# Effects of NMOCD Proposed Rule 53 Reserve Pits Removal

Prepared for

Industry Committee Joint Defense Technical Team

October 24, 2007



Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109



# **Table of Contents**

| Se | ection                                                      | Sage |  |  |  |  |
|----|-------------------------------------------------------------|------|--|--|--|--|
| Ex | recutive Summary                                            | ES-1 |  |  |  |  |
| 1. | Introduction                                                | 1    |  |  |  |  |
| 2. | Landfill Capacity and Drilling/Reserve Pit Material Volumes | 3    |  |  |  |  |
| 3. | Air Pollutants Resulting from Increased Truck Traffic       | 4    |  |  |  |  |
| 4. | Effects on New Mexico Highway Pavements                     | 7    |  |  |  |  |
| 5. | Potential Increase in Traffic Accidents                     | 10   |  |  |  |  |
| 6. | Conclusions                                                 | 11   |  |  |  |  |
| Re | eferences12                                                 |      |  |  |  |  |

# List of Figures

| Figur | re                                               | Page |
|-------|--------------------------------------------------|------|
| 1     | Waste Facility Locations with Township and Range | 2    |

i





## List of Tables

| Table | Page                                                                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------|
| ES    | -1. Summary of Estimated Annual Impacts ES-3                                                                    |
| 1     | Estimated Transport Volumes                                                                                     |
| 2     | Projected Travel Distance to Landfills4                                                                         |
| 3     | Summary of Projected Truck Traffic Air Pollutant Emissions                                                      |
| 4     | Comparison of New Mexico Air Quality Bureau Permitted Emissions to Maximum<br>Projected Truck Traffic Emissions |
| 5a    | Volume of Material to be Transported per Well7                                                                  |
| 5b    | Total Projected Volume of Material to be Transported7                                                           |
| 6a    | Calculated Round Trip 18-k ip Equivalent Single Axle Loads                                                      |
| 6b    | Calculated Total 18-kip Equivalent Single Axle Loads9                                                           |
| 7     | Traffic Loading on New Mexico Roads9                                                                            |
| 8     | Number of Additional Accidents Anticipated as a Result of Increased Truck Traffic 11                            |

# List of Appendices

#### Appendix

- A Air Emissions Calculations
- B Road Impact Calculations
- C Accident Rate Calculations



# Effects of NMOCD Proposed Rule 50 Removal of Reserve Pits

#### **Executive Summary**

The New Mexico Oil Conservation Division (NMOCD) has proposed significant changes to Rule 50, which regulates oil and gas pits (e.g., drilling, reserve, operation), essentially requiring all pit materials to be transported and disposed of in NMOCD-permitted landfills. Implementation of proposed Rule 50 would have significant negative future impacts on the New Mexico environment, roads, public safety, and oil and gas industry business decisions.

#### Industry Assumptions

The New Mexico oil and gas industry has been drilling approximately 1400 wells per year over the last few years. This drilling and the associated oil and gas production volumes are not expected to decrease under the current oil and gas prices and current Rule 50. The proposed Rule 50 to eliminate drilling pits would cost the industry more than \$50,000,000 per year.

#### Environment, Public Safety, and Road Impacts

To determine potential environmental and public impacts associated with the implementation of the proposed Rule 50, the oil and gas industry considered the additional activities associated with eliminating drilling/completion pits. In general, these impacts are related to the fact that only four currently approved OCD landfills are located in New Mexico, all in the southeast quadrant of the state. Accordingly, the impacts evaluated included regulated air pollutant emissions, dirt/paved road damage, and heavy truck accidents associated with the transport of drilling materials from the northeast, northwest, and southwest quadrants of New Mexico to one of the approved landfills in the southeast quadrant.

Identified impacts of the proposed changes to the pit rule include:

• A significant increase in regulated air pollutant emissions, including nitrogen oxides, particulate matter (dust), and greenhouse gas emissions, putting at risk emissions reduction goals in the northwest quadrant of the state



- Increase in surface owner complaints due to more traffic-induced road dust
- Accelerated deterioration of New Mexico roads, costing New Mexico taxpayers for increased road repairs
- A potential rise in injury accidents for New Mexico citizens as a result of the significant increase in heavy truck traffic
- Cumulative impacts of increased air pollutant emissions and truck traffic over the next 1 to 15 years

Table ES-1 lists both low and high estimates of the impacts related to implementation of the proposed Rule 50. The analysis included availability of landfill space relative to estimated annual volumes of drilling materials, expected heavy truck miles traveled, potential release of air pollutants from haul road and truck exhaust emissions (road dust, other pollutants, and greenhouse gas emissions), projected road damage, and anticipated heavy truck accidents.



|                                                                                         | Annual     | Impact     |                                                                                                                                                                                                                  |                                                                                                                 |
|-----------------------------------------------------------------------------------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Area of Concern                                                                         | Low        | High       | Comments                                                                                                                                                                                                         | Source                                                                                                          |
| Annual business impact to<br>comply with proposed Rule 50<br>(estimated costs per year) | \$50M      | >\$100M    | These expenditures and<br>costs are activities in<br>addition to current drilling<br>activity levels and current<br>landfill disposal costs.                                                                     | Industry Committee<br>poll                                                                                      |
| Volumes of drilling materials hauled per year (yd <sup>3</sup> )                        | 1,500,000  | 2, 700,000 | Assuming 1,400 wells per<br>year.                                                                                                                                                                                | Industry Committee                                                                                              |
| Heavy truck miles traveled<br>per year                                                  | 27,000,000 | 81,000,000 | Significant increase on<br>rural roads, especially near<br>permitted landfills, and<br>more than 50% increase in<br>local well drilling traffic.                                                                 | Average distance<br>from northwest,<br>northeast, and<br>southeast quadrants<br>to NMOCD permitted<br>landfills |
| Dust emissions<br>(tons per year)                                                       | 13,000     | 41,000     | Detrimental to NMED<br>FCAQTF and BLM air<br>quality reduction goals.                                                                                                                                            | Calculated using U.S.<br>EPA MOBILE6.2<br>model                                                                 |
| Greenhouse gas emissions<br>(GHGs)<br>(tons CO <sub>2</sub> per year)                   | 50,000     | 149,000    | Detrimental to the goals of<br>Governor's initiative to<br>reduce GHGs.                                                                                                                                          | Calculated using U.S.<br>EPA MOBILE6.2<br>model                                                                 |
| Pavement damage<br>(equivalent single axle loads)<br>(annual road consumption)          | 60%        | 106%       | Assuming 25% of the<br>additional traffic is imposed<br>in the vicinity of the four<br>NMOCD landfills, the road<br>design will be exceeded<br>and the useful life of the<br>roads will be less than 2<br>years. | NMDOT                                                                                                           |
| Heavy truck accidents<br>(adjusted rate based on<br>100,000,000 miles)                  | 14         | 41         | Goal is zero.                                                                                                                                                                                                    | Estimated by J.W.<br>Hall, P.E. (2006)                                                                          |
| Heavy truck fatalities<br>(adjusted rate based on<br>100,000,000 miles)                 | 0.85       | 2.53       | Goal is zero.                                                                                                                                                                                                    | Estimated by J.W.<br>Hall, P.E. (2006)                                                                          |
| New landfill disposal capacity                                                          | Unknown    | Unknown    | NMOCD should complete<br>this analysis. It is<br>unknown how the new<br>Rule 50 permitting process<br>will affect increase in<br>landfill capacity.                                                              | NMOCD permitted<br>landfills                                                                                    |

#### Table ES-1. Summary of Estimated Annual Impacts

NMOCD = New Mexico Oil Conservation Division NMED = New Mexico Environment Department FCAQTF = Four Corners Air Quality Task Force BLM = Bureau of Land Management

CO<sub>2</sub> = Carbon dioxide NMDOT = New Mexico Department of Transportation





# Effects of NMOCD Proposed Rule 50 Removal of Reserve Pits

#### 1. Introduction

As requested by the Industry Committee, Daniel B. Stephens & Associates, Inc. (DBS&A), with assistance from subcontractors McKeen Consulting Engineers LLC and Serafina Technical Consulting LLC, has evaluated the effects of New Mexico Oil Conservation Division (NMOCD) proposed Rule 50 regulates oil and gas pits (e.g., drilling, reserve, operation) and essentially requires all oil and gas well drilling/pit materials in the state of New Mexico to be hauled and transported to a NMOCD permitted landfill. The Industry Committee provided DBS&A with estimated transport volumes of material and projected travel distances to landfills.

There are currently four NMOCD-permitted landfills in the state:

- Gandy Marley
- Controlled Recovery, Inc.
- Lea Land, Inc.
- Sundance Parabo

Figure 1 illustrates the locations of these landfills, all of which are within the southwest quadrant of the state.

Implementation of proposed Rule 50 would have significant negative impacts on the New Mexico environment, roads, public safety, and oil and gas industry business decisions over 15 or more years. Based on an Industry Committee poll, the New Mexico oil and gas industry has been drilling approximately 1400 wells per year over the last few years. This drilling and the associated oil and gas production volumes are not expected to decrease under the current oil and gas prices and current Rule 50. However, the proposed Rule 50 to eliminate drilling pits impacts the industry at greater than \$50M per year.







#### 2. Landfill Capacity and Drilling/Reserve Pit Material Volumes

Estimated capacities have been evaluated according to the owners/operators of the landfills. Proposed Rule 50 (50D-E. (3) pg 12) requires that no surface waste management facility exceed 500 acres, which translates to an approximately 8,067,000-cubic yard [yd<sup>3</sup>] capacity for a 10-foot-deep landfill and an approximately 40,330,000-yd<sup>3</sup> capacity for a 50-foot depth. All of the owners claim to have enough current capacity or the ability to expand the landfills faster than the rate at which material can be transported in.

Based on an Industry Committee poll, Table 1 lists the estimated volume of material hauled and the estimated number of trips to transport oil and gas well pit materials to the permitted landfill. As shown in Table 1, estimated hauled material from reserve pits ranges from 1.5 million yd<sup>3</sup> to 2.7 million yd<sup>3</sup> (Table 1).

|                              | Well Depth    | Volumes Disposed (yd <sup>3</sup> ) |                         |  |  |
|------------------------------|---------------|-------------------------------------|-------------------------|--|--|
| Region in State <sup>a</sup> | (feet)        | Lowest Number of Trips              | Highest Number of Trips |  |  |
| Northwest                    | 0-4000        | 185,307                             | 370,614                 |  |  |
|                              | 4000-8000     | 203,144                             | 406,288                 |  |  |
|                              | 8000+         | 56,484                              | 84,726                  |  |  |
| Subtotal                     |               | 444,935                             | 861,628                 |  |  |
| Southeast                    | 0-4000        | 74,544                              | 149,088                 |  |  |
|                              | 4000-8000     | 299,692                             | 599,384                 |  |  |
|                              | 8000+         | 698,440                             | 1,047,659               |  |  |
| Subtotal                     |               | 1,072,676                           | 1,796,132               |  |  |
| Northeast                    | 0-4000        | 6,000                               | 12,000                  |  |  |
|                              | 4000-8000     | 0                                   | 0                       |  |  |
|                              | 8000+         | 0                                   | 0                       |  |  |
| Subtotal                     |               | 6,000                               | 12,000                  |  |  |
| Total V                      | olumes Hauled | 1,523,611                           | 2,669,760               |  |  |

#### **Table 1. Estimated Transport Volumes**

<sup>a</sup> No oil well reserve pits are located in the southwestern part of New Mexico.



#### 3. Air Pollutants Resulting from Increased Truck Traffic

The proposed pit closure requirement [19.15.2.50F.(3) NMAC] to transfer all contents from pits to NMOCD-permitted landfills would create additional truck traffic on New Mexico roads, resulting in release of air pollutants from haul road emissions and truck exhaust emissions. Truck traffic will occur on paved and dirt roads, with the percentage of dirt roads to be traveled varying geographically from 5 percent in northwestern New Mexico to 15 percent in southeastern New Mexico. To determine the amount of additional traffic, the Industry Committee poll results were used to calculate the minimum and maximum distances to be traveled annually in specific geographic regions in New Mexico to dispose of oil pit material at appropriate landfills. This analysis indicated that the proposed Rule 50 would result in additional truck traffic of 27 to 81 million miles annually (Table 2).

|                              | Depth of Well | Lowest An<br>Traveled/Sho | nual Miles<br>rtest Distance | Highest Annual Miles<br>Traveled /Longest Distance |           |
|------------------------------|---------------|---------------------------|------------------------------|----------------------------------------------------|-----------|
| Region in State <sup>a</sup> | (feet)        | All Roads                 | Dirt Road                    | All Roads                                          | Dirt Road |
| Northwest                    | 0-4000        | 4,632,675                 | 231,634                      | 11,912,593                                         | 595,630   |
|                              | 4000-8000     | 5,078,601                 | 253,930                      | 13,059,259                                         | 652,963   |
|                              | 8000+         | 1,412,099                 | 70,605                       | 2,723,333                                          | 136,167   |
| Southeast                    | 0-4000        | 174,380                   | 26,157                       | 1,046,278                                          | 156,942   |
|                              | 4000-8000     | 701,066                   | 105,160                      | 4,206,394                                          | 630,959   |
|                              | 8000+         | 1,633,850                 | 245,077                      | 7,352,323                                          | 1,102,848 |
| Northeast                    | 0-4000        | 64,286                    | 6,429                        | 282,857                                            | 28,286    |
|                              | 4000-8000     | 0                         | 0                            | 0                                                  | 0         |
|                              | 8000+         | 0                         | 0                            | 0                                                  | 0         |
| Total one-way miles          |               | 13,696,955                | 938,992                      | 40,583,038                                         | 3,303,794 |
| Total annual miles           |               | 27,393,910                | 1,877,983                    | 81,166,076                                         | 6,607,589 |

<sup>a</sup> No oil well reserve pits are located in the southwestern part of New Mexico.

Truck traffic tailpipe and tire-wear emissions were calculated for heavy trucks using EPA's MOBILE6.2 model (U.S. EPA, 2007a). The EPA vehicle fleet composition was used for various year models up to 2002. The air pollutant release rates resulting from this additional traffic were calculated using U.S. Environmental Protection Agency (EPA) approved air pollutant emission calculations from AP-42 (U.S. EPA, 2007b). These calculations were performed for empty and



loaded truck traffic on roads outside the pit area and do not include pollutants released during pit closure. The air pollutants released from haul road traffic are total suspended particulates (TSP), particulate matter at and below 10 micrometers in aerodynamic diameter (PM  $_{10}$ ), and particulate matter at and below 2.5 micrometers in aerodynamic diameter (PM  $_{2.5}$ ). For particulate emissions calculations, EPA's default emission rates and the New Mexico Environment Department (NMED) Air Quality Bureau's approved factors were incorporated into the model for dust and paved road emissions. Complete calculations are provided in Appendix A, and the results are sum marized in Table 3.

|                                    | Maximum                                    | Emissions (tons | s per year) | Minimum Emissions (tons per year |            |        |
|------------------------------------|--------------------------------------------|-----------------|-------------|----------------------------------|------------|--------|
| Pollutant                          | Dirt Road                                  | Paved Road      | Total       | Dirt Road                        | Paved Road | Total  |
| Project road dust emissions        |                                            |                 |             |                                  |            |        |
| TSP                                | 19,526                                     | 13,457          | 32,983      | 5,550                            | 4,605      | 10,155 |
| PM <sub>10</sub>                   | 4,976                                      | 1,957           | 6,934       | 1,414                            | 894        | 2,308  |
| PM <sub>25</sub>                   | 763                                        | 640             | 1,403       | 217                              | 219        | 436    |
| Total dust emissions 41,320 12,899 |                                            |                 |             |                                  |            |        |
| Projected ta                       | Projected tailpipe and tire-wear emissions |                 |             |                                  |            |        |
| CO                                 |                                            |                 | 1,134       |                                  |            | 383    |
| NO <sub>x</sub>                    |                                            |                 | 1,965       |                                  |            | 663    |
| VOC                                |                                            |                 | 74,592      |                                  |            | 25,175 |
| PM <sub>10</sub>                   |                                            |                 | 101         |                                  |            | 34     |
| PM <sub>2.5</sub>                  |                                            |                 | 21          |                                  |            | 7      |
|                                    | Total non-GH                               | IG emissions    | 77,813      |                                  |            | 26,262 |
|                                    |                                            |                 | 149,386     |                                  |            | 50,418 |

| Table 5. Summary of Frojected Truck Traine All Fondant Emission | Table 3. | Summar | y of Projected | <b>Truck Traffic</b> | Air Pollutant | Emissions |
|-----------------------------------------------------------------|----------|--------|----------------|----------------------|---------------|-----------|
|-----------------------------------------------------------------|----------|--------|----------------|----------------------|---------------|-----------|

--- = Not applicable

The pits in the northwest region of New Mexico are located in the San Juan Basin within the Four Corners Region, making the haul distances to the permitted landfills in the southeast region of the state quite long. The projected increase in pollutant emissions will be a detriment to the goals of the NMED's Four Corners Air Quality Task Force (FCAQTF) (NMED, 2006). The Oil and Gas Work Group for the FCAQTF has proposed mitigation options to reduce emissions from this industry sector. One of these proposed mitigation options is to reduce truck traffic (FCAQTF, 2006a, 2006b), and by instead increasing truck traffic, the NMOCD's proposed Rule 50 would jeopardize the proposed emission controls in the Four Corners region. According to Mark Jones, NMED coordinator for the FCAQTF, the Cumulative Impacts Work Group will

GHG = Greenhouse gas



review the mitigation options proposed by various work groups and will recommend quantitative mitigation options for air pollutants in 2007 (Mark Jones, telephone communication with Brinda Ramanathan, August 19, 2006).

Another major reduction being proposed in New Mexico is Governor Richardson's initiative to reduce greenhouse gas emissions (Executive Order 05-033, June 5, 2005), establishing the New Mexico Climate Change Action Council and the New Mexico Climate Change Advisory Group (CCAG). The Governor has charged the CCAG with presenting a report to the Climate Change Action Council by December 1, 2006 that will include proposals to reduce New Mexico's total greenhouse gas emissions to 2000 levels by the year 2012, 10 percent below 2000 levels by 2020, and 75 percent below 2000 levels by 2050 (New Mexico CCAG, 2006c).

The maximum and minimum quantities of air pollutant emissions that will be released annually as a result of pit closure rule changes, as summarized in Table 3, are contrary to the emissions reduction proposed for the Four Corners area and the New Mexico Governor's mandate to reduce greenhouse gas emissions. These emissions will occur annually and continue to do so every year as long as pits have to be excavated and material transferred to external landfills.

As shown in Table 4, the maximum TSP emissions that will be created from truck traffic as a result of the change in pit closure rules can very well exceed the NMED Air Quality Bureaupermitted TSP and VOC emissions. TSP emissions are visible and therefore elicit the most complaints from the public.

| Pollutant         | Permitted Emissions <sup>a</sup><br>(tons per year) | Maximum Projected<br>Emissions<br>(tons per year) |
|-------------------|-----------------------------------------------------|---------------------------------------------------|
| СО                | 92,825                                              | 1,134                                             |
| NO <sub>X</sub>   | 252,669                                             | 1,965                                             |
| PM <sub>10</sub>  | 22,249                                              | 7,035                                             |
| PM <sub>2.5</sub> | ND                                                  | 1,424                                             |
| TSP               | 26,052                                              | 32,983                                            |
| VOC               | 36,988                                              | 74,592                                            |

# Table 4. Comparison of New Mexico Air Quality Bureau Permitted Emissions to Maximum Projected Truck Traffic Emissions

 <sup>a</sup> Based on 2006 MergeMaster data provided by NMED Air Quality Bureau (AQB) modeling section. The AQB has not determined the allowable PM2.5 emissions for all permits.
 ND = Not determined



#### 4. Effects on New Mexico Highway Pavements

To determine the effect of the increased truck hauling on the state's road surfaces, the quantity of drilling residue that would have to be removed from drilling sites and transported to an NMOCD-approved landfill was estimated on a per well basis for three different depths of drilling that bracket current practice on an annual basis (Table 5a). Both the dry and bulked or wet volumes were estimated, with the bulked volume based on the maximum water content allowed by regulation (40 percent). The actual material transported may be lower in water content, but it will not be higher; therefore, the actual situation may be worse (more trips may be required) than the estimates of pavement impact provided, but certainly not better.

| Solids Volume (yd <sup>3</sup> ) |         | Transportation<br>Volume <sup>a</sup> (yd <sup>3</sup> ) |         | Weight <sup>b</sup> (tons) |         |         |
|----------------------------------|---------|----------------------------------------------------------|---------|----------------------------|---------|---------|
| Depth (feet)                     | Minimum | Maximum                                                  | Minimum | Maximum                    | Minimum | Maximum |
| 0-4000                           | 300     | 700                                                      | 500     | 1,000                      | 752     | 1,503   |
| 4000-8000                        | 600     | 1,400                                                    | 1,000   | 2,000                      | 1,503   | 3,007   |
| 8000+                            | 1,200   | 2,100                                                    | 2,000   | 3,000                      | 3,007   | 4,510   |

Table 5a. Volume of Material to be Transported per Well

<sup>a</sup> Wet volume based on 40 percent water content

<sup>b</sup> Based on the estimated unit weight of 111.4 pounds per cubic foot

A truck hauling capacity of 14 cubic yards was assumed for transportation to a landfill site. Based on this hauling capacity, the minimum and maximum numbers of truck trips were calculated per well for the three depth ranges considered. Each of these trips is a round trip, one way loaded and one way unloaded. Table 5b shows the estimated total volume that would be transported over 1-, 10-, and 20-year periods.

|              |         | Number  | of Truck Trips | for Estimated | Volume   |         |  |
|--------------|---------|---------|----------------|---------------|----------|---------|--|
|              | 1 y     | ear     | 10 y           | vears         | 20 years |         |  |
| Depth (feet) | Minimum | Maximum | Minimum        | Maximum       | Minimum  | Maximum |  |
| 0-4,000      | 36      | 71      | 357            | 714           | 714      | 1,429   |  |
| 4,000-8,000  | 71      | 143     | 714            | 1,429         | 1,429    | 2,857   |  |
| 8,000+       | 143     | 214     | 1,429          | 2,143         | 2,857    | 0       |  |



To determine the impact of these increased loads on pavements, 18-kip equivalent single axle loads (ESALs), an expression of traffic loading used in structural design of pavements, were calculated (complete calculations are provided in Appendix B). The concept is that one ESAL represents the damage or consumption of pavement life associated with one 18,000-pound, or 18-kip (a kip is 1,000 pounds), single axle load. New Mexico limits gross vehicle weight to 86.4 kips, single axles to 21.6 kips, and tandem axles to 34.32 kips. In traffic analysis, all axle loads are converted to 18-kip ESALs.

Using the assumed truck capacity of 14 cubic yards, the unloaded axle loads were assumed to be 8 kips (front axle), 6 kips (middle dual tandem), and 6 kips (rear dual tandem). When loaded, the truck capacity of 14 cubic yards will translate to 42,094 pounds (42.1 kips with 21.05 kips added to each dual tandem). Thus, the axle loads on a loaded truck are 8 kips (front axle), 27 kips (middle dual tandem), and 27 kips (rear dual tandem). These axle loads do not exceed allowable loads.

Based on equivalent load factors published by the American Association of Highway and Transportation Officials (AASHTO), these loadings were converted to ESALs. The empty truck exerts 0.15 18-kip ESAL each time it passes over a point on the pavement. The loaded truck exerts 1.15 ESALs each time it passes over a point on the pavement (Table 6a). The total number of ESALs exerted across the road system as a result of the estimated total volume that must be hauled was calculated to be 387 ESALs per day minimum and 679 ESALs per day maximum (Table 6b). Table 6b also provides cumulative ESALs over 1-, 10-, and 20-year periods.

|                    | Empty |                    | Lo   | aded               | Round Trip         |
|--------------------|-------|--------------------|------|--------------------|--------------------|
| Axle               | kips  | ESALs <sup>a</sup> | kips | ESALs <sup>a</sup> | ESALs <sup>a</sup> |
| Front              | 8     | 0.05               | 8    | 0.05               | 0.10               |
| Middle dual tandem | 6     | 0.05               | 27   | 0.55               | 0.60               |
| Rear dual tandem   | 6     | 0.05               | 27   | 0.55               | 0.60               |
| Total              | 20    | 0.15               | 62   | 1.15               | 1.30               |

| Table 6a. Calculated | Round Trip | 18-kip Ec | uivalent Sin | gle Axle Loads |
|----------------------|------------|-----------|--------------|----------------|
|----------------------|------------|-----------|--------------|----------------|

kips = 1,000 pounds <sup>a</sup> Based on 14-yd<sup>3</sup>-capacity truck ESALs = Equivalent single-axle loads



|          | Total Haul                                | Total Number            |         | Total    | ESALs             |                   |
|----------|-------------------------------------------|-------------------------|---------|----------|-------------------|-------------------|
| Estimate | Volume <sup>a</sup><br>(yd <sup>3</sup> ) | of Truck<br>Round Trips | Per Day | Per Year | 10-Year<br>Period | 20-Year<br>Period |
| Minimum  | 1,523,611                                 | 108,829.30              | 387     | 141,478  | 1,414,781         | 2,829,563         |
| Maximum  | 2,669,760                                 | 190,697.10              | 679     | 247,906  | 2,479,063         | 4,958,125         |

#### Table 6b. Calculated Total 18-kip Equivalent Single Axle Loads

<sup>a</sup> From Table 1

Table 7 is a compilation of data obtained from the New Mexico Department of Transportation (NMDOT) regarding the design of various classes of highways in New Mexico: Interstate Highways, U.S. Highways, and New Mexico State Highways. Average daily loads (ADLs), the number of daily 18-kip ESALs used for structural design of the pavement, were obtained from existing road designs. The pavement design on each road is uniquely developed for the specific traffic loading, environmental conditions, and soil support values. Because the volume and weight of vehicles on every road is uniquely determined by the local area, the maximum and minimum traffic values used in design vary widely among the highway classes (Table 7).

Table 7. Traffic Loading on New Mexico Roads

|                    | Traf                             | fic Loading (ESALS per     | day)                                      |
|--------------------|----------------------------------|----------------------------|-------------------------------------------|
| Estimate           | Interstate Highways <sup>a</sup> | U.S. Highways <sup>b</sup> | New Mexico State<br>Highways <sup>°</sup> |
| Average            | 4,264.5                          | 409.7                      | 159.8                                     |
| Maximum            | 11,050.5                         | 1,432.5                    | 510                                       |
| Minimum            | 388.5                            | 19.5                       | 12                                        |
| Standard deviation | 3,468.8                          | 437.1                      | 205.2                                     |

<sup>a</sup> I-10, I-25, I-40

<sup>b</sup> U.S. Highways 60, 180, 70, 380, 54, 285, 62, 64

<sup>c</sup> New Mexico Highways 26, 28, 52, 181, 47, 14, 518, 4, 53, 44

Using the minimum and maximum ESALs, the percentage of the ADL used for road designs was calculated (Appendix B). In the vicinity of the four known OCD-approved landfills, the traffic generated by Rule 50 will be concentrated on specific routes leading to those facilities, all of which are New Mexico State Highways. If it is assumed that 25 or 50 percent of the trucks will be on specific routes near the landfills, an estimate of the design life consumed may be



obtained. On these New Mexico Highways, if 25 percent of the traffic is imposed, the minimum ESALs will consume 60.6 percent of design loading, and the maximum ESALs will consume 106.2 percent of the design loading. On this basis, the useful life of the road will be entirely consumed solely by these trucks, with no other traffic on the road. The conclusion is that the typical New Mexico state highways leading to the landfills will be overloaded, resulting in a substantial deterioration of the existing road network and pavement.

When pavement conditions reach an unacceptable level, rehabilitation of these pavements will be necessary. When that occurs will depend on the condition at the time the traffic is imposed and the period of time over which it occurs. The planning of pavement rehabilitation is a multi-year process. Dramatic increases in traffic loading over short time intervals will disrupt the normal condition evaluation and planning for these roads.

Experience shows that pavements deteriorate at an accelerating rate. That is, pavements in good condition will not be as severely impacted by increased traffic as pavements in poorer condition. Specific information on the original design traffic levels and present condition are necessary to develop more detailed estimates of rehabilitation costs. Nevertheless, on the basis of the incremental traffic loading, the pavements near the landfills will be dramatically affected.

#### 5. Potential Increase in Traffic Accidents

The number of accidents likely to occur as a result of the increased truck traffic was estimated based on a database obtained from the National Center for Statistics and Analysis (NCSA), an arm of the National Highway Traffic Safety Administration (NHTSA, 2006). Data covered the period 1994 through 2004. The fatal accident incidence rate per 100 million vehicle miles traveled by trucks ranged from 2.73 in 1994 to 2.19 in 2004. The injury accident rate was in the range of 56 in 1994 to 41 in 2004. Experience has shown that as time passes the number of vehicle miles traveled increases while the accident rate decreases.

In units of 100 million miles, the additional hauling distance as a result of Rule 50 implementation ranges from a minimum of 0.27 to a maximum of 0.81. Using the 2004 rates,



the estimated accidents per year and for intervals of 10 and 20 years were estimated for fatal accidents and injury accidents (Table 8).

|                       | Accident Rate per 100              | Number of Add | itional Accidents |
|-----------------------|------------------------------------|---------------|-------------------|
| Time Period           | Million Miles in 2004 <sup>a</sup> | Minimum       | Maximum           |
| Number of truck miles | 100,000,000                        | 27,400,000    | 81,200,000        |
| Fatal Accidents       |                                    |               |                   |
| 1 Year                | 2.16                               | 0.001         | 0.013             |
| 10 Years              |                                    | 0.008         | 0.134             |
| 20 Year               |                                    | 0.015         | 0.268             |
| Injury Accidents      |                                    |               |                   |
| 1 Year                | 41                                 | 0.015         | 0.254             |
| 10 Years              |                                    | 0.145         | 2.541             |
| 20 Year               |                                    | 0.290         | 5.082             |

#### Table 8. Number of Additional Accidents Anticipated as a Result of Increased Truck Traffic

<sup>a</sup> Accident rates based on National Center for Statistics and Analysis 2004 data for New Mexico (NHTSA, 2006) ---- = Not estimated

Additional analysis by Hall (2006), based on Federal Motor Carrier Safety Administration statistics (FMCSA, 2006) and using the same minimum and maximum levels of travel, resulted in predicted accident rates that surpass those shown in Table 8:

- 0.85 to 2.53 fatalities per year
- 13.9 to 41.1 injuries per year
- 35.1 to 103.9 property damage only (PDO) accidents

These calculations are provided in Appendix C.

#### 6. Conclusions

If the proposed Rule 50 is implemented, the resulting transporting and disposal of oil and gas well drilling materials would have negative impacts on the environment, public safety and road conditions in New Mexico:



- Emission of air pollutants would increase, conflicting with the proposed emission controls in the Four Corners region put forth by the NMED FCAQTF.
- Traffic loading on New Mexico state highways would also increase significantly and could exceed the maximum design loading of these roads, requiring expensive upgrades to support the increased loads.
- Based on statistics from the Federal Motor Carrier Safety Administration, an additional 0.85 to 2.53 fatalities, 14 to 41 injuries, and 71 to 142 PDO crashes can be expected on an annual basis.

#### References

- Federal Motor Carrier Safety Administration, Analysis Division (FMCSA). 2006. *Large truck crash facts 2004.* U.S. Department of Transportation. Available at <a href="http://ai.volpe.dot.gov/carrierResearchResults/PDFs/LargeTruckCrashFacts2004.pdf">http://ai.volpe.dot.gov/carrierResearchResults/PDFs/LargeTruckCrashFacts2004.pdf</a>>.
- Four Corners Air Quality Task Force (FCAQTF). 2006a. Draft mitigation options. Oil & Gas Work Group – Mobile and Non-road Subgroup. June 2006. Available at <http://www.nmenv.state.nm.us/aqb/4C/Documents/OG\_Mobile\_Non-road\_6\_16\_06.doc>.
- FCAQTF. 2006b. Draft Report of Mitigation Options, Version 2. August 4, 2006. Available at <a href="http://www.nmenv.state.nm.us/aqb/4C/Documents/4CAQTF\_DraftReport\_vers2\_8\_4\_06.doc">http://www.nmenv.state.nm.us/aqb/4C/Documents/4CAQTF\_DraftReport\_vers2\_8\_4\_06.doc</a>>.
- Hall, J.W. 2006. Letter from J.W. Hall, P.E., to Gordon McKeen, McKeenengineers.com, regarding Truck accident rates. August 30, 2006.
- National Highway Traffic Safety Administration (NHTSA). 2006. *Traffic safety facts, 2004 data: Large trucks.* DOT HS 809 907, NHTSA's National Center for Statistics and Analysis, Washington, DC. <a href="http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSF2004/809907.pdf">http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSF2004/809907.pdf</a> Accessed August 2006.





- New Mexico Climate Change Advisory Group (CCAG). 2006. New Mexico Climate Change Advisory Group. <a href="http://www.nmclimatechange.us/">http://www.nmclimatechange.us/</a>. Accessed August 2006.
- New Mexico Environment Department. 2006. *Four Corners Air Quality Task Force.* <a href="http://www.nmenv.state.nm.us/aqb/4C/index.html">http://www.nmenv.state.nm.us/aqb/4C/index.html</a> Last updated July 28, 2006.
- U.S. Environmental Protection Agency (EPA). 2007a. *MOBILE6 vehicle emission modeling software.* <a href="http://www.epa.gov/otaq/m6.htm">http://www.epa.gov/otaq/m6.htm</a>.
- U.S. EPA. 2007b. Compilation of air pollutant emission factors, Volume 1: Stationary point and area sources, AP-42, Fifth edition, Chapter 13: Miscellaneous sources. Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors <a href="http://www.epa.gov/ttn/chief/ap42/ch13/index.html">http://www.epa.gov/ttn/chief/ap42/ch13/index.html</a>.



Appendix A

# Air Emissions Calculations

| and the second se |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

ANNUAL - PITS CUMMULATIVE IMPACTS BASELINE ASSUMPTIONS (e.g., 2007) DIGHAUL TO LANDFILL (USE bulked transport volume, CY)

CHANGE ONLY COLORED CELLS:

|                 |                 |        |           |       |             |            |       | <b></b>          | 5               | 2        | 0         | 0     | N        |                    |                                                                                                                 |                  |        |           |   |
|-----------------|-----------------|--------|-----------|-------|-------------|------------|-------|------------------|-----------------|----------|-----------|-------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------|------------------|--------|-----------|---|
|                 |                 |        |           |       |             |            |       |                  | ô               |          |           |       |          |                    |                                                                                                                 |                  |        |           |   |
|                 |                 |        |           |       |             |            |       | iii<br>Z         | 31              | <b>v</b> | 9         | ~     | <b> </b> | 5                  |                                                                                                                 |                  |        |           |   |
|                 |                 |        |           |       |             |            |       |                  | % of tota       | 62%      | 34%       | 5%    |          | 60:                |                                                                                                                 |                  |        |           |   |
|                 |                 |        |           |       |             |            |       |                  | OCD db          | 748      | 410       | 57    | 1215     |                    |                                                                                                                 |                  |        |           |   |
|                 |                 |        |           |       |             |            |       |                  | BR              | 104      | 72        | 15    | 191      |                    |                                                                                                                 |                  |        |           |   |
| ſ               | y volume        | 71     | 143       | 214   |             | 14 cy      |       |                  | Williams        | 24       | 14        | 4     | 42       |                    |                                                                                                                 |                  |        |           |   |
|                 | f Truck Trips b | 36     | 71        | 143   |             | me:        |       |                  | Devon           | 57       | 14        | 50    | 121      |                    |                                                                                                                 |                  |        |           |   |
|                 | Number c        |        |           |       | lbs/cf      | truck volu |       | NW:              |                 |          |           |       |          |                    |                                                                                                                 |                  |        | _         |   |
|                 | (TONS)          | 1503   | 3007      | 4510  | 111         |            |       |                  | % of total      | 19%      | 38%       | 44%   |          | 798                |                                                                                                                 |                  |        |           |   |
|                 | ransport Weight | 752    | 1503      | 3007  | h2o):       | 62.4       | 144   |                  | OCD db          | 295      | 593       | 691   | 1579     |                    | a a constant and the second | er trips (cys):  | 370614 | 406288    | Ì |
|                 | e (CY) 1        | 1000   | 2000      | 3000  | ensity (40% | 20 =       | oil = |                  | Yates           | 0        | 21        | 20    | 91       |                    |                                                                                                                 | lighest numb     |        |           |   |
|                 | ansport Volum   | 500    | 1000      | 2000  | 0           | 2          | S     |                  | Oxy             | 12       | 15        | 30    | 57       | 1400 y             |                                                                                                                 | <u> </u>         |        |           |   |
| sk trips):      | ne (CY) Tra     | 200    | 1400      | 2100  |             |            |       | Ц.               | Chevron         | 2        | 17        | 2     | 26       | i on:              |                                                                                                                 | ber trips (cys): | 185307 | 203144    |   |
| s / tons / truc | Solids Volun    | 300    | 600       | 1200  |             |            |       | ia) (S           | 5)              |          |           |       | Totals:  | v area basec       |                                                                                                                 | Lowest num       |        |           |   |
| timated volume: |                 |        |           |       |             |            |       | % by depth / are | ) (avg 2004/200 |          |           |       |          | wells (o,g,i,d) by |                                                                                                                 | DISPOSED:        | 0-4000 | 4000-8000 |   |
| WELLS (es       | Depths (FT)     | 0-4000 | 4000-8000 | 8000+ |             |            |       | 5) STIEN #       | Depths (FT      | 0-4000   | 4000-8000 | 8000+ |          | Assume %           |                                                                                                                 | VOLUMES          | MN     |           |   |

| VOLUMES   | S DISPOSED:  | Lowest nui | nber trips (cys): |         | Highest nun | mber trips (cys): |         |
|-----------|--------------|------------|-------------------|---------|-------------|-------------------|---------|
| NN        | 0-4000       |            | 185307            |         |             | 370614            |         |
|           | 4000-8000    |            | 203144            |         |             | 406288            |         |
|           | 8000+        |            | 56484             |         |             | 84726             |         |
|           |              | subtotal:  |                   | 444935  |             |                   | 861628  |
| SE        | 0-4000       |            | 74544             |         |             | 149088            |         |
|           | 4000-8000    |            | 299692            |         |             | 599384            |         |
|           | 8000+        |            | 698440            |         |             | 1047659           |         |
|           |              |            |                   | 1072676 |             |                   | 1796132 |
| NE        | 0-4000       |            | 0009              |         |             | 12000             |         |
|           | 4000-8000    |            | 0                 |         |             | 0                 |         |
|           | 8000+        |            | 0                 |         |             | 0                 |         |
| TIOTAL WE | ILUMES HAULE | ED:        | F. 474 523 614    | ,       |             | 1.1.42!669 760    |         |
|           |              |            |                   |         |             |                   |         |

| shortest | longest | % dirt |
|----------|---------|--------|
| 350      | 450     | 5      |
| 33       | 86      | 15     |
| 150      | 330     | 10     |

20 30 OX

| ANNUAL MILES:        | Lowest number trips/short | est distance:   | Highest number trips/longest d | distance:  |
|----------------------|---------------------------|-----------------|--------------------------------|------------|
| VVV 0-4000           |                           | 4632675         |                                | 11912593   |
| 4000-8000            |                           | 5078601         |                                | 13059259   |
| 8000+                |                           | 1412099         |                                | 2723333    |
| SE 0-4000            |                           | 174380          |                                | 1046278    |
| 4000-8000            |                           | 701066          |                                | 4206394    |
| 8000+                |                           | 1633850         |                                | 7352323    |
| NE 0-4000            |                           | 64286           |                                | 282857     |
| 4000-8000            |                           | 0               |                                | 0          |
| 8000+                |                           | 0               |                                | 0          |
| Total One-Way Miles: |                           | 13696955        |                                | 40583038   |
| TOTAL ANNUAL MILES.  |                           | 10/363/303/910/ |                                | 81,166,076 |

Base dig\_haul or closed loops

Page 1

CLOSED LOOP SYSTEM (USE solids transport volume, CY)

|                   |                       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        |                | oxy          | 12     | 0         | 0     | 12      |                 |
|-------------------|-----------------------|--------|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|----------------|--------------|--------|-----------|-------|---------|-----------------|
|                   |                       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | ы<br>NE        |              |        |           |       |         |                 |
|                   |                       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        |                | % of tota    | 62%    | 34%       | 2%    |         | 602             |
|                   |                       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        |                | OCD db       | 748    | 410       | 57    | 1215    |                 |
|                   |                       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~           |        |                | BR           | 104    | 72        | 15    | 191     |                 |
|                   | by volume             | 50     | 100       | 150   | and the second sec | 14 0        |        |                | Williams     | 24     | 14        | 4     | 42      |                 |
|                   | lumber of Truck Trips | 21     | 43        | 86    | os/cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uck volume: |        | IW:            | Devon        | 57     | 14        | 50    | 121     |                 |
|                   | t (TONS) N            | 1052   | 2105      | 3157  | 111 IK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | đ           |        | 4              | % of total   | 19%    | 38%       | 44%   |         | 798             |
|                   | ransport Weigh        | 451    | 902       | 1804  | h2o):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.4        | 144    |                | OCD db       | 295    | 593       | 691   | 1579    |                 |
|                   | ne (CY) 1             | 1000   | 2000      | 3000  | density (40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20 =       | soil = |                | Yates        | 0      | 21        | 20    | 91      | /r              |
|                   | ansport Volun         | 500    | 1000      | 2000  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -           |        |                | Oxy          | 12     | 15        | 30    | 57      | 1400            |
| ck trips):        | ne (CY) Tr            | 200    | 1400      | 2100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | SE:            | Chevron      | 2      | 17        | 4     | 26      | d on            |
| nes / tons / truc | Solids Volur          | 300    | . 600     | 1200  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | area) 🥂        | 005)         |        |           |       | Totals: | hv area hased   |
| imated volum      |                       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | 6 by depth / € | (avg 2004/2) |        |           |       |         | vells (o.a.i.d) |
| WELLS (est        | Depths (FT)           | 0-4000 | 4000-8000 | 8000+ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | () # MELLS ()  | Depths (FT)  | 0-4000 | 4000-8000 | 8000+ |         | Assume % \      |

| VOLUME: | S DISPOSED:         | Lowest nui | mber trips (cys): |        | Highest number trips (cys): |         |
|---------|---------------------|------------|-------------------|--------|-----------------------------|---------|
| NM      | 0-4000              |            | 111184            |        | 25943                       | 0       |
|         | 4000-8000           |            | 121886            |        | 28440                       | 2       |
|         | 8000+               | <br>       | 33890             |        | 2630                        | 8       |
|         |                     | subtotal:  |                   | 266961 |                             | 603140  |
| SE      | 0-4000              |            | 44726             |        | 10436                       | 2       |
|         | 4000-8000           |            | 179815            |        | 41956                       | 6       |
|         | 8000+               |            | 419064            |        | 2336                        | 1       |
|         |                     |            |                   | 643605 |                             | 1257292 |
| NE      | 0-4000              |            | 6000              |        | 1200                        | 0       |
|         | 4000-8000           |            | 0                 |        |                             | 0       |
|         | 8000+               |            | 0                 |        |                             | 0       |
| TOTALVC | <b>OLUMES HAULI</b> | ED:        | 19916 566         |        | 1.1.1.872,432               | 100     |

| Hicks - NW     | NA               | NA              |     |
|----------------|------------------|-----------------|-----|
| Yates          | 60               | 135             |     |
| Chevron        | 8                | 60              |     |
| Williams       | 35               | 93              |     |
| Oxy            | 30               | 50              |     |
| Company - Haul | Shortest (miles) | Longest (miles) |     |
| % dirt         | 5                | 15              | 10  |
|                | 450              | 98              | 330 |
| longest        | 0                | 3               | 0   |
| shortest       | 32               |                 | 15  |
|                |                  |                 |     |
| one-way):      |                  |                 |     |
| stance (MILES  |                  |                 |     |
| ransport Di    | M                | Ш               | Щ   |

Hicks - SE 33 148

| NUAL MILES:        | Lowest number trips/she | ortest distance: | Highest number trips/longest | : distance:     |
|--------------------|-------------------------|------------------|------------------------------|-----------------|
| V 0-4000           |                         | 2779605          |                              | 8338815         |
| 4000-8000          |                         | 3047160          |                              | 9141481         |
| 8000+              |                         | 847259           |                              | 1906333         |
| 0-4000             |                         | 104628           |                              | 732395          |
| 4000-8000          |                         | 420639           |                              | 2944476         |
| 8000+              |                         | 980310           |                              | 5146626         |
| 0-4000             |                         | 38571            |                              | 198000          |
| 4000-8000          |                         | 0                |                              | 0               |
| 8000+              |                         | 0                | -                            | 0               |
| tal One-Way Miles: |                         | 8218173          |                              | 28408127        |
| TAEANNUAL MILES    |                         | 122161436346     |                              | 13 2 56'A16'053 |

# Base dig\_haul or closed loops

Page 2

| Area        | Depth of well | Lowest number<br>distance to | • trips/shortest<br>o landfill: | Highest numbe<br>distance f | er trips/longest<br>to landfill: |
|-------------|---------------|------------------------------|---------------------------------|-----------------------------|----------------------------------|
|             |               | All Roads                    | Dirt Road                       | All Roads                   | Dirt Road                        |
|             | 0-4000        | 4,632,675                    | 231,634                         | 11,912,593                  | 595,630                          |
| NW          | 4000-8000     | 5,078,601                    | 253,930                         | 13,059,259                  | 652,963                          |
|             | 8000+         | 1,412,099                    | 70,605                          | 2,723,333                   | 136,167                          |
|             | 0-4000        | 174,380                      | 26,157                          | 1,046,278                   | 156,942                          |
| SE          | 4000-8000     | 701,066                      | 105,160                         | 4,206,394                   | 630,959                          |
|             | 8000+         | 1,633,850                    | 245,077                         | 7,352,323                   | 1,102,848                        |
|             | 0-4000        | 64,286                       | 6,429                           | 282,857                     | 28,286                           |
| NE          | 4000-8000     | 0                            | 0                               | 0                           | 0                                |
|             | 8000+         | 0                            | 0                               | 0                           | 0                                |
| Total One-V | Vay Miles:    | 13,696,955                   | 938,992                         | 40,583,038                  | 3,303,794                        |
| TOTAL AN    | NUAL MILES:   | 27,393,910                   | 1,877,983                       | 81,166,076                  | 6,607,589                        |

#### Predicted distances to travel from pits to landfill

#### Unpaved Haul Road Traffic Emissions (AP42 13.2.2 - 2003)

| $E\left(\frac{lb}{vmt}\right)$ | $=k\left(\frac{s}{12}\right)$ | $a\left(\frac{W}{3}\right)^{b}$ |
|--------------------------------|-------------------------------|---------------------------------|
|                                | Equation 1a                   |                                 |

| tons - F | lb \  | * | ton             |
|----------|-------|---|-----------------|
|          | VMT ) |   | 2000 <i>lbs</i> |

Equation 1b

E = emission factor in lb/vmt

k = particle size multiplier (kTSP=4.9, kPM10=1.5, kPM2.5=0.23)

a = empirical constant (aTSP=0.7, aPM10=0.9, aPM2.5=0.9)

b = empirical constant (bTSP=bPM10=0.45, bPM2.5=0.45)

s = surface silt content (%) (NMED default value = 4.8%)

| Capacity of trucks                 | 14  | cubic yard    |         |
|------------------------------------|-----|---------------|---------|
| Density                            | 111 | lb/cubic foot |         |
| Total weight of products           | 21  | tons          |         |
| W = Empty vehicle weight (tons)    |     |               | 10,tons |
| W = loaded vehicle weight (tons)   |     |               | 31 tons |
| variable change only colored cells |     |               |         |

#### Predicted distances to travel from pits to landfill

| Dust Emis                       | sions Releas        | e from Maxim     | um Distance       | Traveled           |                         |
|---------------------------------|---------------------|------------------|-------------------|--------------------|-------------------------|
| Road<br>Segment<br>(truck type) | Truck Weight<br>(W) | E <sub>TSP</sub> | E <sub>PM10</sub> | E <sub>PM2.5</sub> | Maximum<br>one way trip |
| ID                              | tons                | Ib/VMT           | Ib/VMT            | Ib/VMT             | miles                   |
| NW (empty)                      | 10                  | 4.44             | 1.13              | 0.17               | 1,384,759               |
| NW (loaded)                     | 31                  | 7.38             | 1.88              | 0.29               | 1,384,759               |
| SE (empty)                      | 10                  | 4.44             | 1.13              | 0.17               | 1,890,749               |
| SE (loaded)                     | 31                  | 7.38             | 1.88              | 0.29               | 1,890,749               |
| NE (empty)                      | 10                  | 4.44             | 1.13              | 0.17               | 28,286                  |
| NE (loaded)                     | 31                  | 7.38             | 1.88              | 0.29               | 28,286                  |

| Road                    | Road Uncontrolled |        | P Uncontrolled PM <sub>10</sub> |       | Uncontrol | ed PM <sub>2.5</sub> |
|-------------------------|-------------------|--------|---------------------------------|-------|-----------|----------------------|
| Segment<br>(truck type) | lb                | tons   | lb                              | tons  | lb        | tons                 |
| NW (empty)              | 6,141,971         | 3,071  | 1,565,363                       | 783   | 240,022   | 120                  |
| NW (loaded)             | 10,226,261        | 5,113  | 2,606,298                       | 1,303 | 399,632   | 200                  |
| SE (empty)              | 8,386,244         | 4,193  | 2,137,345                       | 1,069 | 327,726   | 164                  |
| SE (loaded)             | 13,962,930        | 6,981  | 3,558,637                       | 1,779 | 545,658   | 273                  |
| NE (empty)              | 125,459           | 63     | 31,975                          | 16    | 4,903     | 2                    |
| NE (loaded)             | 208,886           | 104    | 53,237                          | 27    | 8,163     | 4                    |
| Total                   | 39,051,751        | 19,526 | 9,952,855                       | 4,976 | 1,526,104 | 763                  |

### Dust Emissions Release from Shortest Distance Traveled to Landfill

| Road<br>Segment<br>(truck type)<br>ID | Truck Weight<br>(W)<br>tons | E <sub>TSP</sub> | Е <sub>РМ10</sub> | E <sub>PM2.5</sub><br>Ib/VMT | Maximum<br>one way trip<br>miles |
|---------------------------------------|-----------------------------|------------------|-------------------|------------------------------|----------------------------------|
| NW (empty)                            | 10                          | 4.44             | 1.13              | 0.17                         | 556,169                          |
| NW (loaded)                           | 31                          | 7.38             | 1.88              | 0.29                         | 556,169                          |
| SE (empty)                            | 10                          | 4.44             | 1.13              | 0.17                         | 376,394                          |
| SE (loaded)                           | 31                          | 7.38             | 1.88              | 0.29                         | 376,394                          |
| NE (empty)                            | 10                          | 4.44             | 1.13              | 0.17                         | 6,429                            |
| NE (loaded)                           | 31                          | 7.38             | 1.88              | 0.29                         | 6,429                            |

| Road                            | Uncontrolle | d TSP | Uncontrolle | d PM <sub>10</sub> | Uncontrolle | d PM <sub>2.5</sub> |
|---------------------------------|-------------|-------|-------------|--------------------|-------------|---------------------|
| Segment<br>truc <u>k type</u> ) | lb          | tons  | lb          | tons               | lb          | tons                |
| NW (empty)                      | 2,466,835   | 1,233 | 628,705     | 314                | 96,402      | 48                  |
| NW (loaded)                     | 4,107,231   | 2,054 | 1,046,782   | 523                | 160,507     | 80                  |
| SE (empty)                      | 1,669,462   | 835   | 425,484     | 213                | 65,241      | 33                  |
| SE (loaded)                     | 2,779,621   | 1,390 | 708,423     | 354                | 108,625     | 54                  |
| NE (empty)                      | 28,513      | 14    | 7,267       | 4                  | 1,114       | 1                   |
| NE (loaded)                     | 47,474      | 24    | 12,099      | 6                  | 1,855       | 1                   |
| Total                           | 11,099,136  | 5,550 | 2,828,762   | 1,414              | 433,743     | 217                 |



#### Predicted distances to travel from pits to landfill

| Area        | Depth of well   | Lowest numbe<br>distance f | r trips/shortest<br>to landfill: | Highest number trips/longest<br>distance to landfill: |            |
|-------------|-----------------|----------------------------|----------------------------------|-------------------------------------------------------|------------|
|             |                 | All Roads                  | Paved Road                       | All Roads                                             | Paved Road |
|             | 0-4000          | 4,632,675                  | 4,401,041                        | 11,912,593                                            | 11,316,963 |
| NW          | 4000-8000       | 5,078,601                  | 4,824,671                        | 13,059,259                                            | 12,406,296 |
|             | 8000+           | 1,412,099                  | 1,341,494                        | 2,723,333                                             | 2,587,167  |
|             | 0-4000          | 174,380                    | 148,223                          | 1,046,278                                             | 889,337    |
| SE          | 4000-8000       | 701,066                    | 595,906                          | 4,206,394                                             | 3,575,435  |
|             | 8000+           | 1,633,850                  | 1,388,772                        | 7,352,323                                             | 6,249,475  |
|             | 0-4000          | 64,286                     | 57,857                           | 282,857                                               | 254,571    |
| NE          | 4000-8000       | 0                          | 0                                | 0                                                     | 0          |
|             | 8000+           | 0                          | 0                                | 0                                                     | 0          |
| Total One-W | /ay Miles:      | 13,696,955                 | 12,757,964                       | 40,583,038                                            | 37,279,244 |
| TOTAL ROL   | JND TRIP MILES: | 27,393,910                 | 25,515,927                       | 81 166,076                                            | 74,558,488 |
|             |                 |                            |                                  | WE WITH MICH                                          |            |

 Calculation of Truck Emissions: Basis: AP42 Section 13.2.1 Paved Roads, Revision 12/2003

 Emission in pounds/Vehicle Miles Traveled E (lb/VMT) =  $[k(sL/2)^{0.65}(W/3)^{1.5} - C]$ 

Value

<u>Units</u>

0.2 g/m<sup>2</sup>

10 tons

31 tons

0.00047 Ib/VMT

<u>Basis</u>

Projected

Projected

AP-42 Table 13.2.1-3, 500-5,000 ADT)

AP42, Table 13.2-1.2

0.082 dimensionless AP42, Table 13.2-1.1

0.016 dimensionless AP42, Table 13.2-1.1

0.004 dimensionless AP42, Table 13.2-1.1

Item Description

- k particle size multiplier for TSP k particle size multiplier for PM<sub>10</sub>
- k particle size multiplier for PM<sub>2.5</sub>

sL road surface silt loading

C Emission Factor for exhaust, brake and tire wear W Empty mean vehicle weight (tons)

W loaded mean vehicle weight (tons)

Note: C is included in mobile source exhaust emissions

| Vehicle<br>Type |     | Emis           | sion Fa          | ctor (lb/      | VMT)              |                |
|-----------------|-----|----------------|------------------|----------------|-------------------|----------------|
| Truck           | TSP |                | PM <sub>10</sub> |                | PM <sub>2.5</sub> |                |
| Empty<br>Loaded |     | 0.111<br>0.611 | l                | 0.021<br>0.119 | ]                 | 0.005<br>0.029 |

#### Paved Road Emissions for Maximum Distance Traveled

| Road                    | Uncontrol  | led TSP | Uncontrol | led PM <sub>10</sub> | Uncontroll | ed PM <sub>2.5</sub> |
|-------------------------|------------|---------|-----------|----------------------|------------|----------------------|
| Segment<br>(truck type) | lb         | tons    | lb        | tons                 | lb         | tons                 |
| NW (empty)              | 2,927,042  | 1,464   | 561,177   | 281                  | 131,020    | 66                   |
| NW (loaded)             | 16,067,786 | 8,034   | 3,125,225 | 1,563                | 772,032    | 386                  |
| SE (empty)              | 1,191,963  | 596     | 228,525   | 114                  | 53,354     | 27                   |
| SE (loaded)             | 6,543,194  | 3,272   | 1,272,668 | 1,957                | 314,390    | 157                  |
| NE (empty)              | 28,321     | 14      | 5,430     | 3                    | 1,268      | 1                    |
| NE (loaded)             | 155,467    | 78      | 30,239    | 15                   | 7,470      | 4                    |
| Total                   | 26,913,773 | 13,457  | 5,223,263 | 1,957                | 1,279,534  | 640                  |

#### Paved Road Emissions for Shortest Distance Traveled

| Road                    | Uncontrol | led TSP | Uncontrol | led PM <sub>10</sub> | Uncontroll | ed PM <sub>2.5</sub> |
|-------------------------|-----------|---------|-----------|----------------------|------------|----------------------|
| Segment<br>(truck type) | lb        | ton     | lb        | ton                  | lb         | tons                 |
| NW (empty)              | 1,175,604 | 588     | 225,389   | 113                  | 52,622     | 26                   |
| NW (loaded)             | 6,453,396 | 3,227   | 1,255,202 | 628                  | 310,075    | 155                  |
| SE (empty)              | 237,286   | 119     | 45,493    | 23                   | 10,621     | 5                    |
| SE (loaded)             | 1,302,563 | 651     | 253,352   | 127                  | 62,586     | 31                   |
| NE (empty)              | 6,437     | 3       | 1,234     | 1                    | 288        | 0                    |
| NE (loaded)             | 35,333    | 18      | 6,872     | 3                    | 1,698      | 1                    |
| Total                   | 9,210,620 | 4,605   | 1,787,542 | 894                  | 437,891    | 219                  |

| Area      | Depth of well | Lowest number<br>trips/shortest<br>distance to | Highest number<br>trips/longest<br>distance to |  |
|-----------|---------------|------------------------------------------------|------------------------------------------------|--|
|           | Soparoritor   | landfill:<br>All Roads                         | landfill:<br>All Roads                         |  |
|           | 0-4000        | 4,632,675                                      | 11,912,593                                     |  |
| NW        | 4000-8000     | 5,078,601                                      | 13,059,259                                     |  |
|           | 8000+         | 1,412,099                                      | 2,723,333                                      |  |
|           | 0-4000        | 174,380                                        | 1,046,278                                      |  |
| SE        | 4000-8000     | 701,066                                        | 4,206,394                                      |  |
| SE        | 8000+         | 1,633,850                                      | 7,352,323                                      |  |
| NE        | 0-4000        | 64,286                                         | 282,857                                        |  |
|           | 4000-8000     | 0                                              | 0                                              |  |
|           | 8000+         | 0                                              | 0                                              |  |
| Total One | -Way Miles:   | 13,696,955                                     | 40,583,038                                     |  |
| TOTAL A   | NNUAL MILES:  | 27 393 910                                     | 81,166,076                                     |  |

#### Emission Rates Basis: Mobile Model Version 6.2 from www.epa.gov/oms/mobile.htm

|                   | Mobile Model Emission                  |
|-------------------|----------------------------------------|
| Pollutant         | Factor for 2002 <sup>a</sup> (lb/mile) |
| со                | 0.0279                                 |
| NOx               | 0.0484                                 |
| VOC               | 1.8380                                 |
| PM <sub>10</sub>  | 0.0025                                 |
| PM <sub>2.5</sub> | 0.0005                                 |
| CO2               | 3.6810                                 |
|                   |                                        |

#### Only heavy trucks classified as HDDV8B were modeled. Reference: User's Guide to Mobile 6.1 and Mobile6.2, August 2003, EPA420-R-03-10, page 244, Table 3 Note: <sup>a</sup>

#### Projected Mobile Source Emissions for Lowest Distance Traveled

| Area       | Depth of well           | ]      | Projected | i Minimum Em | issions (tons    | )                 |                 |
|------------|-------------------------|--------|-----------|--------------|------------------|-------------------|-----------------|
|            |                         | СО     | NOx       | VOC          | PM <sub>10</sub> | PM <sub>2.5</sub> | CO <sub>2</sub> |
|            | 0-4000                  | 64.72  | 112.13    | 4,257.43     | 5.78             | 1.23              | 8,526.43        |
| NW         | 4000-8000               | 70.95  | 122.92    | 4,667.23     | 6.34             | 1.34              | 9,347.16        |
|            | 8000+                   | 19.73  | 34.18     | 1,297.72     | 1.76             | 0.37              | 2,598.97        |
|            | 0-4000                  | 2.44   | 4.22      | 160.25       | 0.22             | 0.05              | 320.95          |
| SE         | 4000-8000               | 9.79   | 16.97     | 644.28       | 0.88             | 0.19              | 1,290.31        |
|            | 8000+                   | 22.83  | 39.55     | 1,501.51     | 2.04             | 0.43              | 3,007.10        |
|            | 0-4000                  | 0.90   | 1.56      | 59.08        | 0.08             | 0.02              | 118.32          |
| NE         | 4000-8000               | 0.00   | 0.00      | 0.00         | 0.00             | 0.00              | 0.00            |
|            | 8000+                   | 0.00   | 0.00      | 0.00         | 0.00             | 0.00              | 0.00            |
| Total Emis | ssions One Way          | 191.35 | 331.52    | 12,587.50    | 17.10            | 3.62              | 25,209.22       |
| Total Pred | licted Annual Emissions | 382.71 | 663.05    | 25,175.00    | 34.21            | 7.25              | 50,418.44       |

#### Projected Mobile Source Emissions for Maximum Distance Traveled

| Area      | Depth of well           |          | Projected | Maximum Em | nissions (tons   | ;)                |                 |
|-----------|-------------------------|----------|-----------|------------|------------------|-------------------|-----------------|
|           |                         | CO       | NOx       | VOC        | PM <sub>10</sub> | PM <sub>2.5</sub> | CO <sub>2</sub> |
|           | 0-4000                  | 166.42   | 288.33    | 10,947.67  | 14.87            | 3.15              | 21,925.11       |
| NW        | 4000-8000               | 182.44   | 316.09    | 12,001.46  | 16.31            | 3.46              | 24,035.54       |
|           | 8000+                   | 38.05    | 65.92     | 2,502.74   | 3.40             | 0.72              | 5,012.29        |
|           | 0-4000                  | 14.62    | 25.32     | 961.53     | 1.31             | 0.28              | 1,925.67        |
| SE        | 4000-8000               | 58.77    | 101.81    | 3,865.68   | 5.25             | 1.11              | 7,741.86        |
|           | 8000+                   | 102.72   | 177.96    | 6,756.78   | 9.18             | 1.95              | 13,531.94       |
|           | 0-4000                  | 3.95     | 6.85      | 259.95     | 0.35             | 0.07              | 520.60          |
| NE        | 4000-8000               | 0.00     | 0.00      | 0.00       | 0.00             | 0.00              | 0.00            |
|           | 8000+                   | 0.00     | 0.00      | 0.00       | 0.00             | 0.00              | 0.00            |
| Total Em  | issions One Way         | 566.96   | 982.28    | 37,295.81  | 50.68            | 10.74             | 74,693.01       |
| Total Pre | dicted Annual Emissions | 1,133.93 | 1,964.56  | 74,591.62  | 101.35           | 21.48             | 149,386.02      |



Appendix B

1.5

Road Impact Calculations

| Table 1<br>Volume o | f Material to     | o be transp   | orted PER   | WELL        |            |             | Year 1    | Year 1    | 10 years  | 10 years  | 20 years  | 20 years  |
|---------------------|-------------------|---------------|-------------|-------------|------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| (estimatec          | l volumes &       | truck trips/p | ber well):  |             |            |             | No. Truck | Trips for | No. Truck | Trips for | No. Truck | Trips for |
| Depth (ft)          | Solids Volu       | ume (CY)      | Transp.Vol  | ume (CY)    | Weight (TO | NS)         | estimated | volume    | 10 years  | 10 years  | 20 years  | 20 years  |
|                     | (min)             | (max)         | (min)       | (max)       | (min)      | (max)       | (min)     | (max)     | (min)     | (max)     | (min)     | (max)     |
| 0-4000              | 300               | 700           | 500         | 1000        | 752        | 1503        | 36        | 71        | 357       | 714       | 714       | 1429      |
| 4000-800(           | 009 0             | 1400          | 1000        | 2000        | 1503       | 3007        | 71        | 143       | 714       | 1429      | 1429      | 2857      |
| 8000+               | 1200              | 2100          | 2000        | 3000        | 3007       | 4510        | 143       | 214       | 1429      | 2143      | 2857      | 0         |
|                     | <b>JENSITY</b> (4 | 0% H2O) =     | 111.4       | lbs./cu.ft. | Truck      |             |           |           |           |           |           |           |
|                     | perce             | ent water =   | 40%         |             |            |             |           |           |           |           |           |           |
|                     | Unti we           | sight H2O =   | 62.4        | lbs./cu.ft. | Volume     | 14          | сY        |           |           |           |           |           |
|                     | Unit we           | ight SOIL =   | 144.0       | lbs./cu.ft. |            |             |           |           |           |           |           |           |
| Table 2             |                   |               |             |             |            |             |           |           |           |           |           |           |
| 18-kip Eq           | uivalent Sii      | nge Axle Lo   | oads (ESAI  | -s)         |            |             |           |           |           |           |           |           |
|                     | Axle Load         | ls (Unloade   | d, kiips)*  | Axle Load   | s (Loaded, | kips)*      |           |           |           |           |           |           |
|                     | front (S)         | mid (DT)      | rear (DT)   | front (S)   | mid (DT)   | ear (DT)    |           |           |           |           |           |           |
|                     | 8                 | 9             | 9           | 8           | 27         | 27          |           |           |           |           |           |           |
|                     | 8                 | 9             | 9           | 80          | 27         | 27          |           |           |           |           |           |           |
|                     | 80                | 9             | 9           | 8           | 27         | 27          |           |           |           |           |           |           |
|                     | Total Wt. =       | 20000         | lbs.        | Total Wt.=  | 62094      | bs.         |           |           | _         |           |           |           |
|                     |                   |               |             | Pay Load=   | 42094      | bs.         |           |           |           |           |           |           |
| Axle                | Emoty             | ESALS         | Loaded      | ESALs       | Rd Trip    |             |           |           |           |           |           |           |
|                     | (kips)            |               | (kips)      |             | ESALs      |             |           |           |           |           |           |           |
| front               | α                 | 0.05          | ß           | 0.05        | 0.10       |             |           |           |           |           |           | `         |
| mid DT              | о о               | 0.05          | 27          | 0.55        | 0.60       |             |           |           |           |           |           |           |
| rear DT             | 9                 | 0.05          | 27          | 0.55        | 09.0       |             |           |           |           |           |           |           |
| Total               | 20.0              | 0.15          | 62.1        | 1.15        | 1.30       | ESALs per ( | ruck pass |           |           |           |           |           |
| *cominion           |                   | rd cooce      | trint 1 kin | - 1000 -    |            |             |           |           |           |           |           |           |
| assuilles           | 14 cubic ya       | aru capacity  | писк, т кір |             | SDU        |             |           |           |           |           |           |           |
|                     |                   | (min)         |             |             | (max)      |             | ESAL/yr   | ESAL/10   | ESAL/20   | ESAL/yr   | ESAL/10   | ESAL/20   |
| Total Hau           |                   | 1523611       | cubic yards |             | 2669760    | cubic yds   | (min)     | (min)     | (min)     | (max)     | (max)     | (max)     |
| Total Truc          | k Trips           | 108829.3      | truck trips |             | 190697.11  | ruck trips  |           |           |           |           |           |           |
|                     |                   | 141478        | ESALs/yea   | _           | 247906     | ESALs/yr    |           |           |           |           |           |           |
| Total ESA           | Ls                | 387           | ESALs/day   |             | 679        | ESALs/day   | 141478    | 1414781   | 2829563   | 247906.3  | 2479063   | 4958125   |



| Table 3A           |               |         |                |       |                 |                   |                |             |          |
|--------------------|---------------|---------|----------------|-------|-----------------|-------------------|----------------|-------------|----------|
| Traffic Los        | ading on NM   | Roads   |                |       |                 |                   |                |             |          |
| Roads              | Interstate    |         | JS Roads       | 4     | <b>WM Roads</b> |                   |                |             |          |
| Classes            | 10, 25, 40    | 9       | 30, 180, 70, 3 | 80 2  | 6, 28, 52, 18   | :1, 47,           |                |             |          |
|                    |               | G       | 34, 285, 62, 6 | 4     | 4, 518, 4, 53   | , 44              |                |             |          |
| <b>Traffic Dat</b> | ta on Typical | NM Road | s              |       |                 |                   | Design Traff   | ic Loading  | NM Roads |
|                    | Interstate    | J       | JS Roads       | <     | VIN Roads Al    | DL or             | ESAL/yr E      | SAL/10 E    | ESAL/20  |
| Average            | 4265          |         | 410            |       | 160 ES          | SALs/day Average  | 58349          | 583487      | 1166974  |
| Max                | 11051         |         | 1433           |       | 510             | Max               | 186278         | 1862775     | 3725550  |
| Min                | 389           |         | 20             |       | 12              |                   |                |             |          |
| Stdev              | 3468.8        |         | 437.1          |       | 205.2           |                   |                |             |          |
| Count              | 12            |         | 19             |       | 80              |                   |                |             |          |
| % on Roac          | Min           | Max     | Min            | Max   | Min             | Max               |                |             |          |
| 25%                | 2.3%          | 4.0%    | 23.6%          | 41.4% | 60.6%           | 106.2% percent of | f average road | life consur | ned      |
| 50%                | 4.5%          | 8.0%    | 47.3%          | 82.8% | 121.2%          | 212.4% percent of | f average road | life consur | ned      |
|                    |               |         |                |       |                 |                   |                |             |          |

# Table 4

| cider   |  |
|---------|--|
| y Ac    |  |
| Injur   |  |
| and     |  |
| itality |  |
| s: Fa   |  |
| Ę       |  |
| de      |  |

| :                      |                     |                  |                 |                |                |                |            |                  |                |                |                |
|------------------------|---------------------|------------------|-----------------|----------------|----------------|----------------|------------|------------------|----------------|----------------|----------------|
|                        | Maximum Trucj Miles | 81.2 million mi. | Fatal Accidents | 0.013 per year | 0.134 10 years | 0.268 20 years |            | Injury Accidents | 0.254 per year | 2.541 10 years | 5.082 20 years |
| y and Injury Accidents | Minimum Truck Miles | 27.4 million mi. | Fatal Accidents | 0.001 per year | 0.008 10 years | 0.015 20 years |            | Injury Accidents | 0.015 per year | 0.145 10 years | 0.290 20 years |
| Accidents: Fatalit     |                     | Fatalitites**    | per 100 M miles | 2.16           |                |                | Injuries** | per 100 M miles  | 41             |                |                |

Over time the miles travled increases and the rate of accidents per 100 million VMT decreases \*\*Accident rates based on NM data 2004, National Center for Statistics and Analysis Rates are reported as fatalities and injuries per 100 million vehicle miles traveled (VMT)

Appendix C

Accident Rate Calculations

August 30, 2006

Gordon McKeen McKeenengineers.com

J. M. Halle

**Re:** Truck Accident Rates

At your request, I have conducted an analysis of tractor-semitrailer fatality, injury, and property damage only (PDO) rates. My primary source of data was the 2004 combination truck crash statistics from Tables 13, 15, and 16 in the following report prepared by the Federal Motor Carrier Safety Administration. I used the PowerPoint presentation by Aiken to get a general sense of the relative accident rates on urban and rural highways. The truck profile from the Bureau of Transportation Statistics provides information on the rural and urban vehicle miles of travel for large trucks.

#### References

Large Truck Crash Facts 2004, Federal Motor Carrier Safety Administration, USDOT, FMCSA-RI-06-040,

http://ai.volpe.dot.gov/CarrierResearchResults/PDFs/LargeTruckCrashFacts2004.pdf

Aiken, C., Fatality Rate Improvements and the Lives they Save, Traffic Records Forum, July 2004,

http://www.atsip.org/oldsite/forum2004/Sessions/Monday\_1\_12/S04/s4\_aiken\_N ashville.ppt

Truck Profile, Bureau of Transportation Statistics, USDOT, http://www.bts.gov/publications/national\_transportation\_statistics/html/table\_truc k\_profile.html

#### Analysis

The FMCSA report contains data on large truck crashes, where a large truck is classified as weighing in excess of 10,000 pounds. In 2004, these vehicles were involved in 4,862 fatal accidents, 60,734 injury accidents, and 73,678 PDO accidents. Tractor/semitrailers were involved in 63% of the fatal crashes, 46% of the injury crashes, and 48% of the property damage only crashes. These vehicles account for approximately 64% of all the travel by large trucks.

Your case assumes that the annual travel will be between 27.4 and 81.2 million vehicle miles (mvm), with 80% of the travel on rural highways and 20% on urban highways.

Table 13 from the FMCSA shows that there were 3,924 fatalities (in 3,310 fatal crashes) involving tractor/semitrailers in 2004. Their total travel was 1,453.98 100mvm (100 million

vehicle miles is the common denominator used to express fatality, injury, and crash rates), yielding a fatality rate of 2.70 fatalities per 100mvm. The data presented by Aiken in slide 14 indicates that fatality rates for all vehicles on rural highways are about twice as high as those on urban facilities. Data in the Performance section of the BTS truck profile for 2004 indicate that 56% of large truck vehicle miles of travel occur in rural areas while 44% occur in rural areas. Using these numbers, it is possible to calculate the tractor/semitrailer fatality rates in urban (u) and rural (r) areas.

1453.98  $(0.56 \times 2 \times u + 0.44 \times u) = 1453.98 \times 2.70$  fatalities per 100mvm [1]  $u_f = 1.73$  fatalities per 100mvm  $r_f = 2 \times u = 3.46$  fatalities per 100mvm

The number of fatalities can be estimated for the minimum and maximum levels of travel.

Minimum fatalities =  $0.274 \ 100$ mvm ( $0.8 \times 3.46 + 0.2 \times 1.73$ ) = 0.85 fatalities per year [2] Maximum fatalities =  $0.812 \ 100$ mvm ( $0.8 \times 3.46 + 0.2 \times 1.73$ ) = 2.53 fatalities per year [3]

Table 15 of the FMCSA's report indicates that the injury accident rate for tractors/semitrailers in 2004 was 43.9 injuries per 100mvm. Replacing the fatality rate in [1] with this injury rate, the expected urban and rural injury rates are:

 $u_i = 28.1$  injuries per 100mvm  $r_i = 56.3$  injuries per 100mvm

Replacing the fatality rates in [2] and [3] with these injury rates, the minimum and maximum estimated injuries are 13.9 and 41.1 injuries per year, respectively.

Because of different thresholds among the states for reporting PDO crashes, the number of these crashes involving tractors/semitrailers is, at best, approximate. Table 16 of the FMCSA's report for 2004 indicates that these vehicles have a PDO rate of 110.9 crashes per 100mvm. Replacing the fatality rate in [1] with this crash rate, and assuming that the PDO rates are twice has high on rural highways, the approximate urban and rural PDO rates are:

 $u_{PDO} = 71.1$  crashes per 100 mvm  $r_{PDO} = 142.2$  crashes per 100 mvm

Replacing the fatality rates in [2] and [3] with these crash rates, the minimum and maximum expected crashes are 35.1 and 103.9 crashes per year, respectively.

#### Limitations

The data from Aiken show that the fatality rates were twice has high on rural highways as on urban highways. This analysis assumed that this same ratio applied to injury and PDO crashes. This assumption is probably valid for injury accidents, but may overstate the situation for PDO crashes, which tend to occur at lower speeds on urban facilities. The analysis also assumed that the travel data split between rural and urban highways for all large trucks (>10,000 pounds) was the same as for tractor/semitrailers. In actuality, the percentage

of tractor/semitrailer travel occurring in rural areas is probably higher than the assumed 56%. If the proper split was 70% rural and 30% urban, for example, the actual number of annual fatalities, injuries, and PDO crashes would be 92% of the values calculated above.

Please don't hesitate to contact me if you have any questions.

Sincerely,

for Hall

Jerome W. Hall, PhD, PE