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THE STATE OF NEW MEXICO 
DEPARTMENT OF ENERGY, MINERALS AND NATURAL RESOURCES 

OIL CONSERVATION COMISSION 
 
 
IN THE MATTER OF PROPOSED 
AMENDMENT TO THE COMMISSION’S 
RULES TO ADDRESS CHEMICAL DISCLOSURE AND 
THE USE OF PERFLUOROALKYL AND 
POLYFLUOROALKYL SUBSTANCES AND 
IN OIL AND GAS EXTRACTION, 
19.15.2, 19.15.7, 19.15.14, 19.15.16 AND 19.15.25 NMAC. 

Petitioner.        CASE NO. 23580 

NEW ENERGY ECONOMY’S NOTICE OF INTENT  
TO PRESENT REBUTTAL TECHNICAL TESTIMONY AND EXHIBIT OF  

KRISTEN HANSEN, Ph.D. 
 

This Notice of Intent to Present Rebuttal Technical Testimony and Exhibit of Kristen 

Hansen Ph.D. is submitted on behalf of New Energy Economy (“NEE”) through its undersigned 

counsel, as required by Rule 19.15.3.11 NMAC and the Amended Procedural Order filed in this 

matter on June 3, 2024. 

On behalf of thousands of New Mexicans, New Energy Economy hereby gives notice of 

its intent to present technical testimony at the hearing in this matter scheduled to begin on 

November 12, 2024 before the New Mexico Oil Conservation Commission (“OCC”).  

(1) New Energy Economy intends to present the rebuttal technical testimony of the 

following technical witness: 

KRISTEN HANSEN, Ph.D., Savanna Science Consulting. 
 

(2) Ms. Hansen supports the Amended Application for Rulemaking, filed on August 

23, 2024 by WildEarth Guardians, entitled “In the Matter of proposed Amendment to the 

Commission’s Rules to Address Chemical Disclosure and the Use of Perfluoroalkyl and 
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Polyfluoroalkyl Substances and in Oil and Gas Extraction, 19.15.2, 19.15.7, 19.15.14, 19.15.16 

AND 19.15.25 NMAC.”  

(3) Ms. Hansen’s qualifications including a description of the witness’ education and 

experience were submitted on October 21, 2024 with New Energy Economy’s Notice of Intent to 

Present the Direct Technical Testimony of Kristen Hansen Ph.D., which also included her Direct 

Testimony and Exhibits, including KH-1, her Curriculum Vitae and Publications. 

 
(4) Attached hereto as NEE Exhibit B, please see the Rebuttal Testimony and of 

Kristen Hansen, Ph.D. of Savanna Science Consulting. 

(5) New Energy Economy anticipates that it will offer the following exhibits at the 

hearing in this matter: 

a. NEE Exhibit A: Direct Technical Testimony and Exhibits of Kristen Hansen, 

Ph.D. of Savanna Science Consulting, including: 

 
i. Exhibit KH-1 – Curriculum Vitae and Publications for Kristen Hansen, 

Ph.D. 
 

ii. Exhibit KH-2 – Lerner, Sharon. “How 3M Discovered, Then Concealed, 
the Dangers of Forever Chemicals,” New Yorker, May 20, 2024. 

 
iii. Exhibit KH-3 – “Opinion: We agree PFAS should note be used in 

fracking, and it is not” by Lynn Granger & Dan Haley, The Denver Post, 
March 22, 2022. 

 
b. NEE Exhibit B: Rebuttal Technical Testimony and Exhibit of Kristen Hansen, 

Ph.D. of Savanna Science Consulting, including: 

i. Exhibit KH-4 – Jiang, Wenbin, et al., (2022) “Characterization of 
produced water and surrounding surface water in the Permian Basin, the 
United States,” Journal of Hazardous Materials 430: 128409.  
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c. New Energy Economy reserves the right to use other exhibits during cross-

examination at hearing. 

 
(6) New Energy Economy expects that the summary of the direct and rebuttal 

testimony of this technical witness will require the twenty minutes permitted by 19.15.3.11 B(2) 

NMAC and Numbered Paragraph 3 of the Amended Procedural Order of June 2, 2024. 

(7) New Energy Economy requests an opportunity to provide an opening statement 

(20 minutes) and closing statement (30 minutes), (perhaps re-direct and surrebuttal), and 

sufficient time to cross-examine witnesses at the hearing (to be determined once the direct and 

rebuttal pre-filed witnesses’ testimonies are reviewed. 

(8) Regarding Scheduling: Counsel for New Energy Economy, Mariel Nanasi, has 

had plans to be out of the country and requests to be excused on November 12 and 13, 2024 with 

the understanding that New Energy Economy waives objection for the time of her absence. 

Further, Ms. Hansen has a scheduling conflict on the morning of Thursday November 14 and 

requests to testify in the afternoon of Thursday November 14th. Ms. Hansen is available to testify 

at 1pm Mountain Time on November 14, 2024 via the electronic platform.  

Respectfully submitted this 4th day of November 2024, 

 
NEW ENERGY ECONOMY 

 
Mariel Nanasi, Esq. 
300 East Marcy St. 
Santa Fe, NM 87501 
(505) 469-4060 
mariel@seedsbeneaththesnow.com 
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Q. Did you provide Direct Technical Testimony on October 21, 2024?  1 

A.  Yes, on behalf of New Energy Economy (“NEE”). 2 

Q. Do you understand that WildEarth Guardians’ proposed definition of PFAS 3 

Chemicals is as follows: “PFAS chemicals” means a perfluoroalkyl or polyfluoroalkyl 4 

substance with at least one fully fluorinated carbon atom. What is your expert testimony 5 

regarding that definition? 6 

A. Yes, I read WildEarth Guardian’s (WEG) definition in their proposed Amendments to 7 

19.15.2.7 NMAC. WEG’s proposed definition of PFAS is consistent with my definition; it is 8 

the layperson’s equivalent of my more chemically accurate definition.  Further, I understand 9 

that the definition suggested by WEG is the definition that has been adopted in statute in 23 10 

states. I agree that this definition is adequate to ensure accurate understanding and 11 

monitoring of PFAS risk. 12 

Q. Did you read the Self-Affirmed Statement of NMOGA witness Stephen D. 13 

Richardson filed on October 21, 2024? 14 

A. Yes. 15 

Q. Did you agree with Mr. Richardson, Self-Affirmed Statement at 11, that “using the 16 

definition WEG proposes makes no practical or technical sense in the context of this 17 

rulemaking” because “these single -CF3 and -CF2- compounds are not known to be 18 

utilized in hydraulic fracturing operations for oil and gas”?  19 

A. No. I don’t agree with Mr. Richardson’s opinion.  The production and utilization of PFAS 20 

compounds such as fluoropolymers and fluorosurfactants include a significant percentage of 21 
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both PFAS impurities and PFAS residuals.  Whether or not a PFAS compound is specifically 1 

produced for use by the industry, residual PFAS of a different structure may be present in the 2 

overall formulation. It is the responsibility of the industry to control the use of both the 3 

compounds produced for their purposes and additional PFAS compounds that are part of that 4 

final formulation, including residuals and impurities.  Additionally, many PFAS as well as 5 

the impurities and residuals present in a PFAS product may undergo some level of 6 

degradation in the environment resulting in a smaller, persistent perfluorinated compound.  7 

Again, the industry needs to control not only the chemicals necessary for their processes but 8 

also the eventual breakdown products of those PFAS into shorter chain long-lived molecules.  9 

These residuals, impurities and degradation products are covered by the broader definition I 10 

have proposed.    11 

Q. Did you read the Self-Affirmed Statement of NMOGA witness Janet Anderson filed 12 

on October 21, 2024? 13 

A. Yes. 14 

Q. Ms. Anderson at p. 11 of her statement states: “Thus, revising the definition of 15 

“PFAS” to be “substances with two or more sequential fully fluorinated carbons” is 16 

both consistent with existing federal regulations defining the PFAS and is supported by 17 

the science on PFAS. Furthermore, defining PFAS in this manner addresses those 18 

chemicals potentially relevant to oil and gas operations and includes the PFAS with 19 

data available to assess potential human and/or environmental impacts (i.e., human and 20 

ecological toxicity data for risk assessments).” What is your response? 21 
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A. As above, this definition is too narrow to be protective of humans and the environment.  1 

The specific PFAS used by the O&G industry are not pure compounds, but are available with 2 

measurable levels of residuals, impurities and breakdown products.   It is environmentally 3 

and chemically simplistic to say that adequate control is achieved using a definition only 4 

relevant to a particular industry.  PFAS are exceptionally stable in the environment; most are 5 

highly mobile; recent research suggests that toxicity of PFAS compounds is additive.  These 6 

characteristics of the class indicate a need for a broad, inclusive definition to describe 7 

existing and potential risk. 8 

Further, at least 23 states have adopted a scientifically grounded definition of PFAS as 9 

organic chemicals containing ‘‘at least one fully fluorinated carbon atom” including: AR, 10 

AZ, CA, CO, CT, GA, KY, HI, IL, IN, LA, MD, ME, MN, NH, NV, NY, OH, OR, RI, VA, 11 

VT, and WA. (Additional U.S. States Ban PFAS-Containing Products. (n.d.). UL Solutions. 12 

Retrieved October 31, 2023. https://www.ul.com/news/additional-us-states-ban-pfas-13 

containing-products) Similarly, Congress has often adopted the same definition of PFAS, for 14 

example in enacting the National Defense Authorization Act in 2021, 2022 and 2023. (See, 15 

for example, the NDAA for FY2022, Public Law 117-81 (passed the Senate by a vote of 88-16 

11 & House by 363-70), §345(f)(4)(“The term ‘perfluoroalkyl or polyfluoroalkyl substance’ 17 

means any man-made chemical with at least one fully fluorinated carbon atom.”); The 18 

NDAA for FY2021, Public Law 116-283 (passed the Senate by a vote of 81-13 & House by 19 

322-87) § 335(e)(2)(“The term ‘PFAS’ means a perfluoroalkyl or polyfluoroalkyl substance 20 

with at least one fully fluorinated carbon atom, including the chemical GenX.”); The NDAA 21 

for FY2020, Public Law 116-92 (passed the Senate by a vote of 86-8 and House by 377-48) § 22 

332(c)(3)(“The term ‘‘PFAS’’ means perfluoroalkyl and polyfluoroalkyl substances that are 23 
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man-made chemicals with at least one fully fluorinated carbon atom.”). This definition has 1 

been used in state and federal legislation since 2018. (State of Washington Department of 2 

Ecology. (2021). Interim Chemical Action Plan for Per- and Polyfluorinated Alkyl 3 

Substances. https://apps.ecology.wa.gov/publications/documents/1804005.pdf, at 1.) 4 

Q. Ms. Anderson at p. 7 of her statement states: 7. “For this reason, the term “PFAS” 5 

should be more specifically enumerated and must delineate between PFAS for which 6 

there is toxicology data and potential concerns for human health risks and those PFAS 7 

for which no such data or concerns exist. Statements regarding potential human or 8 

environmental risk must be limited to the compounds for which data are available to 9 

inform what exposure levels may present an unacceptable increase in risk, on a 10 

chemical-specific nature.” What is your response? 11 

A. This view represents a backward-looking assessment of risk, something particularly 12 

dangerous for compounds that are persistent and that, as a class, have so often been 13 

demonstrated to bioaccumulate and exhibit chronic toxic effects.  Current research indicates 14 

that the toxicity associated with PFAS is additive, that is, that PFAS toxicity needs to be 15 

understood as exposure to all PFAS present in a person’s environment, rather than as 16 

exposure to a single compound (Addicks, Rowan-Carroll et al. 2023).  Chronic toxicity in 17 

humans is difficult and expensive to study and, with the possible exception of PFOS and 18 

PFOA, many toxicologists argue that existing data on the over 10,000 members of the PFAS 19 

class is incomplete (Cousins, DeWitt et al. 2020).  Many PFAS compounds pass through the 20 

placental barrier when they have the potential to impact gestational health (Blake and Fenton 21 

2020).  Many PFAS pass from mother to infant via breastfeeding (Zheng, Schreder et al. 22 

2021).  These are two examples of routes of exposure that have been toxicologically 23 
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characterized for the first time in the last 10 years despite the fact that the most well-1 

characterized PFAS, PFOS and PFOA, have been present in commercial products since the 2 

early 1970s.  3 

Q. Ms. Anderson at p. 3 of her statement states: “And some PFAS do not have an 4 

association with a wide range of potential human or ecological health effects, although 5 

robust toxicological information on the majority of PFAS is lacking.” What is your 6 

response? 7 

A. The uncontrolled nature of the production, utilization and environmental disposition – 8 

coupled with the persistence, bioaccumulation potential, mobility and potential toxicity - 9 

associated with PFAS, make members of the class suitable for application of the 10 

precautionary principle.  The precautionary principle states that, especially in the case of 11 

persistent compounds with potential toxicological implications, decision makers err on the 12 

side of caution.  That is, any scientific uncertainty must be resolved by prevention.  With 13 

over 10,000 PFAS, it is currently impossible to fully study the toxicological effects of each 14 

of these compounds alone and in combination with other PFAS.  Therefore, decision makers 15 

faced with decision of irreversible or slowly reversible potential human health and 16 

environmental consequences should avoid risk (Cousins, Vestergren et al. 2016).   17 

Q. Ms. Anderson at p. 4 of her statement states: “Some compounds broadly identified 18 

as PFAS (i.e., compounds that contain a single fully fluorinated methyl or methylene 19 

carbon moiety) are routinely used as pharmaceuticals, prescribed to children and 20 

adults[.]” If it’s true that some of the PFAS that fall under the single fluorinated carbon 21 

atom definition are not toxic or are not toxic in low doses, isn’t the inverse true? 22 
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A. Pharmaceuticals and drug products (e.g. metered dose inhalers) are subject to a much 1 

more rigorous review and much tighter specifications than other areas of commerce.  2 

Toxicity studies associated with pharmaceuticals are carried out in thousands of people in 3 

well-controlled and well-documented studies with exposure strictly characterized and 4 

controlled and health effects measured.   Often side effects are noted in these studies and 5 

these must be weighed against the potential therapeutic effects before the compounds are 6 

approved. The pharmaceutical products themselves must meet exceptionally high 7 

specifications for residuals and impurities several steps back into the supply chain, so 8 

production is absolutely controlled and so that levels of impurities and residuals meet tight, 9 

science-based specifications.  This level of control and purity is not required in other 10 

industries.  It is misleading to state that a pharmaceutical compound, every lot of which is 11 

characterized to meets high qualification specifications, administered in a controlled dose 12 

under the care of a physician targeting a specific physiological endpoint is similar to an 13 

uncontrolled environmental exposure that a community member may unknowingly encounter 14 

by breathing polluted air or drinking contaminated water, for example.   Further, it is 15 

increasingly apparent that the toxicity associated with PFAS exposure needs to be considered 16 

as an additive rather than a singular exposure, thus any certainty about exposure to one PFAS 17 

must be evaluated in concert with other potential PFAS in that or other environmental 18 

exposures.   19 

Q. Did you read OCD Exhibit 1 and the proposed definition of PFAS: “PFAS 20 

chemicals” means any chemical with at least a perfluorinated methyl group (−CF3) or a 21 

perfluorinated methylene group (−CF2−), excluding those with a Hydrogen [H], 22 

Chlorine [Cl], Bromine [Br], or Iodine [I] atom attached to the subject carbon atom. 23 
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For the purposes of completing environmental investigations, the specific PFAS 1 

chemicals that can be included in the chemical analysis include those listed in United 2 

States Environmental Protection Agency (US EPA) Standard Analytical Methods 3 

documents (specifically, Method 537.1 [drinking water], Method 533 [drinking water], 4 

Method 8327 [groundwater, surface water, and wastewater], Method 1633 [wastewater, 5 

surface water, groundwater, soil, biosolids, sediment, landfill leachate, and fish tissue], 6 

OTM-45 [air: semi-volatile and particulate-bound PFAS], and OTM-50 [air: volatile 7 

PFAS]; including updated versions for each standard method). 8 

A. Yes, I read it. 9 

Q. What is your expert opinion of the use of OCD’s definition? 10 

A. The OCD definition is inadequate; it is too narrow and leaves many PFAS compounds 11 

unregulated.  I believe that the Commission should either adopt the WEG definition or my 12 

definition of PFAS, as both encompass the full class of PFAS.  The first sentence of OCD’s 13 

definition matches that proposed in 2021 by the Organization for Economic Cooperation and 14 

Development (OECD 2021).  However, subsequent sentences serve only to artificially limit 15 

the definition of PFAS to those compounds that have been characterized and for which 16 

purified standards are available.  This named subset of PFAS represents less than 5% of the 17 

total number of PFAS compounds characterized as present in industrial, environmental and 18 

metabolic studies and is often referred to as the “tip of the PFAS Iceberg.” The methods cited 19 

measure only a relatively small number of “Targeted PFAS” compounds while a much larger 20 

population of “Non-targeted” PFAS remain undisclosed and uncharacterized (Manz 2024).  21 

Recent advances in analytical techniques such as high-resolution mass spectrometry have 22 
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enabled the identification of many previously unknown or uncharacterized PFAS compounds 1 

in environmental samples.  For example, a 2023 study characterizing suspended particulates 2 

in surface water found a 25% gap between the compound specific targeted analysis and the 3 

larger extractable organic fluorine fraction of PFAS compounds (Simon, Gehrenkemper et al. 4 

2023).  Another study of tap water found that less than half of the organic fluorine was 5 

characterized by these targeted methods (Hu, Tokranov et al. 2019).  In environmental 6 

samples, this gap is expected to be much larger (Dixit, Antell et al. 2024). Currently, the EPA 7 

is evaluating the utility of non-targeted analysis for characterization of the full suite of PFAS 8 

compounds present in drinking water (for example) to better characterize human health risk 9 

(Manz, Feerick et al. 2023). The human health implications associated with these additional 10 

PFAS compounds are unknown and unstudied (Steeves, Cahill et al. 2024), though recent 11 

work suggests that toxicity associated with PFAS compounds may be additive (Conley, 12 

Lambright et al. 2023). 13 

Given the high level of environmental mobility, the incompleteness of existing toxicity and 14 

human health data and the environmental durability of PFAS compounds, to ensure 15 

protection of human and environmental health, the only acceptable definition of PFAS is a 16 

class of compounds including chemicals with at least one aliphatic perfluorocarbon moiety (-17 

C n -F 2n -).  I am also supportive of the definition offered by WEG. 18 

Q. Do you believe that lack of familiarity with the specifics of the O&G industry should 19 

bar your testimony? 20 

A. No.  I have a PhD in analytical chemistry that I have used extensively to track and 21 

measure anthropogenic compounds in the environment including in the atmosphere and in 22 
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water ways.  Specifically, I have conducted pioneering work measuring and tracking PFAS 1 

compounds in a variety of matrices including in water, sediment, sludge, industrial waste, 2 

soil, WWTP influent and effluent, tissue, food and product samples. My work tracking PFAS 3 

compounds in the environment has been cited thousands of times in the peer-reviewed 4 

scientific literature. My PFAS expertise is especially germane given that these compounds 5 

are both highly persistent and highly mobile in the environment, typically moving quickly 6 

and widely from their point of use, discharge or disposal.  With the potential for PFAS spills 7 

on the ground or in water ways, volatilization of incompletely combusted PFAS during flare 8 

off, volatilization of PFAS from surface ponds, spills or discharge of produced water and the 9 

presence of PFAS on and from surfaces and machinery encountered during transport, use and 10 

disposal, my experience with environmental analysis is far more relevant than industry-11 

specific knowledge.  Any one of these PFAS exposure routes could lead to wider 12 

environmental or human exposure to persistent, mobile and potentially toxic chemicals.   13 

Detailed industry knowledge is not needed to identify areas of risk in the use of PFAS in the 14 

environment.  15 

Q. Did you read Ms. Troutman’s testimony?  16 

A. Yes, I did. 17 

Q. What was striking about the information contained therein? 18 

A.   Between 2010 and 2024, the numbers of self-reported spills by the O&G industry 19 

indicate over 10,000 instances of produced water spills totaling over a million gallons of 20 

produced water spilled.  Of those spills, 187 reached a water course and 99 spills affected 21 
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groundwater.   Given that PFAS has been demonstrated to be present in produced water 1 

(Jiang, 2022) and the persistence of PFAS compounds in the environment, it is likely that 2 

essentially all the PFAS ever spilled in surface or groundwater during this 14-year reporting 3 

period is still present and mobile in the environment or present in a living being, either in its 4 

original form or as a terminal PFAS degradation product.  I include the Jiang study as Exhibit 5 

KH-4. 6 

Q. Does this conclude your rebuttal testimony? 7 

A. Yes, it does. 8 

 9 

 10 

 11 

 12 
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SELF AFFIRMATION 
 
 

Kristen Hansen, expert witness for New Energy Economy, upon penalty of perjury under the 

laws of the state of Minnesota, affirm and state: I have read the foregoing Rebuttal Technical 

Testimony and Exhibit of Kristen Hansen and it is true and correct based on my own personal 

knowledge and belief. 

 
 
Dated this 4th day of November 2024. 
 
 
      /s/ Kristen Hansen 
      KRISTEN HANSEN 
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Research Paper 

Characterization of produced water and surrounding surface water in the 
Permian Basin, the United States 

Wenbin Jiang a, Xuesong Xu a, Ryan Hall b, Yanyan Zhang a, Kenneth C. Carroll c, Frank Ramos d, 
Mark A. Engle e, Lu Lin a, Huiyao Wang a, Matthias Sayer b, Pei Xu a,* 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Comprehensive analyses of produced 
water (PW) quality in the Permian 
Basin. 

• Temporal characterization of PW and 
river water quality in the Permian Basin. 

• Quantitatively analyzed > 300 analytes 
for organics, inorganics, and 
radionuclides. 

• Provide baseline analytical information 
to advance PW research for potential 
reuse. 

• Filled knowledge gap regarding PW 
quality to support science-based deci-
sion making.  

A R T I C L E  I N F O   

Editor: Dr. B. Lee  

Keywords: 
Water quality 
Produced water characterization 
Permian Basin 
Pecos river 
Water reuse 

A B S T R A C T   

A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for 
effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas 
industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs 
that are protective of human health and the environment. In total, 46 PW samples from unconventional oper-
ations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for 
quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could 
provide context and baseline information for the potential discharge and reuse of treated PW in this area. 
Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total 
dissolved solids (TDS) concentrations ranging from 100,800–201,500 mg/L. Various mineral salts, metals, oil 
and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing addi-
tives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical character-
ization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio 
Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural 
shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing 
PW and surrounding surface water quality in the Permian Basin that will assist in determining management 
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strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts 
specific to intended beneficial use of treated PW.   

1. Introduction 

The rapid development of the unconventional oil and gas (O&G) 
industry has promoted economic growth and generated large volumes of 
produced water (PW) in the southwestern United States (U.S.EIA, 2021). 
PW is primarily naturally occurring water that emerges from the ground 
during the production of oil or gas (also known as formation water). 
Additionally, PW may include water injected into the formation during 
well treatment or enhanced O&G recovery (EOR), as well as flowback 
water that returns to the surface after hydraulic fracturing (HF) (GWPC, 
2019; Scanlon et al., 2017). An estimated 3180 × 106 m3 (20 billion 
barrels) of PW will be generated by onshore O&G activities in the United 
States in 2022 (IHS Markit, 2020). Such large volumes of PW require 
appropriate management to reduce disposal costs and environmental 
impacts. Currently, major PW management methods include saltwater 
disposal (SWD) well injection, reinjection for EOR, and reuse for HF; 
only a very small percentage of PW (1.3% in 2017) is used outside the 
O&G field for irrigation and dust control on roads (Jiang et al., 2021b; U. 
S.EPA, 2020; Veil, 2020). 

Following appropriate treatment, treated PW could prove to be an 
alternative water supply for other industrial applications as well thus 
serving to reduce stress on local water supplies. PW recycling for HF has 
been implemented as an economically attractive and environmentally 
friendly method by the O&G industry (Scanlon et al., 2020a). One 
challenge for PW recycling is temporally and geographically matching 
water demand for HF with PW supply (Jiang et al., 2021b), and that PW 
volume may exceed HF water demand in some areas, such as in the 
Permian Basin (Scanlon et al., 2020a). PW could also be treated and 
beneficially reused outside the O&G field to alleviate local water stress. 
For example, the Permian Basin is in a semi-arid region where treated 
PW can be used as an alternative water source to replace and augment 
freshwater supplies. Scanlon et al. estimated that PW, if treated and 
used, could represent < 1%, 5%, and 11% of irrigation water demand in 
Eddy, Lea, and Pecos counties, respectively, (the highest irrigation 
counties in the Permian Delaware Basin) after meeting the HF water 
demand (Scanlon et al., 2020b). 

Use of treated PW for agriculture or wildlife is currently allowed west 
of the 98th meridian under the Oil and Gas Extraction Effluent Guide-
lines and Standards (40 CFR Part 435 Subpart E) in the United States. 
PW reuse outside the O&G field for agriculture and wildlife propagation 
primarily occurs in California and Wyoming because some PW in these 
regions has lower total dissolved solids (TDS) and may only need 
moderate treatment (Navarro et al., 2016; U.S.EPA, 2020). Constituents 
in PW vary with geographic location, reservoir lithology, geologic his-
tory, the type of hydrocarbon product being produced, and well age, 
which makes it difficult to fully characterize PW composition, including 
adequately understanding spatial and temporal variability in the pro-
duction (volumes) and composition (Oetjen et al., 2018; Wang et al., 
2019). Typically, PW is highly saline and could contain many different 
constituents such as suspended particles, dissolved mineral salts, organic 
compounds (e.g., volatile and semi-volatile organics (VOCs and SVOCs), 
petroleum hydrocarbons, organic acids, and oils), naturally-occurring 
radioactive material (NORM), other inorganic constituents (e.g., sul-
fide and ammonia), chemical additives and their transformational 
byproducts during well treatment or from the interactions with forma-
tion water (Jiang et al., 2021a; Rodriguez et al., 2020). Extensive 
treatment is required to remove these constituents for safe reuse of 
treated PW, which can include settling, media filtration, coagulation, 
chemical precipitation, adsorption, biological treatment, membrane 
desalination, thermal distillation, and advanced oxidation processes 
(Chen et al., 2021, 2022; Geza et al., 2018; Hickenbottom et al., 2013; 

Hu et al., 2020; Lin et al., 2020; Ma et al., 2018; Xu and Drewes, 2006; 
Xu et al., 2008a, 2008b). 

One of the barriers to use treated PW as an alternative water source is 
the lack of comprehensive chemical characterization of PW quality 
(Scanlon et al., 2020b). To date, most studies devoted to PW charac-
terization are focused on the Appalachian Basin (Danforth et al., 2020). 
Some previous research on the Niobrara (Oetjen et al., 2018), the Bar-
nett (Wang et al., 2019), the Bakken (Shrestha et al., 2018), and the 
Eagle Ford (Hildenbrand et al., 2018) also exists. The Permian Basin in 
southeastern New Mexico and western Texas (Fig. 1(a)) is the most 
productive oil province in the U.S., which accounted for almost 60% of 
onshore oil production in July 2021 (U.S.EIA, 2021). However, there are 
limited studies focused on the characterization of PW in the Permian 
Basin, especially the PW from unconventional wells. Most PW samples 
from the Permian Basin in the United States Geological Survey (USGS) 
database (approximately 3800 datasets for the Permian out of 114,993 
total datasets in the ‘USGSPWDBv 2.3 n.csv’ file) were collected before 
2002, and primarily from conventional wells. Only 39 samples (out of 
3800 datasets) are from 2016 with limited inorganic information 
(Chaudhary et al., 2019; Engle et al., 2016; USGS, 2021). Our previous 
research identified VOCs in eight unconventional PW samples; however, 
it was limited in scope to the Midland Basin (the eastern portion of the 
Permian Basin, Texas) and did not fully characterize PW samples to a 
level sufficient to support hazard and risk assessment. The same limited 
scope of analysis and sampling is reflected in the broader literature (Hu 
et al., 2020; Rodriguez et al., 2020; Thacker et al., 2015). Thus, 
comprehensive chemical characterization and risk assessment of PW is 
necessary for potential treatment and beneficial use outside the O&G 
field in the Permian Basin. 

In this study, we conducted a target analysis of physical and chemical 
water quality characteristics on PW samples from five locations in the 
Permian Basin and water samples from one location on the Pecos River 
(the river flowing through the Permian Basin) location in Carlsbad, New 
Mexico (Fig. 1(a)). Twenty-four PW samples were collected from the 
Permian Basin in New Mexico and Texas - 14 samples (PW-NM) from 
Sampling Point 2 and 10 samples (PW-TX) from Sampling Point 5 as 
shown in Fig. 1(a). Samples were analyzed for wet chemistry, in-
organics, organics, microbial community, and toxicity. This paper re-
ports results of physicochemical analyses, while microbial community 
and toxicity analyses are reported in a separate paper (Hu et al., 2022). 
Among these 24 samples, ten samples were collected from an SWD fa-
cility (PW-NM-SWD) from January 2020 to September 2020 to monitor 
the temporal change of PW quality (Point 2 in Fig. 1(a)). Along with 
these ten PW samples (PW-NM-SWD), ten Pecos River samples (RW-NM) 
were collected within the same period to characterize the background 
surface water quality (Point 2 in Fig. 1(a)). These temporal samples (ten 
PW-NM-SWD and ten RW-NM samples from Point 2 in Fig. 1(a)) were 
quantitatively analyzed for more than 300 targeted analytes, including 
wet chemistry, inorganics, radionuclides, organics such as VOCs, SVOCs, 
total petroleum hydrocarbons, organic acids, oil and grease, pesticide-
s/herbicides, dioxins, and tentatively identified compounds. We also 
analyzed per- and polyfluoroalkyl substances (PFAS) in one 
PW-NM-SWD sample and one Pecos RW-NM sample. This is the first 
study that investigated PFAS in PW samples to the best of our knowl-
edge. We also obtained data (wet chemistry and inorganics) from 
additional 22 PW samples from SWD wells (Points 1, 3, and 4 in Fig. 1 
(a)) and then combined all the data (in total 46 samples) for statistical 
analyses. This study is a first step toward a better understanding of PW 
quality in the Permian Basin; the objective of this study and our future 
research is to support the O&G industry, regulators, and stakeholders 
with information for risk-based assessment and designing optimal 
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methods for treatment and potential beneficial use of treated PW outside 
the O&G industry. 

2. Materials and methods 

2.1. Water sample collection 

This study included 46 PW samples from the Permian Basin. Fig. 1(a) 
identifies sampling locations. Fig. 1(b) describes the TDS distribution for 
samples from each sampling point with mean, max, min, and standard 
deviation of TDS concentrations. Twenty-four PW samples (14 from the 
Delaware Basin in NM; and 10 from the Midland Basin in TX) were 
collected from unconventional reservoirs and analyzed by the authors. 
The information (wet chemistry and inorganics) for the other 22 PW 
samples was provided by industry collaborators in the Permian Basin. 
Samples were all from unconventional wells and collected from the 
wellhead, separator, PW storage tank/pond, and the back end of the 
SWD tank battery system. To track the temporal change of general water 
quality, ten PW-NM-SWD samples from the back end of a SWD tank 
battery system and ten Pecos RW-NM samples (Point 2 in Fig. 1(a)) were 
collected between January to September 2020 from the Delaware Basin 
(western subbasin of the Permian Basin), near Carlsbad, New Mexico. 

Samples for wet chemistry, inorganic, and radionuclide analyses 
were collected in sterile plastic bottles. Samples for organic analyses 
were collected in method-specific bottles provided by the analytical 
laboratories. All samples were stored at 4 ◦C and transported to the labs 
on the same day under chain of custody. All sample collection, preser-
vation, shipping, and analyses followed the United States Environmental 
Protection Agency (EPA) guidance and standard practices. 

2.2. Wet chemistry, inorganic, and radionuclides analyses 

Total dissolved solids (TDS) and total suspended solids (TSS) were 
measured by EPA standard methods 2540 C and 2540D (gravimetric 
method) using 0.15 µm filters. Total organic carbon (TOC) and dissolved 
organic carbon (DOC, using 0.45 µm filters) were measured using a TOC- 
V CSH Total Organic Carbon Analyzer (Shimadzu, Japan), following 
EPA method 415.3. The TOC procedure allows for removal of settleable 
solids and any free oil layer to prevent the clogging of valves, tubing, and 
injection needles. The suspended particles are included in the TOC 
measurement. pH was measured using a benchtop multi-parameter 

meter (pH/con 300 Meter, Oakton Instruments, IL, USA). Ammonia 
was measured using a Hach DR6000 spectrophotometer with salicylate 
method 10031 (Hach, CO, USA). Chemical oxygen demand (COD) was 
measured using Hach COD test kits (Hach, CO, USA). Alkalinity was 
measured using Hach alkalinity test kits (Hach, CO, USA). Major anions 
were measured using ion chromatography (IC; Dionex ICS-2100, 
Thermo Fisher Scientific, CA, USA) following EPA method 300.0. 
Unfiltered, acidified water samples were used to measure the total 
metals and trace elements using an inductively coupled plasma optical 
emission spectroscopy (ICP-OES; Optima 4300 DV, PerkinElmer, MA, 
USA) and an inductively coupled plasma mass spectroscopy (ICP-MS; 
Elan DRC-e, PerkinElmer, MA, USA), using EPA method 200.7 and 
200.8, respectively. Methylene blue active substances (surfactants) were 
analyzed based on EPA method 425.1. Radium-226 and Radium-228 
were measured based on EPA methods 903.0 and 904.0, respectively, 
utilizing gamma spectroscopy. Gross Alpha and Gross Beta counts were 
based on EPA method 900.0. 

2.3. Fluorescence excitation emission matrices (FEEM) analyses 

FEEM was used to analyze the composition of dissolved organic 
matter (DOM) in the PW and river water samples. Spectra were obtained 
using a spectrofluorometer (Aqualog-UV-800-C, Horiba Instruments, 
NJ, USA). Excitation wavelengths were from 240 to 400 nm in 10 nm 
steps, and emission wavelengths were from 300 to 550 nm in 2 nm steps. 
Spectrum of deionized water at the wavelength of 350 nm was recorded 
as blank, and the equipment was auto zeroed before each analysis. In 
general, FEEM spectra can be divided into five regions (Jiang et al., 
2020): Region I (Ex/Em 240–250/300–330 nm) and Region II (Ex/Em 
240–250/330–380 nm): aromatic hydrocarbons; Region III (Ex/Em 
240–250/380–550 nm): fulvic acid-like substances; Region IV (Ex/Em 
250–400/300–380 nm): Microbial byproduct-like materials, such as 
carbohydrates, aldehydes, and alcohols; and Region V (Ex/Em 
250–400/380–550 nm): humic acid-like organics. All spectra were 
corrected to 1 mg/L DOC using a suitable scale range. 

2.4. Organic analyses 

Organic analyses were performed by Eurofins Test America. Unfil-
tered water samples were collected in the method-specific bottles pro-
vided by the laboratory and shipped at 4 ◦C for analyses. VOCs were 

Fig. 1. (a) Sampling points of PW and Pecos River water in this study. (b) TDS distribution of PW at different sampling points. “x” represents Mean value, “–” from 
top to bottom represent Max, Median, and Min values, respectively. Two dots in Sampling Point 5 are outliers during the statistical analysis using the box and whisker 
plot. For PW samples: Point 1 (7 samples) TDS: 140,891 ± 38,516 mg/L; Point 2 (12 samples) TDS: 123,298 ± 8752 mg/L; Point 3 (5 samples) TDS: 
122,440 ± 14,217 mg/L; Point 4 (12 samples) TDS: 132,044 ± 15,933 mg/L; Point 5 (10 samples) TDS: 125,439 ± 25,368 mg/L. Detailed TDS data for each 
sampling point are in Data in Brief. Permian Basin County map is cited from (Shaleexperts, 2021). 
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isolated via purge and trap, and SVOCs were subject to liquid-liquid 
extraction. They were analyzed using gas chromatography (GC, Agi-
lent 6890) coupled with a quadrupole mass spectrometer (MS, Agilent 
5973), following EPA method 8260 C and EPA method 8270D, respec-
tively. Total petroleum hydrocarbons (TPH) and organic acids were 
analyzed using GC coupled with a flame ionization detector (Agilent 
5890) following EPA method 8015D. Pesticides/herbicides were 
analyzed using GC (Agilent 5890) coupled with an electron capture 
detector following EPA method 8081B. PFAS were analyzed using solid- 
phase extraction and liquid chromatography-tandem mass spectrometry 
(LC/MS/MS, SCIEX 5500) following a modification of EPA method 537. 
The method detection limits and reporting limits for each PFAS in PW 
and river water samples are listed in Table 4. Dioxins analyses were 
performed via high-resolution GC/MS (Thermo DFS) in accordance with 
EPA method 1613B. Blank sample and external/internal standard cali-
bration were used for quantification. Isotopic dilution was used to aid in 
quantitation for both PFAS and dioxin analyses. 

3. Results and discussion 

To check data quality in this study, charge balance (or anion-cation 
balance) was calculated for each sample, including samples measured by 
the authors and samples from other sources. All the samples had a 
percent error lower than 10%, except for three PW samples that had 
errors of 10.6%, 10.4%, and 11.0%, which might be caused by sample 
dilution factors and analytical errors when analyzing highly saline PW 
samples. 

3.1. Chemical characterizations of PW samples 

Tables 1 and 2 summarize the statistical results of general water 
quality parameters and element analyses (including radionuclides) of 
the total 46 PW samples. Detailed data for each sample can be found in 
Data in Brief. Concentrations of TDS, TOC, and ammonia have mean 
values of 128,423 mg/L, 104 mg/L, and 432 mg/L, respectively. These 
results are similar to previously reported PW quality from the Permian 
Basin (Jiang et al., 2021b; Rodriguez et al., 2020). TDS has a wide range 
from 100,000 to 201,000 mg/L, and the concentration of Cl- and Na+

(Table 2) correspond to 62.1% and 31.3 wt% of the TDS. These results 
are consistent with previous reports that nearly all basin waters with 
TDS concentrations above 10,000 mg/L are dominated by Na and Cl 
(Hanor, 1994) and that PW from the tight O&G plays is dominated by Na 
(median: 15,000–76,000 mg/L) and Cl (median: 22,000–150,000 mg/L) 
(Scanlon et al., 2020b). The median TDS in the Permian Basin (122, 
000 mg/L) is lower than in the Bakken tight oil (244,000 mg/L) and the 
Appalachian Basin Marcellus and Utica shale gas plays (166,000 mg/L) 
but higher than in the Eagle Ford shale play (57,000 mg/L) (Scanlon 
et al., 2020b). 

TDS provides an indication of the PW mineral content, which is a 
major concern for PW management, treatment, and reuse. High salinity 
water corrodes metal pipes and tanks, which could be problematic for 

PW transport, storage, and treatment. In addition, high concentrations 
of scale-forming ions, such as Ca2+ (mean concentration of 3821 mg/L), 
Mg2+ (745 mg/L), Sr2+ (450 mg/L), SO4

2- (496 mg/L), and SiO2 
(108 mg/L), can cause scaling and decrease the performance of man-
agement/treatment systems. The SO4

2- ion can also be reduced to H2S by 
sulfate-reducing bacteria, which is a safety hazard to workers in addition 
to being corrosive. 

High TDS limits the choice of treatment technologies. Reverse 
osmosis (RO) can be used to treat water with TDS < 30,000–45,000 mg/ 
L (Chang et al., 2019). For unconventional PW with higher TDS con-
centration found across the Permian Basin, thermal techniques are 
required for treatment, such as thermal distillation and solar still (Chen 
et al., 2021; Liden et al., 2019, 2018). Resource and mineral recovery 
from PW has also been reported in a previous study which simulta-
neously recovered NH4

+, K+, and Mg2+ from PW by struvite precipita-
tion after calcium pretreatment (Hu et al., 2021). Following mineral 
recovery, softened PW can be further treated for different fit-for-purpose 
applications. 

PW may contain naturally occurring radioactive material (NORM), 
and the high concentration of Cl- enhances the solubility of NORM 
(Fisher, 1998). Currently, there is limited data or information regarding 
the presence of NORM in Permian Basin PW. The ten PW-NM-SWD 
temporal samples collected from Sampling Point 2 (Fig. 1(a)) were 
analyzed for the NORM. Radium-226 + 228, uranium-234 + 238, 
thorium-228 + 230, polonium-210, and plutonium-238 were detected 
in the samples. In contrast, neptunium-237, americium-241, 
uranium-235, thorium-232, and plutonium-239 + 240 were not detec-
ted (Data in Brief). Ra-226 (half-lives of 1600 yr) and Ra-228 (half-lives 
of 5.75 yr) were chosen for comparison because they are the most 
abundant and most widely detected in other basins and represent the 
first soluble daughter product in the uranium-238 and thorium-232 
decay chains, respectively. Results show total Ra (Ra-226 + Ra-228) 
has a mean level of 469.3 pCi/L (pico curies/L). As references, the re-
sults in this study are similar to a previous study for the Permian Basin 
(535 pCi/L), lower than other major O&G production basins such as 
Marcellus shale (median: 1980 pCi/L) and Bakken (1200 pCi/L), and 
higher than Eagle Ford (284 pCi/L) (Scanlon et al., 2020b). These results 
also show a large temporal variance between PW samples from 2.56 to 
576 pCi/L for Ra-228 and from 0.74 to 970 pCi/L for Ra-226 in Sampling 
Point 2. 

While the focus is primarily on the quantitation of Ra-226 and Ra- 
228, both exist as parts of the uranium-238 and thorium-232 decay 
chains, respectively. Parent and daughter isotopes have been identified 
in PW, although the various long-lived parent products (e.g., thorium- 
230 and thorium-228, respectively) are largely insoluble and both 
decay into gases (radon-222 and radon-224), which can be transported 
elsewhere. 

Table 1 
Statistical results of general quality parameters of the total 46 PW samples.    

Mean Max Min 25th percentile 50th percentile 75th percentile 

Alkalinity mg/L as CaCO3 272 870 100 128 207 336 
Ammonia mg/L 432 750 320 330 400 495 
COD mg/L 1626 3100 930 1250 1400 1950 
pH SU 6.6 8.1 3.9 6.3 6.7 7.0 
TDS mg/L 128,641 201,474 100,830 113,441 122,280 134,525 
TOC mg/L 103.5 248.1 2.4 28 90.6 173.3 
TSS mg/L 342.9 790 85 142.5 375 422.5 
Turbidity NTU 116.4 200 23 36 110 200 
MBAS mg/L 1.10 2.1 0.047 0.92 0.97 1.33 

Note: COD: Chemical Oxygen Demand; TDS: Total Dissolved Solids; TOC: Total Organic Carbon; TSS: Total Suspended Solids; MBAS: Methylene Blue Active 
Substances. 
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3.2. Dissolved organic matter (DOM) in PW-NM-SWD characterized by 
FEEM analyses 

It is costly and time-consuming to analyze the whole profile of 
organic compounds in PW samples because they contain numerous 
anthropogenic and natural organics (Section 3.3). 3D-FEEM can provide 
pragmatic information for the DOM in PW based on the phenomenon 
that a large portion of organic compounds, such as proteins and bacterial 
metabolites (fulvic and humic substances), have fluorescent emission 
characteristics (Jiang et al., 2021a). Although FEEM lacks quantitative 
information on specific compounds, it provides low cost and real-time 
results compared to GC/LC-MS, and the advantages of higher selec-
tivity and a wider range compared to conventional fluorescence. 

In this study, FEEM was used to characterize DOM in three PW-NM- 
SWD samples collected from three different SWD facilities in the Dela-
ware Basin and one Pecos RW-NM sample from Carlsbad, NM (all 
samples were collected from Sampling Point 2 in Fig. 1(a)). All three PW 
samples have similar peaks in regions I, II, III, and IV (Fig. 2). However, 
intensities varied between peaks. PW3 has more peaks compared to PW1 
and PW2. PW1 and PW2 have the strongest peaks in region IV, indi-
cating a high concentration of microbial byproduct-like materials asso-
ciated with the activity of microbial metabolism. If these PWs are to be 

reused for HF, more biocides may be required. PW3 has the strongest 
peak in regions I, II, III, and IV that represent high concentrations of 
aromatic hydrocarbon, fulvic acid-like substances, and microbial 
byproduct-like materials (Dahm et al., 2013). PW1 and PW2 showed 
relatively lower peak intensity in region III, fulvic acid-like substances. 
All samples had low-intensity peaks in region V, which are humic 
acid-like materials. Such quick FEEM analyses could be performed in a 
field lab as a real-time indicator of organic substances and petroleum 
hydrocarbons to assist in on-site evaluation of PW treatment perfor-
mance. The Pecos River sample showed much lower intensity (0–0.025) 
of DOM compared with PW samples (0–0.7). The major peaks for the 
Pecos River sample represent aromatic carbon (regions I and II) and 
fulvic acid-like substances (region III). 

The FEEM results, however, do not provide more information 
regarding the specific organic compounds and their quantity. Some 
compounds may cause negative environmental and health impacts in 
very low concentrations. Thus, targeted organic compound analyses 
were performed in this study to investigate the organic profile in PW 
samples. 

Table 2 
Statistical results of comprehensive elements analyses of the 46 PW samples.    

Mean Max Min 25th percentile 50th percentile 75th percentile 

Cations        
Aluminum mg/L 1.09 3.95 0.37 0.63 0.76 1.25 
Arsenic mg/L 3.17 6.04 1.62 1.74 2.64 4.61 
Barium mg/L 2.21 12.00 0.10 0.45 1.69 3.00 
Beryllium mg/L 0.03 0.04 0.01 0.01 0.03 0.04 
Bismuth mg/L 1.02 1.77 0.71 0.72 0.81 1.55 
Boron mg/L 42.34 76.50 17.20 33.29 40.65 51.03 
Cadmium mg/L 0.47 0.81 0.04 0.08 0.63 0.77 
Calcium mg/L 3821 8186 880 1705 3531 5744 
Chromium µg/L 1.7 2.2 1.3 1.3 1.6 2.2 
Cobalt µg/L 7.7 7.8 7.5 7.5 7.7 7.8 
Copper mg/L 0.65 1.46 0.24 0.24 0.45 1.26 
Ferrous iron mg/L 3.09 6.70 0.57 0.73 3.00 5.50 
Iron mg/L 19.35 65.20 0.50 4.60 14.00 25.70 
Lithium mg/L 22.39 52.28 11.74 20.00 21.02 23.40 
Magnesium mg/L 745.0 1877 295.3 472.7 621.3 959.1 
Manganese µg/L 488 1239 10 116 427 781 
Molybdenum mg/L 0.21 0.38 0.10 0.11 0.18 0.35 
Potassium mg/L 923 3637 222 449 808 1171 
Selenium mg/L 2.5 2.5 2.5 n/a 2.5 n/a 
Silica mg/L 107.7 195.4 4.0 29.2 115.7 178.2 
Sodium mg/L 40,896 68,985 25,080 37,000 39,673 42,967 
Strontium mg/L 449.9 1404 28.9 116.4 325.3 816.5 
Thallium mg/L 0.83 0.84 0.82 n/a 0.83 n/a 
Thorium mg/L 0.048 0.054 0.035 0.035 0.054 0.054 
Uranium mg/L 0.303 0.5 0.19 0.19 0.22 0.5 
Vanadium µg/L 79.6 94.5 61.4 61.4 83.0 94.5 
Zinc mg/L 1.14 1.81 0.17 0.17 1.45 1.81 
Anions        
Sulfate mg/L 496 965 151 243 510 690 
Phosphorus as P mg/L 8.5 36.0 1.7 2.5 6.4 8.9 
Nitrite as N mg/L n/a 16 n/a n/a n/a n/a 
Iodide mg/L 88 94 77 82 90 94 
Chloride mg/L 78,648 120,200 57,543 69,269 75,658 86,979 
Bromide mg/L 431 960 95 238 289 608 
Radionuclides        
Gross Alpha pCi/L 1105.6 1630 660 745 863 1630 
Gross Beta pCi/L 874.6 1230 456 748 889 1050 
Radium-226 pCi/L 237.6 970.0 0.7 19.1 72.8 415.5 
Radium-228 pCi/L 231.7 576.0 2.6 137.5 273.0 285.0 
Uranium-234 pCi/L 0.33 0.76 0.20 0.24 0.24 0.24 
Uranium-238 pCi/L 0.17 0.17 0.17 n/a n/a n/a 
Thorium-228 pCi/L 21.5 52.1 3.4 3.7 21.5 30.5 
Thorium-230 pCi/L 0.22 0.39 0.09 0.17 0.21 0.24 
Polonium-210 pCi/L 3.28 5.38 1.75 2.24 2.72 4.05 
Plutonium-238 pCi/L 0.17 0.17 0.17 n/a n/a n/a 

Note: n/a: not available. 
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3.3. Target organic analyses 

As discussed in Sections 2.4 and 3.2, advanced analytical in-
struments/methods were used for the targeted analysis of organic 
compounds in the ten temporal PW-NM-SWD samples from Sampling 
Point 2 in Fig. 1(a). In summary, 28 organic compounds, PFAS, diesel 
range organics (DRO), gasoline range organics (GRO), and motor oil 
range organics (MRO), were quantitatively identified in these PW-NM- 
SWD samples, while other 218 constituents were not detected. The list 
of undetected compounds can be found in Data in Brief. 

Table 3 shows the statistical results of organic compounds quantified 
during the analyses of the ten PW-NM-SWD samples. Detected VOCs of 
high relative abundances include benzene (min – max: 1900 – 4900 µg/ 
L), toluene (1700 – 3700 µg/L), ethylbenzene (72 – 160 µg/L), and 
xylene (710 – 1600 µg/L). Results are consistent with other studies and 
are anticipated because these compounds are closely related to O&G 
production (Lester et al., 2015). BTEX constituents usually have the 
highest concentrations during the HF flowback period (Luek and Gon-
sior, 2017). No other VOCs were detected, which may be because 
samples were collected at an SWD, and volatilization might occur during 
transportation (piping and trucking) and storage before sampling. 

For general SVOCs, phenol (170–250 µg/L) and pyridine 
(120–300 µg/L) have the highest relative abundances. Phenol has been 

reported as being used in HF fluid to help coat sand proppants and as a 
disinfectant to eliminate bacteria (Jackson, 2014). The leaching of 
phenol and formaldehyde (detected in the range of 53–210 µg/L in this 
study) depends on the temperature in the formation (Mazerov, 2013; 
Schenk et al., 2019). Pyridine is the most frequently detected SVOC in 
HF fluids, which may be due to its use as a precursor for one of the HF 
additives (U.S.EPA, 2011), and it has been reported as naturally occur-
ring in oil shales (Roper, 1992). Alcohols are also used for several 
functions in HF fluids, production chemistry, and SWD treatment 
chemistry. They are routinely used as solvents, surfactants, gelling 
agents, friction reducer, and corrosion inhibitors. This study detected 
the mostly frequently used alcohols including methanol (5.6–52 mg/L), 
ethanol (0.14–0.98 mg/L), ethylene glycol (ND–27 mg/L), and phenols 
(FracFocus, 2021). The alcohols detected in this study are likely from 
production and SWD treatment chemistry, not HF chemistry. Other 
SVOCs such as 1,4-dioxane (ND – 21 µg/L), 1-methylnaphthalene 
(15–36 µg/L), and 2,4-dimethylphenol (29–42 µg/L) were detected in 
this study and reported in other studies (Luek and Gonsior, 2017). 

Biocides are often added to HF fluids and fluids associated with 
production operation for unconventional O&G development and SWD 
treatment to inactivate bacteria that are ubiquitous in the environment 
and cause problems during HF, including biofouling, production of toxic 
H2S, and corrosion of metal equipment (Jiang et al., 2021a). In this 

Fig. 2. FEEM spectra of three PW-NM-SWD samples from the Delaware Basin and one Pecos RW-NM sample from Carlsbad, New Mexico. All spectra are normalized 
to 1 mg/L DOC with a suitable scale for fluorescence intensity (PW: 0–0.7; Pecos RW: 0–0.025). 
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study, the commonly used biocides, including quaternary ammonium 
chloride and glutaraldehyde for HF (FracFocus, 2021), were not detec-
ted. Detected biocides at very low concentrations include three orga-
nochloride insecticides: alpha-benzene hexachloride (0.009 – 
0.027 µg/L), endosulfan I (0.73 – 0.98 µg/L), and endrin (ND – 
0.004 µg/L). Reasons for these results may include, firstly, the biocides 
can react with microbes and other chemicals during the HF and be 
degraded to other organic compounds. Secondly, biocides can undergo 
chemical changes in the subsurface, which has different temperatures, 
salinity, and pH. A study simulated the transformation of glutaraldehyde 
during HF and found that the fate of glutaraldehyde depended on 
downhole conditions. It can undergo rapid auto-polymerization and 
sorb onto shale and then remain underground, or it can remain stable 
and return to the surface with a half-life of 20 days (Kahrilas et al., 
2016). Thirdly, samples collected in this study were mainly PW, in 
which biocides may have a lower concentration than in HF flowback 
water. 

Acids are used as iron controllers and pH adjusting agents during 
O&G production. This study found the concentrations of organic acids 
were highly variable from non-detect to a maximum concentration of 
89 mg/L for acetic acid, 7.1 mg/L for butyric acid, and 5.7 mg/L for 
propionic acid. They may correspond with SWD treatment chemistry. 
However, it may also come from anaerobic microbial metabolism by 
degrading the biopolymers during HF (Olsson et al., 2013) or degrada-
tion of organic matter in the reservoir at temperatures above 80 ◦C 

(Carothers and Kharaka, 1978). Better control of bacteria in PW may 
decrease the concentrations organic acids. 

Polycyclic aromatic hydrocarbons (PAHs) are a large class of cancer- 
causing chemicals and occur naturally in coal, crude oil, and gasoline. 
They have been quantitatively reported in several studies, including in 
Denver-Julesburg Basin flowback samples (Lester et al., 2015) and in 
Marcellus PW samples (Jackson, 2014). According to the United States 
Centers for Disease Control and Prevention, the health effects of people 
exposed to low levels of PAHs are unknown; large amounts of PAHs can 
cause blood and liver abnormalities (Centers for Disease Control and 
Prevention, 2019). The PAHs detected in this study are in low µg/L 
range, including anthracene (min – max: ND – 1.1 µg/L), naphthalene 
(11 – 24 µg/L), phenanthrene (2.7 – 6.6 µg/L), and fluorene (3.1 – 
5.6 µg/L). As anticipated for PW samples, oil and grease were detected 
in relatively high concentrations in the PW samples with diesel range 
organics (22 – 130 mg/L), gasoline range organics (13 – 46 mg/L), and 
motor oil range organics (12 – 97 mg/L). 

Tentatively identified compounds (TICs) with a mean of 531 µg/L 
were detected in the PW-NM-SWD samples. TIC refers to a compound 
that can be detected by the analysis method, but its identity cannot be 
confirmed without further investigation. All VOC and SVOC samples 
analyzed by the commercial laboratory were subject to TIC searches 
using the National Institute of Standards and Technology (NIST) mass 
spectra library, which consists of hundreds of thousands of identified 
compounds. To improve hazard and risk assessment, and reduce concern 

Table 3 
Statistical results of the detected organic compounds in the ten PW-NM-SWD samples.    

Mean Max Min 25th percentile 50th percentile 75th percentile 

VOC        
Benzene µg/L 2611.1 4900 1900 2200 2200 2600 
Ethylbenzene µg/L 112.2 160 72 93 110 130 
Toluene µg/L 2533 3700 1700 2000 2400 2900 
Xylenes, Total µg/L 1185.6 1600 710 1100 1300 1400 
SVOC - General        
1,1′-Biphenyl µg/L 5.9 8.5 3.8 4.6 5.2 7.2 
1,4-Dioxane µg/L n/a 21 ND n/a n/a n/a 
1-Methylnaphthalene µg/L 22.7 36 15 18 21 26 
2-Methylnaphthalene µg/L 38.3 65 26 29 36 45 
2-Methylphenol µg/L 81.8 98 68 77 80 85 
2,4-Dimethylphenol µg/L 34.1 42 29 31.5 33 36 
Ethylene glycol mg/L n/a 27 ND n/a 27 n/a 
Ethanol mg/L 0.51 0.98 0.14 0.21 0.57 0.67 
Methanol mg/L 24.5 52 5.6 12 26 27 
Methylphenol, 3 & 4 µg/L 90.4 110 72 85 91 96 
Phenol µg/L 203.3 250 170 170 210 220 
Pyridine µg/L 237.5 300 120 235 240 260 
Pesticides/Herbicides        
alpha-BHC (benzene hexachloride) µg/L 0.018 0.027 0.009 n/a n/a n/a 
Endosulfan I µg/L 0.855 0.98 0.73 n/a n/a n/a 
Endrin µg/L n/a 0.004 ND n/a 0.004 n/a 
Organic Acids        
Acetic acid mg/L n/a 89 n/a n/a n/a n/a 
Butyric acid mg/L n/a 7.1 n/a n/a 7.1 n/a 
Propionic acid mg/L n/a 5.7 n/a n/a 5.7 n/a 
SVOC-PAH        
Anthracene µg/L n/a 1.1 ND n/a n/a n/a 
Naphthalene µg/L 15 24 11 12 16 16 
Phenanthrene µg/L 3.76 6.6 2.7 3.18 3.4 4.03 
Fluorene µg/L 4.35 5.6 3.1 n/a 4.7 n/a 
Carbonyl Compounds 
Formaldehyde mg/L 0.14 0.21 0.053 0.11 0.15 0.18 
SVOC-TPH        
n-Decane µg/L 556.7 890 340 390 530 610 
Oil and Grease        
DRO (C10-C20) mg/L 49 130 22 26 35 52 
GRO (C6-C10) mg/L 23.5 46 13 15 19.5 28 
MRO (C20-C34) mg/L 32.4 97 12 16 26 32 
Tributyl phosphate µg/L 34.6 74 3.3 12 30.5 53 
Tentatively Identified Compounds (TIC) µg/L 531.1 1000 280 320 350 840 

Note: n/a: data not available; ND: not detected. PAH: polycyclic aromatic hydrocarbon; TPH: total petroleum hydrocarbons; DRO: diesel range organics; GRO: gasoline 
range organics; MRO: motor oil range organics. 

W. Jiang et al.                                                                                                                                                                                                                                   

NMED Exhibit 140
003934



Journal of Hazardous Materials 430 (2022) 128409

8

for reuse of treated PW, an effort should be made to identify compounds 
of concern within this unresolved fraction (U.S.EPA, 2020). A TIC can be 
converted to a target analyte if the method is developed to include the 
compound. This can be done by including reference standards for the 
chemical in calibration and quality control samples. Our future research 
will focus on the non-target analysis of these unknown chemicals in 
raw/untreated and treated PW using high-resolution LC/MS. 

3.4. PFAS analyses 

PFAS have been widely used in a variety of consumer products and in 
industrial applications. At the time of this study, they are considered 
recalcitrant in the environment due to the limited and/or slow break-
down of the perfluorocarbon moieties although additional research is 
ongoing (Ghisi et al., 2019). Further, PFAS can accumulate or concen-
trate in the environment and may have the potential to cause adverse 
health effects (Kwiatkowski et al., 2020). The U.S. EPA established the 
lifetime health advisory levels at 70 ng/L for combined per-
fluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) 
concentrations in the drinking water (U.S.EPA, 2016). Currently, there is 
limited testing of PFAS in public water sources in the Permian Basin, and 
no published study investigated PFAS in PW to the best of our knowl-
edge. Hence, PFAS analyses were performed on one PW-NM-SWD 
sample from an SWD facility in Sampling Point 2 (Fig. 1(a)) and one 
Pecos RW-NM sample (Table 4). Despite the limited sample size, this is 
the first step towards the characterization of PFAS in PW and Pecos River 
water. 

For the analyses, each sample was spiked with isotopically labeled 
homologs of target analytes to monitor matrix interference, extraction 
efficiency, and analytical precision and accuracy. For the data reported, 
there is a difference between reporting limits (RL) and method detection 
limits (MDL). The RL generally corresponds with the lowest range of 
calibration, while the MDL is a statistical calculation of the lowest 
possible concentration that can be detected above background noise. 
Detections above the MDL but below the RL are designated with a “J” 

flag to indicate that the value is an estimate since it is below the lowest 
point of the calibration curve. 

There is also a need to analyze method blank and laboratory control 
samples because of the potential for trace level detection of the PFAS, 
even with reagent-grade purified water in cleanroom conditions. If re-
sults were detected above the RL, the entire analytical batch would have 
to be re-extracted. If method blanks and/or laboratory control samples 
were detected, even with a J flag value (i.e., MDL<detection<RL), 
samples associated with this analytical batch that were detected for the 
same analytes were designated with a “B” flag to denote potential 
detection in a blank. 

In total 34 PFAS compounds were analyzed in this study (Table 4). 
Five PFAS compounds were detected in the PW sample including PFBS 
(0.17 J ng/L, full names are listed in Table 4 note), PFBA (0.31 J B ng/ 
L), PFHxS (0.25 J B ng/L), NEtFOSE (0.98 J ng/L), and PFTeA 
(0.24 J ng/L). These PFAS were estimated in very low concentrations 
with “J” flag values - slightly above MDL but below RL. In addition, 
PFBA and PFHxS had estimated values with a “B” flag, indicating they 
were detected in the blank samples. 

More PFAS compounds were detected in the Pecos RW-NM sample 
(10 compounds) and at higher concentrations than the PW-NM sample 
(5 compounds). PFAS detected in the Pecos River sample include PFBS 
(2.0 ng/L), PFBA (1.3 J B ng/L), PFHpA (0.35 J ng/L), PFHxS (1.0 J B 
ng/L), PFHxA (1.2 J ng/L), FOSA (0.54 J B ng/L), PFOS (1.2 J ng/L), 
PFOA (1.0 J ng/L), PFPeS (0.24 J ng/L), and PFPeA (1.8 ng/L). In 
general, trace PFAS may be expected in the Pecos River samples as these 
compounds are ubiquitous in the environment. It is not expected to find 
PFAS in the formation water that has been geologically sequestered from 
synthetic organic chemicals. According to the FracFocus, no PFAS were 
used in HF chemical additives in the Permian Basin (FracFocus, 2021). 
However, fluoropolymers and fluorinated surfactants are reported in 
FracFocus for HF in the Permian Basin and other basins (FracFocus, 
2021). Identification of these substances is challenging due to trade 
secret or proprietary information; further non-target and target analyt-
ical methods can be utilized to characterize these substances in PW. 

Table 4 
PFAS analyses results of a PW-NM-SWD and a Pecos RW-NM sample (unit: ng/L).   

PW/ Pecos PW MDL/RL Pecos MDL/RL  PW/ Pecos PW MDL/RL Pecos MDL/RL 

PFBS 0.17 J/2.0 0.15/1.5 0.16/1.6 PFNS ND/ND 0.12/1.5 0.13/1.6 
PFBA 0.31 J B/ 1.3 J B 0.25/1.5 0.28/1.6 PFNA ND/ND 0.2/1.5 0.21/1.6 
PFDS ND/ND 0.23/1.5 0.25/1.6 FOSA ND/ 0.54 J B 0.25/1.5 0.28/1.6 
PFDA ND/ND 0.23/1.5 0.24/1.6 PFOS ND/1.2 J 0.39/1.5 0.42/1.6 
PFDoS ND/ND 0.33/1.6 0.35/1.6 PFOA ND/1.0 J 0.62/1.5 0.67/1.6 
PFDoA ND/ND 0.4/1.6 0.43/1.6 PFPeS ND/0.24 J 0.22/1.5 0.24/1.6 
PFHpS ND/ND 0.14/1.6 0.15/1.6 PFPeA ND/1.8 0.36/1.5 0.39/1.6 
PFHpA ND/0.35 J 0.18/1.5 0.2/1.6 PFTeA 0.24 J/ND 0.21/1.5 0.23/1.6 
PFHxS 0.25 J B/ 1.0 J B 0.12/1.5 0.13/1.6 PFTriA ND/ND 0.94/1.5 1/1.6 
PFHxA ND /1.2 J 0.42/1.5 0.46/1.6 PFUnA ND/ND 0.8/1.5 0.87/1.6 
NEtFOSA ND/ND 0.63/1.5 0.68/1.6 NMeFOSA ND/ND 0.31/1.5 0.34/1.6 
NEtFOSE 0.98 J/ND 0.62/1.5 0.67/1.6 NMeFOSAA ND/ND 2.3/15 2.4/16 
NEtFOSAA ND/ND 1.4/15 1.5/16 NMeFOSE ND/ND 1/2.9 1.1/3.1 
4:2 FTS ND/ND 3.8/15 4.1/16 6:2 FTS ND/ND 1.5/15 1.6/16 
8:2 FTS ND/ND 1.5/15 1.6/16 10:2 FTS ND/ND 0.14/1.5 0.15/1.6 
DONA ND/ND 0.13/1.5 0.14/1.6 HFPO-DA (GenX) ND/ND 1.1/2.9 1.2/3.0 
F-53B Major ND/ND 0.17/1.5 0.19/1.6 F-53B Minor ND/ND 0.23/1.5 0.25/1.6 

Note: ND: not detected; MDL: minimal detection limit (U.S.EPA, 2022); RL: reporting limit. 
J: below reporting limit but above minimal detection limit; B: potential blank contamination. 
PFBS: Perfluorobutanesulfonic acid; PFBA: Perfluorobutanoic acid; PFDS: Perfluorodecanesulfonic acid; PFDA: Perfluorodecanoic acid; PFDoS: Per-
fluorododecanesulfonic acid; PFDoA: Perfluorododecanoic acid; PFHpS: Perfluoroheptanesulfonic acid; PFHpA: Perfluoroheptanoic acid; PFHxS: Per-
fluorohexanesulfonic acid; PFHxA: Perfluorohexanoic acid; PFNS: Perfluorononanesulfonic acid; PFNA: Perfluorononanoic acid; FOSA: Perfluorooctanesulfonamide; 
PFOS: Perfluorooctanesulfonic acid; PFOA: Perfluorooctanoic acid; PFPeS: Perfluoropentanesulfonic acid; PFPeA: Perfluoropentanoic acid; PFTeA: Per-
fluorotetradecanoic acid; PFTriA: Perfluorotridecanoic acid; PFUnA: Perfluoroundecanoic acid; NEtFOSA: N-ethyl perfluorooctane sulfonamide; NMeFOSA: N-methyl 
fluorooctane sulfonamide; NEtFOSE: N-ethyl perfluorooctane sulfonamido ethanol; NMeFOSAA: N-Methylperfluorooctane sulfonamidoacetic acid; NEtFOSAA: 
N-ethyl perfluorooctanesulfonamidoacetic acid; NMeFOSE: N-methyl perfluorooctane sulfonamidoethanol; 4:2 FTS: 4:2 Fluorotelomer sulfonic acid; 6:2 FTS: 6:2 
Fluorotelomer Sulfonate; 8:2 FTS: 8:2 Fluorotelomer sulfonic acid; 10:2 FTS: 10:2 Fluorotelomer sulfonic acid; DONA: 4,8-dioxa-3 h-perfluorononanoic acid; PO-DA 
(GenX): 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate; F-53B Major: 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonate; F-53B Minor: 11-Chlororeicosafluor-
o-3-oxaundecane-1-sulfonic acid. 
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It should be noted that the PFAS data presented in this study were 
estimated using only one PW sample collected from an SWD facility and 
one river water sample. More analyses of diverse samples are needed to 
identify the spatial and/or temporal variability. It is also important to 
elucidate the sources of PFAS in PW with the elimination of any po-
tential cross-contamination during PW transportation in pipelines, 
trucking, storage, sampling, or a legacy from the source water intro-
duced into the formation during fracturing. 

3.5. Temporal variability of PW-NM-SWD water quality 

Fig. 3 shows the temporal change of the major constituents in the 
Permian Basin PW-NM-SWD samples in 2020. The means and relative 
standard deviations (RSD) for the major constituents are TDS 
(122,500 mg/L and 7.6%), alkalinity (129 mg/L as CaCO3 and 12.1%), 
Na+ (35,000 mg/L and 4.9%), Cl- (78,200 mg/L and 9.3%), Ca2+

(5800 mg/L and 13.1%), and SO4
2- (528.6 mg/L and 17.2%). Results 

show a stable trend for the major constituents except for the SO4
2-, 

which may be related to bacterial activity and sulfate mineral solubility 
(or scaling potential) in PW. Tracking the quality change would assist 
operators in evaluating process performance. With more data collected, 
machine learning techniques, such as time series analysis, can be used to 
predict the water quality to assist downstream companies or treatment 
facilities to better treat the PW and prevent unanticipated events (Jiang 
et al., 2021b). 

3.6. Analyses of the nearby river water (RW-NM) 

Discharge or reuse of treated PW outside the O&G field is not pres-
ently permitted in the Permian Basin. Characterization of water quality 
of nearby water bodies provides background analytical information and 
baseline data for potential discharge and reuse of treated PW. Tables 5–7 
summarize the statistical results for the analyses of ten Pecos RW-NM 
samples (01/2020–09/2020); PFAS analyses are shown in Table 4. 
Detailed information for each sample can be found in Data in Brief 
(Pecos River). Fig. 4 shows the temporal change of major constituents in 
the Pecos River samples in 2020. Results show the quality of Pecos River 
samples varied seasonally with means and RSDs for the major constit-
uents are TDS (4591 mg/L and 17.7%), alkalinity (140.8 mg/L as CaCO3 
and 14.6%), Na+ (881 mg/L and 29.3%), Cl- (1453 mg/L and 17.3%), 
Ca2+ (570 mg/L and 19.5%), and SO4

2- (1720.5 mg/L and 17%). There 
are multiple possible sources that may contribute to the variations in 

salinity in the river such as PW and shallow brines that are known to be 
presented across much of the region. 

To distinguish between various potential Na+ and Cl- sources to the 
Pecos, Na-Cl-Br systematics were utilized (Fig. 5). Most unconventional 
oil and gas formations in the basin contain ancient, evaporated seawater 
that exhibits a particular relationship between ratios of Br-, Cl-, and Na+

concentrations, depending on the degree of local evaporation that 
occurred in the geologic past (Engle et al., 2016; Nicot et al., 2020). 
Conversely, shallow brine that gains its salinity from the dissolution of 
halite follows a different trajectory, depending on the degree of disso-
lution (Engle et al., 2016). Fig. 5 compares isometric log-ratio trans-
formed Na, Cl, and Br data (see (Engle and Rowan, 2013) for further 
details) of samples from the Permian Basin PW, the Pecos River, and four 
shallow brine samples from immediately above the salt layers in the 
Rustler aquifer, near Carlsbad, New Mexico (Siegel et al., 1991). The 
data are compared against modeled pathways for ancient seawater 
evaporation and halite dissolution as described in Engle et al. (2016). 
Correspondence between Pecos River samples and shallow brine from 
the Rustler aquifer (located stratigraphically above the O&G producing 
formations) suggest that shallow brines from evaporite mineral disso-
lution are the dominant source of salinity to the Pecos River samples. A 
potential reason for the increasing salinity in the Pecos River observed in 
the data is from widespread groundwater withdrawal due to severe 
droughts in the region, allowing for upward migration of shallow brines. 

Radionuclides were detected in the river samples (Table 6). The 
combined Ra-226 and Ra-228 activity was measured as 3.98 pCi/L, 
below the maximum contaminant level (MCL) of EPA’s regulation (5 
pCi/L) for drinking water. However, the maximum of Ra-226 reached 
29.9 pCi/L during the monitoring, reflecting that Ra-226 activity in the 
Pecos River can pass the regulatory limit at some point, which indicates 
more measurements and treatment are required for safe use of Pecos 
River water. Gross Beta is 14.08 pCi/L, below the MCL of 50 pCi/L; 
however, Gross Alpha of 24.6 pCi/L exceeded the MCL of 15 pCi/L. 

There are fewer organic compounds detected in Pecos RW-NM 
samples (6 compounds) compared with PW-NM-SWD samples (28 
compounds). Table 7 shows the quantified organics while the unde-
tected compounds can be found in Data in Brief. No VOCs were found in 
the Pecos River, which is reasonable because of their volatile nature. 
Other detected organics, including pesticides (endosulfan I: 0.004 – 
0.004 µg/L, 4,4′-DDD: ND – 0.01 µg/L, and 4,4′-DDT: ND – 0.006 µg/L), 
PAHs (naphthalene: ND – 6 µg/L and fluorene: ND – 1.2 µg/L), and di-
oxins (2,3,7,8-tetrachlorodibenzodioxin, ND – 0.14 pg/L), were in low 

Fig. 3. Temporal change of the major constituents in ten Permian Basin PW-NM-SWD samples.  
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concentrations. Only motor oil range organics (180 – 310 µg/L) had a 
relatively high concentration, which may be caused by the heavy 
automobile traffic in the Carlsbad area where RW-NM samples were 
collected. Gasoline range organics (ND – 54 µg/L) and TICs (max: 55 µg/ 
L) both had relatively low concentrations compared to the PW samples. 
There were fewer methylene blue active substances (MBAS) detected in 
the river water (0.04–0.12 mg/L) than in the PW samples (0.047 – 
2.1 mg/L). The MBAS measurement indicates that there were anionic 
surfactants present in PW, which is related to the chemicals used in HF 
and well treatment. 

Increased TDS, metal ions, radionuclides, and organics may be of 
concern when using Pecos River water for agriculture, industry, and 
municipal applications. Calcium, barium, and strontium may increase 
scaling, while other heavy metals and unknown organics may cause 
health concerns for humans and animals. High concentrations of sodium 
may deteriorate soil quality, and the sodium adsorption ratio (SAR) of 
the Pecos River water reached 11.8 (Max) in 2020; water with SAR > 9 
may cause severe limitations to soil properties (Flynn, 2009). Thus, it is 
important to continuously monitor the Pecos River water quality and 
evaluate potential risks of beneficial reuse of treated PW such as surface 

Table 5 
Statistical results of general quality parameters of the Pecos RW-NM samples.    

Mean Max Min 25% percentile 50% percentile 75% percentile 

Alkalinity mg/L 140.8 170 118 120 135 162.5 
Ammonia mg/L 0.15 0.2 0.12 0.13 0.14 0.17 
TDS mg/L 4591 6200 3210 4125 4550 5050 
TOC mg/L 4.2 12.3 1.9 2.3 3.1 4.7 
TSS mg/L 43 57 26 32 45 54 
Turbidity NTU 7.5 16.0 1.1 3.9 6.7 11.5 
COD mg/L 28 39 13 22 30 35 
Nitrate as N mg/L 1.2 1.8 0.7 0.8 1.1 1.6 
Nitrite as N mg/L 0.2 0.2 0.2 n/a 0.2 n/a 
pH SU 8.1 8.2 7.7 8.0 8.1 8.2 
SAR  8.5 11.8 5.6 n/a 8.4 n/a 
MBAS mg/L 0.07 0.12 0.04 0.05 0.06 0.08 

Note: n/a: data not available. COD: Chemical Oxygen Demand; TDS: Total Dissolved Solids; TOC: Total Organic Carbon; TSS: Total Suspended Solids; SAR: sodium 
adsorption ratio; MBAS: Methylene Blue Active Substances. 

Table 6 
Statistical results of comprehensive elements analyses of the Pecos RW-NM samples.    

Mean Max Min 25% percentile 50% percentile 75% percentile 

Cations        
Aluminum µg/L 84 84 84 n/a 84 n/a 
Arsenic µg/L 26 26 26 n/a 26 n/a 
Barium µg/L 27 38 18 24 25 32 
Boron µg/L 271 271 271 n/a 271 n/a 
Cadmium µg/L 0.4 0.8 0.0 n/a 0.4 n/a 
Calcium mg/L 570.2 820.0 402.0 512.5 555.0 615.0 
Chromium µg/L 3.2 3.2 3.2 n/a 3.2 n/a 
Cobalt µg/L 5.1 5.1 5.1 n/a 5.1 n/a 
Iron µg/L 518 890 190 270 510 759 
Lead µg/L 1.1 1.1 1.1 n/a 1.1 n/a 
Lithium µg/L 95.2 140.0 58.4 80.8 96.0 110.0 
Magnesium mg/L 150.0 150.0 150.0 n/a 150.0 n/a 
Manganese µg/L 17.1 17.6 16.6 n/a 17.1 n/a 
Mercury µg/L 0.2 0.2 0.2 n/a 0.2 n/a 
Molybdenum µg/L 2.7 2.9 2.4 2.4 2.7 2.9 
Potassium µg/L 8.2 12.0 5.9 7.1 7.8 9.3 
Selenium mg/L 8.2 16.2 2.2 2.2 6.2 16.2 
Silica mg/L 12.9 12.9 12.9 n/a 12.9 n/a 
Sodium mg/L 881 1400 520 668 870 983 
Strontium mg/L 9.5 14.0 5.9 8.8 9.4 10.1 
Uranium µg/L 6.0 6.0 6.0 n/a 6.0 n/a 
Vanadium µg/L 35.6 35.6 35.6 n/a 35.6 n/a 
Anions        
Chloride mg/L 1454 1700 936 1200 1600 1600 
Sulfate mg/L 1721 2100 1205 1475 1750 2000 
Fluoride mg/L 0.7 0.9 0.5 0.7 0.8 0.8 
Bromide mg/L 0.7 0.8 0.5 0.6 0.7 0.8 
Radionuclides        
Gross Alpha pCi/L 24.6 39.8 7.7 12.9 27.4 35.1 
Gross Beta pCi/L 14.1 24.2 1.4 4.2 14.6 23.8 
Radium-226 pCi/L 0.3 1.1 0.1 0.1 0.2 0.3 
Radium-228 pCi/L 3.4 29.9 0.2 0.3 0.4 0.6 
Uranium-234 pCi/L 6.6 7.6 5.5 n/a 6.6 n/a 
Uranium-235 pCi/L 0.4 0.5 0.3 n/a 0.4 n/a 
Uranium-238 pCi/L 3.2 3.5 2.8 n/a 3.2 n/a 
Thorium-228 pCi/L 2.9 3.4 2.4 n/a 2.9 n/a 
Thorium-230 pCi/L 0.1 0.1 0.1 n/a 0.1 n/a 
Polonium-210 pCi/L 0.9 0.9 0.9 n/a 0.9 n/a 

Note: n/a: data not available; ND: not detected. 
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water discharge and irrigation. 

4. Conclusions 

This study provides the physicochemical analyses of 46 PW samples 
and 10 Pecos River samples from the Permian Basin in New Mexico and 
Texas. For PW-NM-SWD samples, 91 analytes were detected and 218 
analytes were not detected (309 in total). For Pecos RW-NM samples, 67 
analytes were detected and 242 analytes were not detected (309 in 
total). Such analyses help better understand the PW and the Pecos River 
water quality in the Permian Basin. The PW data can be used in selecting 
PW treatment and management approaches, identifying the potential for 
mineral recovery (e.g., ammonia, potassium, magnesium), and assisting 
in evaluating PW beneficial reuse feasibility and associated risks. Sur-
face water data will be essential for establishing baseline information for 
potential discharge of treated PW, such as to conduct risks assessment 
and determine total maximum daily loading criteria for constituents of 
concern. Primary research findings are listed below.  

(1) PW samples from unconventional O&G operations in the Permian 
Basin have an average TDS of 128,423 mg/L, TOC of 103 mg/L, 
and ammonia of 432 mg/L. The total Ra has an average level of 
469 pCi/L. Major constituents in the PW showed relatively stable 
temporal trends sampled between January 2020 and September 
2020.  

(2) A variety of organic compounds were detected in PW-NM-SWD 
samples, such as VOCs, SVOCs, pesticides, organic acids, PAH, 
TPH, oil and grease, and unidentified compounds. The majority 
of the organic compounds originate from O&G development; 
some might be related to chemical additives, potential trans-
formation and degradation products, and the constituents in 
makeup water for HF.  

(3) The Pecos RW-NM samples had more PFAS detected and at higher 
concentrations than the PW-NM samples, albeit 8 of 10 PFAS 
detected in the Pecos River and all 5 PFAS detected in the PW 
sample were approximations at low ng/L range (below reporting 
limits). This study is the first step to characterize PFAS in PW. 
More studies are needed to identify the temporal and spatial 
distribution of PFAS and the potential sources of PFAS in PW. It is 
also important to eliminate the PFAS cross-contamination during 
PW transportation, storage, sampling, analytical methodologies, 
or source water used for HF.  

(4) Na-Cl-Br systematics of Pecos River samples match naturally 
occurring shallow brine rather than unconventional PW, sug-
gesting higher shallow brine inputs contributed to river water 
salinity. This interpretation is consistent with the chemical 
analysis results that the organic compounds detected in the Pecos 
River were not associated with PW origins. 
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