### SAN JUAN BASIN COALBED METHANE SPACING STUDY

### Addendum to

### RESULTS FOR SENSITIVITY ANALYS'S OF THE SAN JUAN BASIN AREA 1 TYPE RESERVOIR (Presented in Interim Report of June 18, 1990)

Submitted To

### GAS RESEARCH INSTITUTE Under Contract Number 5084-214-1066 GRI Manager, Richard A. McBANE Coalbed Methane Technology

Prepared By

### **ICF RESOURCES INCORPORATED**

September 26, 1990

The ICF Resources Incorporated project team includes:

Dr. J. E. McElhiney, Vice President Dr. G. W. Paul, Project Manager G. B. C. Young, Associate J. M. Coates, Associate

Application of Richardson Operating Co. Record on Appeal, 1668. BEFORE THE OIL CONSERVATION COMMISSION Case No. 12734 Exhibit **E2** Submitted By:Richardson Oper.Co. Hearing Date:October 29, 2002

### SUMMARY AND CONCLUSIONS

On the basis of the history match results from the Cedar Hill field, the sensitivity analysis for Area 1 of the San Juan Basin has been re-done at 0.25 percent porosity. The purpose of this document is to present these supplementary results as an addendum to the Sensitivity Analysis of the San Juan Basin Area 1 Type Reservoir Interim Report dated June 18, 1990.

The COMETPC 3-D simulations for the 0.25% porosity cases utilized the same reservoir parameters as those presented in the Interim Report of June 18, 1990 (Table 1). The simulated production performance is summarized in Table 2, where both the 3% porosity cases completed for the Interim Report of June 18, 1990 and the 0.25% porosity cases are presented. For both the single well and full section cases, the presentation format includes the gas production rate (Mscf/D), cumulative gas production (Bcf), gas recovery as a percentage of the initial gas-in-place, water production rate (Bbls/D), and cumulative water production (MBbls/D) as a function of production time (years), with well spacing being the parametric variable (Figures 1-24). In addition, single well abandonment rate (Mscf/D/Well) is presented as a function of both full section cumulative gas production and gas recovery, with well spacing being the parametric variable (Figures 25-32). It should be noted that although fracture half-lengths of 100, 300 and 500 feet were evaluated, only the results from the 300 feet cases have been included in Figures 1-32.

Gas recovery is shown as a function of permeability, at a constant coal thickness of 35 feet, with parametric well spacing for all fracture half-lengths evaluated (Figures 33-53). The simulation results presented in Figures 33-50 are for 10, 20, 30, 40, 50 and 75 years. Similar plots, but at a 50 Mscf/D cutoff rather than for fixed times, are given in Figures 51-53.

The sensitivity analysis presented in the Interim Report of June 18, 1990 included some limited variations on the Base Case conditions which included cleat porosity. The simulation results for the 0.25%, 2% and 3% porosity cases are illustrated in Figures 54-56, where both gas and water production results are shown. These results are also summarized in Table 3.

Comparison of the Area 1 sensitivity analysis simulated at both 0.25% and 3% porosity does not alter the conclusions presented in the Interim Report of June 18, 1990. These conclusions are repeated here for the sake of completeness.

- 1. Gas recovery, expressed as a percentage of gas-in-place, increases with decreasing well spacing. Magnitudes of variability for different values of permeability and fracture half-length are indicated in Table 2.
- 2. Both cumulative gas production and gas recovery increase with decreasing abandonment rates, with a corresponding increase in the production time.
- 3. Gas recovery increases with both increasing permeability and increasing fracture half-length.
- 4. Cumulative gas production and recovery are greater for a 0.25% porosity coal than for either a 2% or a 3% porosity coal due to lower water production rates and the shorter time required to dewater the reservoir.

06K00395.rpt

**a** 1

### TABLE 1

### **RESERVOIR PARAMETERS FOR AREA 1 SENSITIVITY ANALYSIS**

### FIXED PARAMETERS

х з

1 L.

| Depth                             | =    | 3000 ft.                                 | ) Assume slightly overpressured<br>) 3000 ft * 0.44 psia/ft |
|-----------------------------------|------|------------------------------------------|-------------------------------------------------------------|
| Pinitial                          | =    | 1320 psi                                 | ) = 1320 psia.                                              |
| P <sub>desorption</sub>           | =    | Pinitial                                 |                                                             |
| C <sub>pore</sub>                 | =    | 200 x 10 <sup>-6</sup> psi <sup>-1</sup> | (uncoupled from stress sensitive k)                         |
| Gas Content                       | =    | 345 SCF/Ton                              |                                                             |
| Porosity                          | =    | 0.0025                                   |                                                             |
| h, ft                             |      | 35                                       |                                                             |
| Sorption time, o                  | lays | 10                                       |                                                             |
| V <sub>L</sub>                    | =    | 610 SCF/Ton (4                           | 127 @ 30% Ash)                                              |
| PL                                | =    | 315 psi                                  |                                                             |
| FBHP                              | =    | 100 psi                                  |                                                             |
| Temperature                       | =    | $T_{3000 \text{ ft}} (= 120^{\circ}$     | °F)                                                         |
| k <sub>rw</sub> , k <sub>ra</sub> |      | (Figure 2 of Inte                        | erim Reported dated June 18, 1990)                          |

### VARIABLE PARAMETERS

| k, md               | 1, 5, 10 <sup>*</sup> , 50  |  |  |
|---------------------|-----------------------------|--|--|
| X <sub>f</sub> , ft | 100, 300 <sup>*</sup> , 500 |  |  |
| Spacing, acres      | 160, 320 <sup>*</sup> , 640 |  |  |

Total Simulations Required: 36

\* Base Case

06K00395.rpt

Application of Richardson Operating Co. Record on Appeal, 1670.

....

| SUMMARY OF SIMULATION RESULTS FOR AREA 1 TYPE RESERVOIR |                                   |                            |                                                           |                             |                             |                                                                               |                             |                             |
|---------------------------------------------------------|-----------------------------------|----------------------------|-----------------------------------------------------------|-----------------------------|-----------------------------|-------------------------------------------------------------------------------|-----------------------------|-----------------------------|
|                                                         |                                   |                            | POROSITY = 3 PERCENT                                      |                             |                             | POROSITY = 0.25 PERCENT                                                       |                             |                             |
|                                                         |                                   |                            | Assuming 50<br>mscf/d Cutoff<br>in Gas Production<br>Rate |                             | 25 Year<br>Cutoff           | Assuming 50<br>mscf/d Cutoff<br>25 Year in Gas Production 25<br>Cutoff Rate C |                             | 25 Year<br>Cutoff           |
| Permeability<br>(md)                                    | Fracture<br>Half-Length<br>(feet) | Well<br>Spacing<br>(acres) | Time<br>(years)                                           | Gas<br>Recovery<br>(% IGIP) | Gas<br>Recovery<br>(% IGIP) | Time<br>(years)                                                               | Gas<br>Recovery<br>(% IGIP) | Gas<br>Recovery<br>(% IGIP) |
| 1                                                       | 100                               | 160                        | 0.3                                                       | 0.2                         | 8.7                         | 34.0                                                                          | 35.9                        | 30.4                        |
| 1                                                       | 100                               | 320                        | 0.3                                                       | 0.1                         | 3.3                         | 68.0                                                                          | 34.4                        | 17.7                        |
| 1                                                       | 100                               | 640                        | 0.3                                                       | 0.0                         | 1.3                         | 133.0                                                                         | 32.0                        | 7.9                         |
|                                                         | i                                 |                            |                                                           |                             |                             |                                                                               |                             |                             |
| 1                                                       | 300                               | 160                        | 28.8                                                      | 18.1                        | 16.0                        | 33.0                                                                          | 45.2                        | 40.3                        |
| 1                                                       | 300                               | 320                        | 41.8                                                      | 11.1                        | 6.4                         | 67.0                                                                          | 42.4                        | 25.2                        |
| 1                                                       | 300                               | 640                        | 2.1                                                       | 0.5                         | 2.5                         | 134.0                                                                         | 39.3                        | 12.4                        |
|                                                         |                                   |                            |                                                           |                             |                             |                                                                               |                             |                             |
| 1                                                       | 500                               | 160                        | 40.1                                                      | 31.4                        | 22.1                        | 31.0                                                                          | 50.0                        | 46.5                        |
| . 1                                                     | 500                               | 320                        | 68.2                                                      | 23.4                        | 9.5                         | 64.0                                                                          | 47.0                        | 30.6                        |
| 1                                                       | 500                               | 640                        | 6.2                                                       | 1.4                         | 3.7                         | 131.0                                                                         | 43.7                        | 16.1                        |
|                                                         |                                   |                            |                                                           |                             |                             |                                                                               |                             |                             |
| 5                                                       | 100                               | 160                        | 40.1                                                      | 46.3                        | 35.7                        | 26.7                                                                          | 57.7                        | 56.8                        |
| 5                                                       | 100                               | 320                        | 80.9                                                      | 44.7                        | 19.5                        | 53.5                                                                          | 56.8                        | 44.7                        |
| 5                                                       | 100                               | 640                        | 165.0                                                     | 42.7                        | 3.7                         | 109.0                                                                         | 55. <b>5</b>                | 30.6                        |
|                                                         |                                   |                            |                                                           |                             |                             |                                                                               |                             |                             |
| 5                                                       | 300                               | 160                        | 34.3                                                      | 54.2                        | 47.9                        | 22.0                                                                          | 61.9                        | 63.3                        |
| 5                                                       | 300                               | 320                        | 72.4                                                      | 52.0                        | 28.7                        | 46.0                                                                          | 60.7                        | 52.2                        |
| 5                                                       | 300                               | 640                        | 151.0                                                     | 49.4                        | 13.6                        | 96.0                                                                          | 59.2                        | 37.7                        |
|                                                         |                                   |                            |                                                           |                             |                             |                                                                               |                             |                             |
| 5                                                       | 500                               | 160                        | 30.4                                                      | 58.0                        | 54.7                        | 19.0                                                                          | 63.9                        | 66.2                        |
| 5                                                       | 500                               | 320                        | 65.3                                                      | 55.8                        | 35.8                        | 40.5                                                                          | 62.6                        | 56.7                        |
| 5                                                       | 500                               | 640                        | 140.0                                                     | 53.2                        | 17.7                        | 87.0                                                                          | 61.2                        | 42.5                        |
|                                                         |                                   |                            | 1                                                         | 1                           | [                           |                                                                               |                             | 1                           |

06K00395.rpt

́ц з

τ.

Application of Richardson Operating Co. Record on Appeal, 1671.

TABLE 2 (Continued)

| SUMMARY OF SIMULATION RESULTS FOR AREA 1 TYPE RESERVOIR |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |
|---------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------|-----------------------------|-----------------------------|
|                                                         |                                    |                            | POROSITY = 3 PERCENT                                      |                             |                             | POROSITY = 0.25 PERCENT                                   |                             |                             |
|                                                         |                                    |                            | Assuming 50<br>mscf/d Cutoff<br>in Gas Production<br>Rate |                             | 25 Year<br>Cutoff           | Assuming 50<br>mscf/d Cutoff<br>in Gas Production<br>Rate |                             | 25 Year<br>Cutoff           |
| Permeability<br>(md)                                    | Fracture<br>Half- Length<br>(feet) | Well<br>Spacing<br>(acres) | Time<br>(years)                                           | Gas<br>Recovery<br>(% IGIP) | Gas<br>Recovery<br>(% IGIP) | Time<br>(years)                                           | Gas<br>Recovery<br>(% IGIP) | Gas<br>Recovery<br>(% IGIP) |
| 10                                                      | 100                                | 160                        | 33.5                                                      | 56.2                        | 50. <b>6</b>                | 21.0                                                      | 62.9                        | 64.6                        |
| 10                                                      | 100                                | 320                        | 67.7                                                      | 55.0                        | 33.6                        | 42.5                                                      | 62.3                        | 55.5                        |
| 10                                                      | 100                                | 640                        | 140.1                                                     | 53.6                        | 17.5                        | 87.0                                                      | 61.5                        | 42.7                        |
|                                                         |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |
| 10                                                      | 300                                | 160                        | 26.9                                                      | 61.2                        | 60.2                        | 16.7                                                      | 65. <b>6</b>                | 68.2                        |
| 10                                                      | 300                                | 320                        | 56.8                                                      | 59.7                        | 44.0                        | 34.7                                                      | 64.7                        | 61.4                        |
| 10                                                      | 300                                | 640                        | 121.4                                                     | 58.1                        | 24.9                        | 74.0                                                      | 63. <b>9</b>                | 49.4                        |
|                                                         |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |
| 10                                                      | 500                                | 160                        | 22.6                                                      | 63.3                        | 64.5                        | 14.1                                                      | 66.8                        | 69.4                        |
| 10                                                      | 500                                | 320                        | 49.7                                                      | 62.1                        | 50.5                        | 30.0                                                      | 66.0                        | 64.4                        |
| 10                                                      | 500                                | 640                        | 108.4                                                     | 60.5                        | 30.7                        | 65.0                                                      | 65.1                        | 53.6                        |
|                                                         |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |
| 50                                                      | 100                                | 160                        | 15.7                                                      | 66.5                        | 69.1                        | 9.9                                                       | 68.5                        | 70.1                        |
| 50                                                      | 100                                | 320                        | 32.5                                                      | 66.4                        | 63.7                        | 19.6                                                      | 68. <b>3</b>                | 6 <b>9.3</b>                |
| 50                                                      | 100                                | 640                        | 67.8                                                      | 66.0                        | 50.9                        | 40.0                                                      | 68.1                        | 64.7                        |
|                                                         |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |
| 50                                                      | 300                                | 160                        | 11.8                                                      | 68.0                        | 69.9                        | 7.4                                                       | 69.2                        | 70.2                        |
| 50                                                      | 300                                | 320                        | 24.6                                                      | 67.6                        | 67.7                        | 15.0                                                      | 69.0                        | 70.0                        |
| 50                                                      | 300                                | 640                        | 53.7                                                      | 67.2                        | 58.1                        | 31.8                                                      | 68.7                        | 67.5                        |
|                                                         |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |
| 50                                                      | 500                                | 160                        | 9.6                                                       | 68.5                        | 70.0                        | 6.2                                                       | 69.5                        | 70.1                        |
| 50                                                      | 500                                | 320                        | 20.7                                                      | 68.2                        | 69.0                        | 12.6                                                      | 69.3                        | 70.1                        |
| 50                                                      | 500                                | 640                        | 45.6                                                      | 67.8                        | 62.0                        | 27.0                                                      | 69.0                        | 68.8                        |
|                                                         |                                    |                            |                                                           |                             |                             |                                                           |                             |                             |

1 x x x x x

ł

Application of Richardson Operating Co. Record on Appeal, 1672.

| PRODUCTION SUMMARY OF POROSITY VARIATIONS<br>ON BASE CASE FOR AREA 1                                                 |                   |               |                    |               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|-------------------|---------------|--------------------|---------------|--|--|--|
|                                                                                                                      | GA                | IS            | WATER              |               |  |  |  |
| CASE<br>DESCRIPTION*                                                                                                 | Cumulative<br>BCF | %<br>Recovery | Cumulative<br>MSTB | %<br>Recovery |  |  |  |
| 3% Porosity                                                                                                          | 4.3               | 63.5          | 947                | 36.4          |  |  |  |
| 2% Porosity                                                                                                          | 4.5               | 65. <b>6</b>  | 655                | 37.8          |  |  |  |
| 0.25% Porosity                                                                                                       | 4.8               | 69.2          | 90                 | 41.6          |  |  |  |
| * Assumes 10 md, 300 ft $x_p V_L = 17.64$ scf/cf, $P_D = 1320$ psia,<br>and 75 year life on a 320 acre well spacing. |                   |               |                    |               |  |  |  |

TABLE 3

ľ

s <sup>3</sup>

Application of Richardson Operating Co. Record on Appeal, 1673.

### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case



Application of Richardson Operating Co. Record on Appeal, 1674.





### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case



Application of Richardson Operating Co. Record on Appeal, 1676.

### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case

Gas Production vs. Time

Ø=0.25%, k=5md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1677.

### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case



Application of Richardson Operating Co. Record on Appeal, 1678.



Application of Richardson Operating Co. Record on Appeal, 1679.

### Figure 6

Figure 7 San Juan Basin Sensitivity Analysis Area 1 - Single Well Case **Gas Production vs. Time** Ø=0.25%, k=10md, and Xf=300 Ft. 3000 Gas Production Rate (Mscf/D) 2000 Base Case @ g=0.25% 1000 0 10 15 20 25 30 5 45 50 55 60 65 70 75 0 35 40 10 160 Acre Well Spacing Cumulative Gas Production (Bcf) 320 Acre Well Spacing 8 640 Acre Well Spacing Base Case @ *ø*=0.25% 6 4 2 0 20 5 10 15 25 30 35 40 45 50 55 60 65 70 75 0

Production Time (Years)

Application of Richardson Operating Co. Record on Appeal, 1680.

### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case

Gas Recovery vs. Time

Ø=0.25%, k=10md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1681.

### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case

### Water Production vs. Time

Ø=0.25%, k=10md, and Xf=300 Ft.





**Gas Production vs. Time** 





Application of Richardson Operating Co. Record on Appeal, 1683.

### San Juan Basin Sensitivity Analysis Area 1 - Single Well Case

### Gas Recovery vs. Time

Ø=0.25%, k=50md, and Xf=300 Ft.





Application of Richardson Operating Co. Record on Appeal, 1685.

Figure 12

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case



Production Time (Years)

Application of Richardson Operating Co. Record on Appeal, 1686.

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Gas Recovery vs. Time

Ø=0.25%, k=1md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1687.

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Water Production vs. Time

Ø=0.25%, k=1md, and Xf=300 Ft.



Production Time (Years)

Application of Richardson Operating Co. Record on Appeal, 1688.



Application of Richardson Operating Co. Record on Appeal, 1689.

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Gas Recovery vs. Time

Ø=0.25%, k=5md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1690.

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Water Production vs. Time

Ø=0.25%, k=5md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1691.

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### **Gas Production vs. Time**

Ø=0.25%, k=10md, and Xf=300 Ft.



Co. Record on Appeal, 1692.

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Gas Recovery vs. Time

Ø=0.25%, k=10md, and Xf=300 Ft.



### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Water Production vs. Time

Ø=0.25%, k=10md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1694.

### San Juan Basin Sensitvity Analysis Area 1 - Full Section Case

### **Gas Production vs. Time**

Ø=0.25%, k=50md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1695.

. . .

San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Gas Recovery vs. Time

Ø=0.25%, k=50md, and Xf=300 Ft.



Figure 23

### San Juan Basin Sensitivity Analysis Area 1 - Full Section Case

### Water Production vs. Time

Ø=0.25%, k=50md, and Xf=300 Ft.



Application of Richardson Operating Co. Record on Appeal, 1697.

Figure 24

### Abandonment Rate Plot for Ø= 0.25%, k= 1md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1698.

### Abandonment Rate Plot for Ø= 0.25%, k= 1md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1699.

Abandonment Rate Plot for Ø= 0.25%, k= 5 md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1700.

Abandonment Rate Plot for Ø= 0.25%, k= 5 md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1701.

### Abandonment Rate Plot for Ø= 0.25%, k= 10 md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1702.



P

### Abandonment Rate Plot for Ø= 0.25%, k= 10 md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1703.

Application of Richardson Operating Co. Record on Appeal, 1704.

### Figure 31

### Abandonment Rate Plot for Ø= 0.25%, k= 50 md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis





### Abandonment Rate Plot for Ø= 0.25%, k= 50 md and Xf=300 Ft San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1705.

Figure 33

### Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Co. Record on Appeal, 1706.

## San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%

20 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1707.

# San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Co. Record on Appeal, 1708.

## San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25% 40 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1709.

# San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Co. Record on Appeal, 1710.

# San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%

75 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1711.

## San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%

**10 Year Simulation** 



Application of Richardson Operating Co. Record on Appeal, 1712.

# San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Co. Record on Appeal, 1713.

## San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%

**30 Year Simulation** 



Application of Richardson Operating Co. Record on Appeal, 1714.



# San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Co. Record on Appeal, 1715.

## San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%

50 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1716.

# San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%

75 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1717.

....

## San Juan Basin Area 1 Sensitivity Analysis

## Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Ċo. Record on Appeal, 1718.

## San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%





Application of Richardson Operating Co. Record on Appeal, 1719.

## San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%

**30 Year Simulation** 



Application of Richardson Operating Co. Record on Appeal, 1720.

## San Juan Basin Area 1 Sensitivity Analysis

### Gas Recovery vs. kh for ø=0.25%

40 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1721.



## Gas Recovery vs. kh for ø=0.25%

50 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1722.

Permeability-Thickness Product (md-Ft)



### Gas Recovery vs. kh for ø=0.25%

75 Year Simulation



Application of Richardson Operating Co. Record on Appeal, 1723.



### Gas Recovery vs kh for ø=0.25% 50 Mscf/d Abandonment Rate



Application of Richardson Operating Co. Record on Appeal, 1724.

Permeability-Thickness Product (md-Ft)

# San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1725.

## San Juan Basin Area 1 Sensitivity Analysis



Application of Richardson Operating Co. Record on Appeal, 1726.

San Juan Basin Sensitivity Analysis Area 1 Type Reservoir Base Case Variation in Porosity



Application of Richardson Operating Co. Record on Appeal, 1727.





Production Time (Years)

Application of Richardson Operating Co. Record on Appeal, 1728.

### San Juan Basin Sensitivity Analysis Area 1 Type Reservoir Base Case Variation in Porosity





Co. Record on Appeal, 1729.