-1.5				7		Τ	Π					Τ			Τ	Π		\mathbb{T}		Π	Τ		\square	
119		$\left \right\rangle$			AH - 1		2'25							\square			Π	T			T		Π		T	Π	Π	T		Π	
126		7		Π	AH-1		3-3.5				\square			Π											Π		\square				
121		$\left[\right]$		Π	AH-1		4-45	1	·		1		Τ	Π											\mathbb{T}		\prod			\Box	
122		$\left[\right]$		Π	AH-2	•	0-1						Τ	Π			X	.				Τ	Π		Π		\Box	Τ			
123					AHZ		1-1.5						Ī	Π											\prod						
124		$\left[\right]$		Π	AHZ		2-2.5	;			\prod			\prod							Τ				\prod						
las				$\left(\right)$	AH-2		3'-3.	5			$\left \right\rangle$			Π																	
126		*		ł	AH-Z		4-4.	5'			\$			V											V	/					
TELINQUISHED BY: (Signat	ure) Ant	Ż	5		Date: _ Time: _	E-113 154	5	RECEIVED BY	f: (Signature)				Date: Time:	8/	15!	45		SAM	PLED I	3Y: (F	rint &	Initial 192) 6				Dai Tin)e: 19:	8772	7.0	
ELINQUISHED BY: (Signat	urey 7				Date: Time: Date:			RECEIVED BY	r: (Signature)				Date: Time: Date:				_	FE	DEX ND DE	LIVE	ID BT	BU UP	iej IS S			•	OTHE	UL #:_ :R:			
ECEIVING LABORATORY:	Trace STATE:				Time:			RECEIVED BY: (Signature)				Time:				=	TETP	ia tec	H CC	NTAC	T PEF	ison: Z	:	_		ŀ	Result RUSH Autho	s by: Charg	jes	

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

Analysis	Request of	Chain of Custo	dy D		rd						PA	GE:	Z	-	OF:	4	
Analysis	nequest of	Unain of Cusio		500							LYSIS		UES	Γ d No i			
	TE 1910 Midla (432) 6	RA TECH N. Big Spring St. Ind, Texas 79705 82-4559 • Fax (432) 682-3946					35 (Ext. to C35)	d Cr Pb Hg Se d Vr Pd Hg Se							TDS		
CLIENT NAME:	SITE	MANAGER: IKI Tovarca	VERS	PRE	SERVATIV ETHOD	Έ		Ba C Ba C		60/624	270/62				na, pH,		
PROJECT NO .: 14-640027	PROJECT NAME: COG Tex - Mac	= 11 Fed #35	DF CONTAIL			آ ا	15 MOD	tals Ag Ar tais Ag Ar	rtiles ni Volatiles	i. 8240/82	ml. Vol. 8	30/608 608		a (Air)	estos) ons/Catio		
LAB I.D. NUMBER	GRAB GRAB	SAMPLE IDENTIFICATION	NUMBER C	HCL HNO3	ICE NONE	ATEX 802	ТРН 80 РАН 8270	TCLP Me	TCLP Vols TCLP Sen	RCI GC MS Vo	GC.MS Se	PCB's 808 Pest. 808/	Chlorida	Alpha Bet	PLM (Asu Major Ani		
241127 8/12	3 X AH-2	5'-5.5 '	1		X								X				L
128 /	/ / AH-Z	6'-6.5'			(/				
129	AH-Z	65'-7'															Ļ
130	AH-3	0-1	//												\square		
131	AH-3	1-1.5	(]										}		$\downarrow \downarrow$		
132	AH-3	2'-2:5'											}]_	\downarrow			
133	AH- 3	3(- 3,5'			1					 	╄╋		$(\downarrow$	++			
134 /	AH-3	4'-4.5'										4	4	++			
135	Ан-ч	0-)				╌╂╌┨	-				+		4	╇	╶╂╶╂	╶┼┦	
	₩ ₩ AH-4	1-1.5' 70BEORIVES_BYS (Orgnature)	▼	Date:	₹ - 2 / 4	5/0	- SAM		IY: (Prin	t & Initia	<u> </u>		♦	Dat	e:	tiztio	7
RELINQUISHED BY: (Signature)		5 preceive of Signature)		Time: Date: Time:	;	<u>/6</u>	SAM	PLE SH	IIPPED	BY: (Cin	JI cle) US	1 KE	>	Tim AIRBII	e: ill #:		
RELINQUISHED BY: (Signature)	Date:	RECEIVED BY: (Signature)		Date; Time:				AND DE	LIVERE H CONT	D UI	PS RSON:	-		OTHEF	R: Results b		
HECEIVING LABORATORY:	E:	RECEIVED BY: (Signature)						The	Tax	10117				Ĩ.	1USH Ch Authoriza	narges ad:	

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tatra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

.

Analysis R	equest of Ch	ain of Custod	V R	200	rd						PA	GE:	3		OF:	4	
Analysis n			y i u			-			(Ci	AN/	ALYSI or Spe	S REC cify M	UES1	r I No.)			
	TETRA 1910 N. Big Midland, Tex (432) 682-4559	TECH Spring St. kas 79705 • Fax (432) 682-3946				「 医 4 4 5 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1		d Cr Pb Hg So d Vr Pd Hg So				Ī			TDS		
COG	SITE MANAGE	R: Yury E	VERS	PRES	SERVATIVE	10174		B B B			60/624 270/625				18, pH.		
ROJECT NO.:	PROJECT NAME: COG / Fix- Mack II Fed	* 35	(V)					9 Ag A9 9 Ag A8	es folatiles		524U/82	808		- FI	tos) s/Catior		
LAB I.D. NUMBER DATE TIME	eddy Cc, all BRAB SAMPI	ん~ LE IDENTIFICATION	NUMBER OF	HCL HN03	ICE NONE	BUEX 8021B	PAH 8270	TCLP Metal	TCLP Volatili TCLP Semi V	RCI	GC.MS Vol. 1 GC.MS Sem	PCB's 8080/ Pest. 808/60	Chloride Gamma Spe	Alpha Beta (PLM (Asbes Major Anlon		
R41137 8/12 3	5 X AH-4 2'-2,5'		1		X								X				T
138 /	(AH-4 31-3.5'				7												
139	AH-4 4'-4.5'																
140	AH-5 0-1		/				(]						Щ				L
141 /	AH-5 1-1.5						\downarrow			┢╍┟	\downarrow		1				Ļ
142	AH-5 2'-2.5'						++	-		$\left \right $			\mathbb{A}^{+}	$\left \right $	_		╞
143	AH-5 3'-3.5		(++-+	╶╁╴╁	++			\square			╫┼	╀╀	-		╞
<u> 144 </u>	AH-5 4-4.5						+	_		$\left \right $		_	$\left\{ \right\} \right\}$	\square		_	┡
145	AH-5 5' 5.5'				+	+	┼┼			$\left \right $	_					-	╞
ELINQUISHED BY: (Signature)	AH-5 C-L.5 Date: <u>MISIN</u>	RECEIVED BY: (Signature)		Date:	8/13		SAN	PLED	3Y: (Prin	t & Initi	ial)		Y	Dat	e: _Ø/	πησ	
ELINQUISHED BY: (Signature)		RECEIVED (Styring nature)		Time: Date: Time:		<u> </u>	SAN	IPLE SI	IIPPED	BY: (Ci	rcle) 3US	<u> </u>		AIRBI	ul #:		
ELINQUISHED BY: (Signature)	Date: Time:	RECEIVED BY: (Signature)		Date: Time:				AND DE	HCON	ACT P	JPS Erson	;		OTHE	Results	by:	
CEIVING LABORATORY:	77ZIP:	HEUEIVED BY: (Signature)	<u></u>					Ik	Tav	4117	ļ			þ	RUSH (Authoria	harges ed:	

Nin LyAry

1. 2 A 1.

2000 B

and and age

Gart .

1 . 5

12.64

5.51

1.778 B

2 - - - 2

· · · · · ·

1. ·····

1 M.T. 14

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

Analycia	Requi	ast of Ch	ain of (Custod	VD	<u> </u>	or	d							PAC	GE:	4		OF:	4	
Analysia	mequi		antur	JUSIOU	уп	eu		u	\neg				(Cirr		LYSIS	REQ	UES	T † Na.)			
		TETRA 1910 N. Big Midland, Te (432) 682-4559	TECH Spring St. xas 79705 • Fax (432) 682-	-3946						5 (Ext. to C35)	Cr Pb Hg Se	Vr Pd Hg Se							DS		
CLIENT NAME:	<u></u>	SITE MANAG	ER:	<u></u>	ERS	PF	ESEF	RVATIV HOD	E	TX100	Ba Cd	Ba Cd		30/624	70/625				s, pH, T		
PROJECT NO.: 114-6400027	PROJECT	NAME: 1 Tex- Mack 11	Fed * 35		CONTAIN		Τ	ĪT			s Ag As	s Ag As	folatiles	3240/826	. Vol. 82	808		Air)	os) s/Cation		
LAB I.D. NUMBER	MATRIX COMP: GRAB	Eddy Co, N SAMI	PLE IDENTIFICATI	ION	NUMBER OF	HCL		NONE	BTEX 8021B	7PH 8015	PAH 82/0 RCRA Metal	TCLP Metal	TCLP Semi V	RCI GC.MS Vol. 8	GC.MS Semi	PCB'S 8080/ Pest. 808/60	Chlonde Gamma Son	Alpha Beta (PLM (ASDES) Major Anion:		
24/147 8/12	5 X	AH-5 7-	7.5 '		I		X										X				
148	1 (Ан-5 8-1	15'														/			ŀ	П
149		AH-5 9:4	5																		
150	/	<u>дн-с о-</u>	t 1				\downarrow			X											$\downarrow \downarrow$
151		AH-C 1-1	ວ່				\parallel								$\left \right $			╆╋	_		\downarrow
152		AH-C 2-2	<u>s'</u>			+	-++	╀╋		┞	-		╇	+				++	_	┝╌┠╌	╄╋
153		AH-6 3-3	5'			┼┼	╢	╷┼╴┼		$\left \cdot \right $	+-	-	+		┼┼	+	\square	+	+	┝╌┝╴	┼╂
	VV	AH-6 4-4	<u></u>		- ¥	╀╉		++	-	┼┼	-		╉	-+-	┼╀		V	╋╋	╉┤		╂╂
	╾╂╂╆╄					╂╋	+-	┼┼		╞╌┠			╋	+	╋╋			┼┼	╉┥	┝╌╂╌	┼┼
RELINQUISHED BY: (Signature)		Date: <u>8/12/10</u> Time: 1545	RECEIVED BY ISIg	inature)		L L Da Пл	10:	113	10		SAMPL	ED BY:	(Print	& Initia	" <u>v/1</u>	26_		Det Tin	10: 10:	<u>וזיק</u>	<u>, </u>
RELINQUISHED BY: (Signature)		Date:	RECEIVED BY: (Sig	mature)		Da Tin Da	e:				FEDE	E SHIP X DELIV	PED B ERED		(9) IS IS			AIRBI OTHE	LL #:		
RECEIVING LABORATORY:	TVAL	Time:	RECEIVED BY: (Signa	iture)		Tin	e:			=	ieina T	le 7	JONTA Avcii	CIPE	15UN:				RUSH (by: Charges	-

- - -

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

MININ		RACEAN	ALYSIS.	, INC.M		
	6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110	Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@	800 • 378 • 1296 888 • 588 • 3443 traceanalysis.com	806 • 794 • 1296 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260	FAX 806•794•1298 FAX 915•585•4944 FAX 432•689•6313	
		Cer	tificatio	\mathbf{ons}		
WE	BENC: 237019	HUB: NCTRCA	175243974 WFWB38	3100-86536 444Y0909	DBE:	VN 20657
		NELAP	Certif	ications	5	
Lubbock:	T104704219-08-TX LELAP-02003 Kansas E-10317	El Paso	: T104704 LELAP-	221-08-TX 02002	Midlar	nd: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Carrier Party

State and

122212

1 Carlos

100 M

Report Date: October 27, 2010

Work Order: 10102214

Project Location:Eddy County, NMProject Name:COG/Tex-Mark 11 Fed. #35Project Number:114-6400627

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
248295	CS-1 6'-6.5' Bottom Hole	soil	2010-10-21	00:00	2010-10-22
248296	North Side Wall	soil	2010-10-21	00:00	2010-10-22
248297	East Side Wall	soil	2010-10-21	00:00	2010-10-22
248298	South Side Wall	soil	2010-10-21	00:00	2010-10-22
248299	West Side Wall	soil	2010-10-21	00:00	2010-10-22
248300	T-1 8'-8.5'	soil	2010-10-21	00:00	2010-10-22
248301	T-1 10'-10.5'	soil	2010-10-21	00:00	2010-10-22
248302	T-1 12'-12.5'	soil	2010-10-21	00:00	2010-10-22
248303	T-1 14'-14.5'	soil	2010-10-21	00:00	2010-10-22

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 22 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

i.

.

Standard Flags

 ${\bf B}\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project COG/Tex-Mark 11 Fed. #35 were received by TraceAnalysis, Inc. on 2010-10-22 and assigned to work order 10102214. Samples for work order 10102214 were received intact at a temperature of 3.8 C.

Samples were analyzed for the following tests using their respective methods.

and the second

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	64067	2010-10-25 at 09:00	74716	2010-10-25 at 09:47
Chloride (Titration)	SM 4500-Cl B	64082	2010-10-25 at 08:34	74751	2010-10-26 at 16:10
Chloride (Titration)	SM 4500-Cl B	64082	2010-10-25 at 08:34	74752	2010-10-26 at 16:11
TPH DRO - NEW	S 8015 D	64105	2010-10-25 at 11:00	74723	2010-10-25 at 11:00
TPH GRO	S 8015 D	64067	2010-10-25 at 09:00	74717	2010-10-25 at 10:13

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 10102214 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: October 27, 2010 114-6400627

A Start

Sec. 14

Analytical Report

Sample: 248295 - CS-1 6'-6.5' Bottom Hole

Laboratory:	Midland							
Analysis:	BTEX		Analytical M	Method:	S 8021B		Prep Metl	nod: S 5035
QC Batch:	74716		Date Analy	zed:	2010-10-25		Analyzed	By: AG
Prep Batch:	64067		Sample Pre	paration:	2010-10-25		Prepared	By: AG
			RL					
Parameter	Flag		Result		Units	Di	lution	RL
Benzene			< 0.0200		mg/Kg		1	0.0200
Toluene			< 0.0200		mg/Kg		1	0.0200
Ethylbenzene)		< 0.0200		mg/Kg		1	0.0200
Xylene			< 0.0200		mg/Kg		1	0.0200
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)		2.11	mg/Kg	1	2.00	106	66.5 - 108
4-Bromofluor	obenzene (4-BFB)		2.00	mg/Kg	1	2.00	100	50 - 139

Sample: 248295 - CS-1 6'-6.5' Bottom Hole

Chloride		<200	mg/Kg	50	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	64082	Sample Preparation:	2010-10-25	Prepared By:	AR
QC Batch:	74751	Date Analyzed:	2010-10-26	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

Sample: 248295 - CS-1 6'-6.5' Bottom Hole

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEW 74723 64105	Analytical M Date Analyz Sample Prep	Tethod: S 8015 D ed: 2010-10-25 aration: 2010-10-25	Prep Method: Analyzed By: Prepared By:	N/A kg kg
Parameter	Flag	RL Result	Units	Dilution	\mathbf{RL}
DRO		112	mg/Kg	1	50.0

114-6400627				CO(G/Tex-Mai	35	Eddy County, NM		
Surrogate	Flag	Re	sult	Units	Dil	ution	Spike Amount	Percent Recovery	Recover, Limits
n-Tricosane			103	mg/Kg		1	100	103	70 - 130
Sample: 248	8295 - CS-1	6'-6.5' .	Botton	n Hole					
Laboratory: Analysis:	Midland TPH GRO			Analytical	Method:	S 8015 D		Prep Met	hod: S 503
QC Batch:	74717			Date Anal	yzed:	2010-10-25		Analyzed	By: AG
Prep Batch:	64067			Sample Pr	eparation:	2010-10-25		Prepared	By: AG
				RL					
Parameter		Flag		Result	,	Units	. <u> </u>	Dilution	R
GRO				2.58		mg/Kg		1	2.0
							Snike	Dencent	Recover
Ö			E 1	D14	T T : 4	Dilution	America	Fercent	T COVCI
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	
Surrogate Trifluorotolue 4-Bromofluor	ene (TFT) obenzene (4-E	3FB)	Flag	Result 1.88 1.91	Units mg/Kg mg/Kg	Dilution 1 1	Amount 2.00 2.00	Recovery 94 96	Limits 73.4 - 12 50 - 138
Surrogate Trifluorotolue 4-Bromofluor Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch:	ene (TFT) obenzene (4-F 8296 - North Midland BTEX 74716 64067	3FB) h Side V	Flag Vall	Result 1.88 1.91 Analytical I Date Analy Sample Pre	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 5 8021B 2010-10-25 2010-10-25	Amount 2.00 2.00	Prep Meth Analyzed Prepared	Limits 73.4 - 12 50 - 138 nod: S 503 By: AG By: AG
Surrogate Trifluorotolue 4-Bromofluor Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch:	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	BFB) h Side V	Flag Vall	Result 1.88 1.91 Analytical I Date Analy Sample Pre- RL RL	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 S 8021B 2010-10-25 2010-10-25 Units	Amount 2.00 2.00	Prep Metl Analyzed Prepared	Limits 73.4 - 12 50 - 138 nod: S 503 By: AG By: AG
Surrogate Trifluorotolue 4-Bromofluor Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	3FB) h Side V	Flag Vall	Result 1.88 1.91 Analytical I Date Analy Sample Pre RL Result <0.0200	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 S 8021B 2010-10-25 2010-10-25 Units mg/Kg	Amount 2.00 2.00 Di	Prep Metl Analyzed Prepared	Limits 73.4 - 12 50 - 138 bod: S 508 By: AG By: AG R
Surrogate Trifluorotolue 4-Bromofluor Sample: 244 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	3FB) h Side V Flag	Flag Vall	Result 1.88 1.91 Analytical I Date Analy Sample Pre RL Result <0.0200 <0.0200	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg	Amount 2.00 2.00 Di	Prep Meth Analyzed Prepared	Limits 73.4 - 12 50 - 138 bod: S 503 By: AG By: AG By: AG R 0.020 0.020
Surrogate Trifluorotolue 4-Bromofluor Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	3FB) h Side V	Flag	Result 1.88 1.91 Analytical H Date Analy Sample Pre RL Result <0.0200 <0.0200 <0.0200	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg	Amount 2.00 2.00 Di	Prep Metl Analyzed Prepared	Limits 73.4 - 12 50 - 138 bod: S 508 By: AG By: AG By: AG R 0.020 0.020 0.020
Surrogate Trifluorotolue 4-Bromofluor Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	3FB) h Side V	Flag	Result 1.88 1.91 Analytical I Date Analy Sample Pre RL Result <0.0200 <0.0200 <0.0200 <0.0200	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg	Amount 2.00 2.00 Di	Prep Metl Analyzed Prepared	Limits 73.4 - 12 50 - 138 bod: S 503 By: AG By: AG By: AG 0.020 0.020 0.020
Surrogate Trifluorotolue 4-Bromofluor Sample: 244 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	3FB) h Side V	Flag	Result 1.88 1.91 Analytical I Date Analy Sample Pre RL Result <0.0200 <0.0200 <0.0200 <0.0200 <0.0200	Units mg/Kg mg/Kg Method: zed: paration:	Dilution 1 1 S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg	Amount 2.00 2.00 Di	Prep Metl Analyzed Prepared lution 1 1 1 Percent	Limits 73.4 - 12 50 - 138 bod: S 503 By: AG By: AG By: AG 0.020 0.020 0.020 0.020 Recover
Surrogate Trifluorotolue 4-Bromofluor Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate	ene (TFT) obenzene (4-E 8296 - North Midland BTEX 74716 64067	3FB) h Side V	Flag	Result 1.88 1.91 Analytical H Date Analy Sample Present RL Result <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.02000 <0.0200 <0.02000 <0.0200 <0.0200 <0.0200	Units mg/Kg mg/Kg Method: zed: paration: Units	Dilution 1 1 S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Amount 2.00 2.00 Di Di	Prep Metl Analyzed Prepared lution 1 1 1 1 Percent Recovery	Limits 73.4 - 12 50 - 133 hod: S 503 By: AG By: AG By: AG 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

Sample: 248296 - North Side Wall

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	74751	Date Analyzed:	2010-10-26	Analyzed By:	AR
Prep Batch:	64082	Sample Preparation:	2010-10-25	Prepared By:	AR

¹High surrogate recovery. Sample non-detect, result bias high.

100 A

144 A

Report Date 114-6400627	:: October 27, 20	10	COC	Vork Order G/Tex-Mar	: 10102214 k 11 Fed. #:	35	Page Nu Eddy	mber: v Count	6 of 22 ty, NM
			BI.						
Parameter	FL	ነው	Result		Units		Dilution		RL
Chloride		~8	<200		mg/Kg		50		4.00
Sample: 24	8296 - North S	Side Wall							
Laboratory:	Midland								
Analysis:	TPH DRO - N	EW	Analy	tical Meth	od: S 801	5 D	Prep M	ethod:	N/A
QC Batch:	74723		Date	Analyzed:	2010-	10-25	Analyze	ed By:	kg
Prep Batch:	64105		Samp	le Preparat	tion: 2010-	10-25	Prepare	d By:	kg
			\mathbf{RL}						
Parameter	Fla	ag	Result		Units		Dilution		$\mathbf{R}\mathbf{I}$
DRO			<50.0		mg/Kg		1		50.0
						Spike	Percent	Re	covery
Surrogate	Flag	Result	Units	Dilu	tion	Amount	Recovery		imits
n-Tricosane		90.5	mg/Kg]		100	90	70	- 130
Sample: 24	8296 - North S	Side Wall							
Laboratory:	Midland				•				
Analycic	TPH GRO		Analytical	Method:	S 8015 D		Prep Met	hod: S	5 5035
Anarysis.							A - 1 - 1		· ~
QC Batch:	74717		Date Anal	yzed:	2010-10-25	· · · ·	Analyzed	By: A	4G
QC Batch: Prep Batch:	74717 64067		Date Anal Sample Pr	yzed: eparation:	2010-10-25 2010-10-25	· · · · ·	Analyzed Prepared	By: A By: A	4G 4G
QC Batch: Prep Batch:	74717 64067		Date Anal Sample Pr RL	yzed: eparation:	2010-10-25 2010-10-25		Analyzed Prepared	By: A By: A	AG AG
QC Batch: Prep Batch: Parameter	74717 64067 Fla	ag	Date Anal Sample Pr RL Result	yzed: eparation:	2010-10-25 2010-10-25 Units	· · · ·	Analyzed Prepared Dilution	By: A By: A	AG AG RL
QC Batch: Prep Batch: Parameter GRO	74717 64067 Fla	λg	Date Anal Sample Pr RL Result <2.00	yzed: eparation:	2010-10-25 2010-10-25 Units mg/Kg		Analyzed Prepared Dilution . 1	By: A By: A	AG AG RL 2.00
QC Batch: Prep Batch: Parameter GRO	74717 64067 Fla	lg	Date Anal Sample Pr RL Result <2.00	yzed: eparation:	2010-10-25 2010-10-25 Units mg/Kg	Spike	Analyzed Prepared Dilution 1 Percent	By: A By: A Rec	AG AG <u>RL</u> 2.00
QC Batch: Prep Batch: Parameter GRO Surrogate	74717 64067 Fla	ag Flag	Date Anal Sample Pr RL Result <2.00 Result	yzed: eparation: Units	2010-10-25 2010-10-25 Units mg/Kg Dilution	Spike Amount	Analyzed Prepared Dilution . 1 Percent Recovery	By: A By: A Rec Li	AG AG 2.00 covery mits

Sample: 248297 - East Side Wall

Constraint of the

Salver 1

Laboratory:	Midland								
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5035				
QC Batch:	74716	Date Analyzed:	2010-10-25	Analyzed By:	\mathbf{AG}				
Prep Batch:	64067	Sample Preparation:	2010-10-25	Prepared By:	AG				
114-6400627	: October 27, 2010		W COG	ork Order: 10 /Tex-Mark 11	102214 I Fed. #35		Page Nun Eddy	Count	y, NM
---	--	------	---	---	---	-------------	--	---	--
·			,						
ъ (RL		T.T., 14 .		Dilution		DI
Parameter	Flag		Result		Units		Dilution		
Benzene			<0.0200		mg/Kg		1		0.0200
Toluene			< 0.0200		mg/Kg		1	().0200
Etnylbenzene	3		< 0.0200		mg/Kg		1	().0200).0200
Aylene			<0.0200		mg/ Kg		L		0.0200
						Spike	Percent	Rec	overy
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Li	mits
Trifluorotolue	ene (TFT)		2.01	mg/Kg	1	2.00	100	66.5	- 108
4-Bromofluor	obenzene (4-BFB)		1.87	mg/Kg	1	2.00	94	50	- 139
Laboratory:	Midland				() ()() ()				NY / 1
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 74751 64082		Analyti Date A Sample RL	cal Method: nalyzed: Preparation:	SM 4500-0 2010-10-26 2010-10-25	CI B	Prep Met Analyzed Prepared	thod: By: By:	N/A AR AR
Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland Chloride (Titration) 74751 64082 Flag		Analyti Date A Sample RL Result	ical Method: nalyzed: Preparation:	SM 4500-0 2010-10-26 2010-10-25 Units	CI B	Prep Met Analyzed Prepared Dilution	thod: By: By:	N/A AR AR RI
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	Midland Chloride (Titration) 74751 64082		Analyti Date A Sample RL Result <200	ical Method: nalyzed: Preparation:	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg	CI B	Prep Met Analyzed Prepared Dilution 50	thod: By: By:	N/A AR AR RI 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 248	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa	all	Analyti Date A Sample RL Result <200	ical Method: nalyzed: Preparation:	SM 4500-C 2010-10-26 2010-10-25 Units mg/Kg		Prep Met Analyzed Prepared Dilution 50	thod: By: By:	N/A AR AR RI 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 248 Laboratory:	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa Midland		Analyti Date A Sample RL Result <200	ical Method: nalyzed: Preparation:	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg		Prep Met Analyzed Prepared Dilution 50	thod: By: By:	N/A AR AR RI 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 248 Laboratory: Analysis:	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa Midland TPH DRO - NEW	all	Analyti Date A Sample RL Result <200	ical Method: nalyzed: Preparation: 	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg S 8015 D	CI B	Prep Met Analyzed Prepared Dilution 50 Prep Met	hod: By: By:	N/A AR AR RI 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 248 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa Midland TPH DRO - NEW 74723	all	Analyti Date A Sample RL Result <200 Analyt Date A	ical Method: nalyzed: Preparation: 	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg S 8015 D 2010-10-2	55 21 B	Prep Met Analyzed Prepared Dilution 50 Prep Met Analyzed	hod: By: By:	N/A AR AR RI 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa Midland TPH DRO - NEW 74723 64105	all	Analyti Date A Sample RL Result <200 Analyti Date A Sample	ical Method: nalyzed: Preparation: tical Method: Analyzed: e Preparation	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg S 8015 D 2010-10-2 : 2010-10-2	55 55	Prep Met Analyzed Prepared Dilution 50 Prep Met Analyzed Prepared	hod: By: By: bod: By: By:	N/A AR AR RI 4.00 N/A kg kg
Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa Midland TPH DRO - NEW 74723 64105	all	Analyti Date A Sample RL Result <200 Analyt Date A Sample RL	ical Method: nalyzed: Preparation: 	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg S 8015 D 2010-10-2 : 2010-10-2	55 55	Prep Met Analyzed Prepared Dilution 50 Prep Met Analyzed Prepared	hod: By: By: bhod: By: By:	N/A AR AR RI 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 248 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch:	Midland Chloride (Titration) 74751 64082 Flag 8297 - East Side Wa Midland TPH DRO - NEW 74723 64105 Flag		Analyti Date A Sample RL Result <200 Analyt Date A Sample RL Result	ical Method: nalyzed: Preparation: 	SM 4500-0 2010-10-26 2010-10-25 Units mg/Kg S 8015 D 2010-10-2 a: 2010-10-2 Units	5 5 5	Prep Met Analyzed Prepared Dilution 50 Prep Met Analyzed Prepared Dilution	hod: By: By: bod: By: By:	N/A AR AR RL 4.00 N/A kg kg RL

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane		87.5	mg/Kg	1	100	88	70 - 130

Sample: 248297 - East Side Wall

19. A. A.

1000

Laboratory:	Midland				
Analysis:	TPH GRO	Analytical Method:	S 8015 D	Prep Method:	S 5035
QC Batch:	74717	Date Analyzed:	2010-10-25	Analyzed By:	AG
Prep Batch:	64067	Sample Preparation:	2010-10-25	Prepared By:	AG

Report Date: Oct 114-6400627	ober 27, 2010		COC	Vork Order: G/Tex-Mark	10102214 11 Fed. #35		Page Number: 8 of 22 Eddy County, NM		
Parameter	Flag		RL Result		Units	Γ	Dilution	RL	
GRO			<2.00		mg/Kg		1	2.00	
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (4-Bromofluoroben	FFT) zene (4-BFB)	~~~~	$\begin{array}{c} 1.80\\ 1.74 \end{array}$	mg/Kg mg/Kg	1 1	2.00 2.00	90 87	73.4 - 122 50 - 138	

Sample: 248298 - South Side Wall

dland EX 716 067		Analytical M Date Analyz Sample Prep	fethod: ed: paration:	S 8021B 2010-10-25 2010-10-25		Prep Meth Analyzed Prepared	nod: S 5035 By: AG By: AG
		RL					
Flag		Result		Units	Di	lution	RL
		< 0.0200		mg/Kg		1	0.0200
		< 0.0200		mg/Kg		1	0.0200
		< 0.0200		mg/Kg		1	0.0200
		< 0.0200		mg/Kg		1	0.0200
					Spike	Percent	Recovery
	Flag	Result	Units	Dilution	Amount	Recovery	Limits
(TFT)		1.81	mg/Kg	1	2.00	90	66.5 - 108
nzene (4-BFB)		1.91	mg/Kg	1	2.00	96	50 - 139
	lland EX '16 '67 Flag TFT) nzene (4-BFB)	lland EX '16 '67 Flag Flag TFT) tzene (4-BFB)	iland EX Analytical M 16 Date Analyz 167 Sample Prep 168 RL Flag Result <0.0200	Hand EX Analytical Method: T6 Date Analyzed: Sample Preparation: RL Flag Result <0.0200	IlandEXAnalytical Method:S 8021B16Date Analyzed:2010-10-2516Sample Preparation:2010-10-25167Sample Preparation:2010-10-25RLRL188 $\langle 0.0200 \rangle$ mg/Kg $\langle 1.81 \rangle$ mg/Kg $\langle 1.91 \rangle$ mg/Kg $\langle 1.91 \rangle$ mg/Kg $\langle 1.91 \rangle$ mg/Kg	IlandEXAnalytical Method:S 8021B16Date Analyzed:2010-10-25167Sample Preparation:2010-10-25167REImage: Constraint of the second s	Iland EXAnalytical Method:S 8021BPrep Method16Date Analyzed:2010-10-25Analyzed16Date Analyzed:2010-10-25Prepared167Sample Preparation:2010-10-25PreparedRLFlagResultUnitsDilution < 0.0200 mg/Kg1 < 0.0200 mg/Kg

Sample: 248298 - South Side Wall

.

Chloride		<200	mg/Kg	50	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	64082	Sample Preparati	on: 2010-10-25	Prepared By:	AR
QC Batch:	74751	Date Analyzed:	2010-10-26	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytical Metho	d: SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

Report Date 114-6400627	: October 27	r, 2010	COC	Vork Orde G/Tex-Mai	r: 10102214 ck 11 Fed. #	35	Page Nu Edd	umber: 9 of 22 y County, NM
Sample: 24	8298 - Sout	h Side Wall						
Laboratory:	Midland				1 (1 00 1		.	
Analysis:	TPH DRO	- NEW	Analy	ytical Metl	nod: $S 801$	5 D	Prep M	lethod: N/A
QC Batch:	74723		Date	Analyzed:	2010-	10-25	Analyz	ed By: kg
Prep Batch:	64105		Samp	ne Prepara	ition: 2010-	10-25	Prepar	еа ву: кд
Devenation		Flow	RL Degult		TInita		Dilution	זמ
Parameter		r lag	result (50.0				1	<u>500</u>
DRU			< 00.0		mg/Kg		1	
						Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dil	ution	Amount	Recovery	Limits
n-Tricosane		87.7	mg/Kg		1	100	88	70 - 130
Prep Batch:	64067		Sample Pr RL	eparation:	2010-10-28)	Prepared	By: AG
Parameter		Flag	Result		Units		Dilution	RL
GRO	······································		<2.00		mg/Kg		1	2.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilutior	n Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		1.87	mg/Kg	1	2.00	94	73.4 - 122
4-Bromofluor	obenzene (4-	BFB)	1.80	mg/Kg	1	2.00	90	50 - 138
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8299 - Wes Midland BTEX 74716 64067	t Side Wall	Analytical l Date Analy Sample Pre	Method: zed: paration:	S 8021B 2010-10-25 2010-10-25		Prep Met Analyzed Prepared	hod: S 5035 By: AG By: AG
Parameter		Flag	RL Besult		Units		Dilution	RI.

NWW I

調査書

Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0200	mg/Kg	1	0.0200
Toluene		< 0.0200	mg/Kg	1	0.0200
Ethylbenzene		< 0.0200	mg/Kg	1	0.0200
Xylene		< 0.0200	mg/Kg	1	0.0200
	· · · · · · · · · · · · · · · · · · ·				

Report Date 114-6400627	: October 27, 20	010	W COG	/ork Order: 10 /Tex-Mark 11	102214 Fed. #35		Page Nu Edd	y Count	ty, NM
						Spike	Percent	Rec	covery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Li	mits
Trifluorotolu	ene (TFT)		1.63	mg/Kg	1	2.00	82	66.5	5 - 108
4-Bromofluor	robenzene (4-BF	Ϋ́B)	1.74	mg/Kg	1	2.00	87	50	- 139
Sample: 24	8299 - West S	ide Wall							
Laboratory:	Midland							c .1 1	NT / 4
Analysis:	Chloride (Titr	ation)	Analy	tical Method:	SM 4500-	-CIB	Prep N	lethod:	N/A
QC Batch:	74751		Date A	Analyzed:	2010-10-2	26	Analyz	ed By:	AR
Prep Batch:	64082		Sampl	e Preparation:	2010-10-2	25	Prepar	ed By:	AK
_	-		RL		TT 1		Dillar		ът
Parameter	F'.	lag	Result		Units		Dilution		
Chloride			<200		mg/Kg		50		4.00
Sample: 24 Laboratory:	8 299 - West S Midland	ide Wall							
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8299 - West S Midland TPH DRO - N 74723 64105	Side Wall	Analy Date Samp	tical Method: Analyzed: le Preparatior	S 8015 I 2010-10- n: 2010-10-) -25 -25	Prep M Analyz Prepare	lethod: ed By: ed By:	N/A kg kg
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	8299 - West S Midland TPH DRO - N 74723 64105 F	Side Wall NEW	Analy Date Samp RL Result	tical Method: Analyzed: le Preparatior	S 8015 I 2010-10- n: 2010-10- Units) -25 -25	Prep M Analyz Prepare Dilution	lethod: ed By: ed By:	N/A kg kg RL
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO	8299 - West S Midland TPH DRO - N 74723 64105 F	Side Wall NEW lag	Analy Date Samp RL Result <50.0	ytical Method: Analyzed: le Preparation	S 8015 I 2010-10- n: 2010-10- Units mg/Kg) -25 -25	Prep M Analyz Prepare Dilution 1	lethod: ed By: ed By:	N/A kg kg RL 50.0
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO	8299 - West S Midland TPH DRO - N 74723 64105 F	Side Wall NEW	Analy Date Samp RL Result <50.0	vtical Method: Analyzed: le Preparation	S 8015 I 2010-10- n: 2010-10- Units mg/Kg) -25 -25 	Prep M Analyz Prepare Dilution 1 Percent	lethod: ed By: ed By: 	N/A kg kg RL 50.0
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO	8299 - West S Midland TPH DRO - N 74723 64105 F Flag	Side Wall NEW lag Result	Analy Date Samp RL Result <50.0	vtical Method: Analyzed: le Preparation Dilutio	S 8015 I 2010-10- 10-) -25 -25 Spike mount	Prep M Analyz Prepare Dilution 1 Percent Recovery	lethod: ed By: ed By: 	N/A kg kg RL 50.0 covery
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane	8299 - West S Midland TPH DRO - N 74723 64105 Fiag	Side Wall NEW lag Result 92.1	Analy Date Samp RL Result <50.0 Units mg/Kg	vtical Method: Analyzed: le Preparation Dilution	S 8015 I 2010-10- n: 2010-10- Units mg/Kg n A	0 -25 -25 Spike mount 100	Prep M Analyz Prepare Dilution 1 Percent Recovery 92	fethod: ed By: ed By: Rec Li 70	
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8299 - West S Midland TPH DRO - N 74723 64105 F Flag 8299 - West S Midland TPH GRO 74717 64067	Side Wall NEW lag Result 92.1 Side Wall	Analy Date Samp RL Result <50.0 Units mg/Kg Analytical Date Anal Sample Pn	Vical Method: Analyzed: le Preparation Dilution 1 Method: S yzed: 20 reparation: 20	S 8015 I 2010-10- n: 2010-10- <u>Units</u> mg/Kg n Ar 8015 D 2010-10-25 2010-10-25	D -25 -25 Spike mount 100	Prep M Analyz Prepare Dilution 1 Percent Recovery 92 Prep Met Analyzed Prepared	Iethod: ed By: ed By: Rec Li 70 Chod: S By: A By: A	N/ kg kg <u>F</u> 50 cove imit: - 13
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8299 - West S Midland TPH DRO - N 74723 64105 Fi Flag 8299 - West S Midland TPH GRO 74717 64067	Side Wall NEW lag Result 92.1 Side Wall	Analy Date Samp RL Result <50.0 Units mg/Kg Analytical Date Anal Sample Pr RL	Vical Method: Analyzed: le Preparation Dilution 1 Method: S yzed: 20 reparation: 20	S 8015 I 2010-10- n: 2010-10- Units mg/Kg n An 8015 D 2010-10-25 2010-10-25	D -25 -25 Spike mount 100	Prep M Analyz Prepare Dilution 1 Percent Recovery 92 Prep Met Analyzed Prepared	fethod: ed By: ed By: Rec Li 70 thod: S By: A By: A	N/A kg kg 50. cover imits - 130 5 503 AG AG
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch:	8299 - West S Midland TPH DRO - N 74723 64105 Fi Flag 8299 - West S Midland TPH GRO 74717 64067	Side Wall NEW lag Result 92.1 Side Wall	Analy Date Samp RL Result <50.0 Units mg/Kg Analytical Date Anal Sample Pi RL Result	Vical Method: Analyzed: le Preparation Dilution 1 Method: S yzed: 20 eparation: 20	S 8015 I 2010-10- n: 2010-10- Units mg/Kg n Ar 8015 D 2010-10-25 2010-10-25 Units	D -25 -25 Spike mount 100	Prep M Analyz Prepare Dilution 1 Percent Recovery 92 Prep Met Analyzed Prepared Dilution	Iethod: ed By: ed By: Rec Li 70 70	N/A kg kg RI 50.0 covery imits - 130 5 5033 AG AG AG

100 8 40°

2018

学会記

の変

CALC:

No.

の理論の

TARKES.

14 Mar 14 Mar

: October 27, 2010		W COG	Vork Order /Tex-Mar	: 10102214 k 11 Fed. #35		Page Num Eddy	ber: 1 Count	1 of 22 5y, NM
	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Rec Li	overy mits
ene (TFT)		1.68	mg/Kg	1	2.00	84	73.4	- 122
obenzene (4-BFB)		1.62	mg/Kg	1	2.00	81	50	- 138
8300 - T-1 8'-8.5'								
Midland								
BTEX		Analytical I	Method:	S 8021B		Prep Metl	hod: S	5 5035
74716		Date Analy	zed:	2010-10-25		Analyzed	By: A	4G
64067		Sample Pre	paration:	2010-10-25		Prepared	By: A	4G
		RL						
Flag		Result		Units	D	ilution		RL
		7.38		mg/Kg		20		0.0200
		57.4		mg/Kg		20	1	0.0200
9		60.1		mg/Kg		20	(0.0200
		69.6		mg/Kg		20	1	0.0200
	E	Desult	TT. : to	Dilution	Spike	Percent	Rec	overy
	Flag		Units	Dilution	Amount			100
obenzene (4-BFB)	2	$19.8 \\ 32.5$	mg/Kg mg/Kg	20 20	20.0 20.0	99 162	66.a 50	- 108 - 139
8300 - T-1 8'-8.5' Midland Chloride (Titration) 74751 64082		Analy Date A Sampl	tical Metho Analyzed: e Preparat	od: SM 4500- 2010-10-2 ion: 2010-10-2	Cl B 6 5	Prep M Analyze Prepare	ethod: d By: d By:	N/A AR AR
		RI.						
		Result		Units	T	Dilution		BL.
Flag				0		~		
	ene (TFT) obenzene (4-BFB) 3300 - T-1 8'-8.5' Midland BTEX 74716 64067 Flag ene (TFT) obenzene (4-BFB) 3300 - T-1 8'-8.5' Midland Chloride (Titration) 74751 64082	Flag ne (TFT) obenzene (4-BFB) 8300 - T-1 8'-8.5' Midland BTEX 74716 64067 Flag * Flag s Same (TFT) obenzene (4-BFB) 2 8300 - T-1 8'-8.5' Midland Chloride (Titration) 74751 64082	FlagResultne (TFT)1.68obenzene (4-BFB)1.62 $3300 - \mathbf{T-1} \mathbf{8'-8.5'}$ MidlandBTEXAnalytical74716Date Analy64067Sample PreRLFlagResult7.3857.460.169.6FlagResult7.3857.460.169.6FlagResult8300 - T-1 8'-8.5'MidlandChloride (Titration)Analy74751Date 464082Sample	FlagResultUnitsne (TFT)1.68mg/Kgobenzene (4-BFB)1.62mg/Kg $3300 - \mathbf{T-1} \mathbf{8'-8.5'}$ MidlandBTEXAnalytical Method:74716Date Analyzed:64067Sample Preparation:RLFlagResult7.3857.460.169.669.6FlagResultUnitssme (TFT)19.8mg/Kgobenzene (4-BFB)232.5mg/KgS300 - T-1 8'-8.5'MidlandAnalytical MethodChloride (Titration)Analytical Method74751Date Analyzed:64082Sample Preparat	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	FlagResultUnitsDilutionAmountme (TFT)1.68 mg/Kg 12.00obenzene (4-BFB)1.62 mg/Kg 12.003300 - T-1 8'-8.5'MidlandBTEXAnalytical Method:S 8021B74716Date Analyzed:2010-10-2564067Sample Preparation:2010-10-25RLFlagResultUnitsD7.38mg/Kg57.4mg/Kg60.1mg/Kg69.6mg/KgSpikeFlagResultUnitsDilutionAmountene (TFT)19.8mg/Kg2020.0obenzene (4-BFB)232.5mg/Kg2020.0SpikeMidlandChloride (Titration)Analytical Method:SM 4500-Cl B74751Date Analyzed:2010-10-2664082Sample Preparation:2010-10-26	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

²High surrogate recovery due to peak interference.

見たいな

2007

1888 S

114-6400627	e: October 27	7, 2010		W COG	ork Order /Tex-Mar	Page Number: 12 of 2 Eddy County, N			
Paramotor		Flog		RL		Unite		Dilution	BL
		riag		1960		mg/Kg		5	<u> </u>
DhU				1800		mg/Kg		<u>ე</u>	
							Spike	Percent	Recovery
Surrogate	Flag	R	esult	Units	Dil	ution	Amount	Recovery	Limits
n-Tricosane	3		311	mg/Kg		5	100	311	70 - 130
					<u> </u>	are i unitariantere			
Sample: 24	8300 - T-1	8'-8.5'							
Laboratory:	Midland								
Analysis:	TPH GRO			Analytical	Method:	S 8015 D		Prep Met	hod: S 5035
QC Batch:	74717			Date Analy	/zed:	2010-10-25		Analyzed	By: AG
Prep Batch:	64067			Sample Pr	eparation:	2010-10-25		Prepared	By: AG
					-				
D		171		RL		T T. */ .			DT
Parameter	•	Flag		Result		Units		Dilution	<u></u>
GRO				3020		mg/Kg		20	2.00
							Spike	Percent	Recovery
Surrogate	·		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)	- <u></u>		20.0	mg/Kg	20	20.0	100	73.4 - 122
4-Bromofluor	chenzene (4.	BEB)	4		malka	20	0.00	970	50 120
		-DFD)	···.	74.4	mg/ Kg	20	20.0		
Sample: 24	8301 - T-1	10'-10.5	;,	74.4	mg/ Kg	20	20.0	. 312	<u> </u>
Sample: 24 Laboratory:	8301 - T-1 Midland	10'-10.5	;,	74.4	Ing/ Kg	C 9021D	20.0	Duen Met	00 - 100
Sample: 24 Laboratory: Analysis: OC Batch:	8301 - T-1 Midland BTEX 74716	10'-10.5	;,	Analytical M	Aethod:	S 8021B	20.0	Prep Met	hod: S 5035
Sample: 24 Laboratory: Analysis: QC Batch: Prop Batch:	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	,	Analytical M Date Analyz	Aethod:	S 8021B 2010-10-25 2010-10-25	20.0	Prep Met Analyzed Propared	hod: S 5035 By: AG
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	;,	Analytical M Date Analyz Sample Prep	Aethod: eed: paration:	S 8021B 2010-10-25 2010-10-25	20.0	Prep Met Analyzed Prepared	hod: S 5035 By: AG By: AG
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	,	Analytical M Date Analyz Sample Prep RL	Aethod: sed: paration:	S 8021B 2010-10-25 2010-10-25	20.0	Prep Met Analyzed Prepared	hod: S 5035 By: AG By: AG
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	,	74.4 Analytical M Date Analyz Sample Prep RL Result	Aethod: zed: paration:	S 8021B 2010-10-25 2010-10-25 Units	20.0	Prep Met Analyzed Prepared Dilution	hod: S 5035 By: AG By: AG RL
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	,	74.4 Analytical M Date Analyz Sample Prep RL Result <0.0200	Aethod: zed: paration:	S 8021B 2010-10-25 2010-10-25 Units mg/Kg	20.0	Prep Met Analyzed Prepared Dilution 1	hod: S 5035 By: AG By: AG RL 0.0200
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	;	74.4 Analytical M Date Analyz Sample Prep RL Result <0.0200 <0.0200	Aethod: ed: paration:	S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg	20.0	Prep Met Analyzed Prepared Dilution 1 1	hod: S 5035 By: AG By: AG RL 0.0200 0.0200
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	;	Analytical M Date Analyz Sample Prep RL Result <0.0200 <0.0200 <0.0200	Aethod: ed: paration:	S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg	20.0	Prep Met Analyzed Prepared Dilution 1 1 1	hod: S 5035 By: AG By: AG RL 0.0200 0.0200 0.0200
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	,	74.4 Analytical M Date Analyz Sample Prep RL Result <0.0200 <0.0200 <0.0200 <0.0200	Aethod: sed: paration:	S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg	20.0	Prep Met Analyzed Prepared Dilution 1 1 1 1	hod: S 5035 By: AG By: AG RL 0.0200 0.0200 0.0200 0.0200
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	;	Analytical M Date Analyz Sample Prep RL Result <0.0200 <0.0200 <0.0200 <0.0200	Method: zed: paration:	S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg	Spike	Prep Met Analyzed Prepared Dilution 1 1 1 1 1 Percent	hod: S 5035 By: AG By: AG RL 0.0200 0.0200 0.0200 0.0200 0.0200 Recovery
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	;, Flag	74.4 Analytical M Date Analyz Sample Prep RL Result <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 Result	Ing/ Kg Aethod: sed: paration: Units	S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Spike	Prep Met Analyzed Prepared Dilution 1 1 1 1 1 Percent Recovery	hod: S 5035 By: AG By: AG RL 0.0200 0.0200 0.0200 0.0200 Recovery Limits
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotolue	8301 - T-1 Midland BTEX 74716 64067	10'-10.5	, Flag	74.4 Analytical M Date Analyz Sample Prep RL Result <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 Result 2.08	Units	S 8021B 2010-10-25 2010-10-25 Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Spike Amount 2.00	Prep Met Analyzed Prepared Dilution 1 1 1 1 1 Percent Recovery 104	hod: S 5035 By: AG By: AG 0.0200 0.0200 0.0200 0.0200 Recovery Limits 66.5 - 108

•

³High surrogate recovery due to peak interference. ⁴High surrogate recovery due to peak interference.

a star

2.10

1.4.10

1.5 A. . . .

- 200 -

1.12

5 × 5

40.000

Report Date 114-6400627	: October 27,	2010		Vork Order: G/Tex-Mark	10102214 11 Fed. #35		Page Nu Edd	mber: 13 of y County, N
Sample: 24	8301 - T-1 1	0'-10.5'						
Laboratory:	Midland							
Analysis:	Chloride (Ti	tration)	Analy	tical Method	l: SM 450	0-Cl B	Prep M	fethod: N
QC Batch:	74751		Date	Analyzed:	2010-10	-26	Analyz	ed By: Al
Prep Batch:	64082		Samp	le Preparatio	on: 2010-10	-25	Prepar	ed By: Al
			RL					
Parameter		Flag	Result		Units		Dilution	H
Chloride			207		mg/Kg		50	4.
Analysis: QC Batch: Prep Batch:	TPH DRO - 74723 64105	NEW	Anal Date Samj	ytical Metho Analyzed: ple Preparat	od: S 8015 2010-10 ion: 2010-10	D)-25)-25	Prep M Analyz Prepar	lethod: N, ed By: kg ed By: kg
Devenuetan		Flore	RL Desult		Tinita		D:1	т
DRO		riag			mg/Kg			E
			<00.0		mg/ ng		I	
a .			T T 1 4			Spike	Percent	Recove
Surrogate	Flag	Result	Units	Dilut	ion A	Imount	Recovery	Limit
n-'Iricosane		88.3	mg/Kg	1		100	88	70 - 13
Sample: 24 Laboratory: Analysis: QC Batch:	8301 - T-1 1 Midland TPH GRO 74717	0'-10.5'	Analytica Date Ana	l Method: lyzed:	S 8015 D 2010-10-25		Prep Met Analyzed	hod: S 50 By: AG
Prep Batch:	64067		Sample P	reparation:	2010-10-25		Prepared	By: AG
			DI				-	-
Parameter		Flag	RL Besult		Units		Dilution	F
GRO	•••	1 146	<2.00		mg/Kg		1	2
					0/ **0	· · · · · · · · · · · · · · · · · · ·	±	
Surrogata		Floo	Regult	Unite	Dilution	Spike	Percent	Recover
Trifluorotolu	one (TFT)	Fiag	9 19	mg/Kg	1	2 00 P	106	72 / 1
4-Bromofluor	ohenzena (1 F	REB)	2.12	mg/Kg	1	2.00 2.00	100	10.4 - 1. 50 12
r-DIOMONUOI	.ooensene (4-1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.01	ng/ng	T	2.00	100	<u> 10 - 13</u>

調整建

ati the

見た

N. W. W.

114-6400627	: October 27, 2010		COC	Vork Order: 10 G/Tex-Mark 11)102214 Fed. #35		Page Number: 14 of Eddy County, N					
Sample: 24	8302 - T-1 12'-12.	5'										
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration 74751 64082)	Analy Date J Sampl	tical Method: Analyzed: le Preparation	SM 4500- 2010-10-2 2010-10-2	Cl B 6 5	Prep Me Analyze Prepare	ethod: d By: d By:	N/A AR AR			
			\mathbf{RL}									
Parameter	Flag		Result		Units	Γ	liution		RL			
Chloride			864		mg/Kg		50		4.00			
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	8303 - T-1 14'-14. Midland Chloride (Titration 74752 64082)	Analy Date J Sampl	tical Method: Analyzed: le Preparation	SM 4500 2010-10-2 2010-10-2	Cl B 6 5	Prep Me Analyze Prepare	ethod: d By: d By:	N/A AR AR			
			RL		TT 1 .				Dr			
Parameter	Flag		Result		Units	L	Dilution 50		RL			
Method Bla	ank (1) QC Bat 74716	ch: 74716	Date Ana	alyzed: 2010	-10-25		Analyza	ed By:	AG			
Method Bla QC Batch: Prep Batch:	ank (1) QC Bat 74716 64067	ach: 74716	Date Ana QC Prepa	alyzed: 2010 aration: 2010	-10-25 -10-25		Analyze Prepare	ed By: ed By:	AG AG			
Method Bla QC Batch: Prep Batch: Barameter	ank (1) QC Bat 74716 64067	Elec.	Date Ana QC Prepa	alyzed: 2010 aration: 2010 MDL Bagylt	-10-25 -10-25	Ini	Analyze Prepare	ed By: ed By:	AG AG PI			
Method Bla QC Batch: Prep Batch: Parameter Benzene	ank (1) QC Bat 74716 64067	ch: 74716 Flag	Date Ana QC Prepa	alyzed: 2010 aration: 2010 MDL Result	-10-25 -10-25	Unit mg/I	Analyza Prepare	ed By: ed By:	AG AG RL			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene	ank (1) QC Bat 74716 64067	ch: 74716 Flag	Date Ana QC Prepa	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.0109	-10-25 -10-25	Unit mg/I mg/I	Analyze Prepare Ss Kg Kg	ed By: ed By:	AG AG RL 0.02 0.02			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene	ank (1) QC Bat 74716 64067	ch: 74716 Flag	Date Ana QC Prepa	Alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.0109 <0.00630	-10-25 -10-25	Unit mg/I mg/I mg/I	Analyze Prepare Ss Kg Kg Kg	ed By: ed By:	AG AG RL 0.02 0.02 0.02			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	ank (1) QC Bat 74716 64067	ch: 74716 Flag	Date Ana QC Prepa	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.0109 <0.00630 <0.0144	-10-25 -10-25	Unit mg/I mg/I mg/I mg/I	Analyza Prepara Ss Kg Kg Kg Kg	ed By: ed By:	AG AG 0.02 0.02 0.02 0.02			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	ank (1) QC Bat 74716 64067	Flag Flag	Date Ana QC Prepa	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.00630 <0.0144 Units	-10-25 -10-25 	Unit mg/I mg/I mg/I Spike Amount	Analyza Prepare Ss Kg Kg Kg Kg Percent Recovery	ed By: ed By: Reco Lin	AG AG 0.02 0.02 0.02 0.02 0.02 0.02			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotolue	ank (1) QC Bat 74716 64067	Flag Flag	Date Ana QC Prepa Result 1.96	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.0109 <0.00630 <0.0144 Units mg/Kg	-10-25 -10-25 	Unit mg/I mg/I mg/I Spike Amount 2.00	Analyza Prepare Kg Kg Kg Percent Recovery 98	ed By: ed By: Reco Lin 75.6	AG AG RL 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotolue 4-Bromofluor	ank (1) QC Bat 74716 64067 ene (TFT) robenzene (4-BFB)	Flag Flag	Date Ana QC Prepa Result 1.96 2.13	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.00630 <0.0144 Units mg/Kg mg/Kg	-10-25 -10-25 Dilution 1 1	Unit mg/I mg/I mg/I Spike Amount 2.00 2.00	Analyza Prepare Ss Xg Xg Xg Percent Recovery 98 106	ed By: ed By: Recc Lin 75.6 41.5	AG AG 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0			
Method Bla QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotolue 4-Bromofluor	ank (1) QC Bat 74716 64067 ene (TFT) obenzene (4-BFB) ank (1) QC Bat	Flag Flag Flag	Date Ana QC Prepa Result 1.96 2.13	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.0109 <0.00630 <0.0144 Units mg/Kg mg/Kg	-10-25 -10-25 Dilution 1 1	Unit mg/I mg/I mg/I Spike Amount 2.00 2.00	Analyza Prepare SS Xg Xg Xg Yercent Recovery 98 106	ed By: ed By: Recc Lin 75.6 41.5	AG AG 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0			
Method Bla QC Batch: Prep Batch: Prep Batch: Benzene Toluene Ethylbenzene Xylene Surrogate Triffuorotolue 4-Bromofluor Method Bla QC Batch:	ank (1) QC Bat 74716 64067 ene (TFT) robenzene (4-BFB) ank (1) QC Bat 74717	Flag Flag Flag cch: 74717	Date Ana QC Prepa Result 1.96 2.13	alyzed: 2010 aration: 2010 MDL Result <0.00750 <0.0109 <0.00630 <0.0144 Units mg/Kg mg/Kg mg/Kg	-10-25 -10-25 Dilution 1 1 -10-25	Unit mg/I mg/I mg/I Spike Amount 2.00 2.00	Analyza Prepara Xg Xg Xg Percent Recovery 98 106	ed By: ed By: Recc Lin 75.6 41.5	AG AG 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0			

の構成

\$1. A.

開いた

a state of

Analyzed By: AG Prepared By: AG

Report Date: Octobe 114-6400627	er 27, 2010	Wor COG/T	Page Nur Edd	nber: 1 y Count	5 of 22 y, NM			
D (MDL		TT	•.		DI
Parameter	Flag		Result		Ui	nits		RL
GRU	·		<0.141	· · · · ·	mg	/ng		
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Rec Liz	overy mits
Trifluorotoluene (TF	Г)	2.07	mg/Kg	1	2.00	104	76.9	- 115
4-Bromofluorobenzen	e (4-BFB)	1.99	mg/Kg	1	2.00	100	45.8	- 147
Method Blank (1)	QC Batch: 74723							
QC Batch: 74723		Date Analy	zed: 20	10-10-25		Analy	zed By:	kg :
Prep Batch: 64105		QC Prepara	ation: 20	10-10-25		Prepa	ared By:	kg
			MDI					
Parameter	Flag		Result		Ur	nits		BL
DRO			<14.6		mg	/Kg		50
						~	-	
Currento E	len Dogult	Unita	D:1+	iom.	Spike	Percent	Rec	overy
n Tricocane	1ag nesuit	mg/Kg			100	120	70	1110 120
	120	 	1			120		- 100
Method Blank (1)	QC Batch: 74751							
QC Batch: 74751 Prep Batch: 64082		Date Analyz QC Prepara	zed: 201 ition: 201	.0-10-26 .0-10-25	,	Analyz Prepar	ed By: ed By:	AR AR
Development	Eler		MDL Descult		. 17	:+-		דת
Chloride	Flag		~ 2.18		UI	IIIS.		$\frac{\mathrm{RL}}{4}$
			<u>\2.10</u>		mg,	ng		<u> </u>
Method Blank (1)	QC Batch: 74752							
QC Batch: 74752		Date Analyz	zed: 201	0-10-26		Analyz	ed By:	AR
Prep Batch: 64082		QC Prepara	tion: 201	0-10-25		Prepar	ed By:	AR
			MDL					
Parameter	Flag		Result		Un	its		RL
Chloride			<2.18		mg	/Ko		4

AND A

在14.23

の調整な

Report Date: October 27, 2010 114-6400627		CC	Work ()G/Tex	Order: 1010 -Mark 11 F	2214 ed. #3	5			Page Nu Ed	ımber: dy Cour	16 of 22 hty, NM
Laboratory Control Spike (LC	S-1)										
QC Batch: 74716		Date A	nalyzed	: 2010-10	0-25				Analy	zed By	: AG
Prep Batch: 64067		QC Pre	paratio	on: 2010-10)-25				Prepa	area By	: AG
		5			Spi	ke	Ma	trix	-		Rec.
Param	Resu	lt	Units	Dil.	Amc	unt	Res	sult	Rec.		Limit
Benzene	1.92	2 n	ıg/Kg	1	2.0	0	< 0.0	0750	96	81	.7 - 120
Toluene	1.88	3 n	ıg/Kg	1	2.0	00	<0.0)109	94	81.	.8 - 120
Ethylbenzene	1.91	l n	ig/Kg	1	2.0	0	<0.0	0630	96	79.	.8 - 120
Xylene	5.8) n	ıg/Kg	1	6.0	00	<0.0)144	97	74	4 - 123
Percent recovery is based on the sp	oike result.	RPD is	based o	on the spike	and s	pike du	plicate	result.			
	LCSD			Spike	Ma	atrix		R	ec.		RPD
Param	Result	Units	Dil.	Amount	Re	sult	Rec.	Li	mit	RPD	Limit
Benzene	1.90	mg/Kg	1	2.00	<0.	00750	95	81.7	- 120	1	20
Toluene	1.87	mg/Kg	1	2.00	< 0	0109	94	81.8	- 120	0	20
Ethylbenzene	1.88	mg/Kg	1	2.00	<0.	00630	94	79.8	- 120	2	20
Xylene	5.93	mg/Kg	1	6.00	<0	0144	99	74 -	123	2	20
Percent recovery is based on the sp	oike result.	RPD is	based o	on the spike	and s	oike du	plicate	result.			
	LCS	S LC	CSD			\mathbf{Spil}	ke	\mathbf{LCS}	LCSI)	Rec.
Surrogate	Resu	lt Re	sult	Units	Dil.	Amo	unt	Rec.	Rec.]	Limit
Trifluorotoluene (TFT)	1.97	' 1.	.97	mg/Kg	1	2.0	0	98	98	77.	4 - 110
4-Bromofluorobenzene (4-BFB)	2.14	2	.25	mg/Kg	1	2.0	0	107	112	46	5 - 140
Laboratory Control Spike (LC QC Batch: 74717 Burn Batch: 64067	S-1)	Date A	nalyzed	: 2010-10)-25				Analy	zed By	: AG
riep Batch. 04007		QUIR	paratio		5-20				riepa	neu Dy	
	\mathbf{LC}	S			Sr	ike	Ma	trix			Rec.
Param	Resi	ılt	Units	Dil.	Am	ount	Res	sult	Rec.	I	Limit
GRO	18.	2 r	ng/Kg	1	20	0.0	<0.	747	91	56.	5 - 98.2
Percent recovery is based on the sp	oike result.	RPD is	based c	on the spike	and s	oike du	plicate	result.			
	TOOD			a 11				5			חחח
D	LUSD	TT. 14	D ''	Spike	Ma		Dat	Ke	ес.	מחמ	KPD
Param	17 0	Units	$-\frac{D11.}{1}$	Amount		5011 747	nec.		00 0	<u>nrD</u>	Limit
	11.8	mg/Kg	1	20.0	<0	.141	09	- 6.06	90.2	4	
Percent recovery is based on the sp	oike result.	RPD is	based c	on the spike	and s	pike du	plicate	result.			
	LCS	S LC	CSD			Spil	ke .	LCS	LCSI)	Rec.
Surrogate	Resu	ltRe	sult	Units	Dil.	Amo	unt	Rec.	Rec.]	Limit
Trifluorotoluene (TFT)	2.11	2	.00	mg/Kg	1	2.0	0	106	$\overline{100}$	76	.5 - 118
4-Bromofluorobenzene (4-BFB)	2.06	5 1.	.97	mg/Kg	1	2.0	0	103	98	51	1 - 150

.

1853 B

調調に

A CONTRACTOR OF A CONTRACTOR A

and the

114-6400627	per 27, 2010		COC	Vork Or G/Tex-N	der: 10102 Iark 11 Fea	214 1. #35		P	age Nu Ed	umber: dy Cou	17 of 22 inty, NM
Laboratory Contr	ol Spike (LC	CS-1)									
QC Batch: 74723 Prep Batch: 64105			Date An QC Prep	alyzed: paration	2010-10 2010-10	-25 -25			Ana Prep	lyzed E bared E	By: kg By: kg
Datem		LCS	5		Dil	Spike	Matri	ix	Dao	T	Rec.
DRO			. m	mts v/Kø	<u> </u>	250	<14.	6	106	47.5	5 - 144.1
Porcent recovery is h	ased on the st	nike result	RPD is h	ased on	the spike s	nd spike d	unlicate	esult			/ 111.1
r ercent recovery is t	based on the sp	JIKE TESUIL.	101 17 15 0	aseu on	the spike a	inu spike u	upintate i	esuit.			
Destance		LCSD	TTattat	D:1	Spike	Matrix	Dee	Rec	•	מתת	RPD
Param		Result 230	Units mg/Kg	<u>Dil.</u> 1	Amount 250		Rec.	$\frac{1}{475}$	$\frac{1}{44}$	10 RPD	
Porcent recovery is h	used on the st	viko rogult	RPD is b	no bese	the spike (nd spike d	unlicato r		<u>41.1</u>		20
recent recovery is c	ased on one sp	JIKE TESUIG.	101 10 18 0	aseu on	the spike a	uiu spike u	upiicate i	court.			
0	LCS	LCSD		•,	D'I	Spike		S	LCSD		Rec.
Surrogate	Result	Result	Un	its	Dil.	Amount	Rec	3.	Rec.		$\frac{\text{Limit}}{70, 120}$
n-Tricosane Laboratory Contr	118 ol Spike (LC	2S-1)	mg,	r Kg -	2010-10-	26			Analy	wzed By	w AR
n-Tricosane Laboratory Contr QC Batch: 74751	ol Spike (LC	2S-1)	Date Ana	alyzed:	2010-10-	26	, , , , , , , , , , , , , , , , , , ,		Analy	yzed By	y: AR
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082	ol Spike (LC	114 2S-1)	Date Ana QC Prep	alyzed: aration:	2010-10- 2010-10-	26 25			Analy Prepa	yzed By ared By	y: AR 7: AR
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082	ol Spike (LC	114 2S-1)	Date Ana QC Prep	alyzed: aration:	2010-10- 2010-10-	26 25 Spile	ЪЛ		Analy Prepa	yzed By ared By	y: AR y: AR
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param	ol Spike (LC	LC Best	Date Ana QC Prep S	alyzed: aration:	2010-10- 2010-10-	26 25 Spike	Ma Be	atrix	Analy Prepa Bec	yzed By ared By	y: AR 7: AR Rec. Limit
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride	118 ol Spike (LC	114 2S-1) LC Rest 98.	Date And QC Prep S ult	alyzed: aration: Units	2010-10- 2010-10- 	26 25 Spike Amount 100	Ma Re	atrix sult 2.18	Analy Prepa Rec 98	yzed By ared By	y: AR /: AR Rec. Limit 85 - 115
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b	118 ol Spike (LC	LC Ress 98. Dike result.	Date Ana QC Prep S ult 1 n RPD is b	alyzed: aration: Units ng/Kg ased on	2010-10- 2010-10- 	26 25 Amount 100 and spike d	Ma Re <: uplicate r	atrix sult 2.18 result.	Analy Prepa Rec 98	yzed B ared By	y: AR 7: AR Rec. Limit 85 - 115
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b	118 ol Spike (LC based on the sp	LC ES-1) LC Pike result.	Date And QC Prep S alt 1 n RPD is b	units alyzed: aration: Units ased on	2010-10- 2010-10- Dil. 1 the spike a Spike	26 25 Amount 100 and spike d Matrix	Ma Re <: uplicate r	atrix ssult 2.18 result.	Analy Prepa <u>Rec</u> 98	yzed By ared By	y: AR 7: AR Rec. Limit 85 - 115
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param	118 ol Spike (LC	LC 2S-1) Dike result. LCSD Result	Date Ana QC Prep S ult 1 n RPD is b Units	alyzed: aration: Units ng/Kg ased on Dil.	2010-10- 2010-10- Dil. 1 the spike a Spike Amount	26 25 Amount 100 and spike d Matrix Result	Ma Re vplicate n Rec.	atrix esult 2.18 result. Res Lim	Analy Prepa Rec 98 c.	yzed By ared By	y: AR 7: AR Rec. Limit 85 - 115 RPD Limit
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride	118 ol Spike (LC	LC S-1) Dike result. LCSD Result 102	Date Ana QC Prep S ult 1 n RPD is b Units mg/Kg	alyzed: aration: Units ng/Kg ased on Dil. 1	2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100	26 25 Amount 100 and spike d Matrix Result <2.18	Ma Re uplicate n Rec. 102	atrix sult 2.18 result. Rea Lim 85 -	Analy Prepa Rec 98 c. nit 115	yzed By ared By	y: AR /: AR Rec. Limit 85 - 115 RPD Limit 20
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b	118 ol Spike (LC pased on the sp pased on the sp	LC Resu 98. Dike result. LCSD Result 102 Dike result.	Date Ana QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b	alyzed: aration: units ng/Kg ased on Dil. 1 ased on	2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100 the spike a	26 25 Amount 100 and spike d Matrix Result <2.18 and spike d	Ma Re vplicate n Rec. 102 uplicate n	atrix esult 2.18 result. Res Lim 85 - result.	Analy Prepa Rec 98 c. hit 115	yzed By ared By	y: AR /: AR Rec. Limit 85 - 115 RPD Limit 20
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b	118 ol Spike (LC pased on the sp pased on the sp	ES-1) ES-1) Dike result. LCSD Result 102 Dike result.	Date And QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b	alyzed: aration: units ng/Kg ased on Dil. 1 ased on	2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100 the spike a	26 25 Spike Amount 100 and spike d Matrix Result <2.18 and spike d	Ma Re vplicate n Rec. 102 uplicate n	atrix ssult 2.18 result. Red Lim 85 - result.	Analy Prepa Rec 98 c. nit 115	yzed By ared By	y: AR 7: AR Rec. Limit 85 - 115 RPD Limit 20
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Laboratory Contr	118 ol Spike (LC pased on the sp pased on the sp pased on the sp	LC Resu 98. Dike result. LCSD Result 102 Dike result. S-1)	Date Ana QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b	alyzed: aration: Units ng/Kg ased on Dil. 1 ased on	2010-10- 2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100 the spike a	26 25 Amount 100 and spike d Matrix Result <2.18 and spike d	Ma Re vplicate n Rec. 102 uplicate n	atrix esult 2.18 result. Res Lim 85 - result.	Analy Prepa Rec 98 c. hit 115	yzed By ared By	y: AR /: AR Rec. Limit 85 - 115 RPD Limit 20
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Laboratory Contr QC Batch: 74752	118 ol Spike (LC pased on the sp pased on the sp pased on the sp ol Spike (LC	LC Resu 98. Dike result. LCSD Result 102 Dike result. S-1)	Date And QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b Date And	Alyzed: aration: Units ng/Kg ased on Dil. 1 ased on	2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100 the spike a 2010-10-	26 25 Spike Amount 100 and spike d Matrix Result <2.18 and spike d	Ma Re vplicate r Rec. 102 uplicate r	atrix ssult 2.18 result. Rea Lim 85 - result.	Analy Prepa Rec 98 c. nit 115	yzed By ared By	y: AR /: AR Rec. Limit 85 - 115 RPD Limit 20 y: AR
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Laboratory Contr QC Batch: 74752 Prep Batch: 64082	118 ol Spike (LC based on the sp based on the sp based on the sp based on the sp	LC Rest 98. Dike result. LCSD Result 102 Dike result. S-1)	Date And QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b Date And QC Prep	Alyzed: aration: Units ng/Kg ased on Dil. 1 ased on alyzed: aration:	2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100 the spike a 2010-10- 2010-10-	26 25 Spike Amount 100 and spike d Matrix Result <2.18 and spike d 26 25	Ma Re vplicate n Rec. 102 uplicate n	atrix ssult 2.18 result. Rea Lim 85 - result.	Analy Prepa Rec 98 c. nit 115 Analy Prepa	vzed By ared By	y: AR /: AR Rec. Limit 85 - 115 RPD Limit 20 y: AR /: AR
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Laboratory Contr QC Batch: 74752 Prep Batch: 64082	118 ol Spike (LC based on the sp based on the sp based on the sp ol Spike (LC	LC S-1) LC Result 98. Dike result. LCSD Result 102 Dike result. S-1)	Date And QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b Date And QC Prep	Alyzed: aration: Units ng/Kg ased on Dil. 1 ased on alyzed: aration:	2010-10- 2010-10- 2010-10- <u>Dil.</u> 1 the spike a Spike Amount 100 the spike a 2010-10- 2010-10- 2010-10-	26 25 Spike Amount 100 and spike d Matrix Result <2.18 and spike d 26 25 Spike	Ma Re vplicate n Rec. 102 uplicate n	atrix ssult 2.18 result. Rea Lim 85 - result.	Analy Prepa Rec 98 c. nit 115 Analy Prepa	vzed By ared By	y: AR /: AR Rec. Limit 85 - 115 RPD Limit 20 y: AR /: AR /: AR
n-Tricosane Laboratory Contr QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is b Param Chloride Percent recovery is b Laboratory Contr QC Batch: 74752 Prep Batch: 64082 Param	118 ol Spike (LC pased on the sp pased on the sp ol Spike (LC	LC Result 98. Dike result. LCSD Result 102 Dike result. S-1) LC Resu	Date And QC Prep S ult 1 n RPD is b Units mg/Kg RPD is b Date And QC Prep S	Alyzed: aration: Units ng/Kg ased on Dil. 1 ased on Alyzed: aration: Units	1 2010-10- 2010-10- Dil. 1 the spike a Spike Amount 100 the spike a 2010-10- 2010-10- 2010-10- 2010-10-	26 25 Spike Amount 100 and spike d Matrix Result <2.18 and spike d 26 25 Spike Amount	Ma Rec uplicate n <u>Rec.</u> 102 uplicate n Ma Re	atrix esult 2.18 result. 85 - result. atrix esult	Analy Prepa Rec 98 c. nit 115 Analy Prepa Rec	yzed By ared By 	y: AR 7: AR Rec. Limit 85 - 115 RPD Limit 20 y: AR 7: AR 7: AR Rec. Limit

Sound and

1.00

Report Date: October 27, 2010 114-6400627)	CO(Work O G/Tex-	order: 1010 Mark 11 F	Page Number: 18 of Eddy County, N						
Param	LCSD Result	Units	Dil.	Spike Amour	Ma nt Re	trix sult	Rec.	R Li	.ec. mit	RPD	RPD Limit
Chloride	102	mg/Kg	1	100	<2	2.18	102	85 -	- 115	4	20
Percent recovery is based on th	e spike result.	RPD is b	ased or	n the spike	and spi	ke dup	licate	result.			
Matrix Spike (MS-1) Spi	ked Sample: 24	48301									
QC Batch: 74716		Date Ana	alyzed:	2010-10)-25				Anal	yzed By	: AG
Prep Batch: 64067		QC Prep	aration	n: 2010-10)-25				Prep	ared By	: AG
	MC	`			Cuile	,	Mat				Dee
Param	Resu	lt. D	nits	Dil	Атош	e nt	Res	rix ult	Rec		rtec. Limit
Benzene	1.90	mg mg	r/Kg	1	2.00		< 0.00	$\frac{110}{1750}$	95	75	.7 - 125
Toluene	1.95	mg	c/Kg	1	2.00		< 0.0	109	98	74	.4 - 125
Ethylbenzene	1.98	i mg	g/Kg	1	2.00		< 0.00)630	99	72	.2 - 128
Xylene	6.02	: mg	g/Kg	1 ·	6.00		< 0.0	144	100	6	3 - 131
Percent recovery is based on th	e spike result.	RPD is b	ased or	n the spike	and spil	ke dup	licate	result. P	06		מסק
Param	Result	Units	Dil.	Amount	Resi	ilt	Rec.	Li	nit	RPD	Limit
Benzene	2.20	mg/Kg	1	2.00	< 0.00	750	110	75.7	- 125	15	20
Toluene	2.18	mg/Kg	1	2.00	< 0.0	109	109	74.4	- 125	11	20
Ethylbenzene	2.29	mg/Kg	1	2.00	< 0.00	630	114	72.2	- 128	14	20
Xylene	6.92	mg/Kg	1	6.00	< 0.02	144	115	63 -	131	14	20
Percent recovery is based on th	e spike result.	RPD is b	ased or	n the spike	and spil	ke dup	licate	result.			
	MS	S MS	SD			Spik	æ	MS	MSE)	Rec.
Surrogate	Resu	ilt Res	sult	Units	Dil.	Amou	int	Rec.	Rec.]	Limit
Trifluorotoluene (TFT)	⁵ 2.10	0 2.4	41	mg/Kg	1	2		105	120	78	.8 - 109
4-Bromofluorobenzene (4-BFB)	2.2.	3 2.2	21	mg/Kg	1	2	<u></u>	112	110	50) - 136
Matrix Spike (MS-1) Spi	ked Sample: 24	18296									
QC Batch: 74717 Prep Batch: 64067		Date Ana QC Prep	alyzed: aration	2010-10 n: 2010-10)-25)-25				Analy Prepa	zed By red By	: AG : AG
		~			0	•1					Ð
Davam	Mi Da) ,14 1	Inita	וית	Sp.	ike	Ma		D		Rec.
raram ODO	Kesi		Units	<u>D11.</u>	Amo		K(suit	Kec 77		Limit
GIU	15.	4 N	ig/ng	1	20	.0	રા	1.(4(((b	061 - 0

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

⁵High surrogate recovery due to peak interference.

日本語

Sec.2

a la sulta

Sec. 1

.

Report Date: October 27, 2010 114-6400627	Work Order: 10102214 COG/Tex-Mark 11 Fed. #35							Page N Ed	umber: dy Cou	19 of 22 inty, NM
Param GRO	MSD Result 17.2	Units mg/Kg	Dil.	Spike Amount 20.0	$\frac{Mat}{<0.}$	rix ult Re 747 86	F c. Li 5 50	tec. imit - 150	RPD 11	RPD Limit 20
Percent recovery is based on the	spike result.	RPD is b	ased on	the spike	and spik	e duplicat	e result.			
Ū.	-		CD.	1		Caller	ме	MO	۰	Daa
Surrogate	M5 Resu	lt Res	sult.	Units	Dil	Amount	Bec	Rec	<u>,</u>	Limit.
Trifluorotoluene (TFT)	1.79	$\frac{10}{2.7}$	15 r	ng/Kg	1	2	90	108	3 7	1.6 - 117
4-Bromofluorobenzene (4-BFB)	1.85	5 2.1	26 r	ng/Kg	1	2	92	113	5	50 - 170
Matrix Spike (MS-1) Spike QC Batch: 74723 Prep Batch: 64105	d Sample: 24	l7882 Date Ar QC Prej	nalyzed: paration	2010-10 : 2010-10	-25 -25			Ana Pre	alyzed I pared I	3y: kg 3y: kg
	MS	,			Spike	Ma	atrix			Rec.
Param	Resu		Inits	Dil.	Amour	it Re	sult	Rec.		Limit
DRO	409	m	g/Kg	1	250	3	02	43	11.	7 - 152.3
Percent recovery is based on the	spike result.	RPD is b	based on	the spike	and spik	e duplicat	e result.			
	MSD			Spike	Matri	ĸ	Re	ec.		RPD
Param	Result	Units	Dil.	Amount	Result	t Rec.	Lir	nit	RPD	Limit
DRO	433	mg/Kg	1	250	302	52	11.7 -	152.3	6	20
Percent recovery is based on the	spike result.	RPD is b	oased on	the spike	and spik	e duplicat	te result.	•		
MS	MSD)			Sni	ke	MS	MST)	Rec
Surrogate Resul	t Regul	. .			SP.	no	1110	11101	,	1000.
	e recau	T U	Units	Dil.	Amo	ount	Rec.	Rec		Limit
n-Tricosane 0' 155	148	nt (Jnits 1g/Kg	Dil.	Amo 10	ount 10	Rec. 155	Rec 148	•	Limit 70 - 130
n-Tricosane 67 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082	148 ad Sample: 24	tt (m 18302 Date An QC Prep	Units ig/Kg alyzed: paration:	Dil. 1 2010-10- 2010-10-	Amo 10 -26 -25	ount 10	Rec. 155	Rec 148 Anal Prep	yzed B ared B	Limit 70 - 130 y: AR y: AR
n-Tricosane 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082	d Sample: 24	it (m i8302 Date An QC Prep 3	Jnits g/Kg alyzed: paration:	Dil. 1 2010-10- 2010-10-	Amo 10 -26 -25 Spi	ount 10	Rec. 155 Matrix	Rec 148 Anal Prep	yzed B ared B	Limit 70 - 130 y: AR y: AR y: AR Rec.
n-Tricosane 67 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082 Param	148 148 24 Sample: 24 MS Resu	tt (m 48302 Date An QC Prep 3 1lt	Jnits g/Kg alyzed: paration: Units	Dil. 1 2010-10 2010-10 Dil.	Amo 10 -26 -25 Spi Amo	ount 10 ke unt	Rec. 155 Matrix Result	Rec 148 Anal Prep Rec	yzed B ared B	Limit 70 - 130 y: AR y: AR Rec. Limit
n-Tricosane 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082 Param Chloride	ed Sample: 24 MS Rest	tt (m 48302 Date An QC Prep S 1lt 10 n	Jnits ng/Kg alyzed: oaration: Units ng/Kg	Dil. 1 2010-10- 2010-10- Dil. 100	Amo 10 -26 -25 Spi Amo 100	ke unt 00	Rec. 155 Matrix Result 864	Rec 148 Anal Prep Rec 10	lyzed B aared B c. 1	Limit 70 - 130 y: AR y: AR y: AR Rec. Limit 85 - 115
n-Tricosane or 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is based on the	ed Sample: 24 MS Rest 1100 spike result.	tt (m 18302 Date An QC Prep 3 .1t D0 n RPD is b	Jnits g/Kg alyzed: paration: Units ng/Kg pased on	Dil. 1 2010-10 2010-10 Dil. 100 the spike	Amo 10 -26 -25 Spi Amo 100 and spik	ke unt 00 e duplicat	Rec. 155 Matrix Result 864 te result	Rec 148 Anal Prep Rec 10	yzed B ared B c. 1	Limit 70 - 130 y: AR y: AR y: AR Rec. Limit 85 - 115
n-Tricosane 6 / 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is based on the	MSD	tt (m m 48302 Date An QC Prep 3 nlt 30 n RPD is b	Jnits g/Kg alyzed: paration: Units ng/Kg pased on	Dil. 1 2010-10 2010-10 Dil. 100 the spike	Amo 10 -26 -25 Spi Amo 100 and spik Mat	vunt 10 ke vunt 00 e duplicat rix	Rec. 155 Matrix Result 864 te result. F	Rec 148 Anal Prep Rec 10	yzed B ared B c. 1	Limit 70 - 130 y: AR y: AR y: AR Rec. Limit 85 - 115 RPD
n-Tricosane 6 / 155 Matrix Spike (MS-1) Spike QC Batch: 74751 Prep Batch: 64082 Param Chloride Percent recovery is based on the Param	MSD Result	tt (m 18302 Date An QC Prep 3 .1t D0 n RPD is b Units	Units alyzed: oaration: Units ng/Kg oased on Dil.	Dil. 1 2010-10 2010-10 Dil. 100 the spike Spike Amount	Amo 10 -26 -25 Amo 100 and spik Mat 2 Res	ke 0 unt 00 e duplicat rix ult Re	Rec. 155 Matrix Result 864 te result Fc. L	Rec 148 Anal Prep Rec 10	yzed B ared B c. 1 RPD	Limit 70 - 130 y: AR y: AR Rec. Limit 85 - 115 RPD Limit

⁶High surrogate recovery due to peak interference. ⁷High surrogate recovery due to peak interference.

19 C. 1

1.000

1. Pro 1

R^a

4.5

× ÷, ž

Report Date: 114-6400627	October 27	, 2010	W COG	der: 101022 lark 11 Fed.	14 #35		Pag	e Numb Eddy C	er: 20 County,	of 2 , NI	
Percent recove	ery is based	on the spike result.	RPD is ba	sed on	the spike ar	nd spike dup	licate	result.			
Matrix Spik	e (MS-1)	Spiked Sample: 2	48303								
QC Batch: Prep Batch:	74752 64082		Date Anal QC Prepa	yzed: ration:	2010-10-2 2010-10-2	6 5		A F	nalyzed 'repared	By: By:	AR AR
~		М	IS		D .1	Spike	M	atrix		Re	ec.
Param	·····		$\frac{10}{10}$ m	nits	 	Amount	Re	esult	Rec.		nit
		93	$\frac{40}{10}$ m	g/ng	100	10000	<	218	92	- 68	110
Percent recove	ery is based	on the spike result.	. RPD is ba	sed on	the spike ar	id spike dup	licate	result.			
		MSD			Spike	Matrix		Rec.		B	ίPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RP	D L	imi
Chloride		9580	mg/Kg	100	10000	<218	94	85 - 118	5 2		20
QC Batch: 7	4716		Date Anal	yzed:	2010-10-25			А	nalyzed	By:	AG
			CCVs		CCVs	CCVs		Percent		_	
Danama	Floo	Tinita	True		Found	Percent		Recovery		Dat	e ad
Renzene	r lag	mg/Kg	0 100		$\frac{0000}{0017}$	02		$\frac{1}{80 - 120}$		$\frac{\text{Analy}}{2010-10}$	$\frac{2e\alpha}{0-2^{2}}$
Toluene		mg/Kg	0.100	(0.0903	90		80 - 120		2010-10	0-2!
Ethylbenzene		mg/Kg	0.100	().0919	92		80 - 120		2010-10	0-2!
Xylene		mg/Kg	0.300		0.280	93		80 - 120		2010-1	0-28
Standard (C QC Batch: 7	C V-2) 4716		Date Anal	yzed:	2010-10-25	COV-		A	nalyzed	By:	AG
			True	, I	Found	Percent		Recovery		Date	e
Param	Flag	Units	Conc.	-	Conc.	Recovery		Limits		Analy	zed
Benzene		mg/Kg	0.100	().0941	94		80 - 120		2010-10)-25
Toluene		mg/Kg	0.100	(0.0944	94		80 - 120	:	2010-10)-25
Ethylbenzene		mg/Kg	0.100	().0938	94		80 - 120		2010-10)-28
		mg/Kg	0.300		0.285	95		80 - 120		2010-10)-20
Standard (C QC Batch: 7	4716		Date Anal	yzed:	2010-10-25			А	nalyzed	By: A	4G

1. A 20 1

The second second

なが重

ないない

Report Dat 114-640062	te: October 27 7	7, 2010	W COG	ork Order: 101 /Tex-Mark 11 I	Page N Ed	umber: 21 of 22 dy County, NM	
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0967	97	80 - 120	2010-10-25
Toluene		mg/Kg	0.100	0.0949	95	80 - 120	2010-10-25
Ethylbenzei	ne	mg/Kg	0.100	0.0954	95	80 - 120	2010-10-25
Xylene		mg/Kg	0.300	0.288	96	80 - 120	2010-10-25
Standard	(CCV-1)						
QC Batch:	74717		Date Anal	yzed: 2010-10	-25	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.11	111	80 - 120	2010-10-25
QC Batch:	74717		Date Anal	yzed: 2010-10	-25	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
	•		True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.07	107	80 - 120	2010-10-25
Standard	(CCV-3)						
QC Batch:	74717		Date Anal	yzed: 2010-10	-25	Analy	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.16	116	80 - 120	2010-10-25
Standard	(CCV-2)						
QC Batch:	74723		Date Ana	lyzed: 2010-10)-25	Ana	lyzed By: kg
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
			~ ~ ~ ~	~~~~	5	TITI	
Param	Flag	Units	Conc.	Conc.	Recoverv	Limits	Analyzed

Sec. 2

1. B. B.

の時代

Report Dat 114-640062	e: October 27 7	7, 2010	COC	Vork Order: 101 //Tex-Mark 11	02214 Fed. #35	Page N Ec	umber: 22 of 22 ldy County, NM
Standard	(CCV-3)						
QC Batch:	74723		Date An	alyzed: 2010-1	0-25	Ana	alyzed By: kg
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	215	86	80 - 120	2010-10-25
Standard	(ICV-1)						
QC Batch:	74751		Date Ana	lyzed: 2010-10)-26	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recoverv	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	99.9	100	85 - 115	2010-10-26
Standard	(CCV-1)						
QC Batch:	74751		Date Ana	lyzed: 2010-10)-26	Anal	yzed By: AR
			CCVc	CCVa	CCV_{r}	Parcont	
			True	Found	Percent	Becovery	Data
Param	Flag	Units	Conc	Conc	Recovery	Limits	Analyzed
Chloride	1 145	mg/Kg	100	100	100	85 - 115	2010-10-26
Standard	(ICV-1)						
QC Batch:	74752		Date Ana	lyzed: 2010-10)-26	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.6	99	85 - 115	2010-10-26
Standard ((CCV-1)						
QC Batch:	74752 Date Analyzed: 2010-10-26					Anal	lyzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recoverv	Date
						~~~~~	
Param	Flag	Units	Conc.	Conc.	Recoverv	Limits	Analyzed

教授的

のない

No.

14 miles

のないない

	Kers											ŝ.			\$. 'n						8		(			<u>a</u> thi	
	$\bigcirc$		h	10H	601022	14			$\square$										·					<u>`</u>		(rejester	
An	alvs	sis F	Rec	JUC	est of	Chai	in of	Cust	todv	R	ec	or	d							P	AGE:	1			)F:		
			6500									· · · ·						(Ci	AN ircle	ALYS or Sc	SIS RE	QUE Meth	ST .od №	io.)			
					<b>TE</b> 1910 Midla (432) 6	<b>FRA</b> 7 N. Big Sp Ind, Texa: 82-4559 • F	<b>TECH</b> oring St. s 79705 fax (432) 68	<b>-</b> 32-3946							5 (Ext. to C35)	Cr Bh Ho Se	Vr Pd Hg Se								DS		
CLIENT NA	VE:				SITE	MANAGER:			<u> </u>	w	PR	ESEF	VATIN	/E	100		B			224 625					F		
Co	6					Ike Tavor	~2			Ψ		MET	HOD		IF.	à	i m			270/					's		
PROJECT N	0.:	<u>.</u>	PRO	JECT	NAME:					TĂ .		Τ			A		A D	atiles							atio		
114-6400	627			606	Tit- Mack	11 Frd	* 35			SIN				æ	R	Aal	S A	se  s		824 N		3	ů,	Stos	Ng		
LAB I.D. NUMBER	DATE	TIME	MATRIX	GRAB	Eddy	©, ∾∽ SAMPLE	IDENTIFIC	ATION		FILTERED (	HCL HNO3	CE E	NONE	RTFX 8021	108 Hav	PAH 8270 PCBA Met	TCLP Met	TCLP Volat TCLP Semi	RCI	GC.MS Vol. GC.MS Ser	PCB's 808(	Pest. ouar Chloride	Gamma Sp	Alpha Beta PLM (Asbe	Major Anio		
48295	10/21		3	X	(5 - 1	6-65	(botto	m hele)		1		Х		;	( ×							K		$\square$			$\square$
249-70,			A	171	a) if is	1				}		1)		×	X							X					
248207					East sid	e muil -	1	<u></u>		$\mathbb{N}$		$\parallel$		×	¥			1		+		X		1			
248298				Ш	South sid	r Wull								×	×							·X	$\square$	$\square$	$\prod$		
248299				Щ	East Sid	e Wall-	2			₩			$\mathbb{A}$	×	×		$\left  \right $				$\square$	×		_	$\downarrow$		
248300					<u>T-1</u>	<del>8' 85</del>						$\square$		X	X							X					
248301					T-1 ,	0'-10.5'								>	s X							X					
248202				1/1	T-1 1	2 42.5				)		$\ $										X					
248303	6				T-1	14-14.5		d - 2		Se .			,									Х			$\square$		
			<b>₩</b>	4																	T						
RELINQUISHED	) BY: (Signatur	re)			Date: Time:	F	RECEIVED BY: (	(Signature)			Date Tim	×			-	SAM	LEO B	Y: (Prin	it & Ini	tial)	T			Date: Time	10	121/	<u> </u>
RELINQUISHED	BY: (Signatur	(6 [.]			Date:	F	RECEIVED BY: (	(Signature)			Date	»;				SAM	PLE SH	PPED	BY: (C	ircle) RUS			A	IRBILL	.#:		
RELINQUISHED	BY: (Signatur	тө)			Date:	F	RECEIVED BY: (	(Signature)			Date	»				HAI	ND DEL	COM	ACT 9	UPS	N:		0	THER:	sults F		
RECEIVING LAP	DORATORY:	STATE:	r T		ZIP:	RE	CEIVED BY: (Si	gnature)	9-		) ) ('	<u>-</u>					TK	-	10.14	142				RL Au	ISH Ch	narges ed:	
SAMPLE COND ろ.る' C	TION WHEN				REMARKS	total TRH e	winds 5,0	00 m/m BT	Et there and the second	ls st ands	mg/14 10 mg	⁴ ] 19	r	ur d	kerp	ser.	5à ~	با ج	3		A	u-5	tat	<u> </u>	Mud	lla	el D

aboratory retains tellow cop	y - Hetum Orginal copy to letra lech	<ul> <li>Project Manager retains Pink copy</li> </ul>	<ul> <li>Accounting receives Gold copy.</li> </ul>