George QJ #10 -- Drainage Area

1. Original Oil in Place (stock-tank barrels) is given by the equation

OOIP = 7758*A*h* phi*So/Boi

where h*phi*So is the hydrocarbon pore volume.

- 2. The log calculations for hydrocarbon pore volume yield h*phi*So = 0.769.
- 3. Boi = 1.28 from the Standing Correlations where the parameters are as follows:

=	600
=	110 degrees F
=	0.7
=	42 degrees API
	= = = =

4. Ultimate Primary Recovery (Np) = Recovery Factor*OOIP

where Recovery Factor (\mathbf{Rf}) = 0.25 from 1957 paper entitled

"Estimation of Ultimate Recovery from Solution Gas-Drive Reservoirs" by Wahl, Mullins and Elfrink of Magnolia Petroleum.

5. Then, Np = $Rf^{7758}A^{h*}phi^{SO}/Boi$

and, by rearranging, A = Np*Boi/(Rf*7758*h*phi*So) in acres

A = 223615*1.28/(0.25*7758*0.769) in acres

A = 192 acres is the Drainage Area

Yates Petroleum Corporation May 11, 2006 BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Case No. <u>13706</u> Exhibit No. 10 Submitted by: <u>YATES PETROLEUM CORPORATION</u> Hearing Date: <u>May 11, 2006</u>

George QJ #9 -- Drainage Area

1. Original Oil in Place (stock-tank barrels) is given by the equation

OOIP = 7758*A*h* phi*So/Boi

where h*phi*So is the hydrocarbon pore volume.

- 2. The log calculations for hydrocarbon pore volume yield h*phi*So = 1.047.
- 3. Boi = 1.28 from the Standing Correlations where the parameters are as follows:

=	600
=	110 degrees F
—	0.7
=	42 degrees API
	= = =

 4. Ultimate Primary Recovery (Np) = Recovery Factor*OOIP
 where Recovery Factor (Rf) = 0.25 from 1957 paper entitled
 "Estimation of Ultimate Recovery from Solution Gas-Drive Reservoirs" by Wahl, Mullins and Elfrink of Magnolia Petroleum.

5. Then, Np = Rf*7758*A*h*phi*So/Boi
 and, by rearranging, A = Np*Boi/(Rf*7758*h*phi*So) in acres
 A = 132384*1.28/(0.25*7758*1.047) in acres

A = 83 acres is the Drainage Area

George QJ #2Y -- Drainage Area

1. Original Oil in Place (stock-tank barrels) is given by the equation

OOIP = 7758*A*h* phi*So/Boi

where h*phi*So is the hydrocarbon pore volume.

2. The log calculations for hydrocarbon pore volume yield h*phi*So = 0.773.

3. Boi = 1.28 from the Standing Correlations where the parameters are as follows:

Solution GOR	=	600
Temperature	=	110 degrees F
Gas Gravity		0.7
Tank Oil Gravity	=	42 degrees API

 4. Ultimate Primary Recovery (Np) = Recovery Factor*OOIP
 where Recovery Factor (Rf) = 0.25 from 1957 paper entitled
 "Estimation of Ultimate Recovery from Solution Gas-Drive Reservoirs" by Wahl, Mullins and Elfrink of Magnolia Petroleum.

5. Then, Np = Rf*7758*A*h*phi*So/Boi
and, by rearranging, A = Np*Boi/(Rf*7758*h*phi*So) in acres
A = 33223*1.28/(0.25*7758*0.773) in acres
A = 28 acres is the Drainage Area (Oil Well)

George QJ #2Y -- Drainage Area

1. Original Gas in Place (Scf) is given by the equation

OGIP = 43560*A*h* phi*Sg*Bg

where h*phi*Sg is the hydrocarbon pore volume.

2. The log calculations for hydrocarbon pore volume yield h*phi*Sg = 0.773.

3. Bg = 35.35*p/(zT) in Scf per cubic foot where the parameters are as follows:

	Pressu Tempo Gas G Tc Pc	ire erature ravity		= = =	2312 p 110 de 0.65 380 de 670 ps	osi egrees I egrees I i	F = R	570 degrees R
	Then	Tr Pr	=	(460+1 2312/6	10)/38 570	0	=	1.50 3.45
	And	Z	-	0.77				
So	Bg	=	35.35*	°2312/(0).77*57	0)	=	186 Scf/cubic foot
4. Ultimate I	Recover	y (Gp)		Recov	ery Fac	tor*O(SIP	
where	Recove	ery Fact	or (Rf)	=	0.80	for m	edium-j	porosity sands
5. Then, Gp	=	Rf*43	560*A*	h*phi*	Sg*Bg			
and, b	A = Gp/(Rf*43560*h*phi*So*Bg) in acres							
			A = ().313*1	0^9/(0.8	8*4356	0*0.77	3*186) in acres
			A =	62 acre	s is th	e Drai	nage A	rea (Gas Well)

Powers OL #6 -- Drainage Area

1. Original Gas in Place (Scf) is given by the equation

OGIP = 43560*A*h* phi*Sg*Bg

where h*phi*Sg is the hydrocarbon pore volume.

2. The log calculations for hydrocarbon pore volume yield h*phi*Sg = 0.344.

3. Bg = 35.35*p/(zT) in Scf per cubic foot where the parameters are as follows:

	Pressu Tempe Gas Gr Tc Pc	re erature ravity		= = = =	2312 p 110 de 0.65 380 de 670 psi	si grees] grees] i	F = R	570 degrees R
	Then	Tr Pr	=	(460+1 2312/6	.10)/380 70)	=	1.50 3.45
	And	Z	=	0.77				
So	Bg	=	35.35*	*2312/(0).77*57(0)	=	186 Scf/cubic foot
4. Ultimate R	lecovery	7 (Gp)	=	Recove	ery Fact	or*O0	GIP	
where	Recove	ery Fact	or (Rf)	=	0.80	for m	edium-j	porosity sands
5. Then, Gp	=	Rf*43	560*A*	h*phi*S	Sg*Bg			
and, by	A = $Gp/(Rf^*43560^*h^*phi^*So^*Bg)$ in acres							
			A = ().110*10	0^9/(0.8	*4356	60*0.34	4*186) in acres
			A =	49 acre	s is the	e Drai	nage Ai	rea (Gas Well)