UIC-I-<u>8</u>____

MEETINGS

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Thursday, October 06, 2011 7:14 AM
To:	Chavez, Carl J, EMNRD
Subject:	Navajo Refining Company (UICI-008) WDWs 1, 2 & 3 MIT Meeting Determination on October 5, 2011

This note to the file documents the final determination by Ms. Jami Bailey (OCD Director) regarding the significant variation in annulus pressure systems at UIC Class I (NH) Injection Wells (WDWs 1, 2 & 3) under dynamic flow injection conditions. Quarterly monitoring and the annulus report document the variation in tubing and annulus pressures and volumes under the discharge permit and form the basis for the meeting.

After hearing the technical information presented at the meeting, the OCD Director determined the following:

1) No additional charts of the tubing versus annulus pressure are needed.

2) The injection wells have passed annual MITs and appear to be in good condition.

3) There appears to be a surface effluent flow-line issue(s) due to the C-141 releases that have been occurring upgradient from the Chukka Well (WDW-2) and other wells that needs to be addressed to correct this problem.

Consequently, the variation in annulus well pressure under dynamic flow conditions appears to physically affect the pressure in the well annulus system. This is considered to be normal based on the current mechanical design and construction of the injection system. The external tank fluid level monitoring couple with annual annulus pressure and bradenhead MITs will continue to be relied upon for mechanical integrity determination under the OCD's UIC Program.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

Chavez, Carl J, EMNRD

Subject: Location:	Holly-Frontier (Navajo Refining Co.) OCD UIC Class I (NH) Injection Wells (UICI-008) & Significant Variation in Annulus Pressures Noticed from Monitoring T elephone Conference Call
Start: End:	Wed 10/5/2011 10:30 AM Wed 10/5/2011 12:00 PM
Recurrence:	(none)
Meeting Status:	Meeting organizer
Organizer: Required Attendees:	Chavez, Carl J, EMNRD Bailey, Jami, EMNRD; Sanchez, Daniel J., EMNRD; Ezeanyim, Richard, EMNRD; Jones, William V., EMNRD; Dade, Randy, EMNRD; VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD; Lackey, Johnny; Moore, Darrell; Gonzales, Elidio L, EMNRD; Brown, Maxey G, EMNRD
Categories:	Red Category

Request: Request for Holly-Frontier Representatives to send Carl Chavez any presentation in Acrobat Reader (pdf format) for the conference call for Carl to attach to this meeting notice and also Carl will place presentation files into OCD's Telephone Conference Call Folder at L:\ENVIRONM\WORD\COMMON\OCD Training\TELEPHONE CONFERENCE CALLS\Navajo Refining UIC Wells Meeting 10-5-2011for OCD Staff to access during the telephone conference call and/or to attach the file directly to this meeting notice for all meeting participants to access. Also, please send any agenda items that any of you may wish to add to the agenda by COB next Tuesday. Thank you.

Meeting Call-In Information:

Dial-in Number:1-712-580-8025 (Midwest)Participant Access Code:4509670Organizer Access Code:693464 (you must include the leading star key)

Tentative Meeting Agenda:

Purpose: To discuss monitored variation in injection well annulus pressures during injection for 3 UIC Class I (NH) Injection Wells in Eddy County.

- * Introductions
- * Well Locations
- * Fiberglass Effluent Line from Refinery to Injection Wells
- * Monitored Annulus Pressure Data
- * Miscellaneous
- * Path Forward

Well Info 9-23-2011.pdf

Well Inspec

Well Inspection Photos.pdf

·· ·····

1	-		•			
<u> </u>	Table 1					
	Mewbourne Well No. 1	Chukka Well No. 2	Gaines Well No. 3			
	4.5", 11.6 lb/ft, N-80, SMLS,	3.5", 9.2 lb/ft, J-55, NUE	4.5", 11.6 lb/ft, J-55, LT&C,			
Tubing	R3, LT&C	10R.D	8RD .			
· ·	7879'	7528	7575'			
	7"x 3.5", EVI Oil Tools	5.5"x 2.875" Weatherford	7"x 2.875" Kenco Tools			
Packer	(Arrow), X-1, ID 3", .	(Arrow), X-1, ID 2.4375",	(Arrow), X-1, ID 2.4375"			
	7879'	7528'	7575'			
	Upper Lower	Upper Lower	Upper Lower			
•	7924 - 42 8220 - 54	7570 - 7620 7826 - 34	7660 - 8450 8540 - 8620			
	7974 - 8030 8260 - 70	7676 - 7736 7858 - 80				
	8050 - 56 8280 - 8302	7886 - 7904				
	8066 - 80. 8360 - 66	7916 - 36	· · · · · · · · · · · · · · · · · · ·			
Perforations	8118 - 27 8370 - 78	7944 - 64	· · · ·			
1	8132 - 40 8400 - 10	7990 - 8042	•			
	8160 - 64 8419 - 23	8096 - 8116	· · · · ·			
	8170 - 88 8430 - 46	8191 - 8201				
	8460 - 64	8304 - 19				
	8470 - 76	8395 - 99				
Protection	7", 29 lb/ft, N-80, LT&C,	5.5", 17 lb/ft, L-80, LT&C	7", 29 lb/ft, N-80, LT&C			
Casing	9094 - 7031					
Cement Top						
Protection	Surface	Surface	900			
Casing						
PBTD / TD	9004' / 10,200'	8770' / +0,372'	9022 / 10,119'			
Formation	Wolfcamp / Cisco / Canyon	Wolfcamp / Cisco / Canyon	Wolfcamp / Cisco / Canyon			
Inj. Interval	7450' - 9016'	7270' - 8894'	7303' - 8894'			
OCD UIC						
Permit Number	UIC-CLI-008-!	UIC-CLI-008-2	UIC-CLI-008-3			
API Number	30-015-27592	30-015-20894	30-015-26575			

70G6)42/Navajo/Tables

BELOW GROUND DETAILS

All depths are referenced to the Kelly bushing elevation of 12.5' above ground level. Ground level elevation is 3,678' above mean sea level.

- Surface Casing: 13 %", 48 lb/ft, J-55, ST&C set al 390' in a 17 ½" hole. Cemented with 150 sx Class C with 3 % calcium chloride, 375 sx Class C Litewate w/3 % calcium chloride and ½ lb/sx flocele. Circulated 86 sx to surface.
- Intermediate Casing: 9 %", 36 lb/ft, J-55, ST&C set al 2,555' in a 12 ¼ " hole. Cemented w/800 sx of Class C Lile w/ ½ lb/sx flocele and 2 lb/sx Glisonite and 12 % split. Followed by 200 sx of Class C w/2 % calcium chloride. Circulated 133 sx to surface.
- 3. Base of the USDW at 493'.
- 4. Injection Tubing: 4 ½", 11.6 lb/lt, N-80, SMLS, R3, LT&C set at 7,879.
- 5. DV Tool: at 5,498'.
- Annulus Fluid; 8.7 lb/gal brine water mixed w/UniChem Tachni-Hib 370 corrosion inhibitor.
- Protection Casing: 7", 29 lb/lt, N-80, LT&C: 9094' to 7031', 7", 29 lb/lt, P-110, LT&C: 7031' to 5845', 7", 26 lb/lt, P-110, LT&C: 5845' to surface. Casing cemented in two stages as tollows:

First Stage - 600 sx modified Class H w/0.4 % CFR-3, 5 lb/sx Gilsonite, 0.5% Halad-344, and 1 lb/sx salt mixed at 13.0 ppg. Opened DV tool at 5490' and circulated 142 sx to surface.

Second Stage - Lead Slurry: 220 sx Interfill "C" (35:65:6) mixed at 11.7 ppg. Tall Slurry: 550 sx modified Class H w/0.4 % CFR-3, 5 lb/sx, Gilsonite, 0.5 % Hatad-344, 0.1 % HR-7, and 1 lb/sx mixed at 13.0 ppg. Clrculated 75 sx to surface. Top out w/20 sx permium plus 3% calcium chloride.

- Packer: 7" x 3.5" EVI Oil Tools (Arrow), Model X-1 retrievable packer set at 7879', Minimum I.D. is 3.0", Wireline re-entry guide on boltom. To release: turn ½ turn to the right and pick up.
- 9. Perforations (2 SPF):

Upper Zong - 7924-7942', 7974-8030', 8050-8056', 8066-8080', 8118-8127', 8132-8140', 8160-8164', 8170-8188'.

Lower Zone - 8220-8254', 8260-8270', 6280-8302', 8360-8366', 8370-8378', 8400-8410', 8419-8423', 8430-8446', 8460-8464', 8470-8476'.

- 10. PBTD: 9004'.
- 11. Coment Plug: 45 sx Class H from 9624' to 9734'.

FIGURE 1

NOTICE OF PUBLICATION

Nevelo Relining Company Artesia, New Mexico

Notice is hereby given theil pursuant to New Medico Water Quality Control Commission Regulations (20.6.2.3108 NMAC), the following discharge permit application(s) has been submitted to the Director of the New Merico Of Conservation Division, (NMOCD*), 1220 S. Saint Francis Drive, Santa Fe, New Maxico 187505, Telephone (505) 476-3440:

II/305, letopnone (2005) 476-3402 (I-008) Nevelo Retining Company, Darrell Macie, Environmental Manager, for Weter and Weate, S01 East Main Street, P.O. Box Drawer 159, Artesia, New Mexico, 88211-0159; has submitted an applica-tion for a Cleas I injection Weil Discharge Permit (UIC-CLI-008) for Injection well WDW-1 (API30-015-27592) located in the SWM, SEA of Section 31, Townshift I7 South, Range 28 East, MMPM, Eddy County, New Mexico, The Injection well is located approximately 11 miles East-Southeset of Artesia on Hwy-82 Irom Hwy-285 and about 1 miles outh on Hilliop Read. Oll field exampt and non-exampt non-hazardous industrial weste will be transported about, 11 miles underground from the Navajo-Ancula Refinery located at 501 E. Main Street, Artesia, NW via a 6 Inch dia, pipeline to WDW-1 tor dis-ranges Irom 11,000, mg/1 bit 19,009 mg/1. The Injection rate will not exceed 500 gpm at a maximum Injection pressure of 1,560 paig. Groundwäter most likely to be artected by a split, leak or acciden-tal discharges I at a dopit of a provides a contingency pian in the event of accidental splite, take or accidental aprile, and provides a contingency pian in the event of accidental splite, teaks, and ourrace facilities, and provides a contingency pian in the event of accidental splite, teaks, and ourrace facilities, and provides a contingency pian in the event of accidental splite, teaks, and ourrace facilities, and provides a contingency pian in the event of accidental splite, teaks, and ourrace facilities, and provides a contingency pian in the svent of accidental aprile. and other accidental discharges in order to protect tresh water

The NMOCO has determined that the application is administratively complete and has prepared a dratt per The NMOCD has determined that the application is administratively complete and has propared a driet per-mil. The NMOCD will accept comments and statements of interest regarding this application and will create a tacitity specific mailing list for parsons who withit to receive future notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future about the second state of the second statements of the second statement of the second address between 8:00 a.m. aind+:00 p.m., Mondey through Fridey, or also may be invived at the about address between 8:00 a.m. aind+:00 p.m., Mondey through Fridey, or also may be viewed at the about address between 8:00 a.m. aind+:00 p.m., Mondey through Fridey, or also may be viewed at the about that permit may contact the address given above. Prior to Juling on any proposed dratt permit may contact MNOCD at the address given above. Prior to Juling on any proposed discharge permit or major modulcation, the Director shall allow a period of at least hirty (30) days after the date publication of this notice, during which intersted persons may submit comments or request the NMOCD hold a public hearing. Requests for a public hearing shall set form the reasons why a nearing should be held. A hearing will be hold if the Director determines that there is significant public interest.

. Il no public hearing is held, the Diractor will approve or disapprove the permit based on information avail alla, including all comments received, il a public hearing is held, the Director will approve or disapprove the proposed permit based on information in the permit application and information submitted at the hearing.

. . .

Published in the Artesia Dally Press on August 9, 2009. Legal 20795.

BELOW GROUND DETAILS

All depths are referenced to the Kelly bushing elevation of 13' above ground level. Ground level elevation is 3610' above mean sea level.

1. Base of the USDW at 473'.

- 2. Surface Casing: 8 ½", 32 lb/ll, set at 1995' in an 11" hole. Cemented to surface with 800 sacks of cement.
- 3. Injection Tubing: 3 1/2", 9.2 lb/fi, J-55, smls, NUE 10 rd, set at 7528'.
- 4. DV Tool: al 5,785'.
- <u>Annulus Fluid</u>: 8.7 lb/gal brine water mixed w/UniChem Techni-Hib 370 corrosion inhibitor.
- Protoclion Casing: 5 ½", 17 lb/ll, L-80, LT&C: 8869' to the surface and set in a 7 ½" hole. Casing corriented in two stages as follows:

First Stage - 575 sacks of modified Class "H" with 0.4 % CFR-3, 5 Ib/sk Glisonite, 0.5 % Halad-344, and 3 lb/sk salt. Mixed at 13.0 ppg. Opened DV tool at 5785 and circulated 20 sacks to surface.

Second Stage - Lead Slurry: 300 sanks of Interfill "C" (35:65:6) mixed at 11,7 ppg. Tail slurry: 695 sacks modified Class "H" with 0.4% CFR-3, 5 lb/sk Gilsonite, 0.5 % Halad-344 and 3 lb/sk salt mixed at 13.0 ppg. Circulated 150 sacks to surface. Topped out with 10 yards of RedI-mix.

- Packer: 5 ½" x 2 ½" Weatherford Completion Tools (Arrow) Model X-1 rotrievable packer set at 7528'. Minimum ID is 2.4375".
 Wiraline re-entry guide is on bottom. To release: turn ¼ turn to the right and pick up.
- 8. Perforations (2 SPF):

Zone 1: 7570-7620', 7676-7736'

Zone 2: 7826-7834', 7858-7880', 7886-7904', 7916-7936', 7944-7964', 7990-8042', 8096-8116', 8191-8201', 8304-8319', 8394-8319', 8395-8399':

- 9. PBTD: 8770'
- 10. Cemant Plug: 45 sacks from 9675' to 9775'.

FIGURE 4

Navajo Relining Company Artesia, New Maxico

Notice is hereby given that pursuant to New Mexico. Water Quality Control Commission Regulations (20.6.2.3108 NMAC), the following discharge permit application(s) has been submitted to the Director of the New Mexico OII Conservation Division ("NMOCD"), 1220 S. Saint Frencis Drive, Santa Fe, New Mexico 87505, Telephone (505) 476-3440.

(87505, Telephone (505) 476-3440: (LÓ03-1) Navejo Retining Company, Darrell Moore, Environmental Manager for Water and Waste, 501 (Ed03-1) Navejo Retining Company, Darrell Moore, Environmental Manager for Water and Waste, 501 (Ed03-1) Navejo Retine Strott, P.O. Box Drawer 159, Artosia, New Maxico, 8211-0159, hes submitted an application vell Cales I injection Yell Discharge Parmit (UIC-CL1-008-1) for Injection well a Moore, Cales I charget and Manager 2000 (Cales) (Cales I charget and the SW4, NW4 of Section 12, Township 18 South, Range 27 East, NMPA, Eddy Couptr, New Maxico, The Injection well I a located approximately 10.5 miles Eest-Southeast of Artesia, on Hwy-82 from Hwy-285 and about 3.3 miles south on Hilliop Road. Oli field exempt and non-asempt non-hazardous. Industrial waste will be transported about 10.5 miles tests. South data frances and the New Maxico. Artesia Retinery located, 15 01 E: Main Street, Artesia, NM Vei & 6 inch das pipeline to WDW-2 for disposal into the Wolfcamp, Claco; and Canyon Formations in the Injection interval from 7,570 to 8,309 feet (depth below ground level). The total dissolved solids concentration of the injection face will not exceed 500 gpm at a maximum injection pressure of 1,510 paig. Groundwater most likely to be affected by a spill, lesk or accidental discharge to 1100 to 1,535 mg4. The discharge plan addresses well operation, monitoring, associated surface to tallinke, and provides a contingency plan in the event of accidental glacharge to protect mesh wells.

The NMOCD has determined that the application is administratively complete and has prepared a draft permit. The NMOCD will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive future notices. Persons interested in obtaining Is lacistive specific majing list to persons who wish to receive future notices. Persons Interisted in obtaining further information; submitting comments or requesting to be on a facility-specific malling list tor future notices may contact the Environmental Bureau Chief of the Oil Conservation Division at the address given address between 8:00 arm. and 4:00 p.m. Mondey through Fridey. or also may be viewed at the above address between 8:00 arm. and 4:00 p.m. Mondey through Fridey. or also may be viewed at the NNOCD web alte http://www.emnrd.state.um.us/ocd. Persons Interested in obtaining a copy of the application and draft permit may contact NMOCD at the address given above. Prior to futing on any proposed discharage permit or major modification, the Olvector shall allow a period of at least thirty (30) days alter the date of publication of this notice, during which Interested persons may submit comments or request the NMOCD held a public hearing. Persuest her bubic hearings shall set form the resons why a hearing should be held. A hearing will be held if the Director determines that there is significant public interest.

Il no public hearing is held, the Director will approve or disapprove the permit based on information avail-able, including all comments received. It a public hearing is held, the Director will approve or disapprove the proposed permit based on information in the permit application and information submitted at the hearing. ۰.

ŗ,

Published in the Artesia Daily Press, August 9, 2009, Legal 20793.

FIGURE 3

PUBLIC NOTICE

NOTICE OF DISCHARGE PERMIT REQUEST

Pursuant to the requirements of the New Mexico Water Quality Control Commission regulation 20 NMAC 6.2.3108, Navajo Refining Company hereby announces that it is making application to the New Mexico Oil Conservation Division (NMOCD) – Environmental Bureau for a discharge permit to inject waste water from Navajo Refining Company's Artesia plant into an injection well that is called WDW-3 located in Unit N, Section 1, Township 18S, Range 27E, Eddy County, New Mexico or approximately 10 miles east of Artesia on US Hwy 82 from US Hwy 285 and about 3 miles south on Hilltop Road. Previously, WDW-1 and WDW-2 were already permitted under separate plans. This waste water will originate at Navajo's Artesia, NM refinery which is located at 501 E. Main Street, Artesia, NM and will then be carried through an underground pipeline approximately 12 miles to the above mentioned well site. The waste water will be injected into the Lower Wolfcamp, Cisco, and Canyon Formations located between 7650 feet and 8620 feet (log depth). The injection rate will not exceed 500 gpm at an injection pressure not to exceed 1530 psig.

The generation of waste water from the Artesia Plant is a result of water that is entrained in the crude supply, water used for cooling and heating, water used to remove salts from the crude supply, and boiler blow down. The Artesia Plant's waste water could potentially be put into WDW-3. This waste water will have a total dissolved solids (TDS) content of 7000 parts per million, a pH from 7 to 9, and minor metal concentrations. In the area of the well location, fresh water is at a depth of 80 feet with a TDS of 1500 to 2200 parts per million.

Navajo's operation of the affected facilities will comply with all applicable State and Federal regulations.

The owner and operator of the facility is:

Navajo Refining Company, L.P. 501 E. Main Street Artesia, NM 88210

Comments and inquiries may be directed to:

Mr. Jim Resinger, Refinery Manager, (505) 748-3311

Persons interested in obtaining further information, submitting comments, or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the New Mexico Oil Conservation Division.

Comments and inquiries on regulations should be directed to:

Director New Mexico Oil Conservation Division (NMOCD) 1220 So. Saint Francis Drive Santa Fe, New Mexico 87505 Telephone: (505) 476-3440

Chavez, Carl J, EMNRD

Subject: Location:	Holly-Frontier (Navajo Refining Co.) OCD UIC Class I (NH) Injection Wells (UICI-008) & Significant Variation in Annulus Pressures Noticed from Monitoring T elephone Conference Call
Start: End:	Wed 10/5/2011 10:30 AM Wed 10/5/2011 12:00 PM
Recurrence:	(none)
Meeting Status:	Meeting organizer
Organizer: Required Attendees:	Chavez, Carl J, EMNRD Bailey, Jami, EMNRD; Sanchez, Daniel J., EMNRD; Ezeanyim, Richard, EMNRD; Jones, William V., EMNRD; Dade, Randy, EMNRD; VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD; Lackey, Johnny; Moore, Darrell; Gonzales, Elidio L, EMNRD; Brown, Maxey G, EMNRD
Categories:	Red Category

Request: Request for Holly-Frontier Representatives to send Carl Chavez any presentation in Acrobat Reader (pdf format) for the conference call for Carl to attach to this meeting notice and also Carl will place presentation files into OCD's Telephone Conference Call Folder at <u>L:\ENVIRONM\WORD\COMMON\OCD Training\TELEPHONE</u> <u>CONFERENCE CALLS\Navajo Refining UIC Wells Meeting 10-5-2011</u>for OCD Staff to access during the telephone conference call and/or to attach the file directly to this meeting notice for all meeting participants to access. Also, please send any agenda items that any of you may wish to add to the agenda by COB next Tuesday. Thank you.

Meeting Call-In Information:

Dial-in Number:1-712-580-8025 (Midwest)Participant Access Code: 4509670Organizer Access Code: 693464 (you must include the leading star key)

Tentative Meeting Agenda:

Purpose: To discuss monitored variation in injection well annulus pressures during injection for 3 UIC Class I (NH) Injection Wells in Eddy County.

- * Introductions
- * Well Locations
- * Fiberglass Effluent Line from Refinery to Injection Wells
- * Monitored Annulus Pressure Data
- * Miscellaneous
- * Path Forward

UICI-8 FOT

9-22-2011.pdf

Well Info 9-23-2011.pdf

Well Inspection Photos.pdf

1

PROJECT SUMMARY PROJECT: 8" Water Effluent Pipeline PROJECT LOCATION: Artesia, NM

The 8" Water Effluent Pipeline project will consist of designing and constructing approximately 15miles of new 8" Fiberglass pipeline. This new pipeline will parallel the existing 8" carbon steel water effluent pipeline (starting inside the Navajo Refinery and heading East to three injection wells). The current 8" carbon steel water effluent line is in service and operating but is highly corroded(due to internal corrosion), thus the need to design/construct a new pipeline parallel to it.

The new pipeline design needs to take into consideration the tie ins to the well injection locations and accommodate minimal down time on the existing carbon steel pipeline when activating the new line and deactivating the old (carbon steel) pipeline. The new fiberglass pipeline will be below grade and all below grade to above grade transitions will be accomplished with internal and external coated carbon steel. These carbon steel sections will also be protected with anode banks, for external corrosion protection. The scope of work will stop at the inlet to the filter isolation valves at each injection well sites. The isolation/block valves (qty 6) will be below grade in a concrete valve box (with the exception to the west river valve setting). The entire construction will consist of approximately 10weeks (see attached schedule).

The 8" Fiberglass is a NOV, STAR, Anhydride line pipe product with a design pressure rating 1500psig at 150deg F(see attached spec sheet). The fluid in this design is effluent water which comes from the Navajo Refinery (see attached water samples). The pipeline max flow rate for design is 750gpm (~26,000bbl/day) at 130deg F(max) and pressures shall stay within the pressure rating of ANSI 600#.

We will use the fiberglass line pipe max temperature rating (150 deg F) and the valves/flanges pressure rating (1480psig) as the constraints for design parameters.

The pipeline will be designed so that it can be pigged (with a foam pig) from the start of the pipeline (inside the refinery), the to last injection well (Mewbourne – Inj. well #1). The two other laterals are short sections with isolation valves that won't be pigged (Chukka –Inj. Well #2; Gains – Inj. Well #3).

This pipeline will have several locations where steel casing will be encasing the fiberglass pipeline to protect it from third party damage as additional precaution. These locations include but are not limited to county road crossings, state highway crossings, river crossing, and major pipeline corridor crossings.

2 of 3

8" Water Effluent Pipeline Project Summary for OCD Rev00

W

Thus overall the new pipeline design will be much more resilient to internal corrosion and the addition of more isolation valves will make it easier to work on sections of the line or injection well if a problem does prevail.

1. Specifications and Standards for Design

HOLLY GNERGY PARTNERS

a. US DOT CFR 49 Part 195 -Hazardous Liquids

b. American Society of Mechanical Engineers B31.4 (ASME)

c. American Petroleum Institute 6D(API)

d. American Petroleum Institute 1104(API)

e. American Petroleum Institute Recommended Practice 11.02(API RP)

f. American Society for Testing and Materials (ASTM)

g. Occupational Safety and Health Administration (OSHA)

h. American Concrete Institute (ACI)

i. National Association of Corrosion Engineers (NACE)

j. National Electric Code (NEC)

8" Water Effluent Pipeline Project Summary for OCD Rev00

3 of 3

SOUTH WITTS SOUTH WITTS SUPPLY Start of Party of Court of Start Start of Start Start of Start of Start Start Start Start of Start of Start Start Start of Start of Start of Start of Start Start Start of Start of Start of Start of Start Start Start of Start of Start of Start of Start Start Start of Start of Start of Start of Start of Start Start Start of Start of Start of Start of Start of Start Start Start of Start of Start of Start of Start of Start of Start Start Start of Start Start Start of Sta 2.4 ŚĘ 0.0

PURCHASE SALAN

HOLLY ENERGY PARTNERS PLAN AND PROFILE STA. 00 + 00 TO STA. 115 + 15.7

BECUMPING IN SECTION IL TOWNSEP IN SOUTH, RANGE TH EAST, MALJAN, A ENDING IN SECTION 31, TOWNSETD 11 SOUTH, RAVICE IN EAST, NARLAN, EDDY COUNTY, NEW MENDED

Condition (2000)
 Cond

Sliderid - +

SALON TY EL JO ON TO GUT

UICI-008 Navajo Refinery UIC Class I (NH) Injection Wells (WDWs, 1, 2 & 3) General Well Expansion Tank (WAM) Monitoring Requirements in Discharge Permit

<u>Injection Record Volumes and Pressures:</u> The owner/operator shall submit quarterly reports of its disposal, operation and well workovers provided herein. The minimum, maximum, average flow waste injection volumes (including total volumes) and annular pressures of waste (oil field exempt/non-exempt non-hazardous waste) injected will be recorded monthly and submitted to the OCD Santa Fe Office on a quarterly basis.

The casing-tubing annulus shall contain fluid and be equipped with a pressure gauge or an approved leak detection device in order to determine leakage in the casing, tubing, or packer. Due to pressure fluctuations observed at Navajo's other two nearby Class I Injection Wells, WDW-2 shall be equipped with an expansion tank under constant 100 psig pressure connected to the casing-annulus and maintained under constant pressure. The expansion tank shall initially be filled half-full (250 gallon expansion tank) with an approved fluid to establish an equilibrium volume and fluid level. Weekly monitoring of fluid levels in the expansion tank coupled with documented additions/ removals of fluids into or out of the expansion tank is required to maintain the equilibrium volume. Any loss or gain of fluids in the expansion tank shall be recorded, and if significant, reported to the OCD within 24 hours of discovery. The owner/operator shall provide the following information on a quarterly basis: weekly expansion tank volume readings shall be provided in a table in the cover letter of each quarterly report. Navajo shall monitor, record and note any fluid volume additions or removals from the expansion tank on a quarterly basis. In addition, any well activity (i.e., plugging, changing injection intervals, etc.) shall be conducted in accordance with all applicable New Mexico Oil Conservation Division regulations.

October 5, 2011

Mr. Darrell Moore Navajo Refining Company P.O. Box 159 Highway 82 East Artesia, New Mexico 88211

RE: Chukka WDW-2 Annulus Pressure Test (APT) Results Subsurface Project Number: 70A6645 Test Date: September 26, 2011

Darrell,

A chart recorder was rigged up to the annulus on the wellhead of Chukka WDW-2. The lines from the wellhead to the annulus pumps were closed off at the wellhead and the annulus pumps were turned off. The chart recorder was set to record for 60 minutes. 12 hours on the chart would correspond to a 30-minute test.

The annulus pressure test was started at 1555 hours. This time corresponds with the "1 AM" curve on the attached chart. At 1555 hours, the annulus pressure was approximately 655 psig. At 1625 hours, the annulus pressure was approximately 643 psig. This time corresponds with the "1 PM" curve on the attached chart. The annulus pressure drop was 12 psig or 1.83%. Therefore, Chukka WDW-2 demonstrated mechanical integrity between the casing-tubing annulus.

Sincerely,

Tim Jones

Tim Jones Project Engineer Subsurface Technology

TJ/bl

Enclosures

T. Walter Cook N.M. PE 20219 Confirmation Attached

ANNULUS PRESSURE TEST OF NAVAJO REFINING WASTE DISPOSAL WELL 2 (WDW-2 CHUKKA)

NAVAJO REFINING COMPANY ARTESIA, NEW MEXICO PROJECT NO. 70A6645

SUBMITTED: SEPTEMBER 2011

SUBSURFACE TECHNOLOGY, INC. 6925 PORTWEST DR., STE. 110 HOUSTON, TEXAS 77024 pfh@subsurfacegroup.com To whom it may concern:

I Thane Walter Cook, Jr PE certify that the engineering materials contained herein have been prepared by personnel under my supervision. I have met the requirements of NMSA 1978 61-23-3 (definition of responsible charge) with respect to these materials. I have personally reviewed the content and made any calculations and changes needed.

Thaine W. Cook, Jr. PE

August 26, 2011

New Mexico PE 20219

WDW-1 Inspection & MIT (8/14/2009)

WDW-1 Sign w/ Fenced & Lighted Facility 24/7

Hot Oil MIT contractor setup for standard annulus pressure test MIT

Looking W-SW at fenced pipeline pig station for ~12 mile WDW-1 back to refinery

Sec. 13

WAMs Unit

Injection pressure station

Hot Oil Truck fluid pressure up on annulus

Dual filtration system before injection

Looking S-SW at pipeline pig station in background

Recommended AFE to replace 1/2 inch dia. pipe with 1 inch or greater.

V. 17

8. 5. 6. 2.

Drums of ethylene glycol stored on ground need to be on impermeable pad

Ethylene glycol drums w/ rusty trash drum close-up

Chart recorder setup w/ valve arrangement during MIT

Hot Oil truck in background connected to annulus during fluid pressure up.

Chart recorder in action

Chart recorder during pressure up w/ calibration sheet

159

Noticed either new or well workover in progress NW of disposal well

WAMs Unit w/ ethylene glycol drums sitting on ground

Line pressure gauges ~ 1300 psi injection pressure during MIT

Contraction of the

Drums on ground near WAMs Unit

Close-up ethylene glycol drum

Fenced facility w/ lighting 24/7

Hot Oil Truck

Standard annulus pressure test MIT under dynamic condition

Trash drum

Chart recorder at end of MIT

Notes:

- Passed standard annulus pressure MIT (Start @ 575 psig & End @ 580 psig) over 30 minutes.
- AFE submitted to replace ½ inch dia. piping w/ 1 inch or greater- safety and breakage concerns.
- Operator indicated WAMs fluid level ok (no loss or addition of ethylene. glycol).
- 4) Drums containing chemicals need to be stored in impermeable pad area or removed from facility.

Standard annulus pressure test MIT under dynamic condition

Chart recorder at end of MIT

Notes:

- Passed standard annulus pressure MIT (Start @ 575 psig & End @ 580 psig) over 30 minutes.
- AFE submitted to replace ½ inch dia. piping w/ 1 inch or greater- safety and breakage concerns.
- Operator indicated WAMs fluid level ok (no loss or addition of ethylene glycol).
- 4) Drums containing chemicals need to be stored in impermeable pad area or removed from facility.

Trash drum

WDW-2 Inspection & MIT (8/14/2009)

Well sign w/ security fence and lighting 24/7

WAMs Unit annulus fluid level monitoring device for OCD UIC Class I Wells

Injection well pressure monitoring station

WAMs Unit close-up w/ manometer

Impermeable curb in process area

Ethylene glycol fluid needs to be stored on impermeable pad area

Electronic in-line flow rate monitor gauge

Wellhead w/ Hot Oil Operator preparing to install chart recorder for MIT

Filtration system before injection w/ boxes for O&M by workers

Pressure gauge reading ~300 psig pre-MIT

Connection to annulus through small ¹/₂ inch dia. fitting

Annulus pressure gauge reading \sim 535 psig during MIT

Chart recorder set-up w/ valve arrangement. Operator wants to replace ½ inch line with 1 inch or greater diameter size due to pressure on small line and breakage concerns during MITs.

Wellhead w/ blow-out preventers

Another in-line pressure gauge reading during pressure up pre-MIT

Chart recorder setup w/ valve arrangement

Annulus pressure increasing during pressure up on annulus pre-MIT

- Passed standard annulus pressure MIT (Start @ 525 psig & End @ 520 psig) over 30 minutes.
- 2) Operator indicated WAMs fluid level ok (no loss or addition of ethylene glycol).
- 3) Drums containing chemicals need to be stored in impermeable pad area or removed from facility.

Notes:

WDW-3 Inspection & MIT (8/14/2009)

UIC Class I Well WDW-3 sign w/ security fence and lighting 24/7.

WAMs Unit near wellhead w/ drums of ethylene glycol not stored in impermeable area

Wellhead from a distance looking SE

Annulus pressure gauge at top of well casing reading ~ 500 psig during pressure up on annulus

WAMs unit w/ overhead piping to wellhead looking E

WAMs Unit fluid loss ~ 10gal/mo.

Annulus pressure gauge during MIT at ~530 psig

Another pressure gauge during MIT at \sim 530 psig

Rusty fittings near wellhead pinhole leak(s)?

WAMs Unit overhead piping into wellhead annulus w/ no apparent leakage observed

Operator wants to replace ½ inch nipple w/ at least 1 inch over breakage concerns and high pressure on small diameter pipe during the MITs, etc.

Hot Oil fluid pressure up on annulus w/ valve configuration during MIT

Chart recorder setup for test

Looking E across fenced and lighted facility w/ ethylene glycol drums stored on ground.

Hot Oil truck setup for MIT

Notes:

- 1) MIT passed (Start @ 560 psig w/ End @ 540 psig) on 8/14/2009.
- MIT system integrity concerns about WAMs Unit & ethylene glycol leakage somewhere in the system. No discernable stains, leaks have been observed at surface. Company called "300 PSI" performed (~ 2006) a proprietary sealant leak application from surface to 1000 ft. and from ~ 7000 ft. to near top of perforated interval.
- Need to test all surface lines, valves, etc. for pinhole leakage and proceed into well if leak not found in surface piping.
- 4) Drums need to be stored in the impermeable pad area.

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Friday, July 01, 2011 8:48 AM
То:	'Lackey, Johnny'; 'Moore, Darrell'
Cc:	Sanchez, Daniel J., EMNRD; Dade, Randy, EMNRD
Subject:	FW: UICI-8 MIT Explanation Due
Attachments:	UICI-8 MIT Explanation Due

Johnny and Darrell:

Good morning. The OCD has not received a response to its request for a signed PE opinion on the anomalous differential annulus pressures occurring in WDWs 1, 2 and 3. At the /31 meeting in Santa Fe OCD requested this information by COB on 6/10. Was this sent? If not, when can Navajo Refining Company have its down hole PE Expert provide an opinion for OCD review?

Also; OCD requested a response to the annual Fall-Off Test (FOT) performed in 2010 related to your request for a reduced FOT schedule for the aforementioned WDWs. The response was expected by 6/30 or early July 2011 (5/31 Mtg. in Santa Fe). When can OCD expect to receive this?

Please contact me if you have questions. Thank you.

File: OCD Online WDWs "Annual Report" and "FOT" Thumbnails

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490

Fax: (505) 476-3462 .

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm

"Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

Chavez, Carl J, EMNRD

Subject: Location:	FW: OCD/NMED Mtg Santa Fe
Start: End: Show Time As:	Tue 5/31/2011 10:00 AM Tue 5/31/2011 12:00 PM Tentative
Recurrence:	(none)
Meeting Status:	Not yet responded
Organizer:	Lackey, Johnny

Johnny Lackey, et al.:

Re: Today's Meeting Summary

The New Mexico Oil Conservation Division (OCD) would like to thank the Navajo Refining Company and New Mexico Environment Department for participating in the meeting this morning. OCD Director Bailey was pleased to be able to meet you and requested a briefing of the meeting.

I'm writing to provide a basic summary and/or briefing of the meeting based on the agenda (see below) and other items that were discussed based on our communication this morning.

Agenda

A. Recovery System Upgrade

- 1. Project Scope
- 2. Drawings
- 3. Completion Schedule

B. Underground Line Testing

- 1. Status
 - 2. Percentage Tested in 2010 (Lovington & Artesia)
 - 3. Praxair Methods
 - a. Long Range Guided Wave Ultrasonic Pipe Screening
 - b. Tracer Tight Pipeline Testing
 - c. Navajo Requests OCD approval to utilize both methods for Underground line testing in lieu of hydrotesting.

C. Injection Wells Fall Off Test Requirements (Any decision on one well per year?)

- 1. One well per year
 - 2. All 3 wells inject into the same formation
 - 3. View graph

Agenda Briefing:

A) Recovery System Upgrade:

OCD responded to the phase separated hydrocarbon recovery system report in March of 2011. The only changes to the original report were: Double walled tanks will be singled walled an set into fiberglass tubs for secondary containment. OCD requested to know if there were other changes from the original report that was reviewed by the OCD and NMED? The June 2011 deadline for completion of Phase I was moved back to December 15, 2011.

OCD requested that Navajo Engineers review the pipeline specs submitted by the consultant to ensure that lines (similar to last design that failed) are of proper size to allow pumps to operate efficiently etc. Also, Navajo indicated that the lines would be accessible during clean-outs when scale blocks flow and is required to be removed to maintain flow rates over time.

Issue: 24 hr. shut-down notification issues when system shut-down due to weather conditions and/or when product recovery wells automatically shut-off due to lack of product of specified thickness. Also, there may be periods of no flow even though the OCD expects flow to occur 24/7 for 365 days per year. There may be segments of the recovery system that go down periodically for more than 24 hours and/or the system may be shut-in due to weather conditions. The tanks are not insulated. OCD requires notification when the above occurs, and if the agencies notice the system is ineffective by the quarterly or annual reporting requirements, then corrective actions to the system must be undertaken. Thus, free-phase recovery well analysis will not be needed at each recovery well location with product.

Recent MW-94 product discovery in well shall be included in Phase I.

NMED and OCD were ok with Navajo moving forward with its Phase I, II and III Plans.

B) Underground Line Testing:

The 14 pipelines that are considered arteries to the refining process and would result in shutting-down units within the refinery to MIT the lines with water must be submitted to the OCD with identification and corresponding units. The refinery would like to use the Prax-Air Tracer Test and Ultrasonic Wave Technology on buried metal lines to identify corrosion spots within the line per Prax-Air QA/QC wall thickness methods and will conserve on water use at the facility. OCD will address this request upon receipt of the line information and communicate with Navajo on an acceptable approach to monitoring and replacement of identified corroded lines in the process. The benefit of the process is that all 14 lines could be tested at one time and during the Prax-Air Tracer Method for the above ground tank leak detection method.

C) Injection Well/Fall-Off Tests (FOTs):

1) OCD requests a Certified PE down-hole analysis from the recent 2010 Fall-Off Tests that supports Navajo's request for reduced FOTing on wells on wells seated in the same injection zone and that are shown to be connected by pressure differentials of offset Class I Wells during the FOT. By Federal Law, all UIC Class I Wells must undergo a FOT annually. WDWs 2 and 3 are within ½ mile of each other, but are over a mile away from WDW-1. OCD noticed that no professional analysis of the bottom-hole pressure data from off-set UIC Class I Wells was provided in the FOT reports for WDWs 1, 2 and 3. Navajo indicated that their down-hole consultant should have an analysis prepared and submitted to the OCD by June 30th or early July 2011.

2) OCD requested that a Certified PE provide an opinion on the variable annulus pressure observed in WDWs 1, 2 and 3 to determine why annulus pressure is oscillating in the wells. Navajo indicated that instrument calibrations and pump stabilizations have been undertaken to prevent the fluctuating annulus pressure from occurring in the wells. Also, Navajo noted that during MITs on the wells, they passed and bradenhead tests were also performed that passed. OCD indicated that the 30 min. MIT is a snap shot in time of well's MIT and that the oscillating annulus pressures should not be occurring, but that an expert opinion or analysis was needed for the OCD and EPA to consider based on the phenomena. Navajo will have a signed certified PE analysis with an opinion to the OCD by COB on 6/10/2011.

Miscellaneous:

The OCD requested a new pipeline MIT procedure and report format for the new fiberglass effluent line from the refinery to the 2 UIC Class I (Non-Hazardous) disposal wells east of the refinery. The OCD received the recent MIT charts, but a procedure and report format with conclusions was not submitted for review by the OCD. Therefore, similar to past pipeline MIT reports from Navajo Refining Company's Consultant, the OCD needs to receive a report that summarizes the process with diagrams with any conclusions by the third-party consultant to ensure that an independent expert certifies that the MIT passed the test. Please submit the new procedure with report outline to the OCD by September 1, 2011.

The RO Reject effluent allowed for good cause by the OCD in the past is in questions based on recent annual reporting of the quality of the effluent. OCD noted from the annual report that Iron and Sulfates were exceeding 20.6.2 NMAC. Why did OCD allow the discharge onto the farm fields? OCD believes the data may have warranted the discharge at the time, but recent sampling indicates exceedances that violate the discharge permit. NMED is reviewing the recent Annual Report and will work with OCD on the response letter to give Navajo some guidance going forward to assess any impacts to ground water, etc. Navajo is looking into any process change that may have elevated the sulfate in the reject water and

														•		
		Phone	5+5-476-3490	575-746-5281	575-746-5490	ELtg-Sht-Sts	505 - 4762 6045	1500-014(205)	505-476-6055							
	(5/31/2011)	VATION DIVISION Title	Env. Emp.	Euv Mgr	DNU. Marie	REF MOR	Project Leader		statt Mgr							
	NAVAJO REFINING COMPANY MEETIN	SANTA FE, NEW MEXICO OIL CONSERV Company	NMOCD	Varajo Refinina	NAVAJO REFINING	NANAJO REFINING	HUB	Hw 8	HWB						- - -	
· ·		Name	Carl Chavez	Davel More	JOHNNY LACKEY	MIChael Wintler	Hupe Moneedin Petrice	LEDNA TSINNAUNUE	Gave Cobrain						•••	
							ب-لاش	la co de c		 	•	• • • • • •		• • •		· .

May 31, 2011

NMED/OCD Meeting Agenda

A. Recovery System Upgrade

1. Project Scope

2. Drawings

3. Completion Schedule

B. Underground Line Testing

1. Status --

2. Percentage Tested in 2010 (Lovington & Artesia)

3. Praxair Methods

a. Long Range Guided Wave Ultrasonic Pipe Screening

b. Tracer Tight Pipeline Testing

c. Navajo Requests OCD approval to utilize both methods for Underground line testing in

lieu of hydrotesting

C. Injection Wells Fall Off Test Requirements (Any decision on one well per year?)

1. One well per year

2. All 3 wells inject into the same formation

3. View graph

A brief PowerPoint presentation during discussion

Average Maximum Maximum Maximum Average Maximum Average <t< th=""><th>· · ·</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>À.</th><th>erage</th><th>erage Maximum</th><th>erage Maximum Minimum</th><th>erage Maximum Minimum</th><th>erage Maximum Minimum</th><th>erage Maximum Minimum</th><th>erage Maximum Minimum</th></t<>	· · ·								À.	erage	erage Maximum	erage Maximum Minimum	erage Maximum Minimum	erage Maximum Minimum	erage Maximum Minimum	erage Maximum Minimum
Pressure Pressure Fressure Pressure			Average	Maximum	Minimum	Average	Maximum	Minimum	Annular	Annular	Annular	٩	verage	verage Maximum	verage Maximum Minimum	verage Maximum Minimum
			Pressure	Pressure	Pressure	Flow	Flow	Flow	Pressure	Pressure	Pressure	>	olume	olume Volume	olume Volume Volume	olume Volume Volume Volume
1 597 689 569 149 274 131 145 133 145 131 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 145 133 143 145 144 145 144 145 144 145 144 145 143 145 144 145 144 145 144 145 144 145 144			(psig)	(psig)	(pisa)	(mqg)	(wd6).	(mdg)	(psig)	(psig)	(psig)	e	- (pd	(pdq) (pdq)	pd) (bpd) (bpd)	pd) (bpd) (bpd) (barrels)
0 597 689 569 144 274 111 155 173 135 173 135 173 135 173 135 133 135 133 135 136 145 146	MaN	چ		•			·		I						Pr	Previous Year
0 582 667 473 114 145 105 103 105 103	Jan-1	0	597	688 ·	569	. 149	274 .	131	169	.268 .	46	5.1	80	08 9.401	08 9.401 4.478	08 9.401 4.478 158.333
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Feb.	. 01	582	627	429	32	145	109	206	407	65	4.57		8 4.971	8 < 971 3.737	8 4.971 3.737 . 128.195
0 605 653 517 127 135 112 333 555 203 4.36 0 514 555 327 130 136 116 315 466 214 4.31 0 615 555 287 130 130 130 136 146 317 4.41 0 644 577 566 321 130 130 130 136 4.41	Mar-	6	605	636	582	131	135	125	414	528	271	4.49	~	2 4 4.636	2 4.636 4.286	2 4 4.636 4 4.286 1 139.254
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Apr-	01	605	653	517	127	. 135	112	343	535	203	4.364	- 1	2,611	2,611 3,846	4.611 3,846 135,279
0 532 622 297 131 136 136 136 136 136 214 4.413 0 645 755 337 136 133 316 515 355 4.413 0 645 755 130 133 136 137 345 345 4.413 0 645 751 133 136 133 316 535 4.413 0 645 733 130 130 326 130 326 4.413 0 656 653 540 133 142 130 356 650 357 4.416 0 656 653 540 133 142 130 356 650 357 4.416 0 656 653 543 133 133 133 356 133 4.417 0 656 653 653 133 133 356 133<	Maj	-10	548	629	366	130	139	11	462	592	245	4.472		, 4.749	. 4.749 3.792	. 4.749 3.792 138.633
0 615 765 367 129 130	5	-10	532	622	297	131	136	126	315	456	214	4.493		4.661	¢.661 4.303	4.303 134.777
	뒻	10	. 615	765	367 .	129	136	69	349	585	182	2125		₹.668	4.668 3.346	4.668 3.346 136.768
0 661 661 631 130	AU	9-10	-644	. 766	352	130	133	125	313	376	255	4.42		4.554	4,554 4.293	4.554 4.293 137,695
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sep	-10	691	691	691	130	99	130	. 425	425	425	4,460	<u></u>	4.460	4.460 4.160	4,460 4,460 133,791
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ŏ	-10	684	177	628	128	142	124	242	366	77	4,385		4.865	4.865 4.263	4.865 4.263 1.135,942
00 634 728 115 140 71 316 650 239 $3,422$ 12 615 771 280 110 224 71 316 650 239 $3,422$ 12 665 625 540 145 153 142 120 366 530 239 4432 10 663 652 542 145 153 142 120 396 510 342 510 4762 00 663 653 143 113	òz	9	(7)	693	280	121	129	76	137	256	15	4,140		4.430	4,430 2.616	4.430 2.616 124.193
099 615 777 280 190 244 77 316 650 128 512 952 912	ă	-10	634	748	283	115	140	7	420	650	509	3,960	_	.814	.814 2.431	1.814 2.431 122,746
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F	5003	L: 615	111	280	8	274		316	650	-15	4,442	6 	Ş	401 2,431	401 2,431 1,625,608
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŵ	2.0	۰.	-		•								•	'n	Previous Year
(0) 568 625 442 145 130 346 530 551 4963 550 (1) 675 650 523 135 142 153 143 510 551 586 551 4863 553 (1) 660 926 523 135 142 123 346 551 734 453 48 (1) 640 660 926 533 133 143 116 570 744 159 418 4719 48 51 48 475 48 475 48 475 48 48 51 48 475 48 475 48 475 48 48 51 48 475 48 48 48 475 48 48 475 48 48 475 48 48 475 48 48 475 48 48 475 48 48 475 48	i s	2	605	625	560	149	. 153	142	210	346	128	5.122	5.2	52	52 4,882	52 4,882 158,777
0 655' 650 560 145 153 142 128 439 616 360 4968 521 4304 4305 0 6603 523 143 113 313 322 531 233 4303 43 4303 43 4303 43 4303 43 4303 43 4303 43 4303 43 4303 43 4303 43 4303 43 4303 43 <	5	2	568	625	442	145	149	130	346	530	257	4.963	5.0	67	97 4.465	97 4.465 138.969
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mar	10	625	650	558.	145	153	. 142	499	616	360	4:968	5.2	0;	4.857	40 4.857 154 635
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Apr-	10	624	672	. 502	. 142	145	128	442	652 -	251	4,854	4.9	88	38 4:404	88 4.404 150.481
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	May	.10	660	926	523	135 -	. 142	C21 .	396	551	252	4,630	4.86	90	56. 4.227	56. 4.227 1 143.524
0 647 617 610 138 143 116 570 544 159 $4,79$ $4,81$ 0 638 756 141 113 120 187 192 4755 487 0 639 753 113 120 118 345 775 175 4755 4165 0 591 133 123 123 153 516 175 4555 4755 516 0 591 133 123 153 501 133 127 95 400 716 4755 517 517 526 4756 4756 457 523 517 523 517 717 712 523 5107 512 5107 523 5007 5107 523 5007 717 722 6187 717 723 6137 5107 5107 <	'nΓ	10	648	·-668	583	138	143	135	322	537	124	4.735	4.86	5	39 4,625	39 4.625 142.053
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	히	0	. 647	679	401	138	143	116	570	724	159	4.719	4.8	ģ	36 . 3.960	36 1, 3.960 146.279
(0) (694) 735 (469) 130 150 118 342 727 197 $4,753$ 511 (1) (293) 713 130 131 130 136 165 415 4153 482 720 175 4650 416 4165 416 4165 416 4165 416 4165 416 4165 416 4165 416 4165 416 4165 4176 512 4166 412 512 4160 4176 512 4176 512 4176 512 4176 512 4176 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 412 512 <td< td=""><td>Aug</td><td><u>.</u></td><td>1 688</td><td>. 607</td><td>661</td><td>140</td><td>141</td><td>138</td><td>387</td><td>608.</td><td>182</td><td>4,785</td><td>4.8</td><td>57</td><td>24 _ 1, 4.736</td><td>24 - 1, 4,736 1, 148,339</td></td<>	Aug	<u>.</u>	1 688	. 607	661	140	141	138	387	608.	182	4,785	4.8	57	24 _ 1, 4.736	24 - 1, 4,736 1, 148,339
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sep	ġ	584	795	469	139	150	118	349	. 727	197	4,753	5.1	ទ	53 4.060	53 4.060 1±2.595
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ö	.01	639	213	150	-36	141	98	482	780	175	4.650	4	م	43 3.368	43 3.368 1.44.147
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ž.	밀	628	701	279	133	8	s i	291	576	00 1 1 1	4,565	4.7	B	33 3.300	33 3.300 136.954
123 123	ő i	01-0	160	083	233	55	142	ŝ	503	971	201	0.00	4.0		52 1 3.601	52 1 3.601 1 140.898
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6003	634	1. 926	150	651	153	36	400	780	124	4,776	-2'5	22	52 3,300	52 3,300 1.747,643
0 614 637 572 199 208 183 262 337 223 6.828 7.11 7.43 10 633 653 570 217 117 330 403 251 6.871 7.11 7.43 10 653 653 500 217 184 371 526 7.011 7.43 10 653 658 507 204 217 184 371 536 7.011 7.43 10 655 659 566 179 189 184 331 536 7.004 7.11 7.43 10 655 659 566 179 189 184 334 436 253 6.136 6.136 6.146<	ĝ	N-3			ĺ	•	i								ă.	Previous Year
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	an l	ē	614	- 637	572	199	208	183	262	357	223	6.828	1.7	20	20 6.275	20 6.275 211.672
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E.	9	587	639	422 ·	200	212	021	320	403	251	6.871	7.2	35	75 5.834	75 5.834 192.376
(0 6.35 6.66 507 2.04 2.17 184 371 5.28 7.004 6.6.139 193 191 191 192 192 192 192 192 192 192 192 192 192 104 6.136 6.136 6.136 6.136 6.136 6.136 6.136 6.136 6.136 6.136 6.126 7.2 6.146 6.126 7.2 6.146 6.136 6.136 6.136 6.136 6.136 6.136 6.136 6.136 7.2 6.146 7.2 6.146 7.2 6.146 7.2 6.146 7.2 6.146 6.136 6.126 7.2 <td>Mar</td> <td><u>9</u></td> <td>· · 633</td> <td>. 657 .</td> <td>I 570</td> <td>209</td> <td>- 217</td> <td>-187</td> <td>379 -</td> <td>529</td> <td>. 236</td> <td>121.2</td> <td>4.7</td> <td>ŝ</td> <td>45 6.406</td> <td>45 6.406 222.303</td>	Mar	<u>9</u>	· · 633	. 657 .	I 570	209	- 217	-187	379 -	529	. 236	121.2	4.7	ŝ	45 6.406	45 6.406 222.303
10 620 688 450 169 195 128 324 448 253 5,807 6.6 0 655 679 556 179 187 154 338 735 5,307 6.6 0 657 755 567 756 179 187 154 333 450 104 6.7.36 6.6 10 653 772 759 179 182 174 303 420 104 6.1.56 6.4 0 663 772 279 189 168 2.84 4.27 9 6.134 6.2.3 0 663 772 279 189 168 2.84 4.27 9 6.130 7.3 0 663 727 279 166 2.84 4.27 9 5.154 6.0 0 663 284 166 2.84 4.27 9 5.154 6.150 7.3	Ϋ́ם	20-	635	668	L 507	204 204	217 .	184	371	538	263	7.004	2.4	52	52 6.314	152 6.314 217.122
00 655 6.9 556 179 187 154 333 4.35 251 6.136 6.3 00 657 705 366 179 189 159 323 460 104 6.136	β	-10	620	685	450	169	-195	128	324	448	253	5.807	6.6	578	578 4.374	578 4.374 150.017
0 657 705 366 179 189 199 323 660 104 6,126 6,0 10 692 777 578 179 189 168 284 477 9 6,144 6,126 6,0 10 663 777 279 189 166 284 427 9 6,144 6,126 6,143 6,143 6,143 6,143 6,143 6,143 6,143 6,143 6,143 6,143 7,2 6,143 7,2 6,143 7,2 6,143 7,2 6,137 6,143 7,2 7,3 6,143 7,3 6,143 7,2 7,3 6,143 7,2 7,3 6,143 7,2 7,3 6,143 7,2 7,3 6,143 7,3 6,143 7,3 6,143 7,3 6,143 7,3 6,143 7,3 7,43 6,143 7,3 6,143 7,3 6,143 7,3 6,143 7,3 6,143 7,3	S	10	655	679	· 596	179	187	154	338	435	251	6.139	9.	5	102 5.287	102 5.287 154.185
(0) 693 712 678 179 182 174 30a 412 124 6.144 6. 10 663 727 279 179 189 169 264 422 9 6.154 6. 10 663 727 279 189 169 264 427 9 6.154 6. 10 666 724 189 211 161 256 107 6.450 7 10 666 724 189 160 227 356 107 6.305 6.1 10 630 696 285 185 194 166 338 6.4 17 6.33 6.1 10 630 696 285 184 166 331 6.24 9 6.452 7	-17	0	657	705	366	179	189	159	323	460	104	6.126	ö.	f <u></u>	490 5.464	190 5.464 189.917
(0) 663 727 279 189 168 284 427 9 6.154 6.6 (c) 684 720 275 189 211 161 228 424 10 6.430 7.3 (c) 666 724 185 191 161 228 324 10 6.430 7.3 6.430 7.3 6.430 7.3 6.430 7.3 6.430 7.3 6.430 7.3 6.430 7.3 6.135 190 7.3 6.235 6.1 6.145 190 2.27 336 5.4 17 5.35 6.1 6.145 7.4 10 5.452 17 6.145 7.4 10 5.452 7.4 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	Aug	<u>-</u>	269	712-	678	621	182	174	304	412	194	6,144	6.2	53	253 5.953	253 5,953 150,453
(c) 687- 720 275 189 211 161 258- 424 10 6.490 72 (10) 666 724 284 165 193 160 233 65 6.353 65.65 6.450 7.23 6.65 7.24 284 165 7.24 166 7.23 556 4.93 6.35 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 9.5 6.5 7.4 6.45 7.4 6.45 7.4 6.45 7.4 6.45 7.4 6.45 7.4 9.5 6.5 9.5 6.5 9.5 6.45 7.4 6.45 7.4 6.45 7.4 6.45 7.4 7.4 6.45 7.4 7.4 7.4 </td <td>Se</td> <td>9</td> <td>663</td> <td>1 727</td> <td>279</td> <td>179</td> <td>189</td> <td>1 168</td> <td>284</td> <td>427</td> <td>6</td> <td>6,154</td> <td>6.9</td> <td>67</td> <td>97 5.764</td> <td>97 5.764 184.619</td>	Se	9	663	1 727	279	179	189	1 168	284	427	6	6,154	6.9	67	97 5.764	97 5.764 184.619
10 666 724 284 186 193 180 227 356 137 6.363 6.6 10 6.30 696 285 185 194 146 338 6.24 197 6.323 6.6 10 6.30 696 285 185 194 146 338 6.24 197 6.329 6.6 009 6.45 78 217 128 311 6.24 9 6.452 7.4	ö	-10	687	. 067	275	189	211	191	258.	424	0	6,490	~	48	148 5.516	1 5.516 201,178
10 630 696 285 185 194 146 338 624 197 6.329 6.6 009 645 730 275 188 217 128 311 624 9 5.452 7.7	ş	9	666	724	284	186	193	160	227	356 -	137	6,363	6.6	27	327 6.167	327 5.167 190.880
<u>009 545 790 275 188 217 128 311 524 9 5,452 7,5</u>	2	익	630	696	285	185	ž	146	338	624	197	6.329	6.6	090	50 4.997	550 4.997 196.195
	AL 2	500	645	790	275	188	: 217	128	311	624 .	6	6.452	2.7	52	52 4,374	52 4,374 2,360,915

1/28/2011 10:2

52.065.213

otal injected fluids:

2010 SUMMARY OF QUARTERLY MONTHLY INJECTION PRESSURES, RATES, AND VOLUMES

o Refining Company. L.L.C

FAX (575) 746-5283 DIV. ORDERS (575) 746-5481 TRUCKING (575) 746-5458 PERSONNEL

(575) 746-5419 ACCOUNTING 501 EAST MAIN STREET • 定じしんBOX2159 2: は以(575) 746-5451 ENV/PURCH/MKTG ARTESIA, NEW MEXICO 88211-0159 (575) 746-5421 ENGINEERING TELEPHONE (575) 748-3311

REFINING COMPANY, LLC

RECEIVED OCD

FAX

July 29, 2011

Mr. Carl Chavez NM Oil Conservation Division Environmental Bureau 1220 S. St. Francis Santa Fe, NM 87505-5472

RE: 2011 Second Quarter Injection Report for Wells WDW-1, WDW-2 and WDW-3 Navajo Refining Company, L.L.C.

Dear Mr. Chavez,

Enclosed, please find the sampling results for the second quarter of 2011 from the injected fluids and a spread sheet showing various volumes and pressures as requested in your October 6, 1999 letter. You will notice that the annular pressure on the wells continues to vary unpredictably. This is due to the wide range of temperatures we are seeing at the wells. A better gauge to determine if the tubing is leaking is a volume measurement of the fluid in the annular space via the graduated tanks located at the well head. The volumes for these three tanks are reported in the attached Well Annulus Measurement System (WAMS) table. We track this fluid level and have found it to be dropping at a very slow rate in WDW-3. We are closely monitoring the fluid level for this well. The annular space also dropped at WDW-2 during the first week of June; however there were several small leaks on the stainless steel tubing near the antifreeze pump and gauges that were repaired during that timeframe. We are working with a third party to have annulus pressure tests preformed on the wells per your request. A Mechanical Integrity Test (MIT) on all the wells was last done on August 12, 2010 and a quarterly Bradenhead for WDW-3 was last done on June 29, 2011. All of the wells passed. The quarterly Bradenhead on WDW-3 is per Carl Chavez's email of December 9, 2009 to Darrell Moore.

This report covers the period from April 1, 2011 to June 30, 2011. We have disposed a total of 54,937,906 barrels of fluid into the three wells as of June 30, 2011. The volume per well is:

- 30,275,471 barrels into WDW-1
- 16,823,737 barrels into WDW-2
- 7,838,697 barrels into WDW-3

This report is signed and certified in accordance with WQCC section 5101.G. If there are any questions, please call me at 575-748-3311.

Respectfully,

Michael McKee Vice-President, Navajo Refinery

Electronic cc (w/enc.): Environmental File: DGM, JEL, AMS Navajo: (ART: REF - 4 A 02 D)

An Independent Refinery Serving NEW MEXICO • ARIZONA • WEST TEXAS • NORTHERN MEXICO

Navajo Refining Company, L.L.C.

2011 SECOND QUARTER WEEKLY WAMS LEVEL TABLE

6/28/11	175	150	150	
5/20/11	175	150	150	
/13/11 6	175	150	150	
5/6/11, 6	175	150	150	
/31/11 6	175	180	150	
/24/11 5	175	180	150	
/16/11 5	175	180	150	
<u>.</u>				
5/9/11	175	180	150	
5/2/11	175	180	150	
4/25/11	175	180	150	
4/18/11 .	180	180	155	
4/11/11	180	180	155	
4/5/11	180	180	155	
	NDW -1'	NDW-21	NDW-31	

Comments: Several small antifreeze leaks near the antifreeze pump and gauges were repaired at WDW-2 during the first week of June. These leaks were repaired by replacing stainless steel tubing and fittings.

¹ Graduated tank gauged weekly in the field. Reading is in gallons.

M.Injection Wells/Reports/2011/ 2nd 2011 qirly rpl.xls WAMS Tanks

7/21/201111 11 AM

Chavez, Carl J, EMNRD

Subject: Location:	FW: OCD/NMED Mtg Santa Fe
Start: End: Show Time As:	Tue 5/31/2011 10:00 AM Tue 5/31/2011 12:00 PM Tentative
Recurrence:	(none)
Meeting Status:	Not yet responded
Organizer:	Lackey, Johnny

Johnny Lackey, et al.:

Re: Today's Meeting Summary

The New Mexico Oil Conservation Division (OCD) would like to thank the Navajo Refining Company and New Mexico Environment Department for participating in the meeting this morning. OCD Director Bailey was pleased to be able to meet you and requested a briefing of the meeting.

I'm writing to provide a basic summary and/or briefing of the meeting based on the agenda (see below) and other items that were discussed based on our communication this morning.

Agenda

A. Recovery System Upgrade

- 1. Project Scope
- 2. Drawings
- 3. Completion Schedule

B. Underground Line Testing

- 1. Status
- 2. Percentage Tested in 2010 (Lovington & Artesia)
- 3. Praxair Methods
 - a. Long Range Guided Wave Ultrasonic Pipe Screening
 - b. Tracer Tight Pipeline Testing
 - c. Navajo Requests OCD approval to utilize both methods for Underground line testing in lieu of hydrotesting.

C. Injection Wells Fall Off Test Requirements (Any decision on one well per year?)

- 1. One well per year
- 2. All 3 wells inject into the same formation
- 3. View graph

Agenda Briefing:

A) Recovery System Upgrade:

OCD responded to the phase separated hydrocarbon recovery system report in March of 2011. The only changes to the original report were: Double walled tanks will be singled walled an set into fiberglass tubs for secondary containment. OCD requested to know if there were other changes from the original report that was reviewed by the OCD and NMED? The June 2011 deadline for completion of Phase I was moved back to December 15, 2011.

1

OCD requested that Navajo Engineers review the pipeline specs submitted by the consultant to ensure that lines (similar to last design that failed) are of proper size to allow pumps to operate efficiently etc. Also, Navajo indicated that the lines would be accessible during clean-outs when scale blocks flow and is required to be removed to maintain flow rates over time.

Issue: 24 hr. shut-down notification issues when system shut-down due to weather conditions and/or when product recovery wells automatically shut-off due to lack of product of specified thickness. Also, there may be periods of no flow even though the OCD expects flow to occur 24/7 for 365 days per year. There may be segments of the recovery system that go down periodically for more than 24 hours and/or the system may be shut-in due to weather conditions. The tanks are not insulated. OCD requires notification when the above occurs, and if the agencies notice the system is ineffective by the quarterly or annual reporting requirements, then corrective actions to the system must be undertaken. Thus, free-phase recovery well analysis will not be needed at each recovery well location with product.

Recent MW-94 product discovery in well shall be included in Phase I.

NMED and OCD were ok with Navajo moving forward with its Phase I, II and III Plans.

B) Underground Line Testing:

The 14 pipelines that are considered arteries to the refining process and would result in shutting-down units within the refinery to MIT the lines with water must be submitted to the OCD with identification and corresponding units. The refinery would like to use the Prax-Air Tracer Test and Ultrasonic Wave Technology on buried metal lines to identify corrosion spots within the line per Prax-Air QA/QC wall thickness methods and will conserve on water use at the facility. OCD will address this request upon receipt of the line information and communicate with Navajo on an acceptable approach to monitoring and replacement of identified corroded lines in the process. The benefit of the process is that all 14 lines could be tested at one time and during the Prax-Air Tracer Method for the above ground tank leak detection method.

C) Injection Well/Fall-Off Tests (FOTs):

1) OCD requests a Certified PE down-hole analysis from the recent 2010 Fall-Off Tests that supports Navajo's request for reduced FOTing on wells on wells seated in the same injection zone and that are shown to be connected by pressure differentials of offset Class I Wells during the FOT. By Federal Law, all UIC Class I Wells must undergo a FOT.annually. WDWs 2 and 3 are within ½ mile of each other, but are over a mile away from WDW-1. OCD noticed that no professional analysis of the bottom-hole pressure data from off-set UIC Class I Wells was provided in the FOT reports for WDWs 1, 2 and 3. Navajo indicated that their down-hole consultant should have an analysis prepared and submitted to the OCD by June 30th or early July 2011.

2) OCD requested that a Certified PE provide an opinion on the variable annulus pressure observed in WDWs 1, 2 and 3 to determine why annulus pressure is oscillating in the wells. Navajo indicated that instrument calibrations and pump stabilizations have been undertaken to prevent the fluctuating annulus pressure from occurring in the wells. Also, Navajo noted that during MITs on the wells, they passed and bradenhead tests were also performed that passed. OCD indicated that the 30 min. MIT is a snap shot in time of well's MIT and that the oscillating annulus pressures should not be occurring, but that an expert opinion or analysis was needed for the OCD and EPA to consider based on the phenomena. Navajo will have a signed certified PE analysis with an opinion to the OCD by COB on 6/10/2011.

Miscellaneous:

The OCD requested a new pipeline MIT procedure and report format for the new fiberglass effluent line from the refinery to the 2 UIC Class I (Non-Hazardous) disposal wells east of the refinery. The OCD received the recent MIT charts, but a procedure and report format with conclusions was not submitted for review by the OCD. Therefore, similar to past pipeline MIT reports from Navajo Refining Company's Consultant, the OCD needs to receive a report that summarizes the process with diagrams with any conclusions by the third-party consultant to ensure that an independent expert certifies that the MIT passed the test. Please submit the new procedure with report outline to the OCD by September 1, 2011.

The RO Reject effluent allowed for good cause by the OCD in the past is in questions based on recent annual reporting of the quality of the effluent. OCD noted from the annual report that Iron and Sulfates were exceeding 20.6.2 NMAC. Why did OCD allow the discharge onto the farm fields? OCD believes the data may have warranted the discharge at the time, but recent sampling indicates exceedances that violate the discharge permit. NMED is reviewing the recent Annual Report and will work with OCD on the response letter to give Navajo some guidance going forward to assess any impacts to ground water, etc. Navajo is looking into any process change that may have elevated the sulfate in the reject water and

	[]	 			r	1	·		- <u></u>					, , , , , , , , , , , , , , , , , , , 	- <u>-</u>	
							Chue Cobrain	LEONA TSINULUINUIE	Hope Monzeglio Petrie	Michael Whatley	Jothny LAckey	Daviell Moore	Carl Chave2	Name		
						-	HWB	HWB	HWB	NAVAJO REFINING	NAVAJO PETINING	Navajo Rolining	NMOCD	Company	NAVAJO REFINING COMPANY MEET	
							Staff Mgt		Project Leader	REF MOR	Bur. Mgn	Env. Mar	Envi Emit.	Title	IN (5/31/2011)	
•							505-476-6055	fos)476-6057	505 - 476- 6045	Ehtg-8ht-5ts	5-75-746-5490	575-746-5281	5+5-476-3490	Phone		

May 31, 2011

NMED/OCD Meeting Agenda

A. Recovery System Upgrade

- 1. Project Scope
- 2. Drawings
- 3. Completion Schedule

B. Underground Line Testing

- 1. Status
- 2. Percentage Tested in 2010 (Lovington & Artesia)
- 3. Praxair Methods
 - a. Long Range Guided Wave Ultrasonic Pipe Screening
 - b. Tracer Tight Pipeline Testing
 - c. Navajo Requests OCD approval to utilize both methods for Underground line testing in lieu of hydrotesting.

C. Injection Wells Fall Off Test Requirements (Any decision on one well per year?)

- 1. One well per year
- 2. All 3 wells inject into the same formation
- 3. View graph

A brief PowerPoint presentation during discussion

Chavez, Carl J, EMNRD

Subject: Location:	FW: OCD/NMED Mtg Santa Fe
Start: End: Show Time As:	Tue 5/31/2011 10:00 AM Tue 5/31/2011 12:00 PM Tentative
Recurrence:	(none)
Meeting Status:	Not yet responded
Organizer:	Lackey, Johnny

Johnny Lackey, et al.:

Re: Today's Meeting Summary

The New Mexico Oil Conservation Division (OCD) would like to thank the Navajo Refining Company and New Mexico Environment Department for participating in the meeting this morning. OCD Director Bailey was pleased to be able to meet you and requested a briefing of the meeting.

I'm writing to provide a basic summary and/or briefing of the meeting based on the agenda (see below) and other items that were discussed based on our communication this morning.

Agenda

A. Recovery System Upgrade

- 1. Project Scope
- 2. Drawings
- 3. Completion Schedule

B. Underground Line Testing

- 1. Status
- 2. Percentage Tested in 2010 (Lovington & Artesia)
- 3. Praxair Methods
 - a. Long Range Guided Wave Ultrasonic Pipe Screening
 - b. Tracer Tight Pipeline Testing
 - c. Navajo Requests OCD approval to utilize both methods for Underground line testing in lieu of hydrotesting.

C. Injection Wells Fall Off Test Requirements (Any decision on one well per year?)

- 1. One well per year
- 2. All 3 wells inject into the same formation
- 3. View graph

Agenda Briefing:

A) Recovery System Upgrade:

OCD responded to the phase separated hydrocarbon recovery system report in March of 2011. The only changes to the original report were: Double walled tanks will be singled walled an set into fiberglass tubs for secondary containment. OCD requested to know if there were other changes from the original report that was reviewed by the OCD and NMED? The June 2011 deadline for completion of Phase I was moved back to December 15, 2011.

OCD requested that Navajo Engineers review the pipeline specs submitted by the consultant to ensure that lines (similar to last design that failed) are of proper size to allow pumps to operate efficiently etc. Also, Navajo indicated that the lines would be accessible during clean-outs when scale blocks flow and is required to be removed to maintain flow rates over time.

Issue: 24 hr. shut-down notification issues when system shut-down due to weather conditions and/or when product recovery wells automatically shut-off due to lack of product of specified thickness. Also, there may be periods of no flow even though the OCD expects flow to occur 24/7 for 365 days per year. There may be segments of the recovery system that go down periodically for more than 24 hours and/or the system may be shut-in due to weather conditions. The tanks are not insulated. OCD requires notification when the above occurs, and if the agencies notice the system is ineffective by the quarterly or annual reporting requirements, then corrective actions to the system must be undertaken. Thus, free-phase recovery well analysis will not be needed at each recovery well location with product.

Recent MW-94 product discovery in well shall be included in Phase I.

NMED and OCD were ok with Navajo moving forward with its Phase I, II and III Plans.

B) Underground Line Testing:

The 14 pipelines that are considered arteries to the refining process and would result in shutting-down units within the refinery to MIT the lines with water must be submitted to the OCD with identification and corresponding units. The refinery would like to use the Prax-Air Tracer Test and Ultrasonic Wave Technology on buried metal lines to identify corrosion spots within the line per Prax-Air QA/QC wall thickness methods and will conserve on water use at the facility. OCD will address this request upon receipt of the line information and communicate with Navajo on an acceptable approach to monitoring and replacement of identified corroded lines in the process. The benefit of the process is that all 14 lines could be tested at one time and during the Prax-Air Tracer Method for the above ground tank leak detection method.

C) Injection Well/Fall-Off Tests (FOTs):

1) OCD requests a Certified PE down-hole analysis from the recent 2010 Fall-Off Tests that supports Navajo's request for reduced FOTing on wells on wells seated in the same injection zone and that are shown to be connected by pressure differentials of offset Class I Wells during the FOT. By Federal Law, all UIC Class I Wells must undergo a FOT.annually. WDWs 2 and 3 are within ½ mile of each other, but are over a mile away from WDW-1. OCD noticed that no professional analysis of the bottom-hole pressure data from off-set UIC Class I Wells was provided in the FOT reports for WDWs 1, 2 and 3. Navajo indicated that their down-hole consultant should have an analysis prepared and submitted to the OCD by June 30th or early July 2011.

2) OCD requested that a Certified PE provide an opinion on the variable annulus pressure observed in WDWs 1, 2 and 3 to determine why annulus pressure is oscillating in the wells. Navajo indicated that instrument calibrations and pump stabilizations have been undertaken to prevent the fluctuating annulus pressure from occurring in the wells. Also, Navajo noted that during MITs on the wells, they passed and bradenhead tests were also performed that passed. OCD indicated that the 30 min. MIT is a snap shot in time of well's MIT and that the oscillating annulus pressures should not be occurring, but that an expert opinion or analysis was needed for the OCD and EPA to consider based on the phenomena. Navajo will have a signed certified PE analysis with an opinion to the OCD by COB on 6/10/2011.

Miscellaneous:

The OCD requested a new pipeline MIT procedure and report format for the new fiberglass effluent line from the refinery to the 2 UIC Class I (Non-Hazardous) disposal wells east of the refinery. The OCD received the recent MIT charts, but a procedure and report format with conclusions was not submitted for review by the OCD. Therefore, similar to past pipeline MIT reports from Navajo Refining Company's Consultant, the OCD needs to receive a report that summarizes the process with diagrams with any conclusions by the third-party consultant to ensure that an independent expert certifies that the MIT passed the test. Please submit the new procedure with report outline to the OCD by September 1, 2011.

The RO Reject effluent allowed for good cause by the OCD in the past is in questions based on recent annual reporting of the quality of the effluent. OCD noted from the annual report that Iron and Sulfates were exceeding 20.6.2 NMAC. Why did OCD allow the discharge onto the farm fields? OCD believes the data may have warranted the discharge at the time, but recent sampling indicates exceedances that violate the discharge permit. NMED is reviewing the recent Annual Report and will work with OCD on the response letter to give Navajo some guidance going forward to assess any impacts to ground water, etc. Navajo is looking into any process change that may have elevated the sulfate in the reject water and

also to discuss routing the farmland discharge (~ 8000 bbl/day) to the Artesia WWTP where the water could be treated and reused, but at a cost to the refinery.

na nyezh ezh a c

NMED is expecting Work Plan in July of 2011 regarding the

End *****************

-----Original Appointment-----From: Lackey, Johnny Sent: Wednesday, May 25, 2011 5:38 PM To: Lackey, Johnny; Whatley, Michael; Moore, Darrell; Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV; Monzeglio, Hope, NMENV; jami.bailey@statenm.us; VonGonten, Glenn, EMNRD Subject: OCD/NMED Mtg When: Tuesday, May 31, 2011 10:00 AM-12:00 PM (GMT-07:00) Mountain Time (US & Canada). Where: Santa Fe

Follow up meeting to discuss Navajo's Recovery System Project, Underground Line Testing and Injection Wells Fall Off Testing

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

W

May 31 11 Meeting Agenda.doc