BEFORE THE NEW MEXICO OIL CONSERVATION DIVISION

RECEIVED OCD

APPLICATION OF CIMAREX ENERGY CO.

OF COLORADO TO REINSTATE INJECTION 1913 JUL 22 P 3: 49

AUTHORITY, EDDY COUNTY, NEW MEXICO.

Case No. 14994

SUPPLEMENTAL APPLICATION

Cimarex Energy Co. of Colorado applies for an order reinstating the injection authority for a salt water disposal well, and in support thereof, states:

- 1. Division Administrative Order SWD-380, dated October 27, 1989, approved the administrative application of Mallon Oil Company ("Mallon") to inject produced water at depths of 4022-4208 feet subsurface into the Amoco Fed. Well No. 1 (API No. 30-015-24666), located in the NE¼SE¼ of Section 27, Township 26 South, Range 29 East, N.M.P.M.
 - 2. Applicant is a successor operator of the Amoco Fed. Well No. 1.
- 3. Written notice of Mallon's administrative injection application was not given to the surface owner.
- 4. By Order No. R-13699, the Division rescinded Administrative Order SWD-380 due to the lack of notice.
- 5. Applicant requests that the injection authority granted by Administrative Order SWD-380 to dispose of produced water into the Amoco Fed. Well No. 1 in the Delaware formation at depths of 4022-4208 feet subsurface be reinstated, effective as of October 27, 1989.
 - 3. A supplemented Form C-108 for the subject well is attached hereto as Exhibit 1.
 - 4. The granting of this application will prevent waste and protect correlative rights.

WHEREFORE, applicant requests that, after notice and hearing, the Division enter its order approving this application.

Respectfully submitted,

James Bruce

Post Office Box 1056 Santa Fe, New Mexico 87504

(505) 982-2043

Attorney for Cimarex Energy Co. of Colorado

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

1.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No
II.	OPERATOR: Cimarex Energy of Colorado
	ADDRESS: 600 N. Marienfeld Street, Suite 600, Midland, Texas 79701
	CONTACT PARTY: Scott Gengler PHONE: 432-571-7800
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Scott Gengler, TITLE: Engineer
	NAME: Scott Gengler, TITLE: Engineer SIGNATURE: DATE: April 29, 2013
_	E-MAIL ADDRESS: sgengler (@cimarex.com
*	If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

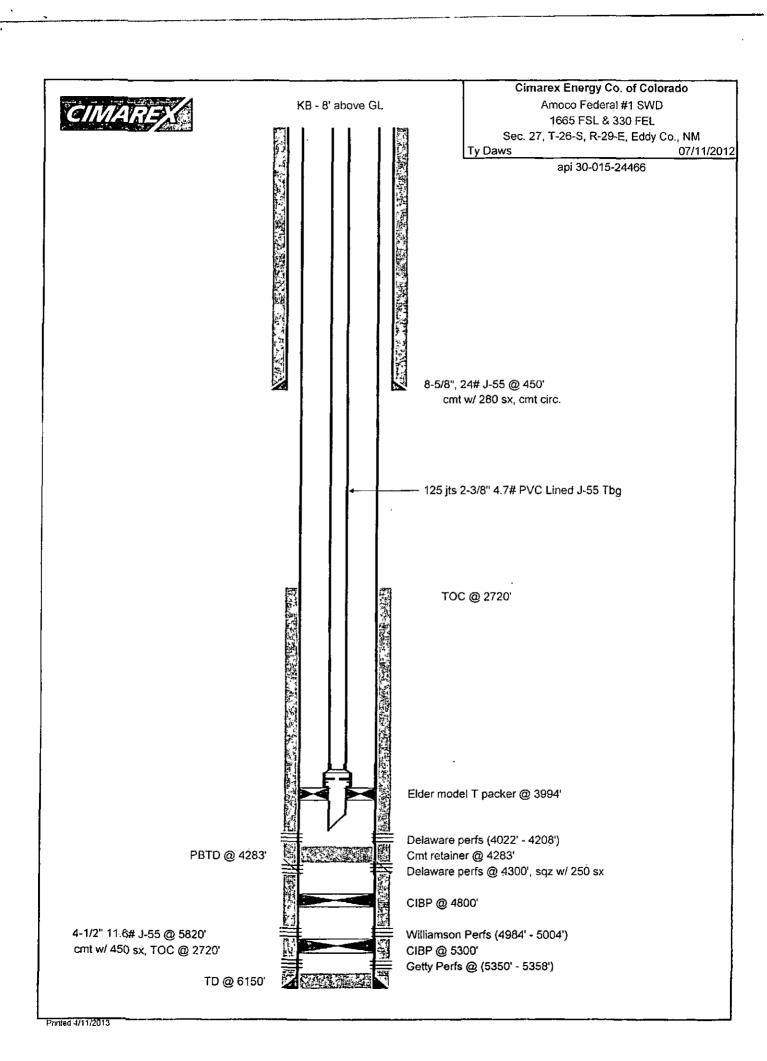
XIV. PROOF OF NOTICE

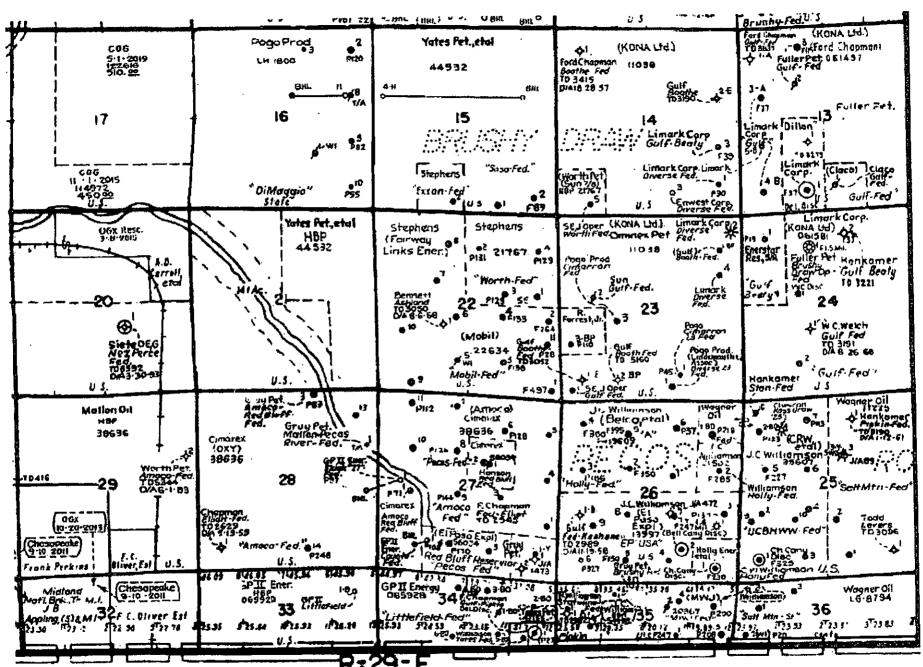
All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

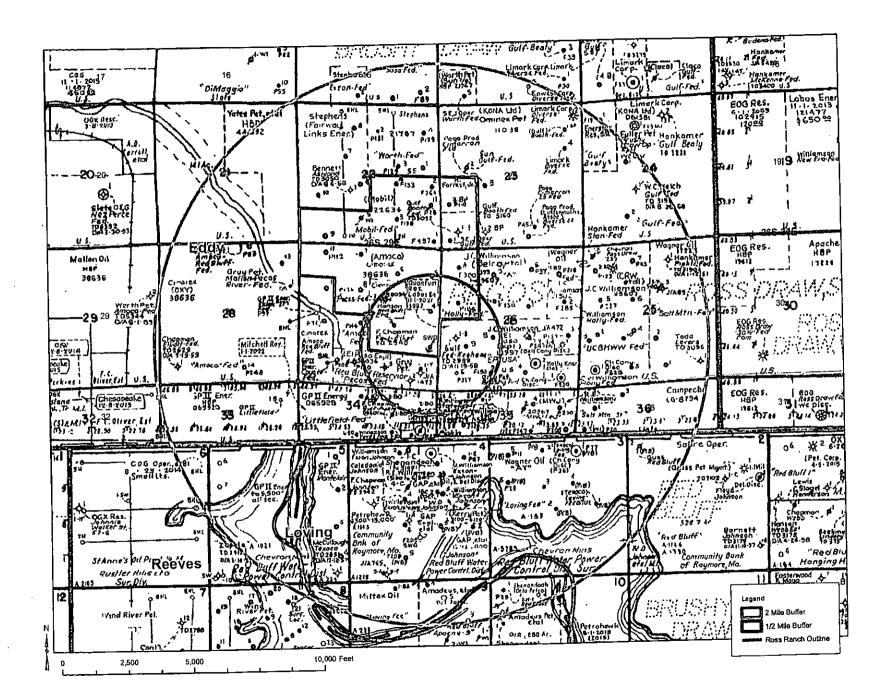
NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

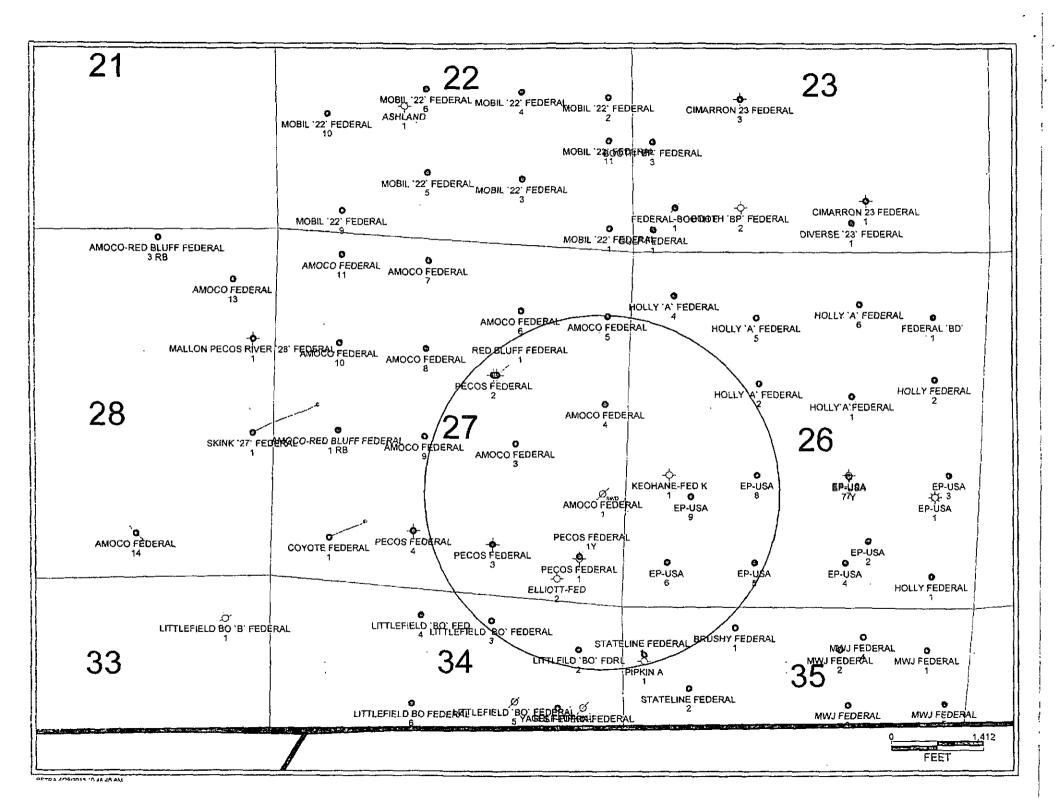

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.


INJECTION WELL DATA SHEET

	•				
OPERATOR:	Cimarex Energy of Colorado			-	
WELL NAME & NUN	MBER: Amoco Federal #1 S	WD			
WELL LOCATION: _	1665' FSL, 330' FEL FOOTAGE LOCATION	<u>I</u> UNIT LETTER	27 SECTION	T26S TOWNSHIP	R29E RANGE
WELI See Attached	LBORE SCHEMATIC			ONSTRUCTION DAT	
		Hole Size:12	1/4"	Casing Size:	8 5/8"
		Cemented with:	280 sx.	or	ft³
		Top of Cement:	Surface	Method Determine	d:
			Intermedia	te Casing	
		Hole Size:		Casing Size:	
		Cemented with:	SX.	or	ft³
		Top of Cement:	·	Method Determine	d:
			Productio	n Casing	
		Hole Size: 7.7	<u> </u>	Casing Size:	4 1/2"
		Cemented with:	<u>450</u> sx.	or	ft ³
		Top of Cement:	2720'	Method Determine	d: <u>CBL</u>
		Total Depth: 61	50'		
			Injection	Interval	
		4022'_	fee	et to 4208'	
			(Perforated or Open I	Hole; indicate which)	

INJECTION WELL DATA SHEET


Tul	oing Size: 2 3/8" 4.7#, J-55 Lining Material: PVC Lined
Тур	oe of Packer: Elder Model T
Pac	ker Setting Depth:3994'
Oth	ter Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection? Yes X_No
	If no, for what purpose was the well originally drilled? Producer from Williamson
	(Delaware) Sand
2.	Name of the Injection Formation: Delaware
3.	Name of Field or Pool (if applicable): Brushy Draw
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. <u>4300' sqz with 250 sx</u> ,
	_4984-5004' CIBP ; 5350-5358' CIBP
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Underlying #1: "Williamson" (Delaware) Oil Sand @ 4915-5022' (Amoco Fed #1)</u>
	Underlying #2: "Getty Sand" (Delaware) Oil Sand @ 5265-5425'
	Underlying #3: "Pecos Sand" (Delaware) Oil Sand @ 4820-4836'
	Overlying #1: "Upper Bell Canyon" (Delaware) Oil Sand @, 2950-3030'



REEVES, North

LOVING County

III A.

- 1. Amoco Federal #1: 1665' FSL, 330' FEL, Sec. 27, T26S, R29E, Eddy Co., NM.
- 2. Surface Casing: 8 5/8", 24# J-55 set in 12 ¼" hole at 450' with 280 sx, calculated cement top at surface.
- 3. Injection tubing: 23/8" 4.7#/ft. PVC lined J-55.
- 4. Injection packer: Elder Model T set at 3994'

III B.

- 1. Injection Formation: Delaware Field and Pool Name: Brushy Draw
- 2. Injection Interval: 4022-34', 4036-40', 4050-60', 4092-4102', 4106-24', 4134-54', 4165-4208' (KB) perforated (2spf).
- 3. Well was originally drilled 4-13-83 as a producing well.
- 4. Other perforations: "Williamson Sd." Member, Cherry Canyon Formation original perforations 4950-59 (1spf), 4969-5039' (1 shot/10') squeezed with two 100 sx squeeze jobs. Re-perfed 4984-90', 5000-04' (2spf). "Getty Sd" Member, Brushy Canyon Formation tested through perforations 5352-60'. Well presently has a CIBP set at 5300' topped with 20' cement. A permanent BP is set at 4800'. Squeeze perforations were shot at 4300' and squeezed with 250 sx cement. Top of cement is at 2720' calculated by CBL.
- 5. Next oil and gas producing zone uphole from proposed injection zone within field:

Olds Sd. Mbr. Bell Canyon Formation 2959-3031' (KB)

Next oil and gas producing zone downhole from proposed injection zone within field:

Abbey Sd. Mbr. Cherry Canyon Formation (approx.) 4315-62' (KB)

- VI. Wells Penetrating Proposed Disposal Zone within One Half Mile of Proposed:
 - 1. Well Name and Number: #1Y Pecos Federal

Operator: RKI Exploration & Production LLC

Location: 860' FSL, 2810' FWL (SE SE), Sec 27, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud date: 5-2-1984

Completion Date: 7-11-1984; 12/20/1990

Total Depth: 6000'

PBTD: 5909'

Casing Data: Surface 9 5/8", set at 2854' with 1025 sx

Production 4 1/2", set at 5970' with 760 sx; calculated cement top 3287'

Completion Data: Perforated 4945-5006', fraced 24,000 gal wtr + N2 34,000# sd; 12-20-1990 Perforated 2948-3018' (2spf – 112 holes) acidized with 3400 gal 2%

KCl water & 168 BS. Fraced with 23,000 gal N2 foam and 89,000# sand.

2. Well Name and Number: #2 Pecos Federal

Operator: Quantum Resources Management LLC

Location: 1980' FNL, 2030' FEL, (SW NE) Sec. 27, T26S, R29E, Eddy Co., NM

Type well: Oil / P&A 8-25-2008

Spud Date: 10-22-1985

Completion Date: 11-13-1985

Total Depth: 5509'

PBTD: 5470'

Casing Data: Surface 13 3/8", set at 366' with 350 sx cement.

Intermediate 8 5/8" set at 2860' with 1500 sx cement.

Production 4 ½", set at 5509' with 3500 sx; calculated cement top 2692'

Completion Data: Perforated 4901-90'. Acidized with 4000 gal 15% HCl, fraced

with unreported vol gelled water + 78,500# sd.

P&A 8-25-2008 See attached Sundry Notice

3. Well Name and Number: #3 Pecos Federal

Operator: Quantum Resources Management LLC

Location: 760' FSL, 1980' FEL, (SW SE) Sec. 27, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 11-05-1985

Completion Date: 12-11-1985; 12-23-1990

Total Depth: 5505'

PBTD: 5457'

Casing Data: Surface 13 3/8", set at 396' with 420 sx cement.

Intermediate 8 5/8" set at 2845' with 775 sx cement.

Production 4 %", set at 5500' with 375 sx; temperature log cement top 3850' KB Completion Data: Perforated 4883-4979' with 46 shots, acidized with 3800 gal

15% NEFE acid (No frac record)

12-23-1990 Add perforations 4804-4820' (2spf - 32 Holes) with 1000 gal treated

2% KCl water & 54 BS. Fraced with 11,000 gal & 20,500# sand.

P&A 01-15-2009 See attached Sundry Notices

4. Well Name and Number: #2 BO, Littlefield Federal

Operator: George H. Mitchell (GP II Energy Inc.)

Location: 724' FNL, 660' FEL, Sec. 34, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 05-29-1984

Completion Date: 08-06-1984

Total Depth: 5900'

Casing Data: Surface 9 5/8", set at 350' with 485 sx cement.

Intermediate 7" set at 2880' with 200 sx cement.

Production 4 1/2", set at 5900' with 356 sx; calculated cement top 2512'

Completion Data: Perforated 4950', 4953', 4957', 4961', 4964', 4967', 4973', 4976', 4979', 4983', 4989', 4992', 4995', 4998', acidized with 1500 gal 7 1/2% MSR acid, frac with 24,000 gal foamed, gelled water + 34,000# sd.

5. Well Name and Number: #1 Stateline Federal

Operator: Ralph E Williamson (originally New Tex Oil)

Location: 740' FNL, 330' FWL, Sec. 35, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 06-04-1983

Completion Date: 08-07-1983

Total Depth: 6750'

PBTD: 6708'

Casing Data: Surface 13 3/8", set at 455' with 450 sx cement.

Intermediate 8 5/8" set at 2901' with 650 sx cement.

Production 5 ½", set at 6750' with 1800 sx; calculated cement top at surface Completion Data: Perforated 6442-6565' (22 holes) squeezed off with 150 sx. Perforated 5863-5892' (15 holes), acidized with 1500 gal HCl, fraced with 12,000 gal + 17,000# sd. Perforated 5308-30' (1 spf); acidized with 2000 gallons fraced with 15,000 gallons + 23,000# sd.; Perforated 5103-07', 5129-35' (2 spf). Acidized with 1500 gallons fraced with 12,000 gallons + 19,000# sd.; Perf 4935 -5005', acidized with 3000 gallons, fraced with 20,000 gallons + 25,000# sd.

6. Well Name and Number: #5 EP-USA

Operator: J.C. Williamson

Location: 660' FSL, 1980' FWL, (SE SW), Sec. 26, T265, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 01-31-1985

Completion Date: 02-26-1985

Total Depth: 6250'

PBTD: 6208'

Casing Data: Surface 13 3/8", set at 452' with 500 sx cement.

Intermediate 8 5/8" set at 2770' with 150 sx cement.

Production 4 %", set at 6250' with 1150 sx; calculated cement top 2195'

Completion Data: Perforated 4985-5057' (28 holes) acidized with 3000 gal 7 ½%

NEFE, frac with 55,700 gallons gelled water + 100,000# sd.

7. Well Name and Number: #6 EP-USA

Operator: J.C. Williamson

Location: 660' FSL, 660' FWL, (SW SW), Sec. 26, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 03-19-1985

Completion Date: 04-23-1985

Total Depth: 6200'

PBTD: 6160'

Casing Data: Surface 12 3/4", set at 425' with 450 sx cement.

Intermediate 8 5/8" set at 2810' with 150 sx cement.

Production 4 ½", set at 6200' with 1150 sx; calculated cement top 2145' Completion Data: Perforated 4958-5042'. Acidized with 3000 gal 7 ½%

NEFE, fraced with 58,256 gallons + 99,000# sd.

8. Well Name and Number: #9 EP-USA

Operator: J.C. Williamson

Location: 1650' FSL, 990' FWL, (NW SW), Sec. 26, T265, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 03-14-1985

Completion Date: 04-16-1985

Total Depth: 6220'

PBTD: 6178'

Casing Data: Surface 13 3/8", set at 425' with 450 sx cement.

Intermediate 8 5/8" set at 2764' with 150 sx cement.

Production 5 1/4", set at 6220' with 1300 sx; calculated cement top 178'

Completion Data: Perforated 4961-5024' (25 shots). Acidized with 3000 gal 7 1/2%

HCl, fraced with 56,000 gallons + 82,450# sd.

9. Well Name and Number: #8 EP-USA

Operator: J.C. Williamson

Location: 1980' FSL, 1980' FWL, Sec. 26, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 02-28-1985

Completion Date: 03-27-1985

Total Depth: 6250'

PBTD: 6208'

Casing Data: Surface 13 3/8", set at 425' with 450 sx cement.

Intermediate 8 5/8" set at 2775' with 150 sx cement.

Production 5 1/2", set at 6250' with 1000 sx; calculated cement top 1602'

Completion Data: Perforated 4983-5065' Acidized with 3000 gallons, fraced with

57,496 gallons + 100,000# sd.

10. Well Name and Number: #3 Holly "A" Federal

Operator: J.C. Williamson

Location: 1980' FNL, 660' FWL, (SW NW), Sec. 26, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 12-17-1984

Completion Date: 01-17-1985

Total Depth: 5452'

PBTD: 5412'

Casing Data: Surface 13 3/8", set at 472' with 500 sx cement.

Intermediate 8 5/8" set at 5432' with 900 sx cement.

Production 5 ½", set at 6250' with 1000 sx; calculated cement top 2259' Completion Data: Perforated 4935-5026' Acidized with 3000 gallons 7 ½% NEFE, fraced with 55,000 gallons gelled water + 89,000# sd.

11. Well Name and Number: Amoco-Federal #3

Operator: Cimarex Energy of Colorado

Location: 2310' FSL, 1681' FEL, (NW SE), Sec. 27, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 08-16-1983

Completion Date: 10-14-1983

Total Depth: 5075'

PBTD: 5035'

Casing Data: Surface 8 5/8", set at 445' with 280 sx cement. Production 5 ½", set at 5070' with 400 sx; Cement top (CBL) 3219'

Completion Data: Perforated 4909-4974' (1spf). Acidized with 1500 gallons,

fraced with 30,000 gailons + 64,000# sd.

12. Well Name and Number: Amoco-Federal #4

Operator: Cimarex Energy of Colorado

Location: 2310' FNL, 330' FEL, (SE NE), Sec. 27, T26S, R29E, Eddy Co., NM

Type well: Oil

Abe Meir Oil

Spud Date: 11-28-1983

Completion Date: 02-27-1984

Total Depth: 5052'

PBTD: 5037'

Casing Data: Surface 8 5/8", set at 517' with 1275 sx cement. Production 5 ½", set at 5046' with 450 sx; Cement top (CBL) 3180'

Completion Data: Perforated 4962-5017' (18 shots). Acidized with 2500 gallons

HCl, fraced with 30,000 gallons + 50,000# sd.

13. Well Name and Number: #3 BO, Littlefield Federal

Operator: George H. Mitchell (GP II Energy Inc.)

Location: 400' FNL, 1980' FEL, Sec. 34, T26S, R29E, Eddy Co., NM

Type well: Oil

Spud Date: 12-15-1986

Completion Date: 01-12-1987

Total Depth: 5200'

PBTD: 5127'

Casing Data: Surface 9 5/8", set at 354' with 170 sx cement.

Production 4 1/2", set at 5200' with 615 sx; cement top surface

Completion Data: Perforated 4817-4955' (20 holes) acidized with 2500 gal 15%

NEFE acid.

Completed: Nov 13, 1985 Pecos Federal #2 Original Operator: Ex Paso Expl 1980 FNL & 2030 FEL TOC Surf Sec. 27, T-26-S, R-29-E, Eddy Co., NM Spot 25 sacks to surface api 30-015-25376 13 3/8" @ 366"; cmt 420 sx to surf 65 sacks @ 547' Respot 73 sacks @ 547' Tag @ 62' 8 5/8" @ 2860'; cmt 870 sx to surf 40 sack cement plug from 2569 - 2765' 90 sack cement plug from 2765 - 2966' 4-1/2" casing cut and pulled @2906" 53 Sack cement plug spotted & Squeezed from 2966 - 3213 Hole in casing @ 3213' Top of cement unknown CIBP @ 4827' capped with 25 sx cement (8/19/2008) Delaware perfs 4901-4990' 4 1/2" @ 5509"; cmt 500 sx Original PBTD: 5470' TD @ 5509'

Printed 4/26/2013

Completed: Dec 11, 1985 Pecos Federal #3 Original Operator: Ex Paso Expl 760 FSL & 1980 FEL Sec. 27, T-26-S, R-29-E, Eddy Co., NM api 30-015-25435 13 3/8" @ 396"; cmt 420 sx to surf 40 sack cement plug from 3'-557' 8 5/8" @ 2845"; cmt 775 sx to 365" Top of cement 2900' 25 sack cement plug at 2656-2949' Perfs 2885-2904' Cement Retainer @ 2998' Sqz hole in csg @ 3050' CIBP @ 3105 CIBP @ 4775 Cherry Canyon perfs 4804-4820' Delaware perfs 4883-4979' 4 1/2" @ 5500"; cmt 375 sx Original PBTD: 5457 TD @ 5505' Printed 4/26/2013

VII. Proposed Injection Operation:

- 1. Proposed Average Daily Injection Rate: 800 BWPD. Proposed Maximum Daily Injection Rate: 1600 BWPD.
- 2. Closed system.
- Average Surface Injection Pressure: 640 psi.
 Proposed Maximum Surface Injection Pressure: 804 psi.
- 4. All injected fluid will be water produced from the Cherry Canyon Fm. (analysis attached). No water from the proposed injection zone is available for analysis.
- 5. The apparent water resistivity back calculated from the open hole logs indicates a sodium chloride equivalent concentration of 60,000 PPM (mg/L). There are no wells producing from proposed disposal zone within one mile.

VIII. Proposed Injection Zone:

Ross Sands, Cherry Canyon Fm., Delaware Mountain Group. Fine to medium grained sandstone bounded by areally continuous shales above & below Net sand thickness (porosity greater than 18% (20 FDC)) 74' (4024-4206', Gross).

Drinking Water Zone:

"Dewey Lake" 150-200'+ (KB), no other known fresh water zones in area.

IX. Proposed Stimulation:

The proposed injection zone was previously acidized with 2500 gals of acid. No additional stimulation is anticipated

- X. Logs previously submitted.
- XI. See attachments for water analyses from the two known fresh water wells in the area. Well #1 SW SW Sec, 22, T265, R29E, "Challenger Fresh", sampled 5-27-1988.

Well #2 NW SW Sec. 26, T26S, R29E, "Williamson Fresh", sampled 5-27-1988.

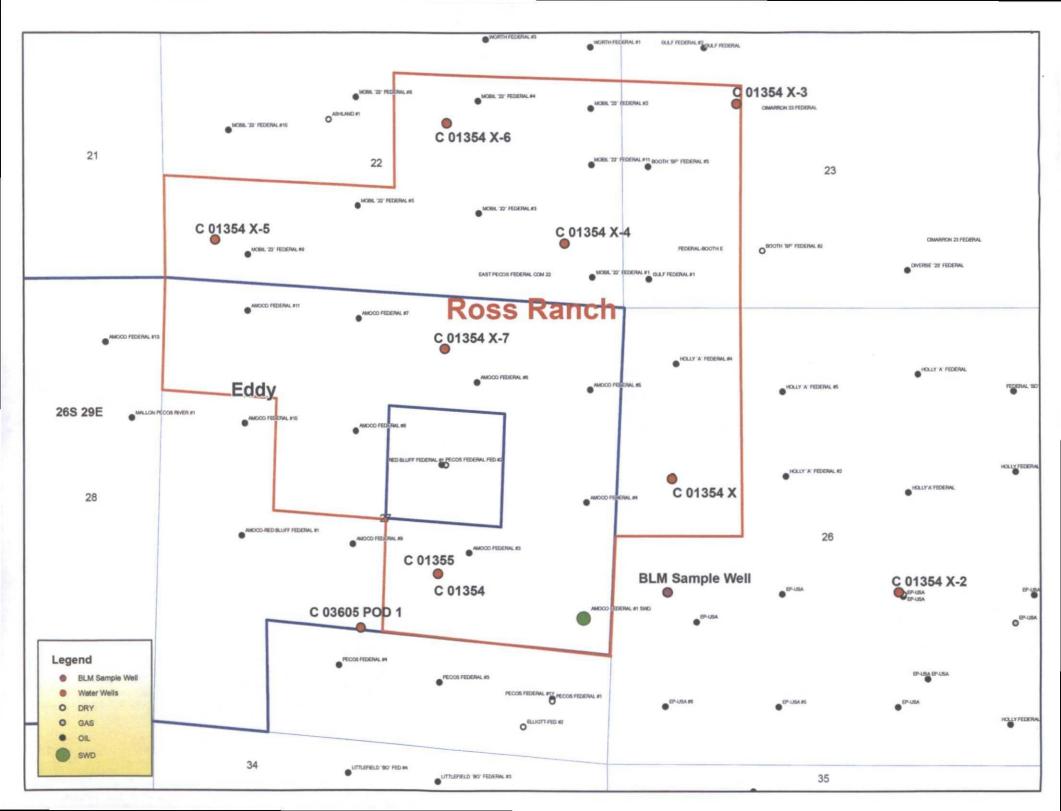
XII. Statement regarding hydrologic connection between fresh water aquifer and proposed disposal zone:

Detailed mapping of the Williamson Sd (Cherry Canyon Formation) which lies approximately 700' below the proposed disposal zone shows no indication of faulting or other potentials conduits for fluid flow between the proposed disposal zone and the aquifer in the Dewey Lake Formation. Further, no indications have been observed during drilling of the wells to make such geologic phenomena seem likely.

A copy of the application has been provided, by certified mail, to the following persons:

Surface owner

George Ross Ranch LLC. 3710 Rawlins Street, Ste. 850 Dallas, TX 75219


Operators within one-half mile of the injection well Shenandoah Petroleum Corporation 24 Smith Road, Suite 601 Midland, TX 79705

RKI Exploration & Production, Inc. 3817 NW Expressway, Ste. 950 Oklahoma City, OK 73112

Ralph E. Williamson P.O. Box 50498 Austin, TX 78763

GP II Energy, Inc. 113 Corporate Drive Midland, TX 79705

Quantum Resources Management LLC. 1401 McKinney, Ste. 2400 Houston, TX 77010

North Permian Basin Region P.O. Box 740 Sundown, TX 79372-0740 (806) 229-8121 Lab Team Leader - Sheila Hernandez (432) 495-7240

Water Analysis Report by Baker Petrolite

CIMAREX ENERGY Sales RDT: 33500.33 Company: Account Manager: DUSTIN POLK (575) 513-8405 Region: PERMIAN BASIN 636799 ARTESIA, NM Sample #: Area: AMOCO FEDERAL Analysis ID #: 131572 Lease/Platform: Analysis Cost: \$90.00 Entity (or well #): UNKNOWN Formation:

Summary Analysis of Sample 636799 @ 75 F mg/l meq/i Cations Sampling Date: 4/19/2013 **Anions** mg/l meq/l **Analysis Date:** 4/24/2013 Chloride: 175303.0 4944.66 Sodium: 60359.4 2625.49 Analyst: STACEY SMITH Bicarbonate: 36.6 Magnesium: 5012.0 412.31 0.0 Calcium: 36347.0 Carbonate: 1813.72 281286.5 TDS (mg/l or g/m3): 188.0 3.91 Strontium: 2285.0 Sulfate: 52,16 Density (g/cm3, tonne/m3): 1.209 Phosphale; Barium: 5.5 0.08 Anion/Cation Ratio: Borate: Iron: 35.0 1.26 Silicate: Potassium: 1687.0 43.14 Aluminum: Carbon Dioxide: 330 PPM 0 PPM Hydrogen Sulfide: Chromium: Oxygen: 0 PPM Copper: pH at time of sampling: Lead: Comments: pH at time of analysis: Manganese: 28.000 1.02 RESISTIVITY .012 OHM-M @ 250°F pH used in Calculation: Nickel:

Conditions		onditions Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl										
Temp	Gauge Press.	Calcite CaCO ₃			Gypsum CaSO ₄ 2H ₂ 0		ydrite aSO ₄	Celestite SrSO ₄			Barite BaSO ₄	
F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
80	0	-0.25	0.00	-0.41	0.00	-0.35	0.00	-0.06	0.00	0.39	1.61	0.15
100	0	-0.17	0.00	-0.48	0.00	-0.36	0.00	-0.08	0.00	0.20	1.08	0.17
120	0	-0.09	0.00	-0.54	0.00	-0.34	0.00	-0.08	0.00	0.04	0.27	0.2
140	O	0.00	0.00	-0.59	0.00	-0.30	0.00	-0.07	0.00	-0.09	0.00	0.22

Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

WELLHEAD

Sample Point:

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

Note 3: The reported CO2 pressure is actually the calculated CO2 fugacity. It is usually nearly the same as the CO2 partial pressure.

IBURTON DIVISION LABORATORY HALLIBURTON SERVICES

MIDLAND DIVISION HOBBS, NEW MEXICO 88240

RECEIVED JUN 0 3 1988

No.____

LABORATORY WATER ANALYSIS

s report is the property of Halliburton for any part thereof nor a copy there disclosed without first securing the extended and the extended a	oof is to be published spress written approval ever, be used in the any person or concern aport from Halliburton
Formation	
	·
Source	
duction Challang	er Fresh
° 1.75 @ 7	0 °
1.000	
7.1	·
450	*MPL
Nil	
1600	
1700	
.193	
nil ·	
*Milli	grams per liter
HALLIBURTON COMPAN	4 Y
•	HALLIBURTON COMPAN

Analytical Report 463775

for **Baker Hughes**

Project Manager: Dustin Polk Cimarex Amoco Lease Fresh Water

29-MAY-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

29-MAY-13

Project Manager: Dustin Polk

Baker Hughes

2101 Market St Building B

Midland, TX 79703

Reference: XENCO Report No(s): 463775

Cimarex Amoco Lease Fresh Water

Project Address: Malaga, NM

Dustin Polk:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 463775. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 463775 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 463775

Baker Hughes, Midland, TX

Cimarex Amoco Lease Fresh Water

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Post-Purge	W	05-23-13 11:40	- 68 ft	463775-002
Pre-Purge	W	05-23-13 11:30	- 68 ft	Not Analyzed

CASE NARRATIVE

Client Name: Baker Hughes

Project Name: Cimarex Amoco Lease Fresh Water

Project ID:

Work Order Number(s):

463775

Report Date: 29-MAY-13 Date Received: 05/24/2013

Sample receipt non conformances and comments:	
Sample receipt non conformances and comments per sample:	
None	

Certificate of Analysis Summary 463775

Baker Hughes, Midland, TX

Project Id:

Project Location: Malaga, NM

Project Name: Cimarex Amoco Lease Fresh Water

Contact: Dustin Polk

Date Received in Lab: Fri May-24-13 10:25 am

Report Date: 29-MAY-13

Project Manager: Kelsey Brooks

					110ject Manager.	
	Lab Id:	463775-002				
Analysis Requested	Field Id:	Post-Purge				
Analysis Requested	Depth:	-68 ft				
	Matrix:	WATER				
	Sampled:	May-23-13 11:40				
Inorganic Anions by EPA 300/300.1	Extracted:	May-24-13 16:17				
	Analyzed:	May-24-13 16:17				
	Units/RL:	mg/L RL	11			
Chloride		1780 50.0				
Sulfate		126 100				
TDS by SM2540C	Extracted:					
	Analyzed:	May-24-13 14:00				
<u></u>	Units/RL:	mg/L RL				
Total dissolved solids		4640 5.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories, XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Knus Roah

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr. Stafford, TX 77477 (281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765 (432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071 (770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040 (602) 437-0330	

Blank Spike Recovery

Project Name: Cimarex Amoco Lease Fresh Water

Work Order #: 463775

Project ID:

Lab Batch #: 914783

Sample: 914783-1-BKS

Matrix: Water

Date Analyzed: 05/23/2013

Date Prepared: 05/23/2013

Danauting Units

Analyst: AMB

Reporting Units: mg/L	Batch #:	BLANK/BLANK SPIKE RECOVERY STUDY					
TDS by SM2540C	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags	
Analytes	ĮA)	[2]	ICI	[D]	701		
Total dissolved solids	<5.00	1000	910	91	80-120		

BS / BSD Recoveries

Project Name: Cimarex Amoco Lease Fresh Water

Work Order #: 463775, 463775

Date Prepared: 05/24/2013

Project ID:

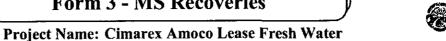
Date Analyzed: 05/24/2013

Lab Batch 1D: 914778

Analyst: AMB

Sample: 638801-1-BKS

Batch #: 1


Matrix: Water

Units: mg/L		BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY									
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R G	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	24.9	100	25.0	24.9	100	0	90-110	20	
Sulfate	<2.00	25.0	26.6	106	25.0	26.3	105	1	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Work Order #: 463775

Lab Batch #: 914778

Date Analyzed: 05/24/2013

Date Prepared: 05/24/2013

Project ID:

Analyst: AMB

QC-Sample ID: 463662-001 S

Batch #:

Matrix: Water

Reporting Units: mg/L	MATI	MATRIX / MATRIX SPIKE RECOVERY STUDY							
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result C	%R [D]	Control Limits %R	Flag			
Analytes	[A]	[B]	<u> </u>						
Chloride	162	250	405	97	80-120				
Sulfate	111	250	372	104	80-120				

Lab Batch #: 914778

Date Analyzed: 05/25/2013

Date Prepared: 05/25/2013

Analyst: AMB

QC- Sample ID: 463727-001 S

Batch #: 1

Matrix: Water

Reporting Units: mg/L	MATI	MATRIX / MATRIX SPIKE RECOVERY STUDY									
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added {B	Spiked Sample Result [C]	%R (D)	Control Limits %R	Flag					
Analytes											
Chloride	1350	500	1800	90	80-120						
Sulfate	<40.0	500	565	113	80-120						

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Cimarex Amoco Lease Fresh Water

Work Order #: 463775

Lab Batch #: 914783

Project ID:

Date Prepared: 05/23/2013

Analyst: AMB

Date Analyzed: 05/23/2013 14:00 **QC- Sample ID:** 463472-008 D

Batch #: 1

Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids	2110	2040	3	30	<u> </u>

Lab Batch #: 914783

Date Analyzed: 05/23/2013 14:00

Date Prepared: 05/23/2013

Analyst: AMB

QC- Sample ID: 463544-001 D

Batch #: | |

Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte		121	l		ļ ,
Total dissolved solids	328	322	2	30	

	4143 Greenbriar Driv	e, Stafford, TX	77477	281-	240-4	200						es Blvd										_				
aboratories	5332. Blackberry Driv	ve, San Antoni	o, TX 78	238	210-50	9-3334	ı		□ 12	600 W	est I-2	0 East,	Odessa	3. TX 7	79765	432	-563-1	800	Şeri	ial#:	33	08	02	P	age o	f
gmpany-City				hone			2011		Lab	Only	:		11	1.2	370	15										
Sakae Hughos	Upsteen C	romical				7.5c											w									
roject Name-Location	Previously	done at XE	NCO		Р	roject	D		TAT	. AS	AP 5	h 12h	(24h)	48h	3d	5d	7d 1	0d 2	1d Sta	andard	TAT is	proje	ct spe	ecific.	,	
tmaco lease	trees were	e/1912	aga	<u>, Ni</u>	<u> </u>		<u> </u>		IT IS I	уріса	11y 5-		ung-12	ays f	or lev	ella	nd 10	+ Wor	king d	ays fo	level i	and	iV da	ta.		
roj. State: TX, AL, FL J, PA, SC, TN, UT Ott	, GA, LA, MS, NC,	Proj. mana	ger (F)	vi) コレー/	-17	111-2	Hen	77E.		_	-	- 종	_ -얼	PCBs)		_		_		_ _	. _				Remar	ks
-mail Results to	PM and	JPHSW0	المرادات	NA' K	ا <i>لالن</i> Fمرده	ax No.	1,711	~~	VOAs	ᡖ			Appdx2	S	ĺ				1			- 12	#	8		_
	@ la koshi	Oliver C	i True	/C.114	we	X.C	ŀΜ	1	> ;	Other		\ \ \ \	₹	1	-			1				<u>8</u>	st l	Š		- [
voice to Accounting	ng Inc. Invoice wi	th Final Rep	ort 🗖	Invoid	e mus	t have	a P.O.	一	VOHs	اب		Appdx-2	ğ ğ	훈	1		料					- 1	Highest Hit	ag		į
ill to: Baker	~ _	Ť						ļ	> {	8	_		Pesticides	<u></u>		ď	3					2	1 1	bre	- 등	. ac
uote/Pricing:		P.O. No:				☐ Call	for P.0	o.	_		YPH V		<u>, </u> 4	Peg	ľ	4/	12mg		'	1	1 1	25	S	are pre-approved)	needed	
eg Program: UST	DRY-CLEAN Land-F	Fill Waste-	Disp N	IPDES				\dashv		Appdx-2	₹	TCLP	Herbicides UP 4 Pb 13PP 23T	letals VOCs SVOCs Pest, Herb.	ŀ	বু,	\downarrow					P.	mg/Kg	Hold Samples (Surcharges will apply and	SS	
_							-	1	ETOH	₹			s 로	SVC		9	7, 1					- 1		헕		7
QAPP Per-Contract	JLP AGGEE NAVY	L DOF DO	ט טכ	AUE	OTHE					<u>. اي</u>	EPH	BN&AE	를 다	g		7	~					24m) 48h	∫ ≥	ä	pre-approved	۵
pecial DLs (GW DW	QAPP MDLs RLs	See Lab P	M Inci	uded	Cali	PM)			BTEX-MTBE	Appd 8270	≨	1 8 1 3	취급	ĮŠ								Ι€	mg/L W.	§ §	$\frac{1}{2}$	-
									<u>\</u>	_	Ιo	1 1	. *	S	1	R	A			1		1 -	1 = 1	arge	[]	
ampler Name	-	Signatur	e				•		<u> </u>	3 3	SRO I	SVOCs: Full-List DW	2 S	(Metals		"	4	4				12		5	are	۽ ا
				1	П	•	8			ة إب	i I] <u>:</u> [2] (1		با				1 1	- 1	Se l	S	Sample Clean-ups	Ì
	-		} }		4		Type	\exists	List	길	PRO	│ 퐄╽,	§ \$	9	ا يو	Corroles	5 20			-	$1 \perp$	뜐	ਕੂ	es S	티	
Sample ID	Sampling	Time	_	sit	,		盲	vati	· 🚖 🖠	a V		<u> </u>	[[]	2	EDB / DBCP	الآار	20	√l				18	¥	Ę	히	
outtiple to	· Date		물.티.	의 함	اما		ig.	Ser	۱ <u>۲</u> ک	۽ اچ	ĭ §	۱ <u>۲</u>	કું સુ	n.	<u> </u>	3	عاد	ן ונ	ŀ	- [\\S	ارق	S	죔	١,
			Depth ft' in" m	matrix Composite	Grab	# Container Size	Container	Preservative	VOA: Full-List	VOA PAH	TX-1005	<u>%</u> 8	Metals: RCRA-8	SPL		21	ત્રાદ	↓				TATASAP	Addn: PAH above	취	ايغ	Adda
20 - Pi 200	5-23-13	11:30cm	181		1	120	P	c	T							1	1	1		+	+-+	+	+	H	<u> </u>	+
èc-Puege BST-Puege	5-23-13	11:05.	10	+	12		17]		_		1	1 1	+	\top		+	╢.	/		+		+	+-	H		
USI - FURGE	1282.7	11. (Oa)		+-	1	74	11	7	\dashv	\dashv	+-	╁┼┼		┼	┼╌┤	11	#		-		┼╌┼╴	42	+	₩		
						+-1	+/- $+$	+			╂-	╀		╀	╁╌┧	-11-	444	\perp		-		-	—	\sqcup		
						$\perp \perp$		`								1	U					1		1 1	i	- 1
	-										†		\top				\top	1				\top	+	\vdash		_
			 	-	\vdash	1	+			\dagger	+-	1-1	\dashv	1			+	+		+	++	+	+-	\vdash	···	+-
			 - 	+	\vdash	+	-		+	\dashv	+-	+-+	+	+-	╁┤	\dashv	+		-	+	++	+	+-	╂╼┤		
		<u> </u>	╂	+-	\vdash	┪	+		-	+	+-	+	+	+	+	\dashv	+	+	$\vdash \vdash$	+	+	+-	+	\vdash		
	\rightarrow		1-	+	\vdash	+	+			+	+-	++	+-	+-	1		+	-	-		++	+	+	$\vdash \vdash$	 	
Relinquished by (I)	nitials and Sign)	Date &	<u>I l</u> Time	 	Relino	luished	lo (Initi	als ar	nd Sig		+-	Date	& Tin	Je	Tota	l Cast		per C		+,			<u></u>	Щ		土
The delication of	- Constant Cigni	5-28-1			17		.70.	-	. <u></u>	,	42	13-1								Report		Cooler			perty of XEN	.5
3)				4)	A. F. S.	~~/_^	<u>~~~~</u>				+		•••	<u> </u>											nailed unles:	
		 		6)	K	00 8.0	unc				₹	2H-/	3 7	9; Z:											approved if ne	
5) Preservatives: Various		<u> </u>		1.7												-		~~~								

- Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

www.xenco.com

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Baker Hughes

Date/ Time Received: 05/24/2013 10:25:00 AM

Work Order #: 463775

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		1.5	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping contai	ner/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?		Yes	
#6 *Custody Seals Signed and dated?		Yes	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete on Chain	of Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed when relinquis	shed/ received?	Yes	
#11 Chain of Custody agrees with sample la	abel(s)?	Yes	
#12 Container label(s) legible and intact?		Yes	
#13 Sample matrix/ properties agree with C	hain of Custody?	Yes	
#14 Samples in proper container/ bottle?		Yes	
#15 Samples properly preserved?		Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for indicated	test(s)?	Yes	
#18 All samples received within hold time?		Yes	
#19 Subcontract of sample(s)?		Yes	
#20 VOC samples have zero headspace (le	ss than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3	3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaA	sO2+NaOH, ZnAc+NaOH?	Yes	

eted by:	Kelsey Brooks	Date: <u>05/24/2013</u>
ved by:	Kuns Boah	Date: 05/24/2013
	_	ved by: Mus Hoah Kelsey Brooks Kelsey Brooks