<u>New Mexico Oil Conservation Division form (C-108) Application</u> <u>Authorization for Secondary Recovery</u>

a a generative and a second filled and a second filled and the second and the second filled and the second fil

RECEIVED OCD

Proposed Chambers Strawn Unit Area

2010 APR 26 P 3: 09 Case 144789

List of wells for this application:

Chambers 7 #1 Unit H, Section 7, T-16-S R-36-E 1700' FNL & 900' FEL Lea County, New Mexico API # 30-025-33623

Runnels 8 #1 Unit N, Section 8, T-16-S R-36-E 780' FSL & 1510' FWL Lea County, New Mexico API # 30-025-34264

Chesapeake Operating, Inc. respectfully proposes to re-enter the above noted wells and convert to water injection in the Strawn formation.

Please find the following application for authorization to inject (NMOCD's form C-108) along with attachments and item information.

Item I	The purpose of this application is for secondary recovery.
Item II	Chesapeake Operating, Inc. (OGRID # 147179) P.O. Box 18496 Oklahoma City, OK 73154-0496 Bryan G. Arrant, Contact phone # 405-935-3782
Item III	See attached data sheets
Item IV	This is not an existing project.
Item V	Attached are maps that identify all wells and leases within ½ and 2 miles of the proposed injection zones. In addition is a map with ½ mile radius circles that identifies the well's area of review (AOR).
Item VI	Attached are a tabulation of wells of public record and other information within the AOR which penetrate the proposed injection zone. There are no plugged and abandoned wells within either AOR.

- 1) Daily average injection rate for both wells is expected to be 1800 BWPD with the maximum daily rate to be approximately 1800 BWPD.
- 2) The system will be closed.

- 3) The proposed average injection pressure for the Chambers 7 # 1 is expected to be 2275 psig and the maximum pressure is expected to be 2275 psig. The proposed average injection pressure for the Runnels 8 # 1 is expected to be 2290 psig and the maximum pressure is expected to be 2290 psig.
- 4) The source of water to be injected is from the Wolfcamp and Strawn formations. The Wolfcamp is produced from the Chesapeake operated SV Chipshot # 1 and 2 located in Section 11 of T16S-R36E. The Strawn is produced from the Chesapeake operated Easley 6 #1 located in Section 6 of T16S-R37E. Strawn water produced from the Chambers Unit will also be injected back into the Strawn through the Unit injection wells. A water analysis from the Wolfcamp and Strawn formations are attached. The Wolfcamp water (from the Chipshot #1 and #2 wells) and Strawn water (from the Easley 6 # 1 and the Nelly 21 #1 wells) were mixed in concentrations of 25%, 50% and 75% and analyzed at 77 °F and 140 °F. These waters are compatible; mixtures of these waters show no increase in scaling or precipitation tendencies.
- 5) Injection is for waterflood recovery purposes; this is not a water disposal project.

Item VIII

The proposed Chambers Strawn Unit is situated locally in eastern central Lea County, New Mexico and regionally near the shelf margin of the Northwest Shelf of the Delaware Basin and is part of the larger complex of mounds in the Shoe Bar; Strawn, Northeast Field. The proposed unit produces from the Strawn Formation and is an east to west trending phylloid algal bioherm or mound. The Strawn Formation is Pennsylvanian-age directly overlain by the Canyon and underlain by the Atoka, both of which are also Pennsylvanian-age. In general, the Strawn mounds are isolated limestone coral algal bioherm lithofacies composed of phylloid algal plates and encrusting tubular forams with minor corals. Tight carbonate mudstones are found between mounds and encase each mound. Porosity within mounds average 8-10% and consists of primary shelter and intergranular pores, as well as secondary moldic, vuggy, and fracture (breccia) porosity.

Fresh water in this area is from the Ogallala formation. The depth from the surface is approximately 51'down to a maximum depth drilled of 160'.

The top and bottom of the Strawn are indicated below for each well:

Well Name	Top of Strawn	Base of Strawn
Chambers 7 #1	11378'	11630'
Runnel 8 #1	11454'	11738'

Item IX For both wells, acidize Strawn perfs w/5000 gals 15 % NeFe Acid.

Item X Electric logs are available for public record on NMOCD's web-site.

Item XI There are underground sources of drinking water overlying the proposed injection zones. A water analysis from a fresh water well within the AOR is attached. In addition, please find the New Mexico Office of the State Engineer's list of water wells in this area.

These wells are located @ 10 miles south southwest of the secretary's potash boundary of R-111-P, and @ 26 miles east of the Capitan Reef aquifer.

Item XII There are no evidence of open faults or any other hydrological connection between the disposal zone and any underground sources of drinking water.

Item XIII Proof of Notice

- A copy of the application has been furnished by certified mail to the offset operators, surface owners, offset oil and gas lessees or mineral owners as applicable within one-half mile of the (2) AORs. A list is provided.
- A copy of the C-108 application has been sent to the NMOCD's District I office.
- Both wells are located on Fee land.
- A copy of the legal advertisement in the county in which the wells are located is attached.

Additional information:

- Procedure to convert wells to injection
- Actual & proposed well bore diagrams
- Geological formation tops

			r			`
DATE IN	SUSPENSE	ENGINEER	LOGGED IN	ТҮРЕ	APP NO.	Í .

ABOVE THIS LINE FOR DIVISION USE ONLY

NEW MEXICO OIL CONSERVATION DIVISION

- Engineering Bureau -1220 South St. Francis Drive, Santa Fe, NM 87505

ADMINISTRATIVE APPLICATION CHECKLIST

THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND REGULATIONS WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE

Application Acronyms:

ender aller (S. M. Lars)

	[NSL-Non-Stan [DHC-Down [PC-Poo EOR-Qual	dard Location] [NSP-Non-Standard Proration Unit] [SD-Simultaneous Dedication] hole Commingling] [CTB-Lease Commingling] [PLC-Pool/Lease Commingling] of Commingling] [OLS - Off-Lease Storage] [OLM-Off-Lease Measurement] [WFX-Waterflood Expansion] [PMX-Pressure Maintenance Expansion] [SWD-Salt Water Disposal] [IPI-Injection Pressure Increase] ified Enhanced Oil Recovery Certification] [PPR-Positive Production Response]
[1]	TYPE OF AP [A]	PLICATION - Check Those Which Apply for [A] Location - Spacing Unit - Simultaneous Dedication NSL NSP SD
	Check [B]	One Only for [B] or [C] Commingling - Storage - Measurement DHC CTB PLC PC OLS OLM
	[C]	Injection - Disposal - Pressure Increase - Enhanced Oil Recovery
	[D]	Other: Specify
[2]	NOTIFICATI	ON/REQUIRED TO: - Check Those Which Apply, or \Box Does Not Apply
	[A]	Working, Royalty or Overriding Royalty Interest Owners
	[B]	Offset Operators, Leaseholders or Surface Owner
	[C]	Main Application is One Which Requires Published Legal Notice

- [D] Notification and/or Concurrent Approval by BLM or SLO U.S. Bureau of Land Management - Commissioner of Public Lands, State Land Office
- For all of the above, Proof of Notification or Publication is Attached, and/or, [E] |V|

[F] Waivers are Attached

SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE [3] OF APPLICATION INDICATED ABOVE.

CERTIFICATION: I hereby certify that the information submitted with this application for administrative [4] approval is accurate and complete to the best of my knowledge. I also understand that no action will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Jeff Finnell

Al Finnell	
Signature	
O	

Senior Asset Manager

4/23/2010

Date

Jeff.Finnell@chk.com متأمله فالأبع

Title

Print or Type Name

TATE ENER RESO	E OF NEW MEXICO GY, MINERALS and NATURAL URCES DEPARTMENT	Oil Conserva 1220 South S SANTA FE, NE	ation Division 5t. Francis Dr. W MEXICO 87505	Form C-108 Revised June 10, 2003
	АРРІ	ICATION FOR AUTI	HORIZATION TO INJECT	Case 14478
	PURPOSE : X Secondar Application qualifies for administrativ	y Recovery e approval?	Pressure Maintenance Yes <u>X</u> No	DisposalStorag
I.	OPERATOR: Chesapeake Operating	<u>, Inc.</u>		
	ADDRESS : P.O. Box 18496 Oklaho	oma City, OK 73154-049	96	
	CONTACT PARTY : Bryan Arrant		·	PHONE <u>: (405)935-3782</u>
11.	WELL DATA: Complete the data required Additional sheets may	uired on the reverse side be attached if necessary	of this form for each well proce	essed for injection.
V.	Is this an expansion of an existing pro If yes, give the Division order number	ject? Ye authorizing the project	s <u>X</u> No	
1.	Attach a map that identifies all wells a drawn around each proposed injection	nd leases within two mil well. This circle identi	les of any proposed injection we fies the well's area of review.	ll with a one-half mile radius circle
/I.	Attach a tabulation of data on all wells Such data shall include a description of schematic of any plugged well illustra	s of public record within of each well's type, const ting all plugging detail.	the area of review which penetr ruction, date drilled, location, do	ate the proposed injection zone. epth, record of completion, and a
/11.	Attach data on the proposed operation	, including:		
	 Proposed average and maximum of Whether the system is open or clo Proposed average and maximum if Sources and an appropriate analysis produced water; and If injection is for disposal purpose chemical analysis of the disposal wells, etc.). 	daily rate and volume of osed; injection pressure; sis of injection fluid and es into a zone not produc zone formation water (m	fluids to be injected; compatibility with the receiving ctive of oil or gas at or within on ay be measured or inferred from	; formation if other than reinjected he mile of the proposed well, attach a h existing literature, studies, nearby
VIII.	Attach appropriate geological data on depth. Give the geologic name, and d total dissolved solids concentrations o known to be immediately underlying t	the injection zone include epth to bottom of all und f 10,000 mg/l or less) ov he injection interval.	ling appropriate lithologic detail lerground sources of drinking wa verlying the proposed injection z	l, geological name, thickness. and ater (aquifers containing waters with one as well as any such sources
X.	Describe the proposed stimulation pro	gram, if any.		
X.	Attach appropriate logging and test da	ta on the well. (If well lo	ogs have been filed with the Divi	ision, they need not be resubmitted.)
XI.	Attach a chemical analysis of fresh wa injection or disposal well showing loc	ter from two or more freation of wells and dates	esh water wells (if available and samples were taken.	producing) within one mile of any
(11.	Applicants for disposal wells must ma data and find no evidence of open faul source of drinking water.	ke an affirmative statem Its or any other hydrolog	ent that they have examined avai ic connection between the dispo	ilable geologic and engineering sal zone and any underground
KIII.	Applicants must complete the 'Proof o	f Notice' section on the	reverse side of this form.	
KIV.	Certification: I hereby certify that the and belief.	information submitted w	ith this application is true and co	prrect to the best of my knowledge
	NAME: <u>Bryan Arrant</u>		TITLE: <u>Se</u>	nior Regulatory Compl. Sp.
	SIGNATURE: 19 Lau	Kunt	DA	TE: 04/22/2010

.

* If the information required under Sections VI, VHI, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstance of the earlier submittal:

DISTRIBUTION: Original and one conv to Santa Fe with one conv to the appropriate District Office

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township, and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet' rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, NM 87505 within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

.

OPERATOR: Chesapeake Operating, Inc.				
WELL NAME & NUMBER: Chambers 7 #1				
WELL LOCATION: 1700' FNL & 900' FEL	Н	7	16 South	36 East
FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
WELLBORE SCHEMATIC		WELL CO Surface	NSTRUCTION DAT. Casing	
	Hole Size: 171/2"		- Casing Size: <u>13 3/8</u>	Ę
	Cemented wtih: 475 sxs	s s	or	£ĥ
	Top of Cement: <u>0'</u>		- Method Determine	d. <u>Circulated</u>
		lintermedi	ate Casing	
	Hole Size: 12 1/4"		Casing Size: <u>8 5/8"</u>	
	Cemented with: 1700 sy	XS SX	or	£ĥ
	Top of Cement: 0'		- Method Detemined	l: Circulated
		Productic	<u>n Casing</u>	
	Hole Size: 77/8"		- Casing Size: <u>5 1/2"</u>	
	Cemented with: 905 sxs	S SX	or	ft 3
	Top of Cement: 4230'		- Method Determined	I: CBL
	Total Depth: 12.047'			
		Injection	Interval	
	11,392'	fee	t to <u>11,480' (Perforate</u> c	
	(Pef	orated or Onen H	ole' indicated which)	

Side 1

INJECTION WELL DATA SHEET

.

Tu	oing Size: 2 3/8" Lining Material: Plastic	
Tyl	be of Packer: Baker Loc-Set	
Pa(sker Setting Depth: <u>11.347'</u>	
Otl	her Type of Tubing/Casing Seal (if applicable):	
	Additional Data	
Ξ.	Is This a new well drilled for injection?	
	If no, for what purpose was the well originally drilled? Oil & Gas	
5.	Name of the Injected Formation: Strawn	
Э.	Name of Field or Pool (if applicable): <u>Shoe Bar; Strawn, Northeast</u> , Pool Code #96649	
4	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. No.	
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injected zone in this area: None	

INJECTION WELL DATA SHEET

Side 1

1.20

DPERATOR: <u>Chesapeake Operating, Inc.</u>				
VELL NAME & NUMBER: Runnels 8 # 1				
VELL LOCATION: 780' FSL & 1510' FWL	Z	8	16 South	36 East
FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
WELLBORE SCHEMATIC		WELL CO Surface	<u>NSTRUCTION DATA</u> Casing	-
	Hole Size: 17.1/2"		. Casing Size: <u>13 3/8</u>	
	Cemented wtih: 470 sxs	S SX	or	ft3
	Top of Cement: 0'		Method Determine	d: <u>Circulated</u>
		Intermedia	te Casing	
	Hole Size: 12 1/4"		Casing Size: 9 5/8"	
	Cemented with: 1635 ss	XSSX.	or	ft
	Top of Cement: 0'		- Method Detemined	: Circulated
		Productio	<u>n Casing</u>	
	Hole Size: 778"		Casing Size: <u>5 1/2"</u>	
	Cemented with: 1440 sy	<u>XS</u> SX.	or	£ Ĥ
	Top of Cement: 2952		Method Determined	I: CBL
	Total Depth: 11.875'			
		Injection	Interval	
	11,458'	feet	to 11,494' (Perforated	
	(Pef	orated or Open Ho	ole; indicated which)	

en and an and a second second

	INJECTION WELL DATA SHEET
Tu	ing Size: 2 3/8" Lining Material: Plastic
Tyl	e of Packer. Baker Loc-Set
Pa(ker Setting Depth: 11.397
Otl	er Type of Tubing/Casing Seal (if applicable):
	Additional Data
Ι.	Is This a new well drilled for injection? $Yes - Yes - No$
	If no, for what purpose was the well originally drilled? Oil & Gas
2.	Name of the Injected Formation: Strawn
ы.	Name of Field or Pool (if applicable): <u>Shoe Bar; Strawn, Northeast, Pool Code # 96649</u>
4	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. No
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injected zone in this area: None

Side 2

a ser and the second second

Second Street States

Barris Dona farfa

Item V ¹/₂ & 2 mile Area of Review Chambers 7 # 1 (Map 1 of 3)

Item V 1/2 & 2 mile Area of Review Runnels 8 # 1

Proposed Chambers Strawn Unit C-108 Application Area of Review

Two wells will be converted to injection, the Chambers 7 # 1 and the Runnels 8 #1. There are two other wells within the area of review, the Alston 8 #1 and the Chambers #2. All pertinent well data is on the table of review. Wellbore schematics are attached showing each proposed injectors as presently configured and as it will be configured for injection service.

Item V ½ mile AORs Chambers 7 # 1 and Runnels 8 #1

Proposed Chambers Strawn Unit Form C-108 Area of Review

Well Construction Detail

			TOC	2 2 2 2	010,2	4.230	2.352	9.408	4,530'									
mation		Cement	(Sx)	2 stages:	1,535	505	1,440	530	660									
	Casing	eight-	rade	# N80	T&C	# N60	# N80	#-N80	••••									
on Casi	0	Š	oth G	11 12	ہے م	00' 17	75' 17	00' 174	9,403									
oauctio			a. Dep	0 7 7 	0 	2" 12,0	2 11 8	2" 11,4	tool at									
7	e		Di	1 1 1 1 1 1 1	2 2	/8" 5-1/	/8" 5-1/	/8" 5-1/	ò									
_	0H	<u>,</u>	Siz		2-1 22	ce 7-7	0' 7-7	. 7-5	23									
Ē	H	t +0.	<u>5</u>	0	00118	Surfa	4,13	ų U	onia									
ormatio	Cemer		(Sx)		1,133	1,700	1,635	10										
sing Int		eight-	ade		09-0 #	2#, J55	0# J55	0.014 #0	DON-#3									
ate Cas	asing	M	bul Gr		00.32	215 32	200' 4(20 000									
ermedi	U	4	a	101	14 9/	5/8" 4,2	5/8" 4 2	101	2,0 4,0									
<u>1</u>	6		5 9		Ω	/4" 8-5	/4" 9-5	- C	0									
	H	Siz		;	0	12-1	e 12-1	11	1)									
		i contra	2	Surface			Surface		ounace									
lation	Casing	Casing	Casing	Casing	Casing	Casing	Casing	Casing	Casing	Casing	Cement	(Sx)		450	475	470	151	† C+
asing Intorn											Casing							
race C		0.044	Indan	15.41	404	412'	489'	17.0°	414									
Sui			ла,	1010 01	0/0-01	13-3/8"	13-3/8"	"8/5 51	0/0-0									
	Hole	Ciro	21/6	4.7 4 (Oil	7/1-/1	17-1/2"	17-1/2"	12, 1701	7/1-/1									
1	h-ft		PBTD	14 7041	17,11	11,982'	11,793'	11 474	1									
	Depti		Total	11 00 1	1.00,11	12,047	11,875'	11 171	+									
	ote C	Date Completed		r 1014.007	1881/0/0	11/26/1996	3/14/1998	0/5/2003	000300									
		Type		ē	Qi		ō	ō										
	Location	Cas Turn Day	BUY UMI Dae		01 102 20E	7H 16S 36E	8N 16S 36E	70 160 365										
		Well Name		Alaton 0 #1		Chambers 7 #1	Runnels 8 #1	Chambere #2										

tem VI Tabulation of Wells within Area of Review (1 مقرع)

Proposed Chambers Strawn Unit Form C-108 Area of Review

Initial Completion and Subsequent Workover Information

Notes and Subsequent Completions.		11/11-12/02: Workover: Pumped 3 stages of 1,000 gal NeFe each. Divert w/ rocksatt 3 acid flakes.	1/13-2/16/03 Hole in tubing. Replace & change pump.	220098.11,392 - 11, 418	11,438'-11,448' I'Otai 132 RUISS.	11,468' - 11,480'	06/15/01. Replace parted rods, Acidize w/ 900 gais 15% HCL & 100 gais Xylene. Ran screper across perfs.	06/19/01: Small acid frac.		12/11/07: Acidize 11,402-11471 with 2000 gals 15% NeFe w/ 220 gals scale innucitor.	
initial Completion Perforations	Comments	6 spf: 120 holes		ē spf	6 spf	6 spf	4 spf: 8 holes	4 spf: 72 holes	Treated with 24 bbl 5% HCl and 253 bbls 2% KCl	Acidize	Acidize
	Bottom	11,464		11,438'	11,458	11.468.5	11,460'	11,494		11,471'	11,471
	Top	11,444		11,418'	11,448	11,458.5	11,458	11,476		11, 395'	11,402
Depth-ft	ital PB	831' 11721		047 11,982'		_	875 11.777	asured Depth		471 11.471	
Date	ompleted Tc	11 7661/8/5		1/26/1996 12,			/14/1998 11,	Me		9/5/2003 11.	
Well	Name	Aiston 8 # 1 1		Chambers 7 #1 1:			Runnels 8 # 1 3.			Chambers #2	

inen meneren ser etande meneren andere etandere etandere etandere etandere etandere etandere etandere etandere e

Item VI (2 of 3)

Proposed Chambers Strawn Unit Form C-108 Area of Review Plugging Detail of all Plugged with within the Area of Review

rienseere en anderster in Althouse als anderster in anderster in a station of the second station of the second

No well penetrating the proposed Strawn injection interval have yet been plugged and abandoned.

Well	Location	Tuno	Date	Depti	- ft	P&A	Perforating and plug data	CIBP
Name	Sec Twn Rng	and -	Completed	Total	ЪВ	Date		Set at
Alston 8 #1								
Chambers 7 #1								
Runnels 8 #1					_			

Item VI (3 of 3)

Item VII (4)

ann a mar a star a s

Attached are water analyses of Wolfcamp & Strawn formation waters from surrounding wells.

SV Big Bertha #1 Section 11, T-16-S R-36-E 2081' FNL & 1870' FWL Lea County, NM API # 30-025-33883 (Water analysis is Wolfcamp produced from SV Chipshot # 1 and # 2 wells)

Chambers # 2 Section 7, T-16-S R-36-E 1038' FSL & 802' FEL Lea County, NM API # 30-025-36317 (Strawn formation water analysis)

Easley 6 # 1 Section 6, T-16-S R-37-E 2383' FNL & 946' FWL Lea County, NM API # 30-025-34093 (Strawn formation water analysis)

Nellie 21 # 1 Section 21, T-16-S R-37-E 1980' FSL & 660' FEL Lea County, NM API # 30-025-35631 (Strawn formation water analysis)

SV Chipshot #1 2164' FSL & 1362' FWL Section 11, T-16-S R-36-E Lea County, NM API # 30-025-33466 (Wolfcamp formation water analysis)

SV Chipshot #2 966' FSL & 481' FWL Section 11, T-16-S R-36-E Lea County, NM API # 30-025-33806 (Wolfcamp formation water analysis)

P.O. BOX 98	Martin Water Labora	tories, Inc.		709 W. INDIANA
MIDLAND, 1X, 79702 PHONE (432) 683-4521	RESULT OF WATER A	NALYSES	2	FAX (432) 682-8819
Mr. Steve Serna PO Box 190, Hobbs, NM 88240	L. S A	ABORATORY NO AMPLE RECEIVED ESULTS REPORTED_	2	-22-10
COMPANY Chesapeake	LE	As l:	isted	
	COUNTY	TAT2		·····
NO. 1Submitted water sample NO. 2Submitted water sample NO. 3 NO. 4 REMARKS:	- taken from Chambers 2. 2	-19-10		
	CHEMICAL AND PHYSICA	L PROPERTIES		NO
	<u> </u>	NO. 2	NU. 3	NU. 4
Specific Gravity at 50° F.	1.1140	1.0500		
pH when Sampleo	6.89	718		
PH when received	220	573		
Supersaturation as CaCO,				
Lindersaturation as CaCO.				

pH when Sampled			
pH When Received	6.89	7.18	
Bicarbonate as HCO,	220	573	
Supersaturation as CaCO,			
Undersaturation as CaCO,			
Total Hardness as CaCO,	22,500	5,200	
Calcium as Ca	6,400	1,560	
Magnesium as Mg	1,580	316	
Sodium and/or Potassium	66,623	18,246	
Sulfate as SO,	890	321	
Chloride as Cl	117,892	31,248	
Iron as Fe	0.60	5.90	
Barium as Ba	0	0	
Turbidity, Electric			
Color as Pt			
Total Solids, Calculated	193,604	52,265	
Temperature *F.			
Carbon Dioxide, Calculated	57	75	
Dissolved Oxygen,			
Hydrogen Sulfide	0.0	0.0	
Resistivity, ohms/m at 77* F.	0.059	0.152	
Summers Reverse RW	0.048	0.150	
Fixede Source And	None	None	
xxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	None	None	
CaCO3 S.I. @ 77° F. (Stiff-Davis)	0.79	0.33	
CaCO3 S.I. @ 122° F. (Stiff-Davis)	1.47	0.93	
Calcium Sulfate Scaling Tendency	None	None	
R	esults Reported As Milligram	s Per Liter	
Additional Determinations And Remarks			

CaCO3 S.I. - A positive fig. signifies a scaling potential proportionate to the magnitude of the number, and a negative fig. signifies no scaling potential.

Based on the determinations performed above and a hypothetical combination of these two waters, no significant scaling potential from calcium sulfate or barium sulfate would be expected to form. Each water individually shows a calcium carbonate scaling potential but a mixture of the two would likely not result in a tendency greater than what already exists in each water. Therefore, based on these results, these two waters should be compatible.

Ву

Form No. 3

Greg Ogden, B.S.

P.O. BOX 98 Martin Water La MIDLAND, TX, 79702	boratories, Inc.	709 W. INDIANA MIDLAND, TEXAS 79701
PHONE (432) 683-4521 RESULT OF WAT	ER ANALYSES	FAX (432) 082-6819
Nr. Jeff Finnell 6100 N. Western Avenue, Oklahoma City, OK 73118	LABORATORY NO SAMPLE RECEIVED RESULTS REPORTED	509-237 5-15-09 6-1-09
COMPANY Chesapeake	LEASE As listed	
SECTION BLOCK SURVEY COUNTY _ SOURCE OF SAMPLE AND DATE TAKEN: Easley 6-1 (Strawn), 5-14-09	LeaSTATE	NM
NO. 2 Chipshot #1 (Wolfcamp). 5-14-09 NO. 3 Nellie 21-1 (Strawn). 5-14-09 NO. 4		

REMARKS: ____

CHEMICAL AND PHYSICAL PROPERTIES											
	NO. 1	NO. 2	NO. 3	NO. 4							
Specific Gravity at 60 ° F.	1.0350	1.1170	1.0740								
pH When Sampled											
pH When Received	7.41	6.70	6.60								
Bicarbonate as HCO	573	220	390								
Supersaturation as CaCO,											
Undersaturation as CaCO,											
Total Hardness as CaGO,	3,700	19,000	12,200								
Calcium as Ca	1,120	5,920	3,680								
Magnesium as Mg	219	1,021	729	_							
Sodium and/or Potassium	17,907	65,675	34,887								
Sulfale as SO,	1,060	1,320	1,542								
Chloride as Cl	29,118	113,630	61,076								
Iron as Fe	1.5	1.7	2.7								
Barium as Ba	0	0	0								
Turbidity, Elecinic											
Color as Pl											
Total Solids, Calculated	49,997	187,785	102,305								
Temperature "F.											
Carbon Dioxide, Calculated	38	72	160								
Dissolved Oxygen,											
Hydrogen Sulfide	0.0	3.0	0.0								
Resistivity, ohms/m al. 77" F.	0.163	0.060	0.094								
Suspended Oil											
FRANCESS CORRESS	Mild	Moderate	Moderate								
WorkskikkerskiBarium Sulfate Scaling Tendency	None	None	None								
CaCO3 S.I. @ 77° F. (Stiff-Davis)	0.42	0.53	-0.01								
CaCO3 S.I. @ 122° F. (Stiff-Davis)	1.02	1.18	0.55								
Calcium Sulfate Scaling Tendency	None	None	None								
	Results Reported As Milligrams	Per Liter									
Additional Determinations And Remarks											

what already exists with each water individually. Each water shows a positive calcium carbonate scaling tendency as do the mixtures, particularly at the higher temperatures. No substantial calcium sulfate or barium sulfate potential appears likely with these mixtures.

By ___

Farm No. 3

P.O. 80X 98 MIDLAND, TX. 79702 MIDLAND, TX. 79702					709 W. INDIANA MIDLAND, TEXAS 7970
HONE (432) 663-4521 RE	SULT OF WATE	R ANALYSES			FAX (432) 682-6819
		LABORATO			509-237-A
O: Mr. Jeff Finnell		SAMPLE RE	CEIVED _		5-15-09
6100 N. Western Avenue, Oklahoma City, C	<u>DK 73118</u>	RESULTS A	PORTED_		6-1-09
Chasaneake					
OMPANY		LEASE			
		Lea			NM
	COUNTY		STAN	·	
25% Chipshot and 75% Nellie.					
NO.1S0% Chipshot and 50% Nellie					
NO.2 75% Chipshot and 25% Nellie					
NO.3 Y578 Chipshot and 2578 Heme					
NO.4	-				<u> </u>
EMARKS:	autysis perjori	neu ui // I·			
	NO. 1	NO	2	NO. 3	NO 4
Specific Gravity at 60° F.	1 0740		-	1 0910	1
pH When Sampled					1
pH When Received	6.70		6.85	6.96	
Bicarbonate as HCO,	305		293	244	
Supersaturation as CaCO,					
Undersaturation as CaCO,	· · · · · · · · · · · · · · · · · · ·				
Totat Hardness as CaCO,	14,600	<u> </u> '	6,600	17,600	
Celcium as Ca	4.240		5.040	5,520	
Magnesium as Mg	972		972	923	
Sodium and/or Potassium	43,817		9,370	59,008	
Sulfate as SU	76 701		1,400	1,423	
Iron as Fe	20		20	17	
Banum as Ba	0		0	0	
Turbidily, Electric		_			
Color as PL					
Totel Solids. Calculated	127,436	14	3,778	169,386	
Temperature "F.					
Carbon Dioxide, Calculated	101		76	51	
Dissolved Oxygen,					
Hydrogen Suitide	0.0		0.0	0.0	
Suspended Oil	0.075		0.072	0.004	
HIGH THE STORE ST	Moderate	Mox	lerate	Moderate	
WOUDDER ROLANDON Barium Sulfate Scaling Tendency	None		None	None	
CaCO3 S.1. @ 77° F. (Stiff-Davis)	0.14		0.43	0.67	
Calcium Sulfate Scaling Tendency	None		None	Nonc	
Real	uits Reported As Millig	grams Per Liter			
Idillonal Determinations And Remarks	thomata to the				
CaCO3 S.I A positive fig. signifies a scaling potential propo	ruonate to the magn	inude of the num	ber, and a ne	ganve tig, signifies n	o scaling potential.
			· · · · · · · · · · · · · · · · · · ·		
Please feel free to contact us for any details or dis	Clissions concer	ning these rea	ailts		
Flease feet nee to contact us for any octains of dis		ung mese tes	uită.		
	A				

8y _

LE 73118 R LE COUNTY LA LE LVSIS performed AND PHYSICAI NO. 1 1.0520 7.39 427	ABORATORY NO. SAMPLE RECEIVED RESULTS REPORTED ASEA caSTA caSTA d at 77°F L PROPERTIES NO. 2 1.0690	TE	509-237-B 5-15-09 6-1-09 NM
73118 S 73118 R LE COUNTY La lvsis performed AND PHYSICAI NO. 1 1.0520 7.39 427	AMPLE RECEIVED RESULTS REPORTED ASEA CaSTA CASTA	TENO. 3	5-15-09 6-1-09 NM
73118 R LE COUNTY La lysis performed AND PHYSICAI NO. 1 1.0520 7.39 427	ASEA ASEA CaSTA Ca	Is listed	6-1-09 NM
LE COUNTY LA lysis performer AND PHYSICAI NO. 1 1 0520 7.39 427	ASEA CaSTA CaSTA d at 77°F L PROPERTIES NO. 2 1.0690	s listed	NM
LE COUNTY LA Lysis performed AND PHYSICA NO. 1 1.0520 7.39 427	ASEA caSTA caSTA d at 77°F L PROPERTIES NO. 2 1.0690	Is listed	NM
COUNTY La lysis performed AND PHYSICA NO. 1 1.0520 7.39 427	caSTA <u>d at 77°F</u> L PROPERTIES NO. 2 1.0690	TE	NM
lysis performe AND PHYSICA NO. 1 1.0520 7.39 427	d at 77°F L PROPERTIES NO. 2 1.0690	NO. 3	
lysis performe AND PHYSICAI NO. 1 1.0520 7.39 427	<i>d at 77°F</i> L PROPERTIES NO. 2 1.0690	NO. 3	
lysis performer AND PHYSICAI NO. 1 1.0520 7.39 427	<i>d at 77°F</i> L PROPERTIES NO. 2 1.0690	NO. 3	
lysis performer AND PHYSICAI NO. 1 1.0520 7.39 427	d at 77°F L PROPERTIES NO. 2 1.0690	NO. 3	
lysis performer AND PHYSICA NO. 1 1.0520 7.39 427	<i>d at 77°F</i> L PROPERTIES NO. 2 1.0690	NO. 3	
lysis performed AND PHYSICA NO. 1 1.0520 7.39 427	<i>d at 77°F</i> L PROPERTIES NO. 2 1.0690	NO. 3	
Lysis performed AND PHYSICA NO. 1 1.0520 7.39 427	d at 77°F L PROPERTIES NO. 2 1.0690	NO. 3	
AND PHYSICA NO. 1 1.0520 7.39 427	L PROPERTIES NO. 2 1.0690	NO. 3	
NO. 1 1.0520 7.39 427	NO. 2 1.0690	NO. 3	
<u>1.0520</u> 7.39 427	1.0690		NO. 4
7.39 427		1.0820	·
7.39	·····	<u></u>	
427	7.28	7,19	
	390	354	
8,200	11,200	14,600	
2,400	3,200	4,080	
535	778	1,069_	
25,019	34,227	47,461	
1,112	1,127	1,275	
43,322	59,656	82,382	
1.70	1.70	1.50	<u></u>
0	0	0	
			· · · · · · · · · · · · · · · · · · ·
			·
72,815	99,378	136,621	
35	43	46	
			+
0.0	0.0	0.075	
0.117	0.074	0.075	+
Mild	Moderato	Modemte	+
None	Nonc	None	
0.55	0.58	0.73	·
			<u> </u>
None	None	None	<u> </u>
Reported As Millioran	ms Per Liter		<u></u>
male to the magnitu	ide of the number, and a	negative fig. signifies r	o scaling potential.
ssions concernin	ng these results		
<u></u>			
	72,815 35 0.0 0.119 Mild None 0.55 None Reported As Milligra mate to the magnitu	72,815 99,378 35 43 0.0 0.0 0.119 0.094 Mild Moderate None None 0.55 0.58 None None Reported As Milligrams Per Liter mate to the magnitude of the number, and a assions concerning these results.	72,815 99,378 136,621 35 43 46 0.0 0.0 0.0 0.119 0.094 0.075 Mild Moderate Moderate None None None 0.55 0.58 0.73 None None None Reported As Milligrams Per Liter mate to the magnitude of the number, and a negative fig. signifies r ssions concerning these results. 1

8y

P.O. BOX 98	tin Water Labora	itories, Inc.		709 W. INDIANA
MIDLAND, TX. 79702			,	MIDLAND, TEXAS 7970
MUNE (432) 663-4521 R	ESULT OF WATER A	NALYSES	-	FAA (432) 002-0019
	L	ABORATORY NO.	5	09-237-C
O:Mr. Jeff Finnell	S	AMPLE RECEIVED	5-	-15-09
6100 N. Western Avenue, Oklahoma City,	<u>OK 73118</u> R	ESULTS REPORTED_	6-	-1-09
Character				
COMPANY CIRCSAPEAKE	Lέ	ASE		
TIELD OR POOL	T		N	M
ECTION BLOCK SURVEY		STATE		
SOURCE OF SAMPLE AND DATE TAKEN:				
NO.1 25% Chipshot 7 75% Neme.		·····		
NO.2 50% Chipshot / 50% Nellie			<u> </u>	
NO.3 75% Chipshot / 25% Nellie.	<u></u>			
NO. 4		·····		
IEMARKS:	<u>Analysis performed</u>	<u>d at 140°F</u>		
CHEM	ICAL AND PHYSICA	PROPERTIES		
	NO, 1	NO. 2	NO. 3	NO. 4
Specific Gravity at 60 ° F.	1.0742	1,0834	1.0915	
pH When Sampled				
pH When Received	6.95	7.03	7.22	
Bicarbonale as HCO,	305		305	
Supersaturation as CaCO,				·
Undersaturation as CaCO ₁	14.000	14.600		
Calcium at Ca	14.000	14,600	5 190	
Calcium as Ca	4,100	4,800	1 264	
Sodium andro: Potassium	47 743	56 741	59 559	
Sullate as SO.	1.327	1 401	1.371	
Chloride as Cl	82,382	96,586	103,688	
iron as Fe	1,7	2.0	1.7	
Barium as Ba	0	0	0	
Turbidity, Electric				
Color as Pt				
Total Solids, Calculated	136,792	160,539	171,467	
Temperature 16				
	64	61	34	
Carbon Dioxide, Calculated		1		4
Carbon Dioxide, Csiculated Dissolved Oxygen, Hudooon Suilide	0.0	0.0	0.0	
Carbon Dioxide, Csiculated Dissolved Oxygen, Hydrogen Suifide Besistivity, oppsym at 77° 6	0.0	0.0	0.0	
Carbon Dioxide, Calculated Dissolved Oxygen, Hydrogen Sulfide Realistivily, ohms/m at 77° F. Suegended Oil	0.0 0.076	0.0	0.0 0.064	
Carbon Dioxide, Calculated Dissolved Oxygen, Hydrogen Sulfide Resistivily, onms/m at 77° F. Suspended Oil Figuerscontemper.coccccccccccccccccccccccccccccccccccc	0.0 0.076 Moderate	0.0 0.066 Moderate	0.0 0.064 Mild	
Carbon Dioxide, Calculated Dissolved Oxygen, Hydrogen Suifide Resistivity, onms/m at 77° F. Suepended Oit Financestolionauxoodxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.0 0.076 Moderate None	0.0 0.066 Moderate None	0.0 0.064 Mild None	
CaCO3 S.I. @ 140° F. (Stiff-Davis)	0.0 0.076 Moderate None 1.03	0.0 0.066 Moderate None 1.41	0.0 0.064 Mild None 1.64	
Carbon Dioxide, Calculated Dissolved Oxygen, Hydrogen Sulfide Resistivity, onmarm at 77° F. Suspended Oil Figuescalationar.cootxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.0 0.076 Moderate None 1.03	0.0 0.066 Moderate None 1.41	0.0 0.064 Mild None 1.64	

8y _

,

P.O. BOX 98 MIDLAND, TX. 79702 PHONE (432) 663-4521	Martin Water Lab	oratories, Inc. R ANALYSES	E	709 W, INDIANA MIDLAND, TEXAS 7970 FAX (432) 682-8819 5(10, 277, 10			
		LABORATORY NO.		09-23 (-D			
O:Mr. Jeff Finnell	· · · · · · · · · · · · · · · · · · ·	SAMPLE RECEIVED	5	-15-09			
6100 N. Western Avenue, Oklahorna C	City, OK 73118	RESULTS REPORTED	6	-1-09			
COMPANY Chesapeake							
ECTION BLOCK SURVEY	COUNTY	Lea STAT	EN	IM			
25% Chipshot / 75% Easly.							
$\frac{50\%}{100} = \frac{50\%}{100} = $							
NO.2							
NO. 3 /5% Chipshot / 25% Easily.							
NO.4	• - • • • • · · · · · · · · · · · · · · ·						
EMARKS:	Analysis perfor	med at 140°F					
CI	HEMICAL AND PHYSI	CAL PROPERTIES					
	NU, 1	NU. 2	NU. 3	NU. 4			
Specific Gravity at 60" F.	1.0525	1,0690	1.0825				
pH withen Sampled							
ph when Hecewed		7,58					
Bicaroonale as HCU,	525	427	390				
Supersaluration as CaGO,							
Undersaluration as CaUU,							
Total Hardness as CaCO,	8.000	10.600	14,400				
		3.600	4,260				
Magnesium as Mg	486	389	729				
Sodium and/or Potassium		40,980	51,205				
Sullate as 50,		1,156	1,179				
	53,264	69,599	88,064				
		1./0	1.50				
	U		U				
			+				
Calor as Pi	00 220		146 127				
	89,329		140,127				
	17						
Caroon Digxloe, Calculater	17	22					
Viseuiveu Uxyyan,			0.0				
Resistivity nhms/m at 77* F	0.102	0.0	0.0				
Suspended Oil		0.000					
Filmene Company VYYYYYYY Compsiveness	Mild	Mild	Mild				
Water All And Andrew Barium Sulfate Scaling Tenden	cy None	None	None				
CaCO3 S L @ 140° F (Stiff-Davis)	1.56	1.62	1.78				
Calcium Sulfate Scaling Tendency	None	None	None				
	Results Reported As Mill	ligrams Per Liter		·			
Additional Determinations And Remarka							
CaCO3 S.I A positive fig. signifies a scaling potenti	al proportionate to the mag	gnitude of the number, and a n	egative fig. signifies no	scaling potential.			
				1			
Please feel free to contact us for any details	or discussions conce	erning these results.					
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						

Βγ _

,

Item XI

- Ground Water Analysis within AOR
- New Mexico Office of the State Engineer's Water Column/Average Depth to Water

(via) (in Water Labo	ratories, Inc.		709 W. INDIANA MIDLAND, TEXAS 7870 FAX (432) 682-8819				
Ri	ESULT OF WATER	ANALYSES			1200 84			
11		LABORATORY	NO		1209-64			
u o Oklahoma City	04 73119	SAMPLE RECE	IVED		12-10-09			
e, Oklanoma City,	UK /5116	RESULTS REPO	DRTED		12-11-09			
<u> </u>		LEASE	Chan	abers 2				
			·					
_ SURVEY ATE TAKEN: er sample - taken fr	om water well s	south of Cham	STATE bers 2.	CHAMBER	S 2			
				- Section 7, 1038' ESL	I-16-S R-36-E			
				Lea County	.NM			
				API # 30-02	5-36317			
CHEMI	CAL AND PHYSIC	AL PROPERTIE	<u>s</u>	210.0				
	1.0011	NU. 2		NU. 3	NU. 4			
	110011							
	7 20							
	278							
	2/0							
				· · · · · · · · · · · · · · · · · · ·				
	260							
	96				-			
	5							
	41				· ·			
	51		•					
	48							
	0.20							
	0							
·	<u>. </u>							
	510							
	519							
	0.0				+			
	16 950	···			<u> </u>			
					+			
					1			
					+			
			1		1			
					<u> </u>			
				· · · · · · · · · · · · · · · · · · ·				
Re	suits Reported As Millig	jrams Per Liter						
	RI e, Oklahoma City, d SURVEY	RESULT OF WATEF Il e, Oklahoma City, OK 73118	RESULT OF WATER ANALYSES 11 LABORATORY e, Oklahoma City, OK 73118 SAMPLE RECE e, Oklahoma City, OK 73118 LEASE	RESULT OF WATER ANALYSES 11 LABORATORY NO.	RESULT OF WATER ANALYSES II CABORATORY NO. c, Oklahoma City, OK 73118 SAMPLE RECEIVED RESULTS REPORTED LEASE Chambers 2 SURVEY COUNTY STATE SURVEY COUNTY STATE STATE STATE STATE STATE State CHEMICAL AND PHYSICAL PROPERTIES OLEAC PROPERTIES OLEAC AND PHYSICAL PROPERTIES OLEAC PROPERTIES OLEAC AND PHYSICAL PROPERTIES			

÷

LATHAM PRINTING CO. + 333-1292

New Mexico Office of the State Engineer Water Column/Average Depth to Water

and a standard and a standard and a standard a standard a standard a standard a standard a standard a standard

	(quarters are 1=NW 2≍NE 3=SW 4=SE)													
			(quarte	rs a	re	sma	allest	to larg	est)	(NAD83 UT	/ in meters)		(In feet))
	Sub		Country	Q	Q	Q	6	T	D	Y		Depth	Depth W	Vater
POD Number	Dasin	use	County	04	10	4	Sec	IWS	ĸng	X	Ŷ	weii	waterCo	Siumn
L 00196 D		IRR	LE	1	3	2	08	16S	36E	651831	3645728*	120		
L 00247 BA		IRR	LΕ	4	3	3	08	16 S	36E	651236	3644708*	123		
L 01011 APPRO		DOM	LE	2	1	1	08	16S	36E	651216	3646116*	75		
L 01070 APPRO		DOM	LE	3	4	3	08	16S	36E	651441	3644715*	75	5 5	20
L 01378 APPRO		DOM	LE	3	3	3	08	16S	36E	65103 6	3644708*	76	51	25
L 01423 APPRO		DOM	LE		1	1	0 8	16S	36E	651117	3646017*	90	6 0	30
L 01457 APPRO		DOM	LE	4	4	3	0 8	16 S	36E	651641	3644715*	85	60	25
L 01581 APPRO		DOM	LE	3	3	3	08	16 S	36E	651036	3644708*	89		
L 03236		DOM	LE	4	2	3	08	16S	36E	651634	3645118*	96	55 [°]	41
L 03236 APPRO		DOM	LE	4	2	3	0 8	16 S	36E	651634	3645118*	96		
L 03298		DOM	LE	4	4	3	08	16S	36E	651641	3644715*	90	65	25
L 03298 APPRO		DOM	LE	4	4	3	08	16S	36E	651641	3644715*	90	65	25
L 03373		DOM	LE	4	4	3	08	16S	36E	651641	3644715*	97	72	25
L 03373 APPRO		DOM	LE	4	4	3	08	16S	36E	651641	3644715*	97	72	25
L 03550		DOM	LE		2	3	08	16 S	36E	651535	3645219*	87	70	17
L 03596		DOM	LE	2	2	3	80	16 S	36E	651634	3645318*	88	70	18
L 03596 APPRO		DOM	LE	2	2	3	08	16S	36E	651634	3645318*	88	70	18
L 03727		DOM	LE				08	16 S	36E	651740	3645412*	100	60	40
L 03727 APPRO		DOM	LE				08	16S	36E	651740	3645412*	10 0	60	40
L 03728		DOM	LE				08	16S	36E	651740	3645412*	100	65	35
L 03728 APPRO		DOM	LE				08	16 S	36E	651740	3645412*	100	65	35
L 04154		DOM	LE	2	2	2	07	16 S	36E	650813	3646109*	102	65	37
L 04154 APPRO		DOM	LE	2	2	2	07	16S	36E	650813	3646109*	102	65	37
L 04176		DOM	LE	3	1	2	08	16S	36E	651824	3645931*	105	82	23
L 04176 APPRO		DOM	LE	3	1	2	08	16S	36E	651824	3645931*	105	82	23
L 04651		DOM	LE				08	16S	36E	651740	3645412*	97	85	12
L 04651 APRO		DOM	LE				0 8	16S	36E	651740	3645412*	97	85	12
L 04939		DOM	LE		3	3	08	16S	36E	651137	3644809*	100	75	25
L 05218		DOM	LE	3	3	3	08	16S	36E	651036	3644708*	120	9 0	30
L-05380		DOM	ĹΕ	4	4	3	08	16S	36E	651641	3644715*	100	64	36
L 05564		DOM	LE	3	4	2	08	16S	36E	652236	3645536*	100	6 8	32
L 05706		DOM	LE	3	2	1	07	16S	36E	64980 8	3645894*	74	60	14
L 05909		DOM	LE	4	3	2	08	16S	36E	652031	3645528*	9 6	81	15

													Page 2 of 3
L 05910	DOM	LE	4	3	2	08	16S	36E	652 031	3645528*	93	70	23
L 05964	DOM	LE	4	3	2	08	16 S	36E	652 031	3645528*	93	70	23
L 06053	DOM	LE		2	4	0 8	16S	36E	652343	3645234*	83	6 9	14
L 06943	DOM	LE	4	4	2	08	16S	36E	652436	3645536*	116	70	46
L 07445	STK	LE	2	2	3	0 8	16 S	36E	651634	3645318*	100	68	32
L 07510	DOM	LE	3	3	2	08	16 S	36E	651831	3645528*	120	70	5 0
L 07587	DOM	LE	4	3	2	08	16S	36E	652031	3645528*	110	72	38
L 07663	DOM	LE	3	4	2	08	16S	36E	652236	3645536*	110	72	38
L 07719	DOM	LE	4	4	2	80	16S	36E	652436	3645536*	120	70	50
L 07821	DOM	LE	4	4	2	08	16 S	36E	652436	3645536*	160	87	73
L 07845	DOM	LE		4	3	08	16S	36E	651542	3644816*	110	73	37
L 08113	DOM	LE	3	3	2	80	16S	36E	651831	3645528*	104	61	43
L 08113 POD2	DOM	LE	3	3	2	08	16S	36E	651831	3645528*	155		
L 08189	DOM	LE	3	4	3	08	16S	36E	651441	3644715*	120	70	50
L 08208	DOM	LE	3	3	2	08	16S	36E	651831	3645528*			
L 08296	DOM	LE		1	2	08	16 S	36E	65192 5	3646032*	15 0	70	80
L 08841	DOM	LE	3	4	2	0 8	16S	36E	652236	3645536*	123	53	70
L 09307	DOM	LË	4	3	3	08	16 S	36E	651236	3644708*	135	60	75
L 09466	DOM	LE		3	3	08	16S	36E	651137	3644809*	135	6 0	75
L 09562	DOM	LE		2	1	08	16S	36E	651521	3646025*	100	70	30
L 09733	DOM	LE		3	2	08	16S	36E	651932	3645629*	120	78	42
L 09784	DOM	LE		1	1	08	16 S	36E	651117	3646017*	100	65	35
L 09913	IRR	LE			3	08	16S	36E	651 3 38	3645010*	140	60	80
L 09913	STK	LE			3	08	16S	36E	65133 8	3645010*	140	60	80
L 10103	DOM	LE		2	3	08	16S	36E	651535	3645219*	123		
L 10255	STK	LE	4	3	2	08	16S	36E	652031	3645528*	150	70	80
L 10606	PRO	LE	3	4	2	07	16S	36E	650620	3645506*	160	55	105
L 10880	DOM	LE	2	4	3	08	16S	36E	651641	3644915*	150	70	80
L 10924	DOM	LE		4	2	80	16S	36E	652337	3645637*	150		
L 11037	DOM	LE		2	2	08	16S	36E	6 523 30	3646040*	100	65	35
L 11133	DOM	LE	2	2	3	08	16 S	36E	651634	3645318*	120		
L 11253	DOM	LE	4	2	3	08	16S	36E	651634	3645118*	140	8 6	54
L 11480	STK	LE	2	1	2	08	16 S	36E	652024	3646131*	100		
L 11488	DOM	LE	2	1	1	08	16S	36E	651216	3646116*	150		
L 11796	DOM	LE	4	3	4	08	16S	36E	652045	3644723*	120	61	59
L 12004 POD1	DOM	LE	4	4	2	08	16S	36E	65243 6	3645536*	120	63	57
L 12023 POD1	DOM	LE	4	1	4	08	16S	36E	652038	3645126*	110	60	50
L 12440 POD1	DOL	LE	1	3	1	08	16 S	36E	651086 Avera	3645781 Ige Depth to \	150 Vater:	68 feet	

Minimum Depth:

51 feet 90 feet

Maximum Depth:

Page 3 of 3

Record Count: 71

Basin/County Search:

Basin: Lea County

PLSS Search:

Section(s): 7, 8

Township: 16S Range: 36E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/16/10 11:52 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Item XIII Notice Address List

and the second secon

NAME	ADDRESS CITY		STATE	<u>219</u>
A & P Family Limited Partnership	P.O. Box 1046 Eunice		NM	88231
Albert Damien Hobbs c/o Berry Lee Hobbs, A-I-F	P.O. Box 154	Lovington	NM	28250
Andrei Raliis	29 Victory Street Rose Bay	Sydney	Australia	2023 NSW
Anita McDonald	1301 Sunny Hill Ct.	Bettendorf	IA	52722
Anna Kostantakopoylos	83-85 Limnoy St.	Athens, Greece		
Anna Rallis Argeanas	13616 Embudo Ct. NE	Albuquerque	ΝМ	87112
Barney M. Bailey	813 W. Madison	Lovington	NM	88260
Ben L. Graham	P.O. Box 1251	Lawrence .	KS	66044
Berry Lee Hobbs a/k/a Berry L. Hobbs	P.O. Box 152	Lovington	NM	88260
Berry Lee Hobbs, Jr. c/o Berry Lee Hobbs, A-I-F	P.O. Box 156	Lovington	NM	88260
Betty Stephen	155 Juniper Rd.	Placitas	NM	87043
Beverly Prichard	1405 Murray	Midland	ТХ	79701
Beverly Sue Cantrell Davis				
Bill C. Cotner, Foreign Personal Representative of the estate of Dorothy W. Cotner	903 Country Club Drive	Midland	тх	79701
Bill Thompson	1600 Willowick	Wichita Falls	ТХ	76309
Bobbie J. Bishop	1404 W. Avenue H	Lovington	NМ	88260
Brigid E. Curran, Trustee of the Brigid E. Curran Revocable Trust dated 5/3/1994	P.O. Box 22114	Santa Fe	NM	87502
Brooke Curran Poirier Marital Trust, John Brunk, Trustee C. L. Schnedar Estate and Angela Schnedar Estate	2337 W. 51st Terrace	Westwood Chavez Co.	KS NM	66205
C. T. Sparkman and Vera Sparkman	1017 W. Harrison	Lovington	NM	88260
Cecilia Ray	7717 Baughman	Amarillo	ТХ	79121

Chalfant Properties, Inc. and/or Bill Chalfant	1502 North Big Spring, P.O. Box 3123	Midland	ТХ	79702
Charles Howard Benson and Jean Claire Benson, Trustees of the New Mexico Property Trust u/t/	1			
3/1/2006	177-107 Ave. NE, Unit 1106	Bellevue	WA	98004
Chesapeake Exploration, L.L.C.	P.O. Box 18496	Oklahoma City	OK	73154-0496
Chesapeake Investments, L.P.	P.O. Box 18756	Oklahoma City	ОК	73154
Claudia Sue Smith	305 N. Cougar Ave.	Cedar Park	ТХ	78613
ConocoPhillips Co. Attn: Tom Scarbrough	600 N. Dairy Ashford	Houston	тх	77079-1175
Cortez Oil Company	370 17th St., Ste. 3670	Denver	CO	80202
Damon Cochran	303 N. Cougar Ave.	Cedar Park	ТХ	78613
David Graham McDonald c/o Ber Graham	P.O. Box 1251	Lawrence	KS	66044
David L. Quinlan, Personal Representative of the estate of Lucille L. Vidal	4203 Coe Drive NE	Albuquerque	NM	87110
David Petroleum Corp.	116 W. 1st St.	Roswell	NM	88203
David R. Marshall c/o Nancy Fox	16 Aurielle Drive	Colchester	VT	05446
Denise Murra y	4409 Fairbanks	Midland	ТХ	7970 7
Desmond C. Poirier Revocable Trust				
Desmond C. Poirier, Trustee	2337 W. 51st Terrace	Westwood	KS	66205
Dimitrios Papadopoulos		Akrata, Aigialias Greece		
Donna Kay Atkinson	5974 Broyles Rd.		MO	65667
Dorothy L. Harvey	#4 Village Ct.	Littleton	со	80123
Dorothy Runnels	8100 W. Alabama	Hobbs	NM	88240
Douglas C. Koch	P.O. Box 540244	Houston	ΤX	77254-0224
Doyle E. Province, Executor of the estate of Beulah Kay Phillips				
Province	5230 Mountain Villa Grove	Colorado Springs	со	80917

- Marcell

.

Dudley P. Murph, Trustee of the				
Dudley P. Murph Revocable Livin Trust	g 3019 W. Ave D.	Lovington	МИ	88260
Earnest Phillips	P. O. Box 743	Van Alstyne,	ТХ	75095-0743
Edna Ruth Garner	East 2921 23nd #16	Spokane	WA	99223
EHV Investments, L.L.C.	10733 Highway 180 West	Silver City	ΝМ	88061-9275
Elora Norene Phillips Duda	41725 Trenton Hill Dr.	Rio Rancho	NM	87124
Ericlis Papadopoulos		Akrata, Aigialias, Greec	e	
Ethel Mae Alberthal	300 Buzzard Hollow Court	Granbury	ТХ	76048
Floyd Miles	2400 S. Baylor	Roswell	NM	88201
Frances L. Schreufer	10525 108TH Ave. SW	Tacoma	WA	9849 8
Frances Ruth Stauz	Box 25	Coupland	тх	78615
Frances Stallcop Young	4935 Greenslope	Abilene	ТХ	79606
Gerald G. Feijoo				
Grady Thompson	9257 Shafter Rd.	Bakersfield	CA	93313
Greg Mauzy	P.O. Box 891	Midland	тх	79702
Greg Mauzy, Trustee of the MGM Oil & Gas Company Defined Benefit Plan	P.O. Box 891	Midland	ТХ	79702
Gretchen Ann Faulkner	209 Oak Hollow	Conroe	тх	77301
Gunsight Limited Partnership	P.O. Box 1973	Roswell	NM	88202
Gus Delonas (Dec'd) c/o Dorathγ Delonas AIF (Dec'd)	3612 Mirror Ct	Spring	ТХ	77388
Helen Homanidis	General Delivery	Greece		
Helen Irving	4404 E. 85th St.	Tulsa	οκ	74137
Holt Royalty, L.L.C.	P.O. Box 1469	Plainfield	IL	60544
ICA Energy, Inc.	700 N. Grant Ave.	Odessa	тх	79760-0233

Ina Carol Randall and Cathy Ruth Chapman c/o Linnie Jo Strunk	20600 Woodcreek Blvd.	Northville	Mt	48167-2910
Intrust Bank, N.A., Trustee of the Roxanna S. Carlock Revocable Trust dated 7/23/1992	Box 48666	Wichita	KS	67201
J. Wade Miles	6402 Quay Road, A. Ct.	Tucumcary	NM	88401
Jacquelynne Darlene Barnes	1202 Roosevel t	Taylorville	IL.	62568
James Clark Henrie II	P.O. Box 351	Corrales	NM	87049
James I. Holden, Jr.	2250 Havensridge Drive	Colorado Springs	CO	80920
Jana B. Miles	341 S. Alpine Dr.	Cornelius	OR	
Jane Dana Staley	4216 Berwick	Wichita Falls	ТХ	73609
Jean Claire Benson, Trustee of the Survivor's Trust c/o Jennifer	2			
Stevenson Perkins Coie LLP	1201 Third Avenue, Suite 4800	Seattle	WA	98101
Jeanne S. Kunko	1601 S. Kentucky Ave.	Roswell	NM	88201
Jim Tomlinson and Charlotte Tomlinson, Trustees under the Tomlinson Living Trust dated 12/12/2002	Р.О. Вох 774	Hatch	NM	87937
Jo Ann Hobbs Holloway c/o Berry Lee Hobbs, A-l-F	P.O. Box 155	Lovington	NM	88260
Joe Foran	One Lincoln Centre 5400 LBJ Freeway #1500	Dallas	тх	75240-1017
Joe S. Thompson, Executor of the estate of Joe Thompson	27564 Pond Drive	Keene	CA	93531
John William McDonald c/o Ben Graham	P.O. Box 1251	Lawrence	KS	66044
Judith E. Argoudelis, individually and as Executrix of the estate of John A. Argoudelis, deceased	1633 Cardinal Dr.	Munster	IN	46321
K. E. Chambers a/k/a Kenneth E. Chambers	2811 W. Ave. D	Lovington	NM	88260-5351
Katherine McDonald Wenig	1450 245th St.	Mt. Pleasant	IA	52722
Kelly H. Baxter	P.O. Box 1649	Austin	тх	787 67 -1649

.

Kelly H. Baxter	P.O. Box 11193	Midland	ТХ	79702
Kenneth T. Dorbandt	P.O. Box 684306	Austin	тх	78768-4306
Kostas Rallis a/k/a Gus Rallis	2028 Palomas NE	Albuquerque	NM	87110
Koyla Rallis Kaetsas a/k/a Kirla Koula Rallis Kaetsas	General Delivery	Petalou-Korinthias, Greece		
Larry C. Squires, Trustee of the Larry C. Squires Revocablre Trust dated 10/6/2004	P.O. Box 2158	Hobbs	NM	88241
Letsa Rallis Lafis a/k/a Garifalia Rallis Lafis	9 K Theodorou St.	Alghlon 25100	Greece	
Linnie Jo Strunk	20600 Woodcreek Blvd.	Northville	MI	48167-2910
Lloyd C. Green, Jr., Trustee of the Lloyd C. Green, Jr. Revocable Living Trust	308 Oxford Dr.	Gordonville	ТХ	76254
Lloyd W. Miles	1714 Jack Nicholas Dr.	Belen	NM	87702
Luce Gene Tatum	4423 Evalyn	Amarillo	тх	79109
Lula Maye Phillips	HC 60 #741A	Lovington	NM	88260
Magot Suzanne Chambers a/k/a Suzanne McDonald Chambers	314 Mantz Ave.	Audubon	IA	50025
Margaret L. Thompson	HC 63 Box 54	Mullin	ТХ	76864
Mariam Parke Christopher	642 Maple Street	Winnetka	IL	60093
Mary Van Wyk	7562 S. University Blvd.	Littleton	CO	80122
Mel M. Graham c/o Ben Graham	P.O. Box 1251	Lawrence	KS	66044
Mickey Byrd	1305 East Dakota Road	Lovington	NM	88260
Mickey Byrd, in his capacity as Custodian F/B/O Kyle Adrian Byrd, UTMA	1305 East Dakota Road	Lovington	NM	88260
Mildred L. Adams	5803 West State Avenue	Glendale	AZ	85301
Myco Industries, Inc.	105 South 4th St.	Artesia	NM	88210
Nancy Fox	16 Aurielle Drive	Colchester	VT	05546

Nelson James trving a/k/a Nelson J. trving	125 N. Buffalo Grove Rd., Apt. 110	Buffalo Grove	ΙL	60089-1722
Nora Potter Tacker c/o Kenneth Tacker	1224 Edgewood Ln.	Allen	ТХ	75013
Norma J. Barton	Р.О. Вох 978	Hobbs	NM	88240
Northport Production Co.	S001 Gaillardia Corp. Pl.	Oklahoma City	ОК	73142-1868
Occidental Permian Ltd.	P.O. Box 5020	Midland	ТХ	79710
Patty Adams	309 Oakwood Ave.	East Peoria	IL.	61611
Peggy F. Henrie	111 Columbia SE	Albuquerque	NM	87106
Peter Argoudelis	707 W. Santa Ann St., Apt. 269	Anaheim	CA	92805
Phyllis Ann Walke r	4705 N.W. 82nd Terrace	Kansas City	МО	64151
Phyllis Inez Ireland	2112 Milburn Ave.	Odessa	ТX	79761
Piyush V. Patel and Meena Patel Family Trust	25 Village Cir.	Midland	ТХ	79701
Playtime, Inc.	250 Sterling Ave.	Winter Park	FL	32789-5747
Quimex International, Inc.	P O Box 2662	Midland	ТХ	79702
Rena Oma Barnett				
Richard D. Green, Jr.	3809 4th Avenue	South Milwaukee	WI	53172
Richard D. Green, Sr.	P.O. Box 373	Clumbia Falls	MT	59912
Rita Schnedar, Trustee of the Schnedar 1998 Trust c/o William J. Schnedar	200 7 S. Penn	Roswell	NM	88203
Rita Van Stone	Rt. 1, Box 620	Conway	мо	65632-9614
Robert L. Love	1110 Nambe	Hobbs	NM	88240
Robyn Mauser	2907 N. Platina	Mesa	AZ	85215
Ronald Miles and Patricia E. Miles	2805 Coronado Dr.	Roswell	NM	
Roy Davenport	Rt. 6, Box 923	Cleburne	тх	76031

Roy G. Barton , Jr.	1919 N. Turner St.	Hobbs	NM	88241
Roy G. Barton a/k/a George Barton, Trustee of the Roy G. Barton & Opal Barton Revocable Trust u/t/a dated 1/28/1982	1919 N. Turner	Hobbs	NM	38241
				004.11
Rudd Family Trust	P O Box 1719	Amarillo	ТХ	79159
Russell A. Green	6104 Colfax Ave.	North Hollywood	CA	91606
Ruth L. Shields a/k/a Ruth Love Shields, individually and as Trustee of the Love Family Trust u/t/a dtd 4/24/97	2103 Geraldine	Midland	TX	7970 7
Satirios Rallis	General Delivery	Silivena - Egialias	Greece	
Scott Phillips Hutchin	127 Jory Drive	Owens Cross Roads	AL	35763
Sherry L. Green	172 Golden Russett Dr.	Lincoln	VA	22642
Sotirios Papadopoulos	163 Western Road	Westmead	Sydney 2145	Australia
Sotirios Rallis	3659 Calle Pino NE	Albuquerque	NM	87111
Ted W. Phillips, Jr.	P.O. Box 487	Rye	СО	81069
Teddy L. Hartley	P.O. Box 309	Clovis	NM	88102-0309
Texas Scottish Rite Hospital for Crippled Children	2222 Welborn Street	Dallas	тх	75219
TLW Investments, L.L.C.	ATTN: Doug Black 1001 Fannin, Ste. 2020	Houston	тх	77002
Trajan Development Co.	P.O. Box 16007	Oklahoma City	ОК	73113
Veeradine Phillips				
Vicki Lynn Hobbs Calkins c/o Berry Lee Hobbs, A-I-F	P.O. Box 152	Lovington	NM	88260
Virgil M. Shinn	5724 N Avenue	Carmichael	CA	95608
W. B. Phillips	W. Starr Rt., Box 742	Lovington	NM	88260
Walter A. Moeller c/o Berry Lee Hobbs, A-I-F	P.O. Box 153	Lovington	NM	88260

. . .

•

Wayne A. Bissett	P.O. Box 2101	Midland	ТX	79702
William J. Schnedar	2007 S. Penn St.	Roswell	NM	38203
Yates Drilling Company	105 South 4th St.	Artesia	NM	88210
Yates Petroleum Corporation	105 South 4th St.	Artesia	NM	88210

.

Additional Information

- Procedure to Convert Wells to Injection
- Actual & Proposed Well Bore Diagrams
- Geological Formation Tops

Runnels 1-8 Lea County, New Mexico Convert to Injection Procedure

Date: April 22, 2010

Location: 780' FSL & 1510' FWL Sec. 8-T16S-R36E

Casing: 5 1/2" 17# N-80 0-11,875' ID - 4.892", Drift - 4.767", Burst - 7,740 psi

PBTD/TD: 11,640'/11,875'

Current Perfs: Strawn 11,458-94'

Recommended Procedure:

- 1. MIRU PU. NW WH/NU BOP.
- 2. POH w/ ESP pump, cable and tubing.
- 3. RIH w/ 4 3/4" bit and scraper on tbg to PBTD of 11,640'. POH w/ bit.
- 4. RIH w/ 2 3/8" plastic lined L-80 tbg and 5 ½" Lock-set packer to 11,400'. Load back side with packer fluid. Set packer and pressure test to 500 psi.
- 5. RU service company. Acidize Strawn with 5,000 gal 15% NEFE acid at 5-6 BPM. Over displace acid into perfs by 30 bbls.
- 6. ND BOP/ NU WH. Rig down.

Chambers 1-7 Lea County, New Mexico Convert to Injection Procedure

Date: April 22, 2010

Location: 1700' FNL & 899' FEL Sec. 7-T16S-R36E

Casing: 5 1/2" 17# N-80 0-12,000' ID - 4.892", Drift - 4.767", Burst - 7,740 psi

PBTD/TD: 11,982'/12,000'

Current Perfs: Strawn 11,392-480'

Recommended Procedure:

- 1. MIRU PU. NW WH/NU BOP.
- 2. POH w/ rods and tubing.
- 3. RIH w/ 4 3/4" bit and scraper on tbg to PBTD of 11,982'. POH w/ bit.
- 4. RIH w/ 2 3/8" plastic lined L-80 tbg and 5 ¹/₂" Lock-set packer to 11,350'. Load back side with packer fluid. Set packer and pressure test to 500 psi.
- 5. RU service company. Acidize Strawn with 5,000 gal 15% NEFE acid at 5-6 BPM. Over displace acid into perfs by 30 bbls.
- 6. ND BOP/ NU WH. Rig down.

Pana 1/1

Page 1/1

Geological Formation Tops

Chesapeake Operating, Inc. Chambers 7 #1 Unit H, Sec. 7, T-16-S R-36-E 1700' FNL & 900' FEL Lea Co., N.M. API # 30-025-33623

San Andres	4724'
Glorieta	6352'
Paddock	6890'
Tubb	7490'
Drinkard	7750'
Abo	8230'
Wolfcamp	9610'
Pennsylvanian	10880'
Strawn	11378'
Atoka	11630'

Chesapeake Operating, Inc. Runnels 8 # 1 Unit N, Sec. 8, T-16-S R-36-E 780' FSL & 1510' FWL Lea Co., N.M. API # 30-025-34264

San Andres	4756'
Glorieta	6368'
Paddock	6948'
Tubb	7527'
Drinkard	7652'
Abo	8204'
Wolfcamp	9618'
Pennsylvanian	10898'
Strawn	11454'
Atoka	11738'

CASE <u>14478</u>: Application of Chesapeake Exploration, LLC doing business through its agent Chesapeake Operating, Inc. for approval of a waterflood project and qualification of the Project Area of the Chambers Strawn Unit for the Recovered Oil Tax Rate pursuant to the Enhanced Oil Recovery Act, Lea County, New Mexico. Applicant in the above-styled cause, seeks approval of its Chambers Strawn Waterflood Project in the following described area:

TOWNSHIP 16 SOUTH, RANGE 367 EAST, NMPM

Section 7:	NE/4, NE/4 SE/4
Section 8:	NW/4 NW/4, S/2 NW/4, SW/4

Applicant proposes to conduct waterflood operations by injection of water into the Strawn formation through the following two injection wells:

> Chambers 7 Well No. 1 1700 feet FNL & 900 feet FEL Unit H, Section 7, Township 16 South, Range 36 East, NMPM Lea County, New Mexico API No. 30-025-33623

> Runnels 8 Well No. 1 780 feet FSL & 1510 feet FWL Unit N, Section 8, Township 16 South, Range 36 East, NMPM Lea County, New Mexico API No. 30-025-34264

The applicant requests that the Division establish procedures for the administrative approval of additional injection wells within the unit area without the necessity of further hearings and the adoption of any provisions necessary for such other matters as may be appropriate for said waterflood operations. Applicant further seeks to qualify the project area for the Recovered Oil Tax Rate pursuant to the "New Mexico Enhanced Oil Recovery Act" (Laws 1992, Chapter 38, Sections 1 through 5). Said area is located approximately 1 mile West of Lovington, New Mexico.