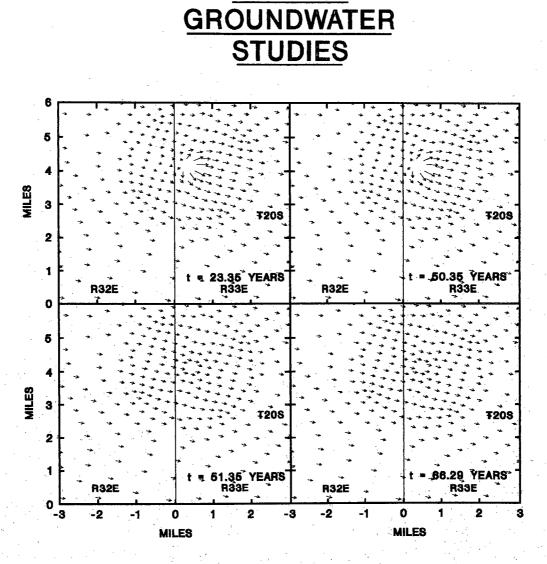
Lynx Petroleum Consultants, Inc. PO. Box 1708 3325 Enterprise Drive Hobbs, New Mexico 88241 505 392-6950 Fax: 505 392-7886 June 17, 2005 Mr. David Brooks, Mr. David Catanach New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, New Mexico 87505 Re: Case 13451 – Additional Documents

Gentlemen:

۰.۳

Attached per your request are copies of the covers of several documents and pertinent data that was referenced in my testimony during the hearing on June 16th. The TDS map is from an RE/SPEC report that was submitted to the OCD in its entirety as an Exhibit in Case No. 10693. The Hiss report No. 38 contains data from a test well, the Hackberry Deep Unit No. 1, located in Section 31, T-19S, R-31E, which indicates very high TDS water throughout the reef interval. This well is located to the southwest, approximately 5 miles from our proposed operation. The final map is an Exhibit from a U.S.G.S. water resources report No. 84-4077 showing the reef location and thickness, and the location of the test wells used to develop this data.


Please do not hesitate to call or write if I may be of additional assistance.

Sincerely,

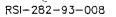
LYNX PETROLEUM CONSULTANTS, INC.

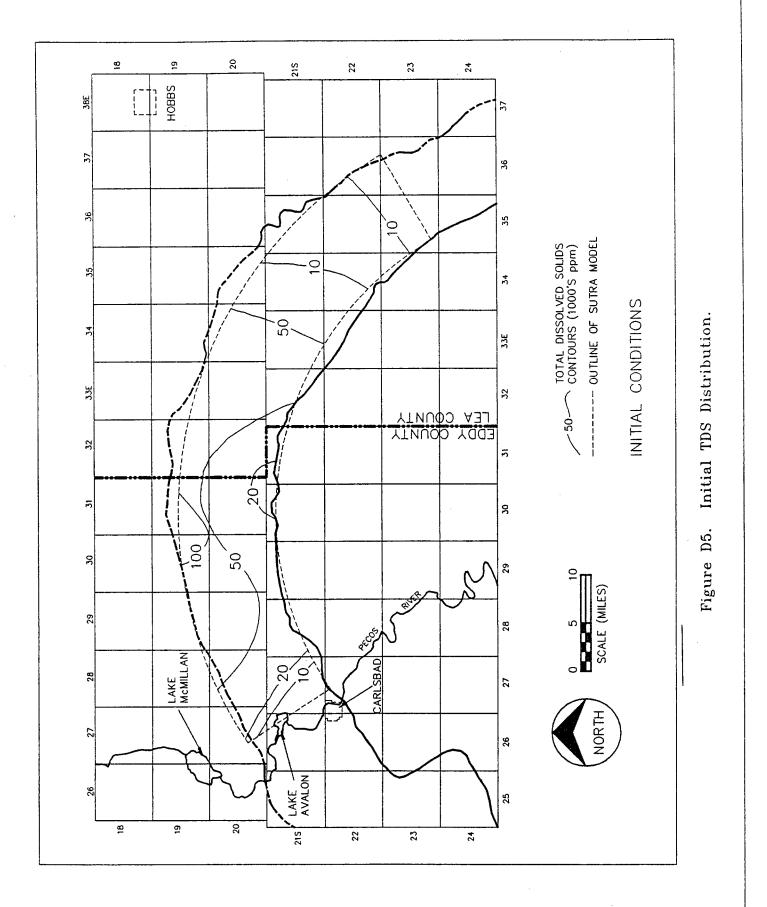
Harry R. Scott

Cc: Pete Domenici, Jr.

CAPITAN

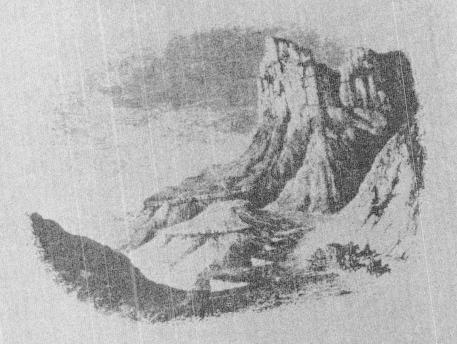
÷

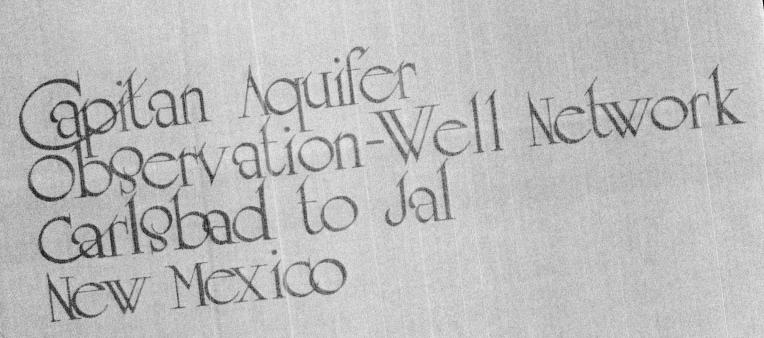

ê. **î**


«... ···

Prepared for: Rhombus Corporation

March 1993





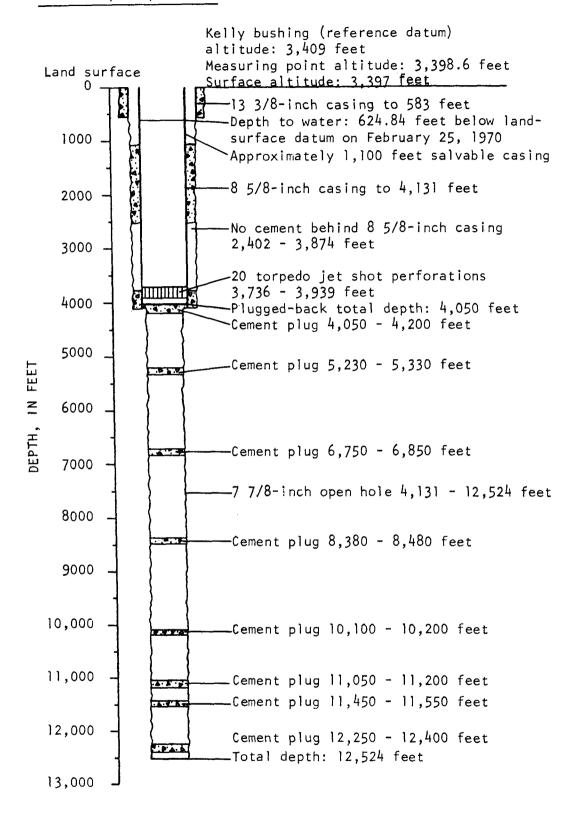
÷

TECHNICAL REPORT 38

New Mexico State Engineer Santa Fe, New Mexico

by W. L. Hiss

Prepared in cooperation with the United States Geological Survey Table 2.--Chemical quality of water in Capitan aquifer observation wells - Concluded


2

Hq	7.1	7.1	7.1	6.9	1	1	}	ł	ł	5.0	4.9	5.0	5.25	5.1	7.1	7.8	6.8	7.5	}	6.7		¢.	1	ł	8.0	8,2	8,3	8,7	1	
Specific conduct- ance (mic- romhos at 25°C)	50,000	52,083	50,000	43,680	175,000	174,000	174,000	194,000	197,000	200,000	196,078	200,000	200,000	200,000	196,078		36,100			18.300	001 01	000,65	1	215,000	219,000	219,000	220,000		168,000	
SAR	l	ł	ł	ł	ł		}	1		ł		ł	1	i	ŀ		48	1	1	0 66		ļ	ł	ł	1 9 1		ł	!		
Specific gravity 20°C	1.031	1.031	1.030	1.022	1.109	1.109	1.109	1.130	1.134	1.115 ^{12/}	1.114	1.115	1.115	1.116	1.112	1.024	1.017	1.020	1,012	1 0.08		1.029	1.034	1.173	1,177	1.176	1.179	1.109	1.106	
iess tCO Non- carbon ate	ł	ł	1	ļ		ł	ļ	-	ł	ł	ţ	ł	i	ł	1	ļ	4,450	ļ	ļ	077 8		ļ	l	l	ł	•	ł	1		
Hardness as CaCO ₃ Calcium Non magne- carb sium at	6,100	5,900	5,900	4,350	1	1	1	1	•	12,000	12,200	11,500	11,800	11,400	12,700	4,688	4,830	ļ	1	1 830		1	1	ł	ļ		1		!	
Total dissolved solids	43,712	43,730	43,858	32,058	I	1	-		ł	191,024	188, 307	190,993	190,902	190,791	184,227	27,200	25,800	28,740		10 800	AND (41		1	ł	1	ļ	ł	173,448	1	1
Fluoride (F)			ł	1			!	ł		ļ	-	1	4	1	1	-	-					-	ł	1	1	-	5		1	
, Chloride (Cl)	22,016	22,726	22,726	16,689	87,500	87,000	87,500	102,000	106,000	112,210	110,790	112,210	112,210	112,210	107,949	13,210	12.500 <u>9/</u>	17.900	5.920	757.5	01341	23,200	23,900	157,000	160,000	161,000	160,000	103,688	82,500	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Sulfate (SO4)	4,410	4,480	4,480	3,080	!	ļ	ł		ł	5,320	5,110	5,250	5,250	5,110	4,970	3,430	3, 650 <u>9/</u>	76757		010 6	7,040		465	ł	ļ	ł		6,215		and to a contract of the stand
Carbon- ate (CO ₃)	3 3 1	ļ	1	ł	ł	ļ	ł	l	1	ļ	I			ł		1	0			c	>	1	1	l	!	1	1	14	ŀ	
Bicar- bonate (HCO ₃)	595	576	571	134	1	1	I	ł	I	5	0	2	10	'n	679	357	460	389		087	001	ł	488			8	1	288	1	
Sodium + Potas- sium (Na+K)	13,808	14,387	14,385	10,348	-	I		ł		69,691	68,569	69,879	69,756	69,874	66, 796	8,530	7.810	056.7		001.6	061 °C	ł	11,370	1	ł	!		66,389	-	
Magne- sium (Mg)	600	552	552	482	ļ	ł	I	ł	ł	1,767	1,842	1,699	1,825	1,701	1,883	537	446	659		101	701	ł	1,270		ļ	I	ł	1,592	1	
Cal- cium (Ca)	1,452	1,452	1,452	946	i	1	1	ł	ł	1,892	1,848	1,804	1,716	1,760	1,980	1,032	1.200	1.095			1,040	ł	1,500		ł	ł	ļ	820		
Silica (Si0 ₂)	1	ł			ł	!	ł	ł	ł	1	ł	ł	ł	ļ		9.2	ł	1			1		1	1	ł	1	ł	ł		
Date	12-29-71	12-29-71	12-29-71	12-29-71	12-15-66	12-15-66	12-15-66	12-15-66	12-15-66	10-21-71	10-21-71	10-21-71	10-21-71	10-21-71	10-21-71	9-26-63	10-26-66	10-26-66	10-25-66		00-67-01	10-12-66	10-12-66	11- 4-66	11- 4-66	11- 4-66	11- 4-66	11-15-72	6-14-66	
Producing interval or sampling depth (feet)	1,000 ² 14510/	1,500 ^{2,4&10/}	2,000 ² ,4&10/	2,5002,4610/	2,113457/	3,005 ^{4<u>67</u>/}	3,746467/	3,832457/	3,936 <u>4&7/</u>	750 ² ,4&7/	1,520 ^{2,4&7/}	2,020 ² ,467/	2,770 ^{2,46,7]}	3,270 ^{2,4&7/}	3,770 ^{2,4&7/}	2,923-2,957	7 423-7-957	9.923-2.957	4 169-4 187		4, 107-4, 10/	4,470-4,507	4,470-4,507	1,073 ^{46.8} /	2,134 <u>468/</u>	4,000 ^{46.8/}	5,500 <u>468/</u>	1,500 ^{468/}	4,199-4,695	ferent method
Aquifer	Capitan	. ob	do.	.ob	do.	do.	.ob	do.	do.	.ob	do.	do.	do.	do.	do.	Seven Rivers-	do	do.	Coniton		-010	do.	do.	do.	do.	.ob	do.	do.	do.	17.5°C. 14.15°C. 17.5°C. 20°C.
Well hame	l Yates State - Concluded	do.	do.	do.	1 <u>1</u> Hackberry Deep Unit 1	.op <u>11</u>	.op 万:	in do.	.op <u>1</u> 1	. op do.	. op	11 do.	<u>u</u> do.	11/ do.	<u>do.</u>	Middleton Federal B 1	ŝ		South Wilson Deen Unit 1) <mark>**</mark> North Custer Mountain Unit l 1827	do.	1 <u>1/</u> Federal Davison	, do.	<u>الم</u> مه.	ا <u>با</u> من	do.) <mark>l/</mark> Southwest Jal Unit l	Water does not represent formation fluid. Commercial service laboratory analysis. Density of oil at top of fluid column is 0.818 at 17.5°C. Spot samples in fluid column is 0.818 at 17.5°C. Flugged-buck production interval 640-906. Producing interval 3.90-319. Producing interval 2.736-4.935. Producing interval 2.736-4.935. Producing interval 2.90-2.515. Producing interval 1.538-1.936. Differenti n.1538-1.936. Differenti n.1538-1.936. Density of vil at top of fluid column is 0.796 at 20°C.
Location number	20,30,32,341	32,341	32.341	32.341	19.31.31.1132	31.132	21.132 ¹¹	31.13211	31.1321/	31.132	31.1321/	31.13214	31.132 <u>17</u>	31.13211	31.132	19.32.31.110 ²¹	011.15	31.1102/	12011-1-2-71-1-5		010.07	23.35.28.120 ⁵⁵	28, 120	24.36.20.210 ¹¹	20.210 ¹¹	20.2101	20,210 ¹¹	20.2104	26.36. 4.230 ^{LI}	<pre>1/ Water doe 2/ Commercial 3/ Density of 4/ Sjor samp 5/ Flugged-1 5/ Producing 7/ Producing 9/ Different 10/ Producing 11/ Producing 12/ Density of 12</pre>

Note: (Wells are listed in order of increasing distance from Carlsbad, N. Mex. along trace of the Gapitan aquifer. Analyses are by U.S. Geological Survey unless otherwise indicated. Chemical constituents are in milligrams per liter.)

+

Hackberry Deep Unit 1

Appendix G.--Well-construction details for Hackberry Deep Unit 1, 1,650 feet from north line and 990 feet from west line of sec. 31, T. 19 S., R. 31 E., Eddy County, New Mexico. Appendix M.--Drilling and completion records of observation

wells in the Capitan aquifer - Continued

Hackberry Deep Unit 1

Location: 1,650 FNL, 990 FWL, sec. 31, T. 19 S., R. 31 E., Eddy County, New Mexico.

Altitude: Kelly bushing 3,414 (Sweeney), 3,409 (Strake - reference datum); derrick floor 3,407 (Strake); ground level 3,397; casing head flange 3,393; measuring point 3,398.6.

Latitude: 32.61920°N Longitude: 103.91330°W

Permian Basin Well Data System No: MH10385

OMNIANA Data File No.: 35015API10385

Original owners: Mr. G. W. Strake. Subsequently assigned to Mr. H. N. Sweeney.

Land owner: U.S. Government. Drilled under Federal Lease No NM-06815A; grazing lease held by John Lusk, 304 North Corral, Carlsbad, New Mexico 88220.

U.S. Bureau Land Management Use Permit: Assigned Serial No. NM-0559838 and noted under 44 L.D. 513.

Water rights: CP-362 assigned on May 9, 1966. Originally assigned CP-363 in error. Granted on May 9, 1966.

Depth to water from land-surface datum: 610.78 ft on March 2, 1967.

Measuring-point description: Top of 8 5/8-inch casing.

Date acquired by USGS: March 26, 1966.

Borehole geophysical logs: Gamma-ray-neutron 1,700-4,024 ft Acoustic 4,450-11,544 ft Guard-gamma-ray-forxo-caliper-density 11,500-12,523 ft Focus-gamma-ray 6,750-11,541 ft Minifocused-caliper 6,700-11,549 ft Acoustic-velocity-gamma-ray 11,500-12,518 ft Gamma-ray 0-11,544 ft

Other logs: Drill cuttings 1,700-4,200 ft; Penetration rate 1,750-4,850 ft.

Casing and cement record: 13 3/8-in, 48-lb/ft casing set to 583 ft with 610 sacks of cement. Top of cement located by temperature survey at 230 ft. Cemented to surface with 100 sacks using line pipe. 8 5/8-in, J-55, 32 and 24-lb/ft casing set to 4,131 ft. Cemented bottom of casing with 200 sacks. Cemented through DV tool set at 2,402 with 1,000 sacks. Temperature survey indicates top of cement at 1,115 ft. Appendix M. --Drilling and completion records of observation

wells in the Capitan aquifer - Continued

Hackberry Deep Unit 1 - Continued

Total depth: 12,524 ft

Plugged-back total depth: 4,050 ft

Formation tops and bases:	Rustler Fm.	510	(+2,899)
	Yates Fm.	1,955	(+1,454)
	Capitan Limestone	2,193	(+1,216)
	Base of Capitan Limestone	4,103	(-694)
	Delaware Mountain Gp.	4,103	(-694)
	Bone Spring Limestone	6,625	(-3,216)
	Morrow Series	11,558	(-8,149)
	Barnett Shale	12,473	(-9,064)

Other former owner record:

Spudded January 31, 1965; temporarily abandoned on March 2, 1965. Re-entered hole on August 13, 1965; temporarily abandoned August 24, 1965.

- Drill-stem tests in formations of lower Permian and Pennsylvanian age.
- Plugging record (Mr. H. N. Sweeney). Eight cement plugs, varying from 35 to 55 sacks of cement, were set at 12,400-12,250, 11,550-11,450, 11,200-11,050, 10,200-10,100, 8,480-8,380, 6,850-6,750, 5,330-5,230, and 4,200-4,050 ft, respectively, to plug open hole. Rotary mud circulated below, between, and above plugs.

Lost circulation:	Depth, feet	Percent lost
	1,893	100
	2,505	40
	2,585	100
	2,800	100
	2,828	40
3,	559-3,987	10-50

USGS work record:

Rigged up work-over rig on March 29, 1966. Bailed rotary mud from casing. Rigged down March 31, 1966. June 6, 1966, ran perforating depth control logs and perforated casing with shaped charges (torpedo jets) designed to cut 1½-in hole in casing and penetrate approximately 23 inches into formation. Perforated the intervals 3,736-3,749 with 8 shots; 3,830-3,833 with 4 shots; and 3,928-3,939 with 8 shots. No indication of fluid entering hole immediately after perforating casing. Appendix M. --Drilling and completion records of observation

wells in the Capitan aquifer - Continued

Hackberry Deep Unit 1 - Concluded

USGS work record - Concluded

Treated Capitan aquifer with 2,000 gallons of regular 15 percent HCl in June 17, 1966. Acidized through casing. Swabbed through casing from June 17 to June 20,

- 1966. Could not lower fluid level below 2,300 ft depth. Swabbed into test tank. Ran aquifer recovery test. Test failed.
- Injected 3,000 gal retarded HCl acid in 3 stages through casing in second acid treatment on December 12, 1966. Each stage separated by jelled water and rock salt.

Swabbed through casing from December 12 to December 15, 1966. Sampled fluid in borehole at 3,005, 3,746, 3,832, and 3,936 ft using bailer. Installed water-level recorder on September 12, 1966. Ran aquifer performance pulse test on September 4, 1969. Test failed. Bailed approximately 95 feet of oil from borehole on

October 21, 1971.

Production rate: 28 to 35 gpm on June 20, 1966, 12 gpm on June 22, 1966, and 43 gpm on December 15, 1966.

Total water produced: Approximately 2,170 bbl produced from June 17 to December 15, 1966.

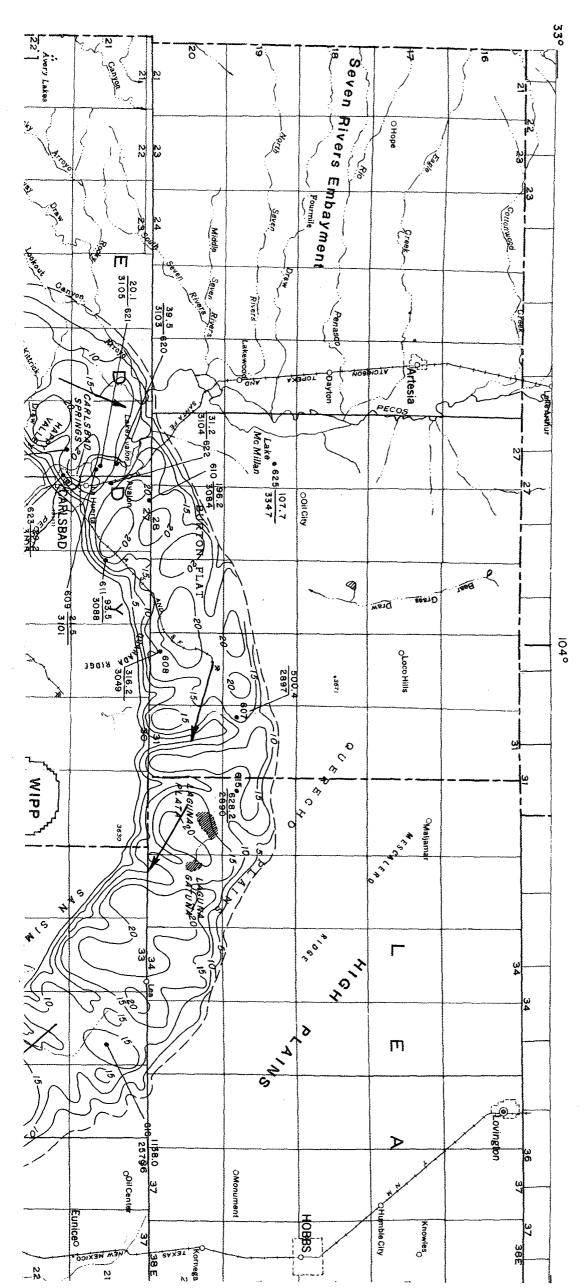
<u>Special conditions</u>: Approximately 1,100 feet of 8 5/8-in, J-55, 24-1b/ft salvable casing remaining in the hole. Small amount of oil seeping into borehole.

PLATE 2 DELAWARE BASIN, TEXAS AND NEW MEXICO WATER-RESOURCES INVESTIGATIONS REPORT 84-4077

EXPLANATION

o

٩.


- ----- APPROXIMATE POSITION OF EXTREME SHELFWARD EDGE OF CAPITAN REEF COMPLEX.
- ---- BASINAL EDGE OF CAPITAN REEF COMPLEX--Dashed where approximately located.
- -----/5 --- LINE OF EQUAL THICKNESS OF THE CAPITAN AQUIFER, IN HUNDREDS OF FEET--Dashed where approximately located. Interval is 500 feet. (From Hiss, 1975).
- 616 1138.0 WELL AND IDENTIFICATION NUMBER--Opper number is water level below or above (+) land surface, in feet. Lower number is altitude of water level, in feet. R indicates reported measurement. Datum is sea level.
- GENERAL DIRECTION OF GROUND-WATER FLOW IN THE CAPITAN REEF--Arrows represent regional interpretations and do not necessarily fit individual control points.

22.1

.....

۷.

Elevation: 3546' DF Cement plug via tubing: Surface-20' Cement plug via tubing: 700'-800' 745' - 8-5/8" Casing Cemented w/50 sxs. Est. TOC @ 578' 940 2230 Cement plug via tubing: 2358'-2460' The Top in free well 2370-2,720' 2460 30-0.15-10238 ATTACHMENT VI.2 Delhi-Taylor Oil Corp. Jones Federal 3-23 1980' FSL & 660' FEL Sec. 23. T-19S. R-31E Eddy County, N.M.

LYNX PETROLEUM CONSULTANTS, INC. APPLICATION FOR AUTHORIZATION TO INJECT Jones Federal 'B' No. 3 Supporting Documentation

III. Well Data: Schematic Attached

VI. Wells in Area of Review

١

1. Well Name: Jones Federal 'E' No. 1 Type: Oil (Plugged and Abandoned) Casing & Cement: 13-3/8" @ 653' cemented w/650 sxs. Circulated 8-5/8" @ 3925' cemented w/400 sxs. TOC @ 2160' by Temp Svy. 4-1/2" @ 11,600' cemented w/380 sxs. Estimated TOC @ 9400' Date Drilled: November 14, 1964 Location: 1980' FNL & 660' FEL Section 23, T-19S, R-31E, Eddy Cty, NM Total Depth: 11,600' Perforations: 11,530-540' Schematic: Attached 2. Well Name: Jones Federal 3-23 Type: Dry hole (Plugged and Abandoned) Casing & Cement: 8-5/8" @ 745' cemented w/50 sxs. Estimated TOC @ 578' Date Drilled: July 30, 1963 Location: 1980' FSL & 660' FEL Section 23, T-19S, R-31E, Eddy Cty, NM Perforations: None Schematic: Attached 3. Well Name: Jones Federal No. 3 Type: Oil (Plugged and Abandoned) Casing & Cement: 13-3/8" @ 701' cemented w/650 sxs. Circulated 8-5/8" @ 3991' cemented w/500 sxs. TOC @ 2145' by Temp Svy. 4-1/2" @ 11,570' cemented w/550 sxs. TOC @ 9320' by Temp Svy. Date Drilled: June 18, 1965 Location: 660' FNL & 660' FEL Section 26, T-19S, R-31E, Eddy Cty, NM Perforations: 11,440-450' Schematic: Attached

VII. Proposed Operation

- Average Daily Rate: 500 Barrels Maximum Daily Rate: 1000 Barrels Average Daily Volume: 500 Barrels Maximum Daily Volume: 1000 Barrels
- 2. System will be closed

2/18/2005

Wellbore Diagram

30-015-10394-00-00

Company Name: DOWDCO INC

Location: Sec: 23 T: 19S R: 31E Spot: Lat: 32.6405483962839 Long: -103.83349827919

Property Name: JONES B FEDERAL

County Name: Eddy

String Information

Cement Information

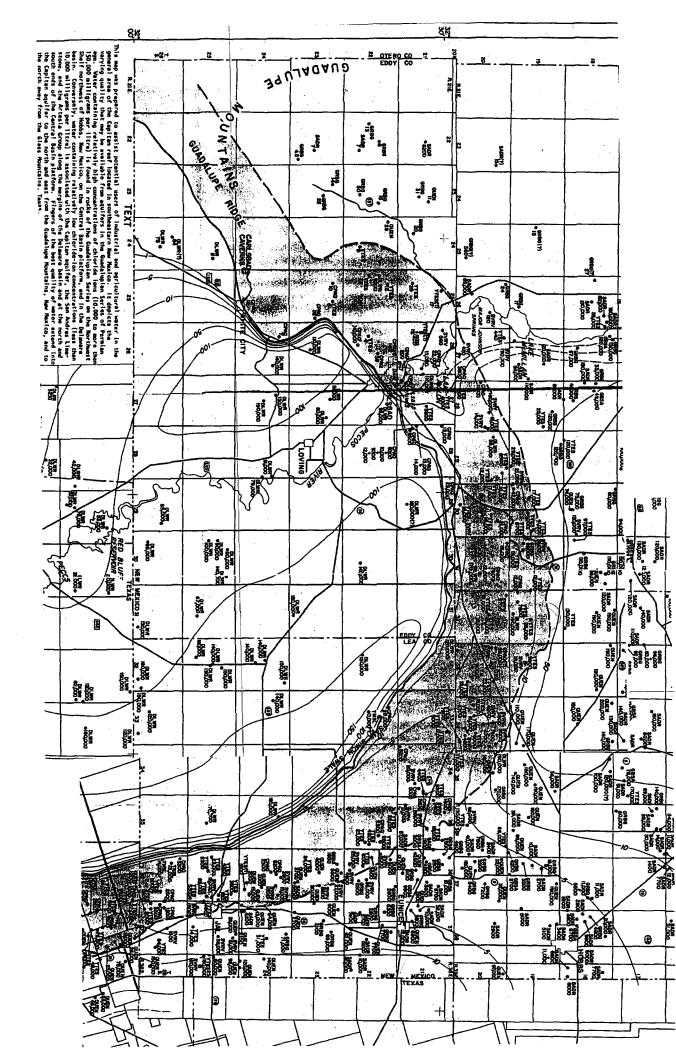
Perforation Information

Тор	Bottom					
(ft sub)	(ft sub)	Shts/Ft	No Shts	Dt Sqz		
99999	99999					

2 370 - 2412 1× 105 BUPD

Hole: Unknown

TVD: 99999


PBTD:

TD:

Formation Information

I OIIIIGUO		
St Code	Formation	Depth
Prust	Rustler	688
Psał	Salado	930
Pbslt	Base of Salt	2220
Pyts	Yates	2375
Psr	Seven Rivers	2570
Preef	Capitan Reef	2705
Pdel	Delaware	4685
Pbs	Bone Spring	7090
Pbs1sd	1st Bone Spring Sand	8362
Pbs2sd	2nd Bone Spring Sand	9100
Pbs3sd	3rd Bone Spring Sand	9890
Pwc	Wolfcamp	11340

JONES B FEDERAL No. 003

