MA

ABOVE THIS LINE FOR DIVISION USE ONLY

NEW MEXICO OIL CONSERVATION DIVISION - Engineering Bureau -

		ADMINISTRAT	IVE APPLIC	ATION COV	/ERSHEET	
	THIS COVERSH	EET IS MANDATORY FOR ALL ADMIP	ISTRATIVE APPLICATIONS	FOR EXCEPTIONS TO D	IVISION RULES AND REGULATION	is
Applic	[PC-Po	[NSP-Non-Standard P	Orilling] [SD-Sin CTB-Lease Commin - Off-Lease Storag sion] [PMX-Pres sposal] [IPI-Inj	nultaneous Dedic ngling] [PLC-P ge] [OLM-Off-I sure Maintenanc ection Pressure 1	cation] ool/Lease Comminglin Lease Measurement] ce Expansion] Increase]	
[1]	TYPE OF A	PPLICATION - Chec Location - Spacing U	Init - Directional		Profession and	
	Check [B]	One Only for [B] and Commingling - Stora			□ OLM	
	[C]	Injection - Disposal - ☐ WFX ☐ PMX		e - Enhanced Oi IPI	il Recovery □ PPR	
[2]	NOTIFICAT [A]	TION REQUIRED TO Working, Royalty		~ ~ * *	_	
	[B]	x₃ Offset Operators, I	easeholders or S	urface Owner		
	[C]	*** Application is One	Which Requires	Published Lega	al Notice	
	[D]	▼ Notification and/or U.S. Bureau of Land Mar	Concurrent App			
	[E]	*** For all of the above	e, Proof of Notific	cation or Public	ation is Attached, and	l/or,
	[F]	☐ Waivers are Attach	ied			
[3]	INFORMAT	ION / DATA SUBMI	TTED IS COM	PLETE - Stater	ment of Understandin	g
Regularization (WI, I	lations of the Orival is accurate a RI, ORRI) is co	, or personnel under mil Conservation Division and complete to the best mmon. I understand the ge returned with no ac	on. Further, I ass st of my knowled nat any omission	ert that the attac ge and where ap	ched application for a pplicable, verify that a	dministrative all interest
	I STATHEM	Note: Statement must	be completed by an inc		ory capacity.	B/10/co

15053939758 OIL CONSERVATION DIVISION 2040 SOUTH PACHECO SANTA FE, NEW MEXICO 87505

T-624 P.01/04 Job-795 FORM C-108 Revised 4-1-98

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery Pressure Maintenance XX Disposal Storage Application qualifies for administrative approval? X Yes No
/ II .	OPERATOR: Concho Resources Inc.
	ADDRESS: 110 W. Louisiana Ste 410; Midland, Tx 79701
	CONTACT PARTY: Terri Stathem / Jim Blount PHONE: 915-683-7443
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
/ IV.	Is this an expansion of an existing project? Yes XX No If yes, give the Division order number authorizing the project:
⁄ v .	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
√VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
≠VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: James Blount TITLE: Sr. Operations Engineer
	NAME: James Blount TITLE: Sr. Operations Engineer SIGNATURE: DATE: 8-/0-00
+	If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:
DISTR	IBUTION: Original and one copy to Santa Fe with one copy to the appropriate District Office

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

State of New Mexico, County of Lea.

I, KATHI BEARDEN

Publisher	_
of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, do sole swear that the clipping attach hereto was published once a week in the regular and entire issue of said paper, and not a supplement thereof for a peri	ed
of1	
	weeks.
Beginning with the issue date	ed
August 4	2000
and ending with the issue dat	
August 4	2000
Kachi Bearder	-
Publisher	
Sworn and subscribed to be	efore
me this 4th	lay of
August	2000
godi Gendon	
Notary Public.	

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937, and payment of fees for said publication has been made.

My Commission expires

October 18, 2000

(Seal)

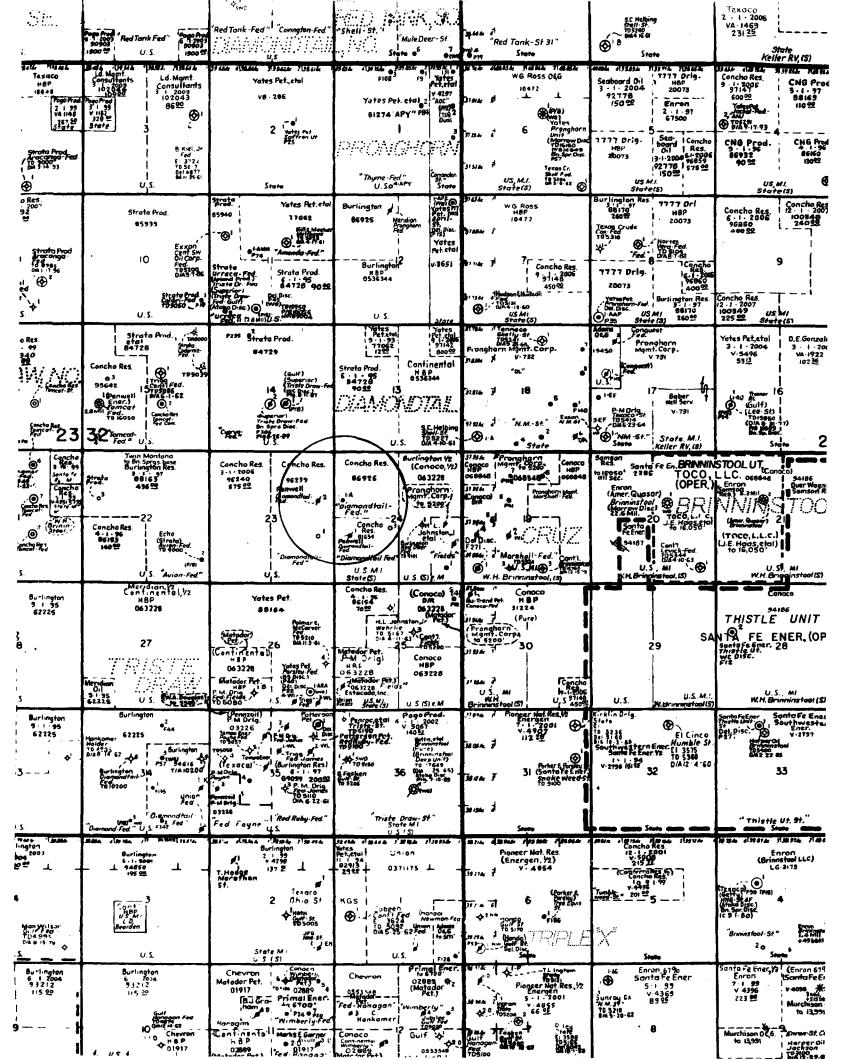
LEGAL NOTICE August 4, 2000 NOTICE OF INTENT TO INJECT PRODUCED WATER

CONCHO RESOURCES INC. 110 W. LOUISIANA, SUITE 410 MIDLAND, TX 79701

Contact Person: Terri Stathem, Production Analyst (915) 683-7443

The purpose is to inject produced water into the Delaware Cherry Canyon formation at an interval of 5925-6042' in Concho Resources Inc's Diamondtail '24A' Federal No. 1 well.

The well is located 1980' FNL & 330' FWL, Sec. 24, T-23S, R-32E, Lea County, New Mexico.


The maximum injection rate expected is 2500 BWPD.

The maximum injection pressure expected 1500 psi.

All interest parties must file objections or requests for hearing with the Oil Conservation Division, 2040 South Pacheco St., Santa Fe, New Mexico 87505 within 15 days. #17556

01104894000 01542561 Concho Resources Inc. 110 W. Louisiana, Suite 410 MIDLAND, TX 79701

Wells in Area of Review Application for Authorization to Inject Concho Resources, Inc.

5WD-760

Diamondtail 23 Fed #2

Location: 1980' FNL & 660' FEL

Type: SWD

Sec 23, T23S, R32E

Date Drilled: 12/96

Total Depth: 10,200'

Casing Record:

Size	Depth	Sacks Cement
13 3/8"	579'	500
8 5/8"	4880'	2285
5 ½"	10,200'	1430

Completion:

ompression.	
2/97	Perforated 10,776-96'.
2/97	Frac'ed well w/153,000# 20/40 sand. Put well on pump.
5/97	Perforated 8560-74'. Frac'ed w/40,000# 20/40
11/99	Perforated 7111-17'. Acidized w/1000 gal 7½ % NEFE. Swab all water.
11/99	Perforated 5954-6064'. Acidized w/4000 gal 7½ % NEFE.
12/99	Began injecting.

Diamondtail 24 Fed #1

Location: 1980' FSL & 660' FWL

Type: Oil

Date Drilled: 4/96

Total Depth: 10,300'

Casing Record:

Size	Depth	Sacks Cement
13 3/8"	618'	650 CDRC.
8 5/8"	4785'	1750 '
5 ½"	10,300'	2040

Completion:

4/96	Perforated 10,029-82'.
5/96	Frac'ed well w/66,000# 20/40 sand. Put well on pump.
6/96	Perforated 8994-9030'. Frac'ed w/88,500# 20/40 sand. Put on pump.
8/96	Perforated 8247-53'. Frac'ed w/16,000# 16/30 sand. Put on pump.
8/96	Squeezed perfs @ 8247-53' w/75 sx cmt
8/96	Reopened 8994-10,082' & put on pump.

Application for Authorization to Inject Concho Resources, Inc.

VII. Proposed Operation

- 1. Proposed average daily rate is 1500 BWPD with a maximum of 2500 BWPD @ an injection rate of 3000 BPD.
- 2. The SWD will be a closed system.
- 3. The average injection pressure is expected to be 1000 psi with a max of 1500 psi.
- 4. The injection water will be from the Delaware Brushy Canyon. An analysis is attached.

VIII. Geologic Data

Injection zone is a sandstone in the Delaware Cherry Canyon from 5925-6042'. The top of the Cherry Canyon is 5825'.

The lowest freshwater source in the area is the Ogalala at 600'.

- IX. A 3000 gal acid break down is the only stimulation anticipated.
- X. Well logs have been previously filed.
- XI. A chemical analysis is attached from a water well located in the NE/NE of Sec 21.
- XII. I have examined available geologic and engineering data and find no evidence of open faults or hydrologic connection between the proposed Delaware injection interval and any underground sources of drinking water.

James Blount Sr. Operations Engineer

XIII. Attached are the published notice in the Hobbs News-Sun and Notice of Receipt from offset operators.

INJECTION WELL DATA SHEET

OPERATOR		LEASE		
Concho Resour	rces	Diamondtail '24A' Fed	ieral	
WELL NO.	FOOTAGE LOCATION	SECTION	TOWNSHIP	RANGE
#1	1980' FNL & 330' FWL	24	23S	32E

Schematic

5925-6042' CIBP @ 7084' CIBP @ 8520' CIBP @ 8520' 8102-14' 8212-18' 8560-74'

Tabular Data

Surface Casing

Size <u>13 3/8</u> "

Cemented with 550 sx.

TOC surface feet determined by circulation

Hole size <u>17 1/2"</u>

Intermediate Casing

Size <u>8 5/8</u> "

Cemented with 1820 sx.

TOC <u>surface</u> feet determined by <u>circulation</u>

Hole size 12 1/4 "

Long string

Size <u>5 ½</u> "

Cemented with 880 sx.

TOC 4060 feet determined by CBL

Hole size <u>7 7/8</u> "

Total depth 11,300'

Injection interval

<u>5925</u> feet to <u>6042</u> feet (<u>perforated</u> or open-hole, indicate which)

CONCHO RESOURCES INC.

Suite 410 110 W. Louisiana Midland, Texas 79701

(915) 683-7443 Fax 683-7441

August 10, 2000

Strata Production Company 700 Petroleum Building P O Box 1030 Roswell, NM 88202-1030

Gentlemen:

Diamondtail '24' Federal A No. 1 Sec. 24, T-23S, R-32E, Lea County, NM

Concho Resources Inc., as operator of the Diamondtail '24' Federal A lease in Lea County, New Mexico, has requested administrative approval from the New Mexico Oil Conservation Division to convert this well to salt water disposal. Strata Production Company, being an operator of a lease adjacent to the above lease, is required to receive a notice of our intentions. A copy of the request is enclosed for your records.

Should you object to this request, please file all objections or requests for hearing with the Oil Conservation Division, 2040 S. Pacheco, Santa Fe, NM 87505, within 15 days of receiving this letter.

Should you have any questions, please call Jim Blount or myself at (915) 683-7443.

Sincerely.

Production Analyst

Martin Water Laboratories, Inc.

P. O. BOX 1468 MONAHANS, TEXAS 79756 PH, 943-3234 OR 583-1040

709 W. INDIANA MIDLAND, TEXAS 79701 PHONE 683-4521

RESULT OF WATER ANALYSES

		LABORATORY NO.	19959	
Mr. Bill Pierce		SAMPLE RECEIVED	1-11-99	
fo: Mr. Bill Pierce 600 N. Marienfeld, Ste. 1100	<u> </u>	RESULTS REPORTED	1 12 00	
Midland, TX 79701		MESOF 12 HEADULED		
COMPANY Penwell Energy Inc.	•	EASE TOMORE P	ederal "21" C	om. #1
☆ -	d Dunes, East	(Morrow)		
			NM	
SECTION 21 BLOCK SURVEY T-23-	COUNTY	Leasta	1 t	
SOURCE OF SAMPLE AND DATE TAKEN:	F Mr The	41 112711 Com	. #1	
NO.1 Recovered water - taken	from lomeat re	derai Zi Com	i + 17 ±	
NO. 2				
NO. 3				
NO. 4				
REMARKS: Lower Brushy Canyon - 8	3,416'-8,424' -	Sample submit	ted by Schlum	berger
	EMICAL AND PHYSIC			
C _H	NO. 1	NO. 2	NO. 3	NO. 4
Specific Gravity at 60° F	1.1652	1,70		102.4
pH Whon Sampled	111.002			
pH When Received	5.61	 		
Bicarbonate as HCO,	22	<u> </u>		
Superesturation as CuCO,				
Undersaturation as CaCO.				
Total maidness as CaCO ₃	46,000	 		
Calcium 85 Ca		_ 		
	15.600	 		
Magnesium as Mg	1,701			
Sodium ang/or Potassium	76,637			
Sulfate as SO. Chlenda as Ci	338			
	150.520			
fron 46 F8	31.8			
Barrum es 63				
Turbigity, Electric Color as Pt		 	 	
Total Solids, Calculated	244.818	+		
Temperature *F.	244.010			
Carbon Dioxide, Calculated		 		
Dissolved Oxygen,		- 		
Hydrogen Suifide	0.0			
Resistivity, onms/m at 77° F.	0.05			
Suspended Ott	- V.V.	h.		
Filtreble Solids as mg/l				
Volumo Filterad, mi				
Volgino Pristed, mi				
		 		
		 		
	Results Reported As Mills	grams Per Liler		<u></u>
Additional Determinations And Remarks I'n COMDAY			is in the area	we find
this water has ratios of salt	r udmilar to w	er would be en	enected from I	elaware.
However, the levels of the sa	to are comparh	at lower than	our nearest re	acord of
Brushy Canyon, which is some	10 miles to the	e east-		
STURBY CHLYTH, MILED IS SOME	TO WELFER FOR FILE			
				· · · · · · · · · · · · · · · · · · ·

	<u> </u>		_	

Form No. 3

MOV-12-89 03.22pm From-CCNChO RESULRCES

8156831164

7-904 F.03/03 F-565

Miller Cnemicais, inc. WATER ANALYSIS REPORT

SAMPLE

Mil Co. : Concho Resources

Sample Loc: :

Lease : Brininstool Well No.: Water Well Date Analyzed: 12-November-1999
Date Sampled: 27-October-1999

Lab No. : F:\ANALYSES\Nov1299.001

ANALYSIS

1. pH
2. Specific Gravity 60/60 F. 1.003
3. CaCO₃ Saturation Index @ 80 F. +0.587

ã.	CaCO3 Saturation Index @ 80 F. +	0.5 87 1.287			
	Dissolved Gasses	MG/L	EQ. WT.	*MEQ/L	
4. 5. 6.	Carbon Dioxide Not De	t Present etermined etermined			
	Cations				
7. 8. 9. 10.	Calcium (Ca++) Magnesium (Mg++) Sodium (Na+) (Calculated) Barium (Ba++)	50 30 338 Below 10	/ 20.1 = / 12.2 = / 23.0 =	2.49 2.46 14.70	
	Anions				
11. 12. 13. 14. 15.	Hydroxyl (OH~) Carbonate (CO3=) Bicarbonate (HCO3=) Sulfate (SO4=) Chloride (Cl*)	0 0 244 75 500	/ 17.0 = / 30.0 = / 61.1 = / 48.8 = / 35.5 =	0.00 0.00 3.99 1.54 14.08	
16. 17. 18. 19.	Total Dissolved Solids Total Iron (Fe) Total Hardness As CaCO3 Resistivity @ 75 F. (Calculated)	1,237 3 250 4,882 /cm.	/ 18.2 =	0.14	
	• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , ,			
	LOGARITHMIC WATER PATTERN		ABLE MINERAL EQ. WT. X		
	LOGARITHMIC WATER PATTERN	PROBA	EQ. WI. X		
Na	LOGARITHMIC WATER PATTERN	PROBA COMPOUND	EQ. WI. X	*meq/L =	mg/L.
Na Ca	LOGARITHMIC WATER PATTERN meq/L.	PROBA COMPOUND Ca (HCO3)	EQ. WT. X	*meq/L =	mg/L. 202
Na Ca Mg	LOGARITHMIC WATER PATTERN *Meq/L. ***********************************	PROBA COMPOUND Ca (HCO ₃) CaSO ₄	EQ. WT. X 2 81.04 68.07 55.50	*meq/L = 2.49	mg/L. 202
Na Ca Mg Fe	LOGARITHMIC WATER PATTERN ***MILL MINITERN 11111 11111 11111 11111 1111 1111 1111 1	PROBA COMPOUND Ca (HCO ₃) CaSO ₄ CaCl ₂	EQ. WT. X 2 81.04 68.07 55.50	*meq/L = 2.49 0.00 0.00	mg/L. 202 0
Na Ca Mg Fe	LOGARITHMIC WATER PATTERN *Meq/L.	PROBA COMPOUND Ca (HCO ₃) CaSO ₄ CaCl ₂ Mg (HCO ₃)	EQ. WT. X 2 81.04 68.07 55.50 2 73.17	*meq/L = 2.49 0.00 0.00 1.51	mg/L. 202 0 0
Na Ca Mg Fe	LOGARITHMIC WATER PATTERN ***MODILE** **MODILE** ***MODILE** **MODILE** **MOD	PROBA COMPOUND Ca (HCO ₃) CaSO ₄ CaCl ₂ Mg (HCO ₃) MgSO ₄	EQ. WT. X 2 81.04 68.07 55.50 2 73.17 60.19	*meq/L = 2.49 0.00 0.00 1.51 0.95	mg/L. 202 0 0 110 57
Na Ca Mg Fe	LOGARITHMIC WATER PATTERN *Meq/L. ***********************************	PROBA COMPOUND Ca (HCO ₃) CaSO ₄ CaCl ₂ Mg (HCO ₃) MgSO ₄	80. WT. X 81.04 68.07 55.50 2 73.17 60.19 47.62	*meq/L = 2.49 0.00 0.00 1.51 0.95	mg/L. 202 0 0 110 57

This water is slightly corrosive due to the pH observed on analysis. The corrosivity is increased by the content of mineral salts in solution.