12:153 C:366

BOPCO, L.P.

201 MAIN ST.

FORT WORTH, TEXAS 76102-3131 817/390-8400

September 23, 2015

FEDERAL EXPRESS

Bureau of Land Management Carlsbad District Office 620 E. Green St. Carlsbad, New Mexico 88220 Attn: Mr. Ed Fernandez New Mexico State Land Office Commissioner of Public Lands 310 Old Santa Fe Trail Santa Fe, New Mexico 87501 Attention: Mr. Pete Martinez

New Mexico Oil Conservation Division 1220 St. Francis Santa Fe, New Mexico 87505 Attention: Mr. William Jones

Re: Commercial Determination PLU CVX JV Ross Ranch #008H (28-25-30) 1st Bone Spring Shale Eddy County, New Mexico

Gentlemen:

Please find attached hereto one (1) copy of Bass' commercial determination worksheets and exhibits which indicate that the subject well is not a commercial producer in the 1st Bone Spring Shale. Should you be in agreement that the 1st Bone Spring Shale in not commercial, please signify by executing one (1) copy of this letter in the space provided below and returning same to the undersigned at your earliest convenience.

Thank you very much and should you have any questions or comments in regard to the attached commercial determination, please do not hesitate to contact the undersigned.

Very truly yours,

R. Travis Mears

Bureau of Land Management	New Mexico State Land Office	New Mexico Oil	Conservation Division
By:	By:	Ву:	20 70
Its:	Its:	Its:	Account to the second
Date:	Date:	Date:	25 3
			A 99 -
			0.3

INTER-OFFICE MEMORANDUM

SEP 1 7 2015

TO:

Ross Sutton

FROM:

Bryce Bezant

DATE:

7/16/2015

RE:

Commercial Determination

PLU CVX JV Ross Ranch #008H (28-25-30) Poker Lake Unit (1st Bone Spring Shale)

Eddy County, New Mexico

Attached are the worksheets and necessary exhibits for the subject well to be submitted for commercial determination. The Ross Ranch #008H was drilled in 2012 to a total depth of 13,792' laterally completed in the 1st Bone Spring Shale reservoir. The well is producing from perforations 8,451'-13,792'. On test 4/14/2013 the well flowed at the rate of 814 BOPD, 2031 MCFD, and 2112 BWPD. This well has an expected recovery of approximately 179 MBOE (13:1 mcf/bbl) from the current completion.

The capital investment was taken from the AFE report and operating costs from the LIOR statement which included water hauling charges. The most recent strip price file was utilized adjusting for current area differentials. The Ross Ranch #008H will not be a commercial well and should not be incorporated into a participating area.

Bryce Bezant, P.E.

RBB/tah

Cc:

Travis Mears
Tom McCarthy
Steve Johnson

ECONOMIC PROJECTION

Date:

Partner:

Case Type:

Archive Set:

Project Name:

7/21/2015

Lior: 1004507

As Of Date: 01/01/2013

Discount Rate (%):5.00

Risk: 0.000 Inherited/ 0.000 Compounded

1004507/PLU CVX JV RR/008H/1ST

Lease Name: 1004507/PLU CVX JV RR/008H/1ST Reserv Cat.: Proved Producing

Field: CORRAL CANYON; BONE SPRING, SO

9:00:34AM

Operator: BOPCO

Reservoir: BONE SPRING Co., State: EDDY, NM

Cum Oil (mbbls):

All cases LEASE CASE

1-1-2015 NSAI Review For BOPCO, LP

0.00 Cum Gas (mmcf): 0.00

NS0115

Gross Dry Gas & NGL Sales Gross Wet Production

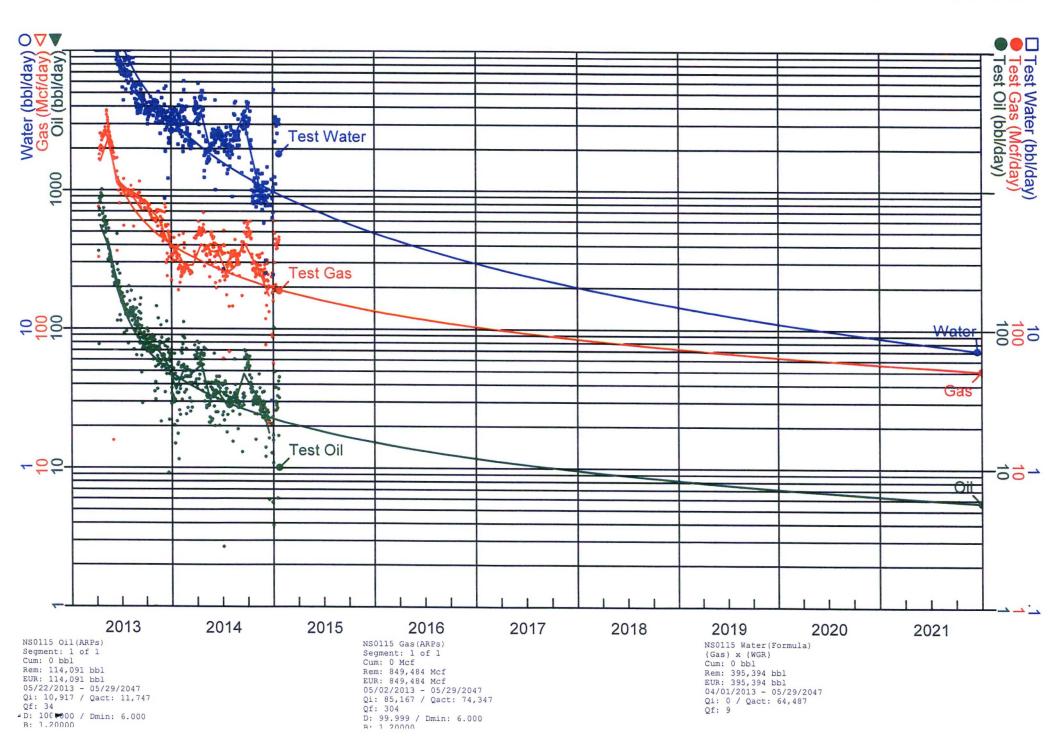
Year	Oil (Mbbl)	Wet Gas (MMCF)	Dry Gas (MMCF)	NGL (MGal)	Oil (Mbbl)	Gas (MMCF)	NGL (MGal)
2013	50.133	281.261	124.317	1,186.921	41.610	103.183	985.145
2014	12.835	108.615	48.008	458.355	10.653	39.846	380.435
2015	6.697	59.251	26.189	250.039	5.558	21.737	207.532
2016	4.861	43.375	19.172	183.045	4.035	15.913	151.927
2017	3.848	34.476	15.239	145.490	3.193	12.648	120.757
2018	3.213	28.867	12.759	121.821	2.667	10.590	101.111
2019	2.771	24.943	11.025	105.257	2.300	9.150	87.364
2020	2.451	22.086	9.762	93.202	2.034	8.102	77.358
2021	2.192	19.767	8.737	83.418	1.819	7.252	69.237
2022	1.990	17.966	7.941	75.815	1.652	6.591	62.926

Rem	23.100	208.877	92.323	731.583	19.173	76.628	731.583
Total	114.091	849.484	375.472	3,584.790	94.696	311.642	2,975.375
Ult.	114.091	849,484					

		Average Price		Net Revenue				
Year	Oil \$/BBL	Gas \$/MCF	NGL \$/Gal	Oil (M\$)	Gas (M\$)	NGL (M\$)	Total (M\$)	
2013	86.76	3.53	0.75	3,610.015	363.897	738.859	4,712.771	
2014	85.25	3.96	0.83	908.155	157.701	314.455	1,380.311	
2015	50.51	2.58	0.44	280.742	55.993	90.960	427.695	
2016	55.69	2.89	0.46	224.691	46.044	70.414	341.148	
2017	57.03	3.06	0.46	182.114	38.725	55.968	276.807	
2018	58.44	3.13	0.46	155.857	33.197	46.862	235.916	
2019	59.72	3.20	0.46	137.381	29.241	40.491	207.113	
2020	60.79	3.29	0.46	123.662	26.678	35.853	186.194	
2021	61.46	3.40	0.46	111.802	24.632	32.089	168.524	
2022	61.91	3.52	0.46	102.280	23.177	29.165	154.622	
Rem	62.09	4.04	0.46	1,190.536	309.437	339.068	1,839.041	
Total	74.21	3.56	0.60	7,027.236	1,108.722	1,794.183	9,930.141	

		Expenditures				Future Ne	t Revenue		
Year	Total Sev Taxes (M\$)	Total Adv Taxes (M\$)	Net Investments (M\$)	Total Net Opcosts (M\$)	Annual (M\$)	Cumulative (M\$)	Disc. Ann. CF 5.00 % (M\$)	Cum. Disc. CF 5.00 % (M\$)	
2013	246.605	10.850	5,503.051	931.389	-1,979.124	-1,979.124	-2,051.782	-2,051.782	
2014	102.568	4.472	0.000	661.392	611.879	-1,367.245	572.878	-1,478.904	
2015	31.787	1.386	250.000	152.912	-8.389	-1,375.634	-12.697	-1,491.602	
2016	25.348	1.105	0.000	138.216	176.480	-1,199.155	149.015	-1,342.586	
2017	20.569	0.897	0.000	131.654	123.687	-1,075.468	99.441	-1,243.145	
2018	17.525	0.764	0.000	128.172	89.456	-986.012	68.492	-1,174.652	
2019	15.381	0.671	0.000	126.075	64.986	-921.026	47.389	-1,127.263	
2020	13.826	0.603	0.000	124.720	47.045	-873.981	32.677	-1,094.586	
2021	12.515	0.546	0.000	123.764	31.699	-842.282	20.971	-1,073.616	
1022	11.485	0.501	0.000	123.085	19.551	-822.731	12.324	-1,061.292	
Rem	136.820	5.958	0.000	2,948.510	-1,252.246	-1,252.246	-362.930	-362.930	
Total	634 426	27.754	5 753 051	5 589 887	-2.074.977	-2.074.977	-1.424.223	-1.424.223	

/ajor Phase :	Gas	0		Working Int: Revenue Int:		1.00000000 0.83000000	Present Worth I	Profile (M\$)
nitial Rate: ubandonment: nitial Decline: leg Ratio: Ind Ratio:	74.35 0.30 100.00 0.16 0.11	mmcf/month mmcf/month % year b = bbl/mmcf	1.200	Disc. Initial Invest. (I Internal ROR (%): ROInvestment (disc/v Years to Payout: Abandonment Date:	undisc):	5,729.824 >1000.0 0.75 / 0.64 0.00 05/29/2047	5.00%: 9.00%: 10.00%: 12.00%: 15.00%:	-1,424.22 -1,367.75 -1,375.55 -1,403.74 -1,463.26
		Working Interest: Revenue Interest: Rev. Date:	Initial 1.00000000 0.83000000		2nd Rev. 0.00000000 0.00000000		20.00%: 30.00%: 40.00%: 50.00%: 60.00%:	-1,576.62 -1,790.76 -1,969.52 -2,118.68 -2,245.63


BEPCO Detailed WTD V9 Ver: 7/21/2015 1004507/PLU CVX JV RR/008H/1ST

Oper: BOPCO

Major Phase: Gas

Field: CORRAL CANYON; BONE SPRING, SOUTH EDDY, NM

ECL Date: 05/29/2047

WORKSHEET FOR COMMERCIAL DETERMINATION AND PARTICIPATING AREA IN FEDERAL UNITS

WELL DATA

WELL		PLU CVX	JV ROSS RA	NCH #008	8H (28-25-30)	3-25-30) FORMATION _			BONE SPRING		
LOCATION			UNIT,	150	FEET FROM	SOUTH	LINE &	660	FEET FROM	WESTLIN	
SECTION	28	OWNSHIP .	25S , F	RANGE	30E	COUNTY		Eddy		_ NEW MEXICO	
SPUD DATE 12/	2/29/2012		COMPLET	ION DATE	E 4/3/2013		INITIAL PRO	DUCTION		4/8/201	
PERFORATIONS	88	3451-13792									
BHL: 130' FNL &	627' FWL	SEC 28 T258	S R30E								
STIMULATION:											
ACI	ID										
FRA	ACTURE		See Attached	d							
12											
-											
	(-	4/14/2013): 8	14 BOPD, 20	031 MCFF	PD, 2112 BWPI)					
)					
OTENTIAL						0					
				h of Comp			TION				
				h of Comp	pleted Well.)		TION				
Attach Copy of C	:-105. Attac	ch Copy of W		v(pleted Well.)	CALCULA ⁻	TION	POTENT	IALLY PRODU	CTIVE	
Attach Copy of C-	:-105. Attac	ch Copy of W		VO SAN	DLUMETRIC	CALCULA ⁻	TION	POTENT	TIALLY PRODU	CTIVE	
Attach Copy of C- Area (A) proration Porosity (Φ), %	-105. Attac	ch Copy of W		SAN 160 8.8%	DLUMETRIC	CALCULA ⁻	TION	POTENT	IALLY PRODU	CTIVE	
Attach Copy of C- Area (A) proration Porosity (Φ), % Nater saturation (S	unit size, a	ch Copy of W		SAN 160 8.8%	DLUMETRIC	CALCULA ⁻	TION	POTENT	IALLY PRODU	CTIVE	
Artach Copy of C- Area (A) proration Porosity (Φ), % Nater saturation (S)	n unit size, a	ch Copy of W		SAN 160 8.8% 23%	DLUMETRIC	CALCULA ⁻	TION	POTENT	TIALLY PRODU	CTIVE	
Area (A) proration Porosity (Φ), % Vater saturation (See Thickness (H), Femperature (T),	unit size, a (Sw), %), ft.	ch Copy of W	ellbore Sketc	SAP 160 8.8% 23% 65	DLUMETRIC NDS PERFORA	CALCULA ⁻	TION	POTENT	IALLY PRODU	CTIVE	
Area (A) proration Porosity (Φ), % Nater saturation (See Thickness (H), Femperature (T), F	n unit size, a (Sw), %), ft. Fahrenheit sure (P), ps	ch Copy of W	ellbore Sketc	SAN 160 8.8% 23% 65 140 4,370	DLUMETRIC NDS PERFORA	CALCULA ⁻	TION	POTENT	TIALLY PRODU	CTIVE	
Attach Copy of C- Area (A) proration Porosity (Φ), % Nater saturation (S) Net Thickness (H), Femperature (T), F	a unit size, a (Sw), %), ft. Fahrenheit sure (P), psi	cres	ellbore Sketo	SAP 160 8.8% 23% 65	DLUMETRIC NDS PERFORA	CALCULA ⁻	TION	POTENT	IALLY PRODU	CTIVE	

PERFORMANCE DATA

		TERTO	MINIANOL BATA		
(If sufficient history exists	s, attach plot of oil prod	uction rate v time.)			
CUMULATIVE PRODUC	TION TO	5/31/2015 64,873	BBL Oil 403,277	MCF Gas	
INITIAL RATE (qi)			359 BOPD		
ECONOMIC LIMIT (ql)			1		
HYPERBOLIC DECLINE	RATE, dy	n =1	.2, d = 99%/yr		
REMAINING MBO (Q) =			49		
ULTIMATE RECOVERA	BLE MBO		114		
(Attach plat showing pror	ration unit and participa	iting area.)			
		E	CONOMIC		
GROSS WELL COST	\$2,201,220 (to the	depth of formation complet	ed)		
COMPLETION COST	\$3,301,831				
GROSS TOTAL COST	\$5,503,051				
YEAR	GROSS OIL MBO	BFIT NET INCOME (\$M)	OPERATING COST (\$M) INCL SEV & AD VAL TAX	5% NET BFIT DISCOUNTED CASH FLOW	
ZERO					

YEAR	GROSS OIL MBO	BFIT NET INCOME (\$M)	OPERATING COST (\$M) INCL SEV & AD VAL TAX	DISCOUNTED CASH FLOW
ZERO				
1	50.133	4712.8	1188.8	-2051.8
2	12.835	1380.3	768.4	572.9
3	6.697	427.7	186.1	-12.7
4	4.861	341.1	164.7	149.0
5	3.848	276.8	153.1	99.4
6	3.213	235.9	146.5	68.5
7	2.771	207.1	142.1	47.4
8	2.451	186.2	139.1	32.7
9	2.192	168.5	136.8	21.0
10	1.990	154.6	135.1	12.3
REMAINDER	23.100	1839.0	3091.3	-362.9
TOTAL	114.091	9930.1	6252.1	-1424.2

WELL IS NOT COMMERCIAL

Form 3160-4

UNITED STATES

FORM APPROVED

(August 2007)			DEPAR	TMEN'	T OF and	THE INT MANAG	ERIO EMEN	R VT							y 31, 2010	
	WELL	OMPLI	ETION O						AND L	OG			ease Serial 1 IMNM0503			
la. Type of		Oil Well	Gas V	Vell ☐ Wor	D D			☐ Plug	Back	□ Diff.	Resvr				r Tribe Name	
b. Type of	Completion	Other		- Wol	N OVC				, Duck			7. U	nit or CA A 91000303	greem X	ent Name and	No.
2. Name of BOPCO	Operator DLP		E	-Mail: tj		Contact: Ti y@basspe	t.com					F	-	RANG	ell No. CH 28 25 30 U	JSA 1H
3. Address	MIDLAND						Ph	Phone No : 432-22	1-7379	area code	e)		PI Well No.	30-0	15-40765-00-	S1
4. Location	of Well (Re)*			10. I	Field and Po CORRAL C	ool, or ANYC	Exploratory ON	
At surfa			660FWL 3						103 8021	145 \\\ 6	nn	11. 5	Sec., T., R., r Area Sec	M., or c 28 T	Block and Sur 25S R30E Me	vey er NMP
	rod interval i				FSL	SOF VVL S	2.0940	124 IV Lat,	103.032	145 VV LC	,,,	12.	County or P	arish	13. State NM	
At total		NW 187F	SL 636FW	te T.D.	Reach	ned		16 Date	Complete	ed				DF, K	B, RT, GL)*	
12/29/2				/18/201	3			□ D&	A 🔯	Ready to			319	96 GL		
18. Total D	•	MD TVD	13792 8937			Plug Back T		MD TVD					dge Plug Se		MD TVD	
	lectric & Oth					py of each)					DST		⊠ No	T Yes	s (Submit analy s (Submit analy s (Submit analy	(sis)
23. Casing a	nd Liner Reco	ord (Repor	rt all strings				T _a	2	T	C C1 - P	To	luani Val	1		Ι	
Hole Size	Size/G	rade	Wt. (#/ft.)	Top (MI		Bottom (MD)		Cementer Depth		f Sks. & f Cement	+	lurry Vol. (BBL)	Cement		Amount Pu	ılled
17.500	-	75 H-40	48.0	-	0	1119			-	132				0		
7.875		625 J-55 00 P-110	32.0 17.0		0	3518 1379		5027		195				1200		
7.073	. 5.50	701-110	17.0		Ĭ											
							+-				+			-		
24. Tubing	Record						_								7	
Size	Depth Set (N	(D) Pa	cker Depth	(MD)	Siz	e Dep	th Set (MD) I	acker Dep	oth (MD)	S	ize De	epth Set (M	D)	Persker Depth	(MID)
25. Produci	ng Intervals					26	. Perfo	ration Reco	ord						O Z	0
F	ormation		Тор		Bot	tom		Perforated			S	ize 1	No. Holes		Perf. Steffais	m
	T BONE SP	RING		8451		13792			9163 TO	13695		-	240	open	2	<
B)				-	-										ITI is	m
C)															S)	D
27. Acid, F	racture, Treat	ment, Cen	ent Squeeze	e, Etc.						170	14-1	:-1				
	Depth Interv	al 3 TO 136	95 gal fluid	Include	s 5287	78 gal 15%	HCL, 2		mount and opant	түре от	Mater	ıaı				
	510	10 100	00 3-										REC	A 7	TITATE	PIN
													BITTE	//	7-3-1	3
28 Product	ion - Interval	Α											BRITH.			
Date First	Test	Hours	Test	Oil BBL		Gas MCF	Water BBL	Oil G		Gas Grav	ity [Product	ion Method		on DEC	ADD
Produced 04/08/2013	Date 04/14/2013	Tested 24	Production	814.		2031.0	211		43.7		0.81	VUCE	DTFLOV	S FR	OM-WELL -	UKU
Choke Size	Tbg. Press. Flwg. 1100	Csg. Press.	24 Hr. Rate	Oil BBL		Gas MCF	Water BBL	Gas: C Ratio		Well	Status	LIOOL				1
43/128	SI			814		2031	211	2	2495		POW					-
	ction - Interva	_	Tant	Oil	1/	Gas	Water	Oil G	ravity	Gas	-	Produc	ion Method	1	9 2013	1
Date First Produced	Test Date	Hours Tested	Test Production	BBL		Jas MCF	BBL	Corr.		Grav	rity		16	mi	∞	
Choke Size	Tbg. Press. Flwg.	Csg. Press.	24 Hr. Rate	Oil BBL		Gas MCF	Water BBL	Gas:C Ratio		Well	Status	RII	REAU OF	LAN	D MANAGE	MENT
	SI											100	CARLSB	ADE	HELD OFFIC	<u> </u>

(See Instructions and spaces for additional data on reverse side)
ELECTRONIC SUBMISSION #209879 VERIFIED BY THE BLM WELL INFORMATION SYSTEM
** BLM REVISED ** BLM REVISED ** BLM REVISED ** BLM REVISED **

28b. Prod	uction - Interv	/al C						•			
Date First	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravity Corr. API	Gas Gravity	,	Production Method	
Produced	Date	l'ested .	Production	BBL	MCI	Boc	Con. Att	- Control			
Choke · Size	Tbg. Press Flwg. SI	Csg Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas:Oil Ratio	Well St	atus		
28c. Prod	uction - Interv	al D									
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravity Corr, API	Gas Gravity		Production Method	
Choke Size	Tbg. Press. Flwg.	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas:Oil Ratio	Well St	atus		
29. Dispo	sition of Gas(Sold, used	for fuel, ven	ted. etc.)			1				
	nary of Porous	Zones (Inc	clude Aquife	ers):					31. For	mation (Log) Markers	
tests,	all important including dep ecoveries.	zones of po th interval t	prosity and c ested, cushi	contents there on used, time	eof: Cored i e tool open,	intervals and flowing and	all drill-stem shut-in pressure	es			
	Formation		Тор	Bottom		Description	ons, Contents, etc	.		Name	Top Meas. Depth
PL Base	ional remarks EASE HOLD of 1st Bone currently flow	Spring not	logged.	edure): DRMATION	I CONFIDE	ENTIAL			BA CH BR BO	STLER SE OF SALT ERRY CANYON USHY CANYON NE SPRING T BONE SPRING	980 3528 4682 5689 7525 8451
vveii	currently nov	ning up cas	sirig.								
1. Ele 5. Su 34. I here		nnical Logs or plugging the foregoi	and cement ing and attac Electi Committed	verification thed information	ition is com	879 Verified	rect as determined by the BLM Went to the Carls!	7 C ed from all a /ell Informa bad nn 06/11/201	tion Sys	records (see attached in stem.	Directional Survey structions):
Name	(please print)	TRACIE (HERRY				Title R	EGULATO	KT ANA	46101	

District.I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District.II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District.III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District.IV
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe. NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

1220 S. St. Francis D Phone: (505) 476-34		462	¥					r effective	is 06	10/11
		W	ELL LOC	CATION	I AND ACRE	EAGE DEDIC	ATION PLAT	eggetwo	1 04/	0911
	API Number		² Pool Code ³ Pool Name W							
30	0-015-4076	5 .		13354		Corra	al Canyon; Bone	Spring, South		
Property	Code 372			. Po		Well Number 8H				
⁷ OGRII 2607) No.		⁸ Operator Name BOPCO, LP						⁹ Elevation 3196	,
					10 Surface Lo	ocation				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line		County

M	28	25S	30E		150	South	660	West	Eddy
101	201	200		ttom Ho	e Location If	Different Fron	1 Surface		
UL or lot no.	Section 28	Township 25S	Range	Lot Idn		North/South line	Feet from the	East/West line West	County Eddy
12 Dedicated Acres			onsolidation	Code 15 Or	der No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

16	1301		.*	17 OPERATOR CERTIFICATION
627'				I hereby certify that the information contained herein is true and complete
				to the best of my knowledge and belief, and that this organization either
				owns a working interest or unleased mineral interest in the land including
				the proposed bottom hale location or has a right to drill this well at this
у.		•	,	location pursuant to a contract with an owner of such a mineral or working
	ı			interest, or to a voluntary pooling agreement or a compulsory pooling
	l į			order herstofore entered by the division.
				Stephature Designature Designature
	· ' '			Tracie J Cherry
	ľ			Printed Natne
	1.			
	1			tjcherry@basspet.com E-mail Address
	1			
	1			*SURVEYOR CERTIFICATION
				I hereby certify that the well location shown on this
	1			plat was plotted from field notes of actual surveys
				·
	1 :			made by me or under my supervision, and that the
	1 .		36	same is true and correct to the best of my belief.
	1			
				Date of Survey
	1			Signature and Seal of Professional Surveyor:
	1			,
	1			
	, 1		- 1	
	1 Top Pecf			
	LTE FW			Certificate Number
660'	3H4	 · ·		

Downhole Profile - Vertical Wells Well Name: POKER LAKE UNIT CVX JV RR #008H (28-25-30)

BOPCO, L.P. - West Texas Well ID: 30-015-40765

Field: Corral Canyon

Sect: 28 Town: 25S Rng: 30E County: Eddy State: New Mexico

Comment Comm	Surface Location: 150' FSL & 660' FWL, Sec 28, T25S-R30E									
Comment Comm										
Description 1										
2	f Depth (ftKB):									
F-25, 14-00 1-12	Act Blm (ftKB)	140.0								
Control of the Cont		1,120.0 3,582.0								
Schematic Annual Colors Page Pa		13,792.0								
Total Tota	tation									
1.19.0 (MB) 1.11. Nameworksite; 1.11. Namewo										
11.19.00 1.1	e Top Thread Set @ (ftKB)	Top (ftKB)								
TOC.; 1,500,000 TOC.; 1,50	140.00 ST&C 1,119.00	22.0 21.9								
1	LT&C 3,581.00	22.0								
Perforated Per	Buttress 13,791.00	22.0								
2 200, 365 100	Current Status Active (9,163.0 - 9,164.0)									
Cacing Cerement 1,000.00 10,000.00	Active (9,637.0 - 9,638.0)									
D071; 5,027.40 11,050.03 11,050.01 11,050.03	Active (10,111.0 - 10,112.0) Active (10,585.0 - 10,586.0)									
3252013 12,081.0 12,332.0 13 15 15 15 15 15 15 15	Active (11,059.0 - 11,060.0) Active (11,533.0 - 11,534.0)									
	Active (12,007.0 - 12,008.0) Active (12,481.0 - 12,482.0)									
UPPER DASE O. Participation Participat	Active (12,955.0 - 12,956.0)									
BASE O. LOWER	Active (13,429.0 - 13,430.0)									
LOWER	Set Depth (ftKB) 8,978.97	9,000.97								
BASE O 6		(ftKB) 22.0								
7 7/8;	2 1/2	8,918.7								
15 15 15 15 15 15 15 15	2 7/8 6.50 L-80	8,924.2 8,931.4								
13,792.00 5. Tidarip		8,939.6 8,940.9								
Production 2 7/18, 22.00-9 9,000.97 Perforated; 9,489.00, 37/25/2013 Perforated; 9,857.00-9 9,952.00.1 10,149.00 10,148.00, 37/25/2013 Perforated; 10,111.00-1 10,486.00, 37/25/2013 Perforated; 10,119.00-1 10,585.00-1 10,585.00-1 11,389.00, 37/25/2013 Perforated; 11,159.00-1 11,159.	2 7/8	8,949.1 8,953.0								
9,000.97	2 7/8	5,955.0								
Stage Number Stage Top (t/KB) Vol Coment Ret (bbl) 1 22.0 Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 22.0 Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 22.0 Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 22.0 Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 11.0 Stage Number Stage Top (t/KB) Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 11.0 Stage Number Stage Top (t/KB) Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 11.0 Stage Number Stage Top (t/KB) Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 11.0 Stage Number Stage Top (t/KB) Stage Bottom (t/KB) Vol Coment Ret (bbl) 1 11.0 Stage Number Stage Top (t/KB) Vol Coment Ret (bbl) 1 Number 1 Number 1 Number 1 Number 1										
Perforated; 9,982.00; 10,438.00; 10,438.00; 10,438.00; 10,438.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 10,981.00; 11,989.	Top Measurement Method									
9,962.00, 33/25/2013 Perforated; 10,111.00-10,365.00										
10,111.00- 10,436.00- 37/25/2013 Perforated: 11,039.00- 37/25/2013 Perforated: 12,032.00- 37/25/2013 Perforated: 12,032.00- 37/25/2013 Perforated: 12,232.00- 37/25/2013 Perforated: 12,236.00- 37/25/2013 Perforated: 12,266.00- 12,266.00- 13,260.00- 13,260.00- 13,260.00- 13,260.00- 13,260.00- 13,260.00- 13,260.00- 13,260.00-	Top Measurement Method	\dashv								
10,48.5.0; 325/2013 Perforated; 10,88.5.0; 10,98.5.0; 10,98.0; 325/2013 Perforated; 11,058.0; 325/2013 Perforated; 11,058.0; 325/2013 Perforated; 12,000 12,000 13,28.2013 Perforated; 12,000	Circulated Dens (lb/gal) Yield (ft³/sa									
10,910.00; 3/25/2013 Perforated; 11,080.00; 3/25/2013 Perforated; 12,205.00; 3/2	13.70 14.80	1.65								
3/25/2013 Perforated; 11,059.00- 11,384.00; 3/25/2013 Perforated; 12,000.00 3/25/2013 Perforated; 12,000.00 3/25/2013 Perforated; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 13,280.00; 12,805.00- 12,80										
11,384,00; 3/25/2013 1,384,00; 3/25/2013 1,384,00; 3/25/2013 1,384,00; 3/25/2013 1,384,00; 3/25/2013 1,384,00; 3/25/2013 1,286,00; 3/25/2013 1,2	Top Measurement Method Circulated									
Perforated: 1,533,00-3 32/5/2013 Perforated: 1,200/00-12,332.00; 32/5/2013 Perforated: 1,2481,00-12,805,00; 32/5/2013 Perforated: 1,200.00 Piuld Amount (sacks) Class 1,200.00 Piuld Amount (sacks) Piuld Amount (sacks) Piuld Piuld Amount (sacks) Piuld Piuld	Dens (lb/gal) Yield (ft³/sa									
11.858.00; 3/25/2013 Parforalad; 12.007.00- 12.332.00; 3/25/2013 Parforalad; 12.481.00- 12.806.00; 3/25/2013 Parforalad; 12.955.00- 13.280.00; 3/25/2013 Parfo	12.30 14.20	1.81								
Perforated: 12,007.00		\dashv								
	Top Measurement Method									
	Volume Calculations	rds)								
	12.40	2.19								
	Top Measurement Method	1.28								
	Cement Bond Log Dens (lb/gal) Yield (ft³/sar									
	12.40 14.50	2.07 1.28								
III NINI I III										
Perforaled; 13,423.00-										
13,895.00; 3/25/2013										
5 1/2 in; 17.00										
13,791.00; 2/22/2013										
using cement, a t										
5,027,00; 13,791.00 TD - Original Hole; 13,792.00										

Schematic - Vert Well Name: POKE Field: Corral Canyon

Schematic - Vertical Production

Well Name: POKER LAKE UNIT CVX JV RR #008H (28-25-30)

BOPCO, L.P. - West Texas Well ID: 30-015-40765

Sect: 28 Town: 25S Rng: 30E Eddy Co., State: New Mexico

Blk: Survey:

Horizontal - Original Hole, 6/11/2015 1:17:49 AM MD (ftKB) Incl (°) Column list (actual) Description 0.0 30.8 36.1 0.0 30.0 20 in; 90.00 lb/ft; F-25; 140.00 ftKB 24; Conductor; 22.00-140.00 140.1 0.2 luctor Cement; 22.00; 140.00 17 1/2; Surface; 140.00-1,120.00 1.031.2 1.073.5 2.4 1.074.8 13 3/8 in; 48.00 lb/ft; H-40; 1,119.00 ftKB Surface Casing Cement; 22.00; 1,119.00 1 117 5 26 1.119.1 1.120.1 2.6 TOC; 1,200.00; 1/19/2013 1 200 1 11: Intermediate; 1,120,00-3,582,00 ... 4.4 3,495,1 3,496.4 8 5/8 in; 32.00 lb/ft; J-55; 3,581.00 ftKB 3.579.4 3.4 Intermediate Casing Cement; 22.00; 3,581.00 3,581.0 3.582.0 3.4 Production Casing Cement; 1,200.00; 5.026.9 5,027.2 0.6 DVT; 5,027,40; 1/19/2013 5,027.6 5,029.5 0.6 BONE SPRING LIME 7.52. 7,528.9 7,640.1 1.6 AVALON SAND 7,64. 7,751.0 UPPER AVALON SHALE 7 75 7,977.0 BASE OF UPPER AVA... 7.97. 1.7 8,078.1 LOWER AVALON SHA... 8,07. 8,230.0 2.3 8,267.7 BASE OF LOWER AV 8.27 8,277.9 2.4 1ST BONE SPRING S ... 8.45. 8,452.1 7 7/8; Production; 3,582.00-13,792.00 8,918.6 52.8 8,924.2 8.931.4 54.2 8.939.6 8 940 9 55.3 8,949,1 5; Tubing - Production; 2 7/8; 22.00-9,000.97 8.953.1 56.2 9.001.0 9,163.1 78.3 -Perforated; 9,163.00-9,488.00; 3/25/2013 9.487.9 9,637.1 92.7 Perforated; 9,637.00-9,962.00; 3/25/2013 9,961.9 10.110.9 Perforated; 10,111.00-10,436.00; 90.3 3/25/2013 10,436.0 Perforated; 10,585.00-10,910.00; 3/25/2013 10,585.0 89.3 10,910.1 Perforated; 11,059.00-11,384.00; 3/25/2013 11,059.1 89.9 11,383.9 Perforated; 11,533.00-11,858.00; 3/25/2013 11,533.1 90.4 11,857.9 Perforated; 12,007.00-12,332.00; 3/25/2013 12,006.9 12,332.0 12,481.0 89.4 Perforated: 12.481.00-12.806.00; 12.698.2 3/25/2013 12 699 1 90.4 12 806.1 12,807.1 89.6 12,955,1 12,956.0 89.2 12,957.0 13,064.0 89.2 Perforated; 12,955.00-13,280.00; 3/25/2013 13,065.0 13,171.9 13,172.9 13,279.9 89.8 13,280.8 13,429.1 89.3 13,430.1 13,431.1 89.3 13,538.1 Perforated; 13,429.00-13,695.00; 3/25/2013 13,539.0 13,646.0 13,647.0 89.0 13,694.9 13,697.5 88.8 13,742.8 13,744.1 88.7 5 1/2 in; 17.00 lb/ft; HCP-110; 13,791.00 13,753.9 ftKB Open Hole: 13791' - 13792'; 13,791.00 13,754.9 88.7 2/22/2013 13,789,4 Production Casing Cement; 5,027.00; 13,791.0 88.7 13,791.00 -TD - Original Hole; 13,792.00 13,792.0