INDEX

Item 1:	Sheets of formulae (pink s	sheet for oil, yellow sheet for gas)
	Type Curves:	
Item 2:	Uniform Flux Vert. Frac:	Log-Log: Pressure Scale 2 Cycles
Item 3:	Uniform Flux Vert. Frac:	Semi-Log: Pressure Scale 0 to 4.5
Item 4:	Uniform Flux Vert. Frac:	Semi-Log: Pressure Scale 0 to 2.25

All graphs in this section constant pressure at boundary only.

١

For oil:

$$m = \frac{1.151 \Delta P}{P_D}$$

$$P_D = \frac{1.151 \Delta P}{m}$$

$$= \frac{7.08 \Delta P}{q \mu B} Kh$$

$$Kh = \frac{q u B}{7.08} \frac{P_D}{\Delta P}$$

$$n = \frac{6.328 K}{c \mu \phi}$$

$$m = \frac{q \mu b}{6.15 Kh}$$

$$q = BOPD$$

$$\mu = c p$$

$$B = RB/STB$$

$$K = darcys$$

$$h = feet$$

$$C = \Delta V/V/psi$$

$$X_f = fracture half-length$$

$$X_e = distance to outer boundary$$

 $\frac{Kh}{\mu} = \frac{q}{7.08} \frac{P_D}{\Delta P}$

t = days

For gas:

MCF/D at 14.7 psia P.B. Q = μ ср K darcys = o_R Т feet h = = cp at 14.7 psia and reservoir temp. μ_i $= \frac{1.151\Delta P}{P_D}$ m = external pressure Pe Pw = well pressure $Kh = \frac{1.637 \text{ Q } \mu_{1} \text{ T}}{\frac{\text{m}}{\text{m}}}$ $= \frac{1000 \text{ Q } \mu_{1} \left(\frac{\text{T}}{610.9}\right)}{\frac{\text{m}}{\text{m}}}$ Where $\triangle P$ is: $P_e^2 - P_w^2$ and P_e and P_w are psia or pseudo-pressures where pseudo-pressure is: dP or <u>1.637 Q T</u> Kh = if pseudo pressure is $\Psi\left(\frac{psia^2}{cp}\right)$