
Addendum to Capitan Ground-Water Studies

Michael G. Wallace Re/Spec Inc., Spring, 1993

Addendum to Capitan GroundWater Studies

by Michael G. Wallace RE/SPEC Inc.

This addendum builds upon the development of the numerical model detailed in the report "Capitan Ground Water Studies" (RE/SPEC, 1993). The numerical model was used to address two scenarios. The first involved an approximation of the regional flow regime (through a steady state run) followed by prediction of the impact from injection upon water quality. The second scenario involved a more conservative assumption of no regional gradient, followed by prediction of the impact from injection.

The numerical simulator SUTRA (Saturated-Unsaturated TRAnsport) was utilized in this exercise and is described in the aforementioned report. The model grid consisted of 1,036 nodes, which define 966 four-noded elements. The boundary condition assignments and other input variables, as well as results and conclusions, have also been discussed in the previous report.

During the presentation of the model results to the Office of the New Mexico State Engineer, a number of issues came up. It was agreed that we would respond to several of those comments, including:

1. That submarine canyons of the Capitan Reef be referred to as "constrictions" to regional flow, rather than as "barriers".

2. That another model run be conducted in which no injection occurs whatsoever for approximately 1,000 years (no regional gradient either). This was brought up due to an earlier discussion in the model report concerning the effects of molecular diffusion upon the model results, with or without injection.

3. That the implementation of the storage term in SUTRA calculations be explained.

4. That the implementation of the equivalent fresh-water head concept into SUTRA be explained.

The remainder of this addendum consists of responses to the above issues.

As we are in a process of converting over to a new graphic display system, the model results are displayed somewhat differently than in the previous report. The new system involves the display of gray scale and/or color bands for the depiction of the distribution of a paramter (such as TDS) in two dimensions.

Addendum

1. That submarine canyons of the Capitan Reef be referred to as "constrictions" to regional flow, rather than as "barriers".

We concur on this point. "Constrictions to flow" is a more appropriate description of what is likely occuring than "barriers to flow".

2. That another model run be conducted in which no injection occurs for approximately 1,000 years (no regional gradient either).

In the Assumptions section of the previous report, it was stated:

"For the second scenario, ____ there is no regional gradient to carry the brines away from the Pecos. From that standpoint, the second scenario is more conservative than the first scenario, since the high TDS water is allowed to diffuse naturally, over time towards the low TDS zones. An ultimate consequence of this initial condition for the second scenario is that if the model were run long enough, even without any brine injection from the proposed position, the high TDS zones would completely invade the low TDS zones, eventually making the average brine concentration greater than 10,000 ppm throughout the entire model domain. Once again the reader is cautioned to take note of this artifact when reviewing the model results."

During the model presentation, it was suggested by the reviewers that an additional run be conducted in order to ensure that all of the ambient brine that appeared in the simulation to be moving towards the Pecos (an almost undetectable quantity) was moving solely due to this diffusion process, and not due to the injection activity.

This additional run has been conducted. The run setup is identical to the previous case (labeled Scenario #2 in the report) in every respect except that no brine injection occurs in the first 50 years of the simulation.

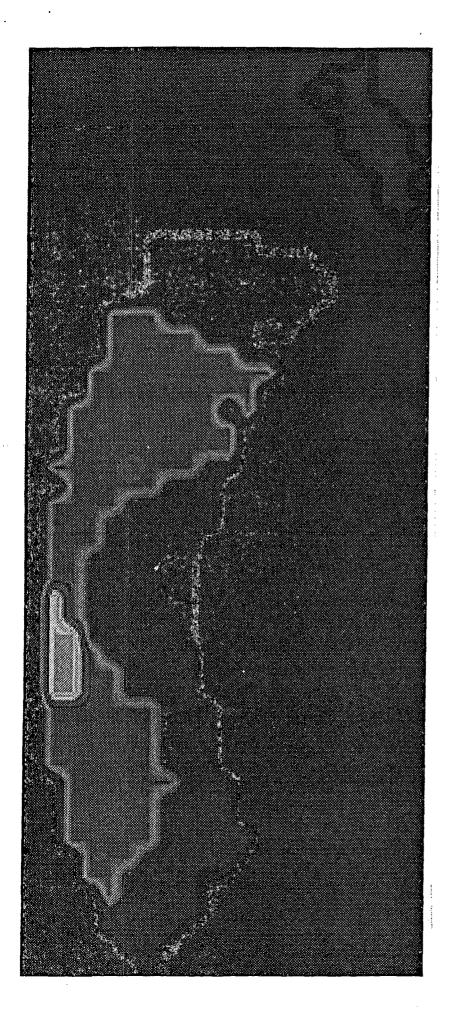
In Figures 1. and 2., regions of solid shades are regions of a constant TDS interval. By visual comparison with, for example, Figure D13 of the previous report, the correspondance in values can be readily determined. Basically, the major bands of shading correspond with the 0, 10000, 20000, 50000, and 100000 ppm zones of previous figures.

Figure 1 shows the TDS distribution for the original Scenario #2 at 1,058 years. The artifact of the injection activity over 1,000 years earlier is still visible as a small light gray patch.

Figure 2 shows the TDS distribution for the new run. The injection artifact is no longer visible, since it doesn't exist. Other than that change, it is virtually impossible to detect any differences in the TDS distribution between these figures.

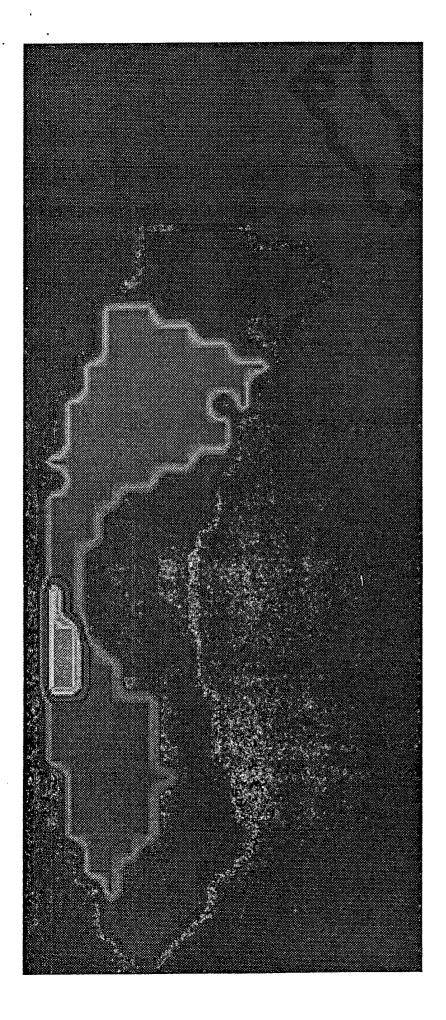
This result confirms that the injection activity as modeled, which utilizes extremely conservative assumptions, has no discernable impact upon the position of brines near the Pecos River.

Addendum


•

3. That the implementation of the storage term in SUTRA calculations be explained.

This has been done and the calculations are included as an attachment.


4. That the implementation of the equivalent fresh-water head concept into SUTRA be explained.

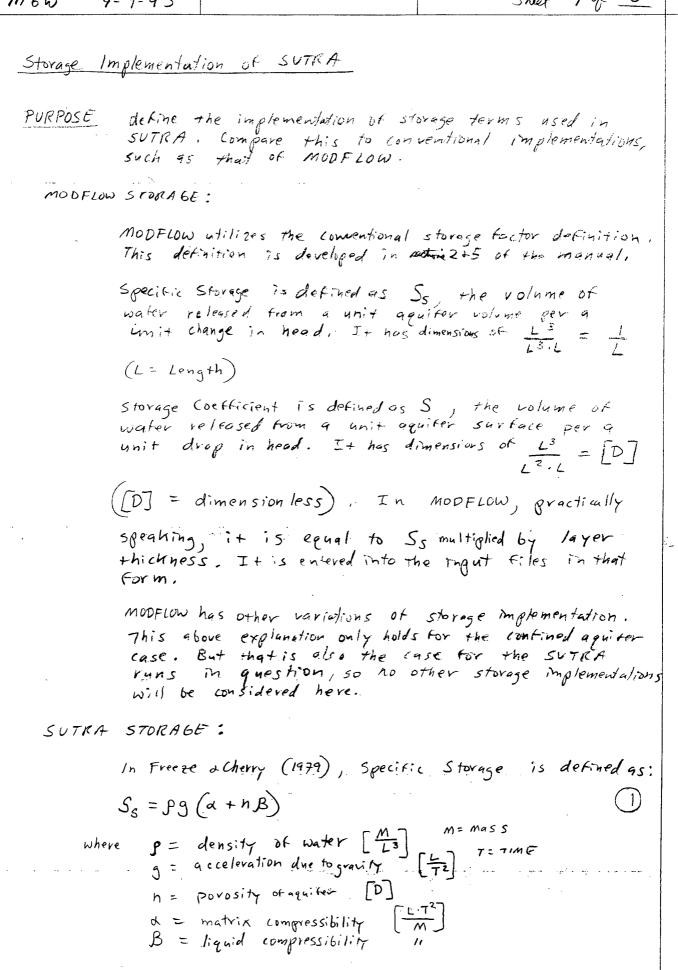
This has been done and the calculations are included as an attachment.

Brine Distribution after 50 Years of Injection Followed by 1,008 Years of No Injection (no regional gradient). Figure 1.

con0001_out vs. (row, col

Brine Distribution after 1,058 Years. No Injection at any Time during Simulation (no regional gradient). Figure 2.

con0101_out vs. (row, col)


M6W 4-9-	9	3
----------	---	---

42-381 42-382 42-382 42-382 42-382

Ester National Brand

()

sheet 1 of 3

· •	M6W 4-9-93	sheet 2 of 3		
-	Storage Implementation of SUTRA (cont.)			
	This term, i-mouth wohen Jown into more factors, means exactly the same thing as the mod Flow definition OF specific Storage.			
BRAUCS BR	On Bage 23 of the SUTRA manual, the specific pressure storativity, Sop, a defined :			
NO SHEETS EVE EASE NO SHEETS EVE EASE NO SHEETS EVE EASE NO RECYCLED WHITE EAS PECYCLED WHITE US A	Sug = The volume of water rele storage ger unit aquifer vo change in pressure. Soo in related to so an follows!	saved from saturated pore lume due to a unit $Sop = \frac{\Delta VOL_{water}}{VOL_{aguifer}} \cdot \Delta P$		
d 42.382 42.382 42.382 42.382 42.382 42.382 42.454 44.554 44.5544 44.554 44.554 44.55444 44.55444 44.554444 44.5544444444				
han the stational " Dran	Ss = P g Sop (note that F <u>note</u> g is magnitude or gravity vector dependent equation 2.12 of SUTRA manual describes of fluid from a aquifer. due to a	upon divection of elevation measurement. s the release of <u>mass</u>		
	$\frac{\partial(np)}{\partial P} = PS_{0}P$	4		
	expanding equation above to account compressibilities:	for matrix and fluid		
	$PS_{op} = P\frac{\partial h}{\partial P} + h\frac{\partial P}{\partial P}$	5		
	in sutra, B is expanded out	95		
	$B = \frac{1}{P} \frac{\frac{1}{P}}{\frac{1}{P}}$	Č)		
	and a is expanded out as	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
	$d = \frac{1}{VOL} \cdot \frac{\partial(VOL)}{\partial \sigma}$, , ,		
	where $d\sigma' = -d\rho$ $\sigma' re$	intergranular stress.		

 $\left(\cdot \right)$

$$\frac{1}{16W} \frac{4.9.93}{4.9.93} \qquad short 3 ot 3}{storage (mplementation in surray (control in the mentation) is derived in the metatod:
$$\frac{3}{6} p = (1-n) \alpha$$

$$\frac{3}{6} p = 3(1-n) \alpha + \beta n \beta$$

$$\frac{3}{6} sop = 3(1-n) \alpha + \beta n \beta$$

$$\frac{3}{6} sop = 3(1-n) \alpha + \beta n \beta$$

$$\frac{3}{6} sop = (1-n) \alpha + n \beta$$

$$\frac{3}{6} sop = (1$$$$

•

ί.

-

$$\frac{1}{106W \times 300} \frac{1}{4-12} \frac{1}{43}$$

$$\frac{1}{106W \times 300} \frac{1}{4-12} \frac{1}{43}$$

$$\frac{1}{106W \times 300} \frac{1}{106W} \frac{$$

¥

22.381 SS SHEETS EYE-ENSE"S SSUME 22.382 NOISHEETS EVE-ENSE"S SSUMAE 22.382 SOISHEETS EVE-ENSE"S SSUMAE 22.383 SOISHEETS EVE-ENSE"S SSUMAE 22.383 SOISHEETS EVE-ENSE"S SSUMAE 22.383 SOI RECYCLED WHITE S SSUMAE 42.389 SOI RECYCLED WHITE S SSUMAE 42.389 SOI RECYCLED WHITE S SSUMAE 43.499 SOI RECYCLED WHITE S SSUMAE

 \langle

M6W+ JDO 4-12-93	Shret 206 2
Equivalent Fresh Water Head - conversion F.	
lat Po=p*gH*	
where H^{T} is equivalent head of T (above $2=2$, =0)	Fluid with density pt
then: $\frac{\partial P_0}{\partial t} = p^* g \frac{\partial W^*}{\partial t}$	
and $\nabla P_0 = p^* g \nabla H^*$	
() = 0 (3)
$\mathcal{P} S \circ p\left(\mathcal{P}^{*}g \frac{\partial H^{*}}{\partial \mathcal{A}}\right) - \nabla \cdot \left(\mathbf{K}' \mathcal{P}^{*}g \cdot \nabla H^{*}\right)$	
note that p*g Sop = Ss	
$\frac{1}{2} S_{S} \frac{\partial H^{*}}{\partial t} - \nabla \cdot (K \mathcal{P} \cdot \nabla H^{*})$) = 0 (9)
divide both sides by p*	
$\frac{P}{p*} S_s \stackrel{\rightarrow}{\rightarrow} \stackrel{+}{\rightarrow} \stackrel{+}{\rightarrow} - \nabla \cdot \left(\frac{P}{p*} K \cdot \nabla H^* \right)$)=0 (5)
let $p' = \frac{p}{p*} \cong 1$	v
then $S_s \stackrel{\text{def}}{\rightarrow} \stackrel{\text{def}}{-} \nabla \cdot (K \cdot \nabla H^*)$	=0 6
which is the ground water flow equation	n in
terms of equivalent fresh	water head,

•

•

約43.

Ċ

Contraction and a contraction

•