Pride Energy State #1-M -- Drainage Area

1. The volumetric equation for Original Gas in Place (in Scf) is

G = 43560*A*h* phi*Sg*Bg

where h*phi*Sg is the hydrocarbon pore volume. and A is the drainage area in acres

The gas produced (Gp) is a fraction (the recovery factor) of the Original Gas in Place

Gp = Rf*G = Rf*43560*A*h*phi*Sg*Bg where Rf = 0.8 is the recovery factor

2. From the log analysis, h*phi*Sg = 2.100 feet is the hydrocarbon pore volume

3.	The gas formation volume factor	Bg = 3	5.35*P/	(z*T) w	where the parameters are:	
	Pressure (P)		=	48601	osi	
	Temperature (T)			185 de	egrees $F = 645$ degrees R	
	Compressibility Facto	or (z)	=	0.97	6	
	Gas Gravity = $0.7 \rightarrow$	1		ee R	→ $Pr = 4860/667 = 7.29$ → $Tr = 645/390 = 1.65$	
	From the Standing &	From the Standing & Katz table, $z = 0.97$ for $Pr = 7.29$ and $Tr = 1.65$				

Then, Bg = 35.35*4860/(0.97*645) = 275 Scf per cubic foot

4. Rearrange Gp = Rf*43560*A*h*phi*Sg*Bg

Gp = $0.8*43560*A*2.100*275 = 2.0125*10^{7*}A$ and A = 4.9690^-8* Gp where Gp is in Scf $\zeta_{\ell}^{\dagger \circ n \ell \circ \ell} \xi_{\ell}^{\dagger \circ n \ell \circ \ell} \xi_{\ell}^{\dagger \circ n \ell} \xi_{\ell}^{\bullet \circ n$

5. For production to date of Gp = 464,127,000 Scf

 $A = 4.9690^{-8*}464127000 = 23 Acres$

For ultimate production of Gp = 2,274,225,000 Scf

$$A = 4.9690^{-8} \times 2274225000 = 113 \text{ Acres}$$

BEFORE THE OIL CONSERVATION COMMISSION Santa Fe, New Mexico Case Nos. 13153 Exhibit No. 14 Submitted by: <u>Yates Petroleum Corporation</u> Hearing Date: <u>August 12, 2004</u>

Yates Petroleum Corporation Case 13153 (De Novo) Exhibit <u>E-2</u>

