



|                           | _                                                  | · <b>-</b>                                                                                                                                             |
|---------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aver<br>Chloride<br>mg/kg | Range<br>mg/kg                                     | Test<br>Result (mg/l)<br>3:1 stabilizatio<br>20:1 leach                                                                                                |
| 1342                      | 330 - 2600                                         | 11 - 87                                                                                                                                                |
| 6083                      | 2200 - 14000                                       | 73 - 467                                                                                                                                               |
| 4072                      | 960 - 6100                                         | 32 - 203                                                                                                                                               |
|                           |                                                    |                                                                                                                                                        |
|                           | Aver.<br>Chloride<br>mg/kg<br>1342<br>6083<br>4072 | Aver.       Range mg/kg         Chloride mg/kg       mg/kg         1342       330 - 2600         6083       2200 - 14000         4072       960 - 6100 |

| ample                | Chloride | Sodium | Na/Cl           | Test, after 3:1 stabili-<br>zation and 20:1 leach |
|----------------------|----------|--------|-----------------|---------------------------------------------------|
|                      | mg/kg    | mg/kg  | atomic<br>ratio | mg/l                                              |
| DP3 -01 Soil         | 704      | 1570   | 3.44            | 23.5                                              |
| )P3 -03 Soil         | 417      | 2900   | 10.72           | 13.9                                              |
| 9 <b>P3 -08 Soil</b> | 962      | 2080   | 3.33            | 32.1                                              |
| )P3 -09 Soil         | 927      | 3270   | 5.44            | 30.9                                              |
| )P3 -10 Soil         | 5290     | 5290   | 1.54            | 176.3                                             |
| 'P3 -01 Soil         | 1990     | 3460   | 2.68            | 66.3                                              |
|                      |          |        |                 | existing standard: 250                            |
|                      |          |        |                 | proposed standard 3000                            |

| Sample           | Chloride | Sodium | Na/Cl           | Test, after 3:1 stabili-<br>zation and 20:1 leach |
|------------------|----------|--------|-----------------|---------------------------------------------------|
|                  | mg/kg    | mg/kg  | atomic<br>ratio | mg/l                                              |
| CL-6 SOIL        | 18600    | 12900  | 1.07            | 620                                               |
| DP1 Soil         | 8260     | 7060   | 1.31            | 275                                               |
| DP4 Soil composi | te 30200 | 24100  | 1.23            | 1006                                              |
| DP5 Soil         | 8910     | 3280   | 0.57            | 297                                               |
| DP7 Soil         | 55200    | 32800  | 0.92            | 1840                                              |
| DPA7 Soil        | 213000   | 30800  | 0.27            | 7100                                              |
| DPH1 Soil        | 59100    | 33700  | 0.88            | 1970                                              |
| DPH2 Soil        | 144000   | 41800  | 0.45            | 4800                                              |
| DPH4 Soil        | 226000   | 43900  | 0.30            | 12533                                             |
| DPH5 Soil        | 87900    | 26800  | 0.47            | 1 2930                                            |











| TEXTURE                    | Vol mois<br>RESIDUAL : | ture<br>SATURATED |                               |
|----------------------------|------------------------|-------------------|-------------------------------|
| 1 Sand                     | 0.045                  | 0.43              |                               |
| 2 Loamy sand               | 0.057                  | 0.41              |                               |
| 3 Sandy loam<br>~loose″    |                        | 0.41              |                               |
| 4 Loam                     | 0.078                  | 0.43              | 150/ realized atria or aistar |
| 5 Sandy cl lo<br>"moderate | am 0.10<br>"           | 0.39              | would be moderately dry       |
| 6 Silt loam                | 0.067                  | 0.45              |                               |
| 7 Silt                     | 0.034                  | 0.46              |                               |
| 8 Clay loam<br>"tight"     | 0.095                  | 0.41              |                               |
| 9 Sandy clay               | 0.10                   | 0.38              |                               |
| 10 Silty cl lo             | am 0.089               | 0.43              |                               |
| 11 Silty clay              | 0.07                   | 0.36              |                               |













# **RESULTS OF THE MODELING**

\*

In loose soil, chloride travels from a pit to groundwater at 101 ft below the wastes in 100 years.

NMCCA&WEx 3 pg 18

In tight soil, the chloride reaches 13 ft below the wastes in 40 years and 20 ft in 100 years, but it moves upward toward ground surface.

NMCCA&W Ex 3/pg 19

NMCCA&W Ex.3 pg.20

## **DOES THE MODEL COMPARE WITH REALITY?**

Modeling calculations are consistent with the results of three field exercises to test surface and subsurface soil samples for chloride.

Surface sampling near Caprock, March-April, 2006

Subsurface sampling near Caprock, April 3, 2007

Surface and subsurface sampling near Loco Hills, June 30, 2007.

\*

\*

#### SAMPLING NEAR

#### CAPROCK AND LOCO HILLS

Measurements confirm that chlorides are not retained by the hydrologic properties of the pit material, but can move several meters in a time scale of decades.

**Caprock**: Chloride concentrations extend past 15 feet total depth at two pits that are 31 and 11 years after closure. The surface is dead.

**Loco Hills**: Two pits, 30 years and 6 years after closure show a leading edge of chloride plume at 25-30 feet. The surface shows no contamination.



NMCCA&W Ex 3 pg 22

Trench burial must be secure for thousands of years.

Might the liner be punctured when filling?

Might a closed trench subside?





NMCCA&W Ex 3 pg 25

## THE ECONOMIC CONTEXT OF THE PROPOSED INCREASE IN TRENCH BURIAL STANDARD FROM

# 250 mg/l TO 3000 mg/l

AFTER 3:1 AND 20:1 DILUTION BY STABILIZATION AND LEACHING.

|                                                 |                                                          |                                                                                       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                               | NMCCA&                                                                                                                                                                                                                                                                                                                                                               | W Ex 3 pg 26                                                                                                                                                                 |
|-------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATI OF NEW MEXICO<br>GOVERNOR BILL RICHARDSON | er Immediate Robuse<br>February 18, 2009<br>505,476,3226 | Governor Bill Richardson Proposes Modifications to New<br>Mexico's Oil Field Pit Rule | Governor meets with oil and gas industry teps, changes will moderate fiscal<br>inpact of compliance | ANTA (E Governor Bill Richardson today announced that let's directing Energy. Aftinetals<br>and Natural Resources Department Screetary Journa ProJacpito work with the oil and gas<br>ration, to modify several provisions of the state's Pit Rules. The propried changes would allow<br>(if and gas comparises to kern show those ores associated with the energer regulations, which<br>are implemented last year. Governor Richardson personally interneently with funders of the oil<br>and gas industry as well as oil parch legislanes to discuss their concerns about the francial<br>indica industry as well as oil parch legislanes to discuss their concerns about the francial<br>input of the rule. | The oil and gas industry is critical to New Mexico's economy and these changes will help<br>reducers weather the financial storm while still protecting the environment." said two emor<br>tichneckon. | The P1R Rule was revised lists year with the imput of industry, the environmental community, and<br>rangy other stakeholders. It is also gined to protect the Nate of New Mexico and the citizens from<br>any future ground water or other environmental contamination from oil field water pfts, and also<br>or protect the operators from the potentially eripping liability of major environmental imputs. | We are not doing any thing to diminish the environmental protection's gamed by the Pu Rule, hat<br>we are going to work with industry to case the financial burden of compliance," stated horma-<br>fieldop. Cabinet Secretary, New Mexico Energy, Minerals and Natural Resources Department. | direct it went into effect on June 16, 2008, oil prices bit an all time high of \$147 per burrel in<br>uby 2008, and have since dropped towards \$34.4 shored today. The oil and gas industry plug s'a<br>ritical role in the State of New Mexico, and it's important that government and the private<br>ector work, together during these difficult economic times. | heretwee, the Oil Conservation Division with propose six charges to the Pit Rule to support the<br>el and gas industry, as they move forward in complying with the Pit Rule. |

|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NMCCA&                                                                                                                                                                                                                                                                                                                                                                                               | W Ex 3 pg 27     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Pit Rule Proposed Change to Address Issues in SE New Mexico<br>Re: Waste Material Burial Chemre Standard for Chloride<br>With Regard to On-site Trench Burial | Proposed change: Requires Commission Action<br>OCD will propose amendments to the Pit Rule to Increase the content (waste) burial standard<br>for chlorides from 250 mg/t to 3000 mg/t or to allow the buried waste to be the same as<br>background concentrations at the site for trench buriel closure method.<br>Proposed change to 19,15,17,13,17,10,62; | "Using EPA SII:546 method 1312 or other EPA face hing procedure then the division<br>approves, the operator shall obmostrate thin the chlock consentations. Also, an exceed <u>350</u><br>500 method of other (Asymmet, uncommand, while been is experiment above an exceeda <u>350</u><br>500 method of a numerical structure of 0.2.0.2.103. MAC on determined for<br>appropriate EPA methods do nur exceed the standards specified in Subsection 4 of 20.6.2.103<br>MAC index alteriories provided there | Allows operators of temporary pits and operators of closed-loop systems who use drying pads<br>to implement the on-site trench buried closure method rather than having to implement dig and<br>hauf for a temporary pit or for a drying pad associated with a closed-loop system.<br>Allows operators in areas with soils that may have been imperied from such activities as penash<br>mitting or how ontarelly occorring high chloride concentions to the activities as penash<br>the recorded 3000 mg/L standard. Operators must still determine that the proposed location<br>sufficient ensuing requirements, such as the 100 feet to goound water from the bettem of the<br>buried waste. | Cost antalysis comparison for SE.New Mexico: Accurace a 57% decrease in drifting for (0.5% 0.8%).<br>285 APDs of the projected 1046 would satisfy the > 120° depth to ground water (bgs).<br>Annual costs savings <u>range</u> : the supplement on-site treach from the oscie curvation remeads<br>= 2.385(SEL18811), 265, 101, 563, 501, 503, 501, 502, 501, 502, 502, 502, 502, 502, 502, 502, 502 | JPulish 02.12.02 |

|                            |                                                                                     |                                                                                                                                        | NMCCA&W E                                                                                                                                                                   | x 3 pg 28                                                                                                                                                                                                           |
|----------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                     |                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                                                     |
| Mexico                     | State                                                                               | Revenue                                                                                                                                | es from                                                                                                                                                                     |                                                                                                                                                                                                                     |
| Oil ar                     | nd Gas 1                                                                            | Product:                                                                                                                               | ion                                                                                                                                                                         |                                                                                                                                                                                                                     |
| all fund                   | ds (Mil)                                                                            | lions of                                                                                                                               | dollars)                                                                                                                                                                    |                                                                                                                                                                                                                     |
| FY2004                     | FY2005                                                                              | FY2006                                                                                                                                 | FY2007                                                                                                                                                                      |                                                                                                                                                                                                                     |
| 1503                       | 1956                                                                                | 2503                                                                                                                                   | 2301                                                                                                                                                                        |                                                                                                                                                                                                                     |
| Report, 20<br>, Minerals a | 07<br>and Natural I                                                                 | Resources D                                                                                                                            | epartment                                                                                                                                                                   |                                                                                                                                                                                                                     |
|                            | Mexico<br>Oil an<br>all fund<br><u>FY2004</u><br>1503<br>Report, 20<br>, Minerals a | Mexico State<br>Oil and Gas I<br>all funds (Mill<br><u>FY2004</u> <u>FY2005</u><br>1503 1956<br>Report, 2007<br>Minerals and Natural I | Mexico State Revenue<br>Oil and Gas Product:<br>all funds (Millions of<br><u>FY2004 FY2005 FY2006</u><br>1503 1956 2503<br>Report, 2007<br>Minerals and Natural Resources D | Mexico State Revenues from<br>Oil and Gas Production<br>all funds (Millions of dollars)<br><u>FY2004 FY2005 FY2006 FY2007</u><br>1503 1956 2503 2301<br>Report, 2007<br>, Minerals and Natural Resources Department |

|        |                                       |                                             |              |                            | NMCCA&W Ex                 | 3 pg 29 |
|--------|---------------------------------------|---------------------------------------------|--------------|----------------------------|----------------------------|---------|
| Act    | ivity                                 |                                             |              |                            |                            |         |
| OIL    | , GAS .                               | AND OTH                                     | ER WEL       | LS COM                     | PLETED                     |         |
|        |                                       | (DY                                         | year)        |                            |                            |         |
|        | 2002                                  | 2003                                        | 2004         | 2005                       | 2006                       |         |
|        | 1239                                  | 1887                                        | 2009         | 2272                       | 2302                       |         |
|        |                                       |                                             |              |                            |                            |         |
| Source | : Annual R                            | eport, 2007                                 |              |                            |                            |         |
|        | Energy, N                             | finerals and                                | l Natural R  | lesources I                | Department                 |         |
|        |                                       |                                             |              |                            |                            |         |
|        |                                       |                                             |              |                            |                            |         |
|        |                                       |                                             |              |                            |                            |         |
| Source | 2002<br>1239<br>Annual R<br>Energy, N | 2003<br>1887<br>eport, 2007<br>Ainerals and | 2004<br>2009 | 2005<br>2272<br>esources I | 2006<br>2302<br>Department |         |



NMCCA&W Ex 3 pg.31

NMCCA&W Ex 3 pg.32

### CONCLUSION

There is little rational justification, either technical or economic, for the proposed 13fold increase in salt content of material buried on-site.

### **MODIFICATIONS**

19.15.17.13 F(3)(a) insert the following sentence so that both OCD and the operator know when there is opportunity for trench burial:

```
An operator who closes a drying pad or
temporary pit by on-site trench burial shall
determine the depth to any soil or rock
saturated with water within 200 feet below
ground surface, and record that depth on or
with the drilling log.
```

Amendment for temporary relief should have an expiration. 19 15 17 13 F(3)(c) insert a clause:

...does not exceed 250 3000 mg/l prior to June 16, 2011 and does not exceed 250 mg/l after that date, or the background concentration whichever is greater, ...