

March 31, 1998

Bill Olson Hydrologist, Environmental Bureau New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe. NM 87505

RE:

Hampton 4M Site

Free Product and Groundwater Contamination

Dear Bill:

In response to your letter of March 13, 1998, PNM has concerns regarding the effectiveness of any further remedial actions taken by PNM in the face of continuing hydrocarbon sources at this site. We provide a summary of PNM activities, a review of Burlington's reports concerning effectiveness of source removal actions performed by Burlington, and our position regarding free phase hydrocarbons.

I. Summary of PNM Activities

PNM removed soils associated with the former PNM drip pit shown on Figure 1 in April 1996. Approximately 300 cubic yards of soil were excavated, with a total excavation dimension of approximately 32' x 21' x 12'. Soils remaining at the bottom of the excavation exceeded 1000 ppm as measured by a photoionization detector. Excavation was stopped due to safety concerns related to excessive side-wall sloughing and proximity to the edges of the well pad and onsite equipment. The excavation was backfilled with clean soil; approximately 286 cubic yards of soil excavated from Hampton 4M were landfarmed at the Hampton #2 site.

In December 1996, PNM assessed the vertical extent of contamination remaining beneath the former PNM drip pit. Groundwater was encountered at 28 feet, with approximately 2 inches of free phase hydrocarbons observed in the bailer upon sampling. The initial groundwater sample from this boring (completed as MW-2) contained 3,840 ppb benzene and 20,620 ppb total BTEX. Free product thickness in MW-2 accumulated to 4.41 feet in January 1998 (see Table 1).

PNM has continued to monitor groundwater and recover free product at the Hampton 4M site in accordance with your letter of August 27, 1997. Analytical results for groundwater sampling are reported in Table 1. PNM and Burlington have installed a total of eight monitoring wells and one temporary well at this site. PNM also performed extensive test augering along the wash in November 1997 to determine the downgradient extent of groundwater contamination.

A groundwater potentiometric surface map is provided for January 1998. As shown on the map, groundwater flow is down-canyon towards the northwest. The hydraulic gradient is fairly steep and subparallel to the topographic gradient at approximately 0.10. This is a high energy environment, where contamination will move relatively quickly downgradient from the site of release. This is corroborated by

the extent to which dissolved phase contamination is detected along the wash. The furthest downgradient monitoring well installed to date, MW-7, contains 780 ppb benzene and 5226 ppb total BTEX. Only MW-5 exceeds proposed remediation reference concentrations when comparing downgradient water quality to water quality (e.g., TPW-2 and MW-8) upgradient of PNM equipment.

Hydrographs and contaminant trends with time are provided for each well in Attachment A. The graphs provided for monitoring wells MW-2 and MW-6 do not reflect the presence of free product.

The privately-owned EB well is located cross-gradient (north-northeast). No hydrocarbon constituents above the 0.2 ppb detection limit have been detected in this well.

PNM installed a free product recovery well, MW-6, in November 1997 and initiated free product recovery in January 1998. Initial free product thickness in MW-6 was 4.71 feet on January 12, 1998. Approximately 470 gallons of free product were recovered from MW-6, with an accompanying 2 foot drop in free product thickness, between January 12 and March 18, 1998. Attachment B provides a figure demonstrating free product thickness decrease over the course of free product recovery.

II. Burlington Document Review

PNM reviewed the documents listed below concerning contamination at the Hampton 4M site, submitted to NMOCD by Burlington.

- Burlington Resources, 1998, Hampton 4M Groundwater Contamination (Status Report); Unit Letter N, Section 13, Township 30N, Range 11W
- Burlington Resources, 1997, Data Summary: Hampton 4M Production Location

Following our review of these documents and our field records for site investigation and remediation data, we are concerned that upgradient source removal is not complete and continuing sources of hydrocarbons will continue to affect downgradient areas, including not only the well pad, but a significant volume of offsite groundwater. Relevant soil and groundwater data collected by both PNM and Burlington is compiled in Table 1. Figure 1 provides a site map of the well pad, equipment, and general vicinity surrounding the site.

- Burlington states they have removed contaminated soils to a depth of 15 feet in the deepest areas of
 their source area excavation. Sampling of temporary well borings TPW-05 and -07 by Burlington
 detected significant contamination in the 15 to 16-foot interval. Thus, excavating the source area only
 to 15 feet at the deepest location leaves documented contamination in place to act as a continuing
 source to areas downgradient.
- white total BTEX concentrations in MW-4 did decrease as stated by Burlington, concentrations of the
 most mobile and most toxic constituent, benzene, increased following remediation activities conducted
 by Burlington. PNM does not agree with the statement that the decrease in total BTEX concentrations
 in the quarter immediately following excavation points to the success of source removal activities;
 additional monitoring is needed.
- Monitoring well MW-8 was installed by PNM as an additional well downgradient of the Burlington source area, and upgradient of the former PNM pit. This well detected soil contamination at depths of 14 to 20 feet below grade; groundwater was visibly contaminated by sheen and high dissolved phase contamination.
- Temporary well TPW-02 was installed by Burlington at a location upgradient of the former PNM pit. This temporary monitoring well encountered free product on installation and significant soil contamination at a depth of 25 to 26 feet. Free product is not likely to migrate upgradient in an

environment where both the topographic and groundwater flow gradients are as steep as 0.10. Thus, the contamination at TPW-02 likely originated from upgradient sources.

• If NMOCD considers MW-8 and TPW-02 as upgradient wells for the purposes of establishing remediation reference concentrations for PNM, the upgradient reference concentrations related to contamination caused by PNM are as follows:

Free phase as indicated by TPW-02 (accumulation) and MW-8 (sheen)

Benzene = 6,410 ppb Toluene = 17,301 ppb Ethylbenzene = 693 ppb Xylenes (total) = 9,397 ppb BTEX = 33,801 ppb

Our conclusions relative to the effectiveness of remedial actions undertaken by Burlington are as follows:

- Continuing sources of free phase, sorbed, and dissolved hydrocarbons remain in Burlington source areas and areas immediately downgradient of their facilities.
- These continuing sources will continue to migrate downgradient in the absence of significant containment and/or remediation, beyond the activities documented by Burlington to date.

III. Free Phase Hydrocarbon Discharge

With regard to the presence and remediation of free product beneath the well pad, this site has had numerous problems associated with equipment operations, including separators throwing fluids and inadequate tankage to handle fluids discharged. Even if PNM has in the past provided dehydration, PNM, by contract with producers, is not responsible for free product. Further, PNM has not provided dehydration at this site since June 30, 1995, when the sale of the gathering system to Williams Field Services (WFS) was concluded. Free product belongs to the producers, even when it is discharged under conditions of system upset. Therefore, free product contamination, regardless of where it occurs, is not the responsibility of PNM, but of the producer.

PNM detected over 4.5 feet of free product in MW-2 and MW-6 in January 1998. In response to NMOCD concerns, PNM installed and continues to operate a single free product recovery well, MW-6. Approximately 450 gallons of free phase were recovered from January 12, 1998 through March 17, 1998. Free product thicknesses as measured in monitoring wells MW-2 and -6 have declined approximately 2 feet since the inception of free product recovery. As the product is not the result of PNM operations prior to June 30, 1995, PNM has placed Burlington and Williams Field Services on notice that PNM will be seeking cost recovery from the responsible party for actions concerning free product and groundwater investigation and remediation activities performed to date at this site.

The presence of significant free phase in the subsurface is also the most likely cause of dissolved phase groundwater contamination detected at this site. Burlington, PNM, and NMOCD are aware of continuing hydrocarbon surface discharges in the area of the hydrocarbon seep along the northwestern area of the well pad. This seep continues to visibly impact soils and dissolved phase groundwater from monitoring wells sampled along the wash. As PNM did not discharge free product at this site, PNM maintains it is not the responsible party for groundwater contamination associated with this ongoing hydrocarbon seep.

If you have any questions related to the proposed activities for the Hampton 4M site or other project-related activities, please contact me at 505.241.2974.

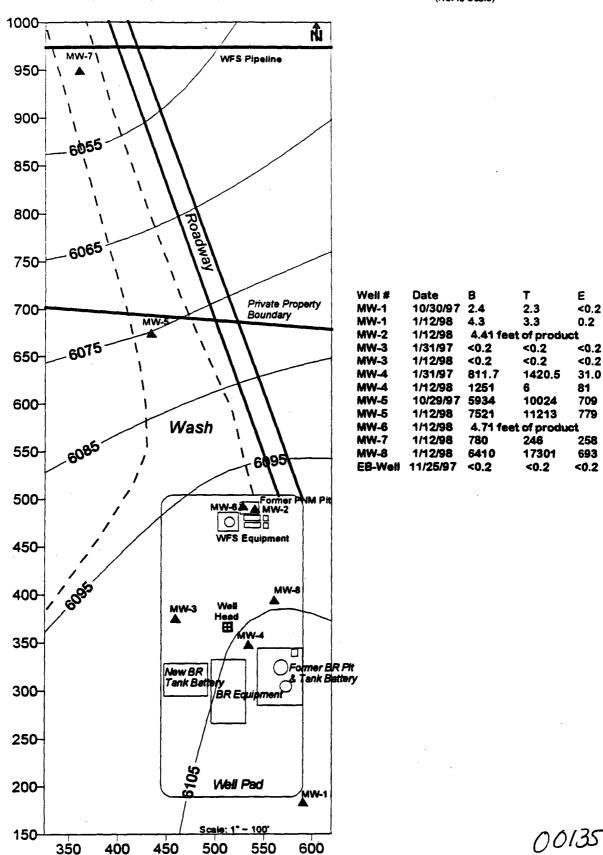
Sincerely,

Maureen Gannon

Project Manager

cc: Roger Anderson, NMOCD

mauren Gannon


Ed Haseley, Burlington Resources
Ingrid Deklau, Williams Field Services

Colin Adams, PNM

Denny Foust, NMOCD - Aztec

Figure 1 Hampton 4M site map & analytical results (ppb) (January, 1998)

Δ EB - Private Well (Not to Scale)

X

1.1

<0.2

<0.2

388.1

8436

3942

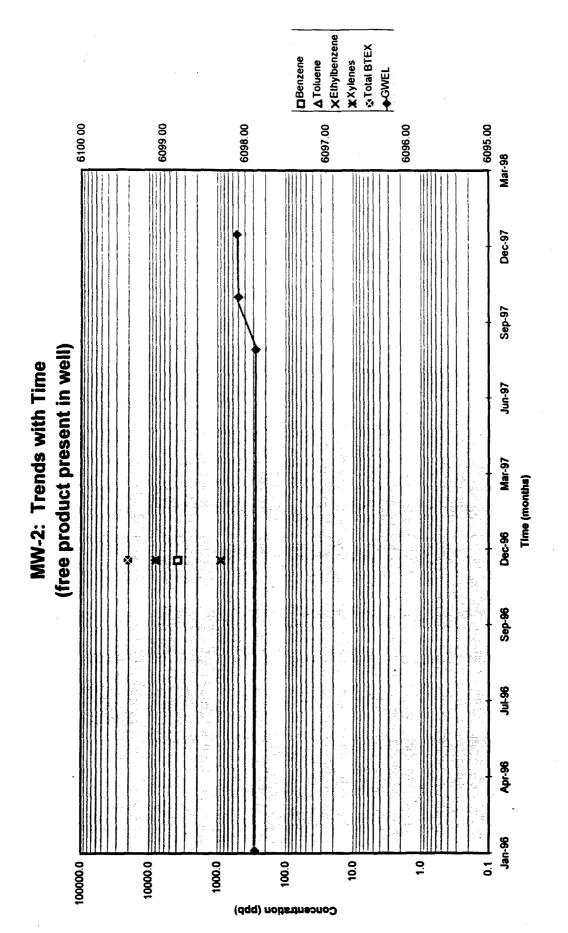
9397

<0.2

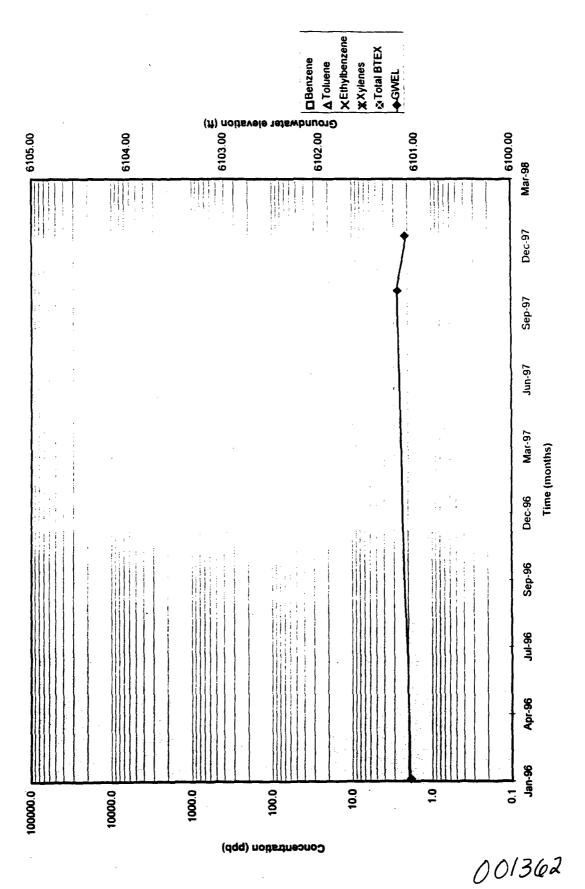
Table 1: SUMMARY OF ANALYTICAL RESULTS

GROUNDWATER MONITORING DATA - collected by PNM, except as noted

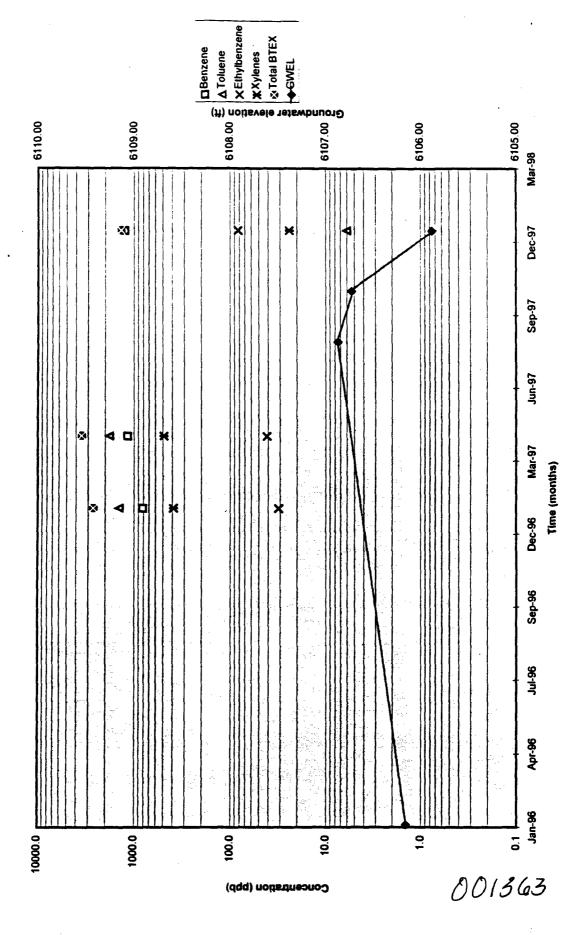
Weil		Sampled	(ft,msi)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ft)
MW-1		10/30/97	6110.10	2.4	2.3	<0.2	1.1	5.8	
Upgradient well		01/12/98	6107.47	4.3	3.3	0.2	1.0	8.8	
MW-2		01/04/96	6097.88	NA	NA	NA	NA	.NA	4.40
PNM drip pit well		12/16/96	NM	3840.0	7960.0	896.0	7920.0	20616.0	NM
		08/27/97	6097.87	NA	NA	NA	NA	NA	4.75
		10/29/97	6098.08	NA	NA	NA.	NA	NA	4.58
		01/12/98	6098.10	NA	NA	NA.	NA	NA	4.41
MW-3		1/4/96	6101.06	NA	NA	NA.	NA	NA	-
Up & cross-gradient to PN	M	1/31/97	NM	<0.2	<0.2	<0.2	<0.2	<0.2	_
_		5/5/97	NM	NA	NA	NA	NA	NA	-
	Burlington	10/29/97	6101.19	<0.2	<0.2	<0.2	<0.2	<0.2	
		1/12/98	6101.11	<0.2	<0.2	<0.2	<0.2	<0.2	_
MW-4		1/4/96	6106.16	NA	NA	NA	NA	NA	_
Upgradient,PNM; downgra	dient Burlington	1/31/97		811.7	1420.5	31.0	388.1	2651.3	_
	Burlington	5/1/97		1162.0	1797.0	41.0	486.0	3486.0	
	•	8/27/97	6106.87	NA	NA	NA	NA	NA	
		10/29/97	6106.73	NA	NA	NA.	NA	NA.	_
		1/12/98	6105.88	1251.0	6.0	82.0	24.0	1363.0	_
MW-5		10/29/97		5934.0	10024.0	709.0	8188.0	24855.0	
Downgradient along wash		1/12/98	6075.09	7521.0	11213.0	779.0	8436.0	27949.0	-
MW-6		11/12/97	6098.08	NA	NA	NA	NA	NA	4.80
PNM drip pit/product reco	very	1/12/98	6097.43	NA	NA	NA	NA	NA	4.71
MW-7		1/12/98	6047.12	780.0	246.0	258.0	3942.0	5226.0	
Downgradient along wash:	; adj pipeline								
		444545							
MW-8	49 - 4 - 5 - 5 - 5 - 5 - 5 - 5	1/12/98	6104.71	6410.0	17301.0	693.0	9397.0	33801.0	Sheen
Upgradient PNM; downgra	idient Burlington								
ED MEL		440507	DT41-00	-0.0	-0.0	-00	-0.0	-00	
EB WELL		11/25/97	DTW=68.	<0.2	<0.2	<0.2	<0.2	<0.2	-
Downgradient private well									
				Donas	Taksana	Ethydhonena	V.daman	Take STEV	TDA
Sample	Matrix	Date Sampled	Depth	Benzene (noh)	Toluene	Ethylbenzene	•	Total BTEX	TPH (mg/Kg)
Sample	Matrix	Date Sampled	Depth (ft)	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Xylenes (ppb)	Total BTEX (ppb)	TPH (mg/Kg)
·		Sampled	•				•		
Sample Burlington Temporary Monit		Sampled	•				•		
·		Sampled	•	(ppb)			•	(p pb)	
Burlington Temporary Monit	oring Well Samp	Sampled ting	(n)		(ppb)	(ppb)	(ppb)		(mg/Kg)
Burlington Temporary Monit	oring Well Samp	Sampled ting	•	(ppb)	(ppb) <1	(ppb) <1	(ppb) <1	(p pb)	(mg/Kg)
Burlington Temporary Monit	oring Well Samp	Sampled ting	(n)	(ppb)	(ppb) <1	(ppb) <1	(ppb) <1	(p pb)	(mg/Kg)
Burlington Temporary Monit	oring Well Samp Water Soil	Sampled ling 6/5/97	(n) 25-26	(ppb) 20.0 <1	(ppb) <1 <1	(ppb) <1 <1 NA	(ppb) <1 <1	(p pb) 20.0 <1	(mg/Kg) NA <10
Burlington Temporary Monit	oring Well Samp Water Soil Water	Sampled ting 6/5/97 6/5/97	25-26' Product 25-26'	20.0 <1 NA 2000.0	(ppb) <1 <1 NA 4800.0	(ppb) <1 <1 NA 14000.0	(ppb) <1 <1 NA 39000.0	(ppb) 20.0 <1 NA	(mg/kg) NA <10 NA
Burlington Temporary Monit TPW-01 TPW-02	oring Well Samp Water Soil Water	Sampled ling 6/5/97	25-26' Product 25-26'	20.0 <1 NA 2000.0	(ppb) <1 <1 NA 4800.0	(ppb) <1 <1 NA 14000.0	(ppb) <1 <1 NA 39000.0	20.0 <1 NA 59600.0	(mg/Kg) NA <10 NA 600.0
Burlington Temporary Monit	oring Well Samp Water Soil Water Soil	Sampled ting 6/5/97 6/5/97	(ft) 25-26' Product	(ppb) 20.0 <1	(ppb) <1 <1 NA	(ppb) <1 <1 NA	(ppb) <1 <1 NA	(ppb) 20.0 <1 NA	(mg/kg) NA <10 NA
Burlington Temporary Monit TPW-01 TPW-02	oring Well Samp Water Soil Water Soil Water	Sampled ting 6/5/97 6/5/97	25-26' Product 25-26' Dry	20.0 <1 NA 2000.0	(ppb) <1 <1 NA 4800.0	(ppb) <1 <1 NA 14000.0	(ppb) <1 <1 NA 39000.0	(ppb) 20.0 <1 NA 59600.0	(mg/Kg) NA <10 NA 600.0
Burlington Temporary Monit TPW-01 TPW-02	oring Well Samp Water Soil Water Soil Water	Sampled ting 6/5/97 6/5/97	25-26' Product 25-26' Dry	20.0 <1 NA 2000.0	(ppb) <1 <1 NA 4800.0	(ppb) <1 <1 NA 14000.0 NA	(ppb) <1 <1 NA 39000.0	(ppb) 20.0 <1 NA 59600.0	(mg/Kg) NA <10 NA 600.0
Burlington Temporary Monit TPW-01 TPW-02 TPW-03	oring Well Samp Water Soil Water Soil Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97	25-26' Product 25-26' Dry	20.0 <1 NA 2000.0 NA <1	(ppb) <1 <1 NA 4800.0 NA <1	(ppb) <1 <1 NA 14000.0 NA <1 57.0	(ppb) <1 <1 NA 39000.0 NA	(ppb) 20.0 <1 NA 59600.0 NA	(mg/Kg) NA <10 NA 600.0
Burlington Temporary Monit TPW-01 TPW-02 TPW-03	oring Well Samp Water Soil Water Soil Water Soil Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97	25-26* Product 25-26* Dry 25-26	20.0 <1 NA 2000.0 NA <1 2000.0	(ppb) <1 <1 <1 NA 4600.0 NA <1 3100.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0	(ppb) <1 <1 <1 NA 39000.0 NA <1 810.0	(ppb) 20.0 <1 NA 59600.0 NA <1	(mg/Kg) NA <10 NA 600.0 NA 25
Burlington Temporary Monit TPW-01 TPW-02 TPW-03	oring Well Samp Water Soil Water Soil Water Soil Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97	25-26* Product 25-26* Dry 25-26	20.0 <1 NA 2000.0 NA <1 2000.0	(ppb) <1 <1 <1 NA 4600.0 NA <1 3100.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0	(ppb) <1 <1 <1 NA 39000.0 NA <1 810.0	(ppb) 20.0 <1 NA 59600.0 NA <1	(mg/Kg) NA <10 NA 600.0 NA 25
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04	oring Well Samp Water Soil Water Soil Water Soil Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/5/97 6/6/97	25-26* Product 25-26* Dry 25-26	20.0 <1 NA 2000.0 NA <1 2000.0 28.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0	(ppb) <1 NA 39000.0 NA <1 810.0 40.0	20.0 <1 NA 59600.0 NA <1 5967.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04	oring Well Samp Water Soil Water Soil Water Soil Water Soil Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26	20.0 <1 NA 2000.0 NA <1 2000.0 28.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0 76.0	(ppb) <1 NA 39000.0 NA <1 810.0 40.0 7000.0	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04	oring Well Samp Water Soil Water Soil Water Soil Water Soil Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26	20.0 <1 NA 2000.0 NA <1 2000.0 28.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0	(ppb) <1 NA 39000.0 NA <1 810.0 40.0 7000.0	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05	water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0	(ppb) <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA NA
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05	water Soil Water	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26 20-21.5'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1	(ppb) <1 NA 14000.0 NA <1 57.0 78.0 16000.0 48.0 2.8	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 7.6	(mg/Kg) NA <10 NA 600.0 NA 25 NA 61 NA 11
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05	water Soil Water	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 <1 5300.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0	(ppb) <1 NA 14000.0 NA <1 57.0 78.0 16000.0 48.0 2.8 620.0	(ppb) <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6	(mg/Kg) NA <10 NA 600.0 NA 25 NA 61 NA 11
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06	oring Well Samp Water Soil	\$ampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26 20-21.5'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1	(ppb) <1 NA 14000.0 NA <1 57.0 78.0 16000.0 48.0 2.8 620.0	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 7.6	(mg/Kg) NA <10 NA 600.0 NA 25 NA 61 NA 11
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07	Water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 <1 5300.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0	(ppb) <1 NA 14000.0 NA <1 57.0 78.0 16000.0 48.0 2.8 620.0	(ppb) <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8	20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6	(mg/Kg) NA <10 NA 600.0 NA 25 NA 51 NA 61 NA 11 NA 250
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash	water Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-18.5'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0 74000.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 2.8 620.0 20000.0	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0	20.0 <1 NA 59600.0 NA <1 5987.0 147.4 29260.0 48500.0 5738.0 7.6 33220.0 271000.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 11 NA 250 PID (ppm)
Burlington Temporary Monit TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1	Water Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-16.5' 15-16'	20.0 <1 NA 2000.0 NA 2000.0 NA 1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4600.0 NA <1 3100.0 3.4 480.0 10000.0 3400.0 <1 18000.0 74000.0	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 48.0 2.8 620.0 20000.0	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0	(ppb) 20.0 <1 NA 59600.0 NA 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 11 NA 250 PID (ppm) 1412
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2	Water Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-18.5' 15-16'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4600.0 NA <1 3100.0 3.4 460.0 10000.0 3400.0 74000.0 NA NA	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 2.8 620.0 20000.0 NA NA	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0	(ppb) 20.0 <1 NA 59600.0 NA 5967.0 147.4 29260.0 48500.0 5738.0 7.6 33220.0 271000.0	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 250 PID (ppm) 1412 1357
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3	oring Well Samp Water Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-18.5' 15-16' 12.7' 14.4' 18.5'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 3400.0 <1 18000.0 74000.0 NA NA	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 2.8 620.0 20000.0 NA NA NA	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0	(ppb) 20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 61 NA 61 NA 250 PID (ppm) 1412 1357 0
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4	oring Well Samp Water Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-16.5' 15-16' 12.7' 14.4' 16.5' 15'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0 74000.0 NA NA NA NA	(ppb) <1 NA 14000.0 NA <1 57.0 78.0 16000.0 48.0 2.8 620.0 20000.0 NA NA NA NA NA NA NA	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0	(ppb) 20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA NA NA NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4 TH-5	oring Well Samp Water Soil Water Soil Water Soil Water Soil Water Soil Water Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-16.5' 15-16' 12.7' 14.4' 16.5' 15' 14.5'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0 74000.0 NA NA NA NA NA NA	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 2.8 620.0 20000.0 NA NA NA NA NA NA	(ppb) <1	(ppb) 20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA NA NA NA NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279 1211
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4	oring Well Samp Water Soil Water Soil Water Soil Water Soil Water Soil Water Soil Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-16.5' 15-16' 12.7' 14.4' 16.5' 15' 15' 16'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 <1 5300.0 7000.0 NA NA NA NA NA	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0 74000.0 NA NA NA NA NA NA NA	(ppb) <1 <1 <1 NA 14000.0 NA <1 57.0 76.0 16000.0 4500.0 48.0 2.8 620.0 20000.0 NA NA NA NA NA NA	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0 NA NA NA NA NA NA NA	(ppb) 20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA NA NA NA NA NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279 1211 0
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4 TH-5	oring Well Samp Water Soil Water Soil Water Soil Water Soil Water Soil Water Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-16.5' 15-16' 12.7' 14.4' 16.5' 15' 14.5'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0	(ppb) <1 <1 NA 4600.0 NA <1 3100.0 3.4 480.0 10000.0 3400.0 74000.0 NA	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 2.8 620.0 20000.0 NA NA NA NA NA NA NA NA 190.0	(ppb) <1 <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0 NA	(ppb) 20.0 <1 NA 59600.0 NA 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279 1211 0 279
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4 TH-5 TH-6	oring Well Samp Water Soil Water Soil Water Soil Water Soil Water Soil Water Soil Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-16.5' 15-16' 12.7' 14.4' 16.5' 15' 15' 16'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 <1 5300.0 7000.0 NA NA NA NA NA	(ppb) <1 <1 NA 4800.0 NA <1 3100.0 3.4 480.0 10000.0 <1 18000.0 74000.0 NA NA NA NA NA NA NA	(ppb) <1 <1 <1 NA 14000.0 NA <1 57.0 76.0 16000.0 4500.0 48.0 2.8 620.0 20000.0 NA NA NA NA NA NA	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0 NA NA NA NA NA NA NA	(ppb) 20.0 <1 NA 59600.0 NA <1 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA NA NA NA NA NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279 1211 0
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4 TH-5 TH-6 TH-7 (temporary well) TH-8	water Soil Soil Soil Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-18.5' 15-16' 12.7' 14.4' 18.5' 15' 14.5' 16' NA	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0 NA NA NA NA NA NA NA NA NA	(ppb) <1 <1 NA 4600.0 NA <1 3100.0 3.4 480.0 10000.0 3400.0 74000.0 NA	(ppb) <1 <1 NA 14000.0 NA <1 57.0 78.0 16000.0 4500.0 2.8 620.0 20000.0 NA NA NA NA NA NA NA NA 190.0	(ppb) <1 <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0 NA	(ppb) 20.0 <1 NA 59600.0 NA 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279 1211 0 279
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4 TH-5 TH-6 TH-7 (temporary well) TH-8 Sample from Burlington Exce	water Soil Soil Soil Soil Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-18.5' 15-16' 12.7' 14.4' 18.5' 15' 14.5' 16' NA 14'	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0 NA NA NA NA NA NA NA NA NA	(ppb) <1	(ppb) <1 NA 14000.0 NA 14000.0 16000.0 48.0 2.8 620.0 20000.0 NA NA NA NA NA NA NA NA NA N	(ppb) <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0 NA	(ppb) 20.0 <1 NA 59600.0 NA 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 51 NA 61 NA 250 PID (ppm) 1412 1357 0 279 1211 0 279 0
Burlington Temporary Monitor TPW-01 TPW-02 TPW-03 TPW-04 TPW-05 TPW-06 TPW-07 PNM Test Holes along Wash TH-1 TH-2 TH-3 TH-4 TH-5 TH-6 TH-7 (temporary well) TH-8	water Soil Soil Soil Soil Soil Soil Soil	Sampled ting 6/5/97 6/5/97 6/5/97 6/6/97 6/6/97 6/6/97 6/6/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97 11/11/97	25-26' Product 25-26' Dry 25-26 20-21.5' 15-16' 16-18.5' 15-16' 12.7' 14.4' 18.5' 15' 14.5' 16' NA	20.0 <1 NA 2000.0 NA <1 2000.0 28.0 5800.0 4000.0 1600.0 <1 5300.0 7000.0 NA NA NA NA NA NA NA NA NA	(ppb) <1 <1 NA 4600.0 NA <1 3100.0 3.4 480.0 10000.0 3400.0 74000.0 NA	(ppb) <1 NA 14000.0 NA 14000.0 16000.0 48.0 2.8 620.0 20000.0 NA NA NA NA NA NA NA NA NA N	(ppb) <1 <1 <1 NA 39000.0 NA <1 810.0 40.0 7000.0 28000.0 690.0 4.8 9300.0 170000.0 NA	(ppb) 20.0 <1 NA 59600.0 NA 5967.0 147.4 29260.0 46500.0 5738.0 7.6 33220.0 271000.0 NA	(mg/Kg) NA <10 NA 600.0 NA 25 NA 52 NA 61 NA 11 NA 250 PID (ppm) 1412 1357 0 279 1211 0 279

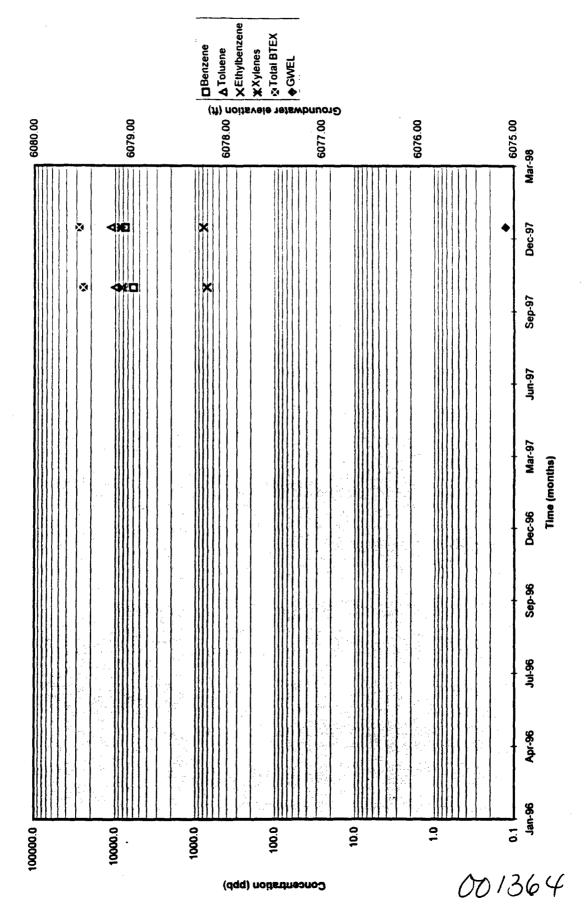

Date GWEL Benzene Toluene Ethylbenzene Xylenes Total BTEX Thickness

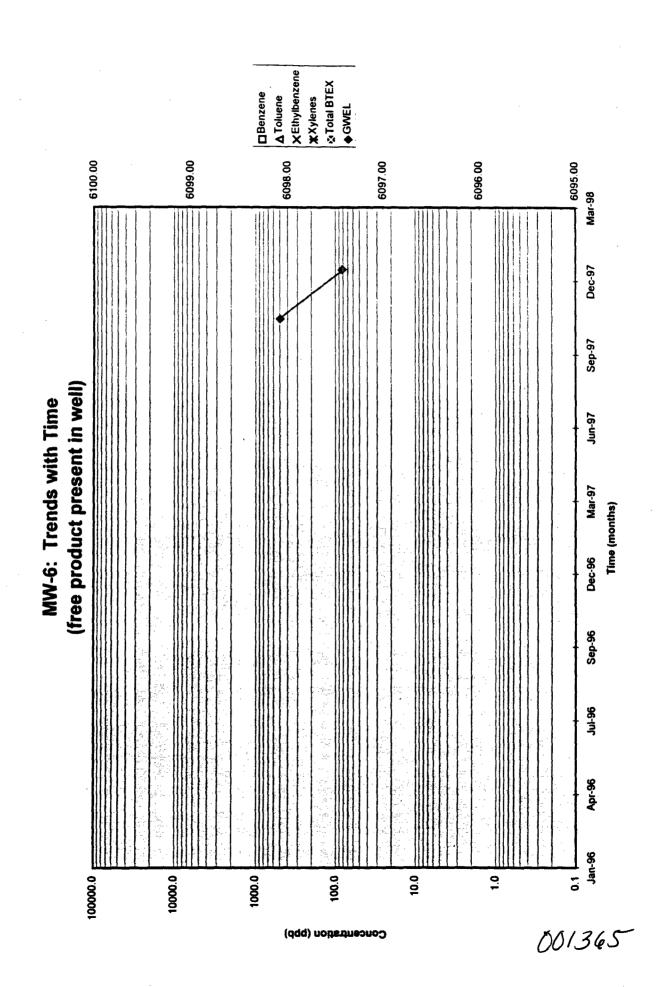
Attachment A


Hydrographs and Concentrations versus Time

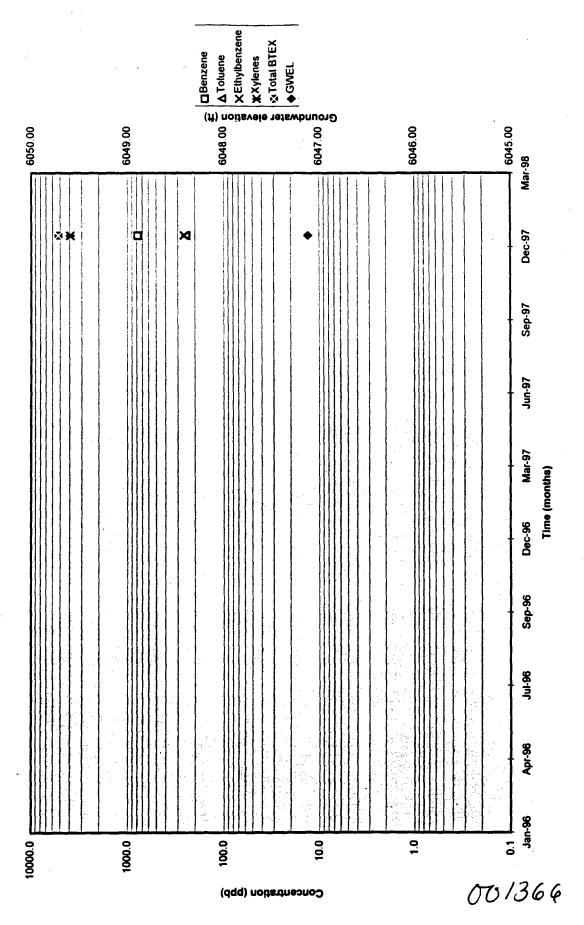
□ Benzene
★ Toluene
★ Ethylbenzene
★ Xylenes
★ Total BTEX
← GWEL Groundwater 6107.00 Mar-98 6110.00 6111.00 6109.00 6108.00 Dec-97 Sep-97 Jun-97 ec-96 Mar-97 Time (months) Dec-96 Sep-96 96-Inf Apr-96 001360 1000.0 100001 100.0 10.0 1.0 1000001


MW-1: Trends with Time

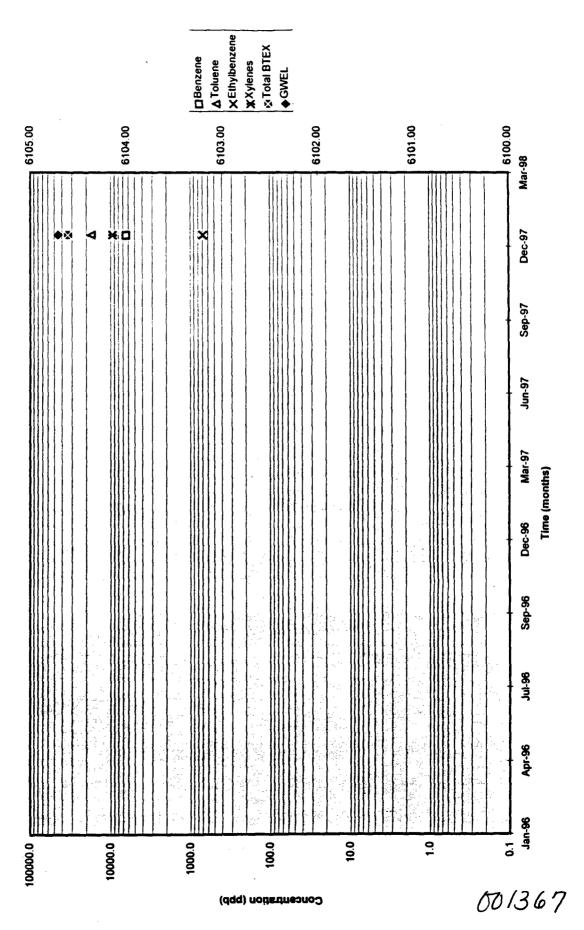

MW-3: Trends with Time



MW-4: Trends with Time



MW-5: Trends with Time



MW-7: Trends with Time

MW-8: Trends with Time

Attachment B

Free Product Recovery Response

MW-6 Product Recovered MW-6 Cumulative Product -- MW-2 Product Thickness Product Thickness (feet) 4.5 3.5 3 0.5 3/26/98 D B. B. B. Har washershare 1/8/98 1 8 5 8 8 \$ 350 Scovered (gailons) Frogue 3 8 B

Hampton 4M Free Product Recovery

HAMPTON 4M

		·					MW #2	MW #2
DATE TIME	PUMP TIME SET	CYCLES /DAY	PUMPING TIME TOTAL	NITROGEN PRESSURE	NITROGEN TANK LEVEL	ORUM LEVEL	PRODUCT LEVEL	WATER LEVEL
1/4/78 1303	5 min.	3	2 H 10min	58	475	- 20	20.78	25.04
113/12/1619	5 ni	3_	2Hr. 32min	58	+75	53/4"	20,98	25.04
113/93 1529	Smin.	3	2Hr. 53 min	58	275	11/2"	20.96	24.96
119/8 1323	5 mi~.	3	3 Hr. 3 m	58	58	15 12"	20.69	25.04
1/20/13 1454	5 min.	3	3 Hr.30min	50	750	17."	20.83	25.06
1/2/9-0134	ant.	1	7 Hr. 23,114	50	550	24/2"	20.93	24.47
122/13/13/44	10 min.	3	5 Him 17min	50	400	5411	21.00	34.88
र्यम्स । यस	10 min.	4	104-533 min	50	50	14 "	21.11	24.74
124198 7376	26 mil	6	GAN SIMIL	30	2175	16/2"	20,97	24.78
1/24/98 1158	10mi	6	9 Hr. 03 min	50	1875	25 /4"	21.18	24.50
1/26 RB 1330	10 min.	6	10H- 55mm	٥٥	1625	11 1/4"	21.20	24.43.
21/27/21/431	10 min	6	121-07min	50	1375	23 1/2"	21.16	24.39.
12/12/320	10 min	Ú	16A+48m:-	50	600	6 "	20.09	24.40
1 .01533	10 mis	6	18th 10 -14	20	325	1234"	21.11	24.31
1/30/18/525	10 mi	6	19Hr. 02mi.	<i>5</i> 0	150	123/4"	21,05	24.48
1/20 USD	10 min	6	20 th Obmin	60	2275	18"	21,17	24.27
12/1/10/143	10 min	12	224-12-	60	1875	213/4	21.17	14.27
1418 15/7	16 min	4.	22-22- 234. Bui	60	1600	26/2	21.25	24.25
2/3/98 1516	10 min	6	SHAM 1500	60	1410	7/2"	21.10	24.20
2/4/98/315	10 mi	4	25Hv318-1	68	1120	14 /4"	21.09	24.23
2/5/18 1303	10 min	6	26Aris 14min	6.0	875	19 1/2"	21,27	24,13
26481518	5.20.~	/2_	27 Hrs 27~	60	600	24 1/4"	21.25	24.10
2/7/98/121	5		多かっせん	60	375	5 1/4"	21.26	24.10
16/98 1522	5 m:-	12.	30H-207mi		0	10"	21.24	23.98
79/99 1615			31 Hais 17am		2325	15 3/4"		24.00
214981611	5 min		328-521mis		2110	2012"	21.36	24.00
4/11/98/350	グ		334m, 21ac		1875	24 1/2"	21.23	23.75
19981718	5~~	12	34Hrs 3 am	.55	1425	54"	21.30	23.95
	Smi		34A ~ 56~		1500	8 1/4"	21,22	23.92
7/14/90/623	5		35H+159-2		1225	12 /2"	21.19	23.45

11075

HAMPTON 4M

DATE	TIME	PUMP TIME SET	CYCLES /DAY	PUMPING TIME TOTAL	NITROGEN PRESSURE	NITROGEN TANK LEVEL	DRUM LEVEL	PRODUCT LEVEL	MW #2 WATER LEVEL
2/1/18	1527	5 min	12	37 H- 03 min	THE PARTY OF	990	143/4	21.08	24.00
414	1413	5~ii	12	38H-17m	55	675	22 14"	21.26	23.93
2/17/98	1740	37,	12	39 Hrs 22-	55	450	264	21,26	23.89
76/98	1344	5~~	12	40 Hrs 14mi	55	2475	2%"	21.32	23.87
7 19	דוח	5min	12	41 Hrs 27m=	55	2075	6/2"	21.34	23.85
120/98	1418	5min	12	42ths25mi	55	1775	101/2"	21,24	27.82
72/98	1631	ستسدح	12	43/hrs3min	- 55	1500	143/4"	21.30	23.87
72298	1445	Charge Simin	6	生まったり	55	1375	210 1/2"	21.35	23.80
72778	1602	5	6	44Hm38~	5.5	1175	19 1/2	21.36	23.75
124/4		<u>5</u>	6	50Hzismi	8	6	22.0	21.10	23.95
2/27/7	M29	5	12	50 Hrs Jan	60	2150	24.0	21.24	24.90
2/26/ng	1572	5	/2	51His 54~	58	1650	32.12	21.29	23.80
1/9	1543	5	12	SZH->56mi	50	1100	41/2	2135	23.78
B	1604	5	12.	544 rs 57 mi	50	450	634	21.41	23.73
7/190	1165	5	12	54H-517mi	9	سن	8 3/4"	21.41	23.75
	1/243	50	12	5514-38-	50	1300	10 "	21.32	23.80
3/78	711	Co	معدر	55H-55	50	1150	12/2"	21.75	2388
3/4/90							141/2"	21.29	23.88
15/90					:			21.29	23.90
79/98	1707	75	12	564-56~~	50	900		21.38	24.00
3/11/98	1230	5	/2 :	59 A 150000	50	200	23¾"	21,38	23,81
3/12/92	1604	5	12	STHrs.	50	2700	261	21.34	2381
114/99	0700	5_	12	62H+336~		-0-	4"	21.31	23.75
117778	0732	.5	12/6	63H-stank	50	1850	71/2"	21.26	24.05
118/78	BB			CHIT'S 14140	50	1600	10 "	31,36	24.02 .
	<u> </u>								}
							<u> </u>		<u> </u>
			•	9 4 20					

20 60

24.06 24.06 3.41

1.25

24.10

.. 001371

PUBLIC SERVICE COMPANY OF NEW MEXICO	2 - 4 Mr.
	DEPARTMENT
HAMPTON 4M	or .
Product removed (gallous) from mw-6	DATE YES
	CHECKED DATE
12 - 8.50 gal. 5.0 gal. 12 November	Teb 16-9,13
13 - 3.75 3.75	17 - 4,23
14-3.75 921.	18 - 4,15
15 - 3,80 apl.	19-6.64 - 353.1
16 - 9.55 97	20 - 6.64 21 - 7.06
17 - 9.55 g.pl. 18 - 8.30 q.pl	22-11.21 - 3785.
19 - 2.49 9 01.	23 - 20
20 -12.45 g.d.	24-0.83
21 -17.72 gd.	25 - 3,32
22 - 7.00gal. Total 86.86gal. +5	26-14.11-396.80
23 - 20.25 spl 11 112.14 gpl	27 - 7.47 28 -3.74
24 - 10.65 g A 14.53 g A	march -332 - 411.33 -
26 - 18.68 april.	2-208
27 - 20.34 anl. Total 174.34 gal	3 - 3.32 4
28 · 14.96 gm	4-4.154
29-11,21 gal Total 187.559A	u - 15.36 12-4.57
30 - 5.00 gml. 31 - 8.72 gml. Total 201.27 gml	14 - 4.44
79° - 6.23 gal.	17-5.81 - 453.269
2 7.8931	18-4.15
3 15.779Al. Total 231.169A	
4 7.89501	
5 8.72901. 4 11.21901. Total 258.98901	
4 11.219 Al. Total 258.98 9Al. 7-8.72 9Al.	
8 - 7.89g of.	
4-9-55-01	•
7.89901 Total 293.02 901.	
17-6.64 gml 299.64	••
12-9.55-94	Milan
12-7.04 gn (001312
15-7.06 and	·

Attachment C Analytical Laboratory Data

LAB: (505) 325-1556

February 24, 1998

Maureen Gannon PNM Gas Services Alevardo Square, Mail Stop 0408 Albuquerque, NM 87401 TEL: (505) 241-2974 FAX (505) 241-2340

RE: Hampton 4M Burlington Excavation

Order No.: 9802007

Dear Maureen Gannon.

On Site Technologies, LTD. received 1 sample on 2/11/98 for the analyses presented in the following report.

The Samples were analyzed for the following tests: Aromatic Volatiles by GC-PID (SW8021A)

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Cox

LAB: (505) 325-1556

ANALYTICAL REPORT

Date: 24-Feb-98

Client:

Work Order:

PNM Gas Services

9802007

9802007-01A

Matrix: AQUEOUS

Client Sample ID: 9802111400; Burlington Excava

Collection Date: 2/11/98 2:00:00 PM

Lab ID: Project:

Hampton 4M Burlington Excavation

COC#: 7174

Client Sample Info: Hampton 4M

Parameter	Result	Limit	Qual Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC-PID	SI	W8021A		<u> </u>	Analyst: DC
Benzene	1800	25	μ g/L	50	2/17/98
Toluene	1700	25	µg/L	50	2/17/98
Ethylbenzene	ND	25	μ g/L	50	2/17/98
m,p-Xylene	1200	50	μ g/L	50	2/17/98
o-Xylene	220	25	μ g/L	50	2/17/98
Surr: Fluorobenzene	99.6	70-130	%REC	50	2/17/98
Surr: 1,4-Difluorobenzene	101.2	70-130	%REC	50	2/17/98
Surr: 4-Bromochlorobenzene	100.6	70-130	%REC	50	2/17/98

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

PNM Gas Services CLIENT:

9802007 Work Order:

Hampton 4M Burlington Excavation Project:

Date: 24-Feb-98

QC SUMMARY REPORT

Method Blank

Sample ID: MB1 W	Batch ID: GC-1_980217 Test Code: SW8021A Units: µg/L	Test Code:	SW8021A	Units: pg/L		Analysis	Analysis Date: 2/17/98	86	Prep Date:	e:	
Client ID:	9802007	Run ID:	GC-1_980217A	-		SeqNo:	11				
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Benzene	. 1481	0.5									7
Ethylbenzene	QN	0.5									
m.p-Xylene	QN	-									
o-Xylene	QN	0.5									
Toluene	.0621	0.5									7

001376

Qualifiers:

B - Analyte detected in the associated Method Blank

B - Analyte detected in the associated Method Blank

On Site Technologies, LTD.

PNM Gas Services CLIENT:

9802007 Work Order:

QC SUMMARY REPORT

Date: 24-Feb-98

Sample Matrix Spike

Project: Hampton	Hampton 4M Burlington Excavation	ou							Sampl	Sample Matrix Spike	pike
Sample ID: 9802002-06A MS	Batch ID: GC-1_980217 Test Code:	Test Code:	SW8021A	Units: µg/L		Analysis	Analysis Date: 2/17/98	86	Prep Date:	ite:	
Client ID:	9802007	Run ID:	GC-1_980217A	⋖		SeqNo:	16				
Analyte	Result	Po	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18890	20	4000	15090	95.0%	57	128			·	
Ethylbenzene	4625	20	4000	489.6	103.4%	78	107				
m.p-Xylene	12080	100	8000	4068	100.2%	29	118				
o-Xylene	5186	SS.	4000	1043	103.6%	78	107				
Toluene	5121	20	4000	1055	101.7%	7.4	116				
Sample ID: 9802002-06A MSD Batch ID: GC-1_980217 Test Code:	Batch ID: GC-1_980217	Test Code:	SW8021A	Units: µg/L		Analysis	Analysis Date: 2/17/98	96	Prep Date:	te:	
Client ID:	9802007	Run ID:	GC-1_980217A	⋖		SeqNo:	95				
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19120	20	4000	15090	100.9%	22	128	18890	1.2%	12	
Ethylbenzene	4687	S	4000	489.6	104.9%	78	107	4625	1.3%	=	
m.p-Xylene	12240	100	8000	4068	102.1%	29	118	12080	1.3%	0	
o-Xylene	5283	22	4000	1043	106.0%	78	107	5186	1.9%	14	
Toluene	5195	20	4000	1055	103.5%	74	116	5121	1.4%	14	

00/377

Qualifiers:

1 - Analyte detected below quantitation limits

On Site Technologies, LTD.

PNM Gas Services CLIENT:

9802007 Work Order:

Hampton 4M Burlington Excavation **Project:**

QC SUMMARY REPORT

Date: 24-Feb-98

Laboratory Control Spike - generic

Sample ID: LCS WATER	Batch ID: GC-1_980217 Test Code: SW8021A Units: µg/L	Test Code:	SW8021A	Units: µg/L		Analysis	Analysis Date: 2/17/98	98	Prep Date:	ie:	
Client ID:	8802007	Run ID:	GC-1_980217A	⋖		SeqNo:	73				
Analyte	Result	Por		SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Qual
Benzene	43.06	0.5	4	0.1481	107.3%	8	114			-	
Ethylbenzene	45.72	0.5	40	0	114.3%	98	118				
m,p-Xylene	60.78	-	80	0	108.9%	20	150				
o-Xylene	44.73	0.5	4	0	111.8%	49	147				
Toluene	44.06	0.5	40	0.0621	110.0%	87	120				

Qualifiers:

On Site Technologies, LTD.

PNM Gas Services CLIENT:

9802007 Work Order: Hampton 4M Burlington Excavation Project:

QC SUMMARY REPORT

Date: 24-Feb-98

Continuing Calibration Verification Standard

rojeti:	manipion 404 Danmigron Excuvation					:		; ;			
Sample ID: CCV2 QC0529/30	Batch ID: GC-1_980217 Test Code:	Test Code:	SW8021A	Units: µg/L		Analysis	Analysis Date: 2/17/98	98	Prep Date:	ite:	
Client ID:	9802007	Run (D:	GC-1_980217A	⋖		SeqNo:	18				
Analyte .	Result	Par	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	21.26	0.5	20.	0	106.3%	85	115				
Ethylbenzene	21.77	0.5	20	0	108.8%	85	115				
m.p-Xylene	42.35	-	40	0	105.9%	85	115				
o-Xylene	22.08	0.5	20	0	110.4%	85	115				
Toluene	21.94	0.5	20	0	109.7%	85	115				
1,4-Difluorobenzene	100.6	0	100	0	100.7%	2	130				
4-Bromochlorobenzene	36.82	0	100	0	36.8%	20	130				
Fluorobenzene	66.66	0	100	0	100.0%	20	130				
Sample ID: CCV2 QC0529/30	Batch ID: GC-1_980217 Test Code:	Test Code:	SW8021A	Units: pg/L		Analysis	Analysis Date: 2/17/98	86	Prep Date:	le:	
Client ID:	9802007	Run ID:	GC-1_980217A	•		SeqNo:	72				
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	20.01	0.5	20	0	100.0%	85	115				
Ethylbenzene	21.19	0.5	8	0	105.9%	82	115				
m.p-Xylene	39.98	-	40	0	%6.66	92	115				
o-Xylene	20.82	0.5	20	0	104.1%	85	115				
Toluene	20.3	0.5	20	0	101.5%	82	115				
1,4-Difluorobenzene	101.8	0	100	0	101.8%	20	130				
4-Bromochlorobenzene	99.27	0	100	0	99.3%	20	130				
Fluorobenzene	99.75	0	100	0	8.66	20	130				

00/379:39 manufucts:

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

Qualifiers:

CLIENT: PNM Gas Services

Work Order: 9802007

Project:

Hampton 4M Burlington Excavation

Continuing Calibration Verification Standard

QC SUMMARY REPORT

Sample ID: CCV3 QC0529/30	Batch ID: GC-1_980217 Test Code:	Test Code:	SW8021A	Units: µg/L		Analysis	Analysis Date: 2/17/98	96	Prep Date:	le:	
Client ID:	9802007	Run ID:	GC-1_980217A	⋖		SeqNo:	94				
Analyte	Result	PQ	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	20.56	0.5	8	0	102.8%	82	115				
Ethylbenzene	21.76	0.5	20	0	108.8%	82	115				
m.p-Xylene	40.95	-	40	0	102.4%	85	115				
o-Xylene	21.29	0.5	50	0	106.4%	82	115				
Toluene	20.93	0.5	50	0	104.6%	85	115				
1,4-Difluorobenzene	101.2	0	100	0	101.2%	20	130				
4-Bromochlorobenzene	95.23	0	100	0	95.2%	20	130				
Fluorobenzene	96.66	0	100	0	100.0%	20	130				

CHAIN OF CUS, ODY RECORD

ON SITE

612 E. Murphy Dr. • P.O. Box 2606 • Farmington, NM 87499 LAB: (505) 325-5667 • FAX: (505) 325-6256

Denver Bearden PNM das Services Formington, NM 674 of Em Street 603 W. Eim Street 604 W. Eim Street 604 W. Eim Street 605 W. Eim Street 6	Purchase	Purchase Order No.:			1	Name		Macireen Gannon	Title	
Park Gas Services Dept. 324-3783 D		-				_				
Fold Committee Dept. 234-5765 Dept	3						^	PNM Gas Services		
### Family for, NM 67158 #### Family for, NM 67158 ###################################	O OIC ND		324				Address	Alverado Square, Ma	all Stop 0408	
4. A Land Burington, NM 87407	SEI						e, Zip	Albuquerque, NM 87	158	
HOS BUTLES IS A EXCENT THE INTERFECTION TO THE INTERFECTION TO	VI), Zip			H			505-848-2974	Telefax No.	
A S SAMPLE DENTIFICATION SAMPLE DENTIFICATION DATE Table DATE Table DATE	Sampling	Location:						ANALYSIS REQ	VESTED	
A S. SAMPLE DENTIFICATION DATE The MATRIX PRES DESCRIPTION DATE The DATE DAT		The state of the s								
14 OO Parlies 13 A E X C A	Sampler:	M.S.					\ \p'\chi_2\			
14-00 Parling lan E x (z, v) 113,3 140,2				_	N	`	<u> </u>	\ \ \	1	
14 00	•	SAMPLE IDENTIFICATION	TIME		ερ	\ \ _	\	/ / /	1 / / /	AB ID
Tit	99			-	1	X			110 JU	-
The signature Mass Accompany Request) Date Time Alush Beceived by: Date 2/11/59 Date 2/11/59 Date 2/11/59 Date 2/11/59 Date 3/11/59 Date 3/11/59 Date 3/11/59 Date 3/11/59						_				
The part of the pa	0				_					
The signature Mass Accompany Request) The signature Mass Accompany Request) The signature Mass Accompany Request)	01			-		_				
	38			-	_					
	/				_					
		ومساورة والمراجعة والمساورة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة		-	_					
The signature Must Accompany Request) Date/Time Date/Time Date/Time Date/Time Date/Time Received by: Date/Time Date/Time Received by: Date Date		C				_				
The company Request) Date/Time Date/Time Abust Accompany Request) Date 2/11/58 Date 2/11/58 Date 2/11/58 Date 2/11/58		<i>H</i>								
ent: Date/Time Received by: Date/Time Received by: Date 2/11/54 Date 2/11/	telinquish	M dry : A cope	11/1			ed by:	シへ			
ent:	lelinquish	ed by:				ed by:			Date/Time	
ent: Marking Days Special Date 2/11/18 Date 2/11/18 (Client Signature Must Accompany Request)	elinquish	ed by:	Date/Time		Receiv	ed by:			Date/Time	
(Client Signature Must Accompany Request)	ethod of	ent: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Rush		24-48 Hour		ys Special Instructions:	
-	uthorize	Marie	2/11/5		·				Results to be s to both partie	.
		(Client Signature Must Accompany Request)		•						

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

23-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

Sample No.:

17304

City, State: Farmington, NM 87401.

603 W. Elm

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121030; MW-1

MS/MG/RD/RB

Date:

12-Jan-98 Time:

10:30

Sampled by: Analyzed by: Sample Matrix:

DC Liquid Date:

ug/L

21-Jan-98

Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
4.3	u g/L	0.2	ug/L
3.3		0.2	นธ/โ
0.2		0.2	ug/L
0.7		0.2	ug/L
0.3	ug/L	0.2	u e /L
	4.3 3.3 0.2 0.7	4.3 ug/L 3.3 ug/L 0.2 ug/L 0.7 ug/L	Received Measure Quantitation

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

26-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

Sample ID.:

17304

City, State: Farmington, NM 87401

603 W. Elm

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location: Sampled by:

9801121030; MW-1

MS/MG/RD/RB

Date:

12-Jan-98 Time:

10:30

Analyzed by:

HR

Date:

26-Jan-98

Laboratory Analysis

Parameter		Results as Received	Unit of	Results as Received	Unit of Measure	
Cations		Received	Measure	Received	MICESUFE	
Sodium	- Na	112	m e/L	4.87	me/L	
Calcium	Ca	444	mg/L	22.16	me/L	
Magnesium	Mg	210	mg/L	17.28	me/L	
Potassium	Κ	8.3	mg/L	0.21	me/L	
Anions	-					
Chloride	- a	9	mg/L	0.26	me/L	
Suifate	SO4	2202	mg/L	45.84	me/L	
Carbonate	CO3 as CaCO3	<1	mg/L	<0.01	me/L	
Bicarbonate	HCO3 as CaCO3	2	mg/L	0.03	me/L	
Hydroxide	OH as CaCO3	<1	mg/L	<0.01	me/L	
Total Dissolv	1	2987		Cotton Anti-	on Belanes	
	m of Cation/Anion	2507	mg/L	Cation-Anion Balance 1.61 Difference Cation-Anion. me/L		
Total Dissolved Solids Dried @ 180 C		3242	mg/L	90.65 Total Cation-Anion. me/L		
pH		4.62		1.8	% Difference Co	ution-Anion
Conductivity @ 25 C		2960	uS/cm	Comm	ents	-
Total Hardness as CaCO3		1973	mg/L			

Approved by:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

23-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

Sample No.:

17305

City, State: Farmington, NM 87401

603 W. Elm

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121100; MW-3

MS/MG/RD/RB

Date:

12-Jan-98 Time:

11:00

Sampled by: Analyzed by:

DC

Date:

21-Jan-98

Sample Matrix:

Liquid

Parameter	Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene	ND	ug/L	0.2	ug/L
Toluene	ND	u g/L	0.2	ug/L
Ethylbenzene	ND	u g/L	0.2	u g/L
m.p-Xylene	ND	u g/L	0.2	ug/L
o-Xylene	ND	ug/L	0.2	ug/L
TOTAL	L ND	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn: Denver Bearden Company: PNM Gas Services

603 W. Elm

City, State: Farmington, NM 87401

Project Name:

PNM Gas Services - Hampton 4M 9801121130; MW-4

Project Location: Sampled by:

Analyzed by: Sample Matrix:

MS/MG/RD/RB

DC

Liquid

Date: Date:

12-Jan-98 Time: 21-Jan-98

11:30

23-Jan-98

7086

17306

2-1000

Date:

COC No.:

Job No.:

Sample No.:

Parameter Benzene Toluene Ethylbenzene n.p-Xylene -Xylene		Received 1251 6	Unit of Measure ug/L ug/L ug/L	Limit of Quantitation 2	Unit of Measure ug/L ug/L
ND - Not Detected at L	TOTAL	24 ND 1361	n&/F n&/F	2 2 2	ug/L ug/L

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

001385

P.O. BOX 2606 • FARMINGTON NA

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

23-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

603 W. Elm

Sample No.:

17307

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121200; MW-5

MS/MG/RD/RB

Date:

12-Jan-98 Time:

Sampled by: Analyzed by:

DC

Date:

21-Jan-98

12:00

Sample Matrix:

Liquid

Parameter	Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene	7521	ug/L	20	ug/L
Toluene	11213	ug/L	20	ug/L
Ethylbenzene	779		20	u g/L
m,p-Xylene	6762	ug/L	20	ug/L
o-Xylene	1674	ug/L	20	ug/L
TOTAL	27950	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

001386

Approved By:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

23-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

603 W. Elm

Sample No.:

17308

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121230; MW-7

Sampled by:

MS/MG/RD/RB

TOTAL

Date: Date: 12-Jan-98 Time:

12:30

Analyzed by: Sample Matrix:

DC Liquid 21-Jan-98

Parameter	Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene	780	ug/L	20	ug/L
Toluene	246	ug/L	20	u g/L
Ethylbenzene	258	ug/L	20	ug/L
m,p-Xylene	3204	ug/L	20	u g/L
o-Xviene	738	ug/L	20	110/L.

5227

ug/L

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

23-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

603 W. Elm

Sample No.:

17309

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121300; MW-8 MS/MG/RD/RB

Date:

12-Jan-98 Time:

13:00

Sampled by: Analyzed by:

DC

Date:

21-Jan-98

Sample Matrix:

Liquid

Parameter		Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene		6410	ug/L	20	ug/L
Toluene		17301	ug/L	20	ug/L
Ethylbenzene		693	ug/L	20	ug/L
m,p-Xylene	·	7612	ug/L	20	u g/L
o-Xylene		1785	ug/L	20	ug/L
	TOTAL	33801	ug∕l.		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

OFF: (505) 325-5667

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

26-Jan-98

Company: PNM Gas Services

COC No.:

7086

Address:

603 W. Elm

Sample ID.:

17309

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121300; MW-8

MS/MG/RD/RB

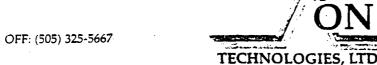
Date:

12-Jan-98 Time:

13:00

Sampled by: Analyzed by:

HR


Date:

26-Jan-98

Laboratory Analysis

Parameter		Results as Received	Unit of Measure	Results as Received	Unit of Measure	
Cations			i			
Sodium	Na	108	mg/L	4.70	me/L	
Calcium	Ca	456	mg/L	22.76	me/L	
Magnesium	Mg	236	mg/L	19.42	me/L	
Potassium	K	20.9	mg/L	0.53	me/L	
Anions					·	
Chloride	- cı	30	mg/L	0.83	me/L	
Sulfate	504	2215	mg/L	46.12	me/L	
Carbonate	CO3 as CaCO3	<1	mg/L	< 0.01	me/L	
Bicarbonate	HCO3 as CaCO3	73	mg/L	1.20	me/L	
Hydroxide	OH as CaCO3	<1	mg/L	<0.01	me/L	
Total Dissolv Calculated, Sui	ed Solids m of Cation/Anion	3139	mg/L	Cation-Ani	on Balance	
Total Dissolv	ed Solids			0.74	Difference Catte	on-Anion. me/L
Dried @ 180 C		3424	mg/L	95.55	Total Cation-An	ion, me/L
				0.8	% Difference Co	tuon-Anion
ρΗ		6.21			=	
Conductivity	@ 25 C	2950	uS/cm	Comm	ents	_
Total Hardne	ss as CaCO3	2110	mg/L			

Approved by:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

23-Jan-98

Company: PNM Gas Services

COC No.:

7086

603 W. Elm Address:

Sample No.:

17310

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9801121330; MW-9

MS/MG/RD/RB

Date:

12-Jan-98 Time:

13:30

Sampled by: Analyzed by:

DC

Date:

21-Jan-98

Sample Matrix:

Liquid

Parameter		Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene		1252	ug/L	2	u g/L
Toluene		7	ug/L	2	ug/L
Ethylbenzene		80	ug/L	2	ug/L
m,p-Xylene		23	ug/L	2	น&/L
o-Xylene		ND	ug/L	2	ug/L
	TOTAL	1362	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

OFF: (505) 325-5667

LAB: (505) 325-1556

QUALITY ASSURANCE REPORT

for EPA Method 8020

Date Analyzed: 21-Jan-98

Internal QC No.:

0559-STD

Surrogate QC No.:

0567-STD .

Reference Standard QC No.: 0529/30-QC

Method Blank

		Unit of
Parameter	Result	Measure
Average Amount of All Analytes In Blank	< 0.2	ppb

Calibration Check

8	Unit of	True	Analyzed			
Parameter	Measure	Value	Value	RPD	Limit	
Benzene	ppb	30.0	30.6	2	15%	
Toluene	ppb	30.0	30.8	3	15%	
Ethylbenzene	ppb	30.0	31.4	5	15%	
m,p-Xylene	ppb	60.0	59.7	0	15%	
o-Xylene	ppb	30.0	31.1	4	15%	

Matrix Spike

	1- Percent	2 - Percent			
Parameter	Recovered	Recovered	Limit	RPD	Limit
Benzene	102	92	(39-150)	2	20%
Toluene	108	105	(46-148)	2	20%
Ethylbenzene	108	105	(32-160)	3	20%
m,p-Xylene	104	102	(35-145)	3	20%
o-Xylene	110	107	(35-145)	2	20%

Surrogate Recoveries

Laboratory identification	S1 Percent Recovered	S2 Percent Recovered	Laboratory Identification	S1 Percent Recovered	S2 Percent Recovered
Limit Percent Recovered	(70-130)		Limit Percent Recovered	(70-130)	
17304-7086	101		17310-7086	100	
17305-7086	102				
17306-7086	100				
17307-7086	100				
17308-7086	101			148	(DE)
17309-7086	101			1/26/98	1/23/98

S1: Flourobenzene

Mountain States Analytical, Inc.

The Quality Solution

February 6, 1998

Mr. David Cox On Site Technologies, Ltd. 612 E Murray Drive Farmington, NM 87401

Reference:

Project: Hampton 4M MSAI Group: 19520

Dear Mr. Cox:

Enclosed are the analytical results for your project referenced above. The following samples are included in the report.

9801121030 MW-1 (Diss)

9801121300 MW-8 (Diss)

All holding times were met for the tests performed on these samples.

If the report is acceptable, please approve the enclosed invoice and forward it for payment.

Thank you for selecting Mountain States Analytical, Inc. to serve as your analytical laboratory on this project. If you have any questions concerning these results, please feel free to contact me at any time.

We look forward to working with you on future projects.

With Regards,

Rolf E. Larsen Project Manager

Mountain States Analytical, Inc.

On Site Technologies, Ltd. 612 E Murray Drive

Farmington, NM

Attn: Mr. David Cox Project: Hampton 4M

Sample ID: 9801121030 MW-1 (Diss)

Matrix: Waste Water The Quality Solution

MSAI Sample: MSAI Group:

74841 19520

Date Reported: Discard Date:

02/06/98 03/08/98

Date Submitted: 01/30/98 Date Sampled:

01/12/98

Collected by: Purchase Order: 7086

Project No.:

Test	Analysis	Results as Received	Units	Method Detection Limit
00011	**Special Instructions, Metals Method: SPECIAL INST MSAI	Batch. w59		
02598	Mercury by CVAA, w/ww, 7470 Method: SW-846 7470	ND	mg∕l	0.0001
03921	Flame/ICP Prep, w/ww, 3005A Method: SW-846 3005A	Batch. w059		
32M	Mercury Prep CVAA, w/ww, 7470 Method: SW-846 7470	Batch. W001		
0401	Prep for HAA, w/ww, 7062/7742 Method: SW-846 7062/7742	, Batch. w60		
1451	Selenium by HAA, w/ww, 7742 Method: SW-846 7742	ND	mg/t	0.002
7245	Arsenic by ICP, w/ww, 6010A Method: SW-846 6010A	NO	mg/l	0.04
7246	Barium by ICP, w/ww, 6010A Method: SW-846 6010A	0.008	mg/l	0.003
7249	Cadmium by ICP, w/ww, 6010A Method: SW-846 6010A	ND	mg/l	0.004
7251	Chromium by ICP, w/ww, 6010A Method: SW-846 6010A	Д	mg/l	0.010
7255	Lead by ICP, w/ww, 6010A Method: SW-846 6010A	ND	mg∕l	0.050

Page

Mountain States Analytical, Inc.

The Quality Solution

MSAI Sample:

74841

Sample ID: 9801121030 MW-1 (Diss)

7266

0939

MSAI Group:

Units

19520

Results Test Analysis

Method Detection

as Received

Limit

Silver by ICP, w/ww, 6010A Method: SW-846 6010A

mg/l

0.005

Sample Filtering, www. MSAI Method: IN HOUSE MSAI

Complete

ND

This report consists of the following items: A cover letter, a signed analytical report for each sample specified on the cover letter, and if applicable, an inorganic quality control summary. Organic sample reports contain footnotes which describe any quality control anomalies which may have occurred.

> Respectfully Submitted, Reviewed and Approved by:

Rolf E. Larsen

Project Manager

🎖 Mountain States Analytical, Inc.

The Quality Solution

On Site Technologies, Ltd. 612 E Murray Drive

Farmington, NM 87401

Attn: Mr. David Cox Project: Hampton 4M

Sample ID: 9801121300 MW-8 (Diss)

Matrix: Waste Water

MSAI Sample: 74842
MSAI Group: 19520
Date Reported: 02/06/98
Discard Date: 03/08/98
Date Submitted: 01/30/98
Date Sampled: 01/12/98

Collected by: MG Purchase Order: 7086

Project No.:

Test	Analysis	Results as Received	Ūnits	Method Detection Limit
0259B	Mercury by CVAA, w/ww, 7470 Method: SW-846 7470	ND	mg/l	0.0001
0392I	Flame/ICP Prep, w/ww, 3005A Method: SW-846 3005A	Batch. w059		
0392M	Mercury Prep CVAA, w/ww, 7470 Method: SW-846 7470	Batch. W001		
.±01	Prep for HAA, w/ww, 7062/7742 Method: SW-846 7062/7742	Batch. w60	•	
1451	Selenium by HAA, w/ww, 7742 Method: SW-846 7742	ND	mg/l	0.002
7245	Arsenic by ICP, w/ww, 6010A Method: SW-846 6010A	ND	mg/l	0.04
7246	Barium by ICP, w/ww, 6010A Method: SW-846 6010A	0.014	mg/l	0.003
7249	Cadmium by ICP, w/ww, 6010A Method: SW-846 6010A	ND	mg/l	0.004
7251	Chromium by ICP, w/ww, 6010A Method: SW-846 6010A	Ю	mg/l	0.010
	Lead by ICP, w/ww, 6010A Method: SW-846 6010A	DM	mg/l	0.050
7266	Silver by ICP, w/ww, 6010A Method: SW-846 6010A	ND	mg/t	0.005

Mountain States Analytical, Inc.

Page 2

On Site Technologies, Ltd.

The Quality Solution

MSAI Sample:

74842

MSAI Group:

19520

Sample ID: 9801121300 MW-8 (Diss)

Method

Results

Detection

as Received

Units

Limit

0939 Sample Filtering, www, MSAI

Test

Analysis

Method: IN HOUSE MSAI

Complete

This report consists of the following items: A cover letter, a signed analytical report for each sample specified on the cover letter, and if applicable, an inorganic quality control summary Organic sample reports contain footnotes which describe any quality control anomalies which may have occurred.

Respectfully Submitted, Reviewed and Approved by:

Rolf E. Larsen Project Manager

Mountain States Analytical, Inc. Daily QC Batching Data Data Released for Reporting

Sequence : 8259 -1

02/06/98 15:55:12

Group: 195

vsis Batch Number: 02598-02/03/98-114 -1

. Identification : 02598-Mercury by CVAA, w/ww, 7470

19477-74728

19477-74729

19477-74730

19520-74841

19520-74842

BLANK#	ANALYTE	CONC FOUND	# CON	C LIMIT				
19477-74729	Mercury	-0.0900		0.1000				
PBW1-001-2	Mercury	-0.0900	1	0.1000				
19477-74729-3	Mercury	-0.0900)	0.1000				
SPIKE						QC LIM	MITS	
SAMPLE#	ANALYTE	CONC ADDED	CONC SAMPLE	CONC SP	IKE % REC #	LOWER U	UPPER	
19527-74856	Mercury	2.0000	-0.1800	1.8	900 103.5	80.0 12	20.0	
MSD						QC LIMIT	rs.	
SAMPLE#	ANALYTE	CONC_ADDED	CONC SAMPLE	RESUL	T 2 XREC2 #	LOWER UPP	PER RPD #	LI
19527-74856	Mercury	2.0000	-0.1800	1.9	000 104.0	80.0 120	0.0 0.5	2
DUPLICATE								
SAMPLE#	ANALYTE	RESULT 1	RESULT 2	RPD #	LIMIT DILU	TION		
19527-74856	Mercury	-0.1800	-0.1800	0.0	20.0 1.	.00		
CONTROL					OC LIMITS			
SAMPLE#	ANALYTE	CONC FOUND	CONC KNOWN	% REC #	LOWER UPPER			
7-74730	Mercury	2.5000	2.5000	100.0	80.0 120.0			
101-2	Mercury	2.5000	2.5000	100.0	80.0 120.0			
1574730-3	Mercury	2.5000	2.5000	100.0	80.0 120.0			
					IMITS			
ccv #	ANALYTE	TRUE VALUE	BATCH READ	% REC #	LOWER UPPER			
ccv-	Mercury	3.0000	2.8800	96.0	90.0 110.0			
CCV2	Mercury	5.0000	4,8900	97.8	80.0 120.0			
ccv3	Mercury	5.0000	4.7800	95.6	80.0 120.0			
CCV4	Mercury	5.0000	4.7700	95.4	80.0 120.0			
CCB#	ANALYTE	CONC FOUND	#CON	C LIMIT				
CCB-	Mercury	-0.0300		0.1000				
CCB-	Mercury	-0.0100		0.1000				
C CB -	Mercury	0.0800		0.1000				
CC8-	Mercury	0.0700		0.1000				

19523-74848 19527-74856

Mountain States Analytical, Inc. Daily QC Batching Data Data Released for Reporting

Sequence : DAAA033

02/06/98 15:55:16 Group: 19

lysis Batch Number: 1451 -02/02/98-061 -1

st Identification : 1451 -Selenium by HAA, w/ww, 7742

Number of Samples : 2

Batch Data-Date/Time : 02/02/98 / 20:38:44

BLANK#	ANALYTE	CONC FOUND	# CONC	LIMIT				
PBW-060	Selenium	ND		0.0050				
SPIKE						QC	LIMITS	
SAMPLE#	ANALYTE	CONC_ADDED	CONC SAMPLE	CONC SPIKE	% REC #	LOWE	R UPPER	<u> </u>
19520-74841	Selenium	0.0400	0.0010	0.0436	106.5	75.0	125.0	
ISD						QC L	IMITS	
SAMPLE#	ANALYTE	CONC ADDED	CONC SAMPLE	RESULT 2	%REC2 #	LOWER	UPPER	RPD
9520-74841	Selenium	0.0400	0.0010	0.0393	95.8		125.0	10.
OUPL I CATE								
SAMPLE#	ANALYTE	RESULT 1	RESULT 2	RPD # L1	MIT DILU	TION		
19520-74841	Selenium	0.0010	0.0007	35.3(11)	20.0 2	.00		
CONTROL					C LIMITS			
MPLE#	ANALYTE	CONC FOUND	CONC KNOWN	% REC # LC	WER UPPER			
.csw-060	Selenium	0.0384	0.0400	96.0	75.0 125.0			
				QC LIMIT	S			
*	ANALYTE	TRUE VALUE	BATCH READ	% REC # LC	WER UPPER			
	Selenium	0.0500	0.0533	106.6	30.0 120.0			
CV12	Selenium	0.0500	0.0534	106.8	80.0 120.0			
C8#	ANALYTE	CONC FOUND	# CONC	LIMIT				
CB-	Selenium	0.0001		0.0050				
CB1-	Selenium	0.0003		0.0050				

Groups & Samples

19520-74841 19520-74842

Page

Mountain States Analytical, Inc. Daily QC Batching Data Data Released for Reporting

02/06/98 15:55:21 Group: 195

'ysis Batch Number: ICPWA-02/03/98-001 -4

.c Identification : ICPWA-*Metals by ICP

Number of Samples : 4

Batch Data-Date/Time : 02/04/98 / 07:42:35

Chromium

Molybdenum

Iron

Nickel

Selenium

Lead

Sequence : DATC034

BLANK#	ANALYTE	CONC FOUND	# CONC	C LIMIT					
BW1-059	Silver	0.0010		0.0060					
	Arsenic	0.0019		0.0300					
	Barium	ND		0.0030					
	Cadmium	ND		0.0040					
	Chromium	0.0017		0.0100					
	Iron	ND		0.2000					
	Molybdenum	ND		0.0300					
	Nickel	ND		0.0300					
	Lead	0.0119		0.0400					
	Selenium	0.0069		0.0700					
PIKE							LIMITS		
MPLE#	ANALYTE		CONC SAMPLE	CONC SPIKE	% REC #	LOWER			
523-74848	Silver	0.0500	0.0000	0.0479	95.8	80.0			
	Arsenic	2.0000	0.0017	1.9432	97.1	80.0			
	Barium	2.0000	0.2139	2.1351	96.1	80.0			
	Cadmium	0.0500	0.0002	0.0516	102.8	80.0			
	Chromium	0.2000	0.0017		100.1	80.0			
	Iron	1.0000	0.2537		100.3	80.0			
•	Molybdenum	0.5000	0.0037	0.5063	100.5	80.0			
	Nickel	0.5000	-0.0015	0.4943	99.2	80.0			
•	Lead	0.5000	-0.0106	0.5096	104.0	80.0			
	Selenium	2.0000	0.0102	1.9405	96.5	80.0	120.0		
SD							IMITS		
AMPLE#	ANALYTE		CONC SAMPLE	RESULT 2	XREC2 #		UPPER	RPD #	
9523-74848	Silver	0.0500	0.0000	0.0495	99.0		120.0	3.3	
	Arsenic	2.0000	0.0017	1.9992	99.9	80.0	120.0	2.8	
	Barium	2.0000	0.2139	2.1773	98.2	80.0	120.0	2.0	
	Cadmium	0.0500	0.0002	0.0506	100.8	80.0	120.0	2.0	
	Chromium	0.2000	0.0017	-	101.3	80.0	120.0	1.1	
	Iron	1.0000	0.2537		102.8	80.0	120.0	2.0	
	Molybdenum	0.5000	0.0037	0.5201	103.3	80.0	120.0	2.7	
	Nickel	0.5000	-0.0015	0.4993	100.2	80.0	120.0	1.0	
	Lead	0.5000	-0.0106	0.5027	102.7		120.0	1.4	
	Selenium	2.0000	0.0102	2.0087	99.9	80.0	120.0	3.5	
UPLICATE									
AMPLE#	ANALYTE	RESULT 1	RESULT 2		WIT DILU				
9523-74848	Silver	0.0000	0.0000			.00			
	Arsenic	0.0017	0.0121			.00	177	0/39	, (
	Barium Sadaium	0.2139	0.2118			.00	UL	1101	•
	Cadmium	0.0002	0.0001	66.7(11) 2	0.0 1	.00			

0.0017

0.2537

0.0037

-0.0015

-0.0106

0.0102

0.0000 200.0(11)

0.0000 200.0(11)

0.0074 1125.0(11)

2.4

200.0(11)

28.6(11)

0.2477

0.0000

0.0136

20.0

20.0

20.0

20.0

20.0

20.0

1.00

1.00

1.00

1.00

1.00

1.00

Mountain States Analytical, Inc. Daily QC Batching Data Data Released for Reporting

Sequence : DATC034

02/06/98 15:55:23 Group: 195

sis Batch Number: ICPWA-02/03/98-001 -4 1. Identification : ICPWA-*Metals by ICP

Number of Samples : 4

Iron

Batch Data-Date/Time : 02/04/98 / 07:42:35

CONTROL					QC LIMITS
SAMPLE#	ANALYTE	CONC FOUND	CONC KNOWN	% REC #	LOWER UPPER
LCSW-059	Silver	0.0521	0.0500	104.2	80.0 120.0
	Arsenic	2.0127	2.0000	100.6	80.0 120.0
	\$arium	1.9239	2.0000	96.2	80.0 120.0
	Cadmium	0.0557	0.0500	111.4	80.0 120.0
	Chromium	0.2081	0.2000	104.1	80.0 120.0
	Iron	1.0343	1.0000	103.4	80.0 120.0
	Molybdenum	0.5225	0.5000	104.5	80.0 120.0
	Nickel	0.5137	0.5000	102.7	80.0 120.0
	Lead	0.5514	0.5000	110.3	80.0 120.0
	Selenium	2.0482	2.0000	102.4	80.0 120.0
				ac L	IMITS
ccv #	ANALYTE	TRUE VALUE	BATCH READ	% REC #	LOWER UPPER
ICV-	Silver	0.4000	0.3789	94.7	90.0 110.0
	Arsenic	1.6000	1.5838	99.0	90.0 110.0
	8arium -	4.0000	3.8169	95.4	90.0 110.0
	Cadmium	4.0000	3.9563	98.9	90.0 110.0
	Chromium	4.0000	4.0024	100.1	90.0 110.0
T	Iron	4.0000	4.0909	102.3	90.0 110.0
-	Mol ybdenum	20.0000	19.4749	97.4	90.0 110.0
	Nickel	8.0000	7.9267	99.1	90.0 110.0
	Lead	20.0000	19.2317	96.2	90.0 110.0
	Selenium	1.6000	1.5514	97.0	90.0 110.0
CCV12	Silver	0.4000	0.3724	93.1	90.0 110.0
	Arsenic	1.6000	1.5616	97.6	90.0 110.0
	Barium	4.0000	3.7455	93.6	90.0 110.0
	Cadmium	4.0000	3.9347	98.4	90.0 110.0
	Chronium	4.0000	3.9560	98.9	90.0 110.0
	Iron	4.0000	4.1056	102.6	90.0 110.0
	Molybdenum	20.0000	19.2108	96.1	90.0 110.0
	Nickel	8.0000	7.8528	98.2	90.0 110.0
	Lead	20.0000	19.0628	95.3	90.0 110.0
	Selenium	1.6000	1.5385	96.2	90.0 110.0
ccv23	Silver	0.4000	0.3825	95.6	90.0 110.0
	Arsenic	1.6000	1.5837	99.0	90.0 110.0
	Barium	4.0000	3.7675	94.2	90.0 110.0
	Cadmium .	4.0000	3.9612	99.0	90.0 110.0
	Chromium	4.0000	3.9819	99.5	90.0 110.0
•	lron	4.0000	4.1693	104.2	90.0 110.0
	Molybdenum	20.0000	19.3837	96.9	90.0 110.0
	Nickel	8.0000	7.8818	98.5	90.0 110.0
	Lead	20.0000	19.4674	97.3	90.0 110.0
	Selenium	1.6000	1.5373	96.1	90.0 110.0
-4	Silver	0.4000	0.3834	95.9	90.0 110.0
	Arsenic	1.6000	1.5810	98.8	90.0 110.0
	Barium	4.0000	3.7692	94.2	90.0 110.0
	Cadmium	4.0000	3.9638	99.1	90.0 110.0
	Chromium	4.0000	3.9899	99.7	90.0 110.0
	_				

4.0000

4.1877 104.7

90.0 110.0

Mountain States Analytical, Inc. Paily QC Batching Data Data Released for Reporting

02/06/98 15:55:25 Group: 19

'ysis Batch Number: ICPWA-02/03/98-001 -4
. Identification : ICPWA-*Metals by ICP

Number of Samples : 4

Batch Data-Date/Time : 02/04/98 / 07:42:35

Selenium

Sequence : DATC034

			QC L	IMITS	•
CCV #	ANALYTE	TRUE VALUE	BATCH READ % REC #	LOWER UPPER	
CCV34	Molybdenum	20.0000	19.3755 96.9	90.0 110.0	
	Nickel	8.0000	7.9553 99.4	90.0 110.0	
	Lead	20.0000	19.4548 97.3	90.0 110.0	
	Selenium	1.6000	1.4923 93.3	90.0 110.0	
CCB#	ANALYTE	CONC FOUND #	CONC LIMIT		
ICB-	Silver	ND	0.0060		
	Arsenic	ND	0.0300		
	Barium	ND	0.0030		•
	Cadmium	0.0027	0.0040		
	Chromium	0.0034	0.0100		
	Iron	ND	0.2000		
	Molybdenum	0.0182	0.0300		
	Nickel	0.0067	0.0300		
	Lead	0.0279	0.0400		
	Selenium	0.0466	0.0700		
CC81-	Silver	0.0015	0.0060		
	Arsenic	ND	0.0300		
	Barium	ND	0.0030		
	Cadmium	0.0026	0.0040	•	
	Chromium	0.0015	0.0100		
	Iron	ND	0.2000		
	Molybdenum	0.0164	0.0300		
	Nickel	ND	0.0300		
	Lead	0.0017	0.0400		
	Selenium	0.0310	0.0700		
CCB2-	Silver	0.0038	0.0060		
	Arsenic	0.0042	0.0300		
	Barium	ND	0.0030		
	Cadmium	0.0026	0.0040		
	Chromium	0.0020	0.0100		
	Iron	0.0081	0.2000		
	Molybdenum	0.0111	0.0300		
	Nickel	0.0016	0.0300		
	Lead	ND	0.0400		
	Selenium	0.0200	0.0700		
CCB3-	Silver	ND ·	0.0068		
	Arsenic	0.0031	0.0300		
	Barium ·	ND	0.0030		
	Cadmium	ND	0.0040	•	1001111
	Chromium	0.0010	0.0100	•	00H01
	! ron	ND	0.2000		
	Molybdenum	0.0119	0.0300		
	Nickel	ND	0.0300		
	Lead	0.0060	0.0400		
	On Landson		·		

0.0111

0.0700

Page

Mountain States Analytical, Inc. Daily QC Batching Data Data Released for Reporting

02/06/98 15:55:27 Group: 195

ysis Batch Number: ICPWA-02/03/98-001 -4 Identification : ICPWA-*Metals by ICP

Sequence : DATC034

Number of Samples : 4

Batch Data-Date/Time : 02/04/98 / 07:42:35

------ Result Footnotes ------(11) - The duplicate results cannot be evaluated because both results are <MDL.

Groups & Samples

19494-74776 19520-74841 19520-74842 19523-74848

6837

CHAIN OF CUL ODY RECORD

ON SITE

TECHNOLOGIES, LTD.

Date:

657 W. Maple • P. O. Box 2606 • Farmington NM 87499 LAB: (505) 325-5667 • FAX: (505) 325-6256

Title	٦.			Telefax No. 325-6158			LABID	1724-7086	17309-7086				Date/Time pu/s.o/18 IDVS	Date/Time	Date/Time	Special Instructions: XX FILTENED YET
Name (5.47.10 / 2.7		Idress	City, State, Zip	Telephone No. 505 325 - 2452	1	1 25/2/20 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1. 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7					dby: (X) Sacusa	d by:	d by:	FIVE (2) 24-48 Hours 10 Working Days
	OT S	Dept.	EZ		118	Number		WW COUL	1/2/58 1300 WW War				Date/Time 21/18 (402) Received by:	Date/Time Received by:	Date/Time Received by:	Date 1/21/18
Purchase Order No.: 3-08/	Name Accounts AR	5 1 7	SECOND Address	City, State, Zip	Sampling Location: HAMPTON 4M	Sampler: MG/MS	SAMPLE IDENTIFICATION		3-177 ; az/111085	0	D14	03	Relinquished by:	Relinquished by:	Relinquished by:	Method of Shipment: Authorized by:

CHAIN OF CUSTODY RECORD

ON SITE TECHNOLOGIES, LTD.

7000

612 E. Murphy Dr. • P.O. Box 2606 • Farmington, NM 87489 LAB: (505) 325-5667 • FAX: (505) 325-6256

OFF: (505) 325-5667

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date: 17-Nov-97

Company: PNM Gas Services

COC No.:

7083

Address:

603 W. Elm

Sample No.:

16818

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9711111330; TH-7

Date:

11-Nov-97 Time:

13:30

Sampled by: Analyzed by: MS DC

Date:

13-Nov-97

Sample Matrix:

Liquid

		Results as	Unit of	Limit of	Unit of
Parameter		Received	Messure	Quantitation	Measure
Benzene		2171	ນ ຍ/L	10	ug/L
Toluene		4185	u g/L	10	u g/ L
Ethylbenzene		190	ug/L	10	ug/L
m,p-Xylene		2225	ug/L	10	ug/L
o-Xylene		631	ug/L	10	ug/L
	TOTAL	9402	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromane Volarile Organics by Gas Chromatography

American Environmental Network, Inc.

AEN I.D.

711365

December 18, 1997

PUBLIC SERVICE COMPANY
ALVARADO SQUARE-MS0408
ALBUQUERQUE, NM 87158

Project Name

HAMPTON 4M

Project Number

(none)

Attention:

GANNON MAUREEN

On 11/26/97 American Environmental Network (NM), Inc. (ADHS License No. AZ0015), received a request to analyze aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

On December 3, 1997, the client notified the laboratory which cations and which anions should be analyzed. The list is attached to the COC.

EPA Method 8020 was performed by AEN(NM), Inc., Albuquerque, NM.

All other analyses were performed by AEN(FL), Pensacola, FL.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

H. Mitchell Rubenstein, Ph. D.

General Manager

MR: mt

Enclosure

American Environmental Network, Inc.

CLIENT	: PUBLIC SERVICE COMPANY	AEN I.D.	711365
PROJECT#	(none)	DATE RECEIVED	: 11/26/97
PROJECT NAME	: HAMPTON 4M	REPORT DATE	: 12/18/97
AEN			DATE
ID. #	CLIENT DESCRIPTION	MATRIX	COLLECTED
01	9711251200	AQ	11/25/97

GAS CHROMOTOGRAPHY RESULTS

TEST

: BTEX (EPA 8020)

CLIENT

: PUBLIC SERVICE COMPANY

AEN I.D.: 711365

PROJECT#

: (none)

PROJECT NAME

: HAMPTON 4M

			DATE	DATE	DATE	DIL.
CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
9711251200		AQUEOUS	11/15/97	NA	11/25/97	1
TER	DET. LIMIT		UNITS	01		
	0.5		UG/L	< 0.5		
	0.5		UG/L	< 0.5		
NZENE	0.5		UG/L	< 0.5		
LENES	0.5		UG/L	< 0.5		
	9711251200 FER NZENE	9711251200 TER DET. LIMIT 0.5 0.5 NZENE 0.5	9711251200 AQUEOUS TER DET. LIMIT 0.5 0.5 NZENE 0.5	CLIENT I.D. MATRIX SAMPLED 9711251200 AQUEOUS 11/15/97 FER DET. LIMIT UNITS 0.5 UG/L 0.5 UG/L NZENE 0.5 UG/L	CLIENT I.D. MATRIX SAMPLED EXTRACTED 9711251200 AQUEOUS 11/15/97 NA FER DET. LIMIT UNITS 01 0.5 UG/L < 0.5	CLIENT I.D. MATRIX SAMPLED EXTRACTED ANALYZED 9711251200 AQUEOUS 11/15/97 NA 11/25/97 FER DET. LIMIT UNITS 01 UG/L < 0.5

'URROGATE:

dROMOFLUOROBENZENE (%)

105

SURROGATE LIMITS

(80 - 120)

CHEMIST NOTES:

N/A

GAS CHROMOTOGRAPHY RESULTS REAGENT BLANK

TEST	: BTEX (EPA 8020)	AEN I.D.	711365
BLANK I. D.	: 112597	DATE EXTRACTED	: NA
CLIENT .	: PUBLIC SERVICE COMPANY	DATE ANALYZED	11/25/97
PROJECT#	(none)	SAMPLE MATRIX	AQUEOUS
PROJECT NAME	: HAMPTON 4M		
PARAMETER	UNITS		
BENZENE	UG/L	<0.5	
TOLUENE	UG/L	<0.5	
ETHYLBENZENE	UG/L	<0.5	
TOTAL XYLENES	UG/L	<0.5	
SURROGATE:		_	
BROMOFLUOROBENZENE (%) URROGATE LIMITS: JHEMIST NOTES: N/A	(80 - 120)	101	

GAS CHROMOTOGRAPHY RESULTS REAGENT BLANK

TEST BLANK I. D. CLIENT PROJECT # PROJECT NAME	: BTEX (EPA 8020) : 112697 : PUBLIC SERVICE COMPANY : (none) : HAMPTON 4M	AEN I.D. DATE EXRACTED DATE ANALYZED SAMPLE MATRIX	711365 NA 11/26/97 AQUEOUS
PARAMETER	UNITS		
BENZENE	UG/L	<0.5	
TOLUENE	UG/L	<0.5	
ETHYLBENZENE	UG/L	<0.5	
TOTAL XYLENES	U G/L	<0.5	
SURROGATE: BROMOFLUOROBENZENE (%) URROGATE LIMITS: IEMIST NOTES: N/A	(80 - 120)	104	

GAS CHROMOTOGRAPHY QUALITY CONTROL **MSMSD**

TEST

: BTEX (EPA 8020)

MSMSD#

: 711361-03

: PUBLIC SERVICE COMPANY

AEN I.D.

711365

CLIENT

DATE EXTRACTED DATE ANALYZED

NA 11/25/97

PROJECT# PROJECT NAME : (none) : HAMPTON 4M

SAMPLE MATRIX

AQUEOUS

- X 100

					UNITS			UG/L	
	SAMPLE	CONC	SPIKED	%	DUP	DUP		REC	RF
PARAMETER	RESULT	SPIKE	SAMPLE	REC_	SPIKE	% REC	RPD	LIMITS	LIM
BENZENE	<0.5	10.0	9.7	97	10.1	101	4	(80 - 120)	20
TOLUENE	<0.5	10.0	9.6	96	10.0	100	4	(80 - 120)	2 (
ETHYLBENZENE	<0.5	10.0	10.2	102	10.6	106	4	(80 - 120)	2 0
TOTAL XYLENES	<0.5	30.0	31.1	104	32.4	108	4	(80 - 120)	2 0

HEMIST NOTES: N/A

(Spike Sample Result - Sample Result)

% Recovery =

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

"Imerica. Invironmental Network (NM), Inc. Albuquerque · Phoenix · Pensacola · Porlland · Pleasant Hills · Columbia

Profesione environments

CHAIN OF CUSTODY

这个文文的ALYSISIREDUEST 教育人文的教育文文文文文文文文文文文文文文文文文文文文文文文文文文文文文文文文文	504 EDB \ DBCP \ Yolatile Organics (610/8310) Volatile Organics (624/8240) GC/MS Volatile Organics (624/8240) GC/MS Pesticides/PCB (608/8080) Pesticides/PCB (608/8080) Aceneral Chemistry: McL. (625/8270) Target Analyte List Metals (13) Fronty Pollutant Metals (13) Target Analyte List Metals (13) Metals (615/8150) Metals (615/8150) Metals (615/8150)						THEINGUISHED BY THE STATE OF THE STREET BY THE STATE OF T	Signature Fine Signature Fine	Dale	Jims 11/26/17	Company Company		Signature: Time:	Printed Name: Date:	Company
一代人的一种的技术的影響等		1200 His Endin					PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS!	(AUSH) [124hr [172hr []1 WEEK (NORMAL) X	CERTIFICATION REQUIRED: CINM CISDWA CIOTHER	METHANOL PRESERVATION []	COMMENTS: FIXED FEE []	WILLFAX	Cation/Anion Lst	Dac 1, 1997	7
PROJECT MANAGER: Concon, Manreson	COMPANY: PNM ADDRESS: Allarada S MS. a4 0B FAX: So S 241- Sult to: Same COMPANY: Same	APIII 119 00 EISCII LB					PROJECT INFORMATION COME		PROJ NAME: HOMBIND 4M		SHIPPED VIA:				7.4.2.

PLEASE FILL THIS FORM IN COMPLETELY.

MARK CALLED AT 9:20 AM 12-3-97 AND REQUESTED CATIONS/ANIONS TO INCLUDE:

CATIONS: Na, Ca, Mg, K

ANIONS: CI, SO4, CARBONATE/BICARBONATE, HYDROXIDE, TDS,

pH, CONDUCTIVITY, TOTAL HARDNESS

& CAT/ANION % DIFFERENCE.

[0) Page 1 Date 12-Dec-97

"FINAL REPORT FORMAT - SINGLE"

Accession:

Client:

711653 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. 711365

Project Number: Project Name:

PNM

Project Location: HAMPTON 4N
Test: TOTAL ALKALINITY
Matrix: WATER
QC Level: II

Matrix: QC Level:

Lab ID: 001 Client Sample Id: 711365	-01		Sample Date/T Received Date	ime:	25-NOV-97 04-DEC-97	1200
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
ALKALINITY, TOTAL (2320B) PH (150.1) BICARBONATE, CACO3	MG/L UNITS	160 7.3	1 NA	R4	ASW046 PHW251	JL JL
(2330B) CARBONATE, CACO3 (2330B) CARBON DIOXIDE, FREE AS	MG/L MG/L	160 ND	1		NONE NONE	DPH DPH
CACO3 HYDROXIDE (2330B) AS	MG/L	16	1		NONE	DPH
CACO3	MG/L	ND	1		NONE	DPH

Comments:

[0) Page 2 Date 12-Dec-97

"Method Report Summary"

Accession Number: 711653
Client: AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.
Project Number: 711365

Project Number: 71: Project Name: PNN Project Location: HAN) INC.	
Client Sample Id:	Parameter:	Unit:	Result:
711365-01	ALKALINITY, TOTAL (2320B) PH (150.1) BICARBONATE, CACO3 (2330B) CARBON DIOXIDE, FREE AS CACO3	MG/L UNITS MG/L MG/L	160 7.3 160 16

Analysis Report

Analysis: Group of Single Wetchem

Accession: Client:

Project Number: Project Name: Project Location: Department:

711653
AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

711365

PNM

HAMPTON 4N WET CHEM

[0] Page 2 Date 12-Dec-97

5000

3000

4100

MG/L

MG/L

"Method Report Summary"

Accession Number: 711653

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. Client:

Project Number: 711365
Project Name: PNM
Project Location: HAMPTON 4N

Group of Single Wetchem Test:

Unit: Result: Client Sample Id: Parameter: CHLORIDE (325.3) CONDUCTIVITY (120.1/2510 B) SULFATE (375.4) TOTAL DISSOLVED SOLIDS (160.1) 711365-01 MG/L UMH/CM 29

Analysis Report

Analysis: Group of Single Metals

Accession:

711653 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Client: Project Number:

711365 Project Name: Project Location: PNM

Department:

HAMPTON 4N

METALS

(0) Page 1 Date 16-Dec-97

"FINAL REPORT FORMAT - SINGLE"

Accession:

711653

Client:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number:

711365

Project Name: PNM
Project Location: HAMPTON 4N

Test:

Group of Single Metals

WATER

Matrix: QC Level:

II

Lab Id: 001 Client Sample Id: 711365-01			Sample Date/Time: Received Date:		25-NOV-97 04-DEC-97	1200
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
CALCIUM (200.7) POTASSIUM (200.7) MAGNESIUM (200.7) SODIUM (200.7)	MG/L MG/L MG/L MG/L	400 6 19 880	1 2 0.2	+	I0W291 X0W291 J0W291 10W291	JR JR JR JR

Comments:

[0] Page 2 Date 16-Dec-97

"Method Report Summary"

Accession Number: 711653

Client: Project Number: Project Name: Project Location: Test:	AMERICAN ENVIRONMENTAL NETWORK 711365 PNM HAMPTON 4N Group of Single Metals	(NEW MEXICO) INC	
Client Sample Id:	Parameter:	Uni	t: Result:
711365-01	CALCIUM (200.7) POTASSIUM (200.7) MAGNESIUM (200.7) SODIUM (200.7)	MG/ MG/ MG/ MG/	L 6 L 19

Analysis Report

Analysis: HARDNESS

Accession:

Client:

711653

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number: Project Name: Project Location: Department:

711365

PNM

HAMPTON 4N

METALS

[0] Page 1 Date 16-Dec-97

"FINAL REPORT FORMAT - SINGLE"

Accession:

Client:

711653 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number:

711365

Project Name:

PNM

Project Location: HAMPTON 4N

HARDNESS

Test:

Matrix:

WATER II

QC Level: Lab Id:

001 Sample Date/Time: 25-NOV-97 1200

Received Date: 04-DEC-97

Client Sample Id: 711365-01 Parameters:

Results:

990

78

1100

Q: Batch:

Analyst:

TOTAL HARDNESS

MG/L

MG/L

Units:

NA

Rpt Lmts:

CALCIUM, HARDNESS

MG/L

2

I0W291

NONE

(200.7)MAGNESIUM, HARDNESS

0.8

J0W291

JR JR

JR

Comments:

(200.7)

(0) Page 2 Date 16-Dec-97

1100

MG/L

"Method Report Summary"

Accession Number: 711653

Client:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

TOTAL HARDNESS

Project Number: Project Nume: PNM
Project Location: HAMPTON 4N
HARDNESS

Client Sample Id:

711365

711365-01

Parameter: Unit: Result: CALCIUM, HARDNESS (200.7)
MAGNESIUM, HARDNESS (200.7) 990 MG/L MG/L 78

Data Qualifiers for Final Report

AEN-Pensacola Inorganic/Organic

Adjusted reporting limit due to sample matrix (dilution prior to digestion and/or analysis)

Elevated reporting limit due to dilution into calibration range

Elevated reporting limit due to matrix interference (dilution prior to digestion and/or analysis)

Elevated reporting limit due to insufficient sample size

D Diluted out

The reported value is quantitated as a TIC; therefore, it is estimated

ND = Not Detected N/S = Not Submitted N/A = Not Applicable

Florida Projects Inorganic/Organic

٧

Y1 Improper preservation, no preservative present in sample upon receipt
Y2 Improper preservation, incorrect preservative present in sample upon receipt

Y3 Improper preservation, sample temperature exceeded EPA temperature limits of 2-6°C upon receipt

Y (FL description) The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.

Q Sample held beyond the accepted holding time

I The reported value is < Laboratory RL and > laboratory MDL

UI The reported value is ≤ Laboratory MDL (value for sample result is reported as the MDL)

U (FL description) Indicates the compound was analyzed for but not detected.

The reported value is < Laboratory MDL (value shall not be used for statistical analysis)

The analyte was detected in both the sample and the associated method blank.

JI Surrogate recovery limits have been exceeded

The sample matrix interfered with the ability to make any accurate determinations

13 The reported value failed to meet the established quality control criteria for either precision or accuracy

J (FL description) Estimated value; not accurate.

AFCEE Projects (under OAPP) and All Other (AEN-PN) Projects/Sites for Inorganic/Organic Parameters

If (For positive results)

I (AFCEE description)

The analyte was positively identified, the quantitation is an estimation

(For nondetects)

Temperature limits exceeded (≤2°C or ≥ 6°C)

Improper preservation, no preservative present in sample upon receipt

R3

Improper preservation, incorrect preservative present in sample upon receipt

Holding time exceeded

R5 Collection requirements not met, improper container used for sample

R (AFCEE description)

The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria

F < RL and > laboratory MDL

F (AFCEE description)

The analyte was positively identified but the associated numerical value is below the AFCEE or lab RL

U2 ≤ Laboratory MDL (value for result will be the MDL, never below the MDL)

U (AFCEE description) The analyte was analyzed for but not detected. The associated numerical value is at or below the MDL

B (AFCEE description) The analyte was found in the associated blank, as well as in the sample

ICR Projects Inorganic/Organic

A Acceptable R6 Rejected

Examples: ICR Flags

R6 = Laboratory extracted the sample but the refrigerator malfunctioned so the extract became warm and client was notified

R6 = Sample arrived in laboratory in good condition; however, the laboratory did not analyze it within EPA's established holding time limit.

CLP and CLP-like Projects

Refer to referenced CLP Statement of Work (SOW) for explanation of data qualifiers

IDL = Laboratory Instrument Detection Limit

MDL = Laboratory Method Detection Limit

RL = Reporting Limit (AFCEE RLs are listed in the AFCEE QAPP)

CLP CRDL = CLP Contract Required Detection Limit (these limits are listed in the EPA CLP Statement of Work or SOW)

CLP CRQL = CLP Contract Required Quantitation Limit (these limits are listed in the EPA CLP Statement of Work or SOW)

IN time a sample arrives at the laboratory improperly preserved (at improper pH or temperature) or after holding time has expired or prepared or analyzed after holding time, client must be notified in writing (i.e. case narrative).

AEN-Pensacola uses the most current promulgated methods contained in the reference manuals.

Quality Control Report

Analysis: TOTAL ALKALINITY

711653 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. 711365

Accession: Client: Project Number: Project Name: Project Location:

PNM

HAMPTON 4N WET CHEM

Department:

[0) Page 1 Date 12-Dec-97

"WetChem	Quality	Control	Report"
- 1	*		

Parameter:	ALKALINITY	PH
Batch Id:	ASW046	PHW251
Blank Result:	<1	N/A
Anal. Method:	2320B	150.1
Prep. Method:		N/A
Analysis Date:		04-DEC-97
Prep. Date:	04-DEC-97	04-DEC-97

Sample Duplication

Sample Dup:	711550-2	711654-1
Rept Limit:	<1	N/A
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	99.6 99.9 0 4 N/A	5.92 5.92 0 0.12 N/A

Matrix Spike

Sample Spiked:	711550-2	N/A
Rept Limit:	<1	N/A
Sample Result: Spiked Result: Spike Added: † Recovery: † Rec Limits: Dry Weight?	99.6 127.0 25.0 110 77-122 N/A	

ICV

ICV Result:	244	10.09 10.00 101 90-110
True Result:	250	10.00
<pre>% Recovery: % Rec Limits:</pre>	98	101
% Rec Limits:	90-110	90-110

LCS

LCS Result:	6.87
True Result:	16.87
<pre>% Recovery:</pre>	100
% Rec Limits:	6.87 6.87 100 96-104

(0) Page 2 Date 12-Dec-97

---- Common Footnotes WetChem ----

N/A = NOT APPLICABLE. N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED.

R = REACTIVE T = TOTAL

- G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

 Q = THE ANALYTICAL (POST-DISTILLATION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY

- BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DISTILLATION) SPIKE.

 # = ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.

 + = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

 * = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE (DILUTION PRIOR DIGESTION AND/OR ANALYSIS)
- @ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX (DILUTION PRIOR TO DIGESTION AND/OR ANALYSIS)
- P = ANALYTICAL (POST DIGESTION) SPIKE.
- I = DUPLICATE INJECTION.
- & = AUTOMATED
- F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. N/C+ = NOT CALCULABLE

H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".

- Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,
 THIS RESULT IS REPORTED FOR ACCURATE QC CALCULATIONS.

 NH= SAMPLE AND / OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT
 AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN
 REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".
 SAMPLE IS NON-HOMOGENEOUS.
- (*) = REPORTING LIMITS RAISED DUE TO CLP METHOD NOT REQUIRING A CONCENTRATION STEP FOR C (CA) = SEE CORRECTIVE ACTIONS FORM.

 **= MATRIX INTERFERENCE
 SW-846, 3rd Edition, latest EPA-approved edition.

EPA 600/4-79-020, Revised March 1983.

STANDARD METHODS, For the Examination of Water and Wastewater, latest EPA-approved editic NIOSH Manual of Analytical Methods, 4th Edition.
ANNUAL BOOK OF ASTM STANDARDS, VOLUMES 11.01 and 11.02, latest EPA-approved edition.
METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES,

EPAGOO/R-93/100, AUGUST 1993
METHODS FOR SOIL ANALYSIS, PART 2, CHEMICAL AND MICROBILOGICAL PROPERTIES, 2ND EDITION.
AEN-PN USES THE MOST CURRENT PROMULGATED METHODS FROM THE REFERENCES LISTED ABOVE.

- COLIFORM PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE LOGARITHM OF COLONIES PER 100 MLS OF SAMPLE ON DUPLICATE PLATES. PH PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE 1. COLIFORM.
- 2. PH.
- SAMPLE AND DUPLICATE ANALYSIS.

 3. FLASHPOINT. FLASHPOINT PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE ANALYSIS.

 RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION).

 RPT LMTS = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

DPH = DOLLY P. HWANG RB = REBECCA BROWN JL = JANET LECLEAR

MM = MIKE MCKENZIE ED = ESTHER DANTIN CR = CYNTHIA ROBERTS

PLD = PAULA L. DOUGHTY LV = LASSANDRA VON APPEN JTZ = JONATHAN T. ZIENTARSKI

RH = RICKY HAGENDORFER MG = MARY GUTIERREZ AB = AMY BRADLEY

NK = NIKKI KILBURN

Quality Control Report

Analysis: Group of Single Wetchem

Accession: Client:

Project Number: Project Name: Project Location: Department:

711653 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. 711365

HAMPTON 4N WET CHEM

[0] Page 1 Date 12-Dec-97

Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	CHLORIDE CIW116 <1 325.3 N/A 03-DEC-97 03-DEC-97	"WetChem (CONDUCT'Y CDW026 <1 120.1 N/A 12-DEC-97 12-DEC-97	Ouality Cont SULFATE SEW094 <10 375.4 N/A 08-DEC-97	TDS TDW069 <5 160.1 N/A 09-DEC-97 08-DEC-97
Sample Dup	lication			
Sample Dup: Rept Limit:	711631-2 <1	711653-1 <1	711603-1 <10	711653-1 <5
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	12.8 12.6 2 6 N/A	4990 4980 0 2 N/A	<10 <10 N/C 10 N/A	4120 4068 1 15 N/A
Matrix Spi	ke			
Sample Spiked: Rept Limit:	711631-2 <1	N/A N/A	711603-1 <10	N/A N/A
Sample Result: Spiked Result: Spike Added: * Recovery: * Rec Limits: Dry Weight*	12.8 70.2 55.0 104 88-113 N/A		<10 21.1 20.0 106 64-150 N/A	
ICV				
ICV Result: True Result: % Recovery: % Rec Limits:	98.1 100 98 90-110		20.1 20.0 101 90-110	
LCS				
LCS Result: True Result: % Recovery: % Rec Limits:		1426 1412 101 98-102		310 293 106 77-122

[0) Page 2
Date 12-Dec-97

Comments:

Batch Id:

"Quality Control Comments"

	
CIW116 TDW069 TDW069	WAS ADDED TO BATCH ON 4-DEC-97 712059-1,2,3,4,5,6,7,8,9,10 WERE ADDED TO BATCH

(0) Page 3 Date 12-Dec-97

---- Common Footnotes WetChem -----

N/A = NOT APPLICABLE. N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED.

R = REACTIVE

T = TOTAL

- SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT
- THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

 Q = THE ANALYTICAL (POST-DISTILLATION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DISTILLATION) SPIKE.

 # = ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.

 + = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

 * = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE (DILUTION PRIOR DIGESTION

- AND/OR ANALYSIS)
- @ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX (DILUTION PRIOR TO DIGESTION AND/OR ANALYSIS). = ANALYTICAL (POST DIGESTION) SPIKE.
- I DUPLICATE INJECTION.
- & = AUTOMATED

- & = AUTOMATED
 F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.
 N/C+ = NOT CALCULABLE
 H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE
 ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING
 LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".
 A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".
 Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,
 THIS RESULT IS REPORTED FOR ACCURATE QC CALCULATIONS.
 NH= SAMPLE AND / OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT
 AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN
 REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".
 SAMPLE IS NON-HOMOGENEOUS. SAMPLE IS NON-HOMOGENEOUS.
- (*) = REPORTING LIMITS RAISED DUE TO CLP METHOD NOT REQUIRING A CONCENTRATION STEP FOR (CA) = SEE CORRECTIVE ACTIONS FORM.
- **= MATRIX INTERFERENCE
- SW-846, 3rd Edition, latest EPA-approved edition.
- EPA 600/4-79-020, Revised March 1983. STANDARD METHODS, For the Examination of Water and Wastewater, latest EPA-approved editic NIOSH Manual of Analytical Methods, 4th Edition.
 ANNUAL BOOK OF ASTM STANDARDS, VOLUMES 11.01 and 11.02, latest EPA-approved edition.
 METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES,
 EPA600/R-93/100, AUGUST 1993
 METHODS FOR SOIL ANALYSIS, PART 2, CHEMICAL AND MICROBILOGICAL PROPERTIES, 2ND EDITION.
 AEN-PN USES THE MOST CURRENT PROMULGATED METHODS FROM THE REFERENCES LISTED ABOVE.

- COLIFORM PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN 1. COLIFORM. THE LOGARITHM OF COLONIES PER 100 MLS OF SAMPLE ON DUPLICATE PLATES. PH PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE 2. PH.
- SAMPLE AND DUPLICATE ANALYSIS. FLASHPOINT PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN 3. FLASHPOINT. THE SAMPLE AND DUPLICATE ANALYSIS.
- RPD RELATIVE PERCENT DIFFERENCE (OR DEVIATION).
 RPT LMTS REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.
- JL = JANET LECLEAR CR = CYNTHIA ROBERTS DPH = DOLLY P. HWANG . RB = REBECCA BROWN
- MM = MIKE MCKENZIE ED = ESTHER DANTIN CR = CYNTHIA ROBERTS
 PLD = PAULA L. DOUGHTY LV = LASSANDRA VON APPEN JTZ = JONATHAN T. ZIENTARSKI
 RH = RICKY HAGENDORFER MG = MARY GUTIERREZ AB = AMY BRADLEY
- NK NIKKI KILBURN

Quality Control Report

Analysis: Group of Single Metals

Accession:

Client:

711653 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

711365

Project Number: Project Name: Project Location:

PNM

HAMPTON 4N METALS

Department:

[0] Page 1 Date 16-Dec-97

Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	CALCIUM IOW291 <1 200.7 200.7 09-DEC-97 08-DEC-97	"Metals O'POTASSIUM X0W291 <2 200.7 200.7 11-DEC-97 08-DEC-97	wality Cont: MAGNESIUM JOW291 <0.2 200.7 200.7 11-DEC-97 08-DEC-97	rol Report" SODIUM 10W291 <0.2 200.7 200.7 11-DEC-97 08-DEC-97
Sample Dup	lication			
Sample Dup:	711410-2	711410-2	711410-2	711410-2
Rept Limit:	<1	<2	<0.2	
Sample Result:	23	22	21	23
Dup Result:	23	22	21	23
Sample RPD:	0	0	0	0
Max RPD:	20	20	20	20
Dry Weight*	N/A	N/A	N/A	N/A
Matrix Spil	ke			
Sample Spiked:	711410-2	711410-2	711410-2	711410-2
Rept Limit:	<1	<2	<0.2	
Sample Result:	3	<2	0.8	3.0
Spiked Result:	23	22	21	23
Spike Added:	20	20	20	20
* Recovery:	100	110	101	100
* Rec Limits:	75-125	75-125	75-125	75-125
Dry Weight*	N/A	N/A	N/A	N/A
ICV				
ICV Result:	24	26	25	24
True Result:	25	25	25	25
% Recovery:	96	104	100	96
% Rec Limits:	95-105	95-105	95-105	95-105
LCS				
LCS Result:	20	21	20	20
True Result:	20	20	20	20
% Recovery:	100	105	100	100
% Rec Limits:	80-120	80-120	80-120	80-120

[0] Page 2 Date 16-Dec-97

"Quality Control Comments"

				Batch		Id:	Comments:
I0W291	ANALYST: JR						
I0W291	The results reporte	ed under	'Sample	Duplication'	are	the	MS/MSD.
X0W291	ANALYST: JR		-				
X0W291	The results reporte	ed under	'Sample	Duplication'	are	the	MS/MSD.
J0W291	ANALYST: JR			-			
J0W291	The results reporte	ed under	'Sample	Duplication'	are	the	MS/MSD.
10W291	ANALYST: JR			Jup - Computer			,
10W291	The results reporte		I Cample	Dunlication	3 7 4	the	MC /MCD
TOWZEL	tue results report	ed mider	pambre	Dubilcacion.	are	CITE	143/1430.

(0) Page 3 Date 16-Dec-97

---- Common Footnotes Metals ----

N/A = NOT APPLICABLE.
N/S = NOT SUBMITTED.
N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW THE REPORTING LIMIT; APPLICATE RESULTS ARE AT OR BELOW THE REPORTING LIMIT; APPLICATE RESULTS ARE AT OR BELOW THE REPORTING LIMITS. THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED.

DISS. OR D = DISSOLVED

T & D = TOTAL AND DISSOLVED

R = REACTIVE

T = TOTAL

- G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X THE REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT
- OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

 Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY
 BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DIGESTION) SPIKE.

- # = ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE. + = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.
- * = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE. (DILUTION PRIOR TO ANALYSIS)
- @ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX. (DILUTION PRIOR TO DIGESTION)
- P = ANALYTICAL (POST DIGESTION) SPIKE.
- I = DUPLICATE INJECTION.
- & = AUTOMATED

- F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.

 N/C+ = NOT CALCULABLE

 N/C* = NOT CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.
- H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

 A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".
- Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,
- THIS RESULT IS REPORTED FOR ACCURATE OC CALCULATIONS.

 NH= THE RELATIVE PERCENT DIFFERENCE (RPD) EXCEEDS THE AEN CONTROL LIMIT
 AND IS "OUT OF CONTROL; DUE TO A NON-HOMOGENEOUS SAMPLE MATRIX.

 J = (FLORIDA DEP 'J' FLAG) MATRIX SPIKE AND POST SPIKE RECOVERY IS OUT OF THE ACCEPTABLE RANGE. SEE OUT OF CONTROL EVENTS FORM.

 U = (FLORIDA DEP 'U' FLAG) - THE COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED.

 S = METHOD OF STANDARD ADDITIONS (MSA) WAS PERFORMED ON THIS SAMPLE.

FROM QUALITY CONTROL REPORT:

RPD= RELATIVE PERCENT DEVIATION.

REPT LIMIT= REPORTING LIMIT BASED ON METHOD DETECTION LIMIT STUDIES.

NOTE: THE UNITS REPORTED ON THE QUALITY CONTROL REPORT ARE REPORTED ON AN AS RUN BASIS. (NOT ADJUSTED FOR DRY WEIGHT).

SW-846, 3rd Edition, latest revision. EPA 600/4-79-020, Revised March 1983. NIOSH Manual of Analytical Methods, 4th Edition. Standard Methods For the Examination of Water and Wastewater, 18th Edition, 1992. Methods For the Determination of Metals in Environmental Samples - Supplement I, EPA 600/R-94-111, May 1994.

GJ = GARY JACOBS

JR = JOHN REED

JLH = JAMES L. HERED LV = LASSANDRA VON APPEN

Quality Control Report

Analysis: HARDNESS

Accession:

711653 Client:

Project Number:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. 711365

Project Name: Project Location: Department:

PNM HAMPTON 4N

METALS

[0] Page 1 Date 16-Dec-97

Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	CALCIUM IOW291 <1 200.7 200.7 09-DEC-97 08-DEC-97	"Metals Q MAGNESIUM JOW291 <0.2 200.7 200.7 11-DEC-97 08-DEC-97	uality	Control	Report"
Sample Dup	lication				
Sample Dup: Rept Limit:	711410-2 <1	711410-2 <0.2			
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	23 23 0 20 N/A	21 21 0 20 N/A			
Matrix Spi	ke				
Sample Spiked: Rept Limit:	711410-2 <1	711410-2 <0.2			
Sample Result: Spiked Result: Spike Added: * Recovery: * Rec Limits: Dry Weight*	3 23 20 100 75-125 N/A	0.8 21 20 101 75-125 N/A			
ICV					
ICV Result: True Result: % Recovery: % Rec Limits:	24 25 96 95-105	25 25 100 95-105			
LCS			•		
LCS Result: True Result: % Recovery: % Rec Limits:	20 20 100 80-120	20 20 100 80-120			

[0] Page 2 Date 16-Dec-97

"Quality Control Comments"

						aten	10:	Com	ment:
IOW29	1 ANALYST	: JR							
IOW29	1 The res	ults reported	i under	'Sample	Duplication'	are	the	MS/MSD.	
J0W29								.,	
J0W29			i under	'Sample	Duplication'	are	the	MS/MSD.	

(0) Page 3 Date 16-Dec-97

---- Common Footnotes Metals ----

N/A = NOT APPLICABLE.

N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW THE REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED.DISS. OR D = DISSOLVED

T & D = TOTAL AND DISSOLVED

R = REACTIVE

= TOTAL

- G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X THE REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

 Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY

- BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DIGESTION) SPIKE.

 # = ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.

 + = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

 * = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE. (DILUTION PRIOR TO ANALYSIS)
- @ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX. (DILUTION PRIOR TO DIGESTION)
- P = ANALYTICAL (POST DIGESTION) SPIKE.
- I = DUPLICATE INJECTION.
- & = AUTOMATED
- F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. N/C+ = NOT CALCULABLE

- $N/C^* = NOT$ CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.
- H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

 A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".
- Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER, THIS RESULT IS REPORTED FOR ACCURATE QC CALCULATIONS.

 NH= THE RELATIVE PERCENT DIFFERENCE (RPD) EXCEEDS THE AEN CONTROL LIMIT
- AND IS "OUT OF CONTROL; DUE TO A NON-HOMOGENEOUS SAMPLE MATRIX.

 J = (FLORIDA DEP 'J' FLAG) MATRIX SPIKE AND POST SPIKE RECOVERY IS OUT OF THE ACCEPTABLE RANGE. SEE OUT OF CONTROL EVENTS FORM.

 U = (FLORIDA DEP 'U' FLAG) - THE COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED.

 S = METHOD OF STANDARD ADDITIONS (MSA) WAS PERFORMED ON THIS SAMPLE.

FROM QUALITY CONTROL REPORT:

RPD= RELATIVE PERCENT DEVIATION.

REPT LIMIT = REPORTING LIMIT BASED ON METHOD DETECTION LIMIT STUDIES.

NOTE: THE UNITS REPORTED ON THE QUALITY CONTROL REPORT ARE REPORTED ON AN AS RUN BASIS. (NOT ADJUSTED FOR DRY WEIGHT).

3rd Edition, latest revision. SW-846, EPA 600/4-79-020, Revised March 1983. NIOSH Manual of Analytical Methods, 4th Edition. Standard Methods For the Examination of Water and Wastewater, 18th Edition, 1992. Methods For the Determination of Metals in Environmental Samples - Supplement I, EPA 600/R-94-111, May 1994.

GJ = GARY JACOBS JLH = JAMES L. HERED JR = JOHN REED

LV = LASSANDRA VON APPEN

American Environmental Network of Florida PROJECT SAMPLE INSPECTION FORM

1.	Accession #: 7// 65 3	Date Received: 12-4-97
	Was there a Chain of Custody? Yes No*	8. Were samples checked for Yes No* N/A preservative? (Check pH of all H ₂ O requiring preservative except VOA vials that require zero headspace)*
2.	Was Chain of Custody properly Yes No* filled out and relinquished?	9. Is there sufficient volume for analysis requested?
3.	Were samples received cold? (Criteria: 2° - 6°C: AEN-SOP 1055)	10. Were samples received within Holding Time? (Never to ASN-SOP 1040)
4.5.	Were all samples properly labeled and identified? Did samples require splitting? Req By: PM Client Other*	11. Is Headspace visible > ¼ " in Yes* NO N/A diameter in VOA vials?* If any headspace is evident, comment in out-of-control section.
6.	Were samples received in Yes No* proper containers for analysis	12. If sent, were matrix spike Yes No* N/A bottles returned?
7.	requested? Were all sample containers received intact? Yes No*	13. Was Project Manager notified Yes No* N/A of problems? (initials:)
Air	bill Number(s): 329 4596 9 86	Shipped By: FEDEX
Co	oler Number(s):	Shipping Charges: NA
Со	oler Weight(s):	Cooler Temp(s) (°C): 50
Ou	t of Control Events and Inspection Comments	•
	PH, Conductivity and TDS	were received out of hold
	ne. PH, Conductivity and 70s	were received out of hold
	o. PH, Conductivity and 70s	were received out of Lold
	ne. HE 12/4/97.	were received out of Loll
	ne. PH, Consuctivité and 70s	(USE BACK OF PSIFFOR ADDITIONAL NOTES AND COMMENTS)
		(USE BACK OF PSIFFOR ADDITIONAL NOTES AND COMMENTS) Date: 12/4/97

America. Environmental Network (NM), Inc. Albuquerque · Phoenix · Pensacola · Portland · Pleasant Hills · Columbia

CHAIN OF CUSTODY

DATE: 11/26/97 PAGE: 1 OF 1

TRAIGH AUTHORIZATION IS HE CUINE OF HOR INDIBINOTECTA IN THE INDICHED BY WASHING IN FINAUSHED BY INVINAUSHED BY **通过,不是通过。**[2] Metals RCRA Metals by TCLP (Method 1311) Dale RCRA Metals (8) Target Analyte List Metals (23) Priority Pollutant Metals (13) Printed Name Company: Signature General Chemistry: Mark Sikliand 11/26/17 Base/Neutral/Acid Compounds GC:MS (625/8270) (0218/213) zabioidiaH (0808\803) BD9\sebicites9 Date: Volatile Organics (8260) GC/MS Company Printed Name: Volatile Organics (624/8240) GC/MS Signature: Company: Polynuciear Aromatics (610/8310) DBCP / 🗆 803 (NORIMAL) Chlorinated Hydrocarbons (601/8010) STEX/MT8E/EDC & EDB (8020/8010/Short) STEX & Chlorinated Aromatics (602/8020) Cation/Arron LSt 8050 BTXE (6020)-**DOTHER** Gasoline/BTEX & MTBE (M8015/8020) daiT & agru9\250 (2108M) Dec 1, 1997 WILLFAX (MOD.8015) Diesel/Direct/Inject C) WEEK Petroleum Hydrocarbons (418.1) HPH CERTIFICATION REQUIRED: DINA COMMENTS: FIXED FEE [] METHANOL PRESERVATION [] (AUSH) [] 24h [] 48h **Ath** 1200 241- 2340 241-2018 11 20 27 001442 M.S. 0408 Same PNM PROJ NAME: HOMPHA 4M SoS 50.5 9711251200 COMPANY: COMPANY: ADDRESS: ADDRESS: BILL TO: SHIPPED VIA PHONE: FAX: PO NO:

त्राधिक विशेषिक विशेषिक

Interlab Chain of Custody 7/1653 take... of

NETWORK PROJE	HETWORK PROJECT MANAGER: KIMBERLY D. McNEILL	D. McNEI	[]			***				22(ANALYSIS	LYSI	SRE	REQUEST	ST									_1
COMPANY: 1AADDRESS: 2	'Amer Ican Environmental 2709-D Pan American Freeway, NE Albuquerque, NM 87107	mental eway, NE	Network	vork	<u> </u>		2 Va. (1311)			4. conductivity LAS TOS			(0808/809)	(0218/5)	cs GC/MS (624/8240)	(0168V013) solismo	3HZ (III	(112)	Eph/20		Ela			ALTINED6
CLIENT PROJECT MANAGER:	NAGER:				JAT PP Us	ARDA	্যাহা ও		nisim	100	SEST.		S/PC	-نيسب				ः तः			8 vsrt			00 30
	Kim McNeill				- Sis	- STE	لأزم		ец) і	Tour		_					_	ם תכ		F	JIY SS			638
SAMPLEIO	IO DATE	TIME	MATRIX	LABID		19M	7)	(OT		yull	_	100 100		_				7 28		-07	ರಾವಿ			MIIN
-5% II £	1-61 11-28	12:00	#		-		X			V		-		┢	-			\vdash	-		\vdash	┝	<u> </u>	1_
					-				Ħ	\Box		╀			-	П		\vdash	╀		\Box	 	<u> </u>	<u> </u>
					\dashv	\pm	士	士	寸	+	士	\dashv	コ	\dashv	-	\Box	丁	\dashv	\dashv		十	\dashv	4	
		+			-	1						\dashv	口	\dashv	4		丁	┪	_		寸	+	_	
					+		1	1	#			_		+	+		工	+	+		\neg		-	
					+		+	+	十	-	士	+	工	+-	+-	\bot		+	+-	I	+	┿	 	<u> </u>
												-			-				-					11
`												\dashv		H	\vdash			\vdash						$ldsymbol{ld}}}}}}$
PROJEC	PROJECT INFORMATION		SAMPLER	E RECEIPT			SAMPLE	SAMPLES SENT 10:	ö		RELINQUISHED BY:	HSH	0 87			-	E	18	RELINQUISHED BY:	8 8	۳			 ~
FINDJECT NUMBER:	PH 711365	TOTAL NU	IMBER OF	TOTAL NUMBER OF CONTAINERS	ಬ		SAN DIEGO	8		Signalure.		7	=	Time:		٠.	3	Signalure			Ĭŝ.	0	7	\
PHOJECT HAME:	,	CHAINO	CHAIN OF CUSTODY SEALS	SEALS			Z,		+	1		\mathbb{U}_{i}	۶ ۱	~ !	120		į			1	THE WAY	¥		
IX. LEVEL SID.	1	INTACT?					RENTON		1	7	Non!		ž /	7	-3-97	4			3	1				- 1
OK, NEOUMBED. MS	MSD BLANK	RECEIVE	RECEIVED GOOD COND.	OND/COLD			PORTLAND	§ 9	4	_ ₹	Abuquerque		Z				<u>8</u> \	Company	1					
IAI SIANDAND (เบรเผ	LAB NUMBER	BER				PHOENIX			=	RECEIVED	٥	١.			14	<u>/≡</u>	SE	RECEIVED BY: (LAB)	Ä	9			1~
					<u> </u>		크		-	Sign	Signature:		Ē	Time:	V		5	5	16		E	2	Time: 0807	
OUE DATE				210	-	1			_			Ì	X			1	<u> </u>	<u>Ş</u>	\$][- 11
MUSH SUNCHANGE:		Sec. A150 11	#180°	###	rtachaeus	3				<u> </u>	Printed Name:	`.\	ä \	Cate:			2	ST.	SPERMENT	200		3	8010:12/4/97	~
SI'ECIAL CENTIFICATION NEOUINED.	LIYES L'INC	F	874/	2	U.FFerence	ree			-	Company	1						ঠ	Company	1	45.77] :			1
						-			_	<u>_</u>							_			1	1			

Lr. "an Dego (619) 458 9141 • Phoenix (602) 496 4400 • Saalile (206) 228 8335 • Pensacola (904

RECHEC

1001 • Porland (503) 684-0447 • Albuquerque (505) 344-3777

BÝ.

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

5-Dec-97

Company: PNM Gas Services

COC No.:

7087

Address:

16982

603 W. Elm

Sample No.:

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - EB Well

Project Location:

9711251200

25-Nov-97 Time:

12:00

Sampled by: Analyzed by:

MG/MS DC

Date: Date:

4-Dec-97

Sample Matrix:

Liguid

Parameter		Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene		ND	u g/L	0.2	u g/L
Toluene		ND	ug/L	0.2	υ ջ/Ĺ
Ethylbenzene		ND	ug/L	0.2	ug/L
m,p-Xylene		ND	ug/L	0.2	ug/L
o-Xylene		ŃD	ug/L	0.2	u g/L
	TOTAL	ИО	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1556

QUALITY ASSURANCE REPORT

for EPA Method 8020

Date Analyzed: 4-Dec-97

Internal QC No.:

0559-STD

Surrogate QC No.:

0556-STD

Reference Standard QC No.: 0529/30-QC

Method Blank

		Unit of
Parameter	Result	Measure
Average Amount of All Analytes in Blank	< 0.2	ppb

Calibration Check

	Unit of	True	Analyzed		
Parameter	Measure	Value	Value	RPD	Limit
Benzene	ppb	20.0	20.4	2	15%
Toluene	ррь	20.0	21.1	5	15%
Ethylbenzene	ppb	20.0	21.2	6	15%
m,p-Xylene	ppb	40.0	41.1	3	15%
o-Xylene	ppb	20.0	21.0	5	15%

Matrix Spike

	1- Percent	2 - Percent			
Parameter	Recovered	Recovered	Limit	RPD	Limit
Benzene	94	87	(39-150)	4	20%
Toluene	99	95	(46-148)	4	20%
Ethylbenzene	99	92	(32-160)	4	20%
m,p-Xylene	100	93	(35-145)	4	20%
o-Xylene	100	95	(35-145)	4	20%

Surrogate Recoveries

	\$1	S2		S1	S2
	Percent	Percent	1	Percent	Percent
Laboratory Identification	Recovered	Recovered	Laboratory Identification	Recovered	Recovered
Limit Percent Recovered	(70-130)		Limit Percent Recovered	(70-130)	
16982-7087	94			·	
				-	
	·				
				TIME	(Pu)
				12/8/97	12/5/97

S1: Flourobenzene

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

17-Nov-97

Company: PNM Gas Services

COC No.:

7083

Address:

Sample No.:

16818

City, State: Farmington, NM 87401

603 W. Elm

Job No.:

2-1000

Project Name:

PNM Gas Services - Hampton 4M

Project Location:

9711111330; TH-7

11-Nov-97 Time:

Sampled by: Analyzed by: MS DC

Date: Date:

13-Nov-97

13:30

Sample Matrix:

Liquid

Parameter		Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene		2171	ug/L	10	. ug/L
Toluene		4185	ug/L	10	ug/L
Ethylbenzene		190	ug/L	10	ug/L
m,p-Xylene		2225	ug/L	10	u g/Ĺ
o-Xylene		631	ug/L	10	ug/L
	TOTAL	9402	u e/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1556

QUALITY ASSURANCE REPORT

for EPA Method 8020

Date Analyzed: 13-Nov-97

Internal QC No.:

0559-STD

Surrogate QC No.:

0556-STD

Reference Standard QC No.: 0529/30-QC

Method Blank

		Unit of
Parameter	Result	Measure
Average Amount of All Analytes In Blank	< 0.2	p pb

Calibration Check

	Unit of	True	Analyzed		
Parameter	Measure	Value	Value	RPD	Limit
Benzene	ppb	20.0	20.0	0	15%
Toluene	ppb	20.0	20.7	4	15%
Ethylbenzene	ppb	20.0	20.8	4	15%
m,p-Xylene	рръ	40.0	39.7	1	15%
o-Xylene	ppb	20.0	20.8	4	15%

Matrix Spike

	1- Percent	2 - Percent			
Parameter	Recovered	Recovered	Limit	RPD	Limit
Benzene	89	93	(39-150)	2	20%
Toluene	88	94	(46-148)	2	20%
Ethylbenzene	96	98	(32-160)	2	20%
m,p-Xylene	91	94	(35-145)	2	20%
o-Xylene	93	96	(35-145)	2	20%

	S1 Percent	S2 Percent		S1 Percent	S2 Percent
Laboratory Identification	Recovered	Recovered	Laboratory Identification	Recovered	Recovered
Limit Percent Recovered	(70-130)		Limit Percent Recovered	(70-130)	
16818-7083	95				
				The	(be)
				11/24/97	11/7/17

S1: Flourobenzene

7003

CHAIN OF CUSTODY RECORD ON SITE TECHNOLOGIES, LTD.

612 E. Murphy Dr. • P.O. Box 2606 • Farmington, NM 87499 LAB: (505) 325-5667 • FAX: (505) 325-8256

16818-7083 Date/Time || /| 143 /430 LAB ID Results to be sent to both parties. 10 Working Days Special Instructions: Date/Time Date/Time Alverado Square, Mall Stop 0408 Telefax No. ANALYSIS REQUESTED Albuquerque, NM 87158 PNM Gas Services Maureen Gannon 505-848-2974 24-48 Hours Mailing Address City, State, Zip retephone No. Company Name Date/Time 11/11/97 143s Received by: Received by: Received by: OT STJUSER **Servitation** ТЯОЧЭЯ Number of 王 MATRIX PRES ०प Date 11/11/97 Dept. 324-3763 TIME SAMPLE Date/Time Date/Time DATE Job No. Client Signature Must Accompany Request) Farmington, NM 87401 PNM Gas Services 603 W. Elm Street **Denver Bearden** SAMPLE IDENTIFICATION Harpen 4M Mark Sikulianos TH-7 City, State, Zip horized by: 9711111330 irchase Order No.: hod of Shipment: Company nquished by: // Address impling Location Name nquished by: nquished by: TO INVOICE T pler

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

5-Dec-97

Company: PNM Gas Services

COC No.:

7087

Address:

603 W. Elm

Sample No.:

16982

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - EB Well

Project Location:

9711251200 MG/MS

25-Nov-97 Time:

12:00

Sampled by: Analyzed by:

DC

Date: Date:

4-Dec-97

Sample Matrix:

Liquid

Párameter	Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene	ND	: ug/L	0.2	ug/L
Toluene	ND	· vg/L	0.2	u g/L
Ethylbenzene	ND	: ug/I.	0.2	ug/L
m,p-Xylene	ND	: UE/L	0.2	ug/L
o-Xylene	ND	u g/L	0.2	ug/L
TOTAL	ND	ue/1.		

ND - Not Detected at Limit of Quantitation

Method - SW-846 F.P.A. Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1536

QUALITY ASSURANCE REPORT for EPA Method 8020

Date Analyzed: 4-Dec-97

Internal QC No.:

0559-STD

Surrogate QC No.:

0556-STD

Reference Standard QC No.: 0529/30-QC

Method Blenk

			Unit of
Parameter	<u> </u>	Result	Measure
Average Amount of All Analytes in Blank	1	<0.2	ppb

Calibration Check

Parameter	Unit of Measure	Truo Vėlus	Analyzed Value	RPD	Limit
Benzene	ррь	20.0	20.4	2	15%
Toluene	ppb	20.0	21.1	5	15%
Ethylbenzene	ppb	20.0	21.2	6	15%
m,p-Xylene	ррь	40.0	41.1	3	15%
o-Xylene	ppb	20.0	21.0	5	15%

Matrix Spike

Matrix		A 0			
Perameter	1- Percent Recovered	2 - Percent Recovered	Limit	RPD	Limit
Benzene	94	87	(39-150)	4	20%
Toluene	99	95	(46-148)	4	20%
Ethylbenzene	99	92	(32-160)	4	20%
m,p-Xylene	100	93	: (35-145)	4	20%
o-Xylene	100	95	(35-145)	4	20%

	S1 Percent	S2 Percent		\$1 Parcent	S2 Percent
Laboratory Identification	Recovered	Recovered	Laboratory Identification	Recovered	Recovered
Limit Percent Recovered	(70-130)		Limit Percent Recovered	(70-130)	
			•		
16982-7087	94				
•					
			1;		
المنظلي بين المنطق					(B)
					12/5/77

S1: Flourobenzene

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

5-Nov-97

Company: PNM Gas Services

COC No.:

7080

Address:

Sample No.:

16700

City. State: Fermington, NM 87401

603 W. Elm

Job No.:

2-1000

Project Name:

PNM Gas Services - Hamptom 4M

Project Location:

9710301030; MW-1

MS

Date: Date:

30-Oct-97 Time:

4-Nov-97

10:30

Sampled by: Analyzed by: Sample Matrix:

HR Liquid

<u>i</u> :	Results as	Unit of	Limit of Overtitation	Unit of Measure
	2.4	ug/1.	0.2	ug/L
	2.3		0.2	ug/l,
	ND		0.2	ug/L
:	1,1		0.2	ug/L
	ND		0.2	ug/L
•				
		2.4 2.3 ND	Received Measure	Received Measure Quantitation

5.8

ug/L

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Arometic Volatile Organics by Gas Chromatography

Approved By:

P.O. BOX 2606 • FARMINGTON, NM 87499

TECHNOLOGIES, LTD.

OFF: (505) 325-5667

LAB: (505) 325-1556

QUALITY ASSURANCE REPORT for EPA Method 8020

Date Analyzed: 4-Nov-97

Internal QC No.:

0859-STD

Surrogate QC No.:

0556-STD

Reference Standard QC No.: 0529/30-QC

Method Blank

	;		Unit of
Parameter	<u> </u>	Result	Measure
Average Amount of	of All Analytes in Blank	<0.2	ppb

Calibration Check

Constitution Crists						
	• :	Unit of	True	Analyzed		1
Parameter		Meesure	Value	Value	RPD	Limit
Benzene		ppb	20.0	20.7	4	15%
Toluene		ppb	20.0	21.3	6	15%
Ethylbenzene	:	ppb	20.0	21.2	6	15%
m,p-Xylene		ppb	40.0	40.3	1	15%
o-Xylene	:	ppb	20.0	21.1	5	15%

Matrix Spike

Parameter	1- Percent Recovered	2 - Percent Recovered	Limit	RPD	Limit
Benzene	92	86	(39-150)	3	20%
Toluene	96	87	(46-148)	3	20%
Ethylbenzene	97	92	(32-160)	4	20%
m.p-Xylene	94	88	(35-145)	4	20%
o-Xylene	95	92	(35-145)	2	20%

	NOCO FOR 100				
	SI	52		\$1	52
	Porcent	Percent		Percent	Percent
Laboratory Identification	Recovered	Recovered	Leboratory Identification	Recevered	Recovered
Limit Percent Recovered	(70-130)		Limit Percent Recovered	(70-130)	
	•				
16699-7080	95				
16700-7080	95				
•					
					(ne)
					11/5/97

S1: Flourobenzene

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

5-Nov-97

Company: PNM Gas Services

COC No.:

7080

Address:

Sample No.:

603 W. Elm

16700

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hamptom 4M

Project Location:

9710301030; MW-1

MS Date: 30-Oct-97 Time:

10:30

Sampled by: Analyzed by: Sample Matrix:

HR Liquid Date:

4-Nov-97

Parameter		Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene		2.4	ug/I.	0.2	u g/L
Toluene		2.3	บะ/โ	0.2	սջ/Ն
Ethylbenzene	1	ND	ug/L	0.2	ug/L
m,p-Xylene	<u> </u>	1.1	ug/L	0.2	ug/L
o-Xylene		ND	ug/L	0.2	ug/L
	TOTAL	5.8	ue/L		

ND - Not Detected at Limit of Quantitation

Method - 5W-846 EPA Method 8020A Arometic Volatile Organics by Gas Chromatography

Approved By:

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

5-Nov-97

Company: PNM Gas Services

COC No.:

7080

Address:

603 W. Elm

Sample No.:

16699

City, State: Farmington, NM 87401

Job No.:

2-1000

Project Name:

PNM Gas Services - Hamptom 4M

Project Location:

9710291400; MW-5 MS HR

Date: Date:

29-Oct-97 Time:

14:00

Sampled by: Analyzed by: Sample Matrix:

Liquid

4-Nov-97

_	:	Results as	Unit of	Limit of	Unit of
Parameter		Received	Messure	Quantitation	Measure
Benzene	;	5934	น ะ/ ไ	20	ug/L
Toluene		10024	ug/L	20	ug/L
Ethylbenzene		709	ug/L	20	ug/L
m,p-Xylene		6451	ug/L	20	ug/L
o-Xylene	·	1737	ug/L	20	ug/L
·	TOTAL	24855	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromotography

LAB: (505) 325-1556

QUALITY ASSURANCE REPORT for EPA Method 8020

Date Analyzed: 4-Nov-97

Internal QC No.:

0559-STD

Surrogate QC No.:

0556-STD

Reference Standard QC No.: 0529/30-QC

Method Blank

	·		Unit of
Parameter	<u> </u>	Result	Measure
Average Amount of All Analy	tes in Blank	<0.2	ррь

Calibration Chack

		Unit of	Truo	Analyzed		
Parameter		Meesure	Value	Value	RPD	Limit
Benzene		ppb	20.0	20.7	4	15%
Toluene		ppb	20.0	21.3	6	15%
Ethylbenzene	:	ppb	20.0	21.2	6	15%
m,p-Xylene	;	ppb	40.0	40.3	1	15%
o-Xylene		ppb	20.0	21.1	5	15%

Metrix Snike

Media	1- Percent				
Parameter	Recovered	Recovered	Limit	RPD	Limit
Benzene	92	88	(39-150)	3	20%
Toluene	96	87	(46-148)	3	20%
Ethylbenzene	97	92	(32-160)	4	20%
m.p-Xylene	94	88	(35-145)	4	20%
o-Xyl ene	95	92	(35-145)	2	20%

	S1	52		\$1	52
	Percent	Percent	Į.	Percent	Percent
Leboratory Identification	Recovered	Aucovered	Leberatory Identification	Resevered	Recovered
Limit Percent Recovered	(70-130)		Limit Percent Recovered	(70-130)	
16699-7080	95			 	
16700-7080	95				
		L			<u> </u>
					(ne)
					11/5/97

S1: Flourobenzene

LAB: (505) 325-1556

ANALYTICAL REPORT

Attn:

Denver Bearden

Date:

5-Nov-97

Company: PNM Gas Services

COC No.:

7080

Address:

City, State: Farmington, NM 87401

603 W. Elm

Sample No.: Job No.:

16699 2-1000

PNM Gas Services - Hamptom 4M

Project Name: Project Location:

9710291400; MW-5

Sampled by:

MS

Date:

29-Oct-97 Time:

14:00

Analyzed by:

HR

Date:

4-Nov-97

Sample Matrix:

Liquid

Parameter	Results as Received	Unit of Measure	Limit of Quantitation	Unit of Measure
Benzene	5934	ug/L	20	u g/L
Toluene	10024	ug/L	20	ug/L
Ethylbenzene	709	ug/L	20	ug/L
m.p-Xylene	6451	ug/L	20	ug/L
o-Xylene	1737	ug/L	20	ug/L
TOTA	24855	ug/L		

ND - Not Detected at Limit of Quantitation

Method - SW-846 EPA Method 8020A Aromatic Volatile Organics by Gas Chromatography

Approved By: