NMOGA

EXHIBIT C

1387 Wyoming St. Golden, CO 80403

JOSEPH J. BEER

beer0048@gmail.com 303.590.4803

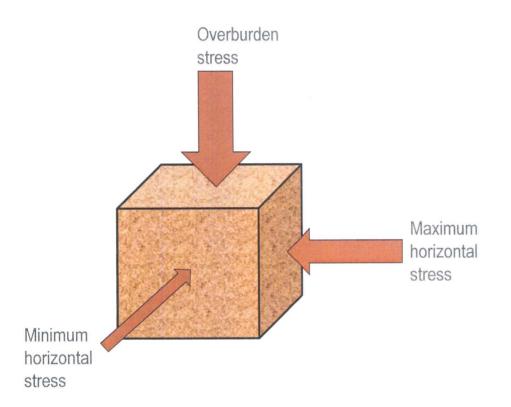
TECHNICAL EXPERTISE

- Liquids-rich and dry gas shale evaluation
- Core and log analysis
- Completions design and modeling
- Sedimentology and sequence stratigraphy
- Tight gas sand evaluation
- Geomechanics
- Geosteering
- Petra, Kingdom, Petrel, SES, Frac Pro, Spotfire, Microsoft Office Suite

EMPLOYMENT

Encana Oil & Gas (USA) Inc. January 2006 - Present

Sr. Manager Geo- Science and Base Asset Development	Western Operations: 06//2017 – Present Manage Eagle Ford reservoir characterization group Geoscience and development manager for San Juan and Wyoming properties
Geoscience and Base Asset Dev Manager	Western Operations: 01//2017 – 06/2017 Manage team of geoscientists actively developing EF play Development manager for 2-4 base assets.
Geoscience Manager	Eagle Ford: 06/2014 – Present Grow team from 5 to 14 geoscientists focused on integrating new corporate asset Planning and execution of \$500MM/yr, 2-5 rig horizontal development program Team increased well inventory and reserves by designing and executing spacing and completions trials
Development Lead	Emerging Plays: 01/2014 – 06/2014 Evaluate commerciality and create development plan for Piceance Niobrara Manage team of 4 geoscientists and reservoir engineers
Geologist	North Piceance: 01/2012 – 01/2014 Active exploration and delineation of the Niobrara formation Developed strong liquids-rich shale evaluation techniques
Geologist	Wind & Green River Basins: 01/2010 – 01/2012 Geomechanics characterization and modeling Help teach and advise geomechanics concepts and workflows across portfolio Completions diagnostics, design, optimization, and execution
Geologist	New Ventures: 04/2007 – 01/2010 Exploration, delineation, leasing of Haynesville Shale Gas shale core analysis, petrophysics, resource mapping, planning Geologic execution of initial vertical pilots and first hz wells in the play
Geologist	DJ Basin: 01/2006 – 04/2007 Plan and execute active vertical program and early horizontal tests Stratigraphic framework, petrophysical analysis, resource mapping

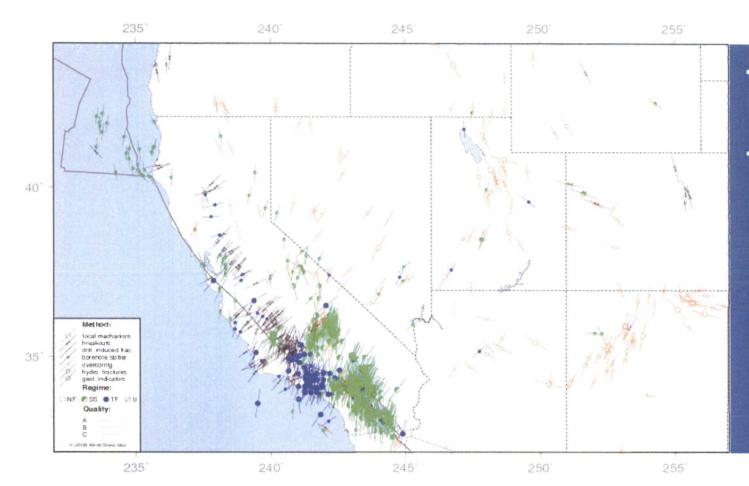

EDUCATION

- M.S. Geological Sciences. University of Minnesota Duluth. Spring 2006. GPA 4.0
- Wasatch-Uinta Field Camp, Utah. Summer 2003.
- B.A. Geology and Environmental Studies. Gustavus Adolphus College. 2003. GPA 3.66

PUBLICATIONS

- Gorynski, K., Wallace, K., Beer, J., 2014, A Geomechanical Model for High-Volume, Proppantless, Slickwater Hydraulic Fracturing Operations in the Tight-Gas Sands of the Williams Fork Formation, Piceance Basin, Colorado, SPE 171625.
- Beer, J.J., 2009, Regional Depositional Controls on Reservoir Quality and Fracability of the Haynesville Shale, Haynesville Gas Shale Technology Symposium, Dallas, TX.
- Beer, J.J., 2005, Sequence stratigraphy of fluvial and lacustrine deposits in the lower part of the Chinle Formation, south central Utah, USA: Paleoclimatic and paleoecologic implications [MS Thesis]: Duluth, University of Minnesota, xxx p.
- Demko, T.M., Nicoll, K., Beer, J.J., Hasiotis, S.T., Park, L.E., 2005, Mesozoic Lakes of the Colorado Plateau, in Pederson, J., and Dehler, C.M., eds., Interior Western United States: Geological Society of America Field Guide 6, p xxx-xxx, doi: 10.1130/2005.fld006(16).
- Demko, T.; Beer, J. Gulbranson, E. 2005. Lakes in tropical western Pangaea: siliciclastic- and carbonate-dominated lacustrine deposits of the Upper Triassic Chinle Formation, Colorado Plateau, U.S.A., American Association of Petroleum Geologists Bulletin, vxx, p. xx.
- Beer, J., Demko, T., 2005, Tectonic control on continental paleovalley fill architecture: evidence from the Upper Triassic, lower Chinle Formation, south central Utah, USA, Geological Society of America Abstracts with Programs, v. xx, no.x, p. Axx.

Rock stress at depth

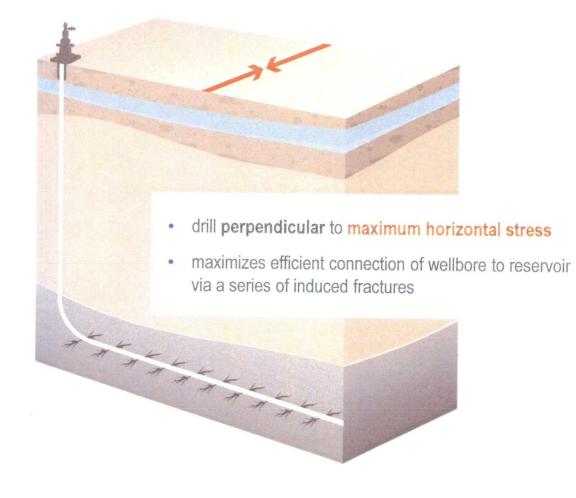


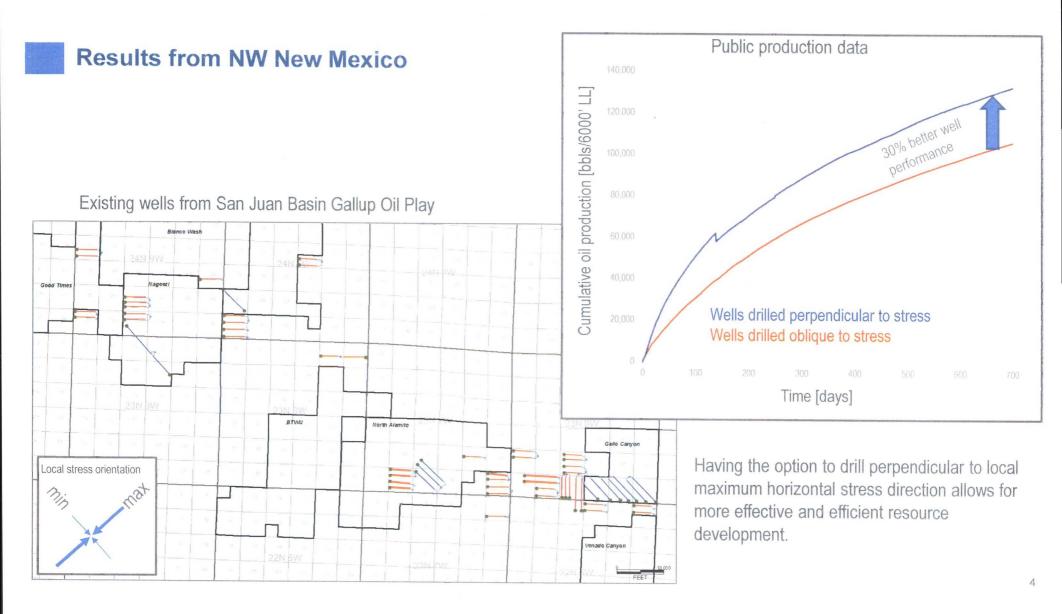
- Rocks are under compressive stress at depth
 - Stress = force/area
- Overcome stress to create hydraulic fractures

1

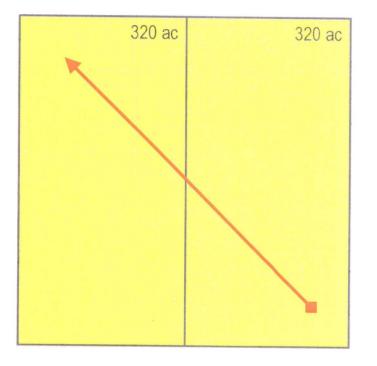
Hydraulic fractures preferentially open

perpendicular to minimum stress



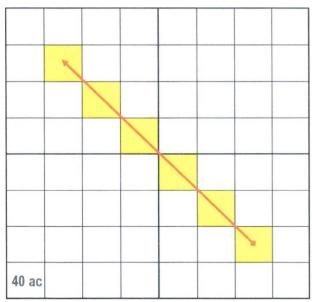

Regional map of tectonic stress orientation

- orientation of maximum horizontal stress varies regionally
- hydraulically induced fractures grow parallel to maximum horizontal stress direction (easier to open width against minimum stress magnitude)


Map source: Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. and Müller, B., The World Stress Map database release 2008 doi:10.1594/GFZ.WSM.Rel2008, 2008.

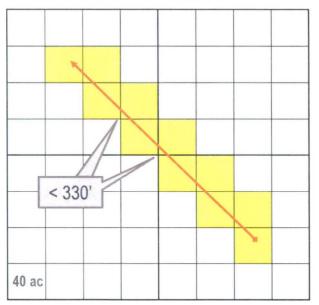
Local development

Limitations of current rule


We have been able to drill transverse only in unique scenarios

- Wellbore > 330' from non-penetrated tracts
- Penetrated tracts form rectangle

Transverse wells: Existing Rule


Non-standard location

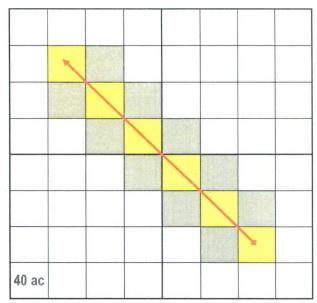
- penetrated tracts <330' from offset tracts Non-standard spacing unit
- penetrated tracts non-rectangular

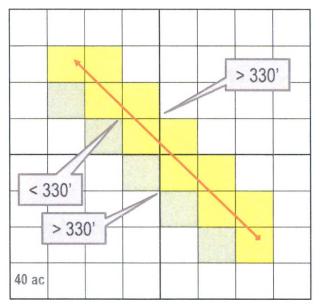
Non-standard location

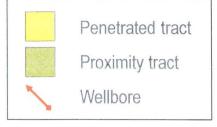
- penetrated tracts <330' from offset tracts Non-standard spacing unit
- penetrated tracts non-rectangular

Penetrated tractWellbore

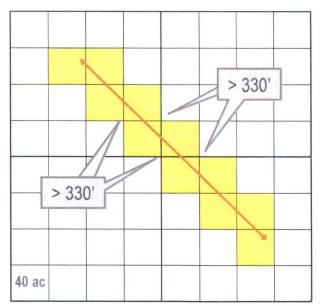
Standard location

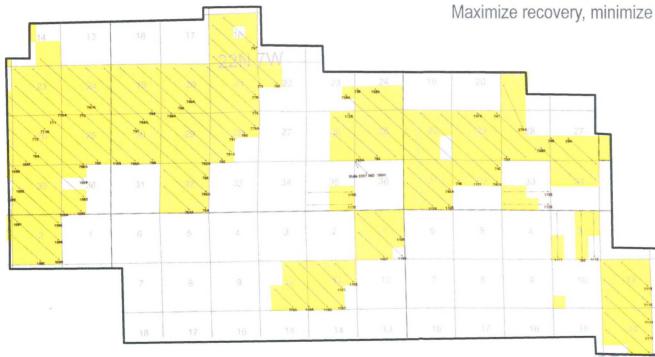

- penetrated tracts >330' from offset tracts Non-standard spacing unit
- penetrated tracts non-rectangular


Transverse wells: Proposed Rule


Standard location

- Obeys 330' setback
- Standard spacing unit
- Include proximity tracts within 330'
- Rectangular shape unnecessary


- Standard location
- Obeys 330' setback
- Standard spacing unit
- Include proximity tracts within 330'
- Rectangular shape unnecessary



Standard location

- penetrated tracts >330' from offset tracts Standard spacing unit
- Rectangular shape unnecessary

Example development layout

Example development plan for a non-unitized area Flexibility to drill appropriate azimuth, spacing, lateral lengths Maximize recovery, minimize waste