

A Cost Analysis of the Impact of Draft Rule 19.15.17 NMAC On Oil and Natural Gas Drilling Operations in New Mexico

.

Samuel Small, SWSmall Consulting Engineer October, 2007

1201

à

OVERVIEW:

Draft rule 19 NMAC 19.15.17, as it pertains to temporary pits used in drilling or workover operations, stipulates four conditional options for the type of pit system to be used and the manner in which pit contents are to be handled. An operator can, upon meeting the conditions stipulated in the draft rule, utilize lined earthen pits, disposing of the pit contents on or off site, or utilize a closed loop system, disposing of the tank contents and solids on or off site.

This report evaluates the cost of employing each of the above options to determine the magnitude of the draft rule's impact on the expense of drilling an oil or gas well in the State. The draft rule's impact with respect to workover costs was not evaluated because workover pit volumes and contents vary greatly, depending on the type and/or size of the workover to be performed. Significant cost impacts can be expected though with regard to handling liquids and solids generated during the work.

A large number of variables associated with drilling operations, wellbore size and depth, surface and immediate subsurface conditions, well location relative to disposal facilities and equipment costs among others, contribute to a certain degree of subjectivity in any economic evaluation. In an attempt to reduce to the degree of subjectivity, two 'type wells' were evaluated in both the Southeast and the Northwest regions of New Mexico. Operators and vendors in each region were interviewed and equipment and construction costs were solicited to generate a representative cost for implementation of each of the four scenarios with respect to each of the 'type wells'.

CONCLUSIONS:

Not unexpectedly, the most significant item affecting the cost associated with each of the options was the manner in which the pit contents are disposed. Removing solid material off-site to a commercial facility has the potential to substantially impact the cost of complying with the draft rule, particularly if the distance between the well site and the facility is extensive. The limited number of disposal sites approved by the Division to accept drilling solids is a contributing factor to the distance the material must be transported. It is also significant that the limited number of Division approved disposal sites offers no incentive for the existing sites to maintain their current disposal fees. The lack of disposal sites is of particular concern in the Northwest region of the State. In the Northwest, the-need to remove and dispose of liquids will also add significantly to the waste handling costs currently being incurred.

The cost associated with renting closed loop drilling system equipment versus earthen pit construction, under the conditions evaluated, also adds to the cost of complying with the draft rule. A number of the reported benefits of using a closed-loop system such as improved penetration rates, fewer drilling bits used and reduced drilling mud volumes have not been universally realized.

The draft rule will potentially add as much as 8-10% to the current cost of drilling a well in Southeast New Mexico. Where closed loop systems and commercial disposal facilities are used a cost difference of \$89,000 for a 7,500 foot well and \$67,500 for a 4,000 foot

2

1702

well can be expected. The draft rule will potentially add as much as 10-15% to the current cost of drilling a well in Northwest New Mexico. Using a closed loop system and commercial disposal facility a cost difference of \$160,500 for a 7,500 foot well and \$99,500 for a 4,000 foot well can be expected.

DISCUSSION:

The two wellbore configurations chosen as 'type wells', Diagrams 1 & 2, were selected because accurate data was available to make a comparison of volumes of solids generated relative to wellbore volumes for a number of similar wells drilled in Lea County, New Mexico. Table 5 is a tabulation of this data. The 'type wells' are also representative of a relatively shallow well, 4000 foot in depth, and a intermediate depth well, 7500 foot in depth. After the wells listed in Table 5 were drilled and completed, standing liquids were removed from the earthen reserve pits and the pits were allowed to dry out naturally through evaporation. The remaining solids and pit liner were transported to a Division approved commercial disposal site.

The dimensions of the earthen pits, horseshoe in the SE and regular pit in the NW, are generally dictated by the drilling rig employed. The two pit sizes selected in each area for the evaluation represent pits typically associated with the 'type well' depths. Pit construction and lining costs were obtained from vendors and company personnel working in the area. Reserve pit closure costs were derived from actual data and vendors estimates.

Well location distance from a Division approved commercial disposal facility was assumed to be at the maximum distance requiring off-site disposal in the draft rule, 100 miles. Graphs for the turn-around transit times associated with the cost per load were generated. The cost per cubic yard to dispose of solids was obtained from the available facilities approved by the Division to handle drilling solids. A load was assumed to be 14 yd^3 because of New Mexico Highway Department weight restrictions and loading methods.

The rental rates for equipment used in closed loop systems was obtained from vendors and the actual cost (time on location) of utilizing the equipment was obtained through interviews with company drilling personnel.

A cost estimate for the current method widely used for handling drilling fluids and solids in the Southeast region of the State was based on the use of a horseshoe earthen reserve pit lined with a 12 mil liner and on-site deep burial of solids, free liquids hauled to disposal. In the Northwest the cost was based on an earthen rectangular reserve pit with a 12 mil liner and burial of solids in place, liquids being allowed to evaporate on site.

Within the scope of this study, I was unable to document claims for reductions in drilling times, reduced bit usage, or reduced mud volumes. Previously published 'waste' reduction claims rely heavily on the recycling of the drilling fluid. For this study the assumption was made that only one well was to be drilled and all of the drilling fluid and generated solid waste was to be disposed of at the conclusion of drilling and completion activities.

RESULTS:

The following tables contain the results of the 'type well' cost analyses <u>assuming the</u> <u>draft pit rule is adopted</u>:

٠.

	Current Method Used	Earthen Reserve Pit On-site Disposal	Earthen Reserve Pit Off-site Disposal	Closed Loop On-site Disposal	Closed Loop Off-site Disposal
Reserve Pit Construction & Closure	\$20,000	\$24,000	\$24,000		
Closed Loop Equipment Rental				\$57,000	\$57,000
Deep Burial	\$23,500	\$27,000		\$27,000	
Commercial Disposal Facility			\$75,500		\$75,500
TOTAL COST	\$43,500	\$51,000	\$99,500	\$84,000	\$132,500

SOUTHEAST NM 7,500 FOOT WELL

TΑ	вι	.E	1
----	----	----	---

SOUTHEAST NM 4,000 FOOT WELL

	Current Method Used	Earthen Reserve Pit On-site Disposal	Earthen Reserve Pit Off-site Disposal	Closed Loop On-site Disposal	Closed Loop Off-site Disposal
Reserve Pit Construction & Closure	\$13,500	\$15,500	\$15,500		
Closed Loop Equipment Rental				\$33,500	\$33,500
Deep Burial	\$12,500	\$15,500		\$15,000	
Commercial Disposal Facility			\$60,000		\$60,000
TOTAL COST	\$26,000	\$31,000	\$75,500	\$48,500	\$93,500

4

· .	Current Method Used	Earthen Reserve Pit On-site Disposal	Earthen Reserve Pit Off-site Disposal	Closed Loop On-site Disposal	Closed Loop Off-site Disposal
Reserve Pit Construction & Closure	\$11,000	\$14,000	\$14,000		
Closed Loop Equipment Rental				\$57,000	\$57,000
Deep Burial		\$61,000		\$61,000	
Commercial Disposal Facility			\$114,500		\$114,500
TOTAL COST	\$11,000	\$75,000	\$128,500	\$118,000	\$171,500

NORTHWEST NM 7,500 FOOT WELL

•.

TABLE 3

NORTHWEST NM 4,000 FOOT WELL

	Current Method Used	Earthen Reserve Pit On-site Disposal	Earthen Reserve Pit Off-site Disposal	Closed Loop On-site Disposal	Closed Loop Off-site Disposal
Reserve Pit Construction & Closure	\$7,000	\$10,000	\$10,000		
Closed Loop Equipment Rental				\$33,500	\$33,000
Deep Burial		\$24,000		\$24,000	
Commercial Disposal Facility			\$73,500		\$73,500
TOTAL COST	\$7,000	\$34,000	\$83,500	\$57,500	\$106,500

TABLE 4

سی۔ سینہ ••

CALCULATIONS:

Hole Volume (hv) and Waste Volume (wv)

Hole Volume: 7500 foot 'type well'(Diagr	ram No.1)	
1500 ft x 0.1175 bbl/ft	176.25 bbl	
(7500 – 1500) ft x 0.0602 bbl/ft	<u>361.20 bbl</u>	
	537.45 bbls (112 yd ³)	
Hole Volume: 4000 foot 'type well' (Diag	ram No. 2)	
1200 ft x 0.1175 bbl/ft	141.00 bbl	
(4000-1200) ft x 0.0602 bbl/ft	<u>168.56 bbl</u>	
	309.56 bbl (64 yd ³)	
Waste Volume: 7500 foot 'type well'		
Total Waste Volume: 537.45 bbl	$x 20 wy:hy^* = 10749$	2

Total Waste Volume: 537.45 bbl x 20 wv: $hv^* =$	10749 bbls
Solid Waste: 112 yd ³ x 10 wv: hv^{**} x 4.8089 bbl/yd ³ =	<u>5386</u> bbls
Liquid Waste : Total Waste – Solid Waste =	5363 bbls

Waste Volume: 4000 foot 'type well'
Total Waste Volume: 309.56 bbl x 20 wv: $hv^* =$ 6191 bblsSolid Waste: 64 yd³ x 16 wv: hv^{**} x 4.8089 bbl/yd³ =
Liquid Waste : Total Waste - Solid Waste =4924 bbls1267 bbls

* References 1,2&3 ** Table 5

.

6

DIAGRAM NO. 2

7 1**3**-

S D D C A D C U C C T	OPREAUGNER

'n

·	K	Hauled Ratio		+ Liner ds ³) WM·HV		900 16.5	800 14.6	540 8.7	1400 22.1	- 1424 19.7	1080 9.6	960 9.1	800 7.2	780 6.9	1180 10.4	900 7.9	1800 15.8	1300 11.1	1200 10.2	1672 14.6			
READSHEET	-, 	Total Material	Hole	Vol. Solids (Yards)		54.69	54.75	62.22	63.35	72.18	112.17	105.99	111.65	113.16	113.85	113.79	113.81	117.40	117.40	114.72			
RATIO SPI	T	Hole	Hole	Vol. (Yards ³)		44.25	44.19	34.80	34.02	42.24	75.43	75.71	75.97	77.28	76.87	78.35	76.91	71.02	71.02	78.56			
	IJ	uction Csg		Diameter (Inches)		7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875		ch hole	ch hole
ΤΟ ΗΟLΕ	Ŀ	Prod		Depth (Feet)	1.000	3960	3960	3900	3916	4597	7525	7283	7525	7638	7650	7705	7650	7200	7200	7465	for 11 inch I	for 12 24 in	for 7.875 in
/OLUME	ш	ole	Hole	Vol. (Yards ³)	1 00001	10.44	10.56	27.42	29.33	29.94	36.73	30.28	35.68	35.88	36.98	35.44	36.91	46.38	46.38	36.16			
WASTE /	۵	face Csg Hi		Diameter (Inches)		11	1	11	11	11	11	11	11	11	11	11	11	12.25	12.25	12.25	500 / 77	184/27	0.3382 / 27
	ບ ⁄	Sur		Depth (Feet)	~~~~	427	432	1122	1200	1225	1503	1239	1460	1468	1513	1450	1510	1530	1530	1193			H = (F-C) X H = E+H
	٩			II MAII	1044	1	2	e	4	5	9	2	8	6	10	11	12	13	14	15			

Avg 16

.

Avg 10

TABLE 5

Cost of Current Methods Employed to Handle Drill Pit Contents

۰.

	7.500 foot type y	vall	
51	Pasarya Pit with	a 12 mil Liner	
	Construction:	D_{-6} dozer for 40 hours @ \$116/hr	\$ 4.640
	12 mil liner	$31500 \text{ ft}^2 \otimes \$0.21/\text{ft}^2 \text{ installed}$	\$ 6,040
۰.	Gootevtile	$25,500 \text{ ft}^2 \otimes \$0.14/\text{ft}^2 \text{ installed}$	\$ 0,013
	Sempling	2 samples background & banasth nit	\$ 5,570
	Closura	D 6 dozer for 40 hours @ \$116/hr	\$ 330 \$ 4640
	Doon Duriel Tree	D-0 dozer for 40 hours (a , \$110/11	\$ 4,040
	Construction	D 6 dozor for 20 hours \otimes \$116/hr	¢ 2 400
• •	12 mil liner	10 820 $\text{ff}^2 \otimes \text{ff} 0.21/\text{ff}^2$ installed	\$ 3,480 \$ 2,272
	12 mil finer	$10,820 \text{ II } (\underline{u}, 50.217 \text{ II installed})$	\$ 2,272
	Geotextile	3,000 ft (a) 50.14/11 installed	\$ 420
	Liquids Removal		Ф 0 4 7 4
	45 10aus	120 bbl vac. Ifk. (ω \$212.50/load	\$ 9,474
	S3SU DDIS	Disposal charge (a) \$0.65/001	\$ 3,478
	Closure	D-6 dozer for 30 hours (a) \$116/nr 4 800 $\alpha^2 = 0.21/\alpha^2 = 4.11 - 1$	\$ 3.480
	12 mil cap	4,800 ft (<i>a</i>) $$0.21/ft$ installed	<u>\$ 1,008</u>
			\$43,627
	4 000 foot type y	vall	
	<u>4,000 toot type v</u>	<u>e 12 mil Linor</u>	
	Construction:	D_{f} dozer for 20 hours @ \$116/hr	\$ 2.480
	12 mil linor	$16200 \text{ ft}^2 \otimes \text{solution} 21/\text{ft}^2 \text{ installed}$	\$ 3,460 \$ 2,400
	Castavtila	12,000 ft ² @ \$0.14/6 ² installed	\$ 3,402
	Sempling	2 samples healten and k hereath πit	\$ 1,080 \$ 550
	Samping	2 samples background α beneath pit	\$ 550
	Doop Durial Tran	D-0 dozer for 40 hours (a) \$110/hr	\$ 4,040
`	Construction	$D_{\text{f}} 6 \text{ dozor for 20 hours } @ \$116/hr$	\$ 2.490
	12 mil linor	$7.520 \text{ ft}^2 \odot \text{ ft} 0.21/\text{ft}^2$ installed	\$ 3,400 \$ 1,570
	12 min miler	$2,000, \theta^2 \otimes \$0.14/\theta^2$ installed	\$ 1,379
	Liquida Pomoval	2,000 it $@$ $0.14/$ it installed	\$ 20U
	11 loads	120 bbl vag trik @ $21250/land$	\$ 7 7 7 8
	17 10aus	Disposal abarga $@$ \$0.65/bbl	\$ 2,338 \$ 910
	Closura	Disposal charge $(0, 50.05/00)$ D 6 dozer for 30 hours $(0, $116/hr)$	\$ 019 \$ 2.490
	12 mil con	$3 300 \text{ ft}^2 \otimes \$0.21/\text{ft}^2$ installed	\$ 5.400 \$ 603
	12 mil cap	5,500 ft @ \$0.21/ft filstaned	\$ <u>095</u> \$76 471
NX	$W \cdot 7.500$ foot type w	vell	\$ 20,421
1 1 1	Reserve Pit with	a 12 mil Liner	
	Construction.	D-6 dozer for 30 hours $@$ \$138/hr	\$ 4 140
	12 mil liner	9 700 ft ² @ $$0.25/ft^2$ installed	\$ 2425
	Closure	D-6 dozer for 30 hours $@$ \$138/hr	\$ 4 140
	010004		\$10.705
			<i>w</i>ivj <i>i</i> ve

·...

4,000 foot type well

5350 bbls

 Reserve Pit with a 12 mil Liner

 Construction:
 D-6 dozer for 20 hours @ \$138/hr
 \$ 2,760

 12 mil liner
 $6,600 \text{ ft}^2$ @ \$0.25/ft² installed
 \$ 1,650

 Closure
 D-6 dozer for 20 hours @ \$138/hr
 \$ 2,760

 \$ 7,170
 \$ 2,760

<u>Draft R</u>	<u>ule Reserve Pit Co</u>	st Calculations With a 20 mil Liner	
Reserve	pit construction and	closure: 7,500 foot well (150' X 150'X 10'):	
SE:	Pit Construction:	D-6 dozer for 40 hours @ \$116/hr	\$ 4,640
	20 mil liner	31,500 ft ² @ \$0.33/ft ² installed	\$10,395
	Geotextile	25,500 ft ² (a) 0.14 /ft ² installed	\$ 3,570
	Sampling	2 samples background & beneath pit	\$ 550
	Closure	D-6 dozer for 40 hours @ \$116/hr	<u>\$ 4,640</u>
			\$23,795
Reserve	pit construction and	closure: 4,000 foot well (100' X 100" X10'):	
SE:	Pit Construction:	D-6 dozer for 30 hours @ \$116/hr	\$ 3,480
	20 mil liner	$16,200 \text{ ft}^2 @ \$0.33/\text{ft}^2 \text{ installed}$	\$ 5,346
	Geotextile	12,000 ft^2 @ \$0.14/ft ² installed	\$ 1,680
	Sampling	2 samples background and beneath pit	\$ 550
	Closure	D-6 dozer for 40 hours @ \$116/hr	<u>\$ 4,640</u>
			\$15,696
Reserve	pit construction and	closure: 7,500 foot well (100' X 30'X 10'):	
NW:	Pit Construction:	D-6 dozer for 30 hours @ \$138/hr	\$ 4,140
	20 mil liner	9,700 ft ² @ $0.40/ft^2$ installed	\$ 3,880
	Geotextile	$4,300 \text{ ft}^2 @ \$0.14/\text{ft}^2 \text{ installed}$	\$ 602
	Sampling	2 samples background and beneath pit	\$ 1,510
	Closure	D-6 dozer for 30 hours @ \$138/hr	<u>\$ 4,140</u>
			\$14,272
Reserve	pit construction and	closure: 4,000 foot well (75' X 25' X 8'):	
NW:	Pit Construction:	D-6 dozer for 20 hours @ \$138/hr	\$ 2,760
	20 mil liner	$6,600 \text{ ft}^2 @ \$0.40/\text{ft}^2 \text{ installed}$	\$ 2,640
	Geotextile	2,675 ft ² @ $0.14/ft^2$ installed	\$ 375
	Sampling	2 samples background and beneath pit	\$ 1,510
	Closure	D-6 dozer for 20 hours @ \$138/hr	<u>\$ 2,760</u>
			\$10,045
Draft R	ule Deep Burial of	Drilling Solids Cost Calculations	
Trench c	construction and clos	sure: 7,500 foot well (150' X 20' X 20')	• • • •
SE:	Trench Constructio	n D-6 dozer for 30 hours (a) $16/hr$	\$ 3,480
	20 mil liner	$10,820 \text{ ft}^{-}(a) \$0.33/\text{ft}^{-}$ installed	\$ 3,571
	Geotextile	$3,000 \text{ II}$ (<i>u</i>) $50.14/\text{II}^{-1}$ installed	\$ 420 • 1 500
	Sampling & Analys	ses Sonds to be disposed of	\$ 1,500
	45 loads	120 bbl vac. trk, @ \$212.50/load	\$ 9 474
			Ψ 2,171

Disposal charge @ \$0.65/bbl \$ 3,478

10

	Closure	D-6 dozer for 30 hours @ \$116/hr	\$ 3.480
	20 mil cap	4,800 ft ² @ 0.33 /ft ² installed	<u>\$ 1,584</u>
			\$26,987
m 1			
Trench o	construction and closure:	$4,000 \text{ foot well } (100^{\circ} \text{ X } 20^{\circ} \text{ X } 20^{\circ})$	• • • • • •
SE:	Trench Construction	D-6 dozer for 30 hours (a) $16/hr$	\$ 3,480
	20 mil liner	$7,520 \text{ ft}^2$ (a) \$0.33/ft^2 installed	\$ 2,482
	Geotextile	$2,000 \text{ ft}^2$ @ $0.14/\text{ft}^2$ installed	\$ 280
	Sampling & Analyses Liquids Removal	Solids to be disposed of	\$ 1,500
	11 loads	120 bbl vac. trk. @ \$212.50/load	\$ 2.338
	1260 bbls	Disposal charge @ \$0.65/bbl	\$ 819
	Closure	D-6 dozer for 30 hours $@$ \$116/hr	\$ 3 480
	20 mil cap	$3.300 \text{ ft}^2 @ \$0.33/\text{ft}^2 \text{ installed}$	\$ 1.089
			<u>\$15,468</u>
- I			
Trench c	construction and closure:	7,500 foot well (100' X 20' X 15')	
NW:	Trench Construction	D-6 dozer for 30 hours @ \$138/hr	\$ 4,140
	20 mil liner	$6,320 \text{ ft}^2$ @ $$0.40/\text{ft}^2$ installed	\$ 2,528
	Geotextile	$2,000 \text{ ft}^2$ @ $0.14/\text{ft}^2$ installed	\$ 280
	Sampling & Analyses	Solids to be disposed of	\$ 2,500
	Liquids Removal	120 bb = 44 c = 6005/1 d	\$ 40 70 5
	45 loads	120 bbl vac. trk. (a) \$905/load	\$40,725
	S3SU DDIS	Disposal charge (a) \$1.00/bbl	\$ 5,350
	Closure	D-6 dozer for 30 hours (a) \$138/hr	\$ 4,140
	20 mil cap	$3,300 \text{ ft}^2$ (a) $\$0.40/\text{ft}^2$ installed	<u>\$ 1,320</u> \$60.983
			<i>Ф</i> 00,203
Trench c	onstruction and closure:	4,000 foot well (75' X 20' X 15')	
NW:	Trench Construction	D-6 dozer for 30 hours @ \$138/hr	\$ 4,140
	20 mil liner	$4,920 \text{ ft}^2$ @ $0.40/\text{ft}^2$ installed	\$ 1,968
	Geotextile	$1,500 \text{ ft}^2$ @ $0.14/\text{ft}^2$ installed	\$ 210
	Sampling & Analyses	Solids to be disposed of	\$ 2,500
	Liquids Removal		
	11 loads	120 bbl vac. trk. @ \$905/load	\$ 9,955
	1260 bbls	Disposal charge @ \$1.00/bbl	\$ 1,260
	Closure	D-6 dozer for 20 hours @ \$138/hr	\$ 2,760
	20 mil cap	2,550 ft^2 @ \$0.40/ ft^2 installed	<u>\$ 1,020</u>
			\$23,813

11

Transit turn-around for a 100 mile haul is assumed to be 5 hours @ \$85/hr.

Transit turn-around for a 40 mile haul is assumed to be 2.5 hours @ \$ 85/hr

٠.

Transit turn-around for a 100 mile haul is assumed to be 5 hours @ \$95/hr.

Transit turn-around for a 100 mile haul is assumed to be 5 hours @ \$180/hr.

1 2 -1

Draft Rule Off-Site Disposal Cost Calculations

Disposal of wastes: 7,500 foot well (1,120 yd³ solids & 5,350 bbl liquids)

SE: <u>Solids</u>:

Use 4 trucks	Front end loader 70 hr @ \$100/hr	\$ 7,000
80 loads	20 yd dump truck (a) \$425/load	\$34,000
1120 yd^3	Disposal charge (a) \$18/yd ³	\$20,160
Sampling & Analyses	Solids to be disposed of	\$ 1,500
Liquids:	-	
45 loads	120 bbl vac. trk. @ \$212.50/load	\$ 9,474
5350 bbls	Disposal charge \widetilde{a} \$0.65/bbl	\$ 3,478
		\$75,612
		,

Disposal of wastes: 4,000 foot well (1,024 yd³ solids & 1,260 bbl liquids) SE: Solids:

J:	<u>Solids</u> :		
	Use 4 trucks	Front end loader 60 hr @ \$100/hr	\$ 6,000
	73 loads	20 yd dump truck @ \$425/load	\$31,025
	$1,024 \text{ yd}^3$	Disposal charge @ \$18/yd ³	\$18,432
	Sampling & Analyses	Solids to be disposed of	\$ 1,500
	<u>Liquids:</u>		-
	11 loads	120 bbl vac. trk. @ \$212.50/load	\$ 2,338
	1260 bbls	Disposal Charge @ \$0.65/bbl	\$ 819
			\$60,114

Disposal of solids: 7,500 foot well (1120 yd³)

NW: <u>Solids</u> :		
Use 4 trucks	Front end loader 70 hr @ \$110/hr	\$ 7,700
80 loads	20 yd dump truck @ \$475/load	\$38,000
1120 yd^3	Disposal charge @ \$18/yd ³	\$20,160
Sampling & Analyses	Solids to be disposed of	\$ 2,500
Liquids:		-
45 loads	120 bbl vac. trk. @ \$905/load	\$40,725
5350 bbls	Disposal charge @ \$1.00/bbl	\$ 5,350

Disposal of solids: 4000 foot well (1024 yd³)

NW: Solids:

Front end loader 60 hr @ \$110/hr	\$ 6,600
20 yd dump truck @ \$475/load	\$34,675
Disposal charge $\textcircled{0}$ \$18/yd ³	\$18,432
Solids to be disposed of	\$ 2,500
-	,
120 bbl vac. trk. @ \$905/load	\$ 9,955
Disposal charge @ \$1.00/bbl	\$ 1,260
_	\$73,422
	Front end loader 60 hr @ \$110/hr 20 yd dump truck @ \$475/load Disposal charge @ \$18/yd ³ Solids to be disposed of 120 bbl vac. trk. @ \$905/load Disposal charge @ \$1.00/bbl

14

~~~

\$114,435

### Closed Loop System Equipment Rental & Labor Costs

Drilling time for a 7,500 foot well estimated at 14 days

| SE: Solids control equipment                            | \$16,300        |
|---------------------------------------------------------|-----------------|
| Equipment installation cost                             | \$10,000        |
| Operators                                               | \$16,800        |
| Tanks                                                   | \$13,700        |
|                                                         | \$56,800        |
| Drilling time for a 4,000 foot well estimated at 7 days |                 |
| SE: Solids control equipment                            | \$ 8,155        |
| Equipment installation cost                             | \$10,000        |
| Operators                                               | \$ 8,400        |
| Tanks                                                   | <u>\$ 6,840</u> |
|                                                         | \$33,395        |

The cost of using a closed loop drilling system in the Northwest was assumed to be similar to the cost in the Southeast. Some of the same vendors are being used and the data available indicates that this is the case.

#### **REFERENCES:**

- 1. Rogers, Smith, Fout and Marchbanks; <u>Closed-loop Drilling System: A Viable</u> <u>Alternative to Waste Pits</u>, *World Oil Dec 2006*
- Rogers, Fout and Piper; <u>New Innovative Process Allows Drilling Without Pits in</u> <u>New Mexico</u>, The 13<sup>th</sup> International Petroleum Environmental Conference, San Antonio, TX, Oct 2006
- Fleming, Ivan and Piper; <u>Theoretical and Practical Models for Drilling Waste</u> <u>Volume Calculation with Field Case Studies</u>, The 13<sup>th</sup> International Petroleum Environmental Conference, San Antonio, TX, Oct 2006
- 4. Dowell; Engineers Handbook

-