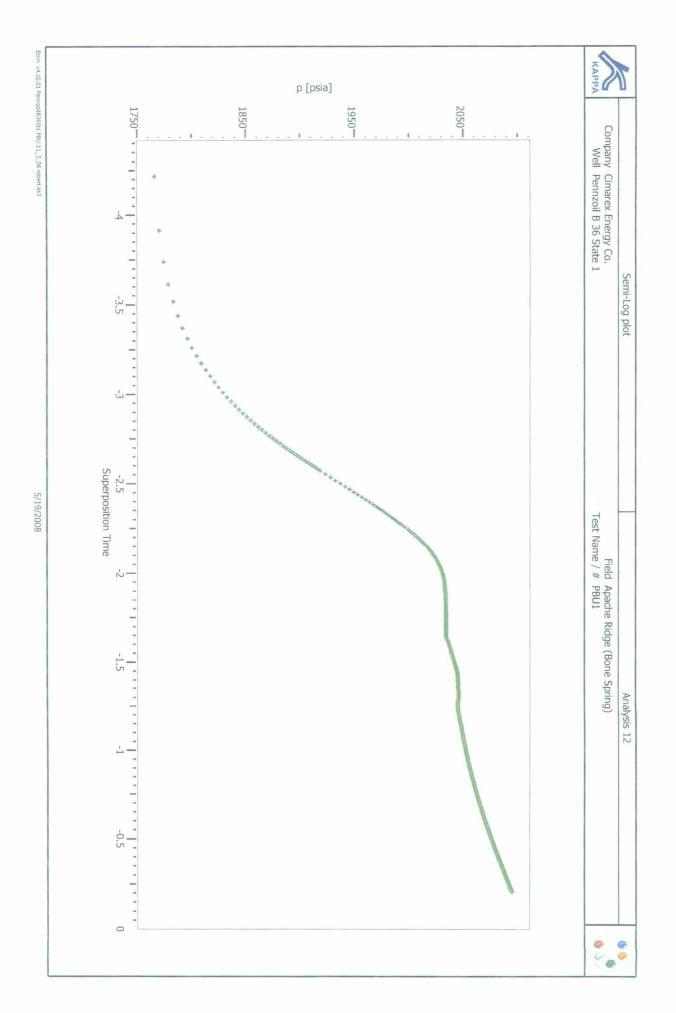
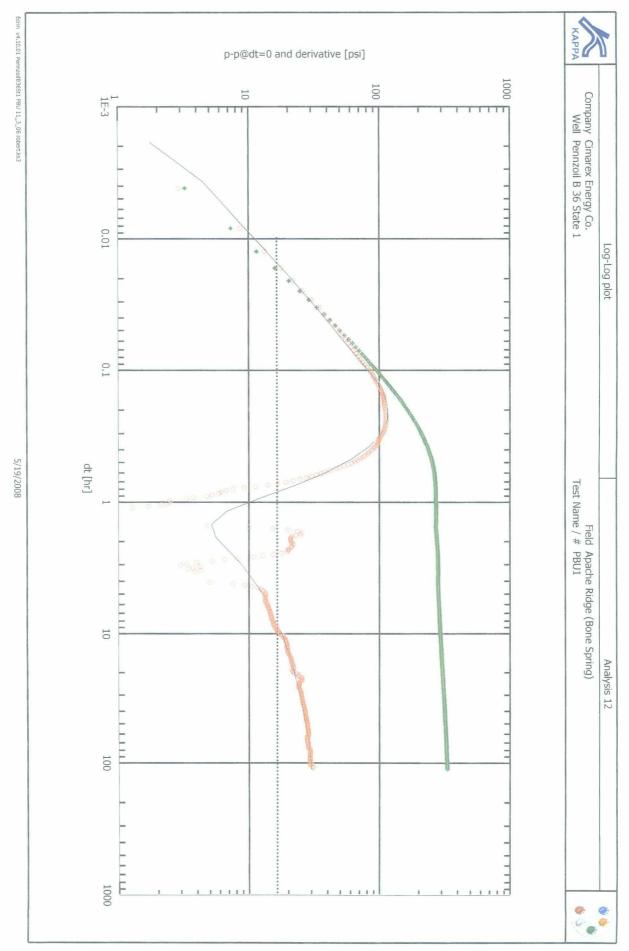

AcroPDF - A Quality PDF Writer and PDF Converter to create PDF files. To remove the line, buy a license.


BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Case No's. <u>14145_14124</u>....Exhibit No. 21 Submitted by: <u>FASKEN OIL AND RANCH, LTD</u>. Hearing Date: <u>June 26, 2008</u>

Ecrin v4.10.01 Pennzoil8						KAPPA	5
Eorin v4.10.01 PennzoilB36St1 PBU 11_3_06 robert.ks3	Main Model Parameters TMatch 51.6 1/hr PMatch 0.0304 1/r C 0.0129 bbl Total Skin 1.78 k.h, total 928 md.ft k, average 28.1 md Pi 2109.96 pr	Selected Model Model Option Standa Reservoir Two Boundary One fe	Volume Factor B Viscosity Total Compr. ct	Fluid type	Test date / time Formation interval Gauge type / # Gauge depth TEST TYPE Porosity Phi (%) Well Radius rw Pay Zone h Water Salt (ppm) Form. compr. So Sw Reservoir T Reservoir T	Company Cimarex Energy Co. Well Pennzoil B 36 State 1	
	Parameters 51.6 1/hr 0.0304 1/psia 0.0129 bbl/psi 1.78 928 md.ft 28.1 md 2109.96 psia	d Model Standard Model Vertical, Changing Storage (Hegeman) Two porosity PSS One fault	1.57216 B/STB 0.412144 cp 3.23931E-5 psi-1	<u>Oi</u>	11-3-06 Bone Spring 9441'-9520' 9988' Standard 7 0.328 ft 33 ft 90000 3E-6 psi-1 0.45 0.1 0.25 140 °F 3800 psia		Main Results
					Model Parameters Well & Wellbore parameters (Pennzoil B 36 State 1) C 0.0129 bbl/psi C/C 1.43 delta t 0.452 hr Skin 1.78 Reservoir & Boundary parameters Pi 2109.96 psia $k b \ 928 \ md \ 4$ Comega 0.0012 Lambda 3.29E-6 L - No flow 316 ft Derived & Secondary Parameters Test: Voi: UUZU3366 bcf Delta P (Total Skin) 58.572 psi Delta P Ratio (Total Skin) 0.176076 Fraction	Field Apache Ridge (Bone Spring) Test Name / # PBU1	Analysis 12
						000	0


AcroPDF - A Quality PDF Writer and PDF Converter to create PDF files. To remove the line, buy a license.

AcroPDF - A Quality PDF Writer and PDF Converter to create PDF files. To remove the line, buy a license.

pressure mercury-injection capillary pressures with SEM analysis of pore casts to further quantify the distribution of pore throat sizes. Final rock types were identified from their pore aspect ratios and coordination numbers.

Seven hydraulic rock types, listed in Table 2, were identified based on lithology, pore geometry, and porositypermeability relationship. For each rock type, we observed a more unique relationship between porosity and permeability at the plug level than seen for the aggregate Clear Fork interval. Permeability-porosity relationships for the best reservoir rocks (*i.e.*, rock types 1, 2 and 6) are shown in Figures 4-6, respectively. Although not shown, similar permeability-porosity relationships were observed for the poorer quality reservoir rocks in the Clear Fork, *i.e.*, rock types 3-5, 7.

Table 2—Description of Rock Types Defined for Clear Fork Carbonates in the TXL South Unit Field

Rock Type	Lithologic Description		
Rock Type 1	Medium to coarsely crystalline dolo-		
	grainstones (best reservoir quality)		
Rock Type 2	Medium crystalline dolo-grainstone (moderate		
	reservoir quality)		
Rock Type 3	Finely crystalline dolo-wackestone		
	(poor reservoir quality)		
Rock Type 4	Very fine crystalline dolo-wackestone		
	(poor reservoir quality)		
Rock Type 5	Siltstone (poor reservoir quality)		
Rock Type 6	Limestone (moderate reservoir quality)		
Rock Type 7	Anhydritic dolo-stone (poor reservoir quality)		

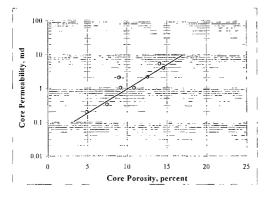


Fig. 4—Core-derived porosity-permeability relationship for rock type 1 (medium to coarsely crystalline dolo-grainstones).

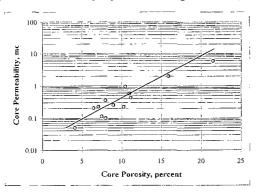


Fig. 5—Core-derived porosity-permeability relationship for rock type 2 (medium crystalline dolo-grainstones).

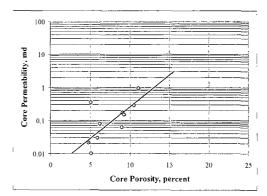


Fig. 6—Core-derived porosity-permeability relationship for rock type 6 (moderate reservoir quality limestone).

The next step was to develop an algorithm relating rock types and average rock properties to log responses. The objective of this step was to develop a model to estimate properties at each well. We attempted to use all available log data, including older gamma ray and electric logs taken from wells drilled in the 1940s and 1950s as well as more modern porosity and induction log suites from wells drilled in the 1980s and 1990s. One of the primary considerations in constructing the model was to insure that it could be applied uniformly and consistently throughout the field. Consequently, a significant part of the study effort was focused on normalizing the log data in order to correct observed inconsistencies between log responses. These inconsistencies were observed not only between logs of different vintages, but also log suites obtained from different service companies.

Following the log normalization process, first order or petrophysical rock types were identified using conventional means. For example, silts were identified with gamma ray response, while limestone and dolomite were characterized using the photoelectric response. The hydraulic rock types used a resistivity ratio technique for identification from the log response. The final product was a calculation algorithm that allowed us to identify the vertical distribution of hydraulic rock types as well as to quantify net pay, effective porosity, and absolute permeability from the log response.

Reservoir Performance Study

The third phase of our field study was the analysis of longterm production histories using the material balance decline type curve (MBDTC) methodology.^{7,14} The theory and methodology of the MBDTC analysis technique have been discussed by others^{7,14} and will not be repeated in detail in this paper. In general, the type curve method is applicable to variable rate, variable bottomhole flowing pressure, or combinations of these flowing conditions. Application of three different type curve plotting functions-normalized rate, rate integral, and rate derivative-allows us to obtain more unique type curve matches, even from typical field data with significant scatter. The type curves used in our study were developed specifically for pressure depletion production from solution-gas-drive reservoirs such as the TXL South Unit Eield.

SPE 84282

A major objective of the reservoir performance study was to quantify reservoir properties for both the 5600 and Tubb reservoirs. Consequently, we limited this phase of our study to the analysis of production that was not commingled. From the analysis of transient data, we estimated the effective permeability to oil and the near-wellbore flowing efficiency presented in terms of a skin factor. Furthermore, analysis of the pseudosteady-state or boundary-dominated data provided estimates of contacted oil-in-place and drainage area. We illustrate the performance analysis with several examples.

Example Analysis: Well TXLSU 1004 (5600 Reservoir). Figure 7 shows the production and development history of Well TXLSU 1004 that was completed openhole in the Upper Clear Fork in August of 1950. Following a small acid treatment, the well initially produced at a rate of almost 40 STB/day. Artificial lift was installed in December of 1950. In an attempt to increase production, the well was hydraulically fractured in December 1954 with 20,000 lbs. of 20/40 sand. Note the well responded with a post-fracture rate of more than 60 STB/day.

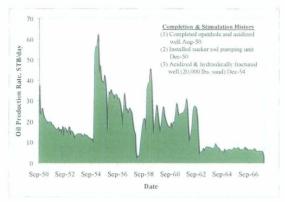
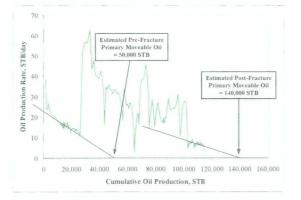
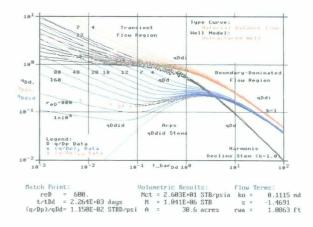


Fig. 7—Well development and completion history, Well TXLSU 1004 (5600 Reservoir).

Since there was no bottomhole pressure data available, we estimated the primary moveable oil volume or ultimate oil recovery (EUR) from a plot of daily oil rate against cumulative oil production (Fig. 8). Theoretical aspects for this technique are discussed in References 7 and 15.




Fig. 8—Estimated ultimate primary moveable oil recovery for Well TXLSU 1004 (5600 Reservoir).

5

The primary moveable oil volume represents the total oil volume the well could produce under a given set of operating conditions. In some cases, the EUR can be increased by improving operating conditions. We estimate the primary moveable oil volume from the best-fit line drawn through the late-time rate data and extrapolated to the cumulative oil production axis. Note the post-fracture EUR exceeds the pre-fracture volume by 90,000 STB. This difference suggests the hydraulic fracture treatment possibly improved the well's flowing efficiency and/or contacted more reservoir pore volume.

Figures 9 and 10 show the material balance decline type curve (MBDTC) analysis of the pre- and post-fracture production history, respectively. Consistent with the EUR evaluation, we also observed an improvement in the well performance following the hydraulic fracture treatment. The computed skin factor decreased from a -1.5 to -3.1, while the drainage area increased from 30.6 to 56.5 acres. In addition, the computed effective oil permeability increased from 0.11 md to 0.19 md, suggesting the fracture treatment not only contacted more reservoir pore volume but also contacted more permeable portions of the reservoir. Note also that, even following the hydraulic fracture treatment, this well recovered less than 8 percent of the contacted oil-in-place.

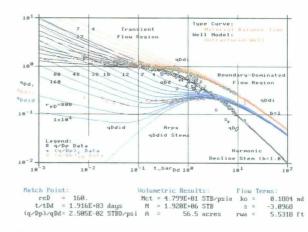
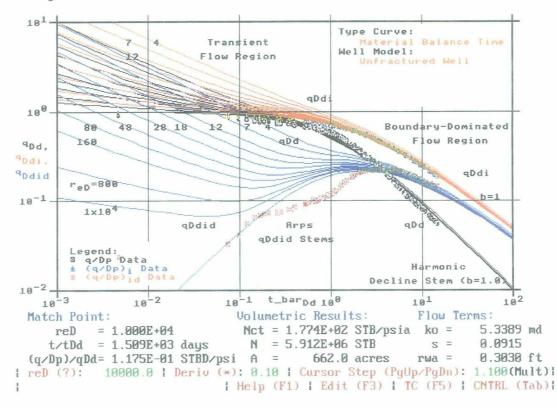
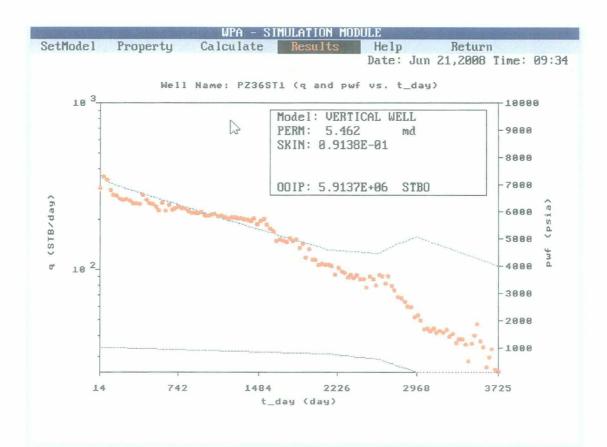




Fig. 10—MBDTC analysis of post-fracture production history, Well TXLSU 1004 (5600 Reservoir).

Well Id: Pennzoil 36 State #1 Analyst: Carl W. Brown

