RECEIVED:	REVIEWER:	TYPE:	APP NO:	
		ABOVE THIS TABLE FOR OCD DIV	VISION USE ONLY	

	ONSERVATION DIVISION
- Geological & Eng	
1220 South St. Francis Driv	ve, Santa Fe, NM 87505
ADMINISTRATIVE AP	PPLICATION CHECKLIST
	TIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND
REGULATIONS WHICH REQUIRE PROCE	SSING AT THE DIVISION LEVEL IN SANTA FE
A P Low Management Company, LLC	OCRID Number 247602
Applicant: Jay Management Company, LLC Well Name: G.S. State No. 1	OGRID Number: 247692 API: 30-025-22811
Pool: North Bagley Permo Penn	Pool Code: N/A
Ool.	1 001 Code.
	ON REQUIRED TO PROCESS THE TYPE OF APPLICATION ATED BELOW
1) TYPE OF APPLICATION: Check those which app	ply for [A]
A. Location – Spacing Unit – Simultaneous D	
NSL NSP (PROJECT AREA)	NSP (PRORATION UNIT)
B. Check one only for [1] or [1]	
[1] Commingling – Storage – Measureme	
DHC CTB PLC P	[18] [18] [18] [18] [18] [18] [18] [18]
[II] Injection – Disposal – Pressure Increa □ WFX □ PMX ■ SWD □ IP	
□ MLY □LMY ■2MD □IL	FOR OCD ONLY
2) NOTIFICATION REQUIRED TO: Check those whi	chapply
A. Offset operators or lease holders	Notice Complete
B. Royalty, overriding royalty owners, rev	renue owners Application
C. Application requires published notice	Content
D. Notification and/or concurrent appro	
E. Notification and/or concurrent appro	val by BLM
F. ☐ Surface ownerG.☐ For all of the above, proof of notificat	ion or publication is attached, and/or,
H. ☐ No notice required	iorror poblication is anachea, ana/or,
The Horica required	
3) CERTIFICATION: I hereby certify that the inform	nation submitted with this application for
administrative approval is accurate and comp	[1887] - F. T
	s application until the required information and
notifications are submitted to the Division.	
Note: Statement must be completed by an inc	dividual with managerial and/or supervisory capacity.
	10/20/18
Jim Foster	Date
Print or Type Name	
Thin of Type harrie	979-324-2139
	Phone Number
111	
A 48 W	jim@teamtimberwolf.com
Signature	e-mail Address

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated October 12, 2018 and ending with the issue dated October 12, 2018.

> > Hasso VI

Sworn and subscribed to before me this

12th day of October 2018.

Business Manager

My commission expires

January 29, 2019

(Seal)

OFFICIAL SEAL **GUSSIE BLACK** Notary Public State of New Mexico My Commission Expired 2919

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE **OCTOBER 12, 2018**

Public Notice for the G.S. State #1 (API: 30-025-22811) Jay Management Company, LLC 1001 West Loop, Suite 750 Houston, Texas 77027 (713) 621-6785 Contact Party: Jim Foster (979) 324-2139

Jay Management intends to submit an injection permit for the above referenced well. The purpose of this injection permit is for disposal of produced water associated with oil and gas production activities. The well will be permitted as a commercial disposal well, injecting into the Pennsylvanian formation. The location of the well is 1,874 feet from the East Line and 2,086 feet from the North Line of Section 8, Township 11S, Range 33E, which is in the SW/4 of the NE/4 of the aforementioned section.

The formation name is the Pennsylvanian; injection intervals to be between a depth of 9,192' to 10,345'; a maximum injection rate of 6,000 barrels per day with maximum pressure of 1,200 PSI.

Interested parties must file objections or request a hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days, by Monday the 29th of October. #33319

67114900

00219367

MORGAN VIZI TIMBERWOLF ENVIRONMENTAL 1920 W. VILLA MARIA, STE 205 **BRYAN, TX 77807**

October 26,2018

Dear Customer:

The following is the proof-of-delivery for tracking number **783441916905**.

Delivery Information:

Status: Delivered to: Mailroom

Signed for by: R.ROMERO Delivery location: 310 OLD SANTA FE TRL

Delivery date:

SANTA FE, NM 87501

Oct 26, 2018 09:41

Service type: FedEx Priority Overnight

Special Handling: Deliver Weekday

Shipping Information:

Tracking number: 783441916905 **Ship date:** Oct 25, 2018

Weight: 1.0 lbs/0.5 kg

Recipient:

Attn oil and gas division
THE NEW MEXICO STATE LAND
310 OLD SANTA FE TRL
SANTA FE, NM 87501 US

Shipper:

morgan vizi 1920 W VILLA MARIA RD STE 205 BRYAN, TX 77807 US

October 26,2018

Dear Customer:

The following is the proof-of-delivery for tracking number **783441974014**.

Delivery Information:

Status: Delivered to: Receptionist/Front Desk

Delivery date:

Signed for by: M.RANKAN Delivery location: 104 S 4TH ST

ARTESIA, NM 88210

Oct 26, 2018 10:08

Service type: FedEx Priority Overnight

Special Handling: Deliver Weekday

Adult Signature Required

Shipping Information:

Tracking number: 783441974014 **Ship date:** Oct 25, 2018

Weight: 1.0 lbs/0.5 kg

Recipient:

EOG Y RESOURCES EOG RESOURCES 104 S 4TH ST ARTESIA, NM 88210 US Shipper:

morgan vizi 1920 W VILLA MARIA RD STE 205 BRYAN, TX 77807 US

November 30,2018

Dear Customer:

The following is the proof-of-delivery for tracking number **783460566890**.

Delivery Information:

Status: Delivered to: Mailroom

Signed for by: A.KILLOY Delivery location: 1220 S SAINT FRANCIS

DR

SANTA FE, NM 87505

Oct 29, 2018 10:01

Service type: FedEx Priority Overnight

Special Handling: Deliver Weekday

Delivery date:

Shipping Information:

Tracking number: 783460566890 **Ship date:** Oct 26, 2018

Weight: 3.0 lbs/1.4 kg

Recipient:

MICHAEL MCMILLAN district 4 santa fe 1220 S SAINT FRANCIS DR SANTA FE, NM 87505 US Shipper: jim foster

1920 W VILLA MARIA RD STE 205

BRYAN, TX 77807 US

November 30,2018

Dear Customer:

The following is the proof-of-delivery for tracking number **783460492552**.

Delivery Information:

Status: Delivered to: Receptionist/Front Desk

Signed for by: B.BERTHA Delivery location: OCD DISTRICT 1

Service type: FedEx Priority Overnight Delivery date: Oct 29, 2018 09:19

Special Handling: Deliver Weekday

Adult Signature Required

Shipping Information:

Tracking number: 783460492552 **Ship date:** Oct 26, 2018

Weight: 1.0 lbs/0.5 kg

Hobbs, NM 88240

Recipient:

maxey brown district 1 hobbs 1625 n french dr Hobbs, NM 88240 US Shipper: jim foster

1920 W VILLA MARIA RD STE 205

BRYAN, TX 77807 US

Submit 3 Copies To Appropriate District Office	exico	Form C-103				
District I 1625 N. French Dr., Hobbs, NM 88240	Energy, Minerals and Nat		API NO. June 19, 2008			
District II	OH CONCEDUATION	20	025-22811			
1301 W. Grand Ave., Artesia, NM 88210	OIL CONSERVATION	5 Indi	5. Indicate Type of Lease			
District III 1000 Rio Brazos Rd., Aztec, NM 87410	1220 South St. Fra	incis Dr.	STATE FEE			
District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 8	6. State	e Oil & Gas Lease No.			
		LUG BACK TO A	se Name or Unit Agreement Name			
PROPOSALS.)			111			
1. Type of Well: Oil Well	Gas Well Other					
2. Name of Operator JAY MANAG	EMENT COMPANY, LLC	9. OGI	RID Number 247692			
Address of Operator	SOUTH, SUITE 750 HOUSTO		ol name or Wildcat GLEY PERMO PENN NORTH			
4. Well Location	2086		11.00 10 2.12 10 10 1			
Unit Letter G :	2086 feet from the NORT		feet from the _EASTline			
Section 8	Township 11S R		County LEA			
	11. Elevation (Show whether DF 4301' GL	R, KKB, R1, GR, etc.)	le			
	4001 02					
12. Check At	ppropriate Box to Indicate N	Nature of Notice, Report	or Other Data			
NOTICE OF INT			ENT REPORT OF:			
PERFORM REMEDIAL WORK	PLUG AND ABANDON	REMEDIAL WORK	ALTERING CASING			
TEMPORARILY ABANDON DULL OR ALTER CASING	CHANGE PLANS MULTIPLE COMPL	CASING/CEMENT IOR	PNS. P AND A			
DOWNHOLE COMMINGLE	MOLTIPLE COMPL	CASING/CEMENT JOB	ш			
OTHER: Convert to SW	VD ☑	OTHER:				
			rtinent dates, including estimated date bore diagram of proposed completion			
		Table 1				
	8" work string tubing. Set PKF	₹ @ 9092'.				
Pressure test casing to						
3. Acidize Perf with 15%	NEFE.					
POOH with PKR and 2	!-7/8" work string.					
5. TIH with PKR and 2-7/	8" plastic-lined tubing. Set PK	R @ 9092'				
6. Pressure test casing for	or MIT.					
7. Put well Online.						
Spud Date:	Rig Release D	Date:				
11 1 20 1 1 1 2 1 1						
I hereby certify that the information al	sove is true and/complete to the t	best of my knowledge and bell	et.			
11/2 /28	XIOU					
SIGNATURE / // SIGNATURE	TITLE Ope	rations Manager	DATE 10/25/2018			
	/ //)					
Type or print name Clay Griffin	E-mail addres	ss: cgriffin@jaymgt.com	PHONE: 574-707-5691			
For State Use Only						
APPROVED BY:	TITLE		DATE			
Conditions of Approval (if any):			27.447			

NEW XICO OIL CONSERVATION COMMISSION WELL LOCATION AND ACREAGE DEDICATION PLAT

Form C-102 Supersedes C-128 Effective 1-1-65

All distances must be from the outer boundaries of the C. P.

Operator Major, G	iebel & Forste	ar	eas Of Lalf Shop	Well No.	
Unit Letter	Section	Township	Range	1	
G	8	11	33	County	
Actual Footage Loc 1874	feet from the	East line and	2086 fee	t from the North	line
Ground Level Elev: Will furnish		mation P sylvanian	Undesign	, , , , , , , , , , , , , , , , , , , ,	Dedicated Acreage:
		ted to the subject well			80 Acres
2. If more the interest an	nan one lease is nd royalty).	dedicated to the well,	outline each and ide	atify the ownership th	nereof (both as to working
dated by c	communitization, u	nitization, force-pooling	s. etc?		all owners been consoli-
Yes	No If an	iswer is "yes;" type of	consolidation		
No allowat	ole will be assigne	ed to the well until all in	nterests have been c	ousolidated (by com	nted. (Use reverse side of munitization, unitization, approved by the Commis-
		2086,		tained her	ertify that the information conein is true and complete to the knowledge and belief. Listur J. Kluu Engineer
	1	6 -	/874'	Date	Giebel & Forster
<u> </u>	 			shown on t notes of a under my s	certify that the well location his plat was plotted from field ctual surveys made by me or upervision, and that the same d correct to the best of my and belief.
	 			Registered Prand;	ber //, /968 rofessional Engineer
0 330 660 19	0 1320 1650 1980	2310 2640 2000		' i	
			1500 1000 500) 0	2/89

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? X Yes No
П.	OPERATOR: Jay Management Company, LLC
	ADDRESS: 1001 West Loop, Suite 750, Houston, Texas 77027
	CONTACT PARTY: Jim Foster PHONE: (979) 324-2139
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? X Yes No If yes, give the Division order number authorizing the project: 247692
v.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME:TITLE: Consultant
	SIGNATURE: DATE: October 23, 2018
*	E-MAIL ADDRESS: im@teamtimberwolf.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal: December 30, 1968.

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

OPERATOR: Jay Management Company, LLC WELL NAME & NUMBER: G.S. State #1 WELL LOCATION: 2086'FNL 1874' FEL UNIT LETTER SECTION TOWNSHIP FOOTAGE LOCATION **RANGE WELLBORE SCHEMATIC** WELL CONSTRUCTION DATA **Surface Casing** Casing Size: <u>12 3/4"</u> Hole Size: <u>17 1/2"</u> Cemented with: 350 sx. Top of Cement: Surface Method Determined: Circulated **Intermediate Casing** See Schematics Section Hole Size: 11" Casing Size: 8 5/8" Cemented with: 400 sx. Method Determined: Calculated Top of Cement: 2,150 ft **Production Casing** Casing Size: 5 1/2" Hole Size: 7 7/8" Cemented with: 575 sx. Top of Cement: 7,080 ft Method Determined: Calculated Total Depth: 10,400 ft Injection Interval 9,192 ft to 10,345 ft

(Perforated)

INJECTION WELL DATA SHEET

Tul	ping Size: 2 7/8" Lining Material: Plastic Lined
Тур	pe of Packer: Model R packer
Pac	ker Setting Depth: 9,092'
Otł	ner Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?YesXNo
	If no, for what purpose was the well originally drilled? <u>Oil Production</u> This well is to be converted into a commercial salt water disposal well.
2.	Name of the Injection Formation: <u>Pennsylvanian</u>
3.	Name of Field or Pool (if applicable): North Bagley Oil Field
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
	<u>Previous:</u> Well has been perforated at 9,192 – 9,228; 9,446 – 9,470; 9,602-10,354
	Proposed: None
	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: Permian Wolfcamp Carbonate: 8,700', Penn: Cisco 8,741', Canyon 8,741', Strawn 9,904', Atoka 10,845

- V. Please see Figures 1 and 2 for all wells and leases located within a two-mile radius and the area of review.
- VI. Please see Tables A-1 and A-2 (in the tables section) for a tabulation of data on all wells and leases of public record in the area. Schematics for the plugged wells can be found in the schematics section.

VII. Proposed Operation

1.	Proposed average and maximum daily rate and volume of	5,000 Daily average
	fluids to be injected;	6,000 Maximum
2.	Whether the system is open or closed;	Closed
3.	Proposed average and maximum injection pressure;	Avg: 1000 PSI Max: 1200 PSI
4.	Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,	Re-inject produced water
5.	If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).	Chemical analysis of the Pennsylvanian Formation is attached as Table B-1 in the tables section.

VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.

The proposed injection zone is in the Pennsylvanian formation. Lithologically it is a limestone of shelf origin.

DEPTH	Lithology	Geologic Name	Thickness
9,192 - 9,228	Limestone	Pennsylvanian Cisco	36
9,446 – 9,470	Limestone	Pennsylvanian Cisco	24
9,602 – 9,619	Limestone	Pennsylvanian Canyon	5
$10,\!147 - 10,\!180$	Limestone	Pennsylvanian Strawn	5
10,216 – 10,290	Limestone	Pennsylvanian Strawn	8
10,325 - 10,354	Limestone	Pennsylvanian Strawn	5
Total			83'

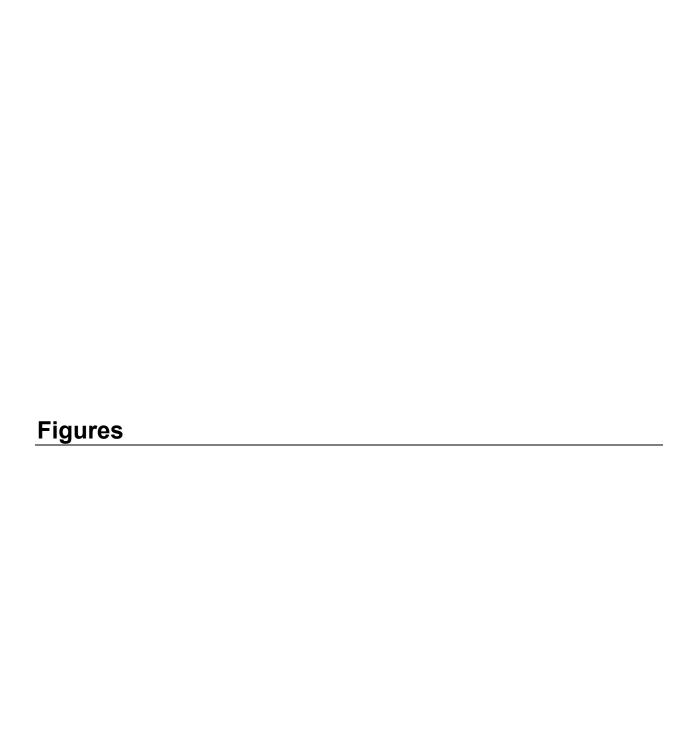
The fresh water aquifer at this site is the Ogallala found from near surface depth of 380'.

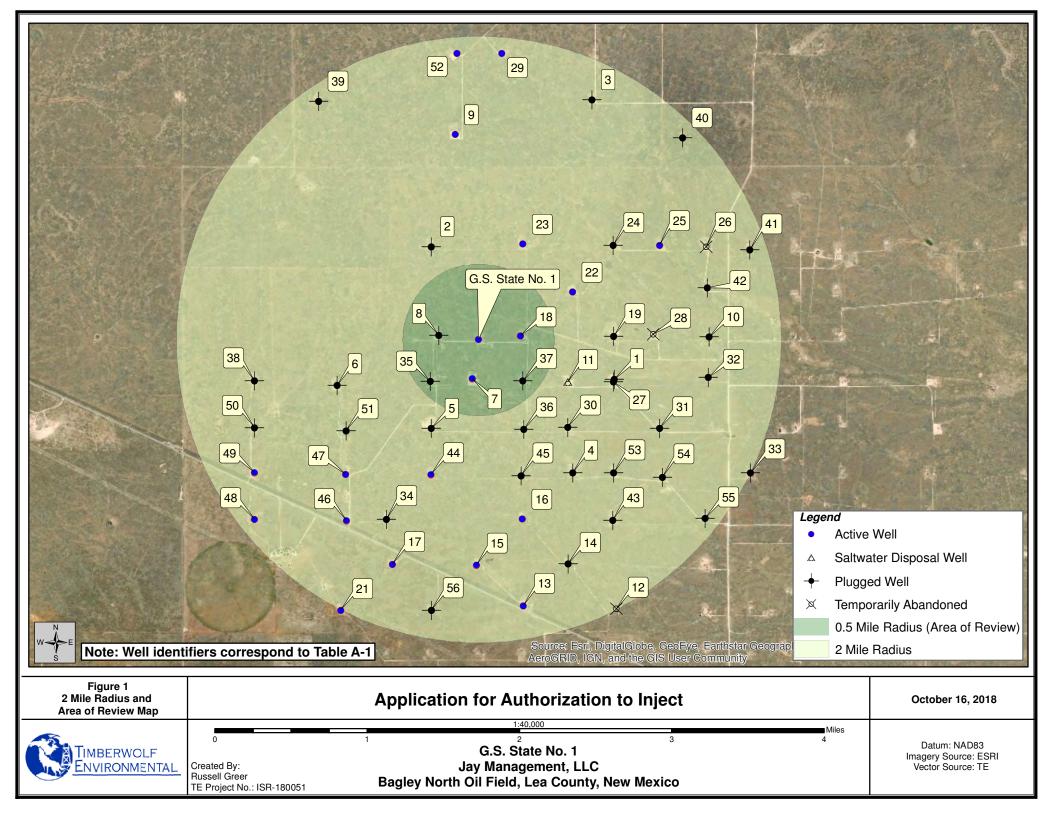
IX. Describe the proposed stimulation program, if any.

Acidizing

X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).

Logs have been filed with OCD (December 30, 1968).


XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.


A water well survey of the area revealed only one water well located within a one-mile radius of the G.S. State #1. Results are documented in Timberwolf's report entitled *Water Well Resources* and *Water Quality Report* and has been attached to this application in the referenced documents section. Additionally, a chemical analysis is presented in Table B-2 in the tables section.

XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.

Jay Management attests that a thorough examination has been made of all available geologic, engineering, and well data and that no hydrologic connection exists between the proposed injection interval and the overlying fresh water aquifer.

An engineering report from Syfan Engineering, LLC titled *Injection Study* and dated February 23, 2018, regarding the offset of the State OG SWD No. 2 well can be found in the referenced documents section. The G.S. State #1 is located 2,800 feet to the west-northwest of the State OG SWD No. 2.

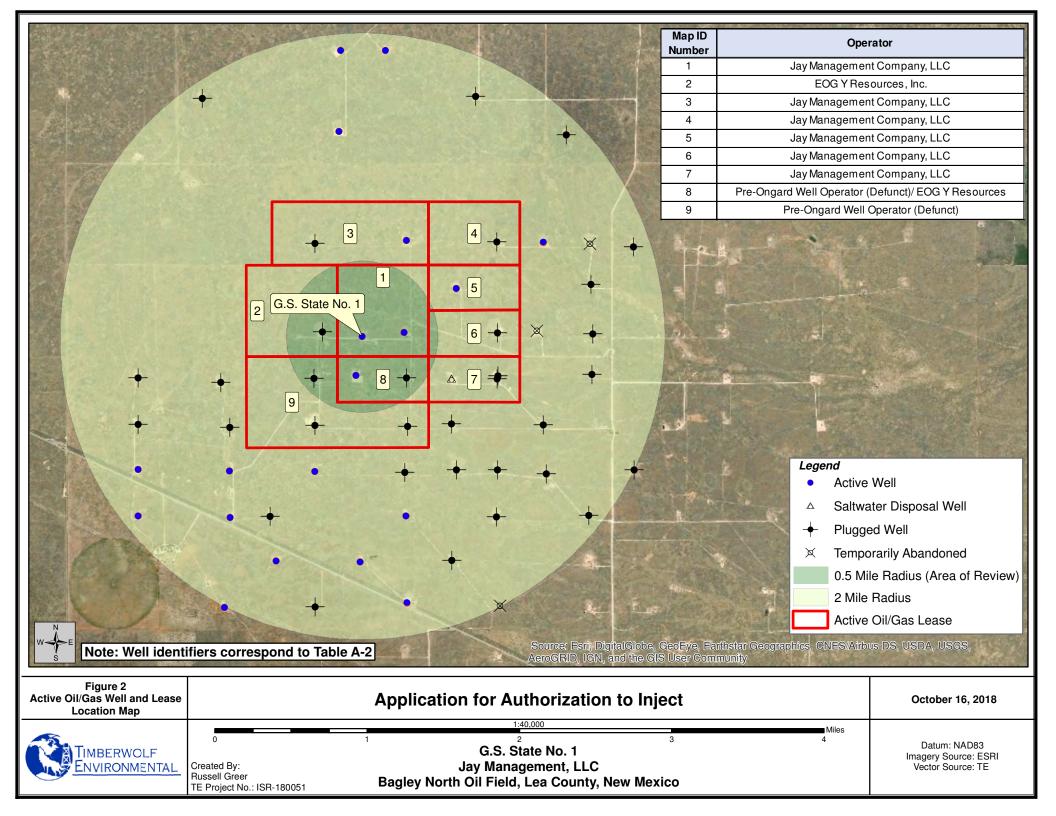


Table A-1. Oil and Gas Wells within a 2 Mile Radius of the G.S. State No. 1 Application for Authorization to Inject Jay Management, Lea County, New Mexico

Map ID	0	Well Name	ADI Novob ov	Spud Date	Status	Depth (ft)	NAD83 Coordinates		Dool Name
Number	Operator		API Number				Lattitude (°N)	Longtitude (°W)	Pool Name
1	Chesapeake	OG State #001	30-025-30566	03/06/89	Plugged	8,804	33.378805	103.621445	North Bagley, Permo Penn
2	Chesapeake	Candy Com #001	30-025-22350	11/27/67	Plugged	10,440	33.389321	103.638820	North Bagley, Permo Penn
3	Chesapeake	Largo 36 State #001	30-025-35615	08/17/01	Plugged	11,333	33.400990	103.623561	Cuerno Largo, Upper Pennsylvanian, Wildcat, Atoka
4	COG Operating LLC	Bagley 16 State #001	30-025-36903	06/25/05	Plugged	11,050	33.371346	103.625392	North Bagley, Permo Penn
5	Dwight A Tipton	Shea Climenko #001	30-025-22281	10/12/67	Plugged	10,370	33.374887	103.638825	North Bagley, Permo Penn
6	Elk Oil Co	R R State #001	30-025-29004	11/02/84	Plugged	10,450	33.378295	103.647764	North Bagley, Permo Penn
7	EOG Y Resources	Quetsal AQA State #001	30-025-33460	06/01/96	Active	11,050	33.378856	103.634927	North Bagley, Permo Penn, Atoka
8	EOG Y Resources	Champlin AQD State #001	30-025-23043	03/04/69	Plugged	11,300	33.382296	103.638107	North Bagley, Permo Penn
9	EOG Y Resources	Raitt Bid State #001	30-025-37982	07/31/06	Active	11,212	33.398251	103.636538	Cuerno Largo, Upper Pennsylvanian
10	Fasken Oil and Ranch LTD	Felmont Collier #001	30-025-21245	06/15/65	Plugged	10,325	33.382149	103.612443	North Bagley, Permo Penn
11	Jay Management	State OG SWD #002	30-025-31381	10/15/91	Active SWD	9,000	33.378607	103.625849	North Bagley, Permo Penn, SWD Cisco, SWD Strawn
12	Jay Management	State NBN #001	30-025-00998	02/16/59	TA	11,607	33.360568	103.621246	North Bagley, Permo Penn
13	Jay Management	Andover Federal #001	30-025-21904	10/29/66	Active	10,250	33.360815	103.630082	North Bagley, Permo Penn
14	Jay Management	Christensen State #001	30-025-22017	01/31/67	Plugged	10,360	33.364140	103.625833	North Bagley, Permo Penn
15	Jay Management	Dolly #001	30-025-22370	12/21/67	Active	10,300	33.364041	103.634538	North Bagley, Permo Penn
16	Jay Management	Shell State Com #001	30-025-22226	08/24/67	Active	10,300	33.367713	103.630171	North Bagley, Permo Penn
17	Jay Management	Chaney Federal #001	30-025-22554	05/14/68	Active	10,300	33.364126	103.642509	North Bagley, Permo Penn
18	Jay Management	Gulf Sohio State #001	30-025-21194	05/11/65	Active	10,355	33.382265	103.630358	North Bagley, Permo Penn, Wolfcamp
19	Jay Management	Collier #001	30-025-00994	08/13/62	Plugged	11,400	33.382215	103.621504	North Bagley, Permo Penn
20	Jay Management	GS State #001	30-025-22811	10/23/68	Active	10,400	33.381967	103.634339	North Bagley, Permo Penn
21	Jay Management	Tilly #001	30-025-22702	08/21/68	Active	10,370	33.360451	103.647415	North Bagley, Permo Penn
22	Jay Management	JFG Collier #001	30-025-22108	05/07/87	Active	10,410	33.385749	103.625415	North Bagley, Permo Penn
23	Jay Management	Sohio B State #001	30-025-22122	05/20/67	Active	10,510	33.389560	103.630121	North Bagley, Permo Penn
24	Jay Management	Lulu #001	30-025-22256	09/21/67	Plugged	10,436	33.389441	103.621564	North Bagley, Permo Penn
25	Jay Management	Sohio A State #001	30-025-22206	07/31/67	Active	10,450	33.389441	103.617144	North Bagley, Permo Penn
26	Jay Management	Sohio State #001	30-025-22043	03/01/67	TA	10,450	33.389321	103.612723	North Bagley, Permo Penn
27	LBO New Mexico Inc	State OG #001	30-025-22329	11/14/67	Plugged	10,270	33.378592	103.621524	North Bagley, Permo Penn
28	Lease Holders Acquisitios, Inc	Bagley #002	30-025-38192	06/02/07	TA	10,500	33.382389	103.617761	North Bagley, Permo Penn
29	Legacy Reserves	Sidewinder State #001	30-025-31012	09/22/90	Active	10,460	33.404680	103.632117	Cuerno Largo, Upper Pennsylvanian
30	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22467	03/18/68	Plugged	10,355	33.374994	103.625868	North Bagley, Permo Penn
31	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22077	05/11/67	Plugged	10,300	33.374910	103.617144	North Bagley, Permo Penn
32	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-20677	05/01/65	Plugged	10,217	33.378931	103.612524	North Bagley, Permo Penn
33	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22184	07/20/67	Plugged	10,258	33.371362	103.608501	North Bagley, Permo Penn
34	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22577	06/23/68	Plugged	10,360	33.367675	103.643063	North Bagley, Permo Penn
35	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22377	12/28/67	Plugged	10,400	33.378618	103.638920	North Bagley, Permo Penn
36	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22197	09/05/67	Plugged	10,360	33.374807	103.630031	North Bagley, Permo Penn
37	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22068	04/04/67	Plugged	10,400	33.378658	103.630126	North Bagley, Permo Penn
38	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-23533	07/01/70	Plugged	10,460	33.378652	103.655607	N/A
39	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-21393	05/29/65	Plugged	4,510	33.400871	103.649516	N/A
40	Pre-Ongard Well Operator	Pre-Ongard Well #001	30-025-22179	07/18/67	Plugged	10,450	33.397976	103.614951	N/A

Table A-1. Oil and Gas Wells within a 2 Mile Radius of the G.S. State No. 1 Application for Authorization to Inject Jay Management, Lea County, New Mexico

Map ID	Operator	Well Name	API Number Spud Da	Carred Data	Spud Date Status	Depth	NAD83 Coordinates		Pool Name
Number		well name	API Number	Spud Date	Status	(ft)	Lattitude (° N)	Longtitude (°W)	- Pool Name
41	Pre-Ongard Well Operator	Pre-Ongard Well #002	30-025-22385	03/13/68	Plugged	10,290	33.389069	103.608562	N/A
42	Pride Energy	Bagley #001	30-025-20610	10/16/64	Plugged	10,360	33.386069	103.612612	North Bagley, Permo Penn
43	Prime Operating	State DG #001	30-025-21948	12/16/66	Plugged	10,268	33.367621	103.621597	North Bagley, Permo Penn
44	Prime Operating	State DK #002	30-025-22392	01/14/68	Active	10,270	33.371242	103.638849	North Bagley, Permo Penn
45	Prime Operating	State DK #001	30-025-22314	11/07/67	Plugged	10,338	33.371151	103.630297	North Bagley, Permo Penn
46	Read & Stevens Inc	Shell State #002	30-025-22596	06/05/68	Active	10,370	33.367577	103.646878	North Bagley, Permo Penn
47	Read & Stevens Inc	Shell State #001	30-025-22409	01/24/68	Active	10,363	33.371266	103.646949	North Bagley, Permo Penn
48	Read & Stevens Inc	Shell State #004	30-025-23190	08/07/69	Active	10,400	33.367695	103.655607	North Bagley, Permo Penn
49	Read & Stevens Inc	Shell State #003	30-025-23014	02/14/69	Active	10,410	33.371387	103.655607	North Bagley, Permo Penn
50	Read & Stevens Inc	State E #001	30-025-23353	11/06/69	Plugged	10,421	33.374960	103.655607	North Bagley, Permo Penn
51	Read & Stevens Inc	Sun State #001	30-025-22718	09/15/68	Plugged	10,400	33.374722	103.646908	North Bagley, Permo Penn
52	Remnant Oil Operating	Yates State #001	30-025-30984	08/20/90	Active	10,440	33.404680	103.636396	Cuerno Largo, Upper Pennsylvanian
53	Sabre Op INC	Bagley State #003	30-025-22016	01/28/67	Plugged	10,275	33.371362	103.621502	North Bagley, Permo Penn
54	Sabre Op INC	Bagley State #002	30-025-21928	12/04/66	Plugged	10,200	33.371025	103.616868	North Bagley, Permo Penn
55	Sabre Op INC	Bagley State #001	30-025-21889	10/18/66	Plugged	10,200	33.367740	103.612827	North Bagley, Permo Penn
56	Tipperary Oil & Gas Corp	Helen #001	30-025-22440	02/22/68	Plugged	10,346	33.360467	103.638817	North Bagley, Permo Penn

Table A-2. Operator within a 1/2 Mile Radius of G.S. State No. 1
Application for Authorization to Inject
Jay Management, Lea County, New Mexico

Map ID Number	Operator	Lease Name	Surface Owner	Mineral Owner
1	Jay Management Company, LLC	Gulf Sohio St	State	State
2	EOG Y Resources, Inc.	Champlin	State	State
3	Jay Management Company, LLC	Sohio B	State	State
4	Jay Management Company, LLC	Lulu	State	State
5	Jay Management Company, LLC	Collier	Pearce	Private
6	Jay Management Company, LLC	Collier etal	Pearce	Private
7	Jay Management Company, LLC	State OG/Len St	State	State
8	Pre-Ongard Well Operator (Defunct)/ EOG Y Resources	Champlin	State	State
9	Pre-Ongard Well Operator (Defunct)	Dwight A Tipton	State	State

Table B-1. Produced Water Samples for the G.S. State No. 1
Application for Authorizatin to Inject
Jay Management, Lea County, New Mexico

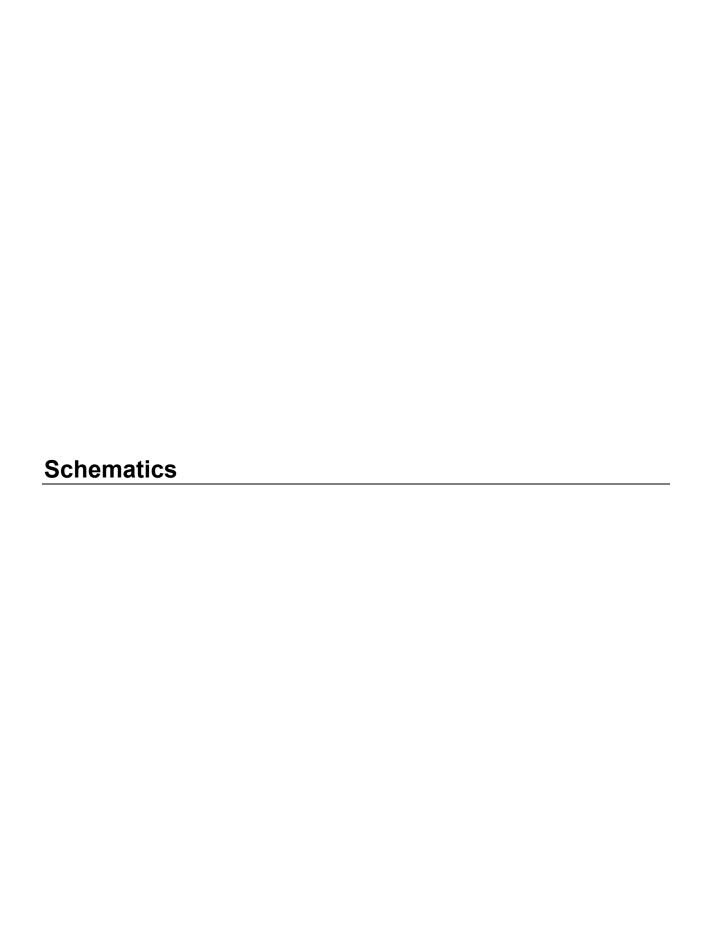
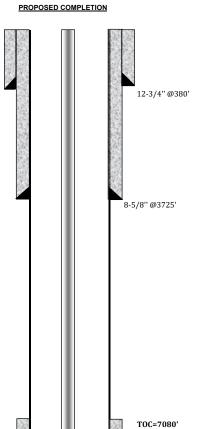

Well Name	API	Section	Township	Range	Unit	Formation	Sample Source	TDS mg/L	Chloride mg/L
HISSOM A STATE #001	30-025-20677	9	11S	33E	I	PERMO-PENNSYLVANIAN	UNKNOWN	69,713	
HISSOM A STATE #001	30-025-20677	9	11S	33E	I	N/A	UNKNOWN	69,713	40,540
CHAMPLIN AQD STATE #001	30-025-23043	8	11S	33E	F	PERMO-PENNSYLVANIAN	UNKNOWN		70,290
CHAMPLIN AQD STATE #001	30-025-23043	8	11S	33E	F	PERMO-PENNSYLVANIAN	UNKNOWN		69,438
STATE F #001	30-025-00995	10	11S	33E	K	PERMO-PENNSYLVANIAN	UNKNOWN	55,607	33,600
J P COLLIER #001	30-025-00996	10	11S	33E	F	PERMO-PENNSYLVANIAN	UNKNOWN	54,972	34,110
MPC STATE #001	30-025-20608	27	11S	33E	Н	PENNSYLVANIAN	DST	47,386	26,400
STATE NBF #001	30-025-20891	22	11S	33E	F	PERMO-PENNSYLVANIAN	DST	46,082	26,080
STATE NBF #001	30-025-20891	22	11S	33E	F	PERMO-PENNSYLVANIAN	DST	42,573	24,470
STATE NBF #001	30-025-20891	22	11S	33E	F	PERMO-PENNSYLVANIAN	DST	60,103	30,030
DALLAS #001	30-025-22434	26	11S	33E	Н	PERMO-PENNSYLVANIAN	WELLHEAD	78,068	47,500
MARY ELLEN DALLAS #001	30-025-00997	15	11S	33E	Р	PERMO-PENNSYLVANIAN	UNKNOWN	60,289	36,540
STATE NBN #001	30-025-00998	16	11S	33E	N	PERMO-PENNSYLVANIAN	UNKNOWN	36,985	21,800
STATE NBN #001	30-025-00998	16	11S	33E	N	PERMO-PENNSYLVANIAN	DST	41,450	24,600
STATE BT N #001	30-025-01012	34	11S	33E	Р	DEVONIAN	UNKNOWN	51,781	30,040
STATE BT P #001	30-025-01014	34	11S	33E	E	PERMO-PENNSYLVANIAN	PRODUCTION TEST	73,630	42,400
DALLAS #001	30-025-22330	15	11S	33E	J	PERMO-PENNSYLVANIAN	N/A	56,532	35,527

Table B-2. Fresh Water Sample Results for the G.S. State No. 1 Application for Authorization to Inject

Jay Management Company Bagley North Oil Field, Lea County, New Mexico


Sample ID	ole ID Sample TPH Volatile Organic Compounds (mg/L)			g/L)		Anions (mg/L) Cations (mg/L) General Water Quality Parameters						Dissolved Metals (mg/L)													
	Date	(mg/L)					CI	SO₄	CO ₃	BiCarb	Na	Ca	Ma	V	pH	Sp. Cond.	TDS	A.0	Ва	Cd	Cr	Pb	,	۸	На
			В	Т	E	Х	Ci	30₄	CO ₃	ысать	Na	Ca	wig	Γ.	S.U.	mmhos/cm	mg/L	As	Da	Cu	Ci	PB	Se	Ag	rig
3 G.S. State	03/13/18	< 0.71	< 0.00018	< 0.00020	< 0.00020	< 0.00037	120	130	< 20	130	41 ^B	110	14	2.1	7.7 ^{HF}	860	690	0.0055 ^J	0.06	< 0.00028	< 0.0016	< 0.0022	0.0071 ^J	< 0.0013	< 0.000082
Regulatory	Limits		0.01 ³	0.75 ³	0.75 ³	0.62 ³	250 ²	250 ²					-		6.5 - 8.5 ²		500 ²	0.01 ¹	2.0 ¹	0.005 ¹	0.1 ¹	0.015 ¹	0.05 ¹	0.10 ²	0.002 ¹

¹ EPA Primary Drinking Water Standards	s.u Standard units	CO ₂ - carbon dioxide	As - arsenic
² EPA Secondary Drinking Water Standards	Sp. Cond Specific conductance	CI - Chloride	Ba - barium
3 NMOCD standards from Title 20 NMAC § 6.2	mmhos/cm - millimhos per centimeter	SO ₄ - Sulfate	Cd - cadmium
J - analyte detected below quantation limit	ohm-m - ohms per meter	CO ₃ - Carbonate	Cr - chromium
H - sample prepped or analyzed beyond specified holding time	TDS - total dissolved solids	BiCarb - Bicarbonate	Pb - lead
^b - analyte detected in blank	TSS - total suspended solids	Na - Sodium	Se - selenium
mg/L - milligrams per liter	NTU - Nephelometric turbidity unit	Ca - Calcium	Ag - silver
no applicable limit	- concentration exceeds recommended action level	Mg - Magnesium	Hg - mercury

Jay Management Company, LLC

2-7/8" Plastic-lined tubing set in packer @ 9,092'

9,192'-9,228'

9,446'-9,470'

9,602'-10,345'

TD: 10,400'

PBTD = 10,376'

WELL: G.S.# 1 SPUD DATE: 23-0ct-68 COUNTY: Lea EARLY COMP DATE: 11-Dec-68

STATE: API #: TD: 30-025-22811

PBTD: 10.376' 10.400'

LSE #: 8969-2

FIELD: Bagley; Permo Penn, North **LOCATION:** 2086' FNL & 1874' FEL

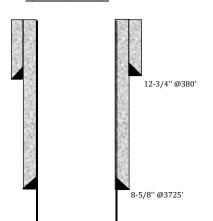
FORMATION: Penn ELEVATION: 4312 KB

CASING	RECORD

O.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. JTS.	BIT SZ.	SX CMT.	TOP CMT.
12-3/4"	34#				380'			350	Surf.
8-5/8''	32# & 34#				3725'			400	2150'

0.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. JTS.	BIT SZ.	SX CMT.	TOP CMT.
5-1/2"	17#				10,400'			575	7080'

TUBING


0.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. JTS.	

PERFORATION RECORD

DATE	TOP	BOTTOM	SPF	ZONE	STATUS
12/11/1968	9,602'	10,354'		Penn	Open
1995	9,446'	9,470'		Penn	Open
1995	9,192'	9,228'		Penn	Open

Oct-18	Perform casing integrity test.
Pending	Acidize Perf with 15%
	Run 2-7/8" plastic-lined tubing set in packer @9,092'

CURRENT COMPLETION

TOC=7080'

9,446'-9,470'

9,602'-10,345'

TD: 10,400'

PBTD = 10,376'

WELL: G.S.# 1 SPUD DATE: 23-Oct-68

COUNTY: Lea EARLY COMP DATE: 11-Dec-68 STATE: API #: TD:

30-025-22811 PBTD: 10,376' 10.400'

LSE #: 8969-2

FIELD: Bagley; Permo Penn, North **LOCATION:** 2086' FNL & 1874' FEL

FORMATION: Penn ELEVATION: 4312 KB

RECORD

O.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. JTS.	BIT SZ.	SX CMT.	TOP CMT.
12-3/4"	34#				380'			350	Surf.
8-5/8''	32# & 34#				3725'			400	2150'

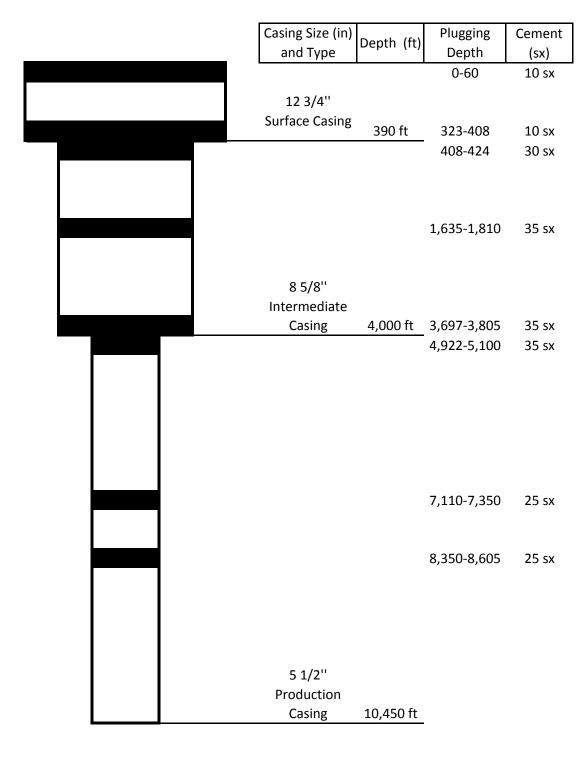
0.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. JTS.	BIT SZ.	SX CMT.	TOP CMT.
5-1/2"	17#				10,400'			575	7080'

TUBING

0.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. JTS.	

PERFORATION RECORD

DATE	TOP	BOTTOM	SPF	ZONE	STATUS
12/11/1968	9,602'	10,354'		Penn	Open
N/A	9,446'	9,470'			Open
N/A	9,192'	9,228'			Open

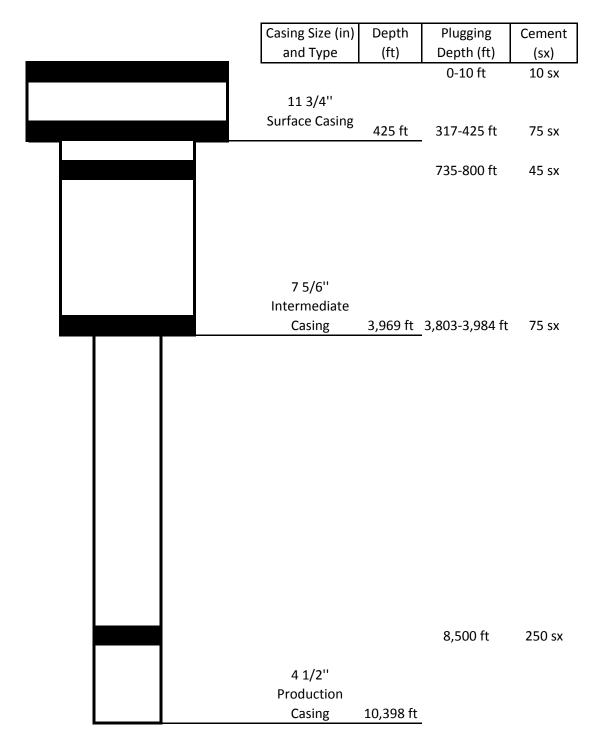

1	
—	
I	

Plugged Well Schematic

Operator: EOG Y Resources Twolf Reference #: 8

Well: Champlin AQD State #001

API: 30-025-23043

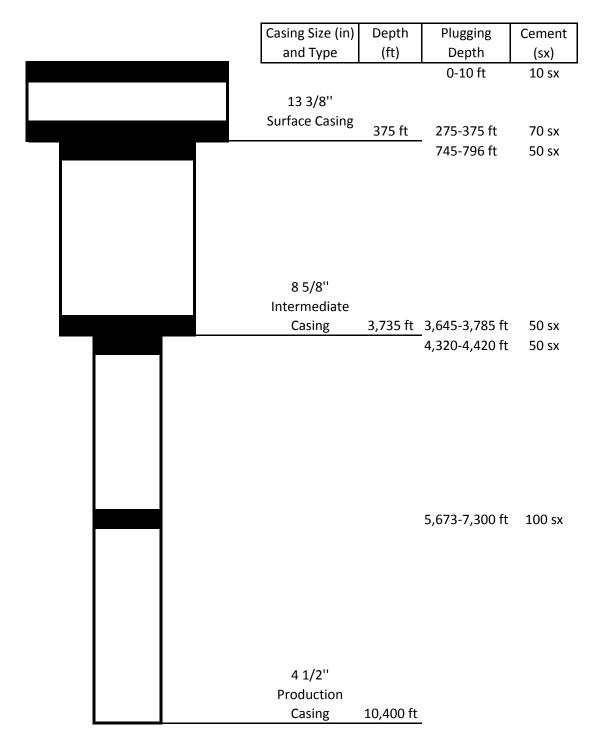

Plugged Well Schematic

Operator: Pre-Ongard Well Operator

Well: Pre-Ongard Well #001

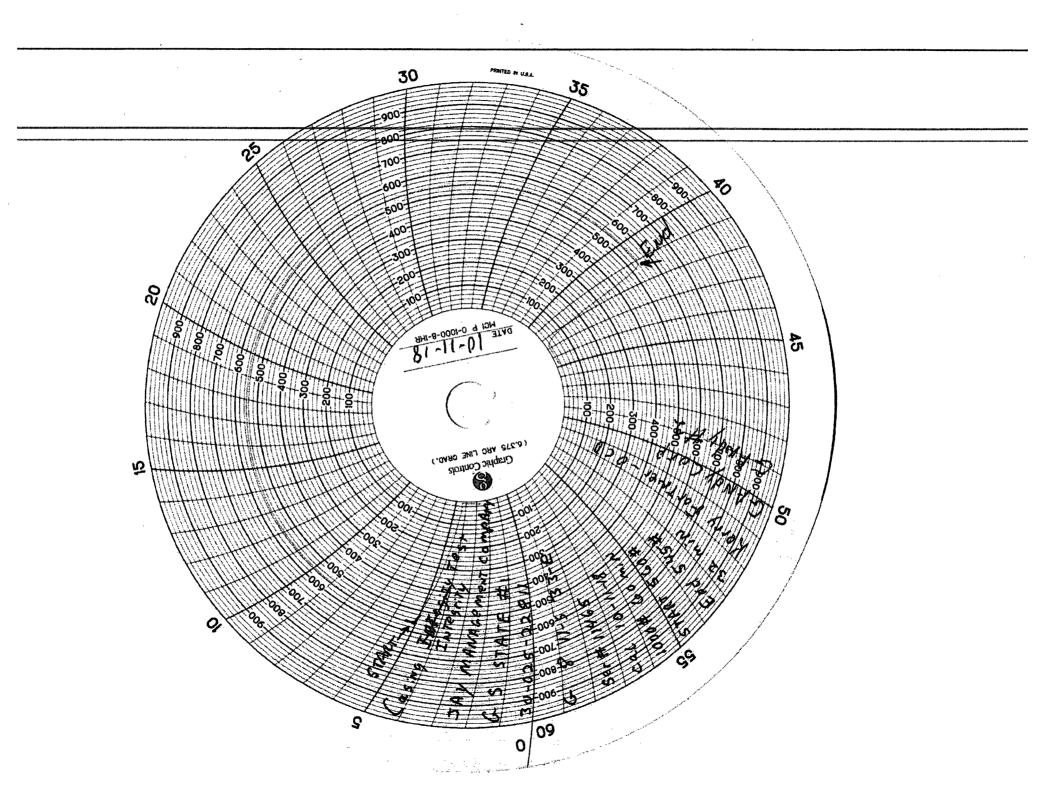
API: 30-025-22377

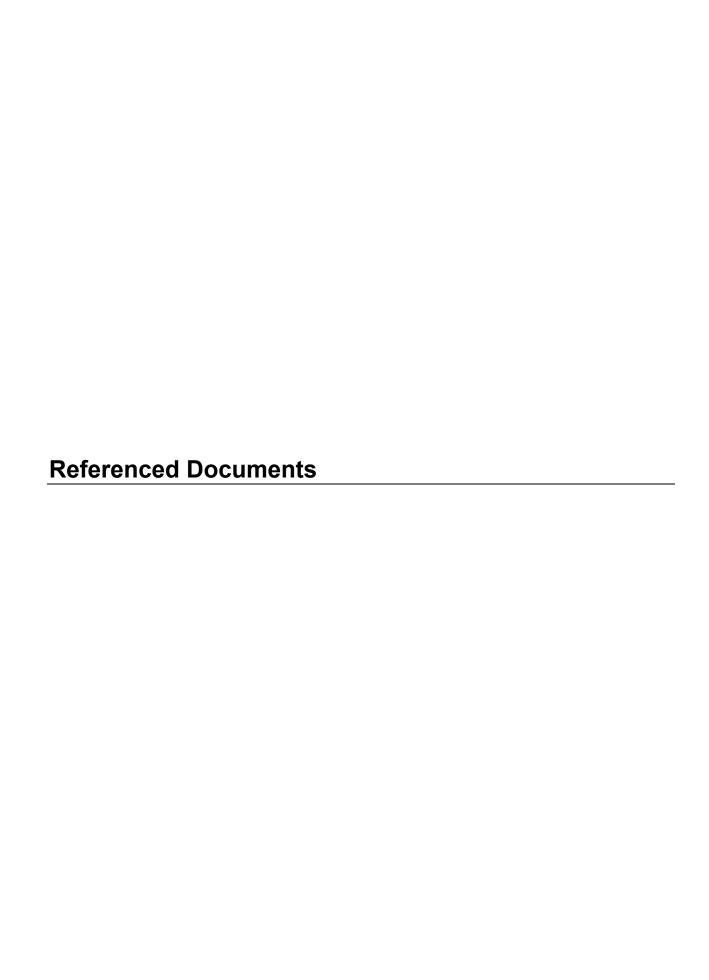
Twolf Reference #: 35


Plugged Well Schematic

Operator: Pre-Ongard Well Operator

Well: Pre-Ongard Well #001


API: 30-025-22068


Twolf Reference #: 37

Submit 3 Copies To Appropriate District Office State of New Mexico	Form C-103
Office District 1 1625 N. French Dr., Hobbs, NM 88240 HOBBS District of New Mexico Minerals and Natural Resources	WELL API NO. June 19, 2008
District II 1301 W. Grand Ave., Artesia, NM 882 OCT 2 2 20018 ONSERVATION DIVISION	30-025-22811
District III	5. Indicate Type of Lease STATE FEE
1000 Rio Brazos Rd., Aztec, NM 874 RECEIVED Santa Fe, NM 87505 1220 S. St. Francis Dr., Santa Fe, NM	6. State Oil & Gas Lease No.
87505	
SUNDRY NOTICES AND REPORTS ON WELLS (DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMIT" (FORM C-101) FOR SUCH	7. Lease Name or Unit Agreement Name G S State
PROPOSALS.) 1. Type of Well: Oil Well	8. Well Number 1
2. Name of Operator JAY MANAGEMENT COMPANY, LLC	9. OGRID Number 247692
Address of Operator 1001 WEST LOOP SOUTH, SUITE 750 HOUSTON,TX 77027	10. Pool name or Wildcat BAGLEY PERMO PENN NORTH
4. Well Location	BAGLET PERINO PENN NORTH
Unit Letter G: 2086 feet from the NORTH line and	1874 feet from the EAST line
Section 8 Township 11S Range 33E 11. Elevation (Show whether DR, RKB, RT, GR, etc.)	NMPM County LEA
4301' GL	
12. Check Appropriate Box to Indicate Nature of Notice,	Report or Other Data
NOTICE OF INTENTION TO: SUE PERFORM REMEDIAL WORK PLUG AND ABANDON REMEDIAL WOR	BSEQUENT REPORT OF: RK
_	RILLING OPNS. P AND A
PULL OR ALTER CASING MULTIPLE COMPL CASING/CEMEN DOWNHOLE COMMINGLE	NT JOB LI
13. Describe proposed or completed operations. (Clearly state all pertinent details, ar	nd give pertinent dates, including estimated date
of starting any proposed work). SEE RULE 1103. For Multiple Completions: A or recompletion.	attach wellbore diagram of proposed completion
or recompletion.	
1. Jay Management perform casing integrity test 10/11/2018	
2. Evaluate this well for SWD.	
	.
Spud Date: Rig Release Date:	
I hereby certify that the infarmation above is true and complete to the best of my knowled	ge and helief
Thereby certify that the influential organization is the desiron my knowledge	
SIGNATURE District Manager	DATE 10/17/2018
Type or print name Clay Griffin E-mail address: cgriffin@jay For State Use Only	
APPROVED BY: Accepted for Record Only	DATE
APPROVED BY: Conditions of Approval (if any): Williams 10/22]	
10/22/	2018
	11

Syfan Engineering, LLC

309 W. 7th Street Suite 500 Fort Worth, TX 76102 (Cell) 281-889-8774 (E-Mail) frank.syfan@gmail.com

PETROLEUM ENGINEERING CONSULTANTS

DRILLING – WORKOVERS – COMPLETIONS – HYDRAULIC FRACTURING – RESERVOIR ENGINEERING TEXAS PROFESSIONAL ENGINEER NO. 65255

February 23, 2018

Mr. Amir Sanker Jay Management Company 1001 West Loop South Suite 750 Houston, TX 77027

Re: Injection Study

State OG SWD #2

Pool: Cisco-Cisco SWD-Strawn

Lea County, NM

API No. 30-025-31381

Dear Mr. Sanker,

At the request of Mr. Coby Denham of Denham Energy ("DE") on behalf of Jay Management Company ("JMC"), Syfan Engineering, LLC ("Syfan") has prepared an injection study of the State OG SWD No. 2 in the Cisco-Cisco SWD-Strawn Pool located in Lea County, NM. Syfan has reviewed the applicable data supplied by JMC regarding recompleting the State OG SWD #2 to inject produced waters into the San Andres formation.

CONCLUSIONS

- 1. Injection into the State OG SWD #2 should not cause a vertical fracture in the San Andres formation if surface injection pressures are limited to 1,700 psi.
- 2. Injection volumes in the State OG SWD #2 should not communicate vertically with either the Ogallala Aquifer, or surrounding deeper productive horizons.

RECOMMENDATIONS

- 1. Obtain an up to date Aquifer Depth Letter from the NMOCD for the State OG SWD #2.
- 2. The State OG SWD #2 should be approved for SWD through perforations 4,590' 4,829' and injection should be down a tubing string under a sealing packer to prevent excessive surface pressures.
- 3. The Maximum Allowable Surface Injection Pressure ("MASIP") should be 1,710 psi.

INTRODUCTION

According to available public records reviewed from the New Mexico Oil Conservation Division, LBO New Mexico, Inc. (the Original Operator of Record) spudded the State OG #2 on 10/15/1991 and drilled vertically to a total depth of 11,000 ft.

Initially a 17" hole was drilled and 13-3/8", 48.0 lb/ft casing was run to 367' and cemented back to surface with 350 sacks of Class C Cement. Then an 11" hole was drilled and 8-5/8", 32.0 and 24.0 lb/ft casing was run to 3,810' and cemented back to surface with 1,150 sacks of cement. A 7-7/8" hole was then drilled to 11,000' (well TD). After logging the well, 5-1/2", 17.0 and 20.0 lb/ft casing was run and cemented with 2,025 sacks of cement, which was circulated back to surface. The well was perforated from 10,804' – 10,810' in the Morrow formation. A CIBP was set over the Morrow perforations @ 10,615' and sealed with 20 sacks of cement. The well was completed in the Strawn formation through perforations 10,206' – 10,216', 10,224' – 10,232', and 10,282' – 10,294'as a producing oil well with the completion approved by the NMOCD on January 24,1992. According to records filed with the NMOCD, the State OG #2 was not hydraulically fracture stimulated on completion.

The State OG #2 was converted to SWD under Burro Pipeline Corporation (Operator of Record at that time) and began taking water on February 4, 1994. The well was officially called the State OG SWD-548 #2 according to NMOCD records. The original Strawn perforations (3 sets ranging from 10,206'-10,294') were deemed non-productive due to depletion and three additional sets of perforations were opened. The added perforations were from 9,154'-9,164', 9,231'-9,236', and 9,388'-9,398'.

Jay Management Company, LLC was approved as the new Operator of Record by the NMOCD on October 29, 2008 and took over operation of the State OG SWD #2. Jay Management has applied to the NMOCD to seal off the existing perforations in the Pennsylvanian and recomplete the well as a SWD in the San Andres formation. The proposed perforations in the San Andres are listed in Table 1.

Table 1 State OG SWD #2 Proposed San Andres Perforations

Formation	Upper Interval	Lower Interval	
San Andres Formation	4,590'	4,595'	
San Andres Formation	4,638.5'	4,652'	
San Andres Formation	4,735'	4,750'	
San Andres Formation	4,780'	4,786'	
San Andres Formation	4,814'	4,820'	
San Andres Formation	4,825'	4,829'	

STATE OG SWD #2 ENGINEERING ANALYSIS

A review of the geology associated with the San Andres formation for the State OG SWD #2 according to information obtained from the USGS, indicates that the formation is continuous throughout the field and Lea County area. The San Andres is Permian in geologic age

and consists of laminated limestone/dolomite, sandstone, and shale beds. The formation also is interbedded in places by gypsum/evaporites and redbeds. Thus, all wellbores which penetrate the San Andres surrounding the State OG SWD #2 are probably in pressure communication.

As part of the application process, JMC has stated that an average 5,000 BWPD will be injected into the San Andres perforations with a stated maximum injection rate of 6,000 BWPD.

Syfan reviewed the logs associated with the San Andres formation in the State OG SWD #2 and analysis indicates the lithology in the injection intervals to be primarily limestone with porosities ranging from 6% - 20%. Local knowledge of the San Andres also provides that the porous limestone intervals are separated vertically by laminations of limestone/dolomite, sandstone, and shale and thus the likelihood of vertical communication with other zones is considered by Syfan to be extremely remote. The fresh water aquifer in this area is listed as the Ogallala found near 380' from surface. This aquifer would be protected from injection waters intended for the San Andres by the 13-3/8" and 5-5/8" casing strings, both of which were cemented back to surface. Schematics have been provided which identify all wells drilled within two (2) miles of the State OG SWD #2 location.

Offset P&A Well Analysis

As part of the Engineering Analysis performed on the area immediately surrounding the State OG SWD #2, Syfan looked six (6) wells Plugged and Abandoned (P&A) that are located within ½-mile of the well's location. These wells are listed in Table 2. According to the information received by Syfan on the wells in Table 2, all were P&A'd according to NMOCD regulations with multiple cement plugs set between the intermediate casing seat and the surface. These plugs should be more than adequate to prevent vertical migration and water contamination of the Ogallala aquifer.

Table 2
P&A Wells Located Within 1/2 -Mile of State OG SWD #2

Operator	Well Name	API No.	
Jay Management Company LLC	Collier #001	30-025-00994	
Chesapeake	State OG 1-9	30-025-30586	
LBO New Mexico Inc.	State OG #002	30-025-22329	
Pre-Ongard Well Operator	Southland Royalty C #001	30-025-22467	
Pre-Ongard Well Operator	Dwight A Tipton #001	30-025-22197	
Pre-Ongard Well Operator	Tipperary Oil & Gas #001	30-025-22068	

In addition, due to the blanket nature of the San Andres formation in the area surrounding the State OG SWD #2, pressure from injected waters should dissipate over a wide aerial extent, thus reducing the probability of creating a vertical fracture in the San Andres. The extremely laminated nature of the San Andres formation would also virtually eliminate the possibility of vertical communication not only with the Ogallala but also the Pennsylvanian, Strawn, and Morrow formations which have been deemed productive in the area.

Producing Well Analyses

Syfan studied five (5) wells located less than or equal to 1-mile distance and surrounding the State OG SWD #2. This was done to determine the possibility damaging the producing wells within 1-

mile of the Stage OG SWD #2 due to SWD into the San Andres formation. Analysis of the information provided by JMC, shown in Table 3, indicates that all five currently producing wells are completed in the zones within or below the Wolfcamp and Pennsylvanian formations. The uppermost reported perforations and the estimated geologic top of the Pennsylvanian is included in Table 3. As shown in the table, all five of the offset producing wells located within 1 mile are completed significantly deeper than the proposed San Andres injection zone and therefore, should be totally isolated from vertical communication.

Table 3
Producing Wells Within 1-Mile of State OG SWD #2

Operator	Well Name	API No.	Distance	Top of Prod. Formation.	Upper-Most Perforation
Jay Management	Gulf-Sohio State #001**	30-025-21194	<1/2 Mi.	8,744'	Unk
Jay Management	JFG Collier #001	30-025-22108	< 1.0 Mi	9,185'	9,192'
Jay Management	Shell State Com #001	30-025-22226	< 1.0 Mi	9,108'	9,882'
Jay Management	GS State #001	30-025-22811	< 1.0 Mi	8,492'	8,603'
EOG Y Resources	Quetsal AQA State #001	30-025-33460	< 1.0 Mi	10,840'	10,845

** Note: The Gulf-Sohio State #001 was originally completed in the Pennsylvanian below 9,400'. NMOCD records indicated on a Form C-102 that the well was producing from the Wolfcamp B formation. No Wolfcamp B perforations were found, but the top of the Wolfcamp was reported to be 8,744'.

Maximum Surface Injection Pressure

It will be necessary in any injection scenario to limit the maximum surface injection pressure as not to hydraulically fracture the injection formation. JMC reported the Fracture Gradient (FG) for the San Andres formation to be approximately 0.80-0.85 psi/ft. Eq. 1 is the formula used to calculate the Hydrostatic Head (HH) of the fluid column. Eq. 2 then uses the HH calculation to determine the MASIP.

Using a depth of 4,590' to the proposed top perforation and assuming a normal field saltwater weight of 8.8 lbs/gal, the calculated HH of the fluid column would be 2,100 psi. Since the FG reported for the San Andres is estimated, Syfan used a 10% Safety Factor from the lower value, which yields a FG equal to 0.72 psi/ft. Plugging these numbers into Eq. 2 yields a calculated BHFP of 3,305 psi.

The friction losses in the pipe are a function of the fluid type, viscosity, and injection rate and would be additive to the maximum allowable surface pressure. The Maximum Daily Injection Volume is estimated to be 6,000 BWPD which equals a 24-hour injection rate slightly less than 4.5 BPM. Using a pump rate of 4.5 BPM, saltwater friction losses in 2-7/8" tubing are estimated to be 110 psi per 1,000 ft of depth. Therefore, the estimated pipe friction pressure would be 505 psi. Solving for Eq. 2 yields a calculated MASIP of 1,710 psi.

Equation 1
Hydrostatic Head Calculation HH = (FW)(D)(0.052)

Equation 2 Maximum Allowable Surface Treating Pressure Calculation

$$SIP = BHFP - HH + \Delta P_P$$

Where: BHFP = Bottomhole Fracture Pressure, psi

D = Depth, ft

HH = Hydrostatic Head, psi 0.052 = Conversion Factor, dim FW = Fluid Weight, lbs/gal

SIP = Surface Injection Pressure, psi

 ΔP_p = Pipe Friction, psi

NOMENCLATURE

BPM Barrels per Minute
BWPD Barrels Water per Day
CIBP Cast Iron Bridge Plug
FG Fracture Gradient, psi/ft

Ft Feet

MASIP Maximum Allowable Surface Injection Pressure, psi

Psi pounds per square inch
P&A Plug and Abandonment
SWD Salt Water Disposal
TD Total Depth, ft

GENERAL

All data used in this study were obtained through verbal communication or written documents received from JMC, Denham Energy, and the non-confidential files of Syfan Engineering, LLC. A current field inspection of the properties was not made in connection with the preparation of this report. In addition, the potential environmental liabilities attendant to ownership and/or operation of the leases operated by Jay Management Company LLC has not been addressed in this report.

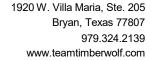
In evaluating the information at our disposal related to this report, we have excluded from our consideration all matters which require a legal or accounting interpretation or any interpretation other than those of an engineering or geologic nature. In assessing the conclusions expressed in this report pertaining to all aspects of petroleum engineering evaluations, especially pertaining to injection into the San Andres reservoir, there are uncertainties inherent in the interpretation of engineering data, and such conclusions represent only professional judgments.

Data and worksheets used in the preparation of this evaluation will be maintained in our files in Fort Worth, TX and will be available for inspection by anyone having proper authorization by IJMC.

This report was prepared solely for the use of the party to whom it is addressed and any disclosure by said party of this report and/or the contents thereof shall be solely the responsibility of said party and shall in no way constitute any representation of any kind whatsoever of the undersigned with respect to matters being addressed.

ENGINEERING DISCLAIMER

Interpretations, research, analysis, recommendations, advise or interpretational data ("Interpretations and Recommendations") furnished by Syfan Engineering, LLC ("Contractor") hereunder are opinions based upon inferences, from measurements, empirical relationships and assumptions, and industry practice, which inferences, assumptions and practices are not infallible, and with respect to which professional geologists, engineers, drilling consultants, and analysts may differ. Accordingly, Contractor does not warrant the accuracy, correctness, or completeness of any such Interpretations and Recommendations, or that Jay Management Company's ("Company") reliance and/or any third party's reliance on such Interpretations and Recommendations will accomplish any particular results. Company assumes full responsibility for the use of such Interpretations and Recommendations and for all decisions based thereon (including without limitation decisions based on any oil and gas evaluation, injection study, production forecasts, reservoir simulation studies, and reserve estimates, furnished by Contractor to Company hereunder), and hereby releases and indemnifies Contractor from any claims, damages, and losses arising out of the use of such Interpretations and Recommendations.


Without limiting the generality of the foregoing, Company acknowledges that the engineering analyses, injection analyses, production analyses, production forecasts, and/or reserve estimates furnished by Contractor are based strictly on technical judgments. The accuracy of any engineering analyses, injection analyses, production analyses, production forecasts, and/or reserve estimates are a function of the quality of data available and of engineering and geological interpretations. All engineering analyses, injection analyses, production analyses, production forecasts and reserve estimates furnished by Contractor are believed reasonable based on the data available to Contractor at the time of their generation. Company acknowledges that Contractor cannot and does not guarantee the accuracy of any such interpretations, forecasts, and/or estimates, and hereby releases and indemnifies Contractor from any claims, damages, and losses arising out of the use of any such analyses, interpretations, forecasts, and/or estimates. Company accepts and assumes the risks from the use of all such analyses, interpretations, forecasts, and/or estimates with the understanding that additional data received by Contractor and/or future reservoir performance subsequent to the date of any such interpretations, forecasts, and/or estimates may justify their revision, either up or down.

Syfan Engineering, LLC sincerely appreciates the opportunity to serve you and Jay Management Company. We look forward to the opportunity to work with you again in future. If you have any questions regarding the information contained in this report, please contact me at the address or phone numbers listed on this letterhead.

Best Regards,

Frank E. Syfan, Jr., PE

Registered Professional Engineer - TX 65255

October 23, 2018

Michael McMillan New Mexico Oil Conservation Division Engineering Bureau 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Re: Water Well Resources and Water Quality Report

G.S. State No. 1 Permit
Jay Management Company
Bagley North Oil Field, Lea County, New Mexico
Timberwolf Environmental Project No.: ISR-180051

Dear Mr. McMillan:

At the request of Jay Management Company (Jay Management), Timberwolf Environmental, LLC (Timberwolf) conducted a receptor survey and groundwater sampling event for the G.S. State No. 1 Permit (Site). The Site is located in the Bagley North Oil Field, approximately 20.3 miles northwest of Tatum, Lea County, New Mexico (Figure 1).

The New Mexico OCD requested two (2) water wells within a one-mile radius of the Site to be sampled and analyzed as part of the authorization to inject permit application. The receptor survey conducted by Timberwolf included a one-mile radius public records water well search and a one-mile radius ground reconnaissance. The well search and ground reconnaissance are documented below. The Site location is shown on the attached topographic map and aerial image (Figures 2 and 3).

Water Well Search

Timberwolf contracted with Banks Environmental Data ("Banks") to conduct a water well search within a one-mile radius from the Site. A copy of the Banks report is attached. Eleven (11) wells were identified in the public records search; results are summarized in Table 1 (below) and shown in Figure 4.

Table 1. Findings of Public Records Search - One-Mile Radius

Well Name	Well ID	GPS Coordinate*	Well Type	Status	Depth (ft)
Unnamed	1	33.37947° N / 103.63554° W	Development of Natural Resource	Sealed	130
Unnamed	2	33.37856° N / 103.63879° W	Development of Natural Resource	Plugged	105
Unnamed	3	33.37650° N / 103.63468° W	Agriculture	Active	130
Unnamed	4	33.38131° N / 103.62726° W	Other	Plugged	
Unnamed	5	33.37857° N / 103.62582° W	Development of Natural Resource	Sealed	115
Unnamed	6	33.38946° N / 103.63016° W	Development of Natural Resource	Active	75
Unnamed	7	33.37495° N / 103.62581° W	Development of Natural Resource	Plugged	90
Unnamed	8	33.38939° N / 103.62633° W	Other	Plugged	
Unnamed	9	33.37405° N / 103.62691° W	Development of Natural Resource	Plugged	100
Unnamed	10	33.37673° N / 103.62362° W	Development of Natural Resource	Plugged	80
Unnamed	11	33.38289° N / 103.61968° W	-	Active	

^{*}Coordinates in North America Datum (NAD) 83

Ground Reconnaissance

On 03/12/18, Timberwolf performed ground reconnaissance to identify potential water wells to sample within a one-mile radius of the Site as specified by the New Mexico Oil Conservation Division (NMOCD). Timberwolf identified six (6) water wells within a one-mile radius of the Site; two (2) water wells were welded shut (i.e. sealed), three (3) water wells were active and used for agriculture.

Findings of the ground reconnaissance are summarized in Table 2 and shown in Figure 4.

ft - feet

^{-- -} not applicable

Well Name	Well ID	GPS Coordinate*	Well Type	Status	Depth (ft)
Unnamed	1	33.37947° N / 103.63554° W	Rig Supply	Sealed	130
Unnamed	3	33.37650° N / 103.63468° W	Agriculture	Active	130
Unnamed	5	33.37857° N / 103.62582° W	Rig Supply	Sealed	115
Unnamed	6	33.38946° N / 103.63016° W	Agriculture	Active	75
Unnamed	11	33 38289° N / 103 61968° W	Agriculture	Active	

Table 2. Findings of Ground Reconnaissance - One-Mile Radius

No other active or plugged water wells within a one-mile radius of the Site were located during the ground reconnaissance. These wells are presumed to be plugged and abandoned or geographically misrepresented in the public records.

Collection and Analysis of Water Well No. 3

Timberwolf collected a groundwater sample from one (1) water well within a one-mile radius of the Site. No other water wells were sampled due to: the inability to sample wells without dismantling surface equipment.

Timberwolf sampled the water well identified in Tables 1 and 2 and Figure 4 as Water Well No. 3. The well is equipped with a windmill and pump. The sample was collected directly out of the discharge pipe while the windmill was actively producing water.

The sample was collected directly into laboratory provided containers and submitted for laboratory analysis, including: total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); total dissolved solids (TDS); electrical conductivity (EC); pH; Resource Conservation Recovery Act (RCRA) 8 metals (arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury); cations, (calcium, magnesium, sodium, potassium); anions (chloride, sulfate, carbonate, and bicarbonate). Analytical methods are documented on the attached laboratory report. Analytical results are summarized in the attached table.

Conclusions

Public records were reviewed to identify water wells in the vicinity of the Site. The review revealed:

• Eleven (11) water wells within a one-mile radius of the Site

The one-mile ground reconnaissance identified the following:

- Two (2) sealed water wells
- Three (3) active agriculture water wells, three of which were completed into cattle troughs and inaccessible
- Six (6) plugged and abandoned water wells

^{*}Coordinates in North America Datum (NAD) 83

^{-- -} not applicable

ft - feet

Analytical results of groundwater collected from the Water Well No. 3 revealed:

- Concentrations of petroleum hydrocarbons (i.e., TPH, BTEX) were below EPA or NMOCD criteria
- Concentrations of RCRA 8 metals were below EPA primary drinking water standards
- Concentrations of TDS exceeded EPA secondary drinking water standards, however:
 - Concentrations of chloride were below EPA criteria
 - o Concentrations of sulfate were below EPA criteria
- Groundwater from Water Well No. 3 is considered fresh and suitable for human consumption

Analytical results are shown in the attached Table B-2 and in the attached laboratory report.

If you have any questions regarding this letter please do not hesitate to contact us.

Sincerely,

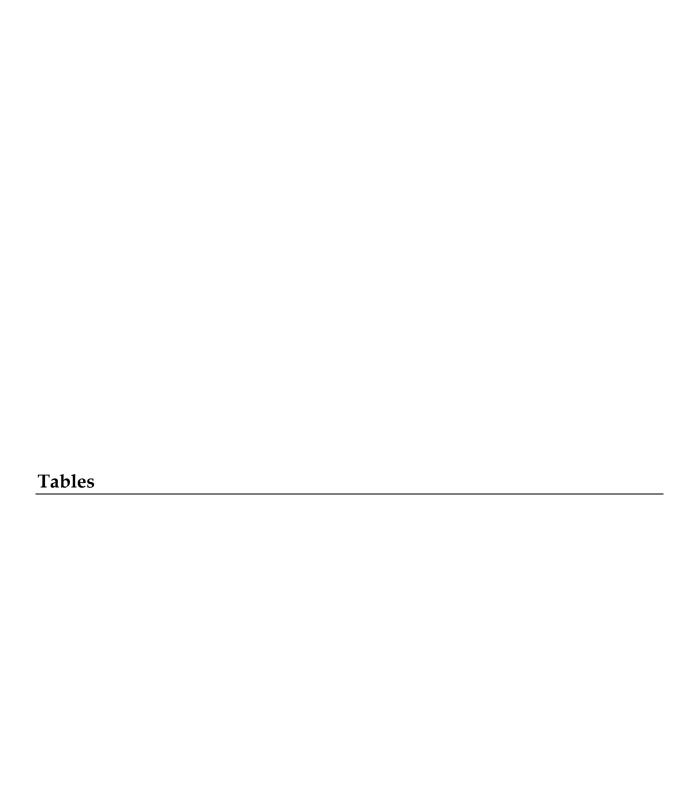
Timberwolf Environmental, LLC

Morgan Vizi

Project Scientist

Jim Foster President

Attachments: Figures


Banks Water Well Report

Laboratory Report

Cc: Amir S

Amir Sanker, Jay Management Company

Table B-2. Fresh Water Sample Results G.S. State No. 001 Permit

Jay Management Company Bagley North Oil Field, Lea County, New Mexico

							Anions				Cations			General Water Quality			Dissolved Metals								
Sample ID	Sample	TPH	Volatile Organic Compounds (mg/L)					(mg	g/L)			(m	g/L)		Р	arameters			(mg/L)						
	Date	(mg/L)									CI	CI SO ₄ CO ₃ BiCarb		DiCorb.	No	Ca	Ma		pН	pH Sp. Cond. TDS As Ba Cd Cr Pb Se A				۸۰۰	Hg
			В	Т	E	Х	Ci	304	CO3	ысагы	Na	Na Ca Mig K		S.U.	mmhos/cm	mg/L	AS	Da	Cu	Cr	PD	36	Ag	пg	
3 G.S. State	03/13/18	< 0.71	< 0.00018	< 0.00020	< 0.00020	< 0.00037	120	130	< 20	130	41 ^B	110	14	2.1	7.7 ^{HF}	860	690	0.0055 ^J	0.06	< 0.00028	< 0.0016	< 0.0022	0.0071 ^J	< 0.0013	< 0.000082
Regulatory	Limits		0.01 ³	0.75 ³	0.75 ³	0.62 ³	250 ²	250 ²				-			6.5 - 8.5 ²		500 ²	0.01 ¹	2.0 ¹	0.005 ¹	0.1 ¹	0.015 ¹	0.05 ¹	0.10 ²	0.002 ¹

¹ EPA Pri	imary Drinking	g Water Standards	
----------------------	----------------	-------------------	--

² EPA Secondary Drinking Water Standards

3 NMOCD standards from Title 20 NMAC § 6.2

J - analyte detected below quantation limit

^H - sample prepped or analyzed beyond specified holding time

b - analyte detected in blank

mg/L - milligrams per liter

-- - no applicable limit

s.u. - Standard units Sp. Cond. - Specific conductance

mmhos/cm - millimhos per centimeter

ohm-m - ohms per meter

TDS - total dissolved solids TSS - total suspended solids

NTU - Nephelometric turbidity unit
- concentration exceeds recommended action level

Ca

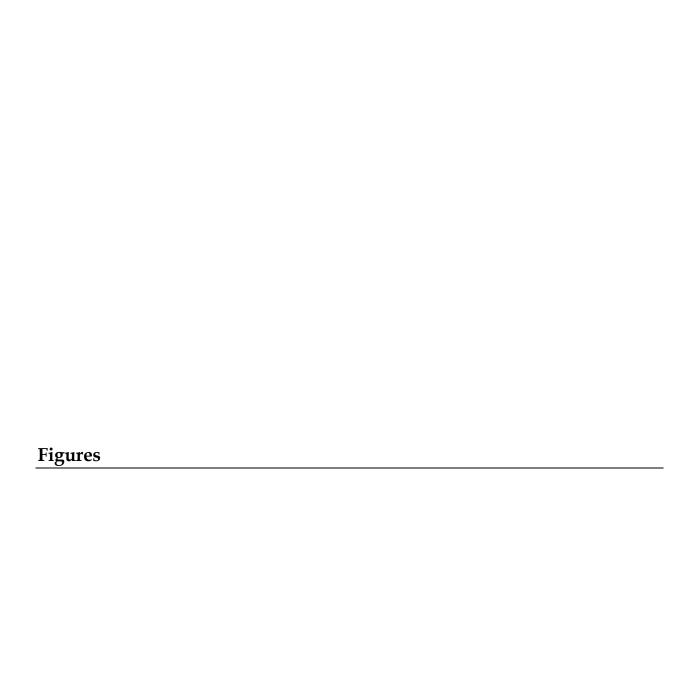
 SO₄ - Sulfate
 Cd - cadmium

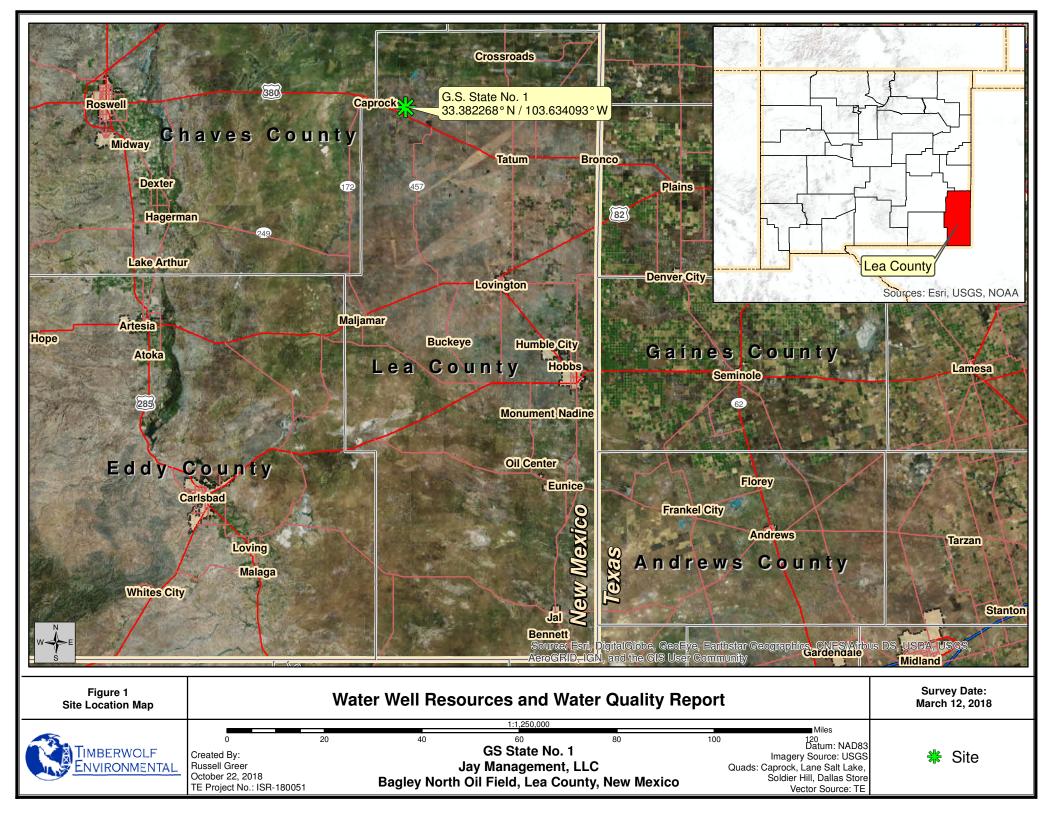
 CO₃ - Carbonate
 Cr - chromium

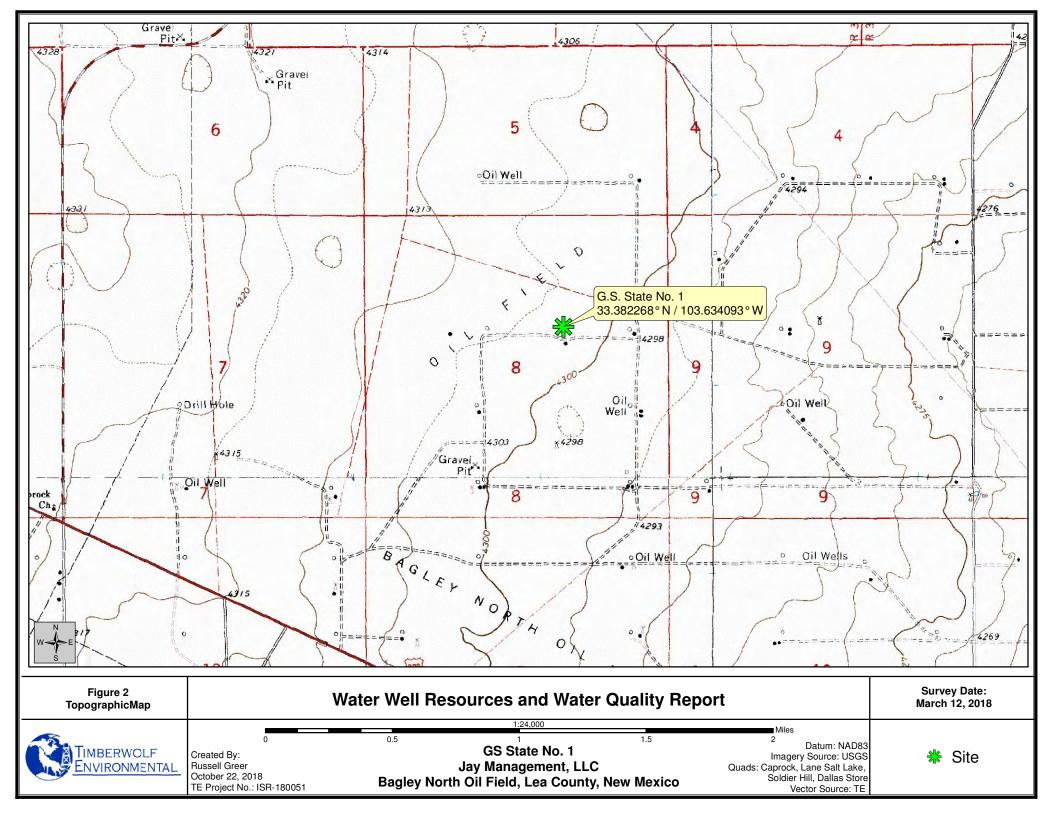
 BiCarb - Bicarbonate
 Pb - lead

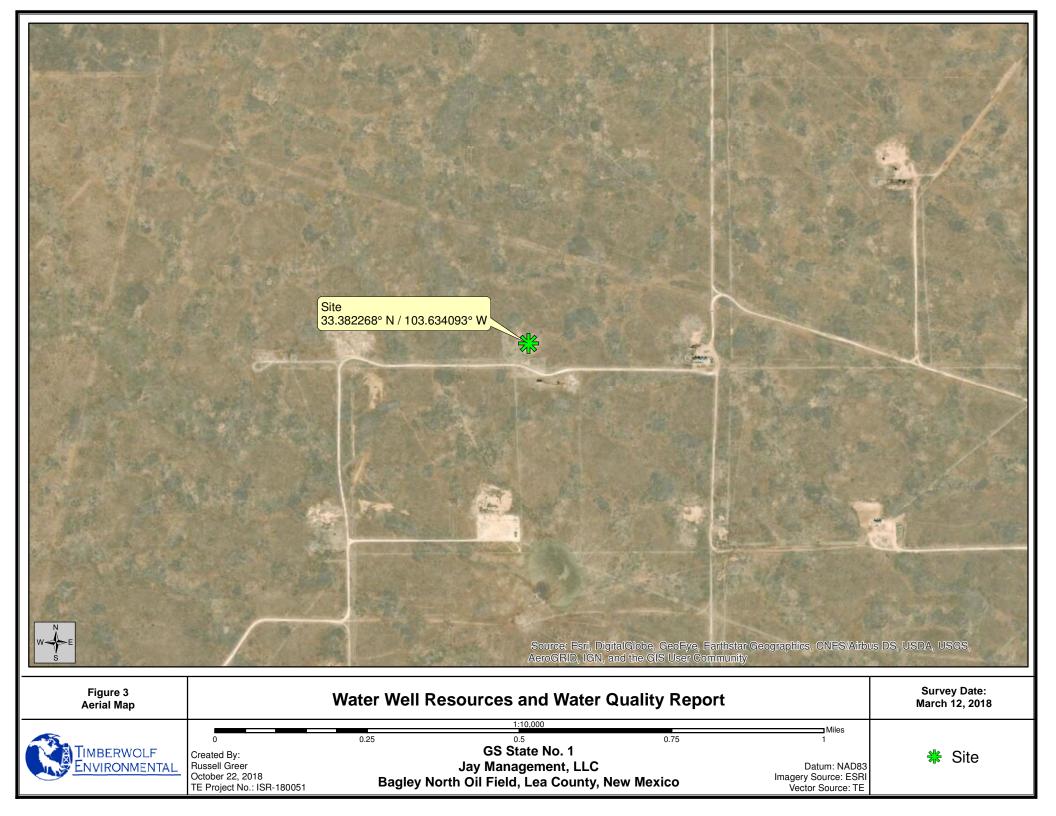
 Na - Sodium
 Se - selenium

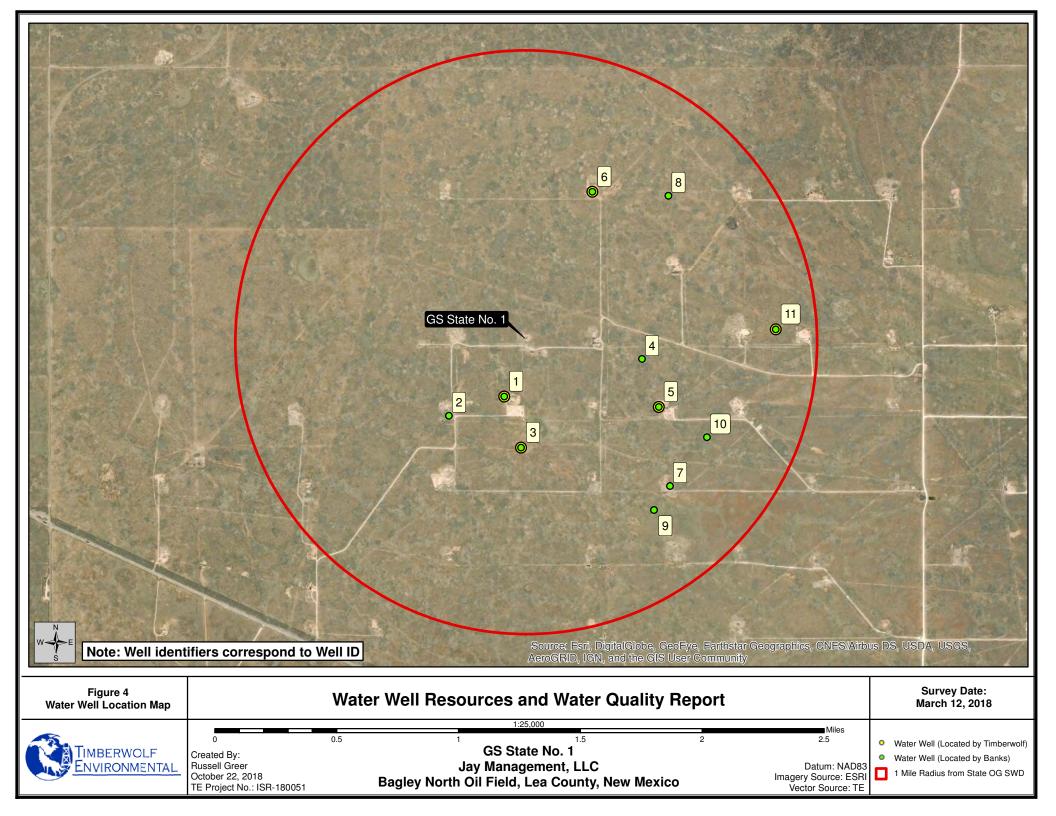
Ca - Calcium Mg - Magnesium


CO₂ - carbon dioxide


CI - Chloride


Ag - silver Hg - mercury


As - arsenic


Ba - barium



Prepared for:

TIMBERWOLF ENVIRONMENTAL 1920 West Villa maria Road, STE 305-2 Bryan, TX 77507

Water Well NM Report ES-129325 Thursday, October 18, 2018

Table of Contents

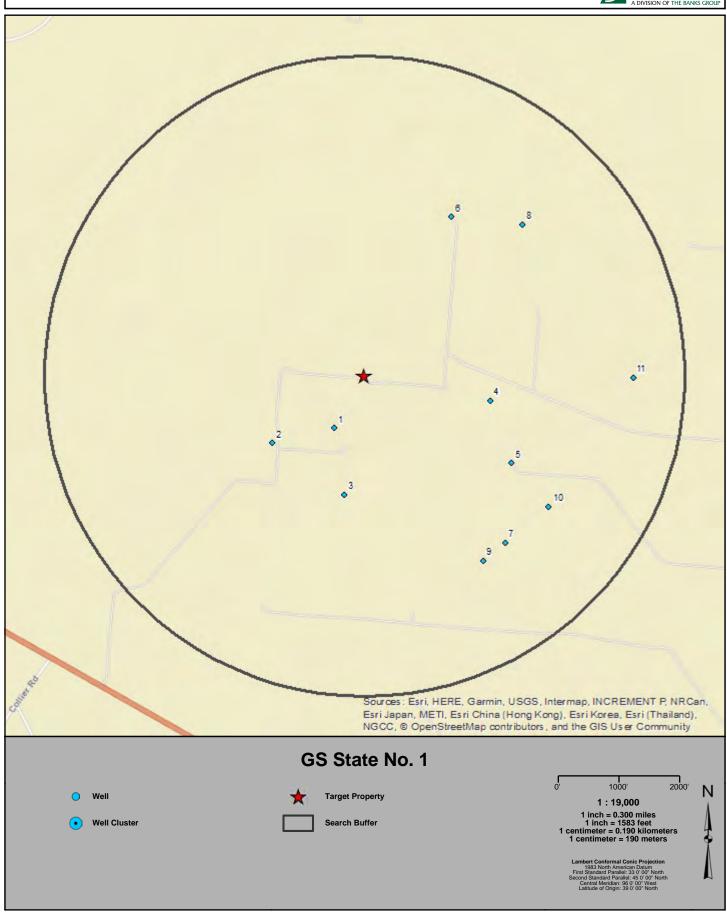
Geographic Summary	3
Maps	
Summary Map - 1 Mile Radius	4
Topographic Overlay Map - 1 Mile Radius	5
Current Imagery Overlay Map - 1 Mile Radius	6
Water Well Details	7
Database Definitions and Sources	8
Disclaimer	9

Geographic Summary

Location		

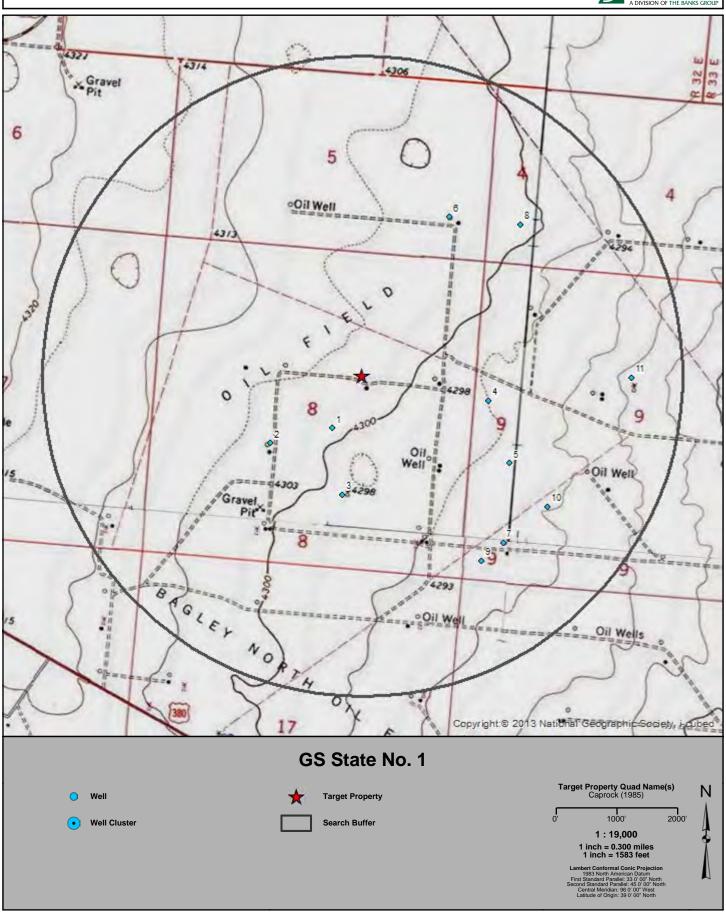
NM

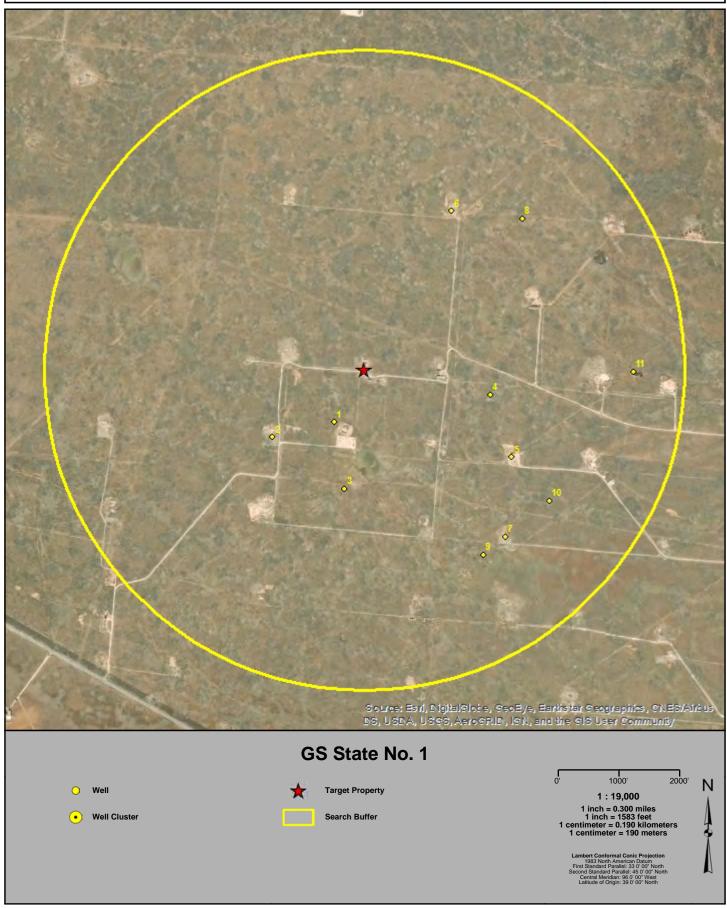
Coordinates		
Longitude & Latitude in Degrees Minutes Seconds	-103° 38′ 3″, 33° 22′ 55″	
Longitude & Latitude in Decimal Degrees	-103.634155°, 33.38195°	
X and Y in UTM	627043.72, 3694464.57 (Zone 13)	


Elevation	
NA	

Zip Codes Searched	
Search Distance	Zip Codes (historical zip codes included)
Target Property	88213, 88114, 88116, 88201, 88230, 88232, 88260, 88267
1 mile	88213, 88114, 88116, 88201, 88230, 88232, 88260, 88267

Topos Searched	
Search Distance	Topo Name
Target Property	Caprock (1985)
1 mile	Caprock (1985), Soldier Hill (1985), Lane Salt Lake (1985), Dallas Store (1985)


Summary Map - 1 Mile Radius


Topographic Overlay Map - 1 Mile Radius

Current Imagery Overlay Map - 1 Mile Radius

Water Well Details

Map ID	Source ID	Dataset	Owner of Well	Type of Well	Depth Drilled	Completion Date	Longitude	Latitude	Elevation	Driller's Logs
1	L-10567	NM WW	YATES PETROLEUM	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	130	6/3/1996	-103.635535	33.379471	NA	N/A
2	L-06249	NM WW	M G F DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	105	12/24/1967	-103.638785	33.37856	NA	N/A
3	USGS- 332217103 375701	WW USGS	USGS	Not Reported	130	N/A	-103.634677	33.376496	NA	N/A
4	L-14417- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.627259	33.381305	NA	N/A
5	L-10225	NM WW	NORTON DRILLING	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	115	10/14/1991	-103.62582	33.37857	NA	N/A
6	L-12920- POD1	NM WW	MCVAY DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	75	5/18/1967	-103.630164	33.389459	NA	N/A
7	L-06235	NM WW	CACTUS DRILLING CORP	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	90	11/6/1967	-103.625813	33.374945	NA	N/A
8	L-14416- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.626328	33.389386	NA	N/A
9	L-06242	NM WW	SHARP DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	100	11/13/1967	-103.626913	33.374046	NA	N/A
10	L-06139	NM WW	FORSTER DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	80	5/5/1967	-103.623624	33.376733	NA	N/A
11	USGS- 332252103 370401	WW USGS	USGS	Not Reported	0	N/A	-103.619676	33.382885	NA	N/A

Well Summary

Water Well Dataset	# of Wells
NM WW	9
WW USGS	2
Total Count	11

Dataset Descriptions and Sources

Dataset	Source	Dataset Description	Update Schedule	Data Requested	Data Obtained	Data Updated	Source Updated
NM WW - New Mexico Water Wells	New Mexico Office of the State Engineer	This WATERS dataset contains all groundwater records and water rights applications compiled by New Mexico Office of the State Engineer (OSE). OSE is in the process of digitizing all records, all wells have not yet been plotted.	Quarterly	10/17/2018	10/17/2018	10/18/2018	04/01/2018
NM WW HIST - New Mexico Historical Water Wells	New Mexico Office of the State Engineer	This dataset contains all groundwater records found at the New Mexico Office of the State Engineer Water Rights Division district office. Groundwater rights are administered and filed at the district level: Albuquerque (District I), Roswell (District II),		N/A	N/A	N/A	N/A
WW USGS - USGS Water Wells	U.S. Geological Survey	This dataset contains groundwater well records from the U.S. Geological Survey.	Semi- annually	06/06/2018	06/06/2018	06/10/2018	06/06/2018

Disclaimer

The Banks Environmental Data Water Well Report was prepared from existing state water well databases and/or additional file data/records research conducted at the state agency and the U.S. Geological Survey. Banks Environmental Data has performed a thorough and diligent search of all groundwater well information provided and recorded. All mapped locations are based on information obtained from the source. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or the actual driller. It may be possible that some water well schedules and logs have never been submitted to the regulatory authority by the water driller and, thus, may explain the possible unaccountability of privately drilled wells. It is uncertain if the above listing provides 100% of the existing wells within the area of review. Therefore, Banks Environmental Data cannot fully guarantee the accuracy of the data or well location(s) of those maps and records maintained by the regulatory authorities.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Houston 6310 Rothway Street Houston, TX 77040 Tel: (713)690-4444

TestAmerica Job ID: 600-162845-1

Client Project/Site: 180006 - State OG SWD

Revision: 1

For:

Timberwolf Environmental LLC 1920 W. Vill Maria Suite 305-2 Box 205 Bryan, Texas 77807

Attn: Accounts Payable

Dean a Jonen

Authorized for release by: 10/22/2018 3:19:08 PM

Dean Joiner, Project Manager II (713)690-4444 dean.joiner@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions/Glossary	8
Surrogate Summary	9
QC Sample Results	10
Default Detection Limits	16
QC Association Summary	17
Lab Chronicle	20
Certification Summary	21
Chain of Custody	22
Receipt Checklists	24

3

4

6

Ω

9

11

12

14

15

Case Narrative

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

TestAmerica Job ID: 600-162845-1

Job ID: 600-162845-1

Laboratory: TestAmerica Houston

Narrative

Job Narrative 600-162845-1

Comments

This report was revised on 10-22-18 updating the client sample id for TA sample # 600-162845-1 as requested by the client via e-mail.

Receipt

The samples were received on 3/14/2018 9:23 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method(s) 6010B: The serial dilution performed for the following sample associated with batch 234414 was outside control limits for Potassium at 20% recovery: (600-162845-A-1-E SD)

Method(s) 6010B: The method blank for Prep Batch 234286 contained Sodium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Industrial Hygiene

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

_

6

7

10

12

13

4 [

TestAmerica Houston 10/22/2018 (Rev. 1)

Method Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

TestAmerica Job ID: 600-162845-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL HOU
TX 1005	Texas - Total Petroleum Hydrocarbon (GC)	TCEQ	TAL HOU
300.0	Anions, Ion Chromatography	MCAWW	TAL HOU
6010B	Inductively Coupled Plasma - Atomic Emission Spectrometry	SW846	TAL HOU
7470A	Mercury in Liquid Waste (Manual Cold Vapor Technique)	SW846	TAL HOU
2320B-1997	Alkalinity, Total - SM Online, 2011	SM-Online	TAL HOU
9040B	рН	SW846	TAL HOU
9050A	Conductivity, Specific Conductance	SW846	TAL HOU
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL HOU
3010A	Acid Digestion of Aqueous Samples and Extracts for Total Metals	SW846	TAL HOU
5030B	Purge and Trap	SW846	TAL HOU
7470A	Mercury in Liquid Waste (Manual Cold Vapor Technique)/Preparation	SW846	TAL HOU
FILTRATION	Sample Filtration	None	TAL HOU
TX 1005 W Prep	Extraction - Texas Total petroleum Hyrdocarbons	TCEQ	TAL HOU

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM-Online = Standard Methods Online

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TCEQ = Texas Commission of Environmental Quality

Laboratory References:

TAL HOU = TestAmerica Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

3

4

5

9

10

12

13

14

15

Sample Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

TestAmerica Job ID: 600-162845-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
600-162845-1	G.S. State 3 WW	Water	03/13/18 08:40	03/14/18 09:23
600-162845-2	State NBN 7 WW	Water	03/13/18 09:00	03/14/18 09:23

4

0

8

10

11

13

14

15

TestAmerica Job ID: 600-162845-1

Client: Timberwolf Environmental LLC

Project/Site: 180006 - State OG SWD

Client Sample ID: G.S. State 3 WW

Date Collected: 03/13/18 08:40 Date Received: 03/14/18 09:23

Lab Sample ID: 600-162845-1

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00018	U	0.0010	0.00018	mg/L			03/15/18 15:34	1
Ethylbenzene	0.00021	U	0.0010	0.00021	mg/L			03/15/18 15:34	1
Toluene	0.00020	U	0.0010	0.00020	mg/L			03/15/18 15:34	1
Xylenes, Total	0.00037	U	0.0020	0.00037	mg/L			03/15/18 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		50 - 134					03/15/18 15:34	1
Dibromofluoromethane	115		62 - 130					03/15/18 15:34	1
Toluene-d8 (Surr)	118		70 - 130					03/15/18 15:34	1
4-Bromofluorobenzene	119		67 - 139					03/15/18 15:34	

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12	0.71	U	1.7	0.71	mg/L		03/16/18 11:02	03/17/18 00:04	1
>C12-C28	0.82	U	1.7	0.82	mg/L		03/16/18 11:02	03/17/18 00:04	1
>C28-C35	0.82	U	1.7	0.82	mg/L		03/16/18 11:02	03/17/18 00:04	1
C6-C35	0.71	U	1.7	0.71	mg/L		03/16/18 11:02	03/17/18 00:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90	-	70 - 130				03/16/18 11:02	03/17/18 00:04	1

Method: 300.0 - Anions, Ion Chromatography									
Analyte	Result Qua	alifier MQL (Adj)	SDL U	Jnit D	Prepared	Analyzed	Dil Fac		
Chloride	120	10	1.3 m	ng/L	-	03/16/18 14:12	25		
Sulfate	130	13	2.4 m	ng/L		03/16/18 14:12	25		

Analyte	•	Qualifier	mic Emissio MQL (Adj)	•	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0055	J	0.010	0.0029	mg/L		03/19/18 13:06	03/20/18 12:30	1
Barium	0.060		0.020	0.00053	mg/L		03/19/18 13:06	03/20/18 12:30	1
Cadmium	0.00028	U	0.0050	0.00028	mg/L		03/19/18 13:06	03/20/18 12:30	1
Calcium	110		1.0	0.024	mg/L		03/19/18 13:06	03/20/18 12:30	1
Chromium	0.0016	U	0.010	0.0016	mg/L		03/19/18 13:06	03/20/18 12:30	1
Lead	0.0022	U	0.010	0.0022	mg/L		03/19/18 13:06	03/20/18 12:30	1
Magnesium	14		1.0	0.056	mg/L		03/19/18 13:06	03/20/18 12:30	1
Potassium	2.1		1.0	0.037	mg/L		03/19/18 13:06	03/20/18 12:30	1
Selenium	0.0071	J	0.040	0.0029	mg/L		03/19/18 13:06	03/20/18 12:30	1
Silver	0.0013	U	0.010	0.0013	mg/L		03/19/18 13:06	03/20/18 12:30	1
Sodium	41	В	1.0	0.021	mg/L		03/19/18 13:06	03/20/18 14:29	1

Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique) - Dissolved										
	Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.000082	U	0.00020	0.000082	mg/L		03/19/18 11:46	03/19/18 14:20	1
	General Chemistry									

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	130	-	20	20	mg/L			03/19/18 14:26	1
Carbonate Alkalinity as CaCO3	20	U	20	20	mg/L			03/19/18 14:26	1
pH	7.7	HF	0.01	0.01	SU			03/19/18 12:49	1
Specific Conductance	860		2.0	2.0	umhos/cm			03/19/18 15:45	1
Total Dissolved Solids	690		10	10	mg/L			03/15/18 15:09	1

TestAmerica Houston

Client Sample Results

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Date Collected: 03/13/18 09:00

Date Received: 03/14/18 09:23

Client Sample ID: State NBN 7 WW

TestAmerica Job ID: 600-162845-1

Lab Sample ID: 600-162845-2

Matrice Matrice Matrice

Matrix: Water

Method: 8260B - Volatile C	Organic Compo	unds (GC	/MS)						
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00018	U	0.0010	0.00018	mg/L			03/15/18 15:58	1
Ethylbenzene	0.00021	U	0.0010	0.00021	mg/L			03/15/18 15:58	1
Toluene	0.00020	U	0.0010	0.00020	mg/L			03/15/18 15:58	1
Xylenes, Total	0.00037	U	0.0020	0.00037	mg/L			03/15/18 15:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		50 - 134			•		03/15/18 15:58	1
Dibromofluoromethane	107		62 - 130					03/15/18 15:58	1
Toluene-d8 (Surr)	119		70 - 130					03/15/18 15:58	1

Toluene-d8 (Surr)	119		70 - 130					03/15/18 15:58	1
4-Bromofluorobenzene	122		67 - 139					03/15/18 15:58	1
Method: TX 1005 - Texas - 1	Fotal Petroleui	m Hvdroc	arbon (GC)						
Analyte		Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12	0.74	U	1.8	0.74	mg/L		03/16/18 11:02	03/17/18 00:37	1
>C12-C28	0.86	U	1.8	0.86	mg/L		03/16/18 11:02	03/17/18 00:37	1
>C28-C35	0.86	U	1.8	0.86	mg/L		03/16/18 11:02	03/17/18 00:37	1
C6-C35	0.74	U	1.8	0.74	mg/L		03/16/18 11:02	03/17/18 00:37	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analy	yzed Dil Fac
o-Terphenyl	96		70 - 130	03/16/18 11:02 03/17/18	3 00:37 1
Mothod: 300 0 - Anions Jon Ch	romatograj	ohv			

method: 300.0 - Anions, ion Chromatography									
Analyte	Result Qualifier	MQL (Adj)	SDL Unit	D Prepared	Analyzed	Dil Fac			
Chloride	51	10	1.3 mg/L	<u></u>	03/16/18 14:48	25			
Sulfate	200	13	2.4 mg/L		03/16/18 14:48	25			

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved									
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0052	J	0.010	0.0029	mg/L		03/19/18 13:06	03/20/18 12:36	1
Barium	0.031		0.020	0.00053	mg/L		03/19/18 13:06	03/20/18 12:36	1
Cadmium	0.00028	U	0.0050	0.00028	mg/L		03/19/18 13:06	03/20/18 12:36	1
Calcium	94		1.0	0.024	mg/L		03/19/18 13:06	03/20/18 12:36	1
Chromium	0.0016	U	0.010	0.0016	mg/L		03/19/18 13:06	03/20/18 12:36	1
Lead	0.0022	U	0.010	0.0022	mg/L		03/19/18 13:06	03/20/18 12:36	1
Magnesium	13		1.0	0.056	mg/L		03/19/18 13:06	03/20/18 12:36	1
Potassium	2.6		1.0	0.037	mg/L		03/19/18 13:06	03/20/18 12:36	1
Selenium	0.0048	J	0.040	0.0029	mg/L		03/19/18 13:06	03/20/18 12:36	1
Silver	0.0013	U	0.010	0.0013	mg/L		03/19/18 13:06	03/20/18 12:36	1
Sodium	64	В	1.0	0.021	mg/L		03/19/18 13:06	03/20/18 14:42	1

Method: 7470A - Mercury in Li	quid Waste	(Manual C	Cold Vapor	Technique	e) - Dis	solved			
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000082	U	0.00020	0.000082	mg/L		03/19/18 12:45	03/19/18 14:26	1

General Chemistry Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	160		20	20	mg/L			03/19/18 14:33	1
Carbonate Alkalinity as CaCO3	20	U	20	20	mg/L			03/19/18 14:33	1
pH	7.9	HF	0.01	0.01	SU			03/19/18 12:56	1
Specific Conductance	850		2.0	2.0	umhos/cm			03/19/18 15:45	1
Total Dissolved Solids	650		10	10	mg/L			03/15/18 15:09	1

TestAmerica Houston

2

5

9

4 4

12

14

1 E

Definitions/Glossary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD TestAmerica Job ID: 600-162845-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

IJ Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

Ū Indicates the analyte was analyzed for but not detected.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

В Compound was found in the blank and sample.

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the

absolute difference is less than the RL.

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly	used abbreviations ma	y or may not be	present in this report.
Abbieviation	THESE COMMISSION	, useu abbievialions ma	y or may not be	present in this repor

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dilution Factor Dil Fac

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RI

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Houston

Page 8 of 24

10/22/2018 (Rev. 1)

TestAmerica Job ID: 600-162845-1

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	DBFM	TOL	BFB
Lab Sample ID	Client Sample ID	(50-134)	(62-130)	(70-130)	(67-139)
600-162845-1	G.S. State 3 WW	119	115	118	119
600-162845-2	State NBN 7 WW	119	107	119	122
LCS 600-234104/3	Lab Control Sample	123	110	112	120
LCSD 600-234104/4	Lab Control Sample Dup	127	111	112	120
MB 600-234104/6	Method Blank	115	109	117	116
Surrogato Logond					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Water Prep Type: Total/NA

-			
			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(70-130)	
600-162845-1	G.S. State 3 WW	90	
600-162845-2	State NBN 7 WW	96	
LCS 600-234200/2-A	Lab Control Sample	98	
LCSD 600-234200/3-A	Lab Control Sample Dup	95	
MB 600-234200/1-A	Method Blank	93	
Surrogate Legend			
OTPH = o-Terphenyl			

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 600-234104/6

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 234104

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier MQL (Adj) SDL Unit Prepared Analyzed Dil Fac 0.00018 mg/L 0.00018 U 0.0010 03/15/18 13:04 0.00021 U 0.0010 0.00021 mg/L 03/15/18 13:04 0.00020 U 0.0010 0.00020 mg/L 03/15/18 13:04 0.00037 U 0.0020 0.00037 mg/L 03/15/18 13:04

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 1,2-Dichloroethane-d4 (Surr) 50 - 134 03/15/18 13:04 115 Dibromofluoromethane 109 62 - 130 03/15/18 13:04 Toluene-d8 (Surr) 117 70 - 130 03/15/18 13:04 4-Bromofluorobenzene 116 67 - 139 03/15/18 13:04

Lab Sample ID: LCS 600-234104/3

Matrix: Water

Analysis Batch: 234104

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Benzene 0.0100 0.0120 mg/L 120 70 - 130 Ethylbenzene 0.0100 0.0124 mg/L 124 70 - 130 Toluene 0.0100 0.0123 mg/L 123 70 - 130 0.0200 Xylenes, Total 0.0249 mg/L 125 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	123		50 - 134
Dibromofluoromethane	110		62 - 130
Toluene-d8 (Surr)	112		70 - 130
4-Bromofluorobenzene	120		67 - 139

Lab Sample ID: LCSD 600-234104/4

Matrix: Water

Analysis Batch: 234104

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD LCSD				%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0100	0.0118	mg/L		118	70 - 130	2	20
Ethylbenzene	0.0100	0.0122	mg/L		122	70 - 130	2	20
Toluene	0.0100	0.0120	mg/L		120	70 - 130	3	20
Xylenes, Total	0.0200	0.0244	mg/L		122	70 - 130	2	20

LCSD LCSD

	LOOD	LUUD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	127		50 - 134
Dibromofluoromethane	111		62 - 130
Toluene-d8 (Surr)	112		70 - 130
4-Bromofluorobenzene	120		67 - 139

TestAmerica Houston

TestAmerica Job ID: 600-162845-1

Prep Batch: 234200

Client Sample ID: Lab Control Sample Dup

Client: Timberwolf Environmental LLC

Project/Site: 180006 - State OG SWD

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Lab Sample ID: MB 600-234200/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 234211 Prep Batch: 234200 MB MB

Analyte Result Qualifier MQL (Adj) SDL Unit Prepared Analyzed Dil Fac C6-C12 0.83 U 0.83 mg/L 03/16/18 11:02 03/16/18 22:27 2.0 >C12-C28 0.96 U 2.0 03/16/18 11:02 03/16/18 22:27 0.96 mg/L >C28-C35 0.96 U 2.0 0.96 mg/L 03/16/18 11:02 03/16/18 22:27 C6-C35 0.83 U 2.0 0.83 mg/L 03/16/18 11:02 03/16/18 22:27

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 70 - 130 93 03/16/18 11:02 03/16/18 22:27 o-Terphenyl

Lab Sample ID: LCS 600-234200/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 234211

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C12		33.3	27.3		mg/L		82	75 - 125	
>C12-C28		33.3	35.7		mg/L		107	75 - 125	
C6-C35		66.7	63.0		mg/L		95	75 - 125	
	LCS LCS								

Surrogate %Recovery Qualifier Limits o-Terphenyl 70 - 130 98

Lab Sample ID: LCSD 600-234200/3-A

Matrix: Water Analysis Batch: 234211								Prep Type: Total/NA Prep Batch: 234200		
		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C12		33.3	26.6		mg/L		80	75 - 125	2	20
>C12-C28		33.3	36.3		mg/L		109	75 - 125	2	20
C6-C35		66.7	62.9		mg/L		94	75 - 125	0	20
	LCSD LCSD									

%Recovery Qualifier Limits Surrogate o-Terphenyl 95 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 600-234198/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 234198

-	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.053	U	0.40	0.053	mg/L			03/16/18 12:24	1
Sulfate	0.096	U	0.50	0.096	mg/L			03/16/18 12:24	1

TestAmerica Houston

Client Sample ID: Lab Control Sample

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 600-234198/5

Matrix: Water Analysis Batch: 234198

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	20.0	19.1		mg/L		96	90 - 110	
Sulfate	20.0	19.7		mg/L		98	90 - 110	

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry

Lab Sample ID: MB 600-234286/1-C

Matrix: Water

Analysis Batch: 2344

600-234286/1-C	Client Sample ID: Method Blank
	Prep Type: Dissolved
1414	Prep Batch: 234323
MD MD	· · · · · · · · · · · · · · · · · · ·

-	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0029	U	0.010	0.0029	mg/L		03/19/18 13:06	03/20/18 12:26	1
Barium	0.00053	U	0.020	0.00053	mg/L		03/19/18 13:06	03/20/18 12:26	1
Cadmium	0.00028	U	0.0050	0.00028	mg/L		03/19/18 13:06	03/20/18 12:26	1
Calcium	0.024	U	1.0	0.024	mg/L		03/19/18 13:06	03/20/18 12:26	1
Chromium	0.0016	U	0.010	0.0016	mg/L		03/19/18 13:06	03/20/18 12:26	1
Lead	0.0022	U	0.010	0.0022	mg/L		03/19/18 13:06	03/20/18 12:26	1
Magnesium	0.056	U	1.0	0.056	mg/L		03/19/18 13:06	03/20/18 12:26	1
Potassium	0.037	U	1.0	0.037	mg/L		03/19/18 13:06	03/20/18 12:26	1
Selenium	0.0029	U	0.040	0.0029	mg/L		03/19/18 13:06	03/20/18 12:26	1
Silver	0.0013	U	0.010	0.0013	mg/L		03/19/18 13:06	03/20/18 12:26	1

Lab Sample ID: MB 600-234286/1-C Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 234414

	MB	MR							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	0.0928	J	1.0	0.021	mg/L		03/19/18 13:06	03/20/18 14:25	1

Lab Sample ID: LCS 600-234286/2-B **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved**

Analysis Batch: 234414	Spike	LCS	LCS				Prep Batch: 234323 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	1.01		mg/L		101	80 - 120
Barium	1.00	1.00		mg/L		100	80 - 120
Cadmium	0.500	0.504		mg/L		101	80 - 120
Calcium	10.0	9.83		mg/L		98	80 - 120
Chromium	1.00	0.992		mg/L		99	80 - 120
Lead	1.00	0.991		mg/L		99	80 - 120
Magnesium	10.0	9.91		mg/L		99	80 - 120
Potassium	10.0	9.96		mg/L		100	80 - 120
Selenium	1.00	1.01		mg/L		101	80 - 120
Silver	0.500	0.500		mg/L		100	80 - 120

10/22/2018 (Rev. 1)

Prep Batch: 234323

75 - 125

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Silver

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry (Continued)

Lab Sample ID: LCS 600-234286/2-B		Client Sample ID: Lab Control Sample							
Matrix: Water							Prep Type: Dissolved		
Analysis Batch: 234414							Prep Batch: 234323		
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sodium	10.0	9.99		mg/L		100	80 - 120		

Lab Sample ID: 600-162845 Matrix: Water Analysis Batch: 234414							Client		e ID: G.S. State 3 WW Prep Type: Dissolved Prep Batch: 234323
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.0055	J	1.00	1.04		mg/L		103	75 - 125
Barium	0.060		1.00	1.06		mg/L		100	75 - 125
Cadmium	0.00028	U	0.500	0.515		mg/L		103	75 - 125
Calcium	110		10.0	117	4	mg/L		111	75 - 125
Chromium	0.0016	U	1.00	0.980		mg/L		98	75 - 125
Lead	0.0022	U	1.00	0.992		mg/L		99	75 - 125
Magnesium	14		10.0	23.8		mg/L		99	75 - 125
Potassium	2.1		10.0	12.2		mg/L		101	75 - 125
Selenium	0.0071	J	1.00	1.05		mg/L		104	75 - 125

Lab Sample ID: 600-162845-1 MS Client Sample ID: G.S. State 3 WW **Matrix: Water Prep Type: Dissolved** Analysis Batch: 234414 Prep Batch: 234323 MS MS %Rec. Sample Sample Spike Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits Sodium 10.0 51.4 4 mg/L 100 75 - 125

0.516

mg/L

0.500

0.0013 U

Lab Sample ID: 600-162845-1 DU Client Sample ID: G.S. State 3 WW **Matrix: Water Prep Type: Dissolved** Analysis Batch: 234414 Pren Batch: 234323

•						Prep Batch. 2	34323
Sample	Sample	DU	DU				RPD
Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
0.0055	J	0.00420	J F5	mg/L		27	20
0.060		0.0601		mg/L		1	20
0.00028	U	0.00028	U	mg/L		NC	20
110		106		mg/L		0	20
0.0016	U	0.0016	U	mg/L		NC	20
0.0022	U	0.0022	U	mg/L		NC	20
14		14.0		mg/L		0.6	20
2.1		2.14		mg/L		0.5	20
0.0071	J	0.00310	J F5	mg/L		78	20
0.0013	U	0.0013	U	mg/L		NC	20
	Result 0.0055 0.060 0.00028 110 0.0016 0.0022 14 2.1 0.0071	Sample Result Qualifier 0.0055 0.060 0.00028 U 110 0.0016 U 0.0022 U 14	Sample Result Qualifier Result 0.0055 J 0.00420 0.060 0.0601 0.00028 U 0.00028 110 106 0.0016 U 0.0016 0.0022 U 0.0022 14 14.0 2.1 2.14 0.0071 J 0.00310	Sample Result Qualifier Qualifier Result Qualifier Qual	Sample Result Qualifier Result Qualifier Unit 0.0055 J 0.00420 J F5 mg/L 0.060 0.0601 mg/L 0.00028 U mg/L 110 106 mg/L 0.0016 U mg/L 0.0016 U 0.0022 U mg/L 14 14.0 mg/L 2.1 2.14 mg/L 0.0071 J 0.00310 J F5 mg/L	Sample Result Qualifier Qualifier Result Qualifier Unit Qualifier Unit Qualifier D 0.0055 J 0.00420 J F5 mg/L 0.060 mg/L 0.00028 U 0.00028 U mg/L 0.00028 U mg/L 110 106 mg/L 0.0016 U mg/L 0.0016 U 0.0022 U mg/L 0.0022 U mg/L 14 14.0 mg/L 14.0 mg/L 2.1 2.14 mg/L 0.0071 J 0.00310 J F5 mg/L	Sample Result Qualifier Qualifier Result Qualifier Unit D Qualifier D QUALIFIER 0.0055 J 0.00420 J F5 mg/L 27 0.060 0 0.0601 mg/L 1 0.00028 U 0.00028 U mg/L NC 110 0.0016 U mg/L 0 0.0016 U mg/L NC 0.0016 U mg/L 0.00022 U mg/L NC 14 14.0 mg/L 0.6 0.6 2.1 2.14 mg/L 0.5 0.0071 J 0.00310 J F5 mg/L 78

Lab Sample ID: 600-162845-1 DU							Client Sample ID: G.S. State 3 WW					
Matrix: Water								Prep	Type: D	Disso	olved	
Analysis Batch: 234414								Pre	p Batcl	h: 2 3	4323	
	Sample	Sample		DU	DU						RPD	
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		F	RPD	Limit	
Sodium	41	В		41.1		mg/L				0.7	20	

TestAmerica Houston

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD TestAmerica Job ID: 600-162845-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

70 - 130

Client Sample ID: Method Blank

03/19/18 11:46 03/19/18 14:18

Client Sample ID: G.S. State 3 WW

%Rec.

Limits

Client Sample ID: G.S. State 3 WW

75 - 125

%Rec

Prepared

%Rec

101

99

Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 600-234317/7-A

Matrix: Water

Analysis Batch: 234325

MB MB

Result Qualifier

Sample Sample

Sample Sample

0.000082 U

0.000082 U

Result Qualifier

Analyte Result Qualifier MQL (Adj) SDL Unit Analyzed Dil Fac **Prepared** 0.000082 U 03/19/18 11:46 03/19/18 13:02 0.00020 0.000082 mg/L Mercury

LCS LCS

0.00297

Result Qualifier

SDL Unit

0.000082 mg/L

MS MS

DU DU

0.000082 U

Result Qualifier

0.00303

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Spike

Added

0.00300

MQL (Adj)

Spike

Added

0.00300

0.00020

Lab Sample ID: LCS 600-234317/8-A

Matrix: Water

Analysis Batch: 234325

Analyte

Lab Sample ID: MB 600-234286/1-B

Matrix: Water

Mercury

Analysis Batch: 234325

MB MB

Analyte

Mercury

0.000082 U

Lab Sample ID: 600-162845-1 MS

Matrix: Water

Analysis Batch: 234325

Analyte

Lab Sample ID: 600-162845-1 DU

Matrix: Water

Mercury

Mercury

Analysis Batch: 234325

Result Qualifier

Analyte

Method: 2320B-1997 - Alkalinity, Total - SM Online, 2011

Lab Sample ID: MB 600-234340/2 **Matrix: Water**

Analysis Batch: 234340

MB MB

Result Qualifier Analyte

SDL Unit MQL (Adj) Prepared Bicarbonate Alkalinity as CaCO3 20 U 20 20 mg/L 03/19/18 13:41 Carbonate Alkalinity as CaCO3 20 U 20 20 mg/L 03/19/18 13:41

Method: 9040B - pH

Lab Sample ID: LCS 600-234341/1

Matrix: Water

Analysis Batch: 234341

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte 7.00 7.0 SU 101 99 - 101 pН

TestAmerica Houston

Prep Type: Total/NA

Prep Batch: 234317

Prep Type: Total/NA

Prep Batch: 234317

Prep Type: Dissolved

Prep Type: Dissolved

Prep Type: Dissolved

Prep Batch: 234317

NC

Prep Batch: 234317

Analyzed

Prep Batch: 234317

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Dil Fac

RPD

Limit

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD TestAmerica Job ID: 600-162845-1

Method: 9040B - pH (Continued)

Lab Sample ID: 600-162845-1 DU

Client Sample ID: G.S. State 3 WW **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 234341

Sample Sample DU DU RPD Result Qualifier Result Qualifier Unit RPD Limit Analyte D 7.7 HF SU рН 7.8

Method: 9050A - Conductivity, Specific Conductance

Client Sample ID: Method Blank Lab Sample ID: MB 600-234342/1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 234342

MB MB

Analyte Result Qualifier MQL (Adj) SDL Unit Dil Fac Prepared Analyzed Specific Conductance 2.0 U 2.0 2.0 umhos/cm 03/19/18 15:45

Lab Sample ID: LCS 600-234342/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 234342

Spike LCS LCS %Rec Analyte Added Result Qualifier Limits Specific Conductance 10.0 9.96 100 umhos/cm 90 - 110

Lab Sample ID: 600-162845-1 DU Client Sample ID: G.S. State 3 WW

Matrix: Water

Analysis Batch: 234342

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Limit Unit Specific Conductance 860 863 umhos/cm

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 600-234145/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 234145

MB MB Analyte Result Qualifier MQL (Adj) SDI Unit Dil Fac Prepared Analyzed **Total Dissolved Solids** 10 U 10 mg/L 03/15/18 15:09 10

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 600-234145/2 Prep Type: Total/NA

Matrix: Water Analysis Batch: 234145

Spike LCS LCS %Rec.

Added Analyte Result Qualifier Unit D %Rec Limits Total Dissolved Solids 1800 92 1650 mg/L 90 - 110

Lab Sample ID: 600-162845-1 DU Client Sample ID: G.S. State 3 WW

Matrix: Water

Analysis Batch: 234145

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit Total Dissolved Solids 690 661 mg/L

TestAmerica Houston

Prep Type: Total/NA

Prep Type: Total/NA

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	MQL	MDL	Units	Method
Benzene	0.0010	0.00018	mg/L	8260B
Ethylbenzene	0.0010	0.00021	mg/L	8260B
Toluene	0.0010	0.00020	mg/L	8260B
Xylenes, Total	0.0020	0.00037	mg/L	8260B

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Prep: TX_1005_W_Prep

Analyte	MQL	MDL	Units	Method	
>C12-C28	2.0	0.96	mg/L	TX 1005	
>C28-C35	2.0	0.96	mg/L	TX 1005	
C6-C12	2.0	0.83	mg/L	TX 1005	
C6-C35	2.0	0.83	mg/L	TX 1005	

Method: 300.0 - Anions, Ion Chromatography

Analyte	MQL	MDL	Units	Method	
Chloride	0.40	0.053	mg/L	300.0	
Sulfate	0.50	0.096	mg/L	300.0	

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved **Prep: 3010A**

Analyte	MQL	MDL	Units	Method
Arsenic	0.010	0.0029	mg/L	6010B
Barium	0.020	0.00053	mg/L	6010B
Cadmium	0.0050	0.00028	mg/L	6010B
Calcium	1.0	0.024	mg/L	6010B
Chromium	0.010	0.0016	mg/L	6010B
Lead	0.010	0.0022	mg/L	6010B
Magnesium	1.0	0.056	mg/L	6010B
Potassium	1.0	0.037	mg/L	6010B
Selenium	0.040	0.0029	mg/L	6010B
Silver	0.010	0.0013	mg/L	6010B
Sodium	1.0	0.021	mg/L	6010B

Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique) - Dissolved

Prep: 7470A

Analyte	MQL	MDL	Units	Method
Mercury	0.00020	0.000082	mg/L	7470A

General Chemistry

Analyte	MQL	MDL	Units	Method
Bicarbonate Alkalinity as CaCO3	20	20	mg/L	2320B-1997
Carbonate Alkalinity as CaCO3	20	20	mg/L	2320B-1997
рН	0.01	0.01	SU	9040B
Specific Conductance	2.0	2.0	umhos/cm	9050A
Total Dissolved Solids	10	10	mg/L	SM 2540C

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

GC/MS VOA

Analysis Batch: 234104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Total/NA	Water	8260B	
600-162845-2	State NBN 7 WW	Total/NA	Water	8260B	
MB 600-234104/6	Method Blank	Total/NA	Water	8260B	
LCS 600-234104/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-234104/4	Lab Control Sample Dup	Total/NA	Water	8260B	

GC Semi VOA

Prep Batch: 234200

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
600-162845-1	G.S. State 3 WW	Total/NA	Water	TX_1005_W_Pr
600-162845-2	State NBN 7 WW	Total/NA	Water	ep TX_1005_W_Pr
MB 600-234200/1-A	Method Blank	Total/NA	Water	ep TX_1005_W_Pr ep
LCS 600-234200/2-A	Lab Control Sample	Total/NA	Water	TX_1005_W_Pr
LCSD 600-234200/3-A	Lab Control Sample Dup	Total/NA	Water	ep TX_1005_W_Pr ep

Analysis Batch: 234211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Total/NA	Water	TX 1005	234200
600-162845-2	State NBN 7 WW	Total/NA	Water	TX 1005	234200
MB 600-234200/1-A	Method Blank	Total/NA	Water	TX 1005	234200
LCS 600-234200/2-A	Lab Control Sample	Total/NA	Water	TX 1005	234200
LCSD 600-234200/3-A	Lab Control Sample Dup	Total/NA	Water	TX 1005	234200

HPLC/IC

Analysis Batch: 234198

Lab Sample ID 600-162845-1	G.S. State 3 WW	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
600-162845-2	State NBN 7 WW	Total/NA	Water	300.0	
MB 600-234198/4	Method Blank	Total/NA	Water	300.0	
LCS 600-234198/5	Lab Control Sample	Total/NA	Water	300.0	

Metals

Filtration Batch: 234286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Dissolved	Water	FILTRATION	
600-162845-2	State NBN 7 WW	Dissolved	Water	FILTRATION	
MB 600-234286/1-B	Method Blank	Dissolved	Water	FILTRATION	
MB 600-234286/1-C	Method Blank	Dissolved	Water	FILTRATION	
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
600-162845-1 MS	G.S. State 3 WW	Dissolved	Water	FILTRATION	
600-162845-1 DU	G.S. State 3 WW	Dissolved	Water	FILTRATION	

TestAmerica Houston

Page 17 of 24

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Metals (Continued)

Prep Batch: 234317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Dissolved	Water	7470A	234286
600-162845-2	State NBN 7 WW	Dissolved	Water	7470A	234286
MB 600-234286/1-B	Method Blank	Dissolved	Water	7470A	234286
MB 600-234317/7-A	Method Blank	Total/NA	Water	7470A	
LCS 600-234317/8-A	Lab Control Sample	Total/NA	Water	7470A	
600-162845-1 MS	G.S. State 3 WW	Dissolved	Water	7470A	234286
600-162845-1 DU	G.S. State 3 WW	Dissolved	Water	7470A	234286

Prep Batch: 234323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Dissolved	Water	3010A	234286
600-162845-2	State NBN 7 WW	Dissolved	Water	3010A	234286
MB 600-234286/1-C	Method Blank	Dissolved	Water	3010A	234286
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	3010A	234286
600-162845-1 MS	G.S. State 3 WW	Dissolved	Water	3010A	234286
600-162845-1 DU	G.S. State 3 WW	Dissolved	Water	3010A	234286

Analysis Batch: 234325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Dissolved	Water	7470A	234317
600-162845-2	State NBN 7 WW	Dissolved	Water	7470A	234317
MB 600-234286/1-B	Method Blank	Dissolved	Water	7470A	234317
MB 600-234317/7-A	Method Blank	Total/NA	Water	7470A	234317
LCS 600-234317/8-A	Lab Control Sample	Total/NA	Water	7470A	234317
600-162845-1 MS	G.S. State 3 WW	Dissolved	Water	7470A	234317
600-162845-1 DU	G.S. State 3 WW	Dissolved	Water	7470A	234317

Analysis Batch: 234414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Dissolved	Water	6010B	234323
600-162845-1	G.S. State 3 WW	Dissolved	Water	6010B	234323
600-162845-2	State NBN 7 WW	Dissolved	Water	6010B	234323
600-162845-2	State NBN 7 WW	Dissolved	Water	6010B	234323
MB 600-234286/1-C	Method Blank	Dissolved	Water	6010B	234323
MB 600-234286/1-C	Method Blank	Dissolved	Water	6010B	234323
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	6010B	234323
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	6010B	234323
600-162845-1 MS	G.S. State 3 WW	Dissolved	Water	6010B	234323
600-162845-1 MS	G.S. State 3 WW	Dissolved	Water	6010B	234323
600-162845-1 DU	G.S. State 3 WW	Dissolved	Water	6010B	234323
600-162845-1 DU	G.S. State 3 WW	Dissolved	Water	6010B	234323

General Chemistry

Analysis Batch: 234145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Total/NA	Water	SM 2540C	
600-162845-2	State NBN 7 WW	Total/NA	Water	SM 2540C	
MB 600-234145/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 600-234145/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Page 18 of 24

QC Association Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

TestAmerica Job ID: 600-162845-1

General Chemistry (Continued)

Analysis Batch: 234145 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1 DU	G.S. State 3 WW	Total/NA	Water	SM 2540C	

Analysis Batch: 234340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Total/NA	Water	2320B-1997	
600-162845-2	State NBN 7 WW	Total/NA	Water	2320B-1997	
MB 600-234340/2	Method Blank	Total/NA	Water	2320B-1997	
LCS 600-234340/3	Lab Control Sample	Total/NA	Water	2320B-1997	

Analysis Batch: 234341

Lab Sample ID 600-162845-1	G.S. State 3 WW	Prep Type Total/NA	Matrix Water	Method 9040B	Prep Batch
600-162845-2	State NBN 7 WW	Total/NA	Water	9040B	
LCS 600-234341/1	Lab Control Sample	Total/NA	Water	9040B	
600-162845-1 DU	G.S. State 3 WW	Total/NA	Water	9040B	

Analysis Batch: 234342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	G.S. State 3 WW	Total/NA	Water	9050A	
600-162845-2	State NBN 7 WW	Total/NA	Water	9050A	
MB 600-234342/1	Method Blank	Total/NA	Water	9050A	
LCS 600-234342/2	Lab Control Sample	Total/NA	Water	9050A	
600-162845-1 DU	G.S. State 3 WW	Total/NA	Water	9050A	

J

4

6

9

11

40

14

Lab Sample ID: 600-162845-2

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Client Sample ID: G.S. State 3 WW

Lab Sample ID: 600-162845-1 Date Collected: 03/13/18 08:40 **Matrix: Water**

Date Received: 03/14/18 09:23

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	Kuii	1	20 mL	20 mL	234104	03/15/18 15:34	WS1	TAL HOU
Total/NA	Prep	TX_1005_W_Prep			35.3 mL	3.00 mL	234200	03/16/18 11:02		TAL HOU
Total/NA Total/NA	Analysis Analysis	TX 1005 300.0		1 25			234211 234198	03/17/18 00:04 03/16/18 14:12		TAL HOU TAL HOU
Dissolved Dissolved Dissolved	Filtration Prep Analysis	FILTRATION 3010A 6010B		1	1.0 mL 50 mL	1.0 mL 50 mL	234286 234323 234414	03/19/18 09:22 03/19/18 13:06 03/20/18 12:30	DCL	TAL HOU TAL HOU TAL HOU
Dissolved Dissolved Dissolved	Filtration Prep Analysis	FILTRATION 3010A 6010B		1	1.0 mL 50 mL	1.0 mL 50 mL	234286 234323 234414	03/19/18 09:22 03/19/18 13:06	DCL DCL	TAL HOU TAL HOU TAL HOU
Dissolved Dissolved Dissolved	Filtration Prep Analysis	FILTRATION 7470A 7470A		1	1.0 mL 40 mL	1.0 mL 40 mL	234286 234317 234325	03/19/18 09:22 03/19/18 11:46 03/19/18 14:20	DCL TWR	TAL HOU TAL HOU TAL HOU
Total/NA	Analysis	2320B-1997		1	50 mL	50 mL	234340	03/19/18 14:26	KRD	TAL HOU
Total/NA	Analysis	9040B		1			234341	03/19/18 12:49	KRD	TAL HOU
Total/NA	Analysis	9050A		1			234342	03/19/18 15:45	KRD	TAL HOU
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	234145	03/15/18 15:09	EC1	TAL HOU

Client Sample ID: State NBN 7 WW

Date Collected: 03/13/18 09:00 Date Received: 03/14/18 09:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	20 mL	20 mL	234104	03/15/18 15:58	WS1	TAL HOU
Total/NA	Prep	TX_1005_W_Prep			33.5 mL	3.00 mL	234200	03/16/18 11:02	RJV	TAL HOU
Total/NA	Analysis	TX 1005		1			234211	03/17/18 00:37	PXS	TAL HOU
Total/NA	Analysis	300.0		25			234198	03/16/18 14:48	DAW	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	3010A			50 mL	50 mL	234323	03/19/18 13:06	DCL	TAL HOU
Dissolved	Analysis	6010B		1			234414	03/20/18 12:36	DCL	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	3010A			50 mL	50 mL	234323	03/19/18 13:06	DCL	TAL HOU
Dissolved	Analysis	6010B		1			234414	03/20/18 14:42	DCL	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	7470A			40 mL	40 mL	234317	03/19/18 12:45	TWR	TAL HOU
Dissolved	Analysis	7470A		1			234325	03/19/18 14:26	TWR	TAL HOU
Total/NA	Analysis	2320B-1997		1	50 mL	50 mL	234340	03/19/18 14:33	KRD	TAL HOU
Total/NA	Analysis	9040B		1			234341	03/19/18 12:56	KRD	TAL HOU
Total/NA	Analysis	9050A		1			234342	03/19/18 15:45	KRD	TAL HOU
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	234145	03/15/18 15:09	EC1	TAL HOU

Laboratory References:

TAL HOU = TestAmerica Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

TestAmerica Houston

Page 20 of 24

Matrix: Water

Accreditation/Certification Summary

Client: Timberwolf Environmental LLC TestAmerica Job ID: 600-162845-1

Project/Site: 180006 - State OG SWD

Laboratory: TestAmerica Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program		EPA Region	Identification Number	Expiration Date
exas	NELAP		6	T104704223-17-22	10-31-18
• ,	•	it, but the laboratory	is not certified by the	e governing authority. This	list may include an
the agency does not	offer certification.	•	·		list may include an
• ,	•	Matrix Water	Analyt		ilst may include an

2

4

5

8

10

11

13

14

Special Instructions/ Conditions of Receipt 923 Chain of Custody Number 288138 (A fee may be assessed if samples are retained fonger than 1 month) - euil of Page Date THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** Analysis (Attach list if more space is needed, Lab Number Months Date Archive For X OC Requirements (Specify) HOBIN Disposal By Lab Preservatives Containers & HOEN 3. Received By IDH Telephone Number (Area Code)/Fax Number Lab Contact EONH No POSZH seudun 75 PO Return To Client Drinking Water? Yes□ Temperature on Receipt DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy Sample Disposal 1105 21 Days Common 21 Days Time Carrier/Waybill Number Matrix PAS 3/14/18 X Project Manager snoenby Site Contact 216 State 232 - 223/8/090 □ Unknown 3/13/18/06/10 Date Time LAIGAD WILLAMANIA Ste 200 Timbersof Environmental □ Poison B Date TX J180 1800010 - State OB SWD 14 Days (Containers for each sample may be combined on one line) Skin Imitant 200 Sample I.D. No. and Description □ 7 Days Flammable Project Name and Location (State) Custody Record State Dal 48 Hours Possible Hazard Identification Turn Around Time Required 3. Relinquished By Non-Hazard Chain of 24 Hours TAL-4124 (1007) 1. Relinquish 2. Relinquish Comments

Page 22 of 24

10/22/2018 (Rev. 1)

Sample Receipt Ch

162845

		'18 MAR 14 9:2:
n	nbar i	wolf
l	nber i	
	1	
1	Them	Corrected Temp
1	CF +0-7	0.9
1		
7		
1		

187			ceived:			'18 MAR 14
JOB NUMBER:	84	5	CLIENT:		mbar	volf
JNPACKED BY:	RD		CARRIER/DRIVER:		lient	
Custody Seal Present:	☐YES	2 NO	Number of Coolers R	eceived: _		
Cooler ID	Temp Blank	Trip Blank	Observed Temp (℃)	Therm	Them	Corrected Temp
R/W	WIN	Y / (N)	0.6.	676	+0-7	0.9
	YIN	YIN				
	Y / N	Y / N	000	-		
	Y / N	Y / N	1 NV 5/	14/10	g	
	Y / N	Y / N	+	110)	
	Y / N	Y / N	+-/		-	
	Y / N	Y / N Y / N	+-(-	
	Y / N Y / N	Y / N Y / N				
ABORATORY PRESE ase samples are>pH 1 H paper Lot #HC OA headspace accepts	2: DYES [□ NO	Acid preserved are <p< th=""><th></th><th>□ YES</th><th>□ио</th></p<>		□ YES	□ио
OA neadspace accepto	able (3-011111).	AU ICO LI	NO LINA			YES NO
Did samples meet the la	aboratory's stand	ard conditions	of sample acceptability u	pon receipt	?	X
COMMENTS:						
			100 21			
			/ KD 3/	14/1	8	

HS-SA-WI-013

Rev. 3; 07/01/2014

Client: Timberwolf Environmental LLC

Job Number: 600-162845-1

Login Number: 162845 List Source: TestAmerica Houston

List Number: 1

Creator: Crafton, Tommie S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.9°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.